
Automating exploratory spatial data

analysis (ESDA) for vector and raster

data: development and evaluation of the

autoESDA Python library

by

Nicholas De Kock

Submitted in partial fulfilment of the requirements of the degree:

Magister Scientiae (Geoinformatics)

in the Department of Geography, Geoinformatics, and Meteorology,

Faculty of Natural and Agricultural Sciences,

University of Pretoria,

Pretoria

20 November 2023

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 2 of 131

ABSTRACT

Title: Automating exploratory spatial data analysis (ESDA) for vector and

raster data: development and evaluation of the autoESDA Python

library

Student: Mr. Nicholas De Kock, Department of Geography, Geoinformatics, and

Meteorology, University of Pretoria, South Africa

Supervisor: Dr. Victoria Rautenbach, Department of Geography, Geoinformatics,

and Meteorology, University of Pretoria, South Africa

Co-supervisor: Prof. Inger Fabris-Rotelli, Department of Statistics, University of

Pretoria, South Africa

Degree: MSc Geoinformatics, Department of Geography, Geoinformatics, and

Meteorology, University of Pretoria, South Africa

autoESDA is a Python library developed with the aim of automating the Exploratory Spatial

Data Analysis (ESDA) process. This is done by generating a HTML report made up of various

ESDA graphs and statistics calculated according to the input dataset, requiring no other inputs

from the user. ESDA (local spatial autocorrelation specifically) in Python has been a challenge

for raster datasets, with software support lagging behind alternative platforms such as R. This

dissertation documents the improvements made to the original library. These improvements

include the support for raster datasets, an updated architectural design, and other minor,

cosmetic improvements. The performance of the updated version of autoESDA is evaluated

by investigating how its processing time varies according to vector and raster datasets that

differ in size and complexity. These results are then discussed as a measure of how well the

library has achieved its goal of automating the ESDA process. Finally, a roadmap for further

improvements to the library is discussed.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 3 of 131

ACKNOWLEDGEMENTS

First and foremost – to my amazing parents – Chris and Helen, whose wisdom, support, and

love have no bounds. Thank you for all your encouragement over the years. Without a doubt

– you have made all of this possible!

To my supervisors – Dr. Rautenbach and Prof. Fabris-Rotelli, for your patience and guidance

over the course of this project. Thank you for all the time you have put aside in your busy

schedules to ensure that I never wandered too far off track.

Finally, to all my friends. Thank you for always being on standby to offer some encouragement,

distractions, and laughter – be it on early morning runs, late nights out, or random

calls/messages throughout the day.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 4 of 131

TABLE OF CONTENTS

Abstract ... 2

Acknowledgements .. 3

List of Figures ... 7

List of Tables ... 8

Chapter 1: Introduction .. 9

1.1 Background... 9

1.2 Research Context ... 9

1.3 Problem Statement ... 10

1.4 Research Aim and Objectives ... 10

1.5 Research Methodology ... 10

1.6 Significance of Research .. 11

1.7 Overview of Chapters ... 11

Chapter 2: Literature Review .. 13

2.1 Chapter Overview ... 13

2.2 Spatial Data .. 13

2.3 Exploratory Data Analysis (EDA) .. 15

2.3.1 Descriptive Statistics .. 16

2.3.2 Visualisation Techniques ... 19

2.4 Exploratory Spatial Data Analysis (ESDA) .. 22

2.4.1 Spatial Heterogeneity ... 22

2.4.2 Spatial Autocorrelation ... 25

2.4.3 ESDA Software .. 30

2.5 ESDA with Raster Datasets .. 32

2.5.1 Supporting Raster ESDA ... 33

2.6 Related Work .. 34

2.6.1 Call For New Developments .. 34

2.6.2 Similar Automation Projects ... 35

2.6.3 Similar Evaluation Methodologies .. 36

2.7 Discussion on Automating ESDA Functions .. 37

2.8 Conclusion .. 39

Chapter 3: Towards an Open Source Library for Automated Exploratory Spatial Data

Analysis (ESDA) .. 41

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 5 of 131

3.1 Abstract .. 41

3.2 Introduction ... 42

3.3 Requirements and Implementation ... 44

3.3.1 Requirements .. 44

3.3.2 Design ... 45

3.3.3 Implementation .. 47

3.3.4 Availability and Usage .. 49

3.4 Evaluation ... 53

3.4.1 Evaluation Against Requirements .. 53

3.4.2 Interview Process .. 54

3.4.3 Interview Feedback .. 56

3.5 Roadmap of Further Developments .. 61

3.6 Conclusion .. 62

Chapter 4: Second Iteration of autoESDA: Redesign and Expanding its Capabilities . 63

4.1 Chapter Overview ... 63

4.2 Raster Functionality .. 64

4.2.1 Strategies for LISA Calculations... 64

4.2.2 Comparing LISA Strategies .. 66

4.3 Updated Architecture .. 73

4.3.1 Model ... 75

4.3.2 Controller ... 81

4.4 Other Minor Improvements ... 86

4.4.1 General .. 86

4.4.2 Summary Page .. 87

4.4.3 Variable Information Page.. 88

4.4.4 Correlation Page .. 91

4.5 Limitations and Future Developments ... 92

4.6 Conclusion .. 94

Chapter 5: Performance Evaluation ... 95

5.1 Chapter Overview ... 95

5.2 Method .. 95

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 6 of 131

5.3 Description of Test Datasets ... 95

5.3.1 Vector Datasets ... 96

5.3.2 Raster Datasets ... 98

5.4 Results and Discussion ... 102

5.4.1 Vector Module .. 102

5.4.2 Raster Module ... 103

5.5 Discussion .. 104

Chapter 6: Conclusion .. 105

6.1 Chapter Overview ... 105

6.2 Main Results ... 105

6.3 Future Work .. 108

References .. 110

Referenced Datasets and Software ... 119

Appendix A: Ethical Clearance .. 122

Appendix B: User Stories ... 123

Appendix C: R Script (Ordinary Variance) .. 126

Appendix D: R Script (Spatially Autocorrelated Variance) ... 129

Appendix E: Links to Output autoESDA Reports ... 131

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 7 of 131

LIST OF FIGURES

Figure 1: Box plot (also known as a box and whisker diagram) ... 20

Figure 2: Frequency (left) and probability (right) histogram. .. 21

Figure 3: Pairwise plot made up of scatter plots and frequency histograms 21

Figure 4: Choropleth maps with different classification schemes ... 24

Figure 5: Regular cartogram (left) and a Dorling cartogram (right) 25

Figure 6: Examples of patterns of spatial autocorrelation .. 25

Figure 7: Rook (left) and queen (right) case contiguity. ... 27

Figure 8: Moran’s 𝑰 scatter plot ... 28

Figure 9: Workflow of the autoESDA library .. 48

Figure 10: Summary Page .. 50

Figure 11: Variable Information Page .. 51

Figure 12: Correlation Page .. 52

Figure 13: Stacked bar chart of average times for LISA calculations on Dataset 1 71

Figure 14: Stacked bar chart of average times for LISA calculations on Dataset 2 71

Figure 15: Stacked bar chart of average times for LISA calculations on Dataset 3 72

Figure 16: Package diagrams illustrating the architectural design of the first (left) and second

(right) iterations of autoESDA .. 74

Figure 17: UML class diagram for the vector model .. 77

Figure 18: UML class diagram for the raster model ... 79

Figure 19: UML sequence diagram of the vector module workflow...................................... 83

Figure 20: UML sequence diagram of the raster module workflow 85

Figure 21: The About Page that is present in both the vector and raster autoESDA reports 87

Figure 22: Updated Summary Page for autoESDA vector report ... 88

Figure 23: Updated Variable Information Page for autoESDA vector report 90

Figure 24: Updated Correlation Page for the autoESDA vector report 91

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 8 of 131

LIST OF TABLES

Table 1: Common classification schemes for choropleth maps ... 23

Table 2: Comparison of Moran's 𝑰 and Geary's 𝑪 .. 29

Table 3: Comparing the functionality of various ESDA platforms. .. 32

Table 4: Potential automation of various EDA and ESDA functions..................................... 40

Table 5: High-level functional requirements .. 44

Table 6: Dependencies of the autoESDA library ... 46

Table 7: Demographics of the interview participants ... 55

Table 8: Interview questions.. 55

Table 9: High-level requirements for the second iteration of autoESDA 63

Table 10: Statistical summary of datasets used to test raster LISA calculations 67

Table 11: Timing results (seconds) for different raster LISA strategies 70

Table 12: Comparison of vector test datasets ... 98

Table 13: Comparison of original raster test datasets.. 100

Table 14: Values used in the three Kriging models (low, medium, and high range) for each

dataset. ... 100

Table 15: Descriptive statistics for each dataset and their simulated surfaces 101

Table 16: Results for autoESDA vector report generation ... 102

Table 17: Average time (minutes) for autoESDA raster report generation 103

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 9 of 131

CHAPTER 1: INTRODUCTION

1.1 Background

Spatial data is currently generated at an unprecedented rate which is only expected to

increase. The United Nations Initiative on Global Geospatial Information Management(UN-

GGIM) estimates that around 2.5 quintillion bytes of data each day, with a large portion of

itexpected to have a spatial component (UN-GGIM, 2020).

There are two main driving forces behind the magnitude of geospatial big data (UN-GGIM,

2020). Firstly, the rise of new data sources, such as crowdsourced data or volunteered

geographic information (VGI), Internet of Things (IoT) devices, self-driving cars, and satellites.

The wealth of data sources allows for large volumes, varieties, and velocities of data to be

generated – these three V’s are fundamental to defining geospatial big data (Gandomi and

Haider, 2015; Li et al., 2016; Robinson et al., 2017). Secondly, there have been multiple

technological advances which enable geospatial big data, such as cloud-computing, digital

twins, machine learning, and artificial intelligence (UN-GGIM, 2020). While these technological

advancements have been instrumental in handling geospatial big data, there have still been

multiple calls for new tools that take advantage of the value of geospatial big data (Mennis

and Guo, 2009; Vatsavai et al., 2012; Lee and Kang, 2015; Li et al., 2016).

Exploratory Spatial Data Analysis (ESDA) is an extension of Exploratory Data Analysis (EDA).

ESDA functions seek to describe and visualise spatial data. It achieves this through the

identification of trends, patterns, and outliers, and displaying these results on a variety of

graphs, maps, or other visual displays (Anselin, 1999). Often carried out under the umbrella

of spatial data mining (Anselin, 1999), ESDA allows one to form hypotheses and suggest

associations within a dataset. This is a particularly useful process when one may not have a

firm theoretical understanding of the data being used. This is common due to the diverse

nature of spatial data. The growth in size of spatial datasets has led to conceptual and

computational challenges within the ESDA workflow (Anselin, 1999).

1.2 Research Context

autoESDA is a Python library and the proof of concept was first developed as part of my

BScHons project, with the aim of automating the ESDA workflow. By doing so it removed the

repetitive and time consuming process one would otherwise face when analysing large

datasets (Higgins and Ray, 2022). The library was, however, very limited and it had not

undergone extensive testing.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 10 of 131

As part of the earlier project, various interviews were carried out which resulted in a wealth of

feedback and potential improvements that could be added to the library and its output. One of

the notable suggestions was the need for functionality to process raster datasets. The earlier

project is summarised in an article that was published in 2022, and is included as Chapter 3

of this dissertation.

This project will expand on the autoESDA library by implementing improvements that have

resulted from the earlier interviews, new technological advancements, and an improved

understanding of the ESDA process and the tools on which autoESDA is built.

Both projects have been carried out with the approval of the ethics committee of the Faculty

of Natural and Agricultural Sciences at the University of Pretoria. The reference number is

NAS229/2021, and the full approval letter can be viewed in Appendix A.

1.3 Problem Statement

ESDA is a repetitive and time-consuming process. It requires constant human input which

means there is a large margin for human-induced errors. autoESDA is a Python library that

was developed to address these issues. This proof of concept shows great potential; however

it does not support raster datasets and its performance has not yet been evaluated.

1.4 Research Aim and Objectives

The aim of this research is to advance the automation of ESDA by implementing

improvements to the autoESDA library and evaluating its performance.

This will be achieved through successful attainment of the following objectives:

1. Review related literature in conjunction with previously suggested improvements to the

autoESDA Python library.

2. Define requirements based on suggested improvements to the autoESDA Python

library.

3. Design and implement solutions that address the identified requirements.

4. Evaluate the autoESDA library in terms of the defined requirements.

5. Based on the results, draw conclusions regarding the success of autoESDA as a

means of automating the ESDA workflow.

1.5 Research Methodology

Design science methodology refers to research which leads to the creation of successful

artifacts, which is achieved through problem identification, definition of a solution, design and

development, demonstration, evaluation, and communication (Peffers et al., 2007). This

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 11 of 131

project can be broken down into each of these stages, and its methodology is therefore

considered to be of design science nature.

The first stage of the project was to review existing literature relating to the project. This laid

the foundation on which the motivation for a Python library to automate ESDA for vector and

raster datasets is based. The existing autoESDA library was then described, along with some

feedback from interviews that were previously conducted as part of existing research. This

feedback led to the design of solutions to address multiple (mainly minor, cosmetic)

improvements that were identified by interview participants. The most notable improvement is

the support for raster datasets. Numerous strategies for automating ESDA (specifically local

indicators of spatial autocorrelation - LISA) on raster datasets are discussed and compared.

The optimal strategy is then included in the autoESDA library. In order to easily implement the

upgrades, the existing autoESDA code was first refactored into a new architecture. The

performance of the vector and raster modules of autoESDA are then evaluated with datasets

of varying sizes and complexities. These results were used to evaluate the success of

implementing a library to automate the ESDA process. Finally, limitations of this research were

described, as well as opportunities for future work.

1.6 Significance of Research

Just as with EDA, ESDA is a repetitive and time consuming process (Higgins and Ray, 2022).

Its results need to be generated through user interaction which opens up the risk of human-

induced errors (Borlongan et al., 2016; Murtiyoso et al., 2020). The autoESDA library aims to

address these concerns and as such, any improvements to the library will have the same

effect. Additionally, the added support for raster datasets is unique in that we are not aware of

a tool that automates ESDA for this data format. These improvements and the design

decisions behind them are documented and discussed as part of this dissertation which could

be used as a guide for researchers conducting other projects – whether they are similar in

nature to this one, or whether they are based on expanding this research and/or the autoESDA

library.

1.7 Overview of Chapters

The remaining chapters in this dissertation are structured in the following manner:

Chapter 2: Literature Review

This chapter addresses objective one by presenting a body of literature that summarises and

links together fundamental concepts related to automating the ESDA process. Spatial data is

described, and an overview of geospatial big data is given. EDA and ESDA are identified as

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 12 of 131

strategies that address some issues brought about by geospatial big data. Use-cases for

raster ESDA is discussed, as well as the motivation to automate ESDA. Similar automation

projects are discussed to identify principles that could be adapted to automate ESDA. This is

rounded off by a discussion on how easily some popular ESDA functions could be automated.

Chapter 3: Towards an Open Source Library for Automated Exploratory Spatial Data

Analysis (ESDA)

This chapter was published as an article in 2022 and documents the initial design of the

autoESDA library and the feedback and suggested improvements that resulted from a series

of interviews. These suggestions motivate for the updates that form the second iteration of

autoESDA which is described in Chapter 4.

Chapter 4: Second Iteration of autoESDA: Redesign and Expanding its Capabilities

This chapter begins by documenting some high-level requirements for the second iteration of

autoESDA. The remainder of this chapter documents and discusses how these requirements

are met through the development of the updated library. The chapter concludes by highlighting

some limitations, and paving the way for future improvements that could be implemented.

Chapter 5: Performance Evaluation

This chapter details the process taken to evaluate the performance of the autoESDA library,

along with the implemented improvements. Vector and raster datasets of varying sizes and

complexities were used the test the performance of autoESDA. The framework for how these

tests were run is described, and the results obtained from this process are discussed.

Chapter 6: Conclusion

This chapter summarises the preceding chapters by discussing the extent to which each of

the objectives were achieved. Final conclusions are drawn based on the work done, and

further work is proposed.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 13 of 131

CHAPTER 2: LITERATURE REVIEW

2.1 Chapter Overview

The literature review is intended to highlight the fundamental components on which this

dissertation is based. Spatial data is described to introduce the concept and why it is different

from regular data. This provides the foundation on which the concept of geospatial data is

built, which highlights the need for automation and new strategies to be developed so that

valuable insight can be efficiently extracted from spatial data. EDA and ESDA, along with their

components are discussed as a means of addressing this challenge. Finally, similar work

within the realms of dealing with geospatial big data, and the use of automation of other tasks

related to the data life cycle, is discussed.

2.2 Spatial Data

While the terms spatial and geospatial data are often used interchangeably, they refer to

slightly different concepts. Spatial data refers to any data linked to a point in space, this could

include a Cartesian plane or an alternate or fictional universe, whereas geospatial data refers

to data that relates to a point on or near the earth’s surface (Longley et al., 2015).

Tobler’s (1970) First Law of Geography states that “everything is related to everything else,

but near things are more related than distant things”. While not all spatial phenomena may

adhere to this law, it does encourage one to exercise caution when working with spatial data.

The law implies that spatial data is dependent on its surroundings, which means that it cannot

be processed under the assumption of independence, as is the case for other statistical

datasets (Anselin, 1989).

As a subset of ordinary data, geospatial data is not exempt from the growing popularity of big

data and it has not taken long for researchers to coin the term geospatial big data (Lee and

Kang, 2015; Li et al., 2016; Robinson et al., 2017). Just as with big data, geospatial big data

can also be described using the 3Vs – having large volume, high velocity, and great variety

(Jin et al., 2015). The challenges of dealing with geospatial big data have already been

identified (Anselin, 2010; Tsou, 2015), the rest of this section will discuss the 3Vs and their

associated challenges within the context of geospatial big data.

Volume

Singleton and Arribas-Bel (2021) found that there has never been access to a greater amount

of geospatial data than we have today. This is partly due to the velocity (and variety) at which

we capture data, as well as the added temporal dimension due to the historical data we have

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 14 of 131

accumulated over time (Robinson et al., 2017). These factors both highlight the magnitude of

the volume of geospatial data we have at our disposal.

Before one can use raw geospatial big data to assist with decision making, it needs to be

processed into information. This is achieved through the use of descriptive statistics (Li et al.,

2016) and visualisations which aid the end user in detecting various patterns and trends within

their dataset (Coetzee and Rautenbach, 2017). Visualising geospatial big data is not a simple

task as data often overlaps due to the various scales and levels of detail in which it is captured

(Jern et al., 2008; Li et al., 2016). This makes it a challenge to develop effective solutions to

visualise results, as the required visualisation can vary for per usage. Once computed,

statistics and visualisations should be structured in an appropriate manner – such as a report.

This will allow for additional insight into the data by the end user (Li et al., 2015; Robinson et

al., 2017). Anselin (2010) highlights the need for software to be developed that is capable of

handling the large volumes of spatial data.

Velocity

Internet and GPS enabled sensors are more accessible than ever. This is due to declining

costs as well as integration into everyday devices such as smartphones (Armstrong et al.,

2019). Due to the widespread use of these sensors, geospatial data is increasingly available

in real time. At the same time, multiple satellites consistently stream other geospatial data

such as reflectance values, temperatures, and air quality measurements (Armstrong et al.,

2019.

The challenge no longer lies in collecting geospatial data, but rather in how timeously it can

be processed. Lee and Kang (2015) argue that data should be processed as soon as it is

collected. This massive influx of data changes frequently and the results need to be viewed

almost immediately so that decisions can be made in real time (Dangermond and Goodchild,

2020). This argument is certainly applicable in certain situations such as dealing with

immediate natural disasters. Despite the magnitude of big data, not all big data is immediately

useful (Jin et al., 2015). Li et al. (2016) cautions that sensor data especially is largely irrelevant

due to repetition and over sampling. Just as data may need to be processed immediately for

real time decisions, it may be more beneficial to analyse temporal trends and investigate

outliers. Regardless of whether data should be processed immediately at the time of collection

or if trends are analysed at set time intervals, it is evident that the workflow followed will be

repeated numerous times.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 15 of 131

Variety

Cressie (1993) outlines three spatial data models, namely: point pattern data, geostatistical

data, and lattice data. Point patterns are used to represent point events. Consequently, the

value of these datasets lie in the location/pattern of the point(s), rather than the value of a

variable at these points. As such, the calculation of spatial autocorrelation of point patterns is

of little value (Cressie, 1993). The primary objective of geostatistics is to predict the value of

a variable at unknown locations. Conversely, the goal of a lattice-based approach is to detect

spatial patterns and find an explanation for these patterns (Saveliev et al., 2007).

