
Few-shot Learning for Joint Classification of Instrument, Pitch, and

Playing Technique of Tones Produced by Bowed String Instruments

by

Pieter Cornelius Kok

Submitted in partial fulfillment of the requirements for the degree

Master of Engineering (Computer Engineering)

in the

Department of Electrical, Electronic and Computer Engineering

Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

December 2023

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

SUMMARY

Few-shot Learning for Joint Classification of Instrument, Pitch, and Playing Technique

of Tones Produced by Bowed String Instruments

by

Pieter Cornelius Kok

Supervisor(s): Prof. J. Pieter Jacobs

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Master of Engineering (Computer Engineering)

Keywords: Instrument playing technique classification, pitch classification, instru-

ment recognition, few-shot learning, prototypical network, Bayesian

optimization, transfer learning.

Instrument playing technique classification is a problem in music information retrieval (MIR) that

has only selectively been explored in the context of specific instrumentations or datasets. Classifying

playing techniques with pitch is a further challenge that takes a step closer to automatic music

transcription (AMT) with playing technique annotation. Traditional deep learning methods have

been used for the problems of instrument classification, playing technique classification and multiple-

instrument transcription, however, annotated data for the combined problems are scarce, thus it is hard

to train a sufficiently complex deep neural network that would be able to generalize to many different

instruments, playing styles and recording conditions. This study presents a few-shot learning model for

joint instrument, playing technique and pitch classification of single tones using prototypical networks.

The few-shot nature of the model allows it to be trained on what data are available and to adapt to

new instruments, playing techniques or recording conditions at inference time from a few examples.

This model could form part of a tutorial system where a music student would record scales of a given

playing technique under the supervision of a music teacher, which would later be used to match and

evaluate a performance with the technique.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Different deep neural network (DNN) architectures and both log-mel spectrogram and constant-Q

transform (CQT) input features are compared. The few-shot models are compared to standard neural

network classifier models with transfer learning to show how the few-shot models generalize better to

previously unseen playing techniques. Model training is optimized with Bayesian optimization. Proto-

typical models outperform standard classifier models with transfer learning on all experiments.

The 3-shot CQT convolutional neural network (CNN) model performs the best on the joint classification

task and achieves a macro F-score of .64 on the Studio On Line (OrchideaSOL) string instrument

playing technique dataset of previously unseen playing technique classes, which shows an ability for

the prototypical model to generalize to a new dataset without much loss of performance compared to

evaluation on the training classes. The model also achieves a macro F-score of up to .855 on individual

instruments, which shows promise for its use in a tutorial set up for any of the string instruments. The

models perform just as well when evaluated on extracts from YouTube tutorials and examples of clarinet

playing techniques from the Real World Computing (RWC) dataset. The few-shot model also functions

as a multitask model, capable of classifying pitch, playing technique or instrument from a recorded

sample. The best joint instrument, playing technique and pitch classification prototypical model can

accurately classify both playing technique and pitch, and do so just as well or better than models trained

more specifically on these problems when compared on the same data. Furthermore, the scenario

of instrument, playing technique and pitch classification in the presence of piano accompaniment is

investigated, which resulted in some loss of generalization, but still shows promise for the task of main

melody extraction, as pitch classification remains high.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

LIST OF ABBREVIATIONS

k-NN k nearest neighbours.

ADT automatic drum transcription.

AMT automatic music transcription.

ANN artificial neural network.

ARD automatic relevance determination.

CCE categorical cross-entropy.

CNN convolutional neural network.

CQT constant-Q transform.

CRNN convolutional recurrent neural network.

DNN deep neural network.

F0 fundamental frequency.

FFNN feed forward neural network.

FFT fast Fourier transform.

GP Gaussian process.

GRU gated recurrent unit.

HMM hidden Markov model.

MFCC mel frequency cepstral coefficient.

MIR music information retrieval.

MPE multi-pitch estimator.

NMF non-negative matrix factorization.

OrchideaSOL Studio On Line.

PLCA probabilistic latent component analysis.

PYIN probabilistic YIN.

RNN recurrent neural network.

RWC Real World Computing.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

STFT short-time Fourier transform.

SVM support vector machine.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

1.1 PROBLEM STATEMENT . 1

1.1.1 Context of the problem . 1

1.1.2 Research gap . 2

1.2 RESEARCH OBJECTIVE AND QUESTIONS . 2

1.3 HYPOTHESIS AND APPROACH . 3

1.4 RESEARCH CONTRIBUTION . 4

1.5 OVERVIEW OF STUDY . 4

CHAPTER 2 LITERATURE STUDY . 5

2.1 CHAPTER OVERVIEW . 5

2.2 STRING INSTRUMENT PLAYING TECHNIQUES 5

2.3 INSTRUMENT, PLAYING TECHNIQUE AND PITCH CLASSIFICATION 7

2.3.1 Playing technique classification . 8

2.3.2 Instrument recognition . 9

2.3.3 Pitch transcription . 9

2.3.4 Pitch and instrument transcription . 10

2.4 MACHINE LEARNING CLASSIFIERS . 11

2.4.1 Deep neural networks . 12

2.4.2 Convolutional neural networks . 12

2.4.3 Recurrent neural networks . 12

2.5 FEW-SHOT LEARNING . 13

2.5.1 Siamese networks . 13

2.5.2 Matching networks . 13

2.5.3 Relation network . 13

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.5.4 Prototypical networks . 14

2.5.5 Few-shot learning for audio and music applications 14

2.6 TRANSFER LEARNING . 15

2.7 CHAPTER CONCLUSION . 16

CHAPTER 3 METHODS AND THEORY . 17

3.1 CHAPTER OVERVIEW . 17

3.2 CLASSIFICATION SYSTEM OVERVIEW . 17

3.2.1 Few-shot classifier . 17

3.2.2 Standard classifier . 18

3.3 TIME-FREQUENCY REPRESENTATION . 18

3.3.1 Spectrogram . 18

3.3.2 Mel spectrogram . 20

3.3.3 Constant-Q transform . 20

3.4 STANDARD CLASSIFIER NEURAL NETWORKS 24

3.4.1 Loss function . 24

3.4.2 Adam optimizer . 24

3.4.3 Learning rate scheduler . 24

3.5 PROTOTYPICAL NETWORKS . 25

3.5.1 Episodic training . 25

3.6 BAYESIAN OPTIMIZATION . 26

3.6.1 Optimizing neural network hyperparameters with Bayesian optimization . . . 27

3.7 PYIN F0 ESTIMATION . 28

3.8 CHAPTER CONCLUSION . 29

CHAPTER 4 MODELS AND EXPERIMENTS . 30

4.1 CHAPTER OVERVIEW . 30

4.2 DATASETS . 30

4.2.1 Data sources . 30

4.2.2 Training and validation data . 31

4.2.3 Test data . 32

4.3 NEURAL NETWORK ARCHITECTURES . 38

4.3.1 DNN . 39

4.3.2 CNN . 40

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3.3 RNN . 40

4.3.4 CRNN . 42

4.4 MODEL TRAINING FOR JOINT INSTRUMENT, PLAYING TECHNIQUE AND

PITCH CLASSIFICATION . 42

4.4.1 Transfer learning for standard classifiers . 44

4.4.2 Instrument playing technique classification models 44

4.4.3 Instrument pitch classification models . 44

4.4.4 Classification with accompaniment models 44

4.5 EVALUATION PROCEDURE . 44

4.6 CHAPTER CONCLUSION . 45

CHAPTER 5 RESULTS AND DISCUSSION . 46

5.1 CHAPTER OVERVIEW . 46

5.2 EVALUATION ON RWC STRING INSTRUMENT EXAMPLES 46

5.3 CROSS-DATASET EVALUATION ON ORCHIDEASOL 55

5.4 EVALUATION ON REAL-WORLD YOUTUBE EXAMPLES 61

5.5 EVALUATION WITH ACCOMPANIMENT . 65

5.6 EVALUATION ON A PREVIOUSLY UNSEEN INSTRUMENT 66

5.7 PLAYING TECHNIQUE CLASSIFICATION . 68

5.8 PITCH CLASSIFICATION . 71

5.8.1 Pitch classification using PYIN . 74

5.9 MODEL PERFORMANCE . 75

5.10 TIME-FREQUENCY FEATURES . 78

5.11 PROTOTYPICAL MODEL SHOT . 78

5.12 PROTOTYPICAL NETWORKS COMPARED TO TRANSFER LEARNING 78

5.13 LIMITATIONS OF THE APPROACH . 79

5.14 CHAPTER CONCLUSION . 79

CHAPTER 6 CONCLUSION . 81

6.1 FURTHER WORK . 82

REFERENCES . 83

ADDENDUM A HYPERPARAMETERS FOUND WITH BAYESIAN OPTIMIZATION 96

A.1 PROTOTYPICAL MODELS . 96

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A.2 STANDARD CLASSIFIER MODELS . 96

ADDENDUM B ADDITIONAL RESULTS . 98

B.1 CROSS-DATASET EVALUATION ON ORCHIDEASOL 98

B.2 EVALUATION ON REAL-WORLD YOUTUBE EXAMPLES 101

B.3 EVALUATION ON A PREVIOUSLY UNSEEN INSTRUMENT 104

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

Automatic music transcription (AMT) is a prominent research problem in the larger field of music

information retrieval (MIR). The goal of AMT is to convert an audio representation of music into a

probable transcription of music events in the piece, such as the notes played, instruments present in the

piece, or instrument playing techniques employed. AMT has many applications in music processing;

it is useful for replicating an improvised performance but is also useful as a preprocessing step for

further music processing [1].

Playing techniques are of interest in MIR as secondary transcription labels. The techniques used to

play a piece of music or phrases in a piece can change the tone and mood of the music and is an

important part of an expressive musical performance. Playing technique transcription would thus

be an important part of a complete general purpose AMT system in order to capture the complete

information from a recording in order to be able to accurately replicate the performance. Playing

technique classification is also very useful in teaching tools in order to evaluate a student’s mastery of

different playing techniques.

Traditional deep learning methods have been used for the problems of instrument classification,

playing technique classification and multiple-instrument transcription, however, annotated data for

the combined problems are scarce [1], thus it is hard to train a sufficiently complex deep neural

network that would be able to generalize to many different instruments, playing styles and recording

conditions [2]. Few-shot learning is a machine learning task whereby a model classifies new classes or

performs a new function after training is complete by being provided examples at inference time [3].

Few-shot learning allows models to generalize to examples that are different from those present in the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1 INTRODUCTION

training data and are thus a way to train a model without having large amounts of training data for all

target tasks. There only needs to be enough data to train a model that is able to distinguish features

necessary for the target tasks.

This study presents a few-shot learning model for joint instrument, playing technique and pitch

classification using prototypical networks. The few-shot nature of the model allows it to be trained on

what data are available and to adapt to new instruments, playing techniques or recording conditions at

inference time from a few examples.

1.1.2 Research gap

Playing technique classification is a relatively unexplored problem in MIR [4]. Many investigations

focus on a single instrument or family of instruments, such as guitar [5, 6, 7, 8, 9, 10, 11, 12],

violin [13, 14, 15], piano [16, 17], drums [18, 19, 20], singing techniques [21, 22, 23], bagpipe [24],

guqin [25], guzheng [26] or Chinese bamboo flute [27, 28]. Full transcription systems that account for

both pitch and playing technique are desirable for e.g. tutorial purposes; yet there seems to be a paucity

of such studies. Examples include [13, 6]. Hand-crafted pitch tracking and technique detection rules

and features limit these approaches to the instruments and techniques they were designed for. Methods

tuned to the spectral envelope of a violin, for example, would not be readily applicable to clarinet.

Thus there is a research gap for algorithms that can identify both pitch and playing technique. A

general-purpose transcription system would also be able to identify the instrument in question.

While prototypical networks [3] have been applied to sound event detection [29, 30], musical instrument

recognition [31] and automatic drum transcription (ADT) [32], applying them to playing technique

classification in combination with instrument and pitch classification remains unexplored.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The objective of this research is to establish whether few-shot learning is suitable for the joint classi-

fication of instrument, pitch and playing technique for string instrument tones and whether few-shot

leaning performs better than standard neural network classifiers on this task. To this end prototypical

few-shot models are trained for this task, as well as standard classifier models for the same problem.

Models are compared to show the strengths and shortcomings of the approaches to this problem. The

following research questions are considered:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

2

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1 INTRODUCTION

• Will a few-shot model jointly classify instrument, pitch and playing technique for string instru-

ment tones better than a standard classifier model?

• Does a few-shot model trained on the joint classification task perform better than a standard

classifier model that was trained on the joint classification task when evaluated on the tasks of

playing technique classification, pitch classification or instrument recognition?

• Does a few-shot model generalize better to previously unseen data, problems, instruments,

performers or recording conditions than a standard classifier model which has been further

trained in the new domain?

Some secondary research questions that are also of interest are: how well do the models perform when

given more realistic data than studio recordings meant for research, such as string instrument examples

with accompaniment or recordings from YouTube that were not necessarily recorded under studio

conditions; and how do the models perform on the sub-problems of instrument recognition, playing

technique classification or pitch classification, for which state-of-the-art techniques already exist that

perform relatively well?

1.3 HYPOTHESIS AND APPROACH

Since the approach should ideally be of use towards a general-purpose transcription system, this is

looked at as a few-shot learning problem where the model needs to be able to adapt to new instruments

and playing techniques from a handful of examples, rather than needing hand-crafted features for any

new instruments and techniques. Prototypical networks have shown promise in few-shot learning for

sound event detection [33], thus this approach is adapted to this problem. These few-shot models are

compared to standard neural network classifiers that employ transfer learning to adapt to new datasets.

The hypothesis is that prototypical few-shot models would perform better than standard classifier

models when generalizing to previously unseen data.

Models are trained and evaluated on string instrument examples of isolated notes or tones from the

Real World Computing (RWC) [34] dataset. In order to demonstrate the versatility of the system,

models are also tested on examples with accompaniment added and examples from YouTube that

were recorded under more realistic conditions (what would be expected from a tutorial setting). Cross-

instrument evaluation is also done using RWC clarinet playing technique examples and the Studio On

Line (OrchideaSOL) [35] dataset string examples are used for cross-dataset evaluation to evaluate the

few-shot nature of the approach.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

3

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1 INTRODUCTION

1.4 RESEARCH CONTRIBUTION

This research contributes prototypical few-shot models, as well as standard artificial neural network

(ANN) classifier models for joint instrument, pitch and playing technique classification of string instru-

ment tones. A conference paper was submitted and presented at Southern Africa Telecommunication

Networks and Applications Conference (SATNAC) 2021 — a conference concerning progress achieved

in applied research in the information and communications technology sector in South Africa — that

detailed multiple instrument pitch transcription using ANNs [36]. A journal paper comparing the

prototypical few-shot models to standard ANN classifier models on the problems of joint instrument,

pitch and playing technique classification, instrument playing technique classification, and instrument

pitch classification is to be submitted to the IEEE/ACM Transactions on Audio, Speech, and Language

Processing. This paper also discusses the performance of prototypical networks compared to transfer

learning on adapting to previously unseen data, problems, instruments, performers and recording

conditions.

1.5 OVERVIEW OF STUDY

Chapter 2 gives an overview of the relevant literature on this subject. Chapter 3 describes the imple-

mented systems and the theory behind them. Chapter 4 gives an overview of the models that were

trained for different experiments and the datasets used for training and evaluation. The results of all

experiments are given and findings are discussed in chapter 5. Chapter 6 concludes and summarizes

the study.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

4

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 LITERATURE STUDY

2.1 CHAPTER OVERVIEW

This chapter summarizes the relevant literature on the problems of playing technique classification,

instrument recognition and pitch transcription in automatic music transcription. An overview is

given of playing techniques for string instruments. State-of-the-art approaches to the individual and

combined problems of playing technique classification, instrument recognition and pitch transcription

are discussed. Machine learning classifier techniques are explained and finally the approaches of few-

shot learning and transfer learning, and their applications to music transcription are discussed.

2.2 STRING INSTRUMENT PLAYING TECHNIQUES

The violin family of musical instruments predominantly produces sound by means of a bow drawn

(usually by the right hand) over tightly wound strings to produce vibrations on the string, which

reverberates in the hollow body. The pitch of sounds produced is controlled by pressing down on

strings with the fingers of the other hand while they are bowed in order to change the length of the

string that is able to vibrate. The quality of the sound, i.e. the perceived timbre, can be changed

through different playing techniques that could involve some combination of altering how the fingers

press down on the strings on the fingerboard or different bowing or plucking methods. Some common

playing techniques considered in this investigation are:

• Vibrato1: The finger pressing down on the string is moved back and forth slightly while the bow

is drawn over the string, producing a modulation of the note pitch [37].

• Non-vibrato: Notes are not played with vibrato, thus the finger pressing down on the string is

kept still while the bow is drawn, resulting in a sound with less frequency modulation.

1In this investigation this is considered the normal way of playing. Thus where not otherwise indicated for string

instruments, assume examples are played with vibrato.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 LITERATURE STUDY

• Sul ponticello: Strings are bowed close to the bridge, which produces a glassy sound that

emphasizes higher harmonics [38].

• Sul tasto: Strings are bowed close to or over the fingerboard, producing sound with fewer high

harmonics [39].

• Pizzicato: The strings are plucked instead of bowed [40]. If the sound is dampened by lifting the

finger off the fingerboard after playing it is called secco.

• Spiccato: The bow is bounced on the string which results in a staccato effect [41].

• Sautillé: A bow stroke similar to spiccato. The stroke is played in the middle of the bow and

one stroke is used per note. The bow is bounced slightly on the string [42].

• Martelé: A percussive stroke produced by heavy initial pressure of the stroke, followed by an

explosive release [43].

• Collé: A stroke in between martillé and spiccato. The stoke starts above the string and briefly

touches the string before lifting again. The resultant note has a sharp onset and offset [44].

• Tremolo: A note is repeated in quick succession by rapidly moving the bow back and forth [45].

• Flageolet: Harmonics are played by lightly touching the string at the harmonic position of the

pressed note or open string [46].

• Staccato: Audible separation between notes is the main distinctive quality of staccato. This

can be played with a dead stop on the string or with a release. It is often achieved by playing

notes shortly and sharply. Since we are interested in single notes, we focus on this as the audible

quality we are detecting when considering staccato notes in datasets [47].

• Sordino: Sound is muted by adding a three-pronged clamp to the bridge, which absorbs some of

the vibrations [48]. This can be combined with other playing techniques.

• Glissando: A continuous slide from one note to another. All pitches between the two notes are

played with a single bow stroke while the finger on the string slides from the beginning note to

the end note [49].

• Portamento: A similar technique to glissando. Before playing a note, the player pauses at a pitch

just above or below the note and slides the pitch to the final note [50].

This list is not exhaustive. Note that playing techniques that incur multiple pitches, such as glissando

and portamento in the RWC playing technique dataset [34] (see Section 4.2.1), are outside the scope

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

6

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 LITERATURE STUDY

of this investigation, as the primary interest is classifying playing technique alongside singular pitch

labels.

2.3 INSTRUMENT, PLAYING TECHNIQUE AND PITCH CLASSIFICATION

Playing technique identification research in MIR has for the large part focused on specific instruments or

techniques, often because features can be specifically designed for the characteristics of the instrument.

A lot of investigation has been done for common instruments in Western classical music such as

guitar [5, 6, 7, 8, 9, 10, 11, 12], violin [13, 14, 15] and piano [16, 17], which have very distinct

harmonic and spectral profiles. Studies have also been done for percussion and drums [18, 19, 20], as

well as singing techniques [21, 22] and traditional music and instruments which are not as common

in MIR, such as bagpipe [24], guqin [25], guzheng [26], Chinese bamboo flute [27, 28] and makam

music [51].

A limited number of studies have considered playing technique detection in conjunction with transcrip-

tion, although as two separate systems based on the same features [13, 6]. In [13] pitch extraction

is done from fast Fourier transform (FFT) thresholding and playing techniques are detected from

the note envelope and spectrograms according to their characteristics. In [6], note onset detection

with fundamental frequency (F0) tracking is done and these features, along with additional spectral

envelope features are used to train a support vector machine (SVM) model for playing technique

classification. This has also been applied to matching a recording to a score to find the alignment of

notes and ornamentations [7].