A lattice dataset is created by dividing up a larger study area into a collection of smaller areas

in a neighbourhood structure, each with an associated observation (Kaluzny et al., 1998;

Saveliev et al., 2007). These smaller areas (also known as cells, units, or locations) do not

overlap and need to share a common boundary. A regular lattice is made up of cells that have

the same shape and size. Satellite data such as temperature or reflectance values are an

example of data gridded in a regular lattice. Irregular lattices, on the other hand are formed by

irregular shaped units such as political/administrative boundaries or Voronoi polygons

(Kaluzny et al., 1998; Saveliev et al., 2007).

Statistical analysis of lattice datasets are carried out to detect and explain spatial patterns

(Saveliev et al., 2007). These objectives are by definition part of an ESDA workflow. Just as

with the popular ESDA software, GeoDa1 (Anselin et al., 2006), this dissertation will primarily

focus on lattice data. This means that any outcomes or statements may not hold the same

truth when working with point pattern or geostatistical datasets.

Most exploratory tools for geospatial big data are designed to handle specific (mainly vector)

formats (Robinson et al., 2017). In order to capture the full value of the large variety of formats,

software needs to support a variety of data formats.

2.3 Exploratory Data Analysis (EDA)

Tukey (1977) coined the term Exploratory Data Analysis and likened it to “quantitative

detective work”, emphasising that it is purely exploratory rather than confirmatory

(Fotheringham, 1992). Peng et al. (2021) describes EDA as “the process of understanding

data through data manipulation and visualisation”, emphasising that it plays a vital role in every

data science project. While it is clear that EDA can never tell the whole story of a dataset, it is

a valuable tool for gathering initial insights to the dataset at hand. Anselin (1989) describes

EDA as a data-driven approach, in which one must allow the data to speak for itself. One

1 http://geodacenter.github.io/

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://geodacenter.github.io/
http://geodacenter.github.io/

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 16 of 131

should be allowed to freely choose which functions are used so that the data may be viewed

from different perspectives (Morgenthaler, 2009). This means that there is no generic

algorithm of EDA functions that can be applied to all datasets, as the results will be largely

dependent on the individual dataset. Functions need to be executed without any underlying

assumptions of the dataset, and the resulting visualisations, indicators and statistics should

guide how the user further explores and analyses the data. Unlike with the more specialised

ESDA, there is a great variety of proprietary and open source software platforms supporting

EDA. There are also multiple libraries within the R and Python ecosystems that support EDA.

Due to there being no clear boundary between EDA and other statistical research, there exists

no authoritative list defining what functions fall within the EDA toolbox. There are, however,

several popular techniques associated with EDA. These will be discussed in the remainder of

this section.

2.3.1 Descriptive Statistics

Descriptive statistics are used to outline important features of a dataset (Devore and Berk,

2012). These measures can provide important initial conclusions related to the dataset and

are fundamental to any EDA workflow. There are four categories of descriptive statistics,

namely: number of observations, measures of central tendency, measures of variation, and

measures of shape (Myatt and Johnson, 2014).

A dataset is made up of a collection of observations. The observations for random variable

𝑋 can be defined as 𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛−1, 𝑥𝑛. The sample size (𝒏) of a dataset is the count of how

many observations are in the dataset, thus indicating the size of the dataset.

2.3.1.1 Measures of Central Tendency

Mode

The mode is the most frequently occurring value in a dataset. It can highlight errors or potential

trends within a dataset to be further investigated.

Median

The median is the middle value of a dataset that has been arranged in ascending order. It is

used as a measure of central tendency as it is not skewed by outliers.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 17 of 131

Sample Mean (𝒙̅)

The sample mean gives an indication of what an average/expected value of the dataset would

be. It is greatly influenced by outliers. The formula for the sample mean is given as:

𝑥̅ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛

where 𝑥𝑖 is an observation of random variable 𝑋.

2.3.1.2 Measures of Variation

Minimum and Maximum

The minimum and maximum are the extreme values in the dataset. They refer to the smallest

and largest value respectively.

Range

The range gives an indication of the spread of values in a dataset. It is calculated by

subtracting the minimum value from the maximum value in the dataset. A larger range is

indicative of a greater spread of values.

Quartiles

𝑄1 = 0.25(𝑛 + 1) 𝑄2 = 0.5(𝑛 + 1) 𝑄3 = 0.75(𝑛 + 1)

𝑄1, 𝑄2, and 𝑄3 refer to the lower, middle, and upper quartiles respectively. 𝑄1, 𝑄2, and 𝑄3

indicate the position of the values in the dataset (when arranged in ascending order) that divide

the dataset into four quartiles.

Sample Variance (𝒔𝟐)

𝑠2 =
∑(𝑥𝑖 − 𝑥̅)

𝑛 − 1

The variance is a measure of the spread of the dataset by measuring how values differ from

the mean. The greater the value for variance, the greater the spread of the dataset. Datasets

with a greater variance are considered to have more noise as the values are further from the

mean than datasets with a lower variance.

Sample Standard Deviation (𝒔)

𝑠 = √𝑠2

Standard deviation is the square root of variance. The greater the value for standard deviation,

the greater the spread of the dataset. The statistic has a similar interpretation to that of

variance, in that a greater standard deviation is indicative of a dataset with more noise as the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 18 of 131

values are, on average, further away from the mean than datasets with a lower standard

deviation.

2.3.1.3 Measures of Shape

Skewness (𝝁̃𝟑)

The skewness is determined as

𝜇̃3 =
∑(𝑥𝑖 − 𝑥̅)3

𝑠3(𝑛 − 1)

where 𝑠 is the sample standard deviation.

A skewness value ranges from -1 to +1. Its value corresponds to how symmetric the dataset’s

distribution is. A value of 0 indicates a symmetric distribution, while a positive and negative

value represents a positive and negative skewed dataset respectively.

Kurtosis (𝝁̃𝟒)

𝜇̃4 =
𝑛 − 1

(𝑛 − 2)(𝑛 − 3)
((𝑛 + 1) (

(∑ (𝑥𝑖 − 𝑥̅)4𝑛
𝑖=1)𝑛−1

((∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1)𝑛−1

)2
) − 3) + 6

A kurtosis value represents the shape of the peak of a distribution. Values close to zero

indicate an approximate normal distribution shape, while positive and negative values

represent sharper and flatter peaks respectively.

2.3.1.4 Measures of Association

Pearson Correlation (𝒓𝒙𝒚)

Pearson’s correlation coefficient is calculated as

𝑟𝑥𝑦 =
∑((𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅))

√∑(𝑥𝑖 − 𝑥̅)2 ∑(𝑦𝑖 − 𝑦̅)2

Where 𝑥𝑖 and 𝑦𝑖 refer to an observation, and 𝑥̅ and 𝑦̅ refer to the sample mean of random

variable 𝑋 or 𝑌 respectively.

Pearson is the most popular correlation coefficient. It measures the linear relationship between

two variables. The variables must be quantitative (interval or ratio measurements) and have a

normal distribution. Values range from -1 to +1. A value of 0 represents no relationship, a

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 19 of 131

value of +1 represents a perfect positive linear relationship and a value of -1 indicates a perfect

negative linear relationship.

Spearman Correlation (𝝆)

Spearman’s 𝜌 is also referred to as rank correlation. It does not require variables to follow a

normal distribution. Variables can be ordinal, interval or ratio measurements. Values range

from -1 to +1. A value of 0 represents no relationship, a value of +1 represents a perfect

positive relationship and a value of -1 indicates a perfect negative relationship. In order to

calculate Spearman’s 𝜌, the observations are first ranked from the smallest value to the largest

value (Zuur et al., 2007). The rank of each observation is then compared to the rank value of

the corresponding observation from the other variable. These distances are then used in the

formula below:

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

(𝑛3 − 𝑛)

where 𝑑𝑖 is the difference between the 𝑥𝑖 and 𝑦𝑖 variable ranks, and 𝑛 refers to the sample

size.

Kendall Correlation (𝝉)

Kendall’s 𝜏 is used for measuring association of the ranks between pairs of variables. Values

range from -1 to +1. A value of 0 represents no relationship, a value of +1 represents a perfect

positive relationship (the ranking of observations is the same for both datasets). and a value

of -1 indicates a perfect negative relationship (perfect disagreement of rankings). Values are

first ordered and then ranked from 1 to n. A pair of observations is considered a concordant

pair if the differences of their value and the value of another observation for that variable are

in the same direction as the difference of the corresponding observations of the other variable.

Conversely, a discordant pair occurs when the difference is in the opposite direction. If the

difference between the observations are the same for both variables, it is considered a tie.

The formula below is used to calculate Kendall’s 𝜏:

𝜏 =
𝑛𝑐 − 𝑛𝑑

√(𝑛𝑐 + 𝑛𝑑 + 𝑡𝑥)(𝑛𝑐 + 𝑛𝑑 + 𝑡𝑦)

where 𝑛𝑐 is the number of concordant pairs, 𝑛𝑑 is the number of discordant pairs, 𝑡𝑥 is the ties

in variable 𝑋 and 𝑡𝑦 is the ties in variable 𝑌.

2.3.2 Visualisation Techniques

The use of visualisation techniques is an effective method of aiding ones understanding of the

distribution of a dataset (Myatt and Johnson, 2014). This section will describe some popular

visualisation techniques that one may come across when conducting EDA.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 20 of 131

2.3.2.1 Brushing

Although not strictly an EDA function, brushing, or subset selection, is considered an important

part of any EDA process as it aids the user in identifying spatial and statistical relationships in

a dataset (Ward, 1994). Brushing, often accompanied by multiple linked windows (Haslett et

al., 1990; Jern et al., 2007; Roberts, 2005), refers to the ability of the user to select only a

subset of observations of a dataset for consideration in other statistics or visualisations that

form a part of EDA (Ward, 1994). This allows the user to interact with the dataset and observe

the effect of excluding certain observations, or only considering a subset of the dataset (Rey

and Janikas, 2006).

2.3.2.2 Box Plots

Box plots, also referred to as box and whisker diagrams, are used to visualise the shape of a

dataset (Morgenthaler, 2009). The box (illustrated in Figure 1) usually spans the interquartile

range (IQR) which is the range between the first quartile (25th percentile) and third quartile

(75th percentile). The median (50th percentile) is displayed in the box and its position will

indicate the extent to which the dataset is skewed. The IQR is the length of the box and can

be calculated by subtracting the 25th percentile (Q1) from the 75th percentile (Q3). Two points

are plotted at the upper and lower limits. A line (whisker) is then drawn connecting these points

to the edge of the box. Any values falling outside the limits are also plotted, these are referred

to as outliers.

Figure 1: Box plot (also known as a box and whisker diagram)

2.3.2.3 Frequency and Probability Histograms

The purpose of a histogram is to visualise the distribution of a dataset. This is done by

arranging values into bins which are represented as bars on the histogram. The user

determines the number and range of the bins. Bars on the histogram would represent each of

the bins. A frequency histogram will use count to represent the height of the bars, whereas a

probability histogram (also called a relative frequency histogram) will use probability to

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 21 of 131

represent the height of the bars (Myatt and Johnson, 2014). Figure 2 illustrates a frequency

and probability histogram respectively.

Figure 2: Frequency (left) and probability (right) histogram.

2.3.2.4 Scatter Plots

A scatter plot is used to visualise the relationship between variables. The most common form

of scatter plot is a 2D scatter plot, which plots two variables against each other on a Cartesian

plane. One variable is plotted on the x-axis and another variable on the y-axis. Additional

variables and axes may be added to form 3D or multidimensional scatter plots. It is a common

practice to create a scatter plot matrix (Figure 3) in which a scatter plot is generated between

each variable in a dataset. The diagonal is then filled with the frequency histogram

corresponding to each variable.

Figure 3: Pairwise plot made up of scatter plots and frequency histograms

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 22 of 131

2.4 Exploratory Spatial Data Analysis (ESDA)

Most EDA functions assume independence which means that they are not suited for spatial

datasets (Anselin, 1989). This creates a gap which is addressed by Exploratory Spatial Data

Analysis (ESDA), which is an extension of EDA. This means that EDA can be considered as

part of ESDA (Anselin and Rey, 2012), however the converse is not necessarily true. Anselin

(1996) defines ESDA as a collection of tools used to describe and visualise spatial

distributions, and any patterns that they may contain. This is achieved through the

identification of spatial outliers, clusters, and other forms of spatial instability or spatial non-

stationarity.

While objectives of ESDA remain the same as that of EDA, Goodchild (1992) argues that the

value obtained from ESDA may even be greater than that of regular EDA. Just as with EDA,

ESDA takes place after data cleaning in what is known as the exploratory phase (Anselin and

Getis, 1992; Anselin and Rey, 2012). It aims to use all available data with minimum previous

filters, selection criteria, and hypotheses and the outcomes of ESDA will guide how the dataset

is further processed (Goodchild, 1997; Openshaw, 1995). As a data-driven approach, ESDA

should impose as little structure as possible and use simple indicators to identify patterns and

clusters (Anselin 1996; Anselin et al., 2007; Steiniger and Hunter, 2013).

There are two spatial effects which ESDA should highlight, namely spatial heterogeneity and

spatial autocorrelation (also known as spatial dependence) (Anselin 1998; Goodchild, 2000;

Dall’erba, 2009). These two effects and their associated functions will be discussed in Section

2.4.1 and 2.4.2 respectively. Section 0 will discuss some of the popular software platforms

used for ESDA.

2.4.1 Spatial Heterogeneity

It is widely accepted that phenomenon are not homogeneous (similar) across space, which

supports Tobler’s First Law in that near things are more related than distant things (Anselin,

1988). This is known as spatial heterogeneity and is what makes each point in space unique,

due to the fact that it’s attributes may differ from those at other locations (Goodchild and

Longley, 2013). Various types of trends/patterns can occur, such as regions of similar values,

or regions with great variance. Trends that occur in a dataset could be because the dataset is

an accurate depiction of reality, however one should exercise caution as a trend could also be

incorporated by imposing a spatial structure not suitable to that phenomenon (Anselin, 1988).

It is therefore important that these patterns are investigated, as these findings could guide the

user on how to further process a spatial dataset. Box plots, choropleth maps, and cartograms

are all techniques used to visualise spatial heterogeneity (Dall’erba, 2009).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 23 of 131

2.4.1.1 Choropleth Maps

A choropleth map is a thematic map which represents the distribution of a variable by

shading/colouring non-overlapping areas (such as provinces, wards, or raster cells) with

different intensities according to the value of the attribute for that area (Longley et al., 2015;

Slocum et al., 2014). Choropleth maps are vital tools in ESDA as they give an elementary

visual understanding of the spatial distribution of a variable. There are numerous classification

methods used to divide a dataset into classes, with each method having different advantages

and disadvantages and their effectiveness being dependent on the distribution of the values

in the dataset. Slocum et al. (2014) identified some popular classification schemes which are

described in Table 1. These are also visualised in Figure 4.

Table 1: Common classification schemes for choropleth maps

Classification Description (Slocum et al., 2014)

Boxmap

Useful to highlight extreme values. Data is divided into six categories, namely

the four quartiles, and then one each for extreme low and extreme high outliers

respectively.

Equal Intervals

(Equal Steps)

This method divides the observations in the dataset into a user-specified

number of classes, with each class having the same interval.

Quantiles
In this method observations are arranged in ascending order and divided so

that the same number of observations are present in each user-specified class.

Mean-standard

deviation

This method forms classes by incrementally adding or subtracting the standard

deviation from the mean of the data in accordance with the number of classes

the user has specified.

Maximum Breaks

In this method data is ordered in ascending order and the difference between

each observation is calculated. The greatest differences are then used as

breaks between a user-specified number of classes.

Fisher-Jenks
This method uses statistical optimisation to minimise the sum of absolute

differences between class medians. The number of classes are user-specified.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 24 of 131

Figure 4: Choropleth maps with different classification schemes

2.4.1.2 Cartograms

A cartogram is used to visualise the magnitude of the variable of interest. It achieves this by

distorting the size of the area in a way that is proportional to the target variable (Anselin et al.,

2007). This makes it easier to emphasise smaller enumeration areas that have large values

and larger enumeration areas that have small values. Traditionally, the shape of the

enumeration areas are maintained, however simple identical shapes (circles are used for

Dorling cartograms) have been used instead so to allow for more detail to be displayed

(Slocum et al., 2014). In addition to using size as a visual element, one can also colour the

enumeration areas according to an attribute value. Figure 5 illustrates a regular cartogram

with a single colour on the left, whereas the Dorling cartogram on the right has a colour scheme

applied based on attribute values.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 25 of 131

Figure 5: Regular cartogram (left) and a Dorling cartogram (right)

2.4.2 Spatial Autocorrelation

Slocum et al. (2014) define spatial autocorrelation as “the tendency for like things to occur

near one another in geographic space”. One may even argue that spatial autocorrelation

measures are used to quantify Tobler’s First Law. Positive spatial autocorrelation refers to

clusters of observations where the observations share similar values (perfect clustering). This

could be concentrations of high values (also known as hotspots) or low values (also known as

coldspots). Negative spatial autocorrelation refers to the dispersion of variables in which there

are no clusters of high or low values (perfect dispersion). Datasets may also exhibit no spatial

autocorrelation, this is referred to as complete spatial randomness (Dall’erba, 2009).

Figure 6: Examples of patterns of spatial autocorrelation

Global spatial autocorrelation refers to spatial autocorrelation in the dataset as a whole. Global

spatial autocorrelation statistics only indicate overall clustering or dispersion, but not where

these hotspots/coldspots occur (Anselin et al., 2007). Local indicator(s) of spatial

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 26 of 131

autocorrelation (LISA) are therefore used to address this gap as they identify significant local

clusters or outliers (Anselin and Bao, 1997).

There are various measures of spatial autocorrelation. Join count statistics are used for binary

data, which are usually nominal values (De Smith et al., 2018). Moran’s 𝐼 and Geary’s 𝐶 are

global autocorrelation measures used for numeric data in lattice format (Anselin, 1988). Each

measure also has an equivalent LISA – local Moran’s 𝐼 and local Geary’s 𝐶 (Anselin, 1995).

The Getis and Ord G statistics may also be used to quantify spatial autocorrelation on a global

and local level (Dall’erba, 2009).

Univariate Moran’s 𝐼 and Geary’s 𝐶 are the original and most popular global autocorrelation

statistics (Anselin, 1988; Dall’erba, 2009). These statistics, along with their LISA will be

discussed in the following sections.

2.4.2.1 Spatial Weights

A spatial weights matrix is used to determine the neighbourhood of an observation. The

identified neighbours are included in the calculation of the spatial lag of a variable, and by

extension, spatial autocorrelation statistics such as Moran’s 𝐼 or Geary’s 𝐶 (Anselin, 1998).

Spatial weights can be defined by whether the observations share boundaries (contiguity-

based) or whether they are within a certain distance of each other (distance-based) (Anselin,

1998). Rook and queen are both cases of contiguity strategies, whereas kernel, distance-band

and k-nearest neighbours are examples of distance based strategies (Anselin et al., 2006;

Dall’erba, 2009). By definition, lattice data share common boundaries, making contiguity-

based approaches the most commonly used method to define neighbours (Anselin, 1998).

Their popularity may be because they are less complex when compared to their distance-

based counterparts due to the subjectivity associated with the distance parameter. A single

distance metric cannot be used generically as density of a phenomena is highly dependent on

the nature of that phenomena. Depending on the projection of the dataset, the units used to

represent distance in each dataset could differ. For this reason, this section will only discuss

contiguity-based weights as they are simpler than their distance-based counterparts, whose

creation is more of a challenge to automate.

A rook’s case approach defines a neighbour as an observation that shares a border with the

target observation (Anselin and Rey, 2014). A queen’s case, however, would consider all

observations that share a vertex and/or border with the target observation as a neighbour

(Anselin and Rey, 2014). In addition to the type of contiguity weights, one may also specify

the order of a spatial weights matrix. The order refers to the number of steps of adjacency that

are included in the identification of neighbours (Anselin and Rey, 2014). An example of

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 27 of 131

queen’s case and rook’s case contiguity is illustrated in Figure 7, where first order neighbours

are shown in dark purple, and pink is used to represent cells that would only be considered if

the order of contiguity is two.

Figure 7: Rook (left) and queen (right) case contiguity.

A spatial weights matrix can be represented as matrix 𝑊 = [𝑤𝑖𝑗], where 𝑤𝑖𝑗 represents the

relationship between locations 𝑖 and 𝑗. Values in a contiguity-based matrix can either be 0 or

1, with 0 indication 𝑖 and 𝑗 are not neighbours, while a value of 1 would indicate that 𝑖 and 𝑗

are neighbours (Rogerson and Kedron, 2012).

There is no agreement on which spatial weight format is the best to use, and Anselin (1988)

argues that the structure of the spatial weights should be chosen based on the nature of the

phenomenon represented in the dataset. Rey et al. (2023), however, state that the distinction

between queen’s and rook’s case neighbours is negligible when working with an irregular

lattice rather than a grid. The reason for this is because the shape of the cells in the dataset

would have more of an impact on the defined neighbours than the strategy used.

2.4.2.2 Moran’s 𝑰

The Moran’s 𝐼 statistic is the most popular method to represent spatial autocorrelation (Anselin

et al., 2007; De Smith et al., 2018). Its formula is shown in Table 2. Moran’s 𝐼 values range

from -1 to +1, with -1 indicating negative spatial autocorrelation (perfect dispersion) and +1

representing positive spatial autocorrelation (perfect clustering). Values close to zero are

indicative of no clustering (complete spatial randomness). A Moran’s 𝐼 statistic can be

visualised using a Moran’s 𝐼 scatter plot (see Figure 8), in which the spatial lag (y-axis) is

plotted against the standardised value (z-score) of an observation (x-axis). The gradient of

this scatter plot will be equivalent to the value of Moran’s 𝐼, meaning that a steeper the line,

will be associated with a greater degree of spatial autocorrelation (Anselin, 1996; 1998).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 28 of 131

Figure 8: Moran’s 𝑰 scatter plot

The Moran’s 𝐼 scatter plot (Figure 8) is a useful tool for identifying outliers and can be

decomposed into four quadrants. These quadrants form the foundation on which the local

Moran’s 𝐼 categories are based (Anselin, 1996; Anselin and Bao, 1997). Two of these

quadrants represent local clusters (high-high and low-low), while two quadrants represent

local outliers (high-low and low-high). These quadrants form the four classes that are present

in a LISA cluster map. While the scatter plot quadrants do provide a means for classifications,

one needs to be cautioned that this does not indicate significance (Anselin et al., 2004). The

local Moran’s 𝐼 value (𝐼𝑖) can also be calculated using a formula derived from the global

statistic. This formula is also shown in Table 2.

2.4.2.3 Geary’s 𝑪

The Geary’s 𝐶 statistic follows a similar approach to the Moran’s 𝐼 formula, however instead

of computing the cross product of standardised values, it uses the sum of squared differences

instead (Geary, 1954). Warner and Shank (1997) describe global Geary’s 𝐶 as the average

dissimilarity between points. Due to the fact that it uses the sum of squared distances, Geary’s

𝐶 is less sensitive to linear relationships and could potentially identify spatial autocorrelation

where Moran’s 𝐼 may not (Anselin, 2019). The interpretation of Geary’s 𝐶 values are different

to those of Moran’s 𝐼. Values range from 0 to +2, those less than +1 are indicative of positive

spatial autocorrelation, while values larger than +1 indicate negative spatial autocorrelation.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 29 of 131

Table 2: Comparison of Moran's 𝑰 and Geary's 𝑪

 Moran’s 𝑰 Geary’s 𝑪

Global Formula

𝐼 =
𝑛

𝑆0

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥̅)(𝑥𝑗 − 𝑥̅)𝑗𝑖

∑ (𝑥𝑖 − 𝑥̅)2
𝑖

 𝐶 =
(𝑛 − 1)

2𝑆0

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)2
𝑗𝑖

∑ (𝑥𝑖 − 𝑥̅)2
𝑖

where:

• 𝑛 = sample size,

• 𝑤𝑖𝑗 = connectivity spatial weight between units 𝑖 and 𝑗,

• 𝑥𝑖 = observation in region 𝑖

• 𝑥𝑗 = observation in region 𝑗

• 𝑆0 = ∑ ∑ 𝑤𝑖𝑗𝑗𝑖

Range (-1, +1) (0, +2)

Interpretation

I < 0 → Dispersion

I = 0 → Randomness

I > 0 → Clustering

I < 1 → Clustering

I = 1 → Randomness

I > 1 → Dispersion

Local Formula

𝐼𝑖 = (
𝑥𝑖 − 𝑥̅

∑ (𝑥𝑖 − 𝑥̅)2
𝑖

𝑛 − 1

) ∑ 𝑤𝑖𝑗(𝑥𝑗 − 𝑥̅)
𝑗

𝐶𝑖 = ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)2

𝑗

where:

• 𝑥𝑖 and 𝑥𝑗 are the observations in region 𝑖 and 𝑗 respectively, and

• 𝑤𝑖𝑗 is the connectivity spatial weight between regions 𝑖 and 𝑗

2.4.2.4 Significance Tests

The global and local versions of Moran’s 𝐼 and Geary’s C all indicate the presence of

clustering, however they yield no measure of their significance. A permutation test is often

used to address this shortfall. These tests are based on standardised z-values calculated from

a permutation approach. The permutation approach (Anselin, 1995) calculates the statistic for

each of a number of randomly simulated datasets. The number of simulations is dependent

on the number of permutations (usually 999). The value calculated from the actual dataset is

then compared to those obtained from the simulated datasets. This comparison allows for a

significance value to be calculated, which usually accompanies the final statistic (Dall’erba,

2009). The permutation approach brings with it a computational challenge due to the volume

of calculations involved, which is notable in large datasets (Anselin, 1999).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 30 of 131

2.4.3 ESDA Software

This section will describe some of the popular software platforms that support ESDA on lattice

data. A suitable ESDA tool is described as being capable of detecting recurring and isolated

patterns without knowing in advance what to expect (Openshaw, 1995). There are multiple

platforms that support ESDA (to varying extents), and this section will discuss GeoDa, PySAL2

and spdep3 – each of which are popular open source platforms. These are not the only

platforms that support ESDA, however only these three will be discussed. Table 3 is found at

the end of this section and summarises the ESDA functions that are supported by the

discussed platforms.

2.4.3.1 GeoDa

GeoDa is an upgrade of the SpaceStat4 platform brought about through the need for linked

views, improved visualisations, and the popularity of larger datasets (Bivand, 1998; Anselin et

al., 2006; Rey and Anselin, 2006). A beta version of GeoDa was made available in 2002,

however it was only released as a complete open-source and cross-platform software tool in

2011 (Anselin, 2000; Anselin et al., 2006; 2022). It was developed to address the lack of an

easy to use, visual, and interactive platform targeted at non-GIS users. GeoDa’s design is

centred around multiple, linked views that allow the use of brushing to interact with the data.

This makes it quite a valuable tool for teaching ESDA. The interface is point and click based,

requiring the user to have no programming knowledge. One of the major factors contributing

to GeoDa’s success is that it has no dependency libraries. It can be downloaded as a

standalone tool and is licensed under the open source GPL 3.0 license (Anselin, 2012).

When describing its functionality, Anselin et al. (2006) breaks it down into six categories –

spatial data manipulation and utilities, data transformation, mapping, EDA, spatial

autocorrelation, and spatial regression. This illustrates that GeoDa’s functionality goes much

further than that of only ESDA.

The rgeoda5 R package and pygeoda6 Python library were both developed to allow users of

each of these platforms to interface with the libgeoda library which is written in C++ (Anselin

et al., 2022). While the libgeoda library is based on the original GeoDa platform, it does not

currently have all the functionality of GeoDa as it unfortunately does not support global

autocorrelation measures. As with GeoDa, pygeoda, rgeoda, and libgeoda do not support

2 https://pysal.org/
3 https://cran.r-project.org/web/packages/spdep/index.html
4 https://biomedware.com/products/spacestat/spacestat-details/
5 https://geodacenter.github.io/rgeoda/
6 https://geodacenter.github.io/pygeoda/

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://pysal.org/
https://cran.r-project.org/web/packages/spdep/index.html
https://biomedware.com/products/spacestat/spacestat-details/
https://geodacenter.github.io/rgeoda/
https://geodacenter.github.io/pygeoda/
https://pysal.org/
https://cran.r-project.org/web/packages/spdep/index.html
https://biomedware.com/products/spacestat/spacestat-details/
https://geodacenter.github.io/rgeoda/
https://geodacenter.github.io/pygeoda/

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 31 of 131

raster datasets. This means that any raster dataset would first have to be vectorised before it

can be processed using these platforms. Anselin et al. (2022) compared the performance of

these tools to that of spdep and PySAL by calculating a local Moran’s 𝐼 statistic, and found

that the multithreading, use of the GPU processor, and C++ codebase all enabled the GeoDa-

based platforms to outperform spdep and PySAL.

2.4.3.2 PySAL

PySAL was developed as an open source Python library that supports various spatial

analytical functions, among these are numerous ESDA functions (Anselin, 2012; Rey and

Anselin, 2007). Its design is modular, and all its dependencies are Python based, meaning

that it is compatible with most operating systems. PySAL is the foundation on which many

desktop software systems have been built, as well as a toolbox for ArcGIS7, with plans for a

QGIS8 plugin on the way (Rey et al., 2015). Various developments are in the works to ensure

that PySAL can efficiently process geospatial big data. These include integration with desktop

GIS platforms such as ArcGIS or QGIS, as well as cloud and parallel processing (Rey et al.,

2015; Rey et al., 2022).

The design philosophy behind PySAL is that it is lightweight, resulting in its original, monolithic

package being divided into separate Python packages that can be downloaded individually

(Rey and Anselin, 2007; Rey et al., 2022). The esda package supports the exploratory analysis

of spatial data, however, it depends on other packages in the PySAL ecosystem such as the

libpysal package for constructing spatial weights matrices, and the mapclassify package for

generating choropleth map classes (Rey et al., 2022).

2.4.3.3 spdep

There are numerous R packages available on the CRAN repository which can be freely

downloaded if you work with spatial data (Bivand, 2006). The spdep and DCluster9 packages

are both vital for tools for ESDA within the R ecosystem (Anselin et al., 2006). When comparing

the documentation of the two packages, it is evident that spdep is the more comprehensive of

the two, and as such, it will be the only one discussed in detail.

spdep is similar to the esda PySAL sub-package in its functionality and is thus quite modular

in its functionality (Bivand, 2002). One would need to rely on other R packages for certain

ESDA functions, such as maptools10 to generate choropleth maps (Bivand, 2002; 2006).

7 https://pro.arcgis.com/en/pro-app/latest/get-started/get-started.htm
8 https://www.qgis.org/en/site/
9 https://cran.r-project.org/web/packages/DCluster/index.html
10 https://cran.r-project.org/web/packages/maptools/index.html

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://pro.arcgis.com/en/pro-app/latest/get-started/get-started.htm
https://www.qgis.org/en/site/
https://cran.r-project.org/web/packages/DCluster/index.html
https://cran.r-project.org/web/packages/maptools/index.html
https://pro.arcgis.com/en/pro-app/latest/get-started/get-started.htm
https://www.qgis.org/en/site/
https://cran.r-project.org/web/packages/DCluster/index.html
https://cran.r-project.org/web/packages/maptools/index.html

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 32 of 131

Table 3 is a comparison of the ESDA functionality of GeoDa, pygeoda, PySAL, and spdep. It

is worth noting that while each platform supports the majority of the functions discussed,

GeoDa is the only platform that supports regular EDA, while pygeoda is limited in that it does

not support global spatial autocorrelation statistics. Both PySAL and spdep are extendible to

include other functionality, however for the purpose of an as is comparison, potential support

through external libraries has not been included in Table 3.

Table 3: Comparing the functionality of various ESDA platforms.

 GeoDa pygeoda PySAL spdep

EDA

Brushing
Descriptive Statistics
Box Plot
Frequency Histogram
Scatter Plot

●
●
●
●
●

○
○
○
○
○

○
○
○
○
○

○
○
○
○
○

ESDA

Choropleth Map
 Boxmap
 Equal Intervals
 Quantiles
 Mean-Standard Deviation
 Maximum Breaks
 Fisher-Jenks
Cartogram
Spatial Weights
 Contiguity (Queen)
 Contiguity (Rook)
 Contiguity Order
 Distance (k-nearest neighbour)
 Distance (kernel)
 Distance (distance-band)
Global Spatial Autocorrelation
 Moran’s 𝐼

 Moran’s 𝐼 Scatter Plot

 Geary’s 𝐶
 Getis-Ord 𝐺
Local Spatial Autocorrelation
 Local Moran’s 𝐼

 Local Geary’s 𝐶
 Getis-Ord 𝐺𝑖 Statistics

●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
○
○

●
●
●

●
○
●
●
○
○
○

●
●
●
●
●
●

○
○
○
○

●
●
●

● 1
● 1
● 1
● 1
● 1
● 1

 ○

● 2
● 2
● 2
● 2
● 2
● 2

● 3
● 4
● 3
● 3

● 3
● 3
● 3

○
○
○
○
○
○
○

●
●
●
●
●
●

●
●
●
●

●
●
●

*Available through the mapclassify1, libpysal2, esda3, and splot4 PySAL submodules respectively

2.5 ESDA with Raster Datasets

Section 2.2 discussed how lattice data can be regular or irregular in its structure. Raster

datasets are by definition a regular lattice and the way an ESDA workflow is carried out is

identical (Shortridge, 2007). There are, however, major technical differences brought about by

the differing data structures (Rey et al., 2023). Although raster datasets have not traditionally

been used for ESDA procedures, their use has become increasingly popular (Rey et al., 2023).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 33 of 131

Local Moran’s 𝐼 has been calculated across raster surfaces to quantify concentration of

vegetation index values (Zhou et al., 2021), changes in sand dunes brought about by the

removal of vegetation (Walker et al., 2013), as well as the residuals of a regression model (Li

et al., 2019). These studies would have either used GeoDa, presumably after first vectorising

the raster dataset, or GeoRasters11 to carry out the calculations.

2.5.1 Supporting Raster ESDA

Descriptive statistics can be computed for raster datasets with relative ease. ENVI12, ArcGIS

Pro, and QGIS each display various statistics relating to a raster surface without the need for

the user to specify anything as the values are either stored in the metadata or calculated

immediately upon loading the dataset. The values stored in the raster arrays could also be

extracted for EDA visualisations quite easily. The challenge, however, emerges when

calculating ESDA statistics.

Rey et al. (2023) explain that conceptually, the calculation of spatial autocorrelation statistics

on raster surfaces is very similar to that of an irregular polygon-based lattice, however from a

technical perspective, the approach for each format would differ significantly. The main

challenge is the creation of the spatial weights matrix to use for spatial autocorrelation.

Currently GeoDa only supports discrete lattice data, and while planned developments aim to

include support for flow data (Anselin et al., 2006), as of October 2023, there is no mention of

planned support for raster file types in the GeoDa developer notes. The spdep R package

allows one to create neighbours from grid cells using the cell2nb function and the raster R

package allows the user to manually define a weights matrix. According to the spdep GitHub

repository, this functionality was created in 2017, however similar functionality has only

recently been developed in Python.

As part of the Google Summer of Code13 (GSOC), (Sheckhar et al., 2020) developed an API

for the PySAL library which allowed for the creation of PySAL spatial weights objects from

raster datasets stored in a xarray14 DataArray object. This was a monumental development

which allowed for the calculation of global and local spatial autocorrelation statistics in PySAL

for raster datasets in addition to its existing vector support.

Less popular Python platforms that support spatial autocorrelation do exist, however they are

not optimal solutions for incorporating into autoESDA. MuseoToolBox15 only supports global

11 https://georasters.readthedocs.io/en/latest/
12 https://www.nv5geospatialsoftware.com/Products/ENVI
13 https://gist.github.com/MgeeeeK/15426217eb5f368ca0ff12f66c2b5823
14 https://docs.xarray.dev/en/stable/
15 https://museotoolbox.readthedocs.io/en/latest/index.html

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://georasters.readthedocs.io/en/latest/
https://www.nv5geospatialsoftware.com/Products/ENVI
https://gist.github.com/MgeeeeK/15426217eb5f368ca0ff12f66c2b5823
https://docs.xarray.dev/en/stable/
https://museotoolbox.readthedocs.io/en/latest/index.html
https://georasters.readthedocs.io/en/latest/
https://www.nv5geospatialsoftware.com/Products/ENVI
https://gist.github.com/MgeeeeK/15426217eb5f368ca0ff12f66c2b5823
https://docs.xarray.dev/en/stable/
https://museotoolbox.readthedocs.io/en/latest/index.html

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 34 of 131

Moran’s 𝐼, requiring the user to manually create a weights matrix, while GeoRasters is simply

a wrapper for various PySAL functions.

2.6 Related Work

Section 2.2 highlighted the challenges brought about by the 3 Vs of geospatial big data, while

Section 2.3 and 2.4 introduced EDA and ESDA as potential solutions to some of these

challenges. This section is comprised of two parts – the first part outlining the need for new

tools to address geospatial big data, and the second part discussing some of the tools

available, their design philosophy, and identifying principles that could aid the design of a

Python library that automates the ESDA workflow.

2.6.1 Call For New Developments

Throughout the years, Openshaw (1995), Anselin (2010), Dangermond and Goodchild (2020),

and Singleton and Arribas-Bel (2021) have all highlighted the need for new tools that address

challenges brought about by geospatial big data. The automation of ESDA could play a role

in addressing some of these challenges as insights could quickly be obtained and used to

guide further analysis (Anselin, 1996). Jern et al. (2008) argue for the use of statistical

methods as a strategy to understand geospatial big data. Statistics are a large part of the

ESDA toolbox and, as such, an appropriate use of ESDA could address the need to

understand and create value from voluminous datasets.

There are two possible advantages to automating the ESDA workflow. The first is the

increased efficiency as the time spent generating results could be minimised (Dangermond

and Goodchild, 2020). This is beneficial when trying to keep up with the high velocity of big

geospatial data. The second potential advantage is that the need for human input could be

eliminated and by extension, any human-induced errors would be removed (Borlongan et al.,

2016; Armstrong et al., 2019).

It is unclear whether removing human input from an ESDA workflow is an advantage. Anselin

(1998) pointed out that ESDA is a data driven approach and thus the results need to guide

further analysis. What is unclear is whether this feedback loop could also be automated, or if

it can only proceed with human involvement. Datasets should also be processed without

preconceived ideas, so that bias is not introduced into the results. Conversely, prior knowledge

of the dataset could be advantageous as this may aid in the formulation of hypotheses. While

Moncrieff et al. (2016) are of the opinion that data exploration is a user-driven approach,

Goodchild et al. (1992) and Openshaw (1995) warn that the user can no longer be expected

to be a trained statistician. This is increasingly likely due to the diverse nature of spatial data,

meaning that end users are not always experts. For this reason, it would be beneficial to

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 35 of 131

automate the ESDA process as it eliminates the required input from potentially untrained

users.

Openshaw (1995) highlighted the weaknesses of the traditional ESDA process and provided

some guidelines for new tools. The first is that there should be extensive automation. The tool

should have error checking functionality and its performance should constantly be optimised.

The tool must be able to operate in real time, handle unexpected scenarios, and, although it

could be considered as a black box, the user should have a means of understanding its design.

Dangermond and Goodchild (2020) add to this by explaining that new tools should be able to

repeatedly produce reliable results and that emphasis should be placed on efficiency. Each of

these principles need not be present in the first few steps towards automating ESDA, as they

have various levels of complexity. These principles do, however, paint a good picture of what

an optimal tool could look like, and any progress in automating ESDA should follow in the

direction of these guiding principles.

2.6.2 Similar Automation Projects

There are numerous automated tools that have been developed to deal with geospatial big

data at various stages of the spatial data lifecycle. Batcheller (2008) automated the generation

of metadata for spatial datasets, Borlongan et al. (2016) automated feature extraction from

LiDAR datasets, Coetzee and Rautenbach (2017) designed a method to automate the creation

of thematic maps, which was further adapted for large point datasets by Pillay et al. (2019).

The motivation for each of these projects was that the output artifact made some contribution

towards the automation of the task it aimed to address. This not only streamlined the data

workflows, but it minimised the need for humans to carry out repetitive tasks. In doing so they

broadened the abilities of available tools to deal with the large amounts of spatial data, while

eliminating opportunities for human error to be incorporated into the workflow.

While there is no known tool that automates the ESDA workflow, there have been numerous

advances in the automation of the EDA workflow. These projects can be discussed, and any

learnings made can contribute towards to task of automating the ESDA workflow, which is

merely an extension of EDA. Python libraries such as pandas-profiling (now officially known

as ydata-profiling16), sweetviz17, and autovis18 allow a data analyst to easily carry out the EDA

process by executing one line of code, which generates a HTML report that neatly summarises

the results.