Previous work on each of the sub-problems is summarized in the next sections. This review is not

exhaustive and only serves to give an idea of the state-of-the-art in the field and to highlight approaches

related to the approach taken in this study. To give an idea of the relevant difficulty of the different

sub-problems: the compilers of the OrchideaSOL dataset did some benchmarking on the dataset and

investigated instrument recognition, playing technique classification and note classification using some

common classifier approaches. 20 mel frequency cepstral coefficients (MFCCs) were used as input

features. Of all approaches, their random forest estimator performed the best, achieving 95 %, 90 %

and 90 % respectively on the three problems with 16 different instruments and 143 different playing

techniques in the evaluated dataset [35].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

7

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 LITERATURE STUDY

2.3.1 Playing technique classification

Playing technique classification for specific playing techniques has been done by taking advantage

of knowledge about how the playing techniques change frequency spectra over time, like detecting

glissando using a hidden Markov model (HMM) [27], vibrato using the frequency diagonalization

method [52] or protamento with a HMM and Gaussian mixture model [52].

Playing technique recognition mostly relies on frequency representation features to detect playing

techniques. Spectral envelope modeling can be used to differentiate between playing techniques [6, 13].

The features need to capture changes in frequency over time, thus time-frequency spectra are often

employed, such as a constant-Q transform (CQT) [53, 25] or a scattering transform — a cascade of

constant-Q wavelet transforms alternated with modulus operators [54, 4]. Other techniques used to

model frequency changes are power spectral density [5] and cepstrums [10], especially MFCCs [55,

11].

Templates can be used to extract occurrences of events from a recording using machine learning

algorithms such as dynamic time warping [24] and non-negative matrix factorization (NMF) [18].

Otherwise, classification methods are used to make predictions based on the features. Common

clustering classifiers are SVMs [16, 56] or k nearest neighbours (k-NN) [15]. k-NN has been extended

using a large margin nearest neighbors algorithm with a learned matrix that is used to add weights to

the distance function. This was used for a query-by-example algorithm for instrument recognition and

playing technique classification from isolated note examples [4].

Deep neural network (DNN) models have also been employed [25, 20]. More recent implementations

have taken advantage of larger models and datasets. A convolutional neural network (CNN) was used

to classify violin bowing techniques on a dataset consisting of a combination of data extracted from

existing datasets, YouTube and new recordings [57]. A convolutional recurrent neural network (CRNN)

approach to playing technique classification evaluated their models on test sets that were generated

from similar data to what the models were trained on and on test sets that were generated from new

data and found a significant reduction in accuracy on the new data [53]. Training on one dataset and

testing on another is prone to uncover difficulty in generalization that isn’t easily detected by training

and testing on data from the same set [2].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

8

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 LITERATURE STUDY

2.3.2 Instrument recognition

Approaches to instrument recognition are very similar to playing technique classification. The same

frequency features are useful for instrument recognition, such as cepstrums [58, 59, 60], MFCCs [61],

line spectral frequencies [62] and CQT [60].

NMF can also be used to match instrument examples [63]. Machine learning approaches include statist-

ical approaches like a Gaussian classifier [59], Gaussian mixture models [62] and naïve Bayesian clas-

sifier [64], as well as k-NN classification [59, 62, 64, 60], SVMs [64, 11] and binary trees [64].

ANN approaches are also common [64], with some deeper neural networks being used more recently,

such as CNNs [61]. An investigation was done on different techniques of spectrogram compression

and pre-processing for instrument family classification on mel spectrogram patches using a CNN

on the OrchideaSOL dataset [65]. A few-shot learning approach classified instruments at different

granularities by training a multi-task model that can operate at different levels of a musical instrument

taxonomy hierarchy [66].

2.3.3 Pitch transcription

Pitch transcription can be considered as an F0 estimation problem or as a frame-level transcription

(or multi-pitch estimator (MPE)) problem. The difficulty of the problem is tied to the polyphony of

the music to transcribe. Multiple pitches or even pitches from multiple instruments can sound at the

same time, complicating the transcription. The two camps of approaches to pitch transcription are

traditional signal processing methods and deep learning methods. The deep learning methods generally

have better accuracy on specific instruments, but signal processing methods generalize better and are

faster [1].

Some approaches with traditional signal processing methods for single instrument or instrument ag-

nostic approaches model spectral peaks and match them to the expected profile of instrument harmon-

ics [13, 6]. Often some maximum-likelihood estimation modeling or F0 tracking is employed [67, 68].

A widely used F0 estimation algorithm is probabilistic YIN (PYIN), which is a probabilistic adaptation

of the YIN algorithm [69]. It is still a state-of-the-art F0 estimation algorithm to compare to [70] and

is also often used for annotating transcription datasets [71].

Template-based models have also shown success in MPE, such as NMF [72, 73] or probabilistic latent

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

9

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 LITERATURE STUDY

component analysis (PLCA) [74], which can model specific instruments based on templates. More

recent approaches have taken advantage of advances in neural networks to develop piano transcrip-

tion systems that outperform state-of-the-art traditional methods on standardized piano transcription

problems [75, 76].

2.3.4 Pitch and instrument transcription

Assigning transcriptions to instrument streams adds an additional layer of complexity. Instrument

recognition can give some indication of which instruments are active in a frame, but still leaves the

problem of matching streams to active instruments when the polyphony is greater than one.

PLCA is a convenient way to model instrument notes played in a recording using a probabilistic model

of dependent latent variables. The latent components can be extended to more than just pitches —

instrument sources can be incorporated as a dependent latent variable. A shift-invariant model can be

used with PLCA to extract shifted structures, such as note templates, from a non-negative spectrogram.

Such a model can jointly determine pitches and instrument streams of pitches [77].

Assigning pitches to instrument streams can also be approached with constrained clustering, where

pitches are clustered into streams so as to minimize an objective. The clustering is constrained to

cluster pitches that are close in time and frequency, but preserve a maximum number of streams present

at any time. The objective is to cluster pitches so as to minimize the difference in timbre between sound

objects in the same stream. MFCCs are used as representations of sound object timbres [78].

Posteriograms of single instrument transcriptions, such as those produced by NMF and PLCA tran-

scription, can be converted to binary piano roll by Viterbi decoding, which tracks probable notes

using a two-state HMM for each pitch [79]. This approach has been extended to instrument stream

assignment. The joint observation of F0 streams — which have already been determined from a

different transcription algorithm — and features such as MFCCs can be modeled as a HMM where the

observations are dependent on hidden states of instrument stream labels for each F0. A hidden Markov

random field can be used to assign stream labels to estimated F0s based on minimizing an energy

function that simultaneously models the temporal continuity of notes and MFCC source characteristics

of F0s [80].

More recent work has applied deep learning to the problems of MPE and note tracking for both

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

10

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 LITERATURE STUDY

problems where the instrument classes are known and where instrument stream identification is done

within a closed set of instruments. This was done using an encoder-decoder model with a self-attention

mechanism [81].

2.4 MACHINE LEARNING CLASSIFIERS

Machine learning is the broad field in artificial intelligence concerned with developing mathematical

models and algorithms that learn from examples. It can be seen as approximating some (often non-

linear and intractable) function from example data points. In general, approaches model the unknown

function as a weighted combination of basis functions; the learning then involves finding optimal

weights and/or basis functions under the constraints of the model [82].

ANNs model complicated functions as linear combinations of basis functions. Nodes in an ANN are

activated by a weighted combination of inputs from previous nodes or network inputs. The activations

of output nodes can then be taken as multi-variable outputs. A single layer of inputs connected to

outputs by a weighted sum and activation function is similar to linear regression, but more layers can

be added to get a non-linear function of the inputs controlled by the weights. With enough connected

nodes an ANN can learn arbitrarily complex functions. Learning is done by adjusting the weights of

node inputs, which is usually done by comparing example input and target data to the estimated output

the ANN produces from the input to obtain an error or cost. A common algorithm for adjusting the

weights over epochs of a set of training data is backpropagation, which adjusts weights based on the

derivative of the error with respect to each weight. ANNs are often used for regression, but are also very

useful for classification problems: non-linear hyper-planes that segment classes based on input features

can be approximated for binary classification, which can be extended to multi-class classification by

having multiple outputs. Making the classification paradigm more explicit to the training procedure,

such as by using a softmax output activation can even output class probabilities [83, 82].

A basic form of ANN is the feed forward neural network (FFNN) for which each layer is connected

to each node of the previous layer and a bias node (to anchor the network in the solution space).

Adding more nodes to a layer increases the accuracy with which the layer can approximate a function.

Increased layers allow the network to approximate higher-order functions [83, 82]. More complex

ANN architectures each have their own advantages and applications, some of which are discussed

here.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

11

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 LITERATURE STUDY

2.4.1 Deep neural networks

More complex neural networks with more weights and layers (usually three or more layers) are referred

to as DNNs. More layers allow the networks to learn more complex relations between the network

inputs and outputs. With deeper layers, networks can learn to recognize simple features at early layers,

which are aggregated into more complicated features at later layers. The more layers the network has,

the more complex the features can be, and with more weights per layer, networks can learn a wider

array of different features, which for classifiers can mean that DNNs are able to differentiate between

more classes and more specific classes. The downside is that larger networks take much more data to

properly train. It has been shown that increasing the amount of training data has a direct correlation

with increased performance on some tasks [84]. DNNs are also more resilient to errors in training data

labels when trained on larger datasets [85].

2.4.2 Convolutional neural networks

A problem with fully connected neural networks is the very large amount of weights that come with

increases in network size. Large amounts of weights introduce difficulties in training and more weights

need more data and epochs to train properly. Another problem comes in with generalization: consider a

problem of identifying a pattern in a larger sequence — the same construct of weights and connections

could identify the pattern, regardless of its position in the sequence. However, to identify its position,

the construct needs to be repeated through the network to identify the pattern at different parts of the

sequence input to the network. These problems can be addressed by introducing convolutional layers

to a neural network [86]. A convolutional layer consists of weight kernels that are applied to a layer

input by sliding them over the input and summing the weighted inputs for each kernel at each position.

This allows feature extraction to be generalized by the kernels and the spatial positions of features

to be maintained. The features extracted by convolutional layers are often further processed by fully

connected layers [87]. A dense layer is not shift- or scale-invariant, but CNN kernels maintain spacial

relations, so multiple convolution layers with subsampling (such as max-pooling) can be applied to

capture larger templates with some distortion [86].

2.4.3 Recurrent neural networks

Recurrent neural networks (RNNs) are another expansion to the neural network concept that aims to

improve processing of sequence data. Observations are sometimes time-dependent and the state of the

inputs to a neural network is sometimes dependent on previous time steps or all previous states. For a

neural network to take advantage of these dependencies to make predictions at a specific time step

would require inputs of not just the current time step, but previous time steps. This is very impractical

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

12

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 LITERATURE STUDY

for large inputs, long time frames and sequences of observations of varying time lengths. RNNs

address this by keeping some form of internal memory. The most basic form of RNN expands on

FFNNs by having layer activations be dependent on both the layer inputs and the layer activations at

the previous time step. More recent approaches have improved on this by adding gates to determine

whether to overwrite the internal memory with new information [88].

2.5 FEW-SHOT LEARNING

Few-shot learning is a paradigm in machine learning that aims to allow machine learners to learn tasks

after training is completed from only a handful of examples presented at inference time, much like

humans can. For classification tasks, rather than outputting class probabilities, few-shot DNNs match

queries with prototypes of classes. Some notable approaches to few-shot learning on specific tasks or a

narrow set of tasks are summarized below. These approaches have all been applied to audio and music

applications.

2.5.1 Siamese networks

Siamese networks are matching networks that compare how closely matched two inputs are using a

neural network feature extractor that is duplicated and used on both inputs with the same weights. A

distance function computes the distance between the twin output features, which is then converted

into a probability for the inputs being a match [89]. This can be used for one-shot learning by

having a definitive example for each novel class to which query examples are matched. Classification

inference selects the class with the highest probability of a match between the new input and the class

example [90].

2.5.2 Matching networks

A matching network maps a support set of example input and label pairs to a classifier. The classifier

gives the predicted label of an input as a linear combination of the labels in the support set according

to an attention mechanism. The attention mechanism used is a softmax over the cosine distance

between embeddings of the classifier input and support set inputs. The embedding functions are DNNs

trained over episodes during which the loss for predicting a batch of examples given a support set is

minimised [91].

2.5.3 Relation network

The mechanism of matching embeddings of query examples to a support set is extended in relation

networks by introducing a relation model, which gives a relation score between two embeddings

which aims to be 1 for embeddings of related inputs and 0 for unrelated inputs. Episodic training

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

13

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 LITERATURE STUDY

is again utilized. The embedding feature map and relation model are trained on the objective of

minimizing the mean squared error loss of the relation scores between a support set and query set for

each episode [92].

2.5.4 Prototypical networks

A prototypical network is a type of few-shot learning ANN for classifying large amounts of classes

based on relatively few training examples per class compared to a standard DNN [93]. A prototypical

network is also easily adaptable to previously unseen classes without needing to retrain the network.

A network is trained to transform input features into a higher dimensional embedding space so that

the distance between embeddings of the same class is minimized and the distance between different

classes is maximized. At inference time, embeddings for a set number of examples of each class are

computed, called the class prototypes. These prototype embeddings are averaged to get one definitive

class prototype in the embedding space. Classification is done by computing the embedding for an

input and finding the class prototype with the smallest distance to the embedding [3].

2.5.5 Few-shot learning for audio and music applications

While deep learning has long been a consideration for sound event detection, such as using CRNNs to

detect different sounds in a polyphonic context [94], few-shot learning has also recently been applied to

the problem. This has been applied to keyword detection [33] by comparing the performance of Siamese

Networks [90], Matching Networks [91], Prototypical Networks [3], and Relation Networks [92].

Another approach compared prototypical networks for sound event detection to two meta learning

approaches: learning feature embeddings that would allow a SVM to generalize well to a new dataset

based on a few support examples per class [95] and training a model to be easily fine-tuned by using

a cost function that evaluates model performance on a new task after a few more steps of gradient

descent on the new task [96]. They compared the few shot learners to standard ANN classifiers that

were fine-tuned on the support set as a baseline [29]. A region proposal network in combination with

a prototypical network was also used to find regions of interest for sound event detection that were

then classified using the prototypical network [30]. Prototypical networks have also been applied to

musical instrument recognition [31]. This approach trained a multi-task model capable of classifying

at different levels of a taxonomy hierarchy by aggregating prototypes from lower levels in order to

classify higher levels. Prototypical networks have also been shown to be applicable to transcription

problems for drums [32]. A few-shot model was trained on a synthetic dataset and evaluated on

multiple real-world datasets with accompaniment. Their model was able to generalize to finer-grained

transcription tasks and out of vocabulary transcription.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

14

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 LITERATURE STUDY

2.6 TRANSFER LEARNING

Transfer learning aims to improve machine learning performance in one domain by transferring

knowledge from another domain. This is very useful when there are existing models that perform very

well on a related task to the task of interest or when there is not sufficient data for properly training a

model on the target task, but a lot of data exists for a related task. Approaches to transfer learning can

broadly be categorized into the following approaches:

• Instance-based approaches: Transfer learning applies models from a source domain on a target

domain by re-weighing the samples from the source domain to match the distribution of the

target domain samples [97].

• Feature-based approaches: Features are transformed to the same domain, either by finding a

common latent feature space between the source and target domains or by transforming features

from one domain to the other [97].

• Parameter-based approaches: Knowledge is transferred between models for different problem

domains by using parameters from a model trained on one problem for a model on a different

problem. The source model parameters are either frozen while new parameters are added and

trained for the new model, or the source parameters are used as a starting point to reduce the

training requirements for learning suitable features in the new domain [97].

• Relational-based approaches: For problems in relational domains, the logical rules and relations

are learned by a model in the source domain. These relations are then transferred to the target

domain [97].

Transfer learning is often applied in MIR in order to use feature extractors from one domain in a

MIR problem where the training data is limited. For example, because spectrogram representations

of sound can be treated as images, an existing image CNN model can be used as a feature extractor

for genre classification by feeding the activations of the penultimate network layer into a SVM

classifier [98].

Transfer learning can also be used to aggregate features at multiple levels and scales. Models trained at

different scales of input features can be combined by using them as feature extractors and then training

another model on the combined features. Since the deep feature learning has already been done, the

aggregate model can be much simpler, such as a shallow FFNN [99].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

15

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 LITERATURE STUDY

Alternatively, representation transfer can be done for a CNN model trained on a tagging task by average

pooling the activations of each convolution layer and concatenating them into a feature vector for

SVMs to apply on various target tasks in a similar problem domain [100, 101]. This is very useful even

when transferring knowledge between data domains in the same problem. As noted, generalization to

new data can be a problem for machine learning models trained on narrow data [2]. Transfer learning

enables models to be trained on small, synthesized, or otherwise non-ideal datasets that still allow the

model to learn good feature representations and then fine-tune the model on examples of the real data

of interest.

2.7 CHAPTER CONCLUSION

A lot of research has been done on instrument and playing technique classification, but many investiga-

tions focus on specific instruments and only recently have machine learning techniques been explored

over signal processing techniques. The same was found for pitch transcription. Some investigation

has been done on combining instrument and playing technique classification, as well as on multiple-

instrument pitch transcription with instrument stream assignment. No literature was found on jointly

classifying instrument, playing technique and pitch.

Research on instrument and playing technique classification, as well as pitch transcription, has utilized a

variety of machine learning techniques, including DNNs, CNNs, RNNs and CRNNs. Few-shot learning

has also been used in audio and music applications, including ADT. Prototypical networks show

the most promise in the audio and music domain of all the few-shot methods encountered, providing

the best results in two studies comparing few-shot learning algorithms on audio problems [33, 95].

Alternatively, transfer learning has been shown to be effective for feature learning in low-resource

problem domains, including music.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

16

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 METHODS AND THEORY

3.1 CHAPTER OVERVIEW

This chapter gives an overview of the classification systems used in this investigation and the theory

behind the methods. The few-shot and standard classifier systems for instrument, playing technique

and pitch classification are described. The theory of spectrogram features is given and the log-mel

spectrogram and constant-Q transform input features are described. Standard classifier training and

prototypical network training are described. The process of training neural network models with

Bayesian optimization for hyperparameter tuning is explained. Methods for pitch classification with

the PYIN algorithm are also given.

3.2 CLASSIFICATION SYSTEM OVERVIEW

The goal of this investigation is to implement a classification system that takes in a recorded example

of a string instrument note and to classify the example according to the string instrument and playing

technique used to play the note, as well as the pitch of the note.

Two different approaches to this are designed and implemented: prototypical few-shot models and

standard classifier ANN models. Both approaches take in a time-frequency representation of an isolated

string instrument note example recording and output a class label describing the predicted instrument,

pitch and playing technique.

3.2.1 Few-shot classifier

The few-shot classification system uses prototypical models that are trained on the meta-learning

problem of matching query examples to prototypes of the classes of interest. An overview of the

classification system is shown in Figure 3.1.

For each dataset or problem to evaluate, prototypes are calculated for all the classes. Time-frequency

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 METHODS AND THEORY

Audio
Time-frequency

representation

Prototypical

classifier

Class

probability

Prototypes

Figure 3.1. An overview of the proposed prototypical few-shot classification system.

representations of query examples are converted to a high-dimensional embedding by the prototypical

model and class probabilities are approximated by finding the class prototypes that are the closest in

embedding space to the query example. A mel spectrogram or a CQT is used as the time-frequency

representation.

3.2.2 Standard classifier

The standard classifier models are trained to approximate class probability saliences for a given time-

frequency input. For each new dataset or problem, where the classes do not directly map onto the

classes seen during training, transfer learning is applied to adapt the models to the new class domain.

At inference time, the class with the highest output activation for a time-frequency input to a model is

taken as the predicted label.

3.3 TIME-FREQUENCY REPRESENTATION

Both a log-mel spectrogram and a CQT are compared as input features to the models. These time-

frequency representations are adaptations of the short-time Fourier transform (STFT). The first 100

frames of each input feature are used as model inputs. At a sampling frequency of Fs = 22050 Hz

and a hop size of 256 this is 1.16 s. An examination of the data showed that this is enough to include

the onset event and some sustain for all techniques, thus the size of model inputs are restricted to 100

frames to reduce model sizes. The chosen sampling frequency is a common value used in MIR to

reduce the number of samples to process, while still avoiding aliasing of harmonics. It is the suggested

sampling frequency in the Librosa signal processing library [102].