16 https://ydata-profiling.ydata.ai/docs/master/index.html
17 https://github.com/fbdesignpro/sweetviz
18 https://github.com/AutoViML/AutoViz

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://ydata-profiling.ydata.ai/docs/master/index.html
https://github.com/fbdesignpro/sweetviz
https://github.com/AutoViML/AutoViz
https://ydata-profiling.ydata.ai/docs/master/index.html
https://github.com/fbdesignpro/sweetviz
https://github.com/AutoViML/AutoViz

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 36 of 131

DataPrep.EDA19 is a Python library that has been designed to automate the EDA workflow

(Peng et al., 2021). The philosophy behind its design is that it is: easy to use, has interactive

speed, and is easy to customise. Ease of use is an important quality for a tool to have, and

DataPrep.EDA has addressed this by only requiring one-line, easy to execute functions. The

output results also have “auto-insight” functionality which highlights any significant trends that

are identified in the dataset. Interactive speed means that the processing time is dependent

on the outcome required. This means that time is not unnecessarily spent generating results

in which the user has no interest. The design of DataPrep.EDA means that smaller EDA tasks

can be run by selecting specific variables, or only calling for specific functions, such as

correlation analysis or missing-value analysis. This means that a full report does not need to

be generated each time the library is used. Finally, DataPrep.EDA is easy to customise. A full

EDA report will require hundreds of parameters to customise the report so that it is “perfect”

for its use-case. This makes easy customisation a major challenge – and the only way this

has been addressed is by developing a detailed help guide, which the user would need to

familiarise themselves with should they want a completely customised report.

Feature extraction from LiDAR datasets is another repetitive and time consuming spatial data

workflow which has been successfully automated (Borlongan et al., 2016). The motivation

behind its design was also to minimise the opportunities for human error. Just as with ESDA,

it is not easy to completely eliminate human involvement from the workflow. Human input was

instead handled by grouping similar tasks that did not require a decision to be made, thereby

minimising the need for the user to be continuously involved. This reduced the likelihood of

the user to introduce errors, regardless of their training (Borlongan et al., 2016). While the

process of feature extraction from LiDAR has not been fully automated, the current work

towards its automation has proven that task can be completed in less time, with results that

are less prone to human-induced errors.

While there are no known attempts to automate ESDA, this section has outlined the need for

software to do so, along with some guiding principles and form similar automation projects.

This should pave the way for any new developments related to the automation of ESDA.

2.6.3 Similar Evaluation Methodologies

There is limited literature available that document the performance evaluation of platforms that

support ESDA. Anselin et al. (2022) outline their approach to evaluating the performance of

the rgeoda, pygeoda, GeoDa desktop, spdep and PySAL in order to benchmark the

performance of each platform. The time to generate a queen’s case matrix with an order of

19 https://docs.dataprep.ai/user_guide/eda/introduction.html

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://docs.dataprep.ai/user_guide/eda/introduction.html
https://docs.dataprep.ai/user_guide/eda/introduction.html

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 37 of 131

one is recorded for each of the platforms. This is done with datasets of increasing magnitude

of features (and by extension file size). A Local Moran’s I permutation test is then calculated

for each platform and dataset. The number of permutations are also varied to investigate their

effect on the processing time. The results of this study form the basis of multiple assumptions

that are highlighted the sections to follow. This methodology, while simple has also been

adapted to evaluate the performance of autoESDA and is discussed in more detail in Chapter

4.

2.7 Discussion on Automating ESDA Functions

Section 2.3 and 2.4 described some functions that form part of EDA and ESDA, while Section

2.6 outlined some considerations in the automation of data-related tasks. This section aims to

evaluate how easily, and the extent to which, EDA and ESDA functions can be automated.

Table 4 summarises the findings that will be discussed in the remainder of this section.

One of the major contributors to how easily a function can be automated is what parameters

are required to be specified by the user. The user may be required to specify multiple

parameters that are specific to the selected platform. This section will only discuss the vital

parameters that are relevant to the function, regardless of the software being used.

The calculation of descriptive statistics can easily be automated as the user is not required to

specify any parameters. The sample size, mode, median, mean, minimum and maximum

values, range, quartiles, variance, standard deviation, skewness, and kurtosis are all formulas

that only require values for their calculation. The same is true for the automation of a box plot

as the user is not required to specify any additional parameters aside from the dataset,

meaning that the same process can be used without being altered to have a different output.

The generation of a histogram can also be easily automated. Apart from specifying whether a

probability or frequency histogram is required, the only parameter that could potentially be

specified is the number of bins. Matplotlib20 uses ten as a default number of bins, while

seaborne21 automatically determines the number of bins to be used if this is not specified by

the user.

The generation of a single scatter plot requires the specification of two variables in a dataset

to plot against one another. This makes it a challenge to automate, however the solution is to

generate a scatter plot matrix, with scatter plots between each combination of all the variables.

Fortunately the generation of a scatter plot matrix is not very computationally intensive;

20 https://matplotlib.org/stable/
21 https://seaborn.pydata.org/

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://matplotlib.org/stable/
https://seaborn.pydata.org/
https://matplotlib.org/stable/
https://seaborn.pydata.org/

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 38 of 131

however it could create large plots that are difficult to view when used for datasets with a lot

of variables.

The approach to automating correlation statistics is similar to that of scatter plots. Calculating

a correlation value requires the specification of two variables, however the correlation

coefficient may be calculated for every variable combination in a dataset, resulting in a

correlation matrix. The other parameter a user may need to specify is the correlation type –

this could be Pearson’s correlation coefficient, Spearman’s 𝜌, or Kendall’s 𝜏. Just as with

scatter plots, the computation of correlation matrices is not intensive and thus a viable solution

would be to automate this process by generating a correlation matrix for each correlation type

– removing the need for the user to specify a correlation type.

The generation of a choropleth map requires the user to specify the variable to be mapped,

as well as the classification scheme and number of classes. PySAL uses a default number of

five classes, which means that the user would only need to specify the variable and

classification scheme. The process of generating choropleth maps could be automated by

plotting numerous choropleth maps for each variable, using a variety of popular classification

schemes. Ordinary cartograms can easily be automated as they only require the variable on

which they are based to be specified.

Creating a spatial weights matrix is arguably the most challenging part of an ESDA workflow

to automate. This is due to the parameters that are required to generate the matrix, and their

selection, which has the ability to skew the result of the function that uses the output weights

matrix. The first decision required from the user is to specify the type of spatial weights matrix

– this could be distance-based, contiguity-based, or a k-nearest-neighbour approach. If a

distance-based matrix is chosen, the user would be required to specify the distance threshold

as a parameter. Should a contiguity-based matrix be chosen, the user will have to specify the

contiguity type and order. Finally, if a k-nearest-neighbour approach is selected, the user will

have to specify k – the number of neighbours to be considered. GeoDa’s tutorials recommend

a queen’s case contiguity matrix with an order of one as a default. Anselin et al. (2022) also

use this combination in their experiment. Should the same approach be applied, one would

be able to automate the generation of spatial weights matrix.

Global Moran’s 𝐼 and Geary’s 𝐶 are identical in the parameters that they require. These are:

target variable, a spatial weights matrix, and the number of permutations. If a spatial weights

matrix has already been constructed, its specification can be automated. The selection of a

target variable can be avoided by calculating these global statistics for each variable in the

input dataset. A default of 999 permutations is used in PySAL and GeoDa and if this approach

is used, the need to specify the number of permutations is unnecessary. Finally, the LISA

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 39 of 131

calculations can also be automated with moderate difficulty and a similar approach to the

global autocorrelation measures.

2.8 Conclusion

This chapter has outlined the use of geospatial big data and the challenges that arise from it.

EDA and ESDA are potential solutions to some of these challenges, however ESDA is

currently a time consuming and repetitive process. There are, however, some software tools

that have ESDA functionality, and they could be extended to automate the ESDA workflow.

This automation could lead to a saving in time spent on the ESDA workflow, while

simultaneously reducing opportunities for human-induced errors. Section 2.7 discusses how

easily some ESDA functions could be automated, and how one could go about doing so. The

next chapter will summarise the earlier research that has taken place and outline the current

status of autoESDA and what improvements can be made.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 40 of 131

Table 4: Potential automation of various EDA and ESDA functions

Function Input Parameters Output Ease of Automation

EDA

Descriptive Statistics Dataset None Calculated statistics Easy

Box Plot Dataset None Box plot figure Easy

Histogram Dataset Number of bins Histogram figure Easy

Scatter Plot Matrix Dataset None Scatter plot matrix Easy

Correlation Matrix Dataset Correlation type Correlation matrix Easy

ESDA

Choropleth Map Spatial dataset
Target variable

Classification scheme
Number of classes

Choropleth map Moderate

Cartogram (Ordinary) Spatial dataset Target variable Ordinary cartogram Easy

Spatial Weights Matrix Spatial dataset

Weights type
(distance, knn, contiguity)

Magnitude of weights

(order, distance, n)

Spatial weights matrix Difficult

Global Moran’s 𝑰
Spatial dataset

Spatial weights matrix
Target variable

Number of permutations
Moran’s 𝐼 statistic

Moran’s 𝐼 scatter plot
Moderate

Global Geary’s 𝑪
Spatial dataset

Spatial weights matrix
Target variable

Number of permutations
Geary’s 𝐶 statistic Moderate

Local Moran’s 𝑰
Local Geary’s 𝑪

Spatial dataset
Target variable

Spatial weights matrix
LISA cluster map

LISA significance map
Moderate

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 41 of 131

CHAPTER 3: TOWARDS AN OPEN SOURCE LIBRARY FOR

AUTOMATED EXPLORATORY SPATIAL DATA ANALYSIS (ESDA)

This chapter was presented in a poster session 22 at the International Society for

Photogrammetry and Remote Sensing (ISPRS) congress 3 – 11 June 2022 in Nice, France,

and published as an article23. It can be referenced using the following citation:

De Kock, N., Rautenbach, V., Fabris-Rotelli, I., 2022. Towards An Open Source Library For
Automated Exploratory Spatial Data Analysis. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B4-2022, 91–98.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-91-2022

This chapter was taken “as-is” from the publicly available version which means there may be

some repetition from other chapters in this dissertation.

3.1 Abstract

The exploratory spatial data analysis (ESDA) process refers to the use of various functions to

gain an initial understanding of a spatial dataset. These include measures of spatial

heterogeneity and spatial autocorrelation. Currently, the ESDA process is repetitive and time-

consuming. Additionally, while different results arise for different datasets, how these results

are generated does not change significantly. Results are also generated individually for each

variable which means that they cannot be easily compared or shared.

The automation of the ESDA process would therefore have multiple benefits as it would not

only save time, but it would also allow the data analyst to keep up with the rapid rate at which

we generate data. This paper aims to introduce the first iteration of autoESDA – a Python

library capable of automating the ESDA process by summarising the results into a single

report.

In this paper, we present the defined high-level requirements for the implementation of

autoESDA. Various dependency libraries are discussed and a high-level overview of the

workflow of autoESDA is described. The library is then evaluated against the requirements

laid out earlier in the study. Semi-structured interviews were carried out, which yielded a

wealth of feedback and suggestions from the participants, describing how the output report

22https://isprs2022.stream-up.tv/media-272-towards-an-open-source-python-library-for-automated-
exploratory-spatial-data-analysis-esda?&fartype=cat&farval=138
23 https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-91-2022

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://isprs2022.stream-up.tv/media-272-towards-an-open-source-python-library-for-automated-exploratory-spatial-data-analysis-esda?&fartype=cat&farval=138
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-91-2022
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-91-2022
https://isprs2022.stream-up.tv/media-272-towards-an-open-source-python-library-for-automated-exploratory-spatial-data-analysis-esda?&fartype=cat&farval=138
https://isprs2022.stream-up.tv/media-272-towards-an-open-source-python-library-for-automated-exploratory-spatial-data-analysis-esda?&fartype=cat&farval=138
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-91-2022

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 42 of 131

could be improved. Finally, a roadmap of proposed further developments and improvements

is discussed.

The first version demonstrates that the automation of ESDA is possible and lays the foundation

for further development in this regard. This is an important contribution to understanding

spatial data as it enables the data analyst to keep up with the magnitude of data that is

generated on a daily basis.

3.2 Introduction

In recent years there has been a largescale increase in the volume of spatial data generated.

This exponential increase in both the volume and velocity of spatial data is attributed partly to

the decreasing price of sensors, along with a world where topics such as the Internet of Things

(IOT) and big data analysis have experienced dramatically increased popularity (Armstrong et

al., 2019). Spatial data is rapidly created through methods such as the geotagging of images

on social media and traffic data from users of navigation software such as Google Maps. While

there is great benefit in the availability of datasets, true value can only be obtained once this

data is processed into useful information.

The data lifecycle refers to numerous stages that result in the transition of raw data into

information. The lifespan of a data lifecycle varies according to the dataset (Raju and Nathan,

2018). Exploratory data analysis (EDA) is a process carried out near the beginning of a data

lifecycle. Its purpose is to gain a basic understanding of the dataset. For spatial datasets, this

process is known as exploratory spatial data analysis (ESDA) (Dall’erba, 2009).

ESDA is made up of various functions that aid the exploration of spatial datasets and

identification of patterns that may otherwise go unnoticed (Murray and Estivill-Castro, 1998).

Results arising from the ESDA process often dictate how the data is further utilised. ESDA

functions can be carried out on both vector and raster based spatial data (Moura and Fonseca,

2020). The current iteration of autoESDA only supports data in vector polygon format, however

work is currently underway to extend this functionality to support raster and other vector

formats.

Two important components of the ESDA process are spatial autocorrelation, and spatial

heterogeneity. Spatial heterogeneity is investigated using choropleth maps, box plots, scatter

plots, and histograms, for example, which allow one to identify trends or patterns that could

have otherwise gone unnoticed. The results of spatial autocorrelation are vital, as they dictate

whether or not the recorded instances of a phenomenon are spatially dependant on each other

(Dall’erba, 2009).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 43 of 131

The ESDA process is both repetitive and time-consuming and the automation thereof would

allow the data analyst more time to be able to focus on more important aspects of the data

lifecycle. In practice, ESDA functions are run individually, meaning that results are also

displayed individually, which does not allow for comparisons to be made.

There are numerous open source technologies with ESDA capabilities; the three most popular

ones are Python libraries, R libraries, and GeoDa. Python has numerous advantages when

working with spatial data, chief among which is its ability to handle large datasets. Various

libraries also allow Python to easily integrate with geoportals, spatial database management

systems, and other GIS technologies (Cura, 2019). Python libraries such as pandas 24 ,

geopandas25, PySAL, plotly and matplotlib are often used for executing ESDA functions and

displaying these results. The seamless integration and wealth of available libraries make

Python an ideal choice for automating the ESDA process.

Automation of similar processes using Python are not unheard of. The EDA process has been

automated using Python libraries such as pandas-profiling (now officially known as ydata-

profiling26), sweetviz27, and autovis28. These libraries allow a data analyst to easily carry out

the EDA process by executing one line of code, which generates a HTML report that neatly

summarises the results.

Automation of various processes within the spatial data lifecycle are not uncommon. The

curation of spatial metadata falls under the transformation stage of the lifecycle (Ciceli, 2015);

it has been automated by Batcheller (2008). The generation of thematic maps falls under the

distribution stage of the spatial data lifecycle and various efforts have been made to automate

this process (Coetzee and Rautenbach, 2017; Pillay et al., 2019). While these examples are

not entirely related to ESDA, they do, however, illustrate that there is a benefit to automating

repetitive processes within the spatial data lifecycle.

The aim of this paper is to present our first iteration of autoESDA, a library that automates the

ESDA process in Python. The paper discusses the design and implementation of the library

by describing the high-level requirements, dependency libraries, and workflow of the library

itself. The library is then evaluated according to the defined requirements, and numerous

24 https://pandas.pydata.org/
25 https://geopandas.org/en/stable/index.html
26 https://ydata-profiling.ydata.ai/docs/master/index.html
27 https://github.com/fbdesignpro/sweetviz
28 https://github.com/AutoViML/AutoViz

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://pandas.pydata.org/
https://geopandas.org/en/stable/index.html
https://ydata-profiling.ydata.ai/docs/master/index.html
https://ydata-profiling.ydata.ai/docs/master/index.html
https://github.com/fbdesignpro/sweetviz
https://github.com/AutoViML/AutoViz
https://pandas.pydata.org/
https://geopandas.org/en/stable/index.html
https://ydata-profiling.ydata.ai/docs/master/index.html
https://github.com/fbdesignpro/sweetviz
https://github.com/AutoViML/AutoViz

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 44 of 131

interviews are conducted in order to gain feedback on the first iteration. Finally, a roadmap for

further development is discussed.

3.3 Requirements and Implementation

3.3.1 Requirements

Multiple high-level functional and non-functional requirements were defined during the

planning phase of this project. These requirements were decided on by identifying solutions

to the major issues encountered by carrying out an ESDA process and what a potential

solution would look like. Once the library was developed, the specified requirements were

revisited to ensure that the high-priority requirements were satisfied. As this was an iterative

process, if the functional requirements were not satisfied, the development phase was

revisited to ensure that all the high-priority requirements were met.

Functional requirements refer to functions that a system is required to perform (Young, 2003).

Conversely, non-functional requirements refer to properties of a system that do not dictate

what needs to be done, but rather how well it should be done. Table 5 summarises the high-

level functional and non-functional requirements that were defined for the development of the

autoESDA library.

Table 5: High-level functional requirements

Functional

Requirement

Description

Report Output

(High Priority)

The library should generate a HTML report that can be saved to the local

computer.

Spatial Heterogeneity

(High Priority)

The generated report should include a box plot, histogram, descriptive

statistics, and correlation statistics.

Spatial Autocorrelation

(High Priority)

The generated report should include a Moran’s 𝐼 simulation, the

associated statistics, and a LISA cluster map.

Data Type Detection

(High Priority)

The library should be able to distinguish between columns that can be

plotted and have statistics calculated on them. It is assumed that data is

already converted into the correct types and unsupported data types

(such as strings and characters) should be ignored.

Non-Functional

Requirement

Description

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 45 of 131

3.3.2 Design

The first aspect of the design stages focused on deciding which ESDA functions to include in

the library. These decisions were made according to how popular a certain ESDA function

was, as well as how easily it could be automated. Functions that require the data analyst to

specify numerous parameters that could not easily be set to a default setting, are assumed to

be more difficult to automate.

Most ESDA functions are simple enough to automate; however, parallel coordinate plots

(PCPs), measures of autocorrelation, and choropleth maps are all seen to be complex to

automate. This is due to the fact that they have numerous parameters that need to be

specified. The combination of variables to include in the PCP will depend greatly on the

dataset used and a generic solution for automation cannot easily be implemented (Zhou et al.,

2018). The same argument can be made for the automation of spatial autocorrelation and

choropleth maps, as the input parameters could have a huge effect on the outputted results.

The functionality to allow the user to specify their own spatial weights matrix has not been

included in the current version of autoESDA. Spatial autocorrelation, however, is seen as a

high priority requirement, meaning that there needs to be some degree of spatial

autocorrelation in the output report, and the utility thereof can be evaluated in the interviews.

For this version of autoESDA, it was decided that a Moran’s 𝐼 simulation with a queen’s case

Simple Execution

(High Priority)

The library should be simple to use, meaning that only one parameter

(the GeoDataFrame) is required to generate the report.

Offline Availability

(Low Priority)

The generated report should not reference any external sources, this

would mean that the report does not require an internet connection to

display correctly.

Colour Use

(Medium Priority)

A suitable colour scheme/theme for the report should be selected that is

both appealing and free from any alternate connotations.

About Page

(Medium Priority)

The report should include an about page which tells the user what

defaults have been set for the generated figures and statistics.

Data Sample

(High Priority)

A subset of the dataset should be displayed in the report.

Performance

(Low Priority)

The library should generate a report timeously once the function has

been executed.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 46 of 131

first-order matrix along with a LISA map would be included in the report as measures of global

and local spatial autocorrelation. Moran’s 𝐼 was the chosen function as it is the most

commonly used measure of spatial autocorrelation (Jackson et al., 2010). A first order queen’s

case matrix was used as the default spatial weights matrix.

Due to their importance in visualising the spatial distribution of different variables, the decision

was made to include choropleth maps. To overcome the need for the user to specify which

classification scheme to use for these maps, the decision was made to include four choropleth

maps, each with a different classification scheme, for each variable. It was also decided to

use the geopandas default number of intervals, which is five.

With the exception of those mentioned above, the majority of ESDA functions do not require

input parameters and could therefore be automated with relative ease. These include generic

five number summaries (minimum, mean, median, maximum, and standard deviation), box

plots, histograms, scatter plots, and correlation matrices.

There are numerous Python libraries that exist with the intention of solving various problems

or addressing different needs within the Python development community. In the development

of this library, existing functions from other libraries were used. Table 6 describes the libraries

referenced in autoESDA, which are known as dependencies. Each of these libraries have

been included as they serve a specific purpose in the autoESDA library. These libraries have

been chosen according to the functions which they provide, and their relative popularity.

Choosing libraries according to popularity has two major advantages, namely: readily

available support, and a community of contributors who help to ensure updates and bug fixes

are routinely rolled out.

Table 6: Dependencies of the autoESDA library

Dependency

(Version)
Description

geopandas

(0.8.1)

The geopandas library is an extension of the popular pandas library which defines

DataFrames as a way to structure data. geopandas adapts this as a way to store

spatial data such that this GeoDataFrame is the attribute table, where there are

additional columns for geometry or coordinates.

libpysal

(4.4.0)

This is the core library that PySAL is based on. It is used in this project to create the

spatial weights matrix which is used in the autocorrelation calculations.

PySAL

(2.3.0)

This library, along with its dependencies, allow for the plotting of the choropleth maps

as well as the Moran’s scatter plot and LISA cluster map.

matplotlib

(3.4.2)

matplotlib is a popular library for creating graphs and other visual aids. This library

enables the use of grids and annotations to combine the numerous figures together.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://geopandas.org/
https://pysal.org/libpysal/
https://matplotlib.org/

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 47 of 131

3.3.3 Implementation

Once the decisions were made regarding which ESDA functions and dependencies to include,

it was time to design how the functions would work together to generate an appropriate report.

This workflow is visualised in Figure 9.

To begin with, the library will accept a GeoDataFrame, from which it will determine which

columns have a numeric data type and which do not. The ESDA functions for autoESDA are

calculated from numeric data, which is why this differentiation needs to take place.

seaborn

(0.11.2)

seaborn is similar to matplotlib, however it has extra functions such as the heatmap

and pairplot function which was used in this project.

io

(3.8.10)

This library converts images into objects made up of bytes. In conjunction with the

base64 library, it allows for images to be embedded/stored directly in the HTML file.

base64

(3.8.10)

The base64 library was used to encode images as objects and works in conjunction

with the io library to enable storage and embedding of images within the HTML file.

This avoids the need for external files.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://seaborn.pydata.org/
https://docs.python.org/3/library/io.html#i-o-base-classes
https://docs.python.org/3/library/base64.html

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 48 of 131

Figure 9: Workflow of the autoESDA library

Both non-numeric and numeric variables are required for the Summary Page, an example of

which is shown in Figure 10. This is because the Summary Page displays a sample of the

dataset, as well as a description of which datasets were included in the report (numeric

variables) and which variables were not included (non-numeric variables). In addition to the

dataset sample, the Summary Page also includes a basic outline of the study area, descriptive

statistics, and a data overview which includes basic metadata, such as the projection used.

The next block of code entails a loop through the variables in order to create a Variable

Information Page for each numeric column in the GeoDataFrame. Each iteration of the loop

will create a box plot, histogram, various choropleth maps and a Moran’s 𝐼 and LISA

simulation. An example of a Variable Information Page is shown in Figure 11.

Finally, the Correlation Page (shown in Figure 12), composed of a heatmap and pairwise plot,

was created using the numeric variables. The Correlation Page, along with the Summary Page

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 49 of 131

and all the Variable Information Pages is combined into a HTML report, which is then saved

to the working file directory.

3.3.4 Availability and Usage

The source code for autoESDA is available in a GitHub repository29 under the BSD 3-Clause

license. An example report generated by autoESDA can also be viewed online30.

29 https://github.com/NicholasDeKock/autoESDA
30 https://autoesda.github.io/autoESDA-static/

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://github.com/NicholasDeKock/autoESDA
https://autoesda.github.io/autoESDA-static/
https://github.com/NicholasDeKock/autoESDA
https://autoesda.github.io/autoESDA-static/

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 50 of 131

Figure 10: Summary Page

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 51 of 131

Figure 11: Variable Information Page

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 52 of 131

Figure 12: Correlation Page

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 53 of 131

3.4 Evaluation

3.4.1 Evaluation Against Requirements

In Table 5, four functional requirements and six non-functional requirements were defined.

This was used as a guide for the researcher to gauge how much development still needed to

take place for the first iteration of the library. This section discusses how each of the

requirements were met, whereas the interviews and discussion investigate how well these

requirements were met.

3.4.1.1 Functional Requirements

The library generates a HTML report which is saved to the working directory, thus satisfying

the first functional requirement.

Measures of spatial heterogeneity include a descriptive statistics table which has a count,

mean, standard deviation, minimum, 25th percentile, median, 75th percentile, as well as a

maximum value for each variable. Furthermore, there are box plots, histograms, and

numerous choropleth maps for each variable, as well as a correlation matrix.

Spatial autocorrelation has been addressed through the inclusion of a reference distribution

(to evaluate the statistical significance of the calculated values), Moran’s 𝐼 scatter plot, and

LISA cluster map. The reference distribution plot also displays the Moran’s 𝐼 value, sample

size, p-value, z-score, and number of permutations.

The final functional requirement refers to the library’s ability to discern numerical variables

from the rest. This is because mathematical plots and statistics can only be generated from

data that is numeric in nature. This is done in the first few lines of code of the library.

3.4.1.2 Non-functional Requirements

The first non-functional requirement which has a high priority is that the library runs using only

one line of code, making it simple to use. While the library can be called using one line of code,

it is currently not a published library which means that this requirement is not entirely satisfied.

The library currently accepts no parameters except for the GeoDataFrame itself.

Offline functionality was a low priority non-functional requirement, which was not satisfied

through the development of this library. The requirement aims to ensure that the report can

be viewed without an internet connection, however this is not the case as it references two

external style sheets. While the report will still display when offline, the experience for the user

may be different.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 54 of 131

The use of appropriate colour schemes that are neither conflicting, nor misleading, was listed

as a medium priority non-functional requirement. This is a challenging requirement to meet as

it is very subjective in nature. The researcher made all possible efforts to choose suitable

colour schemes and the chosen colours were put through a colourblind simulator31. The

colours used deemed to not be misleading or conflicting and are appropriate for people with

colour vision impairment. For this reason, it is argued that the requirement for suitable colours

has been met, and the extent to which this requirement has been satisfied will be determined

through the interview process.

Other non-functional requirements include the presence of an About Page, describing

decisions and default values made in order to generate the report, as well as a sample of the

original dataset. Due to time constraints, the current iteration of autoESDA does not have an

About Page, however there are plans to include this in future iterations. The library does,

however, show the first and last five rows as a sample of the dataset.

Performance is the final non-functional requirement. It was listed as low priority and was not

tested. In order to test performance, a benchmark needed to be identified – this benchmark

has not yet been decided on. As such, it cannot be said if or how well this requirement was

satisfied. There are, however, plans to test the performance of autoESDA in the future.

3.4.2 Interview Process

Numerous interview participants with varying experience, careers, and frequency of using

ESDA were used in the interview process in order to generate a variety of feedback. These

interviews took place as part of an earlier project in 2021. Table 7 summarises the

demographic information of these participants. The interviews that took place were semi-

structured in format. Table 8 shows the predefined questions which were used as a guide for

the interview process. This was seen as the most effective strategy to adopt as it allowed the

researcher to gain a further understanding regarding some statements that were made by the

participants.

31 https://www.color-blindness.com/

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://www.color-blindness.com/
https://www.color-blindness.com/

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 55 of 131

Table 7: Demographics of the interview participants

Participant
Years of

experience
Sex Industry Job title

How often do you

use ESDA

functions?

1 2 M
Software

Engineering
Software Engineer Never

2 20 M GIS education Associate Professor Monthly

3 4 F Commercial GIS
Geospatial

Consultant
Monthly

4 1 M Commercial GIS Data Scientist Monthly

5 6 M Commercial GIS Geospatial Developer Every two months

6 1 M GIS
Geoinformation

Specialist
Never

7 2 F GIS Student Assistant Monthly

8 24 M GIS/Cartography Senior Cartographer Weekly

9 25 M Education
Freelance Data

Analyst
Monthly

10 8 M GIS & research GIS Analyst, Lecturer Weekly

11 4 M IT/ Data science Data Scientist Monthly

12 17 F Research Associate Professor Never

13 1 F Research Lecturer Never

The interviews were carried out on the Zoom video conferencing platform as this allowed for

the researcher to share their screen and eliminated the need for any travel or physical

meetings between the researcher and the participants. This also allowed for a wider variety of

participants as travel was not necessary.

The participants were sent an example report beforehand, so that they had time to look at it

and consider some feedback before they were interviewed.

Table 8: Interview questions

Interview questions

1. What position do you hold, and how does it require you to make use of ESDA functions?

2. What challenges do you currently have when conducting an ESDA process?

3. Could you tell us about the process you follow when you are performing ESDA process?

[Show prototype]

4. General

a. How comfortable are you using Python?

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 56 of 131

b. Can you think of any improvements that could be made to the structure/layout of the

report?

c. Are the titles of each section clear or are they misleading i.e. do you get the information

you expect when selecting them?

d. For each page, could you say whether this section is useful to you? What improvements

would you recommend?

e. Now that you have seen what the library can do, would you use it where necessary?

f. What hesitations do you have about the use of this library?

5. Summary page

a. Are there any other features/statistics you would like or expect to be on the summary

page?

b. Are the statistics on the summary page useful to you?

6. Choropleth maps

a. Are there extra classification schemes for choropleth maps that you would like to be

included in this library?

b. Would you prefer there to be more/less classes for the choropleth maps?

c. Do you feel that the colour scheme is suitable? If not, do you have a recommendation

as to what it should be?

d. Would you recommend any other improvements to be made to the choropleth maps

section?

7. Autocorrelation

a. Are there any extra statistics you would expect to find in a report like this?

b. Do you feel that it is necessary to include the probability distribution and scatter plot?

c. A queen’s case contiguity matrix with an order of one has been set as the default, do

you feel that this is a good idea? Is there another strategy which you would prefer?

d. Are there other important autocorrelation measures that you would prefer to Moran’s 𝑰?

8. Correlation

a. How easy is it for you to interpret the correlation matrix/heatmap?

b. Do you think it is necessary to include the scatter plots for each relationship?

c. Do you think the colour scheme is suitable? If not, do you have a recommendation as to

what colour scheme should be used?

9. Pairwise plot

a. Do you like the layout of the pairwise plot or do you find it confusing to understand?

b. What colour scheme do you feel should be used for the pairwise plot?

c. How many bars do you think a histogram should have?

3.4.3 Interview Feedback

There were thirteen participants who gave feedback, each with different academic

backgrounds, work experience and experience levels. This variety lead to a huge amount of

varied and sometimes contradictory feedback.

The feedback is divided into four sections, namely: the Summary Page, the Variable

Information Page, the Correlation Page, and the About Page. All of the participants were

impressed with the library prototype and agree that the progress has been in the right direction.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 57 of 131

Participant 2 said that the report was “great, and very useful” which was supported by

Participant 3 who said that the tool filled a “definite need in the GIS industry”. Participant 5

stated that the report was “useful and well implemented” which backs up the opinion of

Participant 10 in that “everything I looked for was here”.

3.4.3.1 Summary Page

The first major element on the Summary Page (as shown in Figure 10) is the map of the study

area. In general, the participants were glad that it was present and provided the user with

some insight about the shape of the area that is described in the report. Participants 2 – 6 all

indicated that they see value in this map being interactive, with popups providing them with

the relevant information for each of the polygons when hovered over. Participant 7 also

recommended the use of colour in the study area map to make it more appealing. While this

would improve the library’s appearance, the issue would be selecting an appropriate colour

scheme that does not have any potential connotations depending on the datasets used in the

report. It was also suggested that there should be a name of the study area above the map.

This may be challenging due to the versatility of the library being able to generate generic

reports, however it was suggested that the call function of the library should have a parameter

where the user could specify a name.

Participant 2 who comes from a GIS education background, mentioned that students may be

confused by the use of the terms rows and columns as it is too similar to raster data, and that

the terms attributes and fields should be used instead.

There was not much feedback given from the participants relating to the dataset overview

table with the exception of participants 5 and 11 who mentioned that they would like to see

some spatial statistics included in it. Examples they gave included average area of the

polygons and average number of neighbours.

The other major element on the Summary Page was the descriptive statistics table. In general,

the participants were satisfied that most statistics that they would look for were present, with

the exception of the skewness, kurtosis, as well as the number of null or unique values in each

column. The majority of participants made this comment. Additionally, Participant 2 also

suggested that the descriptive statistics table include a Moran’s 𝐼 value.

The final element on the Summary Page is the dataset sample which consisted of the first and

last ten rows to give the user an idea of what the original dataset looked like. There were

contrasting views amongst the participants regarding what constitutes a suitable sample.

Participants 1, 9, and 11 were of the opinion that showing 20 rows was excessive and that

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 58 of 131

only the first and last five rows were necessary. Participant 2, however felt that all the rows in

the dataset should be included and that the user should be allowed to query these in order to

aid their understanding of the dataset. Strategies such as only showing the first ten rows, or a

random ten rows were also suggested by Participants 4 and 5.

3.4.3.2 Variable Information Page

The first two elements on the Variable Information Page (as shown in Figure 11) were the box

plot and the histogram. No major comments were received from any of the participants;

however, each of them emphasised the importance of having these present. Once asked

about the number of bins recommended for the histogram, the participants seemed to be

happy with the default value of ten bins and did not see the need for this to change.

The reference distribution drew quite a lot of feedback from the participants. While it is a good

inclusion in the report, the lack of a key for the red and blue lines on the diagram, coupled with

the non-descriptive title, gave some of the participants the impression that it could be

improved. The x-axis and y-axis could be more descriptive such as indicating what they

represent. The values in the textbox could also be coloured red or blue to link them to the line

on the reference distribution that they relate to. One of the participants also suggested that a

“clustered/not clustered” label should be included on the reference distribution. Some of these

changes would be challenging to implement as it would involve the modification of code in the

existing PySAL library.

One the major issues identified with the Moran’s 𝐼 scatter plot was that the visual gradient of

the line of best fit does not match the Moran’s 𝐼 value (this should not be the case). This was

brought about by the stretching of the scatter plot to match the size of the other subplots;

however, it is misleading. One of the participants also commented on the colours used in the

scatter plot, citing the fact that the user is not told what these colours represent, and therefore

unsure whether they relate to the LISA scatter plot or not.

The participants also indicated that they valued the inclusion of the LISA cluster map as part

of the report. There was, however, a comment on the colour scheme chosen with one of the

participants having the opinion that a single, graduated colour scheme would be more suitable

than the Red-Blue colour scheme currently being used. Some of the participants also found

the labels in the legend to be difficult to understand, and that inexperienced users may not

understand that HH refers to features that have High-High autocorrelation or ns which

represents polygons that do not have significant spatial autocorrelation with its neighbours.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 59 of 131

All of the participants were of the opinion that Moran’s 𝐼 was an appropriate measure to be

used as a measure of autocorrelation, rather than another measure such as Geary’s 𝐶. While

the participants did not express strong opinions regarding what spatial weights format was the

most appropriate, they indicated that the default of a queen’s case contiguity with an order of

one was acceptable, provided that this was indicated somewhere. Participants 9, 10 and 11

all indicated that they would like the functionality that would allow them to specify their own

spatial weights matrix as a parameter of the call function for the report.

The choropleth maps generated a lot of discussion, with the majority of the feedback being

directed towards the legend placement, that covered a large portion of the map. Although the

matplotlib parameter of “best position” is used, it is evident that the placement is not always

optimal. Some suggestions to overcome this from the participants included placing the legends

outside the map, removing the decimals (which are unnecessary) from the legend and making

it a horizontal rather than a vertical legend. It was also mentioned that the variable name

should be included in the title of the map and not in the legend. Regarding the classification

schemes chosen, the participants were in general, happy with those that were present,

however some participants did suggest a box map and standard deviation classification

scheme to also be included. When questioned about the number of classes for maps (currently

the default of 5 is used), none of the participants considered this to be a problem. The colour

scheme was also mentioned in the interviews, with the majority of the participants happy with

the current one being used. One comment regarding the colour scheme which arose from two

of the participants was that it should be inverted, so that values with a greater magnitude are

assigned the darker, more intense colours.

Participant 10 questioned if the report was suitable for those who are colourblind. This was

not a consideration in the lifecycle of the project, and it was decided to test the report using

an online colourblind simulator. Red and green colour-blindness are the most common types,

which is what was simulated. The results show that there is an effect of these types of colour-

blindness, however all features still vary enough to the colourblind eye to be differentiated

from each other.

Concluding remarks relating to the Variable Information Page were that it feels very

congested, and that this could be avoided by increasing the spacing between plots and

removing the borders from the choropleth maps.

3.4.3.3 Correlation Page

The Correlation Page (as show in Figure 12) was made up of a correlation heatmap and a

pairplot. The majority of the participants found benefit in there being both a correlation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 60 of 131

heatmap as well as a pairwise plot. Participants 3, 6, 8, and 9 who are all very experienced in

the GIS industry, suggested that the values in the correlation heatmap should be rounded up

to two decimal values. The colour scheme of the heatmap was also discussed, with some

participants of the opinion that it is too closely related to the colours used in the autocorrelation

subplots, and therefore misleading. Participants 12 and 13 stated that a colour ramp outside

of the correlation matrix would improve their understanding. Importantly, Participants 10-13

also questioned which type of correlation was used as it was not stated anywhere, and that a

user should be able to choose which correlation measure they would like to be present in the

report.

While captioned as a pairplot, it was brought to the attention of the researcher that the diagram

should more appropriately be called a pairwise plot. The pairwise plot could be made more

user friendly through the use of more labels, and red borders for the subplots with significant

relationships (correlation values above |0.7|). Statistics such as coefficient of determination,

trendlines and adjusted R2 values would also be of value to the user. One of the participants

also stated that a correlation value is not suitable if the data is not linear, and for this reason

it may be beneficial to include a warning for relationships that are non-linear yet are found to

have a significant correlation.

Finally, the placement and layout of the Correlation Page drew a reasonable amount of

discussion. Some of the participants preferred both the pairwise plot and the heatmap to be

square in shape and rather placed under each other for more space. Other participants,

however, were of the opinion that only the upper or lower triangle were necessary and that

instead these two elements should be combined so as to maximise the use of space, while

minimising the duplication of information on the page. This would be a valuable improvement,

however due to the pairwise plot being a function from the seaborne library, these suggestions

would be difficult to implement.

3.4.3.4 About Page

While this page was not in the prototype shown to the participants, there was a lot of discussion

around the necessity of an About Page and, therefore, it has been given its own subheading.

The About Page should act as a manual for the generated report that users could navigate to

so that they may improve their understanding of the report. Some elements that were

suggested to be included here were the number of histogram bins, significance values and

parameters used for the construction of the spatial weights matrix used for the Moran’s 𝐼

simulation, description of each of the subplots, number of default classes for the choropleth

maps and correlation type used in the correlation heatmap. Additionally, Participant 9

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 61 of 131

suggested that the date and time that the report was generated be included, as well as a

disclaimer relating to how the report should be used.

3.5 Roadmap of Further Developments

The development of autoESDA is an ongoing process, meaning that the current version has

laid the foundation for more features to be included in the future.

A major improvement to autoESDA will be the ability to accept multiple data formats. Currently,

the library only works with vector polygon geometries, however there is scope for this to be

improved to support vector line and point data, as well as data in raster format.

Results from the interviews are discussed in Section 3 and highlight multiple opportunities for

further developments. An example of this is the ability of the user to specify their own spatial

weights matrix. This means that instead of using the current default of a queen’s case first-

order matrix, the user could specify as a parameter the shape and order of their preferred

spatial weights matrix.

Interview Participants also mentioned that including additional ESDA functions such as

Geary’s 𝐶, would add to the wealth of information in the generated report.

Participants had numerous suggestions that would improve the layout of the report. These

suggestions included the repositioning of some of the elements, as well as increasing the

spacing between figures so that the report does not feel so congested.

A popular suggestion amongst the interview participants was the inclusion of an About Page

in the report. This would provide the user with information relating to the autoESDA library, as

well as the report metadata such as the date generated, the default values for choropleth

maps, or the type of spatial weights matrix used in the spatial autocorrelation calculations.