3.3.1 Spectrogram

The STFT is a Fourier transform of a signal offset over time to produce a 2-dimensional mapping of

frequency component intensities in the signal over time. It is given by

X(f , t) =
∫

∞

−∞

x(u)w(u− t)e−2π f j(u−t)du, (3.1)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

18

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 METHODS AND THEORY

for a signal x(t) and a window function w(t) [103]. In discrete-time, the STFT is given by

X [k,m] =
N−1

∑
n=0

x(n)x(n+mH)w(n)e−2π j kn
N , (3.2)

where m is the frame index and k is the frequency bin index. H is the hop size, which determines the

time resolution. This can be implemented by shifting the window function by H samples at a time over

the signal and taking the FFT of the windowed signal. The energy spectrogram of a signal is given by

the magnitude of the STFT of the signal,

S = |X|, (3.3)

and the power spectrogram by the squared magnitude

S = |X|2. (3.4)

An example magnitude spectrogram is shown in Figure 3.2 for a violin note from the RWC data-

set.

0 1 2 3 4 5
Time (s)

32

64

128

256

512

1024

2048

4096

Fr
eq

ue
nc

y
(H

z)

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Figure 3.2. The spectrogram of an A4 violin example from the RWC dataset, played using the vibrato

technique.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

19

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 METHODS AND THEORY

3.3.2 Mel spectrogram

The log-mel spectrogram is a common input feature for playing technique classification [65, 32, 33]

and is often used for timbre analysis [104]. The mel frequency scale aims to map the non-linear

perception of audio frequencies by humans to a linear scale [105]. The mapping of a frequency to the

mel scale is given by

mel(f) = 2595log10(1+ f/700). (3.5)

A log-mel spectrogram is obtained by mapping a power spectrogram into mel scale by multiplying it

with a mel filter bank. The band-pass filters used to characterize sources are L triangular filters that

are linearly spaced on a mel scale. The triangular bandpass filters are defined by their centers, which

are equally spaced on the mel scale between 0 Hz and Fs/2, with filter edges at each extreme and a

half overlap between filters in mel scale. The filters are normalized by dividing the filter weights by

the width of the mel band. The filter transfer functions for 8 mel filters are shown in Figure 3.3 for

demonstration.

Mel spectrogram inputs for classifiers are calculated using 128 mel filters evenly spaced from 0 Hz to

Fs/2. The input spectrogram is computed from a STFT using a 1024 sample Hamming window and

1024 FFT coefficients with a 256 sample hop size. An example log-mel spectrogram of a violin note

from the RWC dataset is shown in Figure 3.4. The Librosa Python library was used to calculate mel

spectrograms [106].

3.3.3 Constant-Q transform

A CQT is a time-frequency representation that has proven useful in transcription implementations [107,

75]. The CQT is a frequency transform that results in frequency bins with geometrically spaced center

frequencies that all have equal Q-factors. This means a better frequency resolution for low-frequency

bins and better time resolution for high-frequency bins [108]. The CQT is well suited for applications

where F0s need to be accurately identified [86].

The constant-Q transform is given by

XCQ[k,m] =
m+⌊Nk/2⌋

∑
n=m−⌊Nk/2⌋

x[n]a∗k [n−m+Nk/2], (3.6)

where k is the frequency bin index and a∗k [n] is the complex conjugate of a time-frequency atom. These

are basis functions of complex-valued waveforms:

ak(n) =
1

Nk
w
(n

Nk

)
e−i2π fk/Fs . (3.7)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

20

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 METHODS AND THEORY

0 2000 4000 6000 8000 10000
Frequency (Hz)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Fi
lte

ra
m

pl
itu

de

Figure 3.3. 8 half-overlap normalized band-pass filters that are linearly spaced on the mel frequency

scale.

fk is the center frequency of bin k, Fs is the sampling frequency and w(t) is a continuous window

function that is only non-zero in the interval t ∈ [0,1]. For B bins per octave and a lowest bin center

frequency f1, the center frequency of any bin is given by

fk = f12
k−1

B . (3.8)

The window width for each bin that minimizes frequency smearing (thus maximizing the Q-factor)

that still allows signal reconstruction is

Nk =
qFs

fk(2
1
B −1)

, (3.9)

where q ≤ 1 is a scaling factor that improves time resolution for lower values. q = 1 is often

used [108].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

21

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 METHODS AND THEORY

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

512

1024

2048

4096

Fr
eq

ue
nc

y
(H

z)

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Figure 3.4. Log-mel spectrogram playing technique and pitch classification input features for an A4

violin example from the RWC dataset, played using the vibrato technique.

The direct computation of the constant-q transform is very inefficient. Using Parseval’s equation, the

CQT for a signal of N windowed points can be calculated using an FFT [109]:

XCQ[k,N/2] =
N−1

∑
n=0

X [n]A∗k [n]. (3.10)

Ak[n] is the discrete Fourier transform of the basis function centered in an N point window. If the basis

function FFTs are packed into the columns of a matrix and the FFT of the input is expressed as a

column matrix, then it can be computed using matrices as

XCQ = A∗X. (3.11)

The computation can be further improved by the realization that computing the CQT for one octave of

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

22

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 METHODS AND THEORY

frequencies1 is the same as computing the CQT for an octave higher that is downsampled by a factor

of 2. The CQT is thus computed one octave at a time, starting at the highest octave. After calculating

each octave, the input signal is downsampled and passed through a low-pass filter. The same kernel of

basis functions can be used for all the octaves and only has to be computed once.

CQT coefficients are calculated with a Hamming window, 60 bins per octave and 8 octaves starting at

A0 from audio sampled at a rate of Fs = 22050 Hz. This results in an input to the ANN models with

480 bins in the frequency dimension. A hop size of 256 samples is used again to be consistent across

features. Figure 3.5 shows a CQT over the frequency spectrum for the same RWC violin note example

used previously.The Librosa Python library was used to calculate CQTs [106].

0 1 2 3 4 5
Time (s)

32

64

128

256

512

1024

2048

4096

Fr
eq

ue
nc

y
(H

z)

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Figure 3.5. CQT playing technique and pitch classification input features for an A4 violin example

from the RWC dataset, played using the vibrato technique.

1An octave is the range it takes for the fundamental frequency to double.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

23

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 METHODS AND THEORY

3.4 STANDARD CLASSIFIER NEURAL NETWORKS

Standard classifier ANNs are used as a baseline to compare the few-shot models to. The models

map a time-frequency input to an output vector of one node for each class in the problem space,

approximating the class probabilities of the input. Models are trained with the objective of maximizing

the output activation of the true class while minimizing the activation of all other classes. A categorical

cross-entropy (CCE) loss function is used and models are trained using the Adam optimizer [110]

and a learning-rate scheduler. The architectures for the different models that were trained are given in

Section 4.3.

3.4.1 Loss function

The CCE loss function is often used for models with categorical outputs that are one-hot encoded [111].

For an output vector ŷ of size N, which approximates a one-hot encoded classification y, the average

error over the weights, φ , is

E(φ) =
−1
N

N

∑
n=1

�
yn log ŷn +(1− yn) log(1− ŷn)

�
. (3.12)

3.4.2 Adam optimizer

Adam is an algorithm for first-order gradient-based optimization of stochastic objective functions. The

algorithm updates exponentially weighted moving averages of the gradient and squared gradient. It

takes as hyper-parameters: α , the step size or learning rate; β1 and β2, hyper-parameters that control

the exponential decay rates of the moving averages; ε , a constant for numerical stability. The suggested

default parameters of β1 = 0.9, β2 = 0.999 and ε = 10−8 are used [110]. An exponentially decaying

learning rate is used.

3.4.3 Learning rate scheduler

An exponentially decaying learning rate scheduler is used in order to promote exploration of the weight

parameter space early on and fine-tune weights at later epochs. The scheduler is given for epoch x

by

α = α0e−λx, (3.13)

where α0 is the initial learning rate and λ is the decay rate. λ = 0.023 is used, which approximately

reduces the learning rate by a factor of 10 every 100 epochs. For prototypical network training, the

learning rate is adapted every 500 episodes (thus 500 episodes is considered one epoch).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

24

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 METHODS AND THEORY

3.5 PROTOTYPICAL NETWORKS

Prototypical networks are used as few-shot models in order to easily generalize to new data, instruments

or sub-problems. CNN, CNN, RNN and CRNN models were trained. The model architectures are

discussed in Section 4.3.

3.5.1 Episodic training

A prototypical network is trained in episodes. For each episode, a subset of classes from a training set

is selected for which support and query examples are sampled. The episode loss is calculated based on

how well the network minimizes the distance in embedding space between query examples and true

class prototypes, and maximizes the distance between queries and the other class embeddings.

For NC classes, NS support examples and NQ query examples per episode, the class prototypes for a

training episode are given for each class k ∈ {1, . . . ,NC} by

ck =
1

NS
∑

(xi,yi)∈Sk

fφ (xi), (3.14)

where Sk is the support set of NS examples belonging to class k, randomly sampled from the training

set and fφ (x) is the output of the neural network for the current weights φ [3].

The loss for a training episode is given by

J =
1

NCNQ
∑

k∈{1,...,NC}
∑

(xi,yi)∈Qk

�
d(fφ (x),ck)+ log ∑

k′∈{1,...,NC}
exp

{
−d(fφ (x),ck′)

}�
, (3.15)

where d(., .) is a distance function, and Qk is the query set of NS examples belonging to class k,

randomly sampled from the training set, excluding the support set [3].

The training loop for episodic training of a prototypical network is shown in detail in Al-

gorithm 1.

The Euclidean distance, given by

d(p,q) =

√
N

∑
i=1

(qi− pi)2, (3.16)

for two vectors p and q of size N, is used for the distance function. NS = 3 and NQ = 5 are used for the

number of support and query samples respectively during training.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

25

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 METHODS AND THEORY

Algorithm 1 Procedure for training a prototypical model with NC classes, NS support examples and

NQ query examples per episode. Adapted from [3].

Input: Training set D = {(x1,y1), . . . ,(xN ,yN)} of paired inputs and class labels. Dk denotes the

subset of D for which the class label is yi = k. A learning rate scheduling function r(e | θ) with a

set of hyperparameters θ . A neural network fφ (x) with weights φ . A distance function d(·, ·). A

weight update function A(φ |J,α) dependent on a loss J and learning rate α .

Output: Model weights φ .

φ ← Random initial values.

for each episode, e do

α ← r(e | θ).

V← NC random class indices from the training set.

for k in {1, . . . ,NC} do

Sk← NS random examples from DVk .

Qk← NS random examples from {DVk \Sk}.

ck← 1
NS

∑(xi,yi)∈Sk
fφ (xi).

end for

J← 1
NCNQ

∑k∈{1,...,NC}∑(xi,yi)∈Qk

�
d(fφ (x),ck)+ log∑k′∈{1,...,NC} exp

{
−d(fφ (x),ck′)

}�
.

φ ← A(φ |J,α).

end for

3.6 BAYESIAN OPTIMIZATION

Bayesian optimization is a method for optimizing parameters with minimal evaluations of a cost or

utility function. This is especially useful for optimizing neural network hyperparameters for training

since training is costly to evaluate because of the time and computation it takes. Gaussian process (GP)

regression is used to estimate a utility function. The GP is sampled to find likely next points in the

parameter space to evaluate. The GP is then iteratively updated. The estimation of the utility function

can be used to find the optimal parameters [112].

Let f (x) be the utility function to maximize in a bounded parameter space. {xi,yi}n
i=1 are observations

of this function at time step n. A GP regression is defined by a mean function µ(x | {xi,yi}n
i=1,θ) and

a covariance σ2(x | {xi,yi}n
i=1,θ), which are dependent on a kernel function k(x,x′), defined in terms

of a set of basis functions, and θ , which is a set of hyperparameters for the kernel that can be found as

part of the GP regression using maximum likelihood estimation [83]. To simplify the notation, from

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

26

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 METHODS AND THEORY

here on {xn,yn} will denote {xi,yi}n
i=1 and the set of observations and hyperparameters for the GP

mean and covariance functions will be inferred. If a(x | {xn,yn},θ) is an acquisition function that is

dependent on the GP regression, then the next point to evaluate is

xn+1 = argmax
x

a(x | {xn,yn},θ). (3.17)

After xn+1 is evaluated, the GP is updated with the new observation [112].

3.6.1 Optimizing neural network hyperparameters with Bayesian optimization

Google Cloud ML Engine was used to perform hyperparameter optimization and model training

with Bayesian optimization [113]. Their default parameters are used, including a Matérn kernel

with automatic relevance determination (ARD) for the GP and an expected improvement acquisition

function [114]. NO = 10 observations are made for each model with NI = 3 initial observations. The

evaluation function used was the micro F-measure over the validation set (see Section 4.5). The process

for optimizing the hyperparameters for training an ANN model is given in detail in Algorithm 2.

The expected improvement acquisition function used in the implementation estimates the expected

increase in the maximum observed objective value for any potential next observation point. It is given

analytically for a GP with mean µ(x) and standard deviation σ(x) as

aEI(x | {xn,yn},θ) =

(µ(x)− y+)Φ(Z)+σ(x)φ(Z) if σ(x)> 0,

max(0,µ(x)− y+) if σ(x) = 0,
(3.18)

where y+ is the maximum observed value, Z is the standard normal distribution

Z =
µ(x)− y+

σ(x)
, (3.19)

and Φ(Z) and φ(Z) are the cumulative distribution function and probability density function of the

distribution respectively [115, 113].

The Matérn kernel used for the GP is defined as

k(xi,x j) =
1

Γ(ν)2ν−1

�√
2ν

ℓ
d(xi,x j)

�ν

Kν

�√
2ν

ℓ
d(xi,x j)

�
, (3.20)

where d(·, ·) is the Euclidean distance, Kν(·) is a modified Bessel function and Γ(·) is the gamma

function. ν and ℓ are parameters for smoothness and length scaling respectively. When applying ARD,

the length scaling parameter is replaced with a diagonal matrix of length scaling hyperparameters,

which allows the kernel to be independent of inputs for which the corresponding matrix entry is very

small [116].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

27

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 METHODS AND THEORY

Algorithm 2 Bayesian optimization hyperparameter tuning for machine learning model training. NI is

the number of initial observations and NO is the total number of observations.

Input: Boundaries on the hyperparameter search space Hd , where d is the number of hyperparameters.

Acquisition function a(h | {hi,ui}i∈{1,...,n},un},θ), where h ∈Hd , u is an observation and θ is the

acquisition function hyperparameters. Model training function T (D | h) and evaluation function

E(D | φ), where D is a dataset and φ is the model parameters. Training set Dtrain and validation set

Dvalidation.

Output: The optimized model weights φopt .

for n in {1, . . . ,NI} do

hn← randomly sampled from Hd .

φhn ← T (hn,Dtrain) .

un← E(Dvalidation | φhn).

end for

for n in {NI +1, . . . ,NO} do

hn← argmax
h

a(h | {hi,ui}i∈{1,...,n},θ).

φhn ← T (hn,Dtrain) .

un← E(Dvalidation | φhn).

end for

hopt ← argmax
h
{hi,ui}i∈{1,...,NO}.

φopt ← φhopt .

3.7 PYIN F0 ESTIMATION

PYIN is a probabilistic adaptation of the YIN F0 estimation algorithm. The original YIN algorithm

works on the intuition that for a fundamental period τ = 1/ f0, the cumulative difference between peri-

odic signal points would be small. This difference is calculated using auto-correlation and cumulative

normalization is applied. While the original YIN algorithm applied a threshold to decide if a minimum

in the normalized difference is a true F0 or an unvoiced frame, PYIN applies a probabilistic threshold,

resulting in a voiced probability for each frame. A HMM is then used to track pitches [69].

Pitch classifications are obtained from the PYIN F0s and voiced frame probabilities by first finding a

definitive F0 for the entire example. This is done in three ways, which are compared:

• Take the mean F0 over all frames of each input example.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

28

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 METHODS AND THEORY

• Take the weighted mean F0 over all frames of each input example, weighted by the probability

of the frames being voiced.

• Take the F0 at the first frame of each input example with the maximum probability of being

voiced.

The F0 of an example is converted to a pitch classification by finding the pitch with the closest

frequency to the example’s F0. Only the frames matching the input to the classifiers are considered for

F0 estimation.

3.8 CHAPTER CONCLUSION

Two classification systems for classifying instrument, playing technique and pitch from examples of

string instrument tones were given: a few-shot approach with prototypical networks and a transfer

learning approach with standard neural network classifiers. The calculation of log-mel spectrogram and

CQT input features were discussed. The training procedure for standard neural networks was given,

as well as the episodic adaption of the training procedure for prototypical networks. Optimization

of training and network hyperparameters using Bayesian optimization was also set out. Methods for

calculating the pitch classification of a note example using PYIN to compare the other classification

methods on were finally given.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

29

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

4.1 CHAPTER OVERVIEW

The datasets used during this investigation are described. An overview is given of the data sources,

as well as how they are compiled into training, validation and test sets. The different neural network

architectures that are trained and evaluated are given, followed by an explanation of how the prototypical

networks and standard classifier networks were trained. The procedure for evaluating the models on

the data sets is given.

4.2 DATASETS

Few-shot prototypical networks were designed and trained to classify examples of single notes for

violin, viola, cello or double bass. Multiple training and evaluation sets were compiled from different

data sources for this. The classification labels are the joint label of the example instrument, playing

technique and pitch, for example, {violin, pizzicato, B5} The few-shot classifiers should be able to

classify new classes not seen during training based on only a handful of examples provided at inference

time+, thus the models are evaluated on datasets that contain classes that were not seen during training.

Standard neural network classifiers were also trained on the same tasks and employed transfer learning

to adapt the standard classifiers to new classes.

4.2.1 Data sources

The RWC [34] instrument dataset contains recordings of scales played on a number of different

instruments and with different playing techniques. For each instrument and playing technique, three

different performers each recorded scales with piano, mezzo forte or forte dynamics. Bowed string

instrument playing techniques were considered, thus the dataset examples for violin, viola, cello and

double bass were used. The dataset contains 1393 different combinations of string instrument, playing

technique and pitch (see example above). Subsets of these examples were compiled for network

training, validation and evaluation from the dataset.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

The OrchideaSOL [35] dataset consists of examples of instrument notes played with different playing

techniques on different instruments, including string instrument techniques not seen in the RWC dataset.

The OrchideaSOL dataset contains 2630 different combinations of string instrument, playing technique

and pitch. Playing techniques combined with a mute are considered separate playing techniques. The

OrchideaSOL string instrument subset is used for cross-dataset evaluation.

Additionally, real-world examples were compiled by extracting data from YouTube tutorials of violin,

viola, cello and contra-bass playing techniques. Tutorials for collé, martelé, pizzicato, sautillé, staccato

and vibrato were annotated by hand and individual note examples were extracted. This dataset

consists of 53 combinations of instrument, playing technique and pitch played by a mix of different

performers.

Piano note examples from the RWC [34] dataset are also used for adding accompaniment to string

examples, which is described in more detail in Section 4.2.3.4.

4.2.2 Training and validation data

Training and validation subsets of string instrument playing technique note examples were compiled

from the RWC dataset, which were used to train prototypical few-shot classifiers and standard neural

network classifiers (together, the training and validation data formed the total body of data available

during the training phase).

The RWC string training subsets contain recordings by two of the three performers. Recordings from

the remaining performer are left out for evaluation. Prototypical networks require enough examples per

class to provide support and query examples in a training episode. NS = 3 support examples and NQ = 5

query examples per class were chosen due to the constraint of the number of class examples available

in the dataset. A subset of 228 instrument, playing technique and note combinations, which satisfy

the 8 example minimum for support and query examples, are used for network training. The playing

techniques present in this set are shown in Figure 4.1(b). Piano accompaniment is also added to these

examples to form an additional training set for models evaluated on the accompaniment set described

in Section 4.2.3.4. An 8 : 2 training data to validation data split is employed, with classes allocated to

the validation set in such a way that 20 % of examples are used for validation. The validation data were

used during Bayesian optimization of the hyperparameters of the few-shot learning framework. The

RWC training examples with either the pitch or the playing technique class labels ignored were used

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

31

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

to train prototypical and standard classifier models on the problems of instrument playing technique

classification and instrument pitch classification respectively.

Ideally more than 8 examples would be available per class during training [93], but restrictions on the

data available prevent setting this minimum much higher for risk of significantly reducing the total

amount of training data. The fact that the number of training examples per playing technique and

per pitch are much higher on average, reduces the concern for this constraint, as playing technique

classification, as well as pitch classification are the true problems of interest when considering the

tutorial scenario these models are aimed at.

4.2.3 Test data

Independent test sets were compiled from different datasets, that were used to evaluate the prototypical

few-shot classifiers and standard neural network classifiers. Generalization to new performers was

evaluated as well as generalization to new playing techniques and instruments.