Testing the scalability and performance of the library is another aspect of autoESDA that could

be addressed through future work. This includes investigating how efficient the script is in

processing datasets, as well as if it has the capability to handle large volumes of data with the

same efficiency.

One important milestone planned for the autoESDA library is the refactoring of the code so

that it may be used in a QGIS plugin. This will eliminate the need for a user to have a

knowledge of Python and will allow the user to generate an autoESDA report through a

graphical user interface on the popular GIS platform.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 62 of 131

3.6 Conclusion

The aim of this research was to present the first iteration of autoESDA. This was achieved by

describing the process of defining requirements and designing the library’s workflow.

autoESDA was then evaluated against the predefined requirements, as well as through the

use of interviews to solicit feedback. While the first iteration of autoESDA is functional, there

are planned improvements and additional functionality. Aspects of the library such as

scalability and performance could also be investigated to ensure that the library is capable of

handling the large datasets that are common in today’s data-driven world. This article

presented the first iteration of autoESDA and in doing so, has laid the foundation for more

work to be carried out in the automation of the ESDA workflow. The next chapter will define a

new set of requirements on which the development of the next iteration of autoESDA will be

based.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 63 of 131

CHAPTER 4: SECOND ITERATION OF AUTOESDA: REDESIGN

AND EXPANDING ITS CAPABILITIES

4.1 Chapter Overview

Chapter 4 describes the updates and improvements that have been incorporated into the

second iteration of autoESDA. This includes the architectural and cosmetic design decisions

and their motivation thereof. The majority of these improvements have been recommended in

the interviews that are described in Chapter 3, however some improvements have also been

brought about by an increased understanding of software design. The feedback from the

interviews have been converted into user stories which can be viewed in Appendix B. This

chapter has been divided into three sections, each one addressing a different high-level

requirement (Chapter 5 discusses the performance requirement). These requirements are

summarised in Table 9 below.

Table 9: High-level requirements for the second iteration of autoESDA

Requirement Description

Raster Functionality

The updated library should be capable of accepting raster datasets

and processing them to generate an autoESDA report. The raster

report should generate efficiently and can largely be based off the

vector report.

Updated Architecture

The architectural design of autoESDA should be updated so that it

is more modular. This will allow for changes to be implemented more

efficiently.

Other Minor Improvements
This includes a variety of cosmetic and other minor improvements

resulting from the interviews described in Chapter 3.

Performance The library should be capable of generating a report timeously.

Section 4.2 describes the new raster functionality and the comparison of different strategies

in order to identify the optimal strategy for ESDA calculations with raster datasets. Section 4.3

describes the new architectural design of the library to allow for the raster functionality to be

incorporated into autoESDA. This modular architecture streamlined the process of

implementing a variety of other minor improvements – these are described in Section 4.4.

Finally, Section 4.5 will discuss some limitations of the second iteration of autoESDA and

outline potential future improvements.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 64 of 131

4.2 Raster Functionality

One novel suggestion that arose from the earlier interviews was that the autoESDA library

should have the functionality to process raster datasets. The first iteration of autoESDA was

only compatible with a GeoDataFrame of vector polygons. Raster grids and vector polygons

both conform to the definition of a lattice dataset in that they cover an area and are divided

into smaller, discrete areas known as cells or units (Cressie, 1993). These units do not overlap;

however they share common boundaries. A raster grid is an example of a regular lattice as

each cell has the same shape, size, and orientation, whereas a lattice of vector polygons is

referred to as an irregular lattice.

Lattice datasets are commonly used to detect spatial patterns and find a suitable explanation

for their occurrence (Saveliev et al., 2007). As forms of lattice datasets, albeit with different

data models, one could reasonably expect software platforms capable of ESDA to support

both raster grids and vector polygons. Regular EDA functions (descriptive statistics, box plots,

histograms, and scatter plots) could easily handle raster data as they only rely on the numeric

values, and not the spatial component and definition of neighbours. The challenge with ESDA

on raster datasets is the calculation of local indicators of spatial autocorrelation (LISA), which

are the most computationally intensive part of the ESDA workflow due to the large number of

permutations (Anselin et al., 2022).

The xarray32, rasterio33, and rioxarray34 Python packages are used to work with the raster data

structures. Just as with pandas, xarray is geared towards non-spatial datasets that could have

multiple dimensions and variables. Geopandas is an extension of the pandas library. Similarly,

rasterio and rioxarray are extensions of the xarray library, catering for spatial datasets by

importing common spatial raster formats such as GeoTIFF or netCDF files.

4.2.1 Strategies for LISA Calculations

LISA are regarded as the most computationally intensive part of an ESDA workflow (Amgalan

et al., 2022; Anselin et al., 2022; Paudel and Puri, 2022). The optimisation of these calculations

is thus vital in minimising the overall time to generate the autoESDA report. The vector

component of autoESDA supports local Geary’s 𝐶 and local Moran’s 𝐼. Similarly, this section

will only discuss these two measures with the intention of the raster functionality of autoESDA

mirroring that of vector datasets.

32 https://docs.xarray.dev/en/stable/
33 https://rasterio.readthedocs.io/en/stable/intro.html
34 https://corteva.github.io/rioxarray/html/index.html

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://docs.xarray.dev/en/stable/
https://rasterio.readthedocs.io/en/stable/intro.html
https://corteva.github.io/rioxarray/html/index.html
https://docs.xarray.dev/en/stable/
https://rasterio.readthedocs.io/en/stable/intro.html
https://corteva.github.io/rioxarray/html/index.html

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 65 of 131

Three strategies for calculating LISA on raster datasets have been identified. These will be

described along with their advantages and disadvantages. The first strategy processes the

raster datasets in its original array format, with the second and third strategies requiring the

raster dataset to first be converted into a GeoDataFrame comprised of a regular lattice of

polygons (cells). This process is known as vectorisation, and while is does require additional

processing, the trade-off could be worth the use of vector-based processing.

4.2.1.1 Strategy 1: Raster + PySAL

The first strategy relies purely on the newly developed methods to create spatial weights

matrix using PySAL. The weights matrix is then used with the spatial autocorrelation function

(Moran, local_moran, Geary, local_geary) in the PySAL library. One could reasonably

assume that the calculation of LISA using this approach would be more efficient than with

vector polygons due to the simplicity of the raster data model.

Unfortunately, the functionality of generating queen’s first order spatial weights matrix from

raster datasets and LISA calculations is relatively new to PySAL, which means that there is

still room for improvement. A queen’s case weight matrix with a first order contiguity will be

used for these experiments. Sheckhar et al. (2020) explained that the generation of weights

has the potential of being optimised using dask (a Python library for parallel computing)35,

however this has not yet been done. Additionally, the lack of documentation meant that

although some PySAL LISA functions have the potential to be parallelised using joblib’s loky36

(a library that allows for Python functions to be parallelised) – this could not be achieved for

this comparison. It would be interesting to revise this approach in the future once the

functionality has been given the opportunity to mature.

4.2.1.2 Strategy 2: Vectorise + PySAL

The second strategy is to use the PySAL functionality (Moran, local_moran, Geary,

local_geary) on the vectorised data. This increases the processing required before being

able to create the spatial weights matrix or calculate LISA. The PySAL functions used for

strategy 1 will be identical to those used in this strategy, making this strategy unlikely to be

faster due to the additional time required to vectorise the dataset.

4.2.1.3 Strategy 3: Vectorise + pygeoda

The final strategy is to use the pygeoda LISA functionality. Currently, pygeoda only supports

vector datasets, meaning that the raster dataset would first need to be vectorised. Just as with

35 https://www.dask.org/
36 https://github.com/joblib/loky

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://www.dask.org/
https://github.com/joblib/loky
https://www.dask.org/
https://github.com/joblib/loky

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 66 of 131

strategy 2, this additional step would increase the processing required, however this trade-off

could be worth the ability to then calculate LISA in pygeoda. This library functions as an API

to the libgeoda library, which is written in C++, which is known to be faster than Python.

pygeoda outperformed PySAL when calculating LISA for the vector functionality of autoESDA,

and there is reason to believe this approach may be the most efficient for raster datasets too.

4.2.2 Comparing LISA Strategies

In order to identify the optimal strategy for LISA calculations with raster datasets, the strategies

needed to be compared in terms of both performance and scalability. To evaluate this,

datasets of different sizes and levels of noise (variance) were used, and the time it took to

perform different tasks were recorded. Additionally, each strategy was broken down into six

tasks to assist in the identification of which tasks require the most amount of time to complete.

4.2.2.1 Datasets

Each strategy was tested with three datasets37, each with three bands and each of a different

size. The variance (σ2) of the bands were inflated such that band one had a small variance,

band two a medium variance, and band three having the greatest variance. This was achieved

by generating a variance surface of the same shape as the original raster that followed a

normal distribution, but with increasing standard deviation. The simulated surfaces of low,

medium, and high variance were each added to the original raster to create bands 1, 2, and 3

respectively. The code used to simulate these surfaces can be viewed in Appendix C. Table

10 gives the statistical content summary of each band in each dataset. One can observe the

increasing minimum/maximum values and standard deviation of the bands in each dataset as

the band number increases.

37 All three datasets are actually clips of different sizes areas from the same CHIRPS dataset which
was obtained from https://www.chc.ucsb.edu/data/chirps

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://www.chc.ucsb.edu/data/chirps
https://www.chc.ucsb.edu/data/chirps

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 67 of 131

Table 10: Statistical summary of datasets used to test raster LISA calculations

 Dataset 1 Dataset 2 Dataset 3

Size 231 x 180 575 x 409 903 x 593

Valid % 70.90 88.56 87.88

Valid Cells ≈ 29 481 ≈ 208 271 ≈ 470 579

Band 1 2 3 1 2 3 1 2 3

Min 0.49 3.09 1.92 0.72 3.00 3.36 0.00 0.05 0.17

Max 320.89 429.81 690.59 732.79 1 340.99 2 281.75 449.01 732.03 1 103.95

Mean 48.03 106.88 165.00 142.64 316.11 488.65 49.58 157.79 267.70

Std 35.01 56.21 95.74 104.63 167.46 281.47 69.27 107.54 178.58

4.2.2.2 Tasks

The LISA calculations that will be included in the autoESDA report can be broken down into

six tasks, these are described below.

Task 1: Preprocessing

This involves the vectorisation of the raster dataset and is therefore only relevant in strategy

2 and 3. When vectorisation occurs, the raster grid is only vectorised once and the values from

each band are transferred to the newly created GeoDataFrame. This means that the

vectorisation process that makes up task 1 is only carried out once per dataset, instead of

once per band. Tasks 2 – 6, however, will be repeated for each band that exists within a

dataset.

Task 2: Spatial Weights Creation

This task involves the creation of the spatial weights object that will be used in the LISA

calculations. For strategy 1 this requires the use of the Queen.from_xarray function to

create the sparse queen’s case weight matrix and then calls the WSP2W function to convert the

sparse weights matrix to a full one. For strategy 2 and 3, the NoData values are first removed

from the GeoDataFrame before the Queen.from_dataframe function is called. The weights

matrix is then transformed using the transform function. All functions used in task 2 are

available through the libpysal weights module.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 68 of 131

Task 3: Local Moran Calculation

Task 3 and task 5 are the most computationally intensive functions of the tasks and therefore

require the most time to complete. In task 3, the local Moran object is created by calling the

moran.Moran_Local function in the esda PySAL module.

Task 4: Local Moran Plotting

Once created, the attributes of the local Moran object can be called to populate the rows of

the GeoDataFrame with their labels and significance values. The values that have a

significance of 0.05 or lower are then plotted.

Task 5: Local Geary Calculation

In task 5, the local Geary object is created by calling the geary.Geary_Local function in

the esda PySAL module.

Task 6: Local Geary Plotting

Once created, the attributes of the local Geary object can be called to populate the rows of

the GeoDataFrame with their labels and significance values. The values that have a

significance of 0.05 or lower are then plotted.

4.2.2.3 Methodology

All experiments were conducted on a desktop computer that has a 64-bit operating system

with Windows 10 Enterprise installed. It has an Intel Xeon CPU E3-1270 v6 processor runs

with a clock speed of 3.80 GHz. There is also 64 GB of RAM installed as well as 32 GB

graphics card.The code was run in an Anaconda environment with Python 3.9 installed,

including any dependencies required. All data was saved onto the local SSD storage to ensure

efficient data retrieval and writing.

The code for each test simulation was run at least three times and the average of these runs

was used in the results section for this comparison. If the values in the first three runs differed

noticeably, then the process was rerun until three sets of times that were similar to each other

were produced. These were used to calculate an average and the irregular results were

discarded. To allow for a consistent comparison, the computer was not used for anything else

while the code was running.

Each of the three datasets had three bands (low, medium, and large variance), which meant

that 16 timestamps were recorded for each dataset (one for task 1, and one for tasks 2 – 6 for

each band). The simulation was run three times for each dataset, and the average values of

the three runs was used for the results and discussion in the following section.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 69 of 131

4.2.2.4 Results

The average time to generate the spatial weights matrix, local Moran object, and local Geary

object were each recorded and can be viewed in Table 11. As expected, the size of the dataset

is a contributing factor to the LISA processing time. Results were generated significantly faster

for Dataset 1, regardless of the strategy used, followed by Dataset 2, and Dataset 3 which had

the longest processing time. In all cases, the total processing time for the first band in each

dataset is the greatest. This is expected as the first time a spatial weights matrix is created,

PySAL indexes the dataset which makes the processing of bands 2 and 3 more efficient.

Likewise, the time required to vectorise (task 1) – required in strategy 2 and 3 - is only allocated

to band 1 due to the fact that this process only needs to be carried out for a dataset and it will

be the same regardless of how many bands there are. This is because the cost of vectorisation

is assigned only to the first band.

It was expected that tasks 3 and 5 (LISA calculations) would require the most amount of time

to run out of all the tasks. However, not all values in Table 11 support this hypothesis, which

only holds true for Dataset 2 and 3 for the PySAL Vector and PySAL Raster strategies. In the

case of the pygeoda Vector strategy, the plotting times were quite often greater than that of

the LISA calculation time.

Figure 13, Figure 14, and Figure 15 illustrate the cumulative processing time (for tasks 1 – 6)

for all bands in Dataset 1, 2, and 3 respectively. The y-axis scale differs for each plot, which

means that it is not immediately evident that the datasets have different processing times; but

upon investigation of the values, it is clear that Dataset 3 (Figure 15) required significantly

more processing time as evident in the large range of values on the y-axis. It is interesting to

note that the time required to plot (tasks 4 and 6) the vectorised raster (as vectorised cells) in

strategy 2 and 3, is significantly more than plotting the results as a raster surface as in strategy

1 – this is most likely due to the fact that the cells are plotted as individual polygons, rather

than as a surface.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 70 of 131

Table 11: Timing results (seconds) for different raster LISA strategies

 PySAL Raster PySAL Vector pygeoda Vector

 Task
Band 1

Low σ2

Band 2

Med σ2

Band 3

High σ2

Band 1

Low σ2

Band 2

Med σ2

Band 3

High σ2

Band 1

Low σ2

Band 2

Med σ2

Band 3

High σ2

D
a
ta

s
e
t

1

1 - - - 2.64 - - 3.55 - -

2 3.86 0.30 0.30 1.91 1.97 2.05 0.14 0.15 0.15

3 14.10 1.53 1.58 1.36 1.62 1.42 1.35 1.36 1.36

4 0.16 0.21 0.12 2.46 1.67 1.16 2.54 2.88 3.12

5 3.46 1.56 1.51 1.64 1.63 1.75 1.45 1.42 1.43

6 0.13 0.12 0.11 4.56 1.51 1.04 4.94 4.93 5.10

Total 21.71 3.71 3.62 14.57 8.38 7.42 13.97 10.73 11.15

Total 29.04 30.37 35.85

D
a
ta

s
e
t

2

1 - - - 14.15 - - 20.60 - -

2 6.10 1.97 1.86 13.17 13.69 14.28 1.15 1.26 1.24

3 102.80 91.75 91.55 89.75 90.42 88.81 24.83 25.02 25.47

4 0.46 0.22 0.19 21.69 14.77 8.84 22.09 23.63 25.70

5 91.83 91.76 92.93 91.71 89.89 90.07 28.11 29.22 29.45

6 0.46 0.24 0.15 33.83 12.30 6.84 33.90 34.61 35.39

Total 201.64 185.94 186.69 264.29 221.06 208.84 130.68 113.73 117.24

Total 574.27 694.19 361.65

D
a
ta

s
e
t

3

1 - - - 30.94 - - 46.33 - -

2 7.72 4.28 3.94 29.06 29.93 31.75 2.69 3.05 3.13

3 465.09 453.28 453.61 446.85 450.28 450.24 69.26 69.72 70.16

4 1.01 0.32 0.27 53.45 30.86 21.82 55.11 58.78 62.10

5 456.56 455.61 455.01 451.94 453.28 453.44 77.77 78.19 78.29

6 1.00 0.26 0.21 73.02 26.58 15.39 74.56 75.93 77.76

Total 931.37 913.74 913.04 1 085.26 990.93 972.65 325.73 285.67 291.44

Total 2 758.15 3 048.84 902.84

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 71 of 131

Figure 13: Stacked bar chart of average times for LISA calculations on Dataset 1

Figure 14: Stacked bar chart of average times for LISA calculations on Dataset 2

0

5

10

15

20

25

Band 1 Band 2 Band 3 Band 1 Band 2 Band 3 Band 1 Band 2 Band 3

Raster + PySAL Vectorise + PySAL Vectorise + pygeoda

Ti
m

e
(s

)

Task 6

Task 5

Task 4

Task 3

Task 2

Task 1

0

50

100

150

200

250

300

Band 1 Band 2 Band 3 Band 1 Band 2 Band 3 Band 1 Band 2 Band 3

Raster + PySAL Vectorise + PySAL Vectorise + pygeoda

Ti
m

e
(s

)

Task 6

Task 5

Task 4

Task 3

Task 2

Task 1

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 72 of 131

Figure 15: Stacked bar chart of average times for LISA calculations on Dataset 3

The other trend that is noticeable in Figure 13, Figure 14, and Figure 15 is that the first band

of each dataset has the longest processing time. This is expected as strategy 1 will cache the

raster array when processing the first band, which will optimise the processing of band 2 and

3. Similarly, the vectorisation time (task 1) that is required for strategy 2 and 3, is allocated

only to the first band in the dataset. This would address the reason why band 1 requires the

most processing time, regardless of the strategy or the size of the dataset.

If one were to ignore the cumulative time for band 1 and compare only the cumulative

processing times for bands 2 and 3, the comparison becomes quite interesting. The time to

process each of the two bands appear identical in strategy 1. Their processing time decreases,

however, as the band number increases for strategy 2, while the processing time increases

as the band number increases for strategy 3. This trend holds true regardless of the dataset

size. One would expect that the time to process the bands would increase as the band number

increases, as the test datasets were altered such that the noise increased for each band. This

could indicate that the effect of noise in a dataset (band) on processing time is greater for

pygeoda (strategy 3) than PySAL, as increasing processing times are not evident for strategy

1 and 2 which make use of the PySAL library.

4.2.2.5 Discussion

The comparison of times for each of the strategies for LISA with raster data illustrates that

pygeoda is more efficient when processing large datasets. The smallest test dataset used was

231 by 180 cells and it is expected that the majority of the datasets that autoESDA would be

0

200

400

600

800

1000

1200

Band 1 Band 2 Band 3 Band 1 Band 2 Band 3 Band 1 Band 2 Band 3

Raster + PySAL Vectorise + PySAL Vectorise + pygeoda

Ti
m

e
(s

)

Task 6

Task 5

Task 4

Task 3

Task 2

Task 1

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 73 of 131

used for would be larger than that. This makes the pygeoda strategy (strategy 3) the preferred

one to incorporate into the autoESDA library in order to calculate LISA. This comes as no

surprise as Anselin et al. (2022) came to the same conclusion when comparing pygeoda to

PySAL. pygeoda’s underlying C++ codebase allows its processing to be faster than that of

Python-based PySAL.

Although this is currently regarded as the most efficient strategy, it would be interesting to

revisit these comparisons in the future. One of the advantages of the raster storage format is

that their grid-like nature, which is made up of multiple numpy arrays, should enable it to

handle calculations such as LISA more efficiently than vector data GeoDataFrames (Sapre

and Vartak, 2020). The PySAL weights functionality is still relatively new, and one could expect

performance improvements that may enable it to rival the processing time of pygeoda.