The shot number of NS = 3 was chosen to match the training shot. Matching the shot number used in

training when testing has been shown to yield good results for prototypical networks [3]. Table 4.1

shows how many classes in each dataset satisfy this minimum, as well as how many of the classes in

each dataset were not seen during training. The support examples for each evaluation of a prototypical

model on a test set are randomly drawn from the test set and left out during evaluation. Similarly,

the same number of randomly drawn examples per class are used to further train standard classifier

networks during transfer learning and left out during evaluation.

Table 4.1. A breakdown of the number of valid training and validation [NS = 3,NQ = 5], and test

[NS = 3,NQ = 1] classes in each dataset.

Dataset Valid training

and validation

classes

Valid test

classes

Unseen

classes

Total Ex-

amples

RWC string instrument

training set

228 — — 2699

Continued on next page

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

32

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

Table 4.1 Continued from previous page

Dataset Valid training

and validation

classes

Valid test

classes

Unseen

classes

Total Ex-

amples

Accompaniment RWC

string instrument training

set

228 — — 2699

Techniques RWC string in-

strument training set

38 — — 6813

Notes RWC string instru-

ment training set

166 — — 6793

OrchideaSOL string in-

strument test set

— 439 325 3156

OrchideaSOL violin test

set

— 158 122 1134

OrchideaSOL viola test

set

— 118 82 840

OrchideaSOL cello test set — 67 31 468

OrchideaSOL double bass

test set

— 96 90 714

YouTube string instrument

test set

— 46 33 494

Accompaniment RWC

string instrument test set

— 234 12 1422

Techniques RWC string in-

strument test set

— 24 2 2658

Notes RWC string instru-

ment test set

— 153 0 2601

RWC clarinet test set — 120 120 1080

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

33

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

The datasets used for evaluation, except the RWC test set, contain playing techniques not seen during

training, as seen in Figure 4.1(b), as generalization to new performers and playing styles is one of the

main research questions. The number of examples for each instrument in the datasets is not balanced,

as is shown in Figure 4.1(a), thus experiments are also done for one instrument at a time. The number

of examples for each pitch across all instruments and playing techniques is shown in Figure 4.2; as can

be seen, generalization to new pitches is also evaluated.

4.2.3.1 RWC test set

A subset of 234 combinations of instruments, playing techniques and pitches from the RWC dataset,

played by a musician different from the musicians of the training subset, is used for testing. Instrument,

playing technique and pitch combinations were chosen for the test set that have at least six examples

per class, which is needed to compute prototypes and evaluate on unseen examples (NS +3) for the

chosen shot number. The cutoff for minimum number of class examples was chosen so as to have

a significant number of test examples for each class, without excluding too many classes. This set

does not contain new playing techniques not seen during training, but all examples are recorded by a

different performer. This set evaluates generalization to new performers within the same dataset and to

new data, as well as accommodating previously unseen classes. All classifiers are trained on a subset

of pitches that omits some pitches that are present in the RWC evaluation sets, since more classes

meet the requirement of 6 examples to be included in the evaluation set, even when compiled from

just one performer than meet the requirement of 8 examples needed to be included in the training set.

Figure 4.1(b) shows the playing technique classes relevant to the RWC evaluation set.

A subset of 24 combinations of instrument and playing technique were used to evaluate models for

instrument playing technique classification. The resulting subset contains 2658 examples across 9

playing techniques. To evaluate the models across different shot numbers, a subset was used with

classes restricted to those with a minimum of 18 examples, to be able to compare shot-numbers up to 15

with at least 3 test examples. This subset contains 2658 examples across 9 playing techniques.

Another subset of 153 combinations of instrument and pitch were used to evaluate models for instrument

pitch classification. This subset contains 2601 examples across 68 pitches. Again, a subset with classes

restricted to those with a minimum of 18 examples was used to evaluate the models across different

shot numbers, resulting in a set containing 1152 examples across 35 pitches.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

34

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

0 200 400 600 800 1000
Number of examples

Violin

Viola

Cello

Double bass

In
st

ru
m

en
t

(a)

0 200 400 600 800 1000
Number of examples

Collé

Martelé

Pizzicato

Pizzicato + vibrato

Pizzicato secco

Sautillé
Spicatto

Staccato

Vibrato

Sordino + vibrato

Tremolo

Sordino + tremolo

Pl
ay

in
g

te
ch

ni
qu

e

(b)

RWC string instrument training set
RWC string instrument test set
OrchideaSOL string instrument test set
YouTube string instrument test set

Figure 4.1. A breakdown of the total number of examples for each (a) instrument and (b) playing

technique in the RWC subsets used for few-shot classifier training and standard classifier training, and

the RWC, OrchideaSOL and YouTube string instrument test sets.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

35

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

0 20 40 60 80 100 120 140
Number of examples

A1
A♯1
B1
C2

C♯2
D2

D♯2
E2
F2

F♯2
G2

G♯2
A2

A♯2
B2
C3

C♯3
D3

D♯3
E3
F3

F♯3
G3

G♯3
A3

A♯3
B3
C4

C♯4
D4

D♯4
E4
F4

F♯4
G4

G♯4
A4

A♯4
B4
C5

C♯5
D5

D♯5
E5
F5

F♯5
G5

G♯5
A5

A♯5
B5
C6

C♯6
D6

D♯6
E6
F6

F♯6
G6

G♯6
A6

Pi
tc

h

RWC string instrument training set
RWC string instrument test set
OrchideaSOL string instrument test set
YouTube string instrument test set

Figure 4.2. A breakdown of the total number of examples for each pitch in the RWC subsets used for

few-shot classifier training and standard classifier training, and the RWC, OrchideaSOL and YouTube

string instrument test sets.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

36

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

4.2.3.2 OrchideaSOL test set

The OrchideaSOL string instrument subset is used for cross-dataset evaluation and as examples of

previously unseen classes. The classes were restricted to those with at least six examples per class

(NS + 3). All string instruments are seen during both training and evaluation, however, the dataset,

contains different playing techniques, as seen in Figure 4.1(b), as generalization to new playing styles

is one of the main problems of interest. This set also contains pitches not seen during training, as seen

in Figure 4.2. Subsets of this set containing only examples from single instruments are also used for

single-instrument evaluation.

4.2.3.3 Real-world YouTube test set

The data extracted from YouTube tutorials contain new techniques not seen during training, as is

shown in Figure 4.1(b), but are restricted to fewer pitches per playing technique and instrument (see

Figure 4.2). The tutorials are biased towards some pitches that are commonly used for demonstration,

thus less variety in pitch is seen compared to the other datasets. The classes were restricted to those

with at least six examples per class (NS +3).

4.2.3.4 RWC Test set with accompaniment

Polyphonic dual-instrument sets were compiled from the RWC subset for the training and evaluation

of instrument, playing technique and pitch classification of string instrument examples that could

realistically be encountered in music with accompaniment. The training and evaluation sets with

accompaniment contain the same classes as the RWC string instrument training and test sets, as shown

in Table 4.1. Piano accompaniment was chosen as there is a vast chamber music literature in classical

music for violin and piano works. The RWC string instrument training sets and test set were adapted

by adding two piano notes, also from the RWC instrument dataset, to each example to form chords

with the string instrument note as the tonic note. The chords formed were randomly chosen to be

major, minor, augmented or diminished triads, as is shown in Figure 4.3. The chords can also be

inverted.

Relative scaling of the piano notes was done through listening tests and the resultant mixtures were

checked by ear to ensure that the accompaniment does not overwhelm the string instrument, nor gets

drowned out.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

37

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

Piano

Violin

G

G

		

Cmaj

	

2		

Cmin

	

	4	

Caug

	
2	2	

Cdim

	

Figure 4.3. Piano accompaniment example chords for accompanying RWC string instrument playing

technique note examples. Major, minor, augmented and diminished triads are shown respectively with

C as the tonic note.

4.2.3.5 RWC cross-instrument clarinet test set

A subset of clarinet playing technique examples from RWC was also considered for cross-instrument

evaluation. Examples from all three performers were used. There are 120 suitable clarinet playing

technique and pitch combinations for this.

4.3 NEURAL NETWORK ARCHITECTURES

Prototypical networks are compared with standard classifier models, as well as different architectures

and input features. The same architectures are shared between the prototypical models and the standard

classifier models, only differing in the output layers. For the prototypical models, the output layer is

a high-dimensional embedding, the size of which is determined with Bayesian optimization; for the

standard classifier models, the output layer is a vector of saliences indicating class probabilities for

each of the classes. For each architecture and input feature combination, a prototypical model and a

standard classifier model were trained.

ANN architectures were selected based on previous few-shot learning implementations that have

performed well on sound event detection or similar problems. DNN, CNN, RNN and CRNN networks

were trained and compared on joint classification of string instrument, playing technique and pitch. For

both prototypical and standard classifier models, two models were trained per architecture: one with

a log-mel spectrogram input and one with a CQT input. The first 100 frames of an input feature are

used, with zero padding for very short examples, which corresponds to 1.16 s at a sampling frequency

of Fs = 22050 Hz, generally covering the onset and some sustain and fade. Zero mean unit variance

normalization is applied to inputs, with normalization applied to each sample [65]. The normalization

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

38

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

is given by

X← X−µ(X)

σ(X)+ ε
, (4.1)

where µ(·) and σ(·) are the mean and standard deviation respectively. ε is a near-zero constant for

computational stability.

The models were implemented and trained using the Keras library in Python [117]. The loss func-

tion for the prototypical networks was implemented using Tensorflow [118]. Custom algorithm

implementations were verified through unit testing.

4.3.1 DNN

The simplest ANN classifier used is a FFNN. A three hidden layer DNN architecture is used with a

flattening layer, three 1024 node fully connected layers with tanh activations and a sigmoid activation

output layer. The architecture is shown in Figure 4.4.

Flatten

1024 1024 1024

Sigmoid

Figure 4.4. The DNN architecture of three fully connected hidden layers with tanh activations. The

size of the flattening layer is dependent on the input feature dimensions and the output layer dimensions

are found using Bayesian optimization for prototypical networks.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

39

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

4.3.1.1 Activation functions

A tanh activation function is used for DNN hidden layer activations. This was chosen to mitigate

weight explosion problems that were encountered with initial experiments with prototypical networks.

The tanh function is given by

tanh(x) =
e2x−1
e2x +1

(4.2)

A sigmoid activation function is used for the output activations, so as to approximate a class activation

that is close to one for a true class and close to zero for all others. For prototypical networks this

represents an encoding of the input; for standard classifiers the predicted class is given by the highest

output activation. A logistic function is used:

f (x) =
1

1+ e−x . (4.3)

4.3.2 CNN

The CNN employs four blocks consisting of a 2-dimensional convolution with a 3×3 filter with a

stride of 2 and valid padding, followed by a batch normalization layer, a leaky ReLu activation, a 2×2

max-pooling layer and finally a dropout layer with a rate of 0.25. The architecture is based on a CNN

used for sound event detection [33]. The size of the convolution blocks were experimentally tuned by

evaluating the performace of the model as a prototypical network on the validation set without training.

The blocks have 128, 128, 64 and 32 filters respectively. The output of the last block is flattened and

fed into a sigmoid activation output layer, as shown in Figure 4.5.

4.3.2.1 Leaky ReLU activation function

The leaky ReLU activation function is used for CNN filter activations. It is an adapted linear recti-

fier,

f (x) =

x, ifx≥ 0

αx, otherwise,
(4.4)

where α is a parameter that controls how much a negative activation “leaks" through. Advantages

include sparser activations and better gradient propagation compared to sigmoid and tanh activation

functions [119].

4.3.3 RNN

Figure 4.6 shows the RNN architecture: two bi-directional gated recurrent unit (GRU) layers with 128

and 64 nodes in each direction operating across the time dimension are used, followed by a flattening

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

40

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

128

Conv1

128

Conv2

64

Conv3

32

Conv4 Sigmoid

Figure 4.5. The CNN architecture of four convolution blocks with 3×3 filter with a stride of 2 with

ReLu activation, followed by a 2×2 max-pooling layer. The output layer dimensions are found using

Bayesian optimization for prototypical networks.

layer and a sigmoid activation output. The architecture is based on the RNN part of the architecture

that inspired the CRNN [94].

4.3.3.1 GRU block

A GRU is an RNN encoder-decoder block that maintains a hidden state over time steps. Two gates are

included in the unit: an update gate that decides whether to update the hidden state with a candidate

hidden state and a forget gate that decides whether to forget the previous hidden state [88]. The hidden

state and gate vectors at time t are then given by

zt = σ(Wzxt +Uzxt−1 +bz), (4.5)

rt = σ(Wrxt +Urxt−1 +br), (4.6)

ĥt = tanh(Whxt +Uh(rt ·ht−1)+bh), (4.7)

ht = zt ·ht−1 +(1− zt) · ĥt , (4.8)

where xt is the input vector, ht is the output vector, ĥt is the candidate updated hidden state vector, zt is

the update gate vector and rzt is the forget gate vector. W, U and b are weight vectors. · denotes element-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

41

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

128

Bi-GRU1
128

64

Bi-GRU2
64

Flatten

Sigmoid

Figure 4.6. The RNN architecture of two bi-directional GRU layers operating over the time dimension.

The size of the flattening layer is dependent on the input feature dimensions and the output layer

dimensions are found using Bayesian optimization for prototypical networks.

wise multiplication. The original proposed algorithm uses sigmoid and tanh activation functions for

the gates and the hidden state respectively, which are also used in this implementation [88].

4.3.4 CRNN

The CRNN combines the CNN and RNN architectures, as shown in Figure 4.7. Two CNN blocks

with 128 filters each are used. The output of the second CNN block’s filters are concatenated on the

frequency axis before two bi-directional GRU layers with 128 and 64 nodes are applied in the time

direction. This is followed by a flattening layer, a 512 node fully connected layer with tanh activations

and a sigmoid activation output layer. The architecture is based on a CRNN used for sound event

detection [94] with the sizes and number of convolution and GRU blocks based on experiments with

untrained networks.

4.4 MODEL TRAINING FOR JOINT INSTRUMENT, PLAYING TECHNIQUE AND PITCH

CLASSIFICATION

The prototypical networks were trained for 500 episodes using the Adam optimizer [110] (see Section

3.4.2) with default parameters and a learning rate that exponentially decreases over the course of

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

42

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

64

Conv1
64

Conv2
128

Bi-GRU1
128

64

Bi-GRU2
64

Flatten
512 Sigmoid

Figure 4.7. The CRNN architecture. Two convolution blocks with 3× 3 filters with a stride of 2

and ReLu activations, followed by a 2×2 max-pooling layer are employed. Convolution block 2’s

output is concatenated along the frequency axis and fed into two bi-directional GRU layers operating

over the time dimension. After flattening, a fully connected hidden layer with tanh activations is also

added. The size of the flattening layer is dependent on the input feature dimensions and the output

layer dimensions are found using Bayesian optimization for prototypical networks.

training. Bayesian optimization was used to find the optimal number of classes per episode, embedding

size and learning rate for each prototypical network over 10 trials per network architecture and input

feature. The optimized hyperparameters that were found are summarized in Addendum A.1. All

prototypical networks were trained on a subset of the RWC dataset consisting of string instrument

examples recorded by two of the three performers. Recordings from the remaining performer are

left out for evaluation. An 8 : 2 training to validation split is employed for Bayesian optimization to

maximize classification micro F-measure. Prototypical networks are trained with a shot of NS = 3 and

NQ = 5 query examples per episode class.

Standard classifier networks were also trained on the same data. A categorical cross-entropy loss was

used with the Adam optimizer [110] (see Section 3.4.2). The best learning rate and batch size for the

classifiers were determined using Bayesian optimization with each trial trained for 10 epochs. The

optimized hyperparameters that were found are summarized in Addendum A.2. Each classifier was

retrained for 100 epochs using the best parameters determined by Bayesian optimization. Transfer

learning was employed to adapt standard classifiers for evaluation on new datasets.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

43

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

4.4.1 Transfer learning for standard classifiers

In order to be able to compare the standard models to the prototypical models on evaluation datasets

with different classes from the training set, transfer learning is applied. The output layer of each

standard classifier model is replaced with a new output layer corresponding to the classes in the new

set and the model is trained for a further 10 epochs on the subset of support examples for the new set,

using the original hyperparameters. The number of transfer learning epochs was chosen as a balance

between the expected model improvement on the new data and the training time.

4.4.2 Instrument playing technique classification models

A 3-shot prototypical CQT CNN model and standard classifier model CQT CNN were also trained on

the RWC training set for the problem of instrument playing technique classification without regard for

pitch. The RWC training set was again used for training, but with the class pitch label ignored. The

models were trained with the best hyperparameters found from Bayesian optimization.

4.4.3 Instrument pitch classification models

A 3-shot prototypical CQT CNN model and standard classifier model CQT CNN were also trained

on the RWC training set for the problem of instrument pitch classification without regard for playing

technique. The RWC training set with the class playing technique label ignored was used for training.

The models were trained with the best hyperparameters found from Bayesian optimization.

4.4.4 Classification with accompaniment models

A 3-shot prototypical CQT CNN model and standard classifier model CQT CNN were also trained on

the RWC training set with piano accompaniment for the problem of joint instrument, playing technique

and pitch classification with accompaniment.

4.5 EVALUATION PROCEDURE

Prototypical models are evaluated by randomly sampling prototype examples for each class in the test

set, from which prototypes are computed. Any class examples used for prototype calculation are left

out during testing. Results on each dataset are averaged over five trials with prototype examples newly

drawn for each trial. The number of query examples for each class is kept constant for different shot

numbers, as well as for transfer learning.

Prototypical models are often evaluated in episodes, similarly to how they are trained [3], however, it

was elected not to use this evaluation method, both to test the models under more realistic conditions,

as would be expected when used in a real-world application where the number of potential classes is

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

44

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 MODELS AND EXPERIMENTS

not constrained, but also to be able to compare to standard classifier models that are not evaluated in

episodes. The models were evaluated with an F-measure, as has been done for prototypical models

for drum transcription [32] and both the micro F-measure and macro F-measure are reported. The

F-measure is given by the harmonic mean of precision and recall or by

F1 =
2t p

2t p+ f p+ f n
, (4.9)

where t p, f p and f n are the true positive count, false positive count and false negative count respectively.

The micro F-measure is calculated by taking the F-measure for the global count of true positives, false

positives and false negatives. The macro F-measure is obtained by taking the mean of the F-measures

for each class.

True positives are taken as the count of examples for which a model is able to correctly predict the

instrument, playing technique and pitch. This problem is denoted as INT. Other metrics of interest

that are also recorded are the F-measures for playing techniques correctly predicted, regardless of

instrument or pitch, denoted as T; pitches correctly identified, denoted as N, as well as instruments

correctly identified, denoted as I.

Results for transfer learning are also averaged over five trials by retraining the models on three randomly

sampled examples per class in each test set before evaluation.

4.6 CHAPTER CONCLUSION

The datasets for training and evaluating prototypical and standard classifier models were discussed.

The DNN, CNN, RNN and CRNN architectures were given in detail and the training and evaluation

procedures for prototypical classifiers and standard classifiers with transfer learning were given.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

45

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

5.1 CHAPTER OVERVIEW

The results for all experiments are given and discussed. Results are given for evaluation of prototypical

models and standard classifier models on the RWC string instrument set, OrchideaSOL set, YouTube

tutorial examples and RWC clarinet set. Confusion matrices for the best models are shown and

results for transfer learning for the standard classifier models are given for all datasets, along with a

comparison of pitch classification results using the PYIN algorithm. Results are also given for the

problems of single instrument playing technique and pitch classification, classification of examples

with accompaniment, playing technique classification and pitch classification. The strengths and

limitations of the models, the choice of time-frequency features, few-shot model shot and how few-shot

learning compares to transfer learning are discussed.

Note on model descriptors

Models in results are denoted by classification algorithm, input feature and ANN architecture. E.g.

Prototypical 3-shot CQT CNN is a prototypical model with a shot of NS = 3, that takes a CQT as input

feature and has a CNN architecture, while Standard mel RNN is a standard classifier model that takes

a log-mel spectrogram as input, has an RNN architecture and has an output layer that correlates to

class probabilities. Where models are trained on data other than the training sets for either prototypical

or standard classifier training, this is also indicated, e.g. Techniques prototypical 3-shot CQT CNN

was trained on the prototypical training set with class labels that only indicate instrument and playing

technique.

5.2 EVALUATION ON RWC STRING INSTRUMENT EXAMPLES

Prototypical models were evaluated on string instrument recordings from the RWC dataset performer

left out during training. From each class, 3 examples are used for prototypes and are not considered

during evaluation. The evaluation set contains 4 playing techniques and 47 pitches across the 4

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

string instruments for a total of 234 classes and 720 examples, excluding examples used to compute

prototypes. None of the playing techniques are unseen during training for any of the models, only the

performer (see Figure 4.1(b)). Table 5.1 compares results for the prototypical models and Table 5.2 for

standard classifier models. The 3-shot prototypical models are also evaluated with a shot of 1.

Table 5.1. Prototypical models classification F-measure for instrument, playing technique and note

classification on string instrument examples from the RWC dataset that were recorded by a performer

unseen during training. This set consists of 234 classes of which 12 were unseen before evaluation.

Micro and macro F-measures are shown respectively for instrument, note and technique classifica-

tion (INT), technique classification (T), note classification (N) and instrument classification (I). The

best 3-shot prototypical model results are shown in bold and the best 1-shot prototypical model results

are underlined.

Model micro F-measure macro F-measure

INT T N I INT T N I

Prototypical 3-shot mel DNN .576 .769 .832 .831 .539 .754 .79 .84

Prototypical 3-shot CQT DNN .686 .877 .887 .854 .659 .87 .838 .85

Prototypical 3-shot mel CNN .655 .917 .797 .863 .632 .911 .698 .87

Prototypical 3-shot CQT CNN .833 .954 .943 .92 .814 .953 .927 .925

Prototypical 3-shot mel RNN .695 .877 .879 .873 .669 .874 .823 .877

Prototypical 3-shot CQT RNN .774 .908 .927 .901 .758 .906 .88 .896

Prototypical 3-shot mel CRNN .665 .89 .848 .839 .641 .886 .771 .849

Prototypical 3-shot CQT CRNN .778 .94 .936 .857 .764 .938 .897 .848

Prototypical 1-shot mel DNN .488 .723 .78 .795 .443 .705 .742 .806

Prototypical 1-shot CQT DNN .6 .832 .847 .833 .564 .823 .785 .832

Prototypical 1-shot mel CNN .543 .887 .733 .804 .513 .879 .631 .811

Prototypical 1-shot CQT CNN .743 .923 .905 .887 .711 .919 .879 .894

Prototypical 1-shot mel RNN .588 .828 .827 .834 .549 .823 .771 .842

Prototypical 1-shot CQT RNN .665 .852 .882 .86 .641 .848 .816 .852

Prototypical 1-shot mel CRNN .574 .855 .81 .795 .541 .85 .729 .809

Prototypical 1-shot CQT CRNN .701 .909 .9 .818 .673 .906 .85 .82

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

47

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Table 5.2. Standard classifier models classification F-measure for instrument, playing technique and

note classification on string instrument examples from the RWC dataset that were recorded by a

performer unseen during training. This set consists of 234 classes of which 12 were unseen before

evaluation. Micro and macro F-measures are shown respectively for instrument, note and technique

classification (INT), technique classification (T), note classification (N) and instrument classification (I).

The best standard classifier results are shown in italics.

Model micro F-measure macro F-measure

INT T N I INT T N I

Standard mel DNN .484 .724 .707 .831 .431 .701 .655 .832

Standard CQT DNN .662 .844 .891 .84 .618 .834 .859 .827

Standard mel CNN .0759 .535 .153 .443 .0543 .51 .116 .42

Standard CQT CNN .319 .751 .493 .792 .27 .743 .462 .789

Standard mel RNN .432 .755 .68 .781 .382 .743 .65 .792

Standard CQT RNN .344 .617 .675 .716 .283 .61 .609 .681

Standard mel CRNN .391 .76 .546 .672 .329 .754 .486 .68

Standard CQT CRNN .567 .781 .77 .76 .513 .775 .726 .753

The prototypical models consistently outperform the standard classifier models, with the best model

across all metrics being the prototypical 3-shot CNN with CQT input features. Among the standard

models, however, the CQT DNN model performs the best. Models with CQT features also generally

outperform models with mel features. The prototypical models all perform better with 3-shot prototypes

for evaluation — on which they were trained — compared to 1-shot prototypes for evaluation. The

1-shot prototypes still generally outperform the standard classifier models.

Figures 5.1 and 5.2 show the F-measures of the standard classifier models on the RWC string instrument

evaluation set after each of the additional training epochs during transfer learning. For all models and

architectures the F-measure keeps climbing for each additional epoch.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

48

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

1 2 3 4 5 6 7 8 9 10
Epoch

0.0

0.2

0.4

0.6

F-
m

ea
su

re

(a)

1 2 3 4 5 6 7 8 9 10
Epoch

0.4

0.6

0.8

F-
m

ea
su

re

(b)

mel DNN
CQT DNN
mel CNN
CQT CNN
micro F-measure

mel RNN
CQT RNN
mel CRNN
CQT CRNN
macro F-measure

Figure 5.1. Classification F-measure for (a) joint instrument, pitch and technique classification (INT)

and (b) technique classification (T) on string instrument examples from the RWC dataset for standard

classifier models that were trained further on the prototype subset of the RWC string instrument test

set. Classification F-measure is shown after each of the 10 additional training epochs.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

49

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

1 2 3 4 5 6 7 8 9 10
Epoch

0.0

0.2

0.4

0.6

0.8

F-
m

ea
su

re

(a)

1 2 3 4 5 6 7 8 9 10
Epoch

0.4

0.6

0.8

F-
m

ea
su

re

(b)

mel DNN
CQT DNN
mel CNN
CQT CNN
micro F-measure

mel RNN
CQT RNN
mel CRNN
CQT CRNN
macro F-measure

Figure 5.2. Classification F-measure for (a) pitch classification (N) and (b) instrument classification (I)

on string instrument examples from the RWC dataset for standard classifier models that were trained

further on the prototype subset of the RWC string instrument test set. Classification F-measure is

shown after each of the 10 additional training epochs.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

50

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

The confusion matrices for classification on each of the sub-problems is shown in Figures 5.3 and 5.4

for the best prototypical model — the 3-shot CQT CNN. Confusion matrices for the CQT DNN

standard classifier model are shown in Figures 5.5 and 5.6. The confusion matrices show some

confusion between violin and viola for the prototypical model, but very little confusion on any of the

other problems. The standard classifier model shows more confusion than the prototypical model,

with more noticeable confusion between tremolo and vibrato, as well as some errors with pitch

classification.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

51

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Vi
ol

in

Vi
ol

a

Ce
llo

D
ou

bl
e b

as
s

Predicted class

Violin

Viola

Cello

Double bass

Tr
ue

cl
as

s

(a)

Tr
em

ol
o

Vi
br

at
o

Sp
ic

at
to

Pi
zz

ic
at

o
Predicted class

Tremolo

Vibrato

Spicatto

Pizzicato

Tr
ue

cl
as

s

(b)

0.00

0.20

0.40

0.60

0.80

1.00

Figure 5.3. Confusion matrices for the prototypical 3-shot CQT CNN model evaluated on the RWC

strings evaluation set on (a) instrument classification (I) and (b) playing technique classification (T).

Confusion matrices are normalized to the total number of examples for each true class in the set.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

52

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

A 1 A
♯ 1

B 1 C 2 C♯
2

D 2 D
♯ 2

E 2 F 2 F♯
2

G 2 G
♯ 2

A 2 A
♯ 2

B 2 C 3 C♯
3

D 3 D
♯ 3

E 3 F 3 F♯
3

G 3 G
♯ 3

A 3 A
♯ 3

B 3 C 4 C♯
4

D 4 D
♯ 4

E 4 F 4 F♯
4

G 4 A 4 A
♯ 4

B 4 C 5 C♯
5

D 5 E 5 F 5 F♯
5

G 5 G
♯ 5

A 5

Predicted class

A1
A♯1

B1
C2

C♯2
D2

D♯2
E2
F2

F♯2
G2

G♯2
A2

A♯2
B2
C3

C♯3
D3

D♯3
E3
F3

F♯3
G3

G♯3
A3

A♯3
B3
C4

C♯4
D4

D♯4
E4
F4

F♯4
G4
A4

A♯4
B4
C5

C♯5
D5
E5
F5

F♯5
G5

G♯5
A5

Tr
ue

cl
as

s

0.00

0.20

0.40

0.60

0.80

1.00

Figure 5.4. Confusion matrix for the prototypical 3-shot CQT CNN model evaluated on the RWC

strings evaluation set on pitch classification (N). The confusion matrix is normalized to the total

number of examples for each true class in the set.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

53

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Vi
ol

in

Vi
ol

a

Ce
llo

D
ou

bl
e b

as
s

Predicted class

Violin

Viola

Cello

Double bass

Tr
ue

cl
as

s

(a)

Tr
em

ol
o

Vi
br

at
o

Sp
ic

at
to

Pi
zz

ic
at

o
Predicted class

Tremolo

Vibrato

Spicatto

Pizzicato

Tr
ue

cl
as

s

(b)

0.00

0.20

0.40

0.60

0.80

1.00

Figure 5.5. Confusion matrices for the standard classifier CQT DNN model evaluated on the RWC

strings evaluation set on (a) instrument classification (I) and (b) playing technique classification (T).

Confusion matrices are normalized to the total number of examples for each true class in the set.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

54

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

A 1 A
♯ 1

B 1 C 2 C♯
2

D 2 D
♯ 2

E 2 F 2 F♯
2

G 2 G
♯ 2

A 2 A
♯ 2

B 2 C 3 C♯
3

D 3 D
♯ 3

E 3 F 3 F♯
3

G 3 G
♯ 3

A 3 A
♯ 3

B 3 C 4 C♯
4

D 4 D
♯ 4

E 4 F 4 F♯
4

G 4 A 4 A
♯ 4

B 4 C 5 C♯
5

D 5 E 5 F 5 F♯
5

G 5 G
♯ 5

A 5

Predicted class

A1
A♯1

B1
C2

C♯2
D2

D♯2
E2
F2

F♯2
G2

G♯2
A2

A♯2
B2
C3

C♯3
D3

D♯3
E3
F3

F♯3
G3

G♯3
A3

A♯3
B3
C4

C♯4
D4

D♯4
E4
F4

F♯4
G4
A4

A♯4
B4
C5

C♯5
D5
E5
F5

F♯5
G5

G♯5
A5

Tr
ue

cl
as

s

0.00

0.20

0.40

0.60

0.80

1.00

Figure 5.6. Confusion matrix for the standard classifier CQT DNN model evaluated on the RWC

strings evaluation set on pitch classification (N). The confusion matrix is normalized to the total

number of examples for each true class in the set.

5.3 CROSS-DATASET EVALUATION ON ORCHIDEASOL

The models were cross-evaluated on the string instrument playing technique note recordings of the

OrchideaSOL dataset. The OrchideaSOL evaluation set contains 61 pitches and 6 playing techniques

of which some were unseen during training (see Figure 4.1(b)). In total, the set contains 439 classes

and 2278 examples, excluding prototypes. Transfer learning was first applied to standard models before

evaluation. These results are shown in Table 5.3 for prototypical models and in Table 5.4 for standard

classifier models. The results of transfer learning for the standard classifiers over the additional epochs

are shown in Figures B.1 and B.2.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

55

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Table 5.3. Prototypical model classification F-measure for instrument, playing technique and pitch

classification on previously unseen string instrument examples from the OrchideaSOL string instrument

subset, including playing techniques not seen during training. This set consists of 439 classes of

which 325 were unseen before evaluation. Micro and macro F-measures are shown respectively for

instrument, note and technique classification (INT), technique classification (T), pitch classification (N)

and instrument classification (I). The best 3-shot prototypical model results are shown in bold and the

best 1-shot prototypical model results are underlined.

Model micro F-measure macro F-measure

INT T N I INT T N I

Prototypical 3-shot mel DNN .438 .572 .904 .782 .416 .521 .867 .77

Prototypical 3-shot CQT DNN .499 .632 .883 .857 .475 .556 .811 .847

Prototypical 3-shot mel CNN .528 .743 .839 .816 .51 .668 .788 .806

Prototypical 3-shot CQT CNN .664 .731 .964 .929 .64 .667 .947 .929

Prototypical 3-shot mel RNN .55 .693 .921 .835 .535 .634 .885 .827

Prototypical 3-shot CQT RNN .653 .736 .951 .908 .635 .676 .925 .906

Prototypical 3-shot mel CRNN .515 .7 .891 .791 .495 .636 .839 .784

Prototypical 3-shot CQT CRNN .554 .68 .92 .849 .533 .602 .869 .845

Prototypical 1-shot mel DNN .37 .531 .867 .743 .346 .479 .811 .728

Prototypical 1-shot CQT DNN .428 .598 .85 .813 .39 .517 .767 .802

Prototypical 1-shot mel CNN .442 .705 .794 .772 .415 .629 .725 .756

Prototypical 1-shot CQT CNN .564 .682 .932 .877 .536 .61 .9 .878

Prototypical 1-shot mel RNN .448 .634 .886 .779 .424 .574 .834 .767

Prototypical 1-shot CQT RNN .536 .665 .925 .854 .507 .596 .899 .849

Prototypical 1-shot mel CRNN .445 .664 .847 .763 .413 .594 .77 .751

Prototypical 1-shot CQT CRNN .464 .623 .895 .8 .439 .545 .839 .792

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

56

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Table 5.4. Standard classifier model classification F-measure for instrument, playing technique and

pitch classification on previously unseen string instrument examples from the OrchideaSOL string

instrument subset, including playing techniques not seen during training. This set consists of 442 classes

of which 328 were unseen before evaluation. Micro and macro F-measures are shown respectively for

instrument, note and technique classification (INT), technique classification (T), pitch classification (N)

and instrument classification (I). The best standard classifier results are shown in italics.

Model micro F-measure macro F-measure

INT T N I INT T N I

Standard mel DNN .379 .535 .654 .768 .32 .486 .634 .746

Standard CQT DNN .566 .669 .802 .884 .52 .602 .793 .878

Standard mel CNN .177 .618 .29 .547 .136 .514 .266 .533

Standard CQT CNN .478 .668 .665 .922 .422 .611 .649 .918

Standard mel RNN .399 .583 .654 .774 .354 .542 .619 .757

Standard CQT RNN .382 .585 .655 .745 .317 .523 .639 .726

Standard mel CRNN .363 .623 .571 .721 .299 .556 .546 .698

Standard CQT CRNN .528 .671 .739 .826 .481 .615 .724 .818

The 3-shot prototypical CQT CNN also performs best on cross-evaluation. The F-measure for all

models on the INT and T problems are notably lower than on the N and I problems, which was not

seen during evaluation on the RWC test set.

Figures 5.7 and 5.8 show the confusion matrices for each sub-problem on the OrchideaSOL cross-

dataset evaluation set for the prototypical 3-shot CQT CNN. There is still some confusion between

violin and viola, but also some confusion between the variations on pizzicato and tremolo with and

without a mute. Vibrato with or without a mute is also confused for tremolo. There is little significant

pitch confusion, except for a few octave errors. Additional results on OrchideaSOL for all four string

instruments are shown in Appendix B.1.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

57

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Vi
ol

in

Vi
ol

a

Ce
llo

D
ou

bl
e b

as
s

Predicted class

Violin

Viola

Cello

Double bass

Tr
ue

cl
as

s

(a)

So
rd

in
o

+
tre

m
ol

o

Tr
em

ol
o

So
rd

in
o

+
vi

br
at

o
Vi

br
at

o
Pi

zz
ic

at
o

se
cc

o
Pi

zz
ic

at
o

+
vi

br
at

o

Predicted class

Sordino + tremolo

Tremolo

Sordino + vibrato

Vibrato

Pizzicato secco

Pizzicato + vibrato

Tr
ue

cl
as

s

(b)

0.00

0.20

0.40

0.60

0.80

1.00

Figure 5.7. Confusion matrices for the prototypical 3-shot CQT CNN model evaluated on the

OrchideaSOL strings cross-evaluation set on (a) instrument classification (I) and (b) playing technique

classification (T). Confusion matrices are normalized to the total number of examples for each true

class in the set.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

58

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

A 1 A
♯ 1

B 1 C 2 C♯
2

D 2 D
♯ 2

E 2 F 2 F♯
2

G 2 G
♯ 2

A 2 A
♯ 2

B 2 C 3 C♯
3

D 3 D
♯ 3

E 3 F 3 F♯
3

G 3 G
♯ 3

A 3 A
♯ 3

B 3 C 4 C♯
4

D 4 D
♯ 4

E 4 F 4 F♯
4

G 4 G
♯ 4

A 4 A
♯ 4

B 4 C 5 C♯
5

D 5 D
♯ 5

E 5 F 5 F♯
5

G 5 G
♯ 5

A 5 A
♯ 5

B 5 C 6 C♯
6

D 6 D
♯ 6

E 6 F 6 F♯
6

G 6 G
♯ 6

A 6

Predicted class

A1
A♯1

B1
C2

C♯2
D2

D♯2
E2
F2

F♯2
G2

G♯2
A2

A♯2
B2
C3

C♯3
D3

D♯3
E3
F3

F♯3
G3

G♯3
A3

A♯3
B3
C4

C♯4
D4

D♯4
E4
F4

F♯4
G4

G♯4
A4

A♯4
B4
C5

C♯5
D5

D♯5
E5
F5

F♯5
G5

G♯5
A5

A♯5
B5
C6

C♯6
D6

D♯6
E6
F6

F♯6
G6

G♯6
A6

Tr
ue

cl
as

s

0.00

0.20

0.40

0.60

0.80

1.00

Figure 5.8. Confusion matrix for the prototypical 3-shot CQT CNN model evaluated on the Orch-

ideaSOL strings cross-evaluation set on pitch classification (N). The confusion matrix is normalized to

the total number of examples for each true class in the set.

The best 3-shot prototypical model — the 3-shot prototypical CQT CNN — was also evaluated on ex-

amples from only one instrument at a time from the OrchideaSOL dataset. The prototypical model was

evaluated for both the case of classifying single instrument classes with all string instrument prototypes

and with only the prototypes for the target instrument. The results are shown in Table 5.5.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

59

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Table 5.5. Classification F-measure for instrument, playing technique and pitch classification on

previously unseen examples for single instruments from the OrchideaSOL string instrument subset,

including playing techniques not seen during training. Micro and macro F-measures are shown

respectively for instrument, pitch and technique classification (INT), technique classification (T), pitch

classification (N) and instrument classification (I). The best results are shown in bold.

Model micro F-measure macro F-measure

INT T N I INT T N I

OrchideaSOL violin test set

Prototypical 3-shot CQT CNN with vi-

olin prototypes1

.598 .648 .941 — .583 .641 .905 —

Prototypical 3-shot CQT CNN with

string instrument prototypes2

.552 .631 .951 .917 .472 .621 .924 .351

OrchideaSOL viola test set

Prototypical 3-shot CQT CNN with vi-

ola prototypes

.745 .747 .996 — .693 .68 .996 —

Prototypical 3-shot CQT CNN with

string instrument prototypes

.656 .712 .997 .898 .529 .551 .991 .315

OrchideaSOL cello test set

Prototypical 3-shot CQT CNN with

cello prototypes

.855 .87 .982 — .843 .748 .979 —

Prototypical 3-shot CQT CNN with

string instrument prototypes

.742 .813 .977 .877 .579 .707 .964 .234

OrchideaSOL double bass test set

Prototypical 3-shot CQT CNN with

double bass prototypes

.769 .825 .935 — .721 .759 .95 —

Prototypical 3-shot CQT CNN with

string instrument prototypes

.757 .825 .938 .987 .687 .761 .952 .497

1 CNN with constant-Q transform input evaluated with only prototypes computed from OrchideaSOLviolin classes;

other abbreviations are similarly explained.
2 CNN with constant-Q transform input evaluated with prototypes computed from all OrchideaSOL string instrument

classes.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

60

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

The 3-shot prototypical CQT CNN performed much better on only a single instrument than on all

string instruments, except for on violin. Only providing prototypes for the target instrument improved

results on most instruments and problems.