For this reason, pygeoda will be incorporated into the raster module of autoESDA. While it is

near identical to the pygeoda code used in the vector module, the decision has been made to

keep the code separate, to allow for updates and/or changes to be easily made in the future

once the raster functionality has been improved.

While Moran’s 𝐼 and Geary’s 𝐶 and their local counterparts are regarded as the most popular

spatial autocorrelation statistics, they are not suitable for use on large datasets (Amgalan et

al., 2022). While Moran’s 𝐼 and Geary’s 𝐶 may be suited for vector datasets, the grid-like

structure of a raster very quickly translates to a large dataset of vector cells. Although these

statistics will be incorporated into the autoESDA raster module due to their popularity, it may

be beneficial in the future to include other measures of spatial autocorrelation that are more

suited to large datasets (Amgalan et al., 2022). Another approach could be the incorporation

of parallelization and other optimisation strategies (Paudel and Puri, 2022).

4.3 Updated Architecture

The first iteration of autoESDA was not designed with future improvements in mind. It

consisted of a single script file that accepted a GeoDataFrame as an input and saved an output

HTML file to the working file directory. This monolithic script was made up of multiple functions

being called and numerous HTML strings being passed between them. This design was

inefficient for multiple reasons. Firstly, there was an unnecessary number of variables stored

that were only called once, which meant that memory was not conserved. Secondly, there was

no clear structure to the code, which, combined with the various HTML strings being

concatenated at various parts of the scripts’ runtime, meant that any change was a challenging

task.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 74 of 131

The original architectural design was based solely on support for vector data, making the

decision to include raster functionality the primary motivator to restructure the autoESDA

architecture. The newer, more modular design made it easier to address any existing errors

in the code, while also being able to make minor improvements (discussed in Section 4.4) and

incorporating the raster functionality discussed in Section 4.2. These tasks have all been

easier to implement due to the updated architectural design, as the components are no longer

as tightly coupled as they were in the first iteration. Figure 16 illustrates the architectural design

differences through the use of a package diagram for each iteration.

Figure 16: Package diagrams illustrating the architectural design of the first (left) and second (right)

iterations of autoESDA

The Model-View-Controller (MVC) architecture is an approach that splits the design of a

software platform into three components (Syromiatnikov and Weyns, 2014). The Model

consists of a set of classes that make up the structure of the data in the system, the View is

what the user engages with, while the Controller handles the input and output of the software

by functioning as the link between the Model and the View (Syromiatnikov and Weyns, 2014).

The design of the second iteration autoESDA is loosely based on the MVC approach. The

library is split into two modules – vector and raster. Each module works with their namesakes’

data format - the vector module accepts a GeoDataFrame as its input, and the raster module

accepts a xarray DataArray as its input. These are referred to as the input vector and input

raster respectively. Each module is made up of two components – a model and controller. The

model defines the classes that are relevant for that module (depending on whether vector or

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 75 of 131

raster data is being used). The class functions are called to generate the components that

make up the output report. The controller currently acts as the view and controller as these

two components are still tightly coupled. The controller makes numerous calls to the model

and then combines the results into the HTML report which is the final output of autoESDA.

Section 4.3.1 and Section 4.3.2 will discuss the model and controller respectively for both the

vector and raster modules.

4.3.1 Model

One of the major changes that has been brought about by the redesign of the autoESDA

library is the use of classes to structure the various ESDA outputs that can be generated from

a dataset. This enables one to implement new functionality more easily than on the previous

design. The raster and vector models differ slightly due to the different input formats; however

they are designed to be as similar to each other as possible. Each model is based on a parent-

child class schema allowing for only one instance of parent to be created, which have at least

one instance of the child class relating to it. For the vector model the parent class is referred

to as a Dataset, while the child class is referred to as a Variable. In the raster model the

parent class is referred to as a Raster, while its child class is referred to as a Band.

Each model is built on the premise that the parent class only needs to be created once for the

input dataset, and that its creation would automatically generate the required number of child

classes based upon the number of variables (vector datasets) or bands (raster datasets).

When the autoESDA report is generated, the relevant function or attribute from the classes

are called, which then returns an object to include in the report. Depending on the output, this

object may take on a variety of forms, such as a figure or DataFrame.

4.3.1.1 Vector Module

The vector model is made up of a Dataset parent class and a Variable child class, as

illustrated in Figure 17. The Dataset class is created from the input vector, and its attributes

and functions relate to the entire dataset. It’s first attribute, gdf, is the input vector which is

stored as a GeoDataFrame. The numeric_columns attribute is a list of names of the numeric

columns in the dataset – these are the only columns that are included in the calculations as

other data types are not yet supported. The final two attributes are pygeoda_weights and

pysal_weights – each are spatial weights objects for their respective library. The pygeoda

weights object is used for the LISA calculations, while the PySAL weights object is used for

the calculation of global spatial autocorrelation statistics. Although it is more efficient at

calculating LISA, pygeoda, at the time of writing unfortunately does not support global spatial

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 76 of 131

autocorrelation statistics. This necessitated the creation of a PySAL weights object which

enable the calculation of global measures of spatial autocorrelation using PySAL. Fortunately,

these global functions are less computationally intensive than their local counterparts.

The init function forms part of any Python class and is used to create a new instance of a

class. In this case, a new Dataset is created. This function requires the specification of a

GeoDataFrame as its only parameter. Each of the attributes described in the paragraph above

(gdf, numeric_variables, pygeoda_weights, and pysal_weights) will be derived

once the init function is called. These attributes can then be accessed by the functions in

the Dataset class and do not need to be derived each time they are required, thus avoiding

unnecessary extra processing.

The overview_statistics function returns a DataFrame of information relating to the

dataset. This includes the coordinate system, number of features and attributes, and which

are the numeric attributes which have been included in the report, or attributes of other data

types that have been excluded. The purpose of the overview statistics table is to provide the

user with quick information relating to the makeup of the dataset and what information has

been included or excluded in the autoESDA report.

The study_area_figure function returns a basic plot of the dataset made up of black

outlines and hollow polygons. The purpose of this map is not to be visually appealing, but to

illustrate the shape of the dataset to the user so that any irregularities can immediately be

identified. The coordinates (based on the Coordinate Reference System (CRS) of the input

vector) are also included on the axes so that the user can assess whether they are consistent

with what would be expected.

The numeric_variables function initialises a new Variable class for each

numeric_column in the Dataset and returns these as a list of Variable objects. To

analyse each Variable in the Dataset, this list can be iterated through, or one could access

each Variable individually by calling the list and specifying the respective index relating to

that Variable.

The dataset_statistics function returns a DataFrame containing the descriptive

statistics for each Variable in the Dataset. The output DataFrame is created by combining

the DataFrames returned from the variable_statistics function for each Variable.

The dataset_sample function returns a DataFrame consisting of ten randomly selected

features and their attributes from the input vector. The geometry column is excluded as its

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 77 of 131

contents are often lengthy and are difficult to display in its entirety in the output report. The

sample is selected using the pandas sample function which returns the user specified number

of randomly selected rows from a DataFrame (GeoDataFrame) – in this case, the input vector.

The correlation_figure function returns a figure made up of three correlation heatmaps.

Three correlation matrices (Pearson, Kendall, and Spearman) are calculated using the pandas

corr function and are then coloured as a heatmap using seaborne’s heatmap function.

Finally, the pairplot_figure function returns a pairwise plot of each Variable in the

Dataset. The plot is generated using the pairplot function from the seaborne library.

Figure 17: UML class diagram for the vector model

A Dataset will have a Variable class for each numeric column in the input vector. A

Variable helps encapsulate the various components related to that specific column, and in

doing so it enables the same code to be reused regardless of how many instances of the

Variable class are created for the Dataset.

A Variable is instantiated by calling the init function, which requires the specification of

the parent GeoDataFrame, column name (string), and the parent PySAL and pygeoda weights

objects. Each of these parameters are stored as attributes of that instance of the Variable

class. Additionally, the values (observations) relating to that variable are extracted from the

original GeoDataFrame. These are stored as a pandas series and can be accessed by calling

the values class attribute.

The first function in the Variable class is variable_statistics. This function uses the

pandas describe, skew, kurt, nunique and isna functions along with the global Moran

and Geary functions from PySAL. These functions yield various descriptive statistics which

are combined into a DataFrame that is returned when the function is called.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 78 of 131

The descriptive_figure function returns a figure made up of three axes. The first is a

box plot which is generated using the matplotlib boxplot function; the second is a probability

histogram which is generated using seaborne’s histplot function, and the third is a

cartogram which is generated using geoplot’s38 cartogram function.

The local_moran_figure and local_geary_figure operate almost identically. Each

function uses the respective pygeoda local_moran or local_geary function to create a

LISA object.

When creating a LISA object for local Moran or local Geary, pygeoda automatically assigns a

value of zero to fields that have been left empty or contain a NaN. This is misleading as, if no

error is given, one can still plot the results for which all of the polygon features will display as

High-High clusters (local Moran) or Negative clusters (local Geary) – both with very high

significance. To address this issue, the following line of code has been added:

undefined_values = values.isna().tolist()

This line creates an array of Boolean (True/False) values which will then be used when the

local Moran or local Geary function is called. The array acts like a mask and ensures that

missing values are not considered in the construction of the LISA object.

Once created, the LISA objects are then passed to the _plot_lisa function. This global

function in the autoESDA vector model was created to avoid the duplication of code for each

statistic and will accept a LISA object and return a figure containing both a cluster map and a

significance map.

Finally, the choropleth_figure function returns a figure made up of six choropleth maps

– each with a different classification scheme. The maps are plotted using matplotlib using

classification schemes provided by the mapclassify library.

4.3.1.2 Raster Module

Just as with the vector model, the raster model is also made up of parent and child classes,

known respectively as Raster and Band, as illustrated in Figure 18. The only parameter

required to create a Raster class is the input raster (in the form of a rioxarray DataArray

object). The init function is called to create an instance of the Raster class. When a

Raster is created, three attributes are derived, namely: vectorised, geoda_object, and

geoda_weights. The vectorised attribute is the output GeoDataFrame once the input

38 https://residentmario.github.io/geoplot/index.html

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://residentmario.github.io/geoplot/index.html
https://residentmario.github.io/geoplot/index.html

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 79 of 131

raster has been vectorised. The geoda_object attribute is then created from the vectorised

GeoDataFrame and is used to create the geoda weights object, which is stored under the

geoda_weights attribute. These attributes are be used by the functions within the Raster

class.

The overview_statistics function returns a DataFrame containing information relating to

the raster dataset. This includes the CRS, number of bands/rows/columns, resolution, extent,

and other metadata that could be extracted from the input raster. These are obtained by calling

the crs, shape, resolution, bounds, and attrs methods which are defined in the xarray

DataArray object or it’s rioxarray extension.

The bands function is similar to the numeric_variables function in the Dataset class of

the autoESDA vector model. This creates a new instance of the Band child class in the raster

autoESDA model for each band in the dataset. The bands function returns a list of Band

objects, its length being dependent upon the number of bands in the raster dataset.

The correlation_figure and pairplot_figure functions are identical to the functions

of the same name in the vector model, as they use the GeoDataFrame created by

vectorisation. The code has been purposely duplicated to allow for one to easily refactor it in

the future so that it is built on the input raster rather than on its vectorised form. This would

allow it to be altered more easily in the future, should there be a need to use a different, more

efficient strategy.

Figure 18: UML class diagram for the raster model

Each Raster class will have at least one Band relating to it. The Band class helps

encapsulate various components that relate to that specific band, avoiding the need to

duplicate code. To create an instance of a Band class, three parameters are required. These

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 80 of 131

are: a band xarray DataArray object, the vectorised GeoDataFrame, and the pygeoda weights

object. These parameters are either assigned to or used to derive the ten attributes associated

with a Band class, namely: name, band, datatype, crs, nodatavalue, bandseries,

bandnodataremoved, vectorised, geoda_weights, and pysal_weights.

A Band is created by calling its init function which requires the specification of the band

GeoDataFrame and a geoda weights object. When a Band is created, various attributes are

automatically derived for use in the class functions. The name attribute is extracted from the

band parameter required to create the Band class.

The band attribute stores a xarray DataArray object identical to the parameter, however with

the addition of an attribute called nodatavals which is added using this line of code:

band = band.rio.update_attrs(new_attrs={"nodatavals": [band.rio.nodata]})

This is a necessary step as PySAL uses the hard coded nodatavals name for this attribute

and, if it cannot be found, it will generate a spatial weights matrix for the entire grid extent

rather than just the cells that have values. Consequently, when a local Geary or local Moran

object was constructed, the result was an error due to the dimension mismatch of the spatial

weights matrix and the already masked array of data values. The specification of an attribute

with the name nodatavals rather than nodata or _FillValue which is used in rioxarray,

means that a spatial weight matrix can still be created. This shortfall has been logged as an

issue on the PySAL repository, and once it is addressed, the workaround described here will

no longer be necessary.

The datatype, crs, and nodatavalue attributes are extracted from the band parameter

which has stored attributes called dtype, crs, nodata respectively. The vectorised

attribute stores the GeoDataFrame of the vectorised raster, with geoda_weights and

pysal_weights referring to their respective spatial weights object for each library.

The histogram_figure function returns a figure in the form of a probability histogram of

the values in the band. This is created using the histplot function from the seaborne library.

The band_statistics function returns a DataFrame of various descriptive statistics of the

values in the band. The values are arranged in a pandas series and the pandas describe

function is used for the aspatial statistics, while PySAL’s Moran and Geary functions are used

to calculate the global spatial autocorrelation statistics. All of these statistics are collated into

the DataFrame before it is returned.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 81 of 131

The local_moran_figure and local_geary_figure each return a figure with two plots

– the respective LISA cluster map, as well as a map illustrating its significance. The code is

practically identical to the functions of the same names in the Variable class. The code has

been duplicated on purpose as the functionality works for the vectorised input raster, however

it is expected that in the future there will be a more efficient strategy to compute these statistics

that does not require vectorisation. This motivation is discussed in greater detail in Section

4.2.

The output of the choropleth_figure function is a figure of six choropleth maps with

different classification schemes, just as is the case for the function with the same name in the

Variable class. The technical component however differs slightly as the raster array is

plotted, rather than a GeoDataFrame. Consequently, the classes need to be calculated

separately and the cells with no values must be masked.

4.3.2 Controller

Just as with the design of the model for autoESDA, the workflow for the raster and vector

modules are very similar, with slight differences due to each data structure and how each is

processed. The workflow is carried out in the controller in each module, and it begins when

the user calls the generate_report function. For both the raster and the vector modules,

the user is required to specify an input dataset (GeoDataFrame or xarrayDataArray). The user

can optionally specify a string to be used as the name for the output HTML report file, and in

the case of the vector model, the user can specify a report name which will be displayed on

the Summary Page of the report. Once the generate_report function is called, a timer is

initialised (to time the report generation process) and the input dataset is used to create a

Dataset or Raster object in the modules’ model. These classes are created by calling their

__init__ constructor function.

Various calls are made to the Dataset/Variable and Raster/Band classes (located in the

model) throughout the workflow and the response will take the form of either a pandas

DataFrame or a matplotlib figure. The pandas to_html function is used to convert the

DataFrames into an HTML compatible string, and the matplotlib figures are converted into a

string which makes up a HTML image tag. The latter is done by calling the internal

_encode_image function of the controller and specifying the figure that is to be encoded as

a parameter.

For each controller there are four internal functions that are called which are responsible for

creating the Summary, Variable/Band Information, Correlation, and About Pages respectively.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 82 of 131

Each of these functions make numerous calls to the respective model to generate the various

components of their namesake’s page. These internal functions are used to group the calls

made to the model. All the interactions between functions and different parts of the module

are illustrated and numbered in the UML sequence diagrams for the vector module (Figure

19) and the raster module (Figure 20).

The generation of the Summary Page, and the Variable/Band Information Page differs

between the two modules and will be discussed separately. The latter half of the workflow –

generating the Correlation and About Pages, along with the final report output, will then be

discussed in terms of both the vector and raster modules as this process is identical for each

module.

4.3.2.1 Vector Module

The UML sequence diagram in Figure 19 illustrates the interactions between the different

components in the vector module.

The _summary_page function is an internal function of the controller and requires the created

Dataset, and optionally, the report title (string) as parameters. This function creates the

Summary Page and groups together sequences 3 to 20 in Figure 19. When called, this

function will call the overview_statistics, study_area_figure,

dataset_statistics and dataset_sample functions of the Dataset class in the vector

model. These functions will return a DataFrame of overview statistics, study area figure,

DataFrame of dataset statistics and DataFrame sample respectively. The generation of the

DataFrame of dataset statistics is made up from the individual DataFrames of the variable

statistics. As a result, executing the dataset_statistics function necessitates the call of

the numeric_variables function in the Dataset class which initialises a Variable class

for each Variable in the Dataset class. The variable_statistics function is then

called for each Variable, and the returned DataFrames are combined to create the

DataFrame of dataset statistics.

The internal _variable_information function of the controller is slightly different to the

other functions as it loops through each Variable in the model rather than dealing with the

parent Dataset object. The other difference is that it returns two strings – a tab string and a

page string. The tab string is the HTML string required to create the buttons along the top of

the report to toggle between pages and needs to be created in the

_variable_information as it requires the iteration through each of the Band objects to

obtain their name to use as a label for these buttons. The page string is the HTML string that

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 83 of 131

represents the Variable Information Page for each Variable. Sequence numbers 21 to 31 in

Figure 19 represent the workflow in this function. Each Variable Information page is made up

of a table of variable statistics, descriptive figure, local Moran figure, local Geary figure and

the choropleth figure. Each of these components are created by calling the

variable_statistics, descriptive_figure, local_moran_figure,

local_geary_figure, and choropleth_figure functions of the relevant Variable

instance. A HTML string representing each Variable Information Page is returned which is

combined into one long HTML string which is finally returned by the internal

_variable_information function within the controller.

Figure 19: UML sequence diagram of the vector module workflow

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 84 of 131

4.3.2.2 Raster Module

The UML sequence diagram in Figure 20 shows the interaction between the different

components of the raster module. These processes are all part of the raster module workflow,

which is responsible for transforming the input raster (xarray.DataArray) into an autoESDA

report which is then returned to the user.

The _summary_page function groups together the various interactions (sequences 5 to 15)

between the model and controller that are required to create the Summary Page and requires

the specification of a Raster object as its only parameter. The Summary Page is made up of

a table of overview statistics and a table of raster statistics. These are returned as DataFrames

when the overview_statistics and raster_statistics class functions of Raster

are called. In order to generate the DataFrame of raster statistics, the numeric_variables

function of Raster is called which creates an instance of Variable for each

numeric_column in Dataset. To create an instance of Band, the Raster class in the

model makes a call to the __init__ (constructor) function of Band which requires the

specification of the vectorised GeoDataFrame, column name (string), PySAL weights object

and GeoDa weights object. This enables the code in the raster_statistics function of

Raster to call the band_statistics function for each Band. The returned DataFrame from

each of these calls are then combined to form one DataFrame that is returned when the

raster_statistics function is called.

The internal _band_information function groups together the interactions (sequences 21

to 31) between the controller and instances of Band in the model to allow for the creation of

the Band Information Page(s). A Band Information Page is made up of a table of band

statistics, a histogram figure, local Moran and local Geary maps (each with their associated

significance map) and a choropleth figure. These are generated by calling the

band_statistics, histogram_figure, local_moran_figure,

local_geary_figure, and choropleth_figure functions of the respective Band. A

HTML string representing each Band Information Page is returned which is combined into one

long HTML string which is finally returned by the internal _band_information function

within the controller.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 85 of 131

Figure 20: UML sequence diagram of the raster module workflow

4.3.2.3 Both Modules (Correlation and About Pages, Report Output)

The _correlation_page and _about_page functions are currently identical to each other

and have been duplicated on purpose as a placeholder so that changes can easily be

implemented for one module without affecting the other. The _correlation_page function

accepts the relevant Dataset/Raster object and calls the respective

correlation_figure and pairplot_figure functions. The output of each of these

functions is a figure which will be added to the Correlation Page string once encoded. The

_about_page function accepts the start time (derived when the generate_report is

called) as a parameter which it uses to calculate the elapsed time to generate the report. The

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 86 of 131

remainder of the About Page is a static HTML string with the exception of a data and time text,

which is calculated and then included in the about page string which is the output of the

_about_page function.