5.4 EVALUATION ON REAL-WORLD YOUTUBE EXAMPLES

The prototypical models and standard classifier models were also evaluated on single-note violin,

viola, cello and double bass examples extracted from YouTube tutorials. This gives an idea of how the

models would perform in a practical real-world scenario such as recording a new performer outside of

a studio environment and then evaluating their playing techniques. This also gives an indication on

how the models perform when prototypes and query examples are not restricted to being recorded by

the same performer. This set contains 6 playing techniques of which 4 are unseen before evaluation

(see Figure 4.1(b)), and 21 pitches across violin, viola, cello and double bass. The set has a total

of 46 classes with 356 examples, excluding prototypes. Evaluation results are shown in Tables 5.6

and 5.7.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

61

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Table 5.6. Prototypical model classification F-measure for instrument, playing technique and pitch

classification on string instrument examples extracted from YouTube tutorials, including playing

techniques not seen during training. This set consists of 46 classes of which 33 were unseen before

evaluation. Micro and macro F-measures are shown respectively for pitch and technique classifica-

tion (NT), technique classification (T), pitch classification (N) and instrument classification (I). The

best 3-shot prototypical model results are shown in bold and the best 1-shot prototypical model results

are underlined.

Model micro F-measure macro F-measure

INT T N I INT T N I

Prototypical 3-shot mel DNN .723 .793 .898 .884 .701 .776 .888 .883

Prototypical 3-shot CQT DNN .753 .827 .918 .919 .728 .808 .884 .916

Prototypical 3-shot mel CNN .686 .779 .843 .86 .696 .768 .843 .863

Prototypical 3-shot CQT CNN .852 .912 .963 .953 .829 .909 .962 .951

Prototypical 3-shot mel RNN .762 .812 .915 .899 .756 .793 .915 .915

Prototypical 3-shot CQT RNN .799 .869 .923 .928 .775 .859 .906 .919

Prototypical 3-shot mel CRNN .728 .795 .902 .864 .724 .776 .906 .865

Prototypical 3-shot CQT CRNN .761 .815 .946 .949 .723 .808 .932 .939

Prototypical 1-shot mel DNN .664 .751 .87 .863 .625 .729 .833 .855

Prototypical 1-shot CQT DNN .664 .784 .872 .873 .644 .756 .824 .871

Prototypical 1-shot mel CNN .602 .714 .798 .824 .592 .703 .78 .825

Prototypical 1-shot CQT CNN .772 .849 .936 .924 .748 .841 .917 .921

Prototypical 1-shot mel RNN .694 .758 .882 .867 .683 .735 .871 .877

Prototypical 1-shot CQT RNN .723 .811 .898 .907 .703 .797 .879 .896

Prototypical 1-shot mel CRNN .641 .711 .873 .823 .636 .692 .855 .824

Prototypical 1-shot CQT CRNN .696 .772 .902 .922 .655 .762 .866 .911

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

62

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Table 5.7. Standard classifier models classification F-measure for instrument, playing technique and

pitch classification on string instrument examples extracted from YouTube tutorials, including playing

techniques not seen during training. Micro and macro F-measures are shown respectively for pitch

and technique classification (NT), technique classification (T), pitch classification (N) and instrument

classification (I). The best standard classifier results are shown in italics.

Model micro F-measure macro F-measure

INT T N I INT T N I

Standard mel DNN .476 .582 .493 .734 .443 .579 .5 .704

Standard CQT DNN .786 .827 .793 .926 .747 .809 .799 .923

Standard mel CNN .054 .258 .105 .445 .0395 .218 .0666 .3

Standard CQT CNN .107 .285 .135 .476 .0941 .265 .112 .38

Standard mel RNN .19 .345 .234 .585 .158 .343 .208 .493

Standard CQT RNN .111 .321 .154 .506 .0967 .301 .138 .335

Standard mel CRNN .155 .312 .192 .511 .137 .322 .168 .35

Standard CQT CRNN .553 .632 .568 .788 .538 .64 .59 .765

As with the previous evaluations, the retrained standard models suffer, except for the DNN models,

with the standard CQT DNN having the best macro F-measure on the joint instrument, pitch and

technique (INT) problem. The few-shot models, especially the 3-shot models perform well, matching

the high cross-evaluation results seen on other cross-dataset evaluation tasks. The prototypical 3-shot

CQT CNN model is again the standout, performing the best of the prototypical models for both the joint

instrument, pitch and technique (INT), the technique (T) classification and instrument classification (I)

tasks. On the pitch (N) classification task, the 3-shot prototypical CQT RNN performs the best.

The confusion matrices for the 3-shot CQT CNN are shown for all the sub-problems on this set in

Figures 5.9 and 5.10. There is less instrument confusion than on other sets, as well as less clear playing

technique confusion. There are some bigger mistakes with pitch detection, such as F♯3 exclusively

being classified as G3. Additional results are shown in Appendix B.2.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

63

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Vi
ol

in

Vi
ol

a

Ce
llo

D
ou

bl
e b

as
s

Predicted class

Violin

Viola

Cello

Double bass

Tr
ue

cl
as

s

(a)

Vi
br

at
o

St
ac

ca
to

Sa
ut

ill
é

Pi
zz

ic
at

o
M

ar
te

lé
Co

llé
Predicted class

Vibrato

Staccato

Sautillé

Pizzicato

Martelé

Collé

Tr
ue

cl
as

s

(b)

0.00

0.20

0.40

0.60

0.80

1.00

Figure 5.9. Confusion matrices for the prototypical 3-shot CQT CNN model evaluated on the YouTube

strings cross-evaluation set on (a) instrument classification (I) and (b) playing technique classification

(T). Confusion matrices are normalized to the total number of examples for each true class in the set.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

64

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

C 2 F 2 E 3 F 3 F♯
3

G 3 A 3 B 3 D 4 G 4 G
♯ 4

A 4 A
♯ 4

B 4 C 5 C♯
5

D 5 E 5 F♯
5

G 5 G
♯ 5

A 5

Predicted class

C2

F2

E3

F3

F♯3

G3

A3

B3

D4

G4

G♯4

A4

A♯4

B4

C5

C♯5

D5

E5

F♯5

G5

G♯5

A5

Tr
ue

cl
as

s

0.00

0.20

0.40

0.60

0.80

1.00

Figure 5.10. Confusion matrix for the prototypical 3-shot CQT CNN model evaluated on the YouTube

strings cross-evaluation set on pitch classification (N). The confusion matrix is normalized to the total

number of examples for each true class in the set.

5.5 EVALUATION WITH ACCOMPANIMENT

To evaluate how the models perform on data similar to what can be expected from a real-world recording

with accompaniment, the existing CQT CNN prototypical and standard classifier models are evaluated

on the RWC test set with added piano chords. The evaluation set contains 4 playing techniques and 47

pitches across the 4 string instruments for a total of 234 classes and 720 examples, excluding examples

used to compute prototypes — the same as the RWC test set without accompaniment. The models are

compared to models with the same architecture and training parameters that were trained on the RWC

training set with additional piano chords. Results are shown in Table 5.8.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

65

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Table 5.8. Classification F-measure for instrument, playing technique and pitch classification on string

instrument examples with piano accompaniment from the RWC test set. This set consists of 234 classes

of which the playing technique and pitch combination of 12 were unseen before evaluation. Micro

and macro F-measures are shown respectively for instrument, note and technique classification (INT),

technique classification (T), pitch classification (N) and instrument classification (I). The best 3-shot

prototypical model results are shown in bold, the best 1-shot prototypical model results are underlined

and the best standard classifier results are shown in italics.

Model micro F-measure macro F-measure

INT T N I INT T N I

Prototypical 3-shot CQT CNN .41 .59 .759 .828 .384 .584 .694 .821

Accompaniment prototypical 3-shot

CQT CNN

.505 .619 .831 .865 .478 .599 .755 .858

Prototypical 1-shot CQT CNN .305 .525 .673 .781 .276 .512 .608 .776

Accompaniment prototypical 1-shot

CQT CNN

.402 .552 .788 .822 .366 .537 .706 .812

Standard CQT CNN .198 .382 .31 .758 .167 .381 .291 .744

Accompaniment standard CQT CNN .219 .394 .327 .753 .183 .392 .316 .745

The 3-shot prototypical models again outperform all other models. Training the models with accom-

paniment present makes a significant improvement in performance across all tasks compared to training

on data without accompaniment.

5.6 EVALUATION ON A PREVIOUSLY UNSEEN INSTRUMENT

The models were also cross-evaluated on a new instrument using clarinet playing technique note

recordings from the RWC dataset, which can be seen in Tables 5.9 and 5.10. This gives an indication

of how models perform when evaluated on new playing techniques and a new instrument. This set

contains 3 clarinet playing techniques played in 40 different pitches. In total there are 120 classes with

720 examples, excluding prototypes. The results of transfer learning for the standard classifiers over

the additional epochs are shown in Figure B.5.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

66

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Table 5.9. Prototypical models classification F-measure for playing technique and pitch classification

on clarinet instrument examples from the RWC dataset that were not seen during training. This set

consists of 120 classes of which 120 were unseen before evaluation. Micro and macro F-measures are

shown respectively for note and technique classification (NT), technique classification (T) and pitch

classification (N). The best 3-shot prototypical model results are shown in bold and the best 1-shot

prototypical model results are underlined.

Model micro F-measure macro F-measure

NT T N NT T N

Prototypical 3-shot mel DNN .415 .484 .864 .386 .49 .862

Prototypical 3-shot CQT DNN .475 .501 .936 .449 .501 .934

Prototypical 3-shot mel CNN .478 .609 .821 .461 .615 .828

Prototypical 3-shot CQT CNN .554 .638 .896 .545 .646 .904

Prototypical 3-shot mel RNN .632 .703 .912 .604 .699 .912

Prototypical 3-shot CQT RNN .587 .647 .92 .565 .646 .919

Prototypical 3-shot mel CRNN .505 .648 .796 .479 .648 .795

Prototypical 3-shot CQT CRNN .511 .593 .853 .487 .592 .853

Prototypical 1-shot mel DNN .36 .44 .828 .325 .443 .824

Prototypical 1-shot CQT DNN .412 .459 .887 .378 .458 .88

Prototypical 1-shot mel CNN .378 .549 .737 .364 .555 .738

Prototypical 1-shot CQT CNN .449 .57 .829 .436 .584 .828

Prototypical 1-shot mel RNN .53 .68 .817 .494 .672 .816

Prototypical 1-shot CQT RNN .484 .605 .838 .46 .593 .838

Prototypical 1-shot mel CRNN .432 .619 .728 .403 .617 .724

Prototypical 1-shot CQT CRNN .442 .561 .782 .415 .559 .777

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

67

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Table 5.10. Standard classifier models classification F-measure for playing technique and pitch

classification on clarinet instrument examples from the RWC dataset that were not seen during training.

Micro and macro F-measures are shown respectively for pitch and technique classification (NT),

technique classification (T) and pitch classification (N). The best standard classifier results are shown

in italics.

Model micro F-measure macro F-measure

NT T N NT T N

Standard mel DNN .384 .476 .787 .337 .479 .786

Standard CQT DNN .474 .493 .953 .44 .503 .953

Standard mel CNN .0469 .466 .0972 .0318 .464 .0823

Standard CQT CNN .0963 .498 .191 .0759 .505 .179

Standard mel RNN .322 .612 .607 .269 .621 .608

Standard CQT RNN .162 .471 .357 .127 .476 .341

Standard mel CRNN .313 .607 .505 .259 .6 .486

Standard CQT CRNN .455 .597 .747 .411 .599 .739

Models perform worse when evaluated on a new instrument than on new playing techniques from the

same instrument. For both the NT and T problems on the clarinet data, the prototypical 3-shot mel RNN

outperforms the prototypical 3-shot CQT CNN. Additional results are shown in Appendix B.3.

5.7 PLAYING TECHNIQUE CLASSIFICATION

The best prototypical model — the CQT CNN — and its standard classifier counterpart were evaluated

on the problem of instrument technique classification and compared to standard classifier and prototyp-

ical models specifically trained on the problem. For evaluation the RWC test set was used with only

the instrument and playing technique class labels used. This set contains 24 classes with 9 techniques

and 2586 examples, excluding prototypes. Results for instrument playing technique classification are

shown in Table 5.11.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

68

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Table 5.11. Classification F-measure on the RWC test set for the problems of joint instrument and

playing technique classification (IT), playing technique classification (T) and instrument classification

(I), compared between the prototypical 3-shot CQT CNN model, standard classifier CQT CNN

model and prototypical and standard classifier models with the same architectures trained on the joint

instrument and playing technique classification (IT) problem. This set consists of 24 classes of which

2 were unseen by the models trained on instrument playing technique classification before evaluation.

The best results are shown in bold.

Model micro F-measure macro F-measure

IT T I IT T I

Prototypical 3-shot CQT CNN .319 .42 .663 .284 .359 .625

Techniques prototypical 3-shot CQT CNN .768 .798 .949 .732 .777 .94

Standard CQT CNN .0752 .156 .413 .0656 .13 .337

Techniques standardCQT CNN .146 .276 .467 .116 .222 .415

The prototypical model trained for the problem significantly outperforms the other models on all

3 sub-problems. The prototypical model trained on joint instrument, playing-technique and pitch

classification still outperforms the standard classifier models with only 3 examples per class used to

adjust the models to the problem and dataset.

Figures 5.11 and 5.12 show the performance of the models for different shot numbers on the instrument

playing technique classification problem. The standard classifier models are compared for different

numbers of examples per class used for transfer learning. The set for this evaluation only contains

classes that have enough examples for a shot of 15 with minimum 3 evaluation examples and the

number of evaluation samples per class was kept constant for each shot number. It contains 24 classes

with 9 techniques and 2226 examples, excluding those left out for prototypes. F-measure increases

slightly with shot number for the techniques prototypical network, but increases a lot more for the

other models.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

69

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Shot

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F-
m

ea
su

re

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Shot

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F-
m

ea
su

re

(b)

Prototypical 3-shot CQT CNN
Techniques prototypical 3-shot CQT CNN
Standard CQT CNN
Techniques standard CQT CNN
micro F-measure
macro F-measure

Figure 5.11. Classification F-measure on the RWC test set for the sub-problems of (a) joint instrument

and technique classification (IT) and (b) technique classification (T), compared between the prototypical

3-shot CQT CNN model, standard classifier CQT CNN model and prototypical and standard classifier

models with the same architectures trained on the joint instrument and playing technique classification

(IT) problem. Model performance is compared for different shot numbers at evaluation time.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

70

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Shot

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F-
m

ea
su

re

Prototypical 3-shot CQT CNN
Techniques prototypical 3-shot CQT CNN
Standard CQT CNN
Techniques standard CQT CNN
micro F-measure
macro F-measure

Figure 5.12. Classification F-measure on the RWC test set for the sub-problem of instrument classific-

ation (I), compared between the prototypical 3-shot CQT CNN model, standard classifier CQT CNN

model and prototypical and standard classifier models with the same architectures trained on the joint

instrument and playing technique classification (IT) problem. Model performance is compared for

different shot numbers at evaluation time.

5.8 PITCH CLASSIFICATION

The CQT CNN prototypical model and standard classifier model are also evaluated on the problem

of instrument pitch classification and again compared to standard classifier and prototypical models

specifically trained on the problem. For evaluation, the RWC test set was again used with the playing

technique label ignored. This set contains 153 classes with 68 pitches and 2142 examples, excluding

prototypes. Results for instrument pitch classification are shown in Table 5.12.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

71

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Table 5.12. Classification F-measure on the RWC test set for the sub-problems of joint instrument and

pitch classification (IN), pitch classification (N) and instrument classification (I), compared between

the prototypical 3-shot CQT CNN model, standard classifier CQT CNN model and prototypical

and standard classifier models with the same architectures trained on the joint instrument and pitch

classification (IN) problem. This set consists of 153 classes of which none were unseen by the models

trained on instrument pitch classification before evaluation. The best results are shown in bold.

Model micro F-measure macro F-measure

IN N I INT N I

Prototypical 3-shot CQT CNN .419 .586 .708 .37 .524 .654

Notes prototypical 3-shot CQT CNN .853 .923 .919 .774 .901 .895

Standard CQT CNN .256 .276 .697 .221 .28 .641

Notes standard CQT CNN .355 .376 .707 .299 .374 .646

The 3-shot prototypical CQT CNN models again significantly outperform the retrained standard

classifier models. The models specifically trained on the pitch classification problem again outperform

the more general models.

Figures 5.13 and 5.13 show the performance of the models for different shot numbers on the instrument

pitch classification problem. The standard classifier models are compared for different numbers of

examples per class used for transfer learning. The set for this evaluation only contains classes that have

enough examples for a shot of 15 with minimum 3 evaluation examples and the number of evaluation

samples per class was kept constant for each shot number. It contains 36 classes with 35 pitches and

504 examples, excluding those left out for prototypes. F-measure increases very slightly with shot

number for the notes prototypical network, but increases a lot more for the other models. Model

performance across the board remain consistently near perfect for all models and all shot numbers for

the sub-problem of instrument classification.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

72

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Shot

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F-
m

ea
su

re

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Shot

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F-
m

ea
su

re

(b)

Prototypical 3-shot CQT CNN
Notes prototypical 3-shot CQT CNN
Standard CQT CNN
Notes standard CQT CNN
micro F-measure
macro F-measure

Figure 5.13. Classification F-measure on the RWC test set for the sub-problems of (a) joint instrument

and pitch classification (IN) and (b) pitch classification (N), compared between the prototypical 3-shot

CQT CNN model, standard classifier CQT CNN model and prototypical and standard classifier models

with the same architectures trained on the joint instrument and pitch classification (IN) problem. Model

performance is compared for different shot numbers at evaluation time.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

73

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Shot

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F-
m

ea
su

re

Prototypical 3-shot CQT CNN
Notes prototypical 3-shot CQT CNN
Standard CQT CNN
Notes standard CQT CNN
micro F-measure
macro F-measure

Figure 5.14. Classification F-measure on the RWC test set for the sub-problem of instrument classific-

ation (I), compared between the prototypical 3-shot CQT CNN model, standard classifier CQT CNN

model and prototypical and standard classifier models with the same architectures trained on the joint

instrument and pitch classification (IN) problem. Model performance is compared for different shot

numbers at evaluation time.

5.8.1 Pitch classification using PYIN

The pitch classification problem (N) was also evaluated from F0s estimated using the PYIN algorithm.

Table 5.13 shows evaluation results on the same datasets that were used to evaluate the classifier models

(excluding the examples used to calculate prototypes) for finding a predicted pitch class from F0s.

Three different methods of extracting a pitch classification from the PYIN F0 contour are evaluated:

taking the mean, taking the weighted mean or taking the maximum voiced probability.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

74

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

Table 5.13. Pitch classification (N) F-measure using the PYIN algorithm on the RWC string instrument

test set, OrchideaSOL string instruments data, YouTube tutorials data and RWC clarinet data. The best

prototypical classifier on each evaluation set is compared.

Dataset micro F-measure

PYIN

Mean Weighted

Mean

Maximum

Probability

Prototypical

Classifier

RWC string instrument test set .819 .86 .929 .9431

OrchideaSOL string instrument

test set

.906 .916 .941 .9641

YouTube string instrument test

set

.891 .898 .906 .9631

RWC clarinet test set .731 .906 .906 .922

Dataset macro F-measure

PYIN

Mean Weighted

Mean

Maximum

Probability

Prototypical

Classifier

RWC string instrument test set .617 .666 .62 .9271

OrchideaSOL string instrument

test set

.86 .874 .869 .9471

YouTube string instrument test

set

.571 .635 .684 .9621

RWC clarinet test set .708 .879 .883 .9192

1 Prototypical 3-shot CNN with constant-Q transform input.
2 Prototypical 3-shot RNN with constant-Q transform input.

The maximum voiced probability provides the highest F-measure over all datasets. On each dataset

PYIN is outperformed by the best prototypical models.

5.9 MODEL PERFORMANCE

Prototypical networks prove to perform well when cross-evaluating on new playing techniques and

instruments. There is some loss of generalization, but the best models still perform quite well

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

75

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

on the datasets containing playing techniques and instruments that were not seen during training.

Evaluating the cross-dataset problems shows very little decrease in F-measure on the OrchideaSOL

string instrument set or YouTube examples. Playing technique classification is the problem that is the

hardest for the models. Where the models struggle most with playing technique classification is with

playing techniques that sound similar, such as percussive bow strokes (see staccato being confused

with sautillé, martelé and collé in Figure 5.9(b)) or playing techniques with variations, such as adding

a mute (see Figure 5.7(b)). This is much more prevalent with the standard classifier models, as can be

seen in Figure 5.5(b). A similar confusion is seen between violin and viola, which are much closer in

range and timbre than the other string instruments. There is some confusion for the prototypical CQT

CNN between these instruments on the RWC test set, as seen in Figure 5.3(a), but again, Figure 5.5(a)

shows even more confusion for the standard classifier CQT CNN.

The models do maintain a consistently high F-measure for pitch transcription, even on clarinet.

Generalization to new instruments and datasets is still a hard problem [2], so it is impressive to see

such consistency across datasets. When examining confusion matrices, it can be seen that errors with

pitch are either half-step errors or octave errors. The prototypical models are able to outperform signal

processing algorithms, such as PYIN, which has previously been hard for standard neural network

models to do on cross-evaluation [1].

Examining the results in Table 5.5 shows substantial improvement for prototypical networks for single

instruments. A tutorial scenario would most likely only involve a single instrument, thus this bodes

well for that application. Of all the single instrument string evaluation sets, OrchideaSOL violin has

the most classes and the second highest percentage of new classes, thus the model performing worse

on violin than on the other instruments, compared to the full OrchideaSOL string instrument test

set shows that differentiating between fewer classes is advantageous. It is interesting to note that

pitch classification results (N) are worse with only violin prototypes than with all string instrument

prototypes on violin evaluation data, and other instrument evaluations show a much smaller decrease in

F-measure on N than on other problems when using all the string instrument prototypes, which suggests

that even though providing instrument specific prototypes reduces playing technique confusion, pitch

classification features are not as bound to a specific instrument, thus even if the instrument may be

classified incorrectly, the pitch is still likely to be correct.

Models evaluated on data with accompaniment compare favorably to models evaluated on new playing

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

76

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

technique data and pitch classification remains high, which bodes well for applying these models to

main melody extraction. The marked improvement for the models trained on data with accompaniment

indicates that the important features for playing technique and pitch classification with accompaniment

differ from classification without accompaniment. While the models perform well as multi-task models,

there is some improvement to be gained by attuning the models to a specific task during training.

With the goal of building a tutorial system in mind, the prototypical approach performs very well as a

multi-task model. The best joint instrument, playing technique and pitch classification prototypical

model is able to accurately classify both playing technique (the T problem) and pitch (the N problem).

When compared to models trained more specifically on these problems (compare Table 5.1 with Tables

5.11 and 5.12) the model trained on join instrument, playing technique and pitch classification suffers

when given prototypes for only instrument and playing technique or only instrument and pitch. Since

the model was not trained for these kinds of prototypes, it is expected that classification would suffer

and because performance on IT and IN is not as good as on INT, performance on T and N decreases.

Thus for good multi-task performance it is better to provide prototypes similar to what the models

were trained on.

The sustained high performance of the few-shot models on the real-world cross-evaluating task

of classifying YouTube playing technique tutorial note examples also shows great promise for the

practical application of these models. The few-shot models thus do not suffer under less ideal recording

conditions and could be used, for example, by a music student who would record prototypes of playing

techniques under the supervision of a teacher, using a smartphone or inexpensive microphone setup.

The student could then try to match the playing techniques and the models would give a good indication

of whether the student closely matched the examples.

Comparing these results to other studies on similar problems is hard, since as far as can be told, the

number of classes in jointly classifying instrument, playing technique and pitch in this dissertation is

unprecedented. No direct comparison can be drawn, but the prototypical models perform near what

would be expected of state-of-the-art algorithms on each of the sub-problems. If desired, the results in

Table 5.3 can be compared to benchmark results discussed in Section 2.3. Similar to previous few-shot

approaches in MIR, these prototypical models are able to generalize to new performers and datasets,

as well as to new playing techniques, as has been shown for automatic drum transcription [32].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

77

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

5.10 TIME-FREQUENCY FEATURES

For most problems the CQT models perform the best or at least very close to the best model. A CQT

maintains consistent frequency resolution for each musical pitch, even as the pitch frequency increases

exponentially, whereas a log-mel spectrogram will vary the frequency bins corresponding to each

pitch, as it is an offset exponential mapping; this gives some advantage to the CQT, especially with

the convolutional models where feature extraction kernels can be applied to any pitch. Increasing

the number of mel bands for the log-mel spectrograms to match the frequency resolution of the CQT

features was tested, but this did not yield any significant improvement, thus it was chosen to match

input feature hyperparameters that yielded good results in previous implementations for log-mel

spectrogram [65, 33] and CQT [107].

CQT features thus work well for incorporating pitch classification into the playing technique classifica-

tion problem, since it provides good frequency resolution across the frequency spectrum for extracting

pitch information and differentiating harmonics from fundamental frequencies.

5.11 PROTOTYPICAL MODEL SHOT

Prototypical models perform better when evaluated on the same shot as they are trained on [3]; this

is also seen in this investigation, with prototypical models trained with a shot of 3 performing better

when evaluated with a shot of 3 than with a shot of 1. Figures 5.11 and 5.13 also show a general, if not

substantial improvement for larger shot numbers on problems where enough examples were available

to accommodate larger shot numbers. It would be expected that larger shot numbers would improve

generalization, as the class prototypes would average out any irregularities in some of the prototype

examples. For some problems the model performance compared to the shot number plateaus after a

while, giving very little performance increase for further shot number increase. Shot number is thus

a good parameter to tune for better performance where allowed by the available data when training

prototypical models.

5.12 PROTOTYPICAL NETWORKS COMPARED TO TRANSFER LEARNING

Unlike prototypical networks, where the main attraction is easy generalization to new data, standard

DNN classifiers needed to be retrained when applied to new classes. Transfer learning is a close

comparison to the philosophy of prototypical networks of applying the feature extraction capability of

a pre-trained network to a new problem. The best standard classifiers with transfer learning performed

well, but were surpassed by the prototypical models. The best models overall for transfer learning

were the DNN models. The DNN architecture has the advantage of fewer weights and being able to

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

78

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

train with fewer data than deeper networks, thus retraining with a new output layer was much easier

than the other deeper network architectures.

Compared to prototypical networks, transfer learning is also much less efficient and practical. Training

has higher hardware requirements than inference, so calculating new prototypes is a lot easier than

retraining a network. Transfer learning also requires some time commitment; F-measure increased

significantly with more epochs of the new dataset (see Figures 5.1 and 5.2). This again speaks to

the practicality of the prototypical network approach for real-world applications, such as a tutorial

system.

5.13 LIMITATIONS OF THE APPROACH

The prototypical models function better on problems with more specificity. Although prototypical

few-shot learners generalize well to new datasets and problems, they might also not perform as well

as models specifically trained for the new problem or data domain. Where enough training data is

available and less flexibility is needed, a standard classifier might function just as well or better.

The performance of prototypical models has been shown to correlate to the number of examples per

class in the training set [93]. Suggested examples per class from previous implementations are in the

order of NS+NQ = 20 [3]. The datasets available restricted the number of examples for some classes to

less than that for the problem of joint instrument, playing technique and pitch classification. Although

the trained models performed well on the joint classification problem, as well as the sub-problems for

which the number of examples per class were increased, performance could still be improved further

with a larger training set with more examples per class.

Prototypical models are also dependent on prototype examples. Figures 5.11 and 5.13 show that model

performance can be improved by providing more prototypes, especially when the model was not

trained on the problem. Prototypes require annotation, however, which is not always available.

5.14 CHAPTER CONCLUSION

After comparing different prototypical and standard classifier models, it was found that the best model

on instrument, playing technique and pitch classification is the 3-shot CQT CNN prototypical model. It

displays minimal loss of accuracy on new datasets and classes, and is able to perform well on the tasks

of playing technique classification and pitch classification, as well as instrument, playing technique

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

79

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 RESULTS AND DISCUSSION

and pitch classification with accompaniment when compared to models specifically trained on the

tasks.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

80

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 CONCLUSION

A few-shot classification model is presented for instrument, playing technique and pitch classification

that achieves a macro F-score of .814 on RWC string instrument examples for a 3-shot CQT CNN

prototypical model and generalizes better to new problems and data than standard classifier models.

Few-shot models function as multi-task learners and these models perform well on the tasks of playing

technique classification, pitch classification and instrument classification from single note examples,

achieving a macro F-score of .953, .927 and .925 respectively on the RWC test set. The best few-shot

model outperforms the best standard classifier model on both the joint instrument, pitch and playing

technique classification task and the individual classification tasks of playing technique classification,

pitch classification and instrument recognition.

The few-shot models perform well on cross-dataset evaluation and are able to adapt to new playing

techniques and instruments from only a few prototype examples per new class. The best few-shot

model performs better on previously unseen datasets, playing techniques, instruments and tasks than

any of the standard classifier models that were finetuned on the new data or tasks. The models also

perform very well on realistic data and are able to classify playing technique and pitch in the presence

of accompaniment as well as with non-ideal recording conditions, such as from YouTube videos.

This approach could function well as part of a tutorial system for evaluating the playing technique

performance of a student.

A new aspect of playing technique classification was investigated, namely joint classification with

instrument and pitch. Few-shot learning with prototypical networks is a promising solution to this

problem that is able to generalize well to new classes, even with an unprecedented amount of classes

for the problem domain.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 CONCLUSION

6.1 FURTHER WORK

Further work of interest would be to apply these models and methodologies to more instruments to

achieve a more general model that could transcribe any instrument or playing technique. Models

would also be greatly improved by larger training sets with more examples per class. Investigation

of the application of these models towards a general-purpose transcription system should be done by

applying the models to the problem of stream-level transcription with playing technique. As noted, a

major obstacle to this is a lack of playing technique annotation for transcription datasets in MIR. With

a general-purpose transcription system in mind, an investigation should also be done on adapting these

methods to polyphonic multiple-instrument transcription.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

82

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[1] E. Benetos, S. Dixon, Z. Duan, and S. Ewert, “Automatic music transcription: An overview,”

IEEE Signal Processing Magazine, vol. 36, no. 1, pp. 20–30, 2019.

[2] A. Livshin, “Automatic musical instrument recognition and related topics,” Ph.D. dissertation,

Université Pierre et Marie Curie-Paris VI, 2007.

[3] J. Snell, K. Swersky, and T. R. Zemel, “Prototypical networks for few-shot learning,” Advances

in Neural Information Processing Systems, vol. 30, 2017.

[4] V. Lostanlen, J. Andén, and M. Lagrange, “Extended playing techniques: The next milestone in

musical instrument recognition,” in Proceedings of the 5th International Conference on Digital

Libraries for Musicology, vol. 18, 2018, pp. 1–10.

[5] J. Abeßer, H. Lukashevich, and G. Schuller, “Feature-based extraction of plucking and expres-

sion styles of the electric bass guitar,” in IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2010, pp. 2290–2293.

[6] J. Abeser and G. Schuller, “Instrument-centered music transcription of solo bass guitar record-

ings,” IEEE/ACM Transactions on Audio Speech and Language Processing, vol. 25, no. 9, pp.

1741–1750, Sept. 2017.

[7] S. Giraldo and R. Ramírez, “Performance to score sequence matching for automatic ornament

detection in jazz music,” in International Conference of New Music Concepts ICMNC, 2015.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[8] T. H. Özaslan and J. L. Arcos, “Legato and glissando identification in classical guitar,” in 7th

Sound and Music Computing Conference (SMC), 2010.

[9] L. Reboursière, O. Lähdeoja, T. Drugman, S. Dupont, C. Picard-Limpens, and N. Riche,

“Left and right-hand guitar playing techniques detection,” in Proceedings of the International

Conference on New Interfaces for Musical Expression (NIME), 2012.

[10] L. Su, H.-M. Lin, and Y.-H. Yang, “Sparse modeling of magnitude and Pphase-derived spectra

for playing technique classification,” IEEE/ACM Transactions on Audio, Speech, and Language

Processing, vol. 22, no. 12, pp. 2122–2132, 2014.

[11] Y.-P. Chen, L. Su, and Y.-H. Yang, “Electric guitar playing technique detection in real-world

recording based on F0 sequence pattern recognition,” in Proceedings of the International Society

for Music Information Retrieval (ISMIR) Conference, 2015, pp. 708–714.

[12] R. Foulon, P. Roy, and F. Pachet, “Automatic classification of guitar playing modes,” in Sound,

Music, and Motion: 10th International Symposium, CMMR, vol. 8905, Oct. 2014, pp. 58–71.

[13] I. Barbancho, C. de la Bandera, A. M. Barbancho, and L. J. Tardon, “Transcription and ex-

pressiveness detection system for violin music,” in IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASP), 2009, pp. 189–192.

[14] J. Charles, “Playing technique and violin timbre: Detecting bad playing,” Ph.D. dissertation,

Dublin Institute of Technology, Dublin, Jan. 2010.

[15] D. Young, “Classification of common violin bowing techniques using gesture data from a play-

able measurement system,” in Proceedings of the International Conference on New Interfaces

for Musical Expression (NIME), 2008, pp. 44–48.

[16] B. Liang, G. Fazekas, A. Mcpherson, and M. Sandler, “Piano Pedaller: A measurement sys-

tem for classification and visualisation of piano pedalling techniques,” in Proceedings of the

International Conference on New Interfaces for Musical Expression (NIME), 2017.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

84

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[17] M. Bernays and C. Traube, “Expressive production of piano timbre: Touch and playing tech-

niques for timbre control in piano performance,” in Proceedings of the 10th Sound and Music

Computing Conference (SMC2013), 2013, pp. 341–346.

[18] C. Wu and A. Lerch, “On drum playing technique detection in polyphonic mixtures,” in

Proceedings of the International Society for Music Information Retrieval (ISMIR) Conference,

2016, pp. 218–224.

[19] P. Herrera, A. Yeterian, and F. Gouyon, “Automatic classification of drum sounds: A comparison

of feature selection methods and classification techniques,” in Music and Artificial Intelligence:

Second International Conference (ICMAI), vol. 2445, 2002, pp. 69–80.

[20] G. Tzanetakis, A. Tindale, A. Kapur, and I. Fujinaga, “Retrieval of percussion gestures us-

ing timbre classification techniques,” in Proceedings of the International Society for Music

Information Retrieval (ISMIR) Conference, 2004.

[21] A. Neocleous, G. Azzopardi, C. N. Schizas, and N. Petkov, “Filter-based approach for orna-

mentation detection and recognition in singing folk music,” in Computer Analysis of Images

and Patterns: 16th International Conference (CAIP), vol. 9256, 2015, pp. 558–569.

[22] J. Wilkins, P. Seetharaman, A. Wahl, and B. Pardo, “VocalSet: A singing voice dataset,” in

Proceedings of the International Society for Music Information Retrieval (ISMIR) Conference,

2018, pp. 468–474.

[23] Y. Yamamoto, J. Nam, and H. Terasawa, “Analysis and detection of singing techniques in

repertoires of J-POP solo singers,” in Proceedings of the 23rd International Society for Music

Information Retrieval (ISMIR) Conference, 2022.

[24] D. W. H. Menzies and A. P. Mcpherson, “Highland piping ornament recognition using dynamic

time warping,” in Proceedings of the International Conference on New Interfaces for Musical

Expression (NIME), 2015, pp. 50–53.

[25] Y. Huang, J. Liang, I. Wei, and L. Su, “Joint analysis of mode and playing technique in Guqin

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

85

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

performance with machine learning,” in Proceedings of the International Society for Music

Information Retrieval (ISMIR) Conference, 2020, pp. 85–92.

[26] D. Li, Y. Wu, Q. Li, J. Zhao, Y. Yu, F. Xia, and W. Li, “Playing Technique Detection by Fusing

Note Onset Information in Guzheng Performance,” in Proceedings of the 23rd International

Society for Music Information Retrieval (ISMIR) Conference, 2022.

[27] C. Wang, E. Benetos, X. Meng, E. Chew, and others, “HMM-based glissando detection for

recordings of chinese bamboo flute,” in Sound and Music Computing, May 2019.

[28] C. Wang, E. Benetos, V. Lostanlen, E. Chew, E. Chew Adaptive, S. Member, S. Member,

and I. Vincent Lostanlen, “Adaptive scattering transforms for playing technique recognition,”

IEEE/ACM Transactions on Audio, Speech and Language Processing, vol. 30, pp. 1407–1421,

2022.

[29] B. Shi, M. Sun, K. C. Puvvada, C.-C. Kao, S. Matsoukas, and C. Wang, “Few-shot acoustic

event detection via meta learning,” in IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2020, pp. 76–80.

[30] P. Wolters, C. Daw, B. Hutchinson, and L. Phillips, “Proposal-based few-shot found event detec-

tion for speech and environmental sounds with perceivers,” arXiv preprint arXiv:2107.13616,

2021.

[31] H. F. Garcia, A. Aguilar, E. Manilow, and B. Pardo, “Leveraging hierarchical structures for

few-shot musical instrument recognition,” in Proceedings of the International Society for Music

Information Retrieval (ISMIR) Conference, 2021, pp. 220–228.

[32] Y. Wang, J. Salamon, M. Cartwright, N. J. Bryan, and J. P. Bello, “Few-shot drum transcrip-

tion in polyphonic music,” in Proceedings of the International Society for Music Information

Retrieval (ISMIR) Conference, 2020.

[33] Y. Wang, J. Salamon, N. J. Bryan, and J. Pablo Bello, “Few-shot sound event detection,” in

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

86

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

pp. 81–85.

[34] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC music database: Popular, classical,

and jazz music databases,” in Proceedings of the International Society for Music Information

Retrieval (ISMIR) Conference, 2002, pp. 287–288.

[35] C. E. Cella, D. Ghisi, V. Lostanlen, F. Lévy, J. Fineberg, and Y. Maresz, “OrchideaSOL: A

dataset of extended instrumental techniques for computer-aided orchestration,” arXiv preprint

arXiv:2007.00763, 2020.

[36] P. C. Kok and J. P. Jacobs, “Computationally efficient note activation classifier for multiple-

instrument automatic music transcription,” in Southern Africa Telecommunication Networks

and Applications Conference (SATNAC), 2021, pp. 192–197.

[37] G. Moens-Haenen, “Vibrato,” Oxford Music Online, 2001.

[38] “Sul ponticello,” Oxford Music Online, 2001.

[39] “Sul tasto,” Oxford Music Online, 2001.

[40] S. Monosoff, “Pizzicato,” Oxford Music Online, 2001.

[41] D. D. Boyden and P. Walls, “Spiccato,” Oxford Music Online, 2001.

[42] ——, “Sautillé,” Oxford Music Online, 2001.

[43] W. Bachmann, R. E. Seletsky, D. D. Boyden, J. Liivoja-Lorius, P. Walls, and P. Cooke, “Bow,”

Oxford Music Online, vol. 1, 2001.

[44] M. Thiriot, “Developing right-hand finger flexibility in young violinists: Teaching collé, martelé,

spiccato, and sautillé through the Suzuki literature,” Ph.D. dissertation, Liberty University,

Lynchburg, 2022.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

87

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[45] D. Fallows, “Tremolo (i),” Oxford Music Online, 2001.

[46] G. Grove, A Dictionary of Music and Musicians, 1900.

[47] G. Chew and C. Brown, “Staccato,” Oxford Music Online, 2001.

[48] D. D. Boyden, C. Bevan, and J. K. Page, “Mute,” Oxford Music Online, 2001.

[49] D. D. Boyden and R. Stowell, “Glissando,” Oxford Music Online, Jan. 2018.

[50] E. T. Harris, “Portamento (i),” Oxford Music Online, 2001.

[51] T. H. Özaslan, X. Serra, and J. L. Arcos, “Characterization of embellishments in ney perform-

ances of makam music in Turkey,” in Proceedings of the 13th International Society for Music

Information Retrieval (ISMIR) Conference, 2012.

[52] L. Yang, “Computational modelling and analysis of vibrato and portamento in expressive music

performance,” Ph.D. dissertation, Queen Mary University of London, London, Apr. 2017.

[53] J. Ducher and P. Esling, “Folded CQT RCNN for real-time recognition of instrument playing

techniques,” in Proceedings of the International Society for Music Information Retrieval (ISMIR)

Conference, 2019.

[54] J. Andén, V. Lostanlen, and S. Mallat, “Classification with joint time-frequency scattering,”

IEEE Transactions on Signal Processing, vol. 67, pp. 3704–3718, 2019.

[55] L. Su and Y. H. Yang, “Combining spectral and temporal representations for multipitch estim-

ation of polyphonic music,” IEEE Transactions on Audio, Speech and Language Processing,

vol. 23, no. 10, pp. 1600–1612, 2015.

[56] A. Kruger and J. Jacobs, “Playing technique classification for bowed string instruments from

raw audio,” Journal of New Music Research, vol. 49, no. 4, pp. 320–333, 2020.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

88

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[57] H. S. Alar, R. O. Mamaril, L. P. Villegas, and J. R. D. Cabarrubias, “Audio classification of

violin bowing techniques: An aid for beginners,” Machine Learning with Applications, vol. 4, p.

100028, June 2021.

[58] J. C. Brown, “Computer identification of musical instruments using pattern recognition with

cepstral coefficients as features,” The Journal of the Acoustical Society of America, vol. 105,

no. 3, p. 1933, Mar. 1999.

[59] A. Eronen and A. Klapuri, “Musical instrument recognition using cepstral coefficients and tem-

poral features,” in IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), vol. 2, 2000, pp. 753–756.

[60] I. Kaminskyj, “Automatic recognition of isolated monophonic musical instrument sounds using

kNNC,” Journal of Intelligent Information Systems, vol. 24, no. 3, pp. 199–221, 2005.

[61] V. Lostanlen and C.-E. CelláCellá, “Deep convolutional networks on the pitch spiral for

musical instrument recognition,” Proceedings of the International Society for Music Information

Retrieval (ISMIR), 2016.

[62] A. G. Krishna and T. V. Sreenivas, “Music instrument recognition: From isolated notes to

solo phrases,” in IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), vol. 4, 2004.

[63] E. Benetos, M. Kotti, and C. Kotropoulos, “Musical instrument classification using non-negative

matrix factorization algorithms and subset feature selection,” in IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), vol. 5, 2006, pp. V–V.

[64] P. Herrera-Boyer, G. Peeters, and S. Dubnov, “Automatic classification of musical instrument

sounds,” International Journal of Phytoremediation, vol. 21, no. 1, pp. 3–21, 2003.

[65] M. Taenzer, J. Abeßer, S. I. Mimilakis, C. Weiß, M. Müller, and H. Lukashevich, “Investigating

CNN-based instrument family recognition for western classical music recordings,” in Proceed-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

89

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

ings of the International Society for Music Information Retrieval (ISMIR) 2019, Delft, The

Netherlands, Nov. 2019.

[66] V. Garcia and J. Bruna, “Few-shot learning with graph neural networks,” in Proceedings of the

International Conference on Learning Representations (ICLR), 2018, pp. 1–13.

[67] Z. Duan, B. Pardo, and C. Zhang, “Multiple fundamental frequency estimation by modeling

spectral peaks and non-peak regions,” IEEE Transactions on Audio, Speech and Language

Processing, vol. 18, no. 8, pp. 2121–2133, 2010.

[68] V. Emiya, R. Badeau, and B. David, “Multipitch estimation of piano sounds using a new

probabilistic spectral smoothness principle,” IEEE Transactions on Audio, Speech and Language

Processing, vol. 18, no. 6, pp. 1643–1654, 2010.

[69] M. Mauch and S. Dixon, “PYIN: A fundamental frequency estimator using probabalistic

threshold distributions,” in IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2014, pp. 659–663.

[70] J. W. Kim, J. Salamon, P. Li, and J. P. Bello, “Crepe: A convolutional representation for pitch

estimation,” in IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2018, pp. 161–165.

[71] X. Li, Y. Guan, Y. Wu, and Z. Zhang, “Piano multipitch estimation using sparse coding

embedded deep learning,” Eurasip Journal on Audio, Speech, and Music Processing, vol. 2018,

no. 1, 2018.

[72] P. Smaragdis and J. C. Brown, “Non-negative matrix factorization for polyphonic music

transcription,” in IEEE Workshop on Applications of Signal Proccssing to Audio and Acoustics,

no. 1, New PaltzIf, 2003, pp. 177–180.

[73] E. Vincent, N. Bertin, and R. Badeau, “Adaptive Harmonic Spectral Decomposition for Multiple

Pitch Estimation,” IEEE Transactions on Audio, Speech and Language Processing, vol. 18,

no. 3, pp. 528–537, 2010.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

90

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[74] B. Fuentes, R. Badeau, and G. Richard, “Harmonic adaptive latent component analysis of audio

and application to music transcription,” IEEE Transactions on Audio, Speech and Language

Processing, vol. 21, no. 9, pp. 1854–1866, 2013.

[75] S. Sigtia, E. Benetos, and S. Dixon, “An end-to-end neural network for polyphonic piano music

transcription,” IEEE/ACM Transactions on Audio Speech and Language Processing, vol. 24,

no. 5, pp. 927–939, 2016.

[76] R. Kelz, M. Dorfer, F. Korzeniowski, S. Böck, A. Arzt, and G. Widmer, “On the potential of

simple framewise approaches to piano transcription,” Proceedings of the 17th International

Society for Music Information Retrieval (ISMIR) Conference, pp. 475–481, 2016.

[77] E. Benetos and S. Dixon, “Multiple-instrument polyphonic music transcription using a tempor-

ally constrained shift-invariant model,” The Journal of the Acoustical Society of America, vol.

133, no. 3, pp. 1727–1741, 2013.

[78] Z. Duan, J. Han, and B. Pardo, “Multi-pitch streaming of harmonic sound mixtures,” IEEE

Transactions on Audio, Speech and Language Processing, vol. 22, no. 1, pp. 138–150, 2014.

[79] G. E. Poliner and D. P. W. Ellis, “A discriminative model for polyphonic piano transcription,”

EURASIP Journal on Advances in Signal Processing, vol. 48317, pp. 1–9, 2007.

[80] V. Arora and L. Behera, “Multiple F0 estimation and source clustering of polyphonic music

audio using PLCA and HMRFs,” IEEE/ACM Transactions on Audio Speech and Language

Processing, vol. 23, no. 2, pp. 278–287, 2015.

[81] Y. T. Wu, B. Chen, and L. Su, “Multi-instrument automatic music transcription with self-

attention-based instance segmentation,” IEEE/ACM Transactions on Audio Speech and Lan-

guage Processing, vol. 28, pp. 2796–2809, 2020.

[82] S. Russel and P. Norvig, Artificial Intelligence—A Modern Approach, 3rd ed. Pearson Education

Limited, 2012.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

91

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[83] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics).

Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[84] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable effectiveness of data

in deep learning era,” in Proceedings of the IEEE International Conference on Computer Vision,

2017, pp. 843–852.

[85] D. Rolnick, A. Veit, S. Belongie, and N. Shavit, “Deep Learning is Robust to Massive Label

Noise.” arXiv preprint arXiv:1705.10694, 2017.

[86] K. Choi, G. Fazekas, K. Cho, and M. Sandler, “A tutorial on deep learning for music information

retrieval,” arXiv preprint arXiv:1709.04396, 2017.

[87] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[88] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and

Y. Bengio, “Learning phrase representations using RNN encoder-decoder for statistical machine

translation,” arXiv preprint arXiv:1406.1078, 2014.

[89] J. Bromley, I. Guyon, Y. Lecun, E. Sickinger, R. Shah, A. Bell, and L. Holmdel, “Signature

verification using a "Siamese" time delay neural network,” Advances in Neural Information

Processing Systems, vol. 6, 1993.

[90] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot image

recognition,” in ICML Deep Learning Workshop, 2015.

[91] O. Vinyals, G. Deepmind, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra, “Matching

networks for one shot learning,” Advances in Neural Information Processing Systems, vol. 29,

2016.

[92] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales, “Learning to compare:

Relation network for few-shot learning,” in Proceedings of the IEEE Conference on Computer

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

92

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

Vision and Pattern Recognition, 2018, pp. 1199–1208.

[93] J. Pons, J. Serrà, and X. Serra, “Training neural audio classifiers with few data,” in IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp.

16–20.

[94] E. Çakır, G. Parascandolo, T. Heittola, H. Huttunen, and T. Virtanen, “Convolutional recurrent

neural networks for polyphonic sound event detection,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, vol. 25, no. 6, pp. 1291–1303, Feb. 2017.

[95] K. Lee, S. Maji, A. Ravichandran, S. Soatto, W. Services, U. C. San Diego, and U. Amherst,

“Meta-learning with differentiable convex optimization,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp. 10 657–10 665. [Online].

Available: https://github.com/kjunelee/MetaOptNet

[96] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep

networks,” in International Conference on Machine Learning. PMLR, 2017, pp. 1126–1135.

[97] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive

survey on transfer learning,” Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, Jan. 2021.

[98] G. Gwardys and D. Grzywczak, “Deep image features in music information retrieval,” Inter-

national Journal of Electronics and Telecommunications, vol. 60, no. 4, pp. 321–326, Dec.

2014.

[99] J. Lee and J. Nam, “Multi-level and multi-scale feature aggregation using pretrained convolu-

tional neural networks for music auto-tagging,” IEEE Signal Processing Letters, vol. 24, no. 8,

pp. 1208–1212, Aug. 2017.

[100] K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Transfer learning for music classification and

regression tasks,” arXiv preprint arXiv:1703.09179, Mar. 2017.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

93

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[101] B. Liang, G. Fazekas, and M. Sandler, “Transfer learning for piano sustain-pedal detection,” in

International Joint Conference on Neural Networks (IJCNN), 2019, pp. 1–6.

[102] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and O. Nieto, “Librosa:

Audio and music signal analysis in python,” in Proceedings of the 14th Python in Science

Conference, vol. 8, 2015.

[103] M. Müller, Fundamentals of Music Processing. Springer International Publishing, 2015.

[104] J. Pons, O. Slizovskaia, R. Gong, E. Gómez, and X. Serra, “Timbre analysis of music audio

signals with convolutional neural networks,” in 25th European Signal Processing Conference

(EUSIPCO), 2017, pp. 2744–2748.

[105] S. Theodoridis and K. Koutroumbas, Pattern recognition, 4th ed. Academic Press, 2009.

[106] B. McFee, A. Metsai, M. McVicar, S. Balke, C. Thomé, C. Raffel, F. Zalkow, A. Malek,

Dana, K. Lee, O. Nieto, D. Ellis, J. Mason, E. Battenberg, S. Seyfarth, R. Yamamoto,

viktorandreevichmorozov, K. Choi, J. Moore, R. Bittner, S. Hidaka, Z. Wei, nullmightybofo,

D. Hereñú, F.-R. Stöter, P. Friesch, A. Weiss, M. Vollrath, T. Kim, and Thassilo, “librosa/librosa:

0.8.1rc2,” May 2021. [Online]. Available: https://doi.org/10.5281/zenodo.4792298

[107] E. Benetos, S. Cherla, and T. Weyde, “An effcient shift-invariant model for polyphonic music

transcription,” Proceedings of the 6th International Workshop on Machine Learning and Music,

2013.

[108] C. Schörkhuber and A. Klapuri, “Constant-Q transform toolbox for music processing,” in

Proceedings of the 7th Sound and Music Computing Conference, SMC, 2010, pp. 3–64.

[109] J. C. Brown and M. S. Puckette, “ An efficient algorithm for the calculation of a constant Q

transform ,” The Journal of the Acoustical Society of America, vol. 92, no. 5, pp. 2698–2701,

1992.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

94

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[110] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in 3rd International

Conference for Learning Representations, San Diego, 2015, pp. 1–15.

[111] E. Gordon-Rodriguez, G. Loaiza-Ganem, G. Pleiss, and J. P. Cunningham, “Uses and abuses

of the cross-entropy loss: Case studies in modern deep learning,” in Proceedings on "I Can’t

Believe It’s Not Better!" at NeurIPS Workshops, 2020, pp. 1–10.

[112] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization of machine learning

algorithms,” Advances in Neural Information Processing Systems, vol. 25, 2012.

[113] G. K. P. Kaul, D. Golovin, and G. Kochanski, “Hyperparameter tuning in cloud machine

learning engine using bayesian optimization,” Google Cloud Platform, 2017.

[114] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley, “Google Vizier: A

service for black-box optimization,” in Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2017, pp. 1487–1495.

[115] J. Mockus, V. Tiesis, and A. Zilinskas, “The application of Bayesian methods for seeking the

extremum,” Towards Global Optimization, vol. 2, pp. 117–128, 1978.

[116] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on Bayesian optimization of expensive

cost functions, with application to active user modeling and hierarchical reinforcement learning,”

arXiv preprint arXiv:1012.2599, 2010.

[117] F. Chollet et al., “Keras,” https://keras.io, 2015.

[118] TensorFlow Developers, “Tensorflow,” Aug. 2021. [Online]. Available: ht-

tps://doi.org/10.5281/zenodo.5181671

[119] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network

acoustic models,” Proceedings of Machine Learning Research, vol. 31, 2013.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

95

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ADDENDUM A HYPERPARAMETERS FOUND WITH

BAYESIAN OPTIMIZATION

Hyperparameters for training models, found using Bayesian optimization, are summarized here.

A.1 PROTOTYPICAL MODELS

Bayesian optimization for prototypical model training optimized the number of classes in each training

episode, the size of the output embedding and the initial learning rate of the learning rate scheduler.

The ranges and scale of each hyperparameter to search are shown in Table A.1. The optimal parameters

found that were used to train the models used in evaluation are shown in Table A.2.

Table A.1. The hyperparameter search space for training prototypical models. The scaling and range

for each parameter are given.

Hyperparameter Scale Min Max

Episode classes Linear 20 100

Embedding size Linear 640 2048

Initial learning rate Log 0.00001 0.001

A.2 STANDARD CLASSIFIER MODELS

Bayesian optimization for standard classifier model training optimized the size of batches in training

epochs and the initial learning rate of the learning rate scheduler. The ranges and scale of each

hyperparameter to search are shown in Table A.3. The optimal parameters found that were used to

further train the models used in evaluation are shown in Table A.4.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ADDENDUM A HYPERPARAMETERS FOUND WITH BAYESIAN OPTIMIZATION

Table A.2. Training and architecture hyperparameters for prototypical models found with Bayesian

optimization.

Model Episode classes Embedding size Initial learning rate

Prototypical 3-shot mel DNN 72 1045 0.0001

Prototypical 3-shot CQT DNN 76 1115 0.0034

Prototypical 3-shot mel CNN 24 1054 0.00008

Prototypical 3-shot CQT CNN 24 1054 0.00008

Prototypical 3-shot mel RNN 65 963 0.00018

Prototypical 3-shot CQT RNN 100 1060 0.0001

Prototypical 3-shot mel CRNN 28 1056 0.0001

Prototypical 3-shot CQT CRNN 28 1056 0.0001

Table A.3. The hyperparameter search space for training standard classifier models. The scaling and

range for each parameter are given.

Hyperparameter Scale Min Max

Batch size Linear 16 128

Initial learning rate Log 0.00001 0.001

Table A.4. Training hyperparameters for standard classifier models found with Bayesian optimization.

Model Batch size Initial learning rate

Standard mel DNN 50 0.00022

Standard CQT DNN 33 0.00028

Standard mel CNN 28 0.001

Standard CQT CNN 25 0.00037

Standard mel RNN 50 0.00022

Standard CQT RNN 63 0.00014

Standard mel CRNN 48 0.0007

Standard CQT CRNN 32 0.00054

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

97

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ADDENDUM B ADDITIONAL RESULTS

Additional results for evaluation on the OrchideaSOL dataset, YouTube tutorial examples and RWC

clarinet examples are shown here. These results do not contribute information to the discussion that

could not be gleamed from previous results, but are presented here for the sake of interest.

B.1 CROSS-DATASET EVALUATION ON ORCHIDEASOL

Figures B.1 and B.2 show the F-measure of the standard classifiers on the OrchideaSOL set after

each of the additional training epochs after transfer learning. An increase in F-measure for additional

training epochs is also observed on cross-evaluation data.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ADDENDUM B ADDITIONAL RESULTS

1 2 3 4 5 6 7 8 9 10
Epoch

0.0

0.2

0.4

F-
m

ea
su

re

(a)

1 2 3 4 5 6 7 8 9 10
Epoch

0.2

0.3

0.4

0.5

0.6

F-
m

ea
su

re

(b)

mel DNN
CQT DNN
mel CNN
CQT CNN
micro F-measure

mel RNN
CQT RNN
mel CRNN
CQT CRNN
macro F-measure

Figure B.1. Classification F-measure for (a) joint instrument, pitch and technique classification (INT)

and (b) technique classification (T) on string instrument examples from the OrchideaSOL dataset for

standard classifier models that were trained further on the prototype subset of the OrchideaSOL test

set. Classification F-measure is shown after each of the 10 additional training epochs.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

99

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ADDENDUM B ADDITIONAL RESULTS

1 2 3 4 5 6 7 8 9 10
Epoch

0.0

0.2

0.4

0.6

0.8

F-
m

ea
su

re

(a)

1 2 3 4 5 6 7 8 9 10
Epoch

0.4

0.6

0.8

F-
m

ea
su

re

(b)

mel DNN
CQT DNN
mel CNN
CQT CNN
micro F-measure

mel RNN
CQT RNN
mel CRNN
CQT CRNN
macro F-measure

Figure B.2. Classification F-measure for (a) pitch classification (N) and (b) instrument classification (I)

on string instrument examples from the OrchideaSOL dataset for standard classifier models that were

trained further on the prototype subset of the OrchideaSOL test set. Classification F-measure is shown

after each of the 10 additional training epochs.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

100

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ADDENDUM B ADDITIONAL RESULTS

B.2 EVALUATION ON REAL-WORLD YOUTUBE EXAMPLES

The F-measures on each problem after each additional training epoch after transfer learning on this set

is shown in Figures B.3 and B.4. Again, F-measures improve with each additional epoch, however,

some models show much steeper improvement than others, especially the DNN models and the CQT

CRNN.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

101

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ADDENDUM B ADDITIONAL RESULTS

1 2 3 4 5 6 7 8 9 10
Epoch

0.0

0.2

0.4

0.6

0.8
F-

m
ea

su
re

(a)

1 2 3 4 5 6 7 8 9 10
Epoch

0.2

0.4

0.6

0.8

F-
m

ea
su

re

(b)

mel DNN
CQT DNN
mel CNN
CQT CNN
micro F-measure

mel RNN
CQT RNN
mel CRNN
CQT CRNN
macro F-measure

Figure B.3. Classification F-measure for (a) joint instrument, pitch and technique classification (INT)

and (b) technique classification (T) on string instrument examples from the YouTube dataset for

standard classifier models that were trained further on the prototype subset of the YouTube test set.

Classification F-measure is shown after each of the 10 additional training epochs.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

102

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ADDENDUM B ADDITIONAL RESULTS

1 2 3 4 5 6 7 8 9 10
Epoch

0.0

0.2

0.4

0.6

0.8

F-
m

ea
su

re

(a)

1 2 3 4 5 6 7 8 9 10
Epoch

0.2

0.4

0.6

0.8

F-
m

ea
su

re

(b)

mel DNN
CQT DNN
mel CNN
CQT CNN
micro F-measure

mel RNN
CQT RNN
mel CRNN
CQT CRNN
macro F-measure

Figure B.4. Classification F-measure for (a) pitch classification (N) and (b) instrument classification (I)

on string instrument examples from the YouTube dataset for standard classifier models that were

trained further on the prototype subset of the YouTube test set. Classification F-measure is shown after

each of the 10 additional training epochs.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

103

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ADDENDUM B ADDITIONAL RESULTS

B.3 EVALUATION ON A PREVIOUSLY UNSEEN INSTRUMENT

The transfer learning accuracies on the RWC clarinet set, evaluated for each of the standard classifier

models after every additional epoch, is shown in FIgures B.5 and B.6. Each model again improves with

additional epochs, but the mel CNN briefly performs worse on the sub-problems before improving

again.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

104

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ADDENDUM B ADDITIONAL RESULTS

1 2 3 4 5 6 7 8 9 10
Epoch

0.0

0.1

0.2

0.3

0.4

F-
m

ea
su

re

(a)

1 2 3 4 5 6 7 8 9 10
Epoch

0.3

0.4

0.5

0.6

F-
m

ea
su

re

(b)

mel DNN
CQT DNN
mel CNN
CQT CNN
micro F-measure

mel RNN
CQT RNN
mel CRNN
CQT CRNN
macro F-measure

Figure B.5. Classification F-measure for (a) joint pitch and technique classification (NT) and (b) tech-

nique classification (T) on examples from the RWC dataset clarinet subset for standard classifier models

that were trained further on the prototype subset of the RWC clarinet set. Classification F-measure is

shown after each of the 10 additional training epochs.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

105

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ADDENDUM B ADDITIONAL RESULTS

1 2 3 4 5 6 7 8 9 10
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
F-

m
ea

su
re

mel DNN
CQT DNN
mel CNN
CQT CNN
micro F-measure

mel RNN
CQT RNN
mel CRNN
CQT CRNN
macro F-measure

Figure B.6. Classification F-measure for pitch classification (N) on examples from the RWC dataset

clarinet subset for standard classifier models that were trained further on the prototype subset of the

RWC clarinet set. Classification F-measure is shown after each of the 10 additional training epochs.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

106

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