The strings resulting from the functions described above are all concatenated with other HTML

strings that are hard coded – these include the various elements that make up the structure

and functionality of the report, such as inline CSS and JavaScript. The final HTML string is

then written to a newly created file. If the user specified a name, the output file will be assigned

that name with a .html extension, alternatively, if no name was supplied, a default of

“autoESDA-vector-report.html” or “autoESDA-raster-report.html” will be used.

4.4 Other Minor Improvements

Just as is the case for every software project, autoESDA requires continuous improvements.

These improvements are discussed in the remainder of this section and are grouped according

to the element of the report to which they relate. While these can immediately be seen in the

report, improvements are not just cosmetic and have been applied to the core workflow of the

library, not just changes to the HTML layout.

4.4.1 General

The general improvements refer to the library as a whole, rather than one of the components

of the report. This includes the addition of an About Page in the generated reports, as well as

an updated layout of the HTML pages. The library is also available for download from PyPI39

– the official Python package index, as well as on conda-forge40 under the BSD 3-Clause

license. As of October 2023, the library has been downloaded over 1200 times from PyPI and

its GitHub repository41 has been visited over 1900 times.

The About Page (pictured in Figure 21) appears in both the vector and raster versions of the

generated HTML report. Its purpose is similar to that of a metadata file, in that it provides the

user with miscellaneous information relating to the report as well as how it is generated and

how it could be interpreted. This is achieved by informing the user of any default parameters

used to generate the report – allowing the user to identify potential limitations. This is done by

including a link to a User Guide which is stored in the autoESDA GitHub repository. The user

will, however, require an internet connection to access the User Guide. In addition to a link to

the User Guide, the About Page also contains a link to the source code of the autoESDA

39 https://pypi.org/project/autoesda/
40 https://anaconda.org/conda-forge/autoesda
41 https://github.com/NicholasDeKock/autoESDA

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://pypi.org/project/autoesda/
https://anaconda.org/conda-forge/autoesda
https://github.com/NicholasDeKock/autoESDA
https://pypi.org/project/autoesda/
https://anaconda.org/conda-forge/autoesda
https://github.com/NicholasDeKock/autoESDA

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 87 of 131

library as well as the data and time that the report was generated, and how long it took to

generate the report.

Figure 21: The About Page that is present in both the vector and raster autoESDA reports

The HTML layout has been improved so that it is more modular and can be customised more

easily. Each page has adopted a CSS grid structure, made up of various grid elements. Each

grid element can be positioned on the grid by specifying its row and column index, and how

far it can stretch in each dimension. This also ensures that the position of each of the elements

in relation to each other are fixed and should exceed the page size. The overflow for each

grid element is set to “auto” which means that should the contents of the grid item exceed that

which is allocated to the grid item, a scroll bar will appear. This will enable the user to toggle

the view so that they can see everything in that grid element, without the overflow having an

effect on any of the other elements on the page. Previously, the Variable Information Page

was one matplotlib figure with multiple axes. The revamped design makes use of numerous

figures which allow for each one to be assigned a different grid element and heading.

4.4.2 Summary Page

As a way of customising the report, the user may now optionally specify a name that will be

displayed on the Summary Page above the study area plot. Previously this heading just read

Study Area, and this has been left as the default text should a user not specify a name to use.

Within the dataset overview table, the names rows and columns have been replaced by

features and attributes respectively. This was changed to avoid confusion, as one of the

interview participants pointed out that the row/column terminology, although applicable when

using a GeoDataFrame, could confuse the user into thinking they were working with a raster

dataset. The updated names are consistent with the ESRI’s definition42 of an attribute table.

Several statistics have been added to the descriptive statistics table. These include skewness,

kurtosis, and a count of null values. Skewness and kurtosis are calculated using the pandas

42 https://support.esri.com/en-us/gis-dictionary/attribute-table

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://support.esri.com/en-us/gis-dictionary/attribute-table
https://support.esri.com/en-us/gis-dictionary/attribute-table

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 88 of 131

skew and kurt functions respectively, which by default skip null and non-numeric values. The

null (NaN) values are counted by using the pandas isna function in conjunction with the sum

function. Each null value returns a value of one which in turn is counted to determine the total

number of null values. Global Moran’s 𝐼 and Geary’s 𝐶 and their respective p-values have also

been included to allow the user to compare measures of spatial autocorrelation across

variables.

The last improvement made to the Summary Page is the way in which the dataset sample is

composed. Originally it was made up of the first and last five features in the GeoDataFrame,

but this has now changed to include ten randomly selected features. This was changed to

allow the user to identify faults in the dataset that could systematically be missing from the

first and/or last features. All the changes described in this section can be viewed in Figure 22.

Figure 22: Updated Summary Page for autoESDA vector report

4.4.3 Variable Information Page

The most obvious change to the Variable Information Page (pictured in Figure 23) is that the

layout is more complex. Previously the page was made up of one figure with multiple axes,

however the updated layout is comprised of multiple figures and a table of descriptive statistics

specifically related to the respective variable (a subset of the full descriptive statistics table

that forms part of the Summary Page). Previously a frequency histogram was used, however

this has been changed to be a probability histogram. This was done as the probability

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 89 of 131

histogram can be compared with that of other variables. It also avoids duplication as the main

diagonal of the Pairwise Plot on the Correlation Page is comprised of a frequency histogram

for each variable. A final method of visualising spatial heterogeneity is the newly incorporated

cartogram which visualises the magnitude of the variable for each feature. This is created

using the cartogram feature from the geoplot library.

The LISA section of the Variable Information Page has been completely revamped. The

reference distribution with various statistics has been removed, as numerous interview

participants were confused by this and did not see its relevance. The Moran’s scatter plot has

also been removed. In order to visualise the local Moran and local Geary calculations, a cluster

map and significance map are used for each statistic. The calculations and classes are

computed using the local_moran and local_geary function of the pygeoda library.

pygeoda was chosen as it calculates faster than PySAL and its creation of a LISA object allows

one to extract the cluster classes, labels, colours, and p-values more efficiently. Once

extracted, each of these components are used in conjunction with geopandas to plot the

cluster and significance maps. This new approach allows for the plotting of each of the results,

and the figures can be more easily customised as they no longer form part of the output from

the plot_local_autocorrelation function form the splot library, which was used

previously.

The choropleth maps in the Variable Information Page also received a facelift. There are now

six maps with the Boxmap, Equal Interval, Quantiles, Mean-Standard Deviation, Maximum

Breaks, and Fisher-Jenks classification schemes. Each of these are plotted using a

combination of geopandas and, by extension, mapclassify. The colour ramp has been

reversed such that larger values are now visualised using darker colours - as is the norm in

cartography (Slocum et al., 2014). The colour scheme has been changed from viridis to YlOrBr

as the yellow-orange-brown palette is considered to be more neutral than the green-yellow-

purple colours it used previously. This is important as the colour choice needs to be generic

enough such that it avoids potential connotations when used for various types of data. For

both the choropleth and LISA maps, the decision was made to place the legends below the

map. Previously the legend placement was set to best, however it was evident that this has

some limitations and an optimal legend location inside the map could not be chosen as the

optimal placement would depend upon the shape of the dataset.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 90 of 131

Figure 23: Updated Variable Information Page for autoESDA vector report

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 91 of 131

4.4.4 Correlation Page

Originally the correlation heatmap was constructed using Pearson correlation, however this is

limited in that it is only suitable for linear variables (Devore and Berk, 2012). Some of the

interview participants suggested that the user should be allowed to specify their preferred

correlation type should they desire. The decision was made to include a heatmap matrix for

Pearson, Kendall, and Spearman correlation. This is the same approach used in the pandas-

profiling library and does not affect performance as the calculation is not computationally

intensive. This leaves the user to interpret the results as they see fit. All values for the

correlation heatmaps are now rounded off to two decimal places to avoid the values extending

beyond their respective cells. The colour bar has also been included as per numerous

suggestions; this allows the user to more easily comprehend the scale of the various colours

used.

The pairwise plot had been updated to include a regression line. The use of a regression line

is only suitable for linear relationships; however the responsibility has once again been left to

the user to interpret it as they see fit.

The addition of extra correlation heatmaps have the added benefit of improving the layout of

the Correlation Page. The heatmaps are stacked under each other to the left of the page with

the pairwise plot to their right. The figures will all rescale according to the size of the page and,

as a result, the viewing experience will have slightly improved from what it was previously, as

less scrolling is required. The updated Correlation Page is shown in Figure 24.

Figure 24: Updated Correlation Page for the autoESDA vector report

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 92 of 131

4.5 Limitations and Future Developments

The updates to autoESDA architecture and output reports are considered to be significant

improvements over earlier versions. There are, however, further improvements that could be

made to either improve the utility of the library, or to address current limitations.

File formats

Currently the raster module is only functional with GeoTIFF files. A user will be able to specify

another file format (such as PNG, JPEG, or netCDF), however it has not been extensively

tested to see how autoESDA will handle these. The structure of a GeoTIFF file ensures that

arrays are referred to as bands, and as such, when opened with rioxarray, the terms band,

and x and y coordinates are used. This is, however, different for other formats such as netCDF

files where bands are named rather by the attribute they represent, and lat and long are used

as names for the values that represent cell coordinates. Once the input of the raster dataset

is addressed, the rest of the library should be capable of handling the data from other file

formats.

Spatial weights

autoESDA currently uses queen’s case contiguity weights with an order of one by default.

Unfortunately, this is a limitation as the user has no way of using a different type of weights

matrix. It could be beneficial in the future to include functionality for the user to specify the type

of weights matrix (contiguity/distance-based/knn) and to specify the associated parameters

(shape/order/distance/number of neighbours). The functionality could even be expanded to

allow the user to specify their own, previously created weights file as a parameter.

Additionally, the output report could display the number of islands, as is done when creating

the weights matrix in GeoDa. This should be a straightforward task as a warning message is

already displayed in the command line when neighbour-less observations (islands) are

detected. Other informative measures such as the minimum, maximum, and mean number of

neighbours could also be displayed.

Report structure

The structure of the current HTML reports (vector and raster) are functional, however there is

still excessive whitespace, and the design often requires the user to scroll more than what

should be necessary. Currently the same report structure is used each time the report is

generated, and it could be beneficial for the user to customise which elements are included in

the report. This could include specifying what data to include in the report, which would mean

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 93 of 131

that time is not spent processing variables or bands that are of no interest to the user. The

same could be true for the various plots, allowing the user to specify when they may only be

interested in generating a Correlation Page, or seeing only the choropleth maps and

histograms – speeding up processing time as intensive LISA calculations may not be required.

This same philosophy is behind the design of DataPrep.EDA where Peng et al. (2021) allowed

the user to run certain ad-hoc EDA tasks, rather than a colossal report. This allowed for an

interactive processing speed that is dependent on the required task.

Improved error handling

The updates to autoESDA has begun incorporating some error handling, however there is still

a large room for improvement as it is not uncommon to come across an unexpected error.

Currently, if an error is encountered in the generation of a plot, the error message is displayed

in the area where the plot would be. This allows the report generation to continue even if an

error is encountered, however, this solution could be improved. The displayed error message

is a direct copy of the exemption thrown from the source code. This means that the user may

not easily understand what has caused the error– especially if they have no programming

experience.

Another problem is that there also seem to be frequent geometry errors that yield exceptions.

If one tries to generate a vector report with a GeoDataFrame that has multipolygons, the

following error message appears:

TypeError: 'MultiPolygon' object is not iterable

If the multipolygon features are simplified to form multiple individual polygons, the following

error message appears instead:

TypeError: 'MultiLineString' object is not iterable

This seems to be a problem that is dependent on which version of shapely is installed, however

more research into the problem needs to take place before a suitable solution can be

developed.

Additional EDA and ESDA functionality

The functions included in autoESDA are not meant to be an exhaustive list of all the tools

available under the EDA/ESDA umbrella. There are endless possibilities regarding what

functionality could be incorporated into the output report. Increased functionality could greatly

increase the utility of the library; however it comes at the cost of increased complexity and

processing time.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 94 of 131

Interactive Reports

The ability to interact with ESDA outputs is extremely effective, especially when working with

large datasets (Anselin, 1996). The autoESDA report is static, meaning that no animations or

brushing have been incorporated. Brushing, interactive maps, popups and other features

could be incorporated into the report; however this would increase the file size of the report.

Larger file sizes mean that the reports cannot easily be shared with other parties.

4.6 Conclusion

This chapter has documented the design and implementation of numerous improvements to

the autoESDA library. Four high-level requirements were identified, namely: raster

functionality, updated architecture, various minor improvements, and performance. The first

three of these requirements have been addressed through the discussions within this chapter.

In the next chapter, the final requirement – performance, will be addressed. This is done by

testing how autoESDA handles vector and rater datasets that vary in their size and complexity.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 95 of 131

CHAPTER 5: PERFORMANCE EVALUATION

5.1 Chapter Overview

This chapter aims to evaluate the performance of the updated autoESDA library in how it

processes datasets of varying complexity and size. This addresses the final high-level

requirement defined at the beginning of Chapter 4. The measure of performance used will be

the time taken to generate the autoESDA report for each dataset. The results and their

implications will be discussed. The output reports can be viewed online, their links are provided

in Appendix E.

5.2 Method

All experiments were conducted on a desktop computer that has a 64-bit operating system

with Windows 10 Enterprise installed. It has an Intel Xeon CPU E3-1270 v6 processor runs

with a clock speed of 3.80 GHz. There is also 64 GB of RAM installed as well as 32 GB

graphics card.

The code was run in an Anaconda environment with Python 3.9 installed, including any

dependencies required. All data was saved onto the local SSD storage to ensure efficient data

retrieval and writing.

For both the vector and raster tests, the respective generate_report function was called

from the controller of each module. The appropriate test dataset was given as a parameter,

and the report name was specified. The report name was made up from the dataset, the

version, and the number of the run simulation (e.g. Dataset1_LowRange_1).

The code for each test simulation was run at least three times and the average computation

time for the runs is used in the results section for this comparison. If the values in the first three

runs differed significantly then the process was rerun until three sets of times that were similar

to each other were achieved. These were then used to calculate an average and the irregular

results were discarded. To allow for consistent results, the computer was not used for anything

else while the code was running.

5.3 Description of Test Datasets

A variety of raster and vector datasets were sourced to evaluate the performance of the

updated autoESDA library. The remainder of this section will describe these datasets

qualitatively and statistically. The source of these datasets, and any license or restrictions that

they may carry, will also be highlighted. The principle on which the autoESDA library is built is

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 96 of 131

that it is data agnostic, and that the same workflow is applied to each dataset regardless of

the thematic nature of the dataset. The assumption is that the user will interpret the report to

ensure that the results are understood correctly. The thematic nature of a dataset should also

not have any effect on the library performance. As such, the thematic nature of the test

datasets are described in this section, however the purpose of this is only to be of interest to

the reader. Any interpretation of the output autoESDA reports is beyond the scope of this

project.

5.3.1 Vector Datasets

These datasets vary in file size, numbers of features and number of attributes. The library only

processes numeric attributes, so it is expected that only their values will impact the processing

time. The theoretical numeric values are calculated as the product of the number of features

and numeric attributes. As there may be some missing values in the datasets, the actual

number of values may differ from the theorical one.

The complexity of the polygons in the lattice of the different datasets may have an impact on

the computation time. For this reason, a queen’s first order spatial weights matrix has been

created and the number of geometries, vertices, and average number of neighbours has been

recorded. This impact of geometry complexity is not expected to be significant, however, as

the average time taken to generate the spatial weights matrices for the tests described in

Section 3.3 were found to be negligible when compared to the LISA calculations. The test

datasets are qualitatively described below, and their statistics are compared in Table 12.

Dataset 1 – AirBnB Chicago 2015

This dataset has been sourced from the GeoDa data portal43, 44, although it is curated from

data that has been sourced from AirBnB and the Chicago data portal. The dataset is made up

of 77 community area polygons, and 20 attributes ranging from AirBnB response/acceptance

rates to other crime, population, and socioeconomic data. This dataset is available under the

Creative Commons 4.0 license.

Dataset 2 – Grid 100

Sourced from the GeoDa data portal, this simulated dataset is made up of a 10 by 10 grid of

cells, making 100 polygons. There are 36 attributes which are all randomly simulated,

43 https://geodacenter.github.io/data-and-lab/

44 The limitation of using this portal is that data may have been cleaned to make it easier for students
to work with.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://geodacenter.github.io/data-and-lab/
https://geodacenter.github.io/data-and-lab/

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 97 of 131

autocorrelated observations. This dataset has been created purely for testing purposes and is

not based on anything in reality. It is available for download “as is”.

Dataset 3 – South African 2011 Census

This dataset is the result of combining various demographic metrics from the 2011 census

conducted by Statistics South Africa45, with local municipal boundaries sourced from the

Municipal Demarcation Board46. The demographic data represents population groups, age,

gender, and primary languages – this makes up 33 total attributes for each of the 234 local

municipal polygons.

Dataset 4 – Natural Earth Country Boundaries

Obtained directly from the Natural Earth Website47, this dataset represents the 1:110m country

boundaries. There are 177 polygons and 167 attributes, however most of the attributes are

text labels, meaning there are only 31 numeric attributes. The numeric attributes are not all

statistics or measurements, some are simply zoom levels or label sizes, which may not be of

any relevance for this study. This dataset is available with no license or restrictions.

Dataset 5 – Malaria in Colombia

This dataset, also downloaded from the GeoDa data portal, represents malaria incidence in

Colombia in 1998, as well as various census figures and annual population projections. Each

of the 50 attributes are observed in each of the 1 068 municipal polygons that cover the entire

administrative area of Colombia. This dataset is available “as is”.

Dataset 6 – USA Election Results

The final dataset has been downloaded from the GeoDa data portal. It is composed of 2012

and 2016 election results, along with other socioeconomic and demographic data for 3 108

county polygons in the United States of America. There are 74 attributes, of which 68 are

numeric.

45 https://superweb.statssa.gov.za/webapi/jsf/login.xhtml
46 https://www.demarcation.org.za/
47 https://www.naturalearthdata.com/downloads/110m-cultural-vectors/

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://superweb.statssa.gov.za/webapi/jsf/login.xhtml
https://www.demarcation.org.za/
https://www.naturalearthdata.com/downloads/110m-cultural-vectors/
https://superweb.statssa.gov.za/webapi/jsf/login.xhtml
https://www.demarcation.org.za/
https://www.naturalearthdata.com/downloads/110m-cultural-vectors/

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 98 of 131

Table 12: Comparison of vector test datasets

Dataset 1 2 3 4 5 6

File size (MB) 0.57 0.06 18.28 0.70 1.99 19.8

Features (Polygons) 77 100 234 177 1 068 3 108

Attributes 20 36 33 167 50 74

Numeric attributes 17 35 22 31 45 68

Numeric values 1 309 3 500 5 148 5 487 48 060 211 344

No. geometries 79 100 244 288 1 118 3 946

No. vertices 52 641 500 1 103 235 10 654 87 955 885 633

Mean no. neighbours 5.12 6.84 5.32 3.55 5.99 5.84

5.3.2 Raster Datasets

Three single band raster datasets were used to evaluate the performance of the raster module

of autoESDA and how it is impacted by the size and complexity of the dataset. autoESDA only

works with the valid cells (i.e. cells with values other than the defined NoData values) of a

raster grid which makes the number of valid cells the logical statistic to quantify the size of a

dataset. Each of the test datasets have a STATISTICS_VALID_PERCENT attribute in their

metadata which represents the proportion of valid cells in the grid. This attribute could be used

to calculate the total number of valid cells for each test dataset. The dataset will still be

processed, regardless of the number of NoData values, however these values will just be

ignored. Each of the datasets are briefly described below, and their numeric summaries can

be viewed in Table 13.

Dataset 1 – Global Terrestrial Precipitation

This raster surface represents the total terrestrial precipitation in 2017. This is measured in

millimetres and values range from 0 to 10 765.90. Data is only present for terrestrial areas and

as such, cells over the ocean are assigned a NoData value of -9 999. The dataset has been

sourced from a GitHub repository48 under an open data license for educational and non-

commercial use. While this dataset has the largest extent (global), it also has the largest cell

resolution (0.5 degrees). The 720 by 347 grid has a valid cell percentage of 34.34%, meaning

48Obtained from https://github.com/andrea-ballatore/open-geo-data-education

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://github.com/andrea-ballatore/open-geo-data-education
https://github.com/andrea-ballatore/open-geo-data-education

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 99 of 131

that there are approximately 85 796 valid cells to be analysed. This makes it the smallest

raster test dataset.

Dataset 2 – EU NOx concentration

This dataset represents the average concentration of Nitrate and Nitrite (NOx) in the

atmosphere for 2016. It covers the European region with 2 577 rows and 1 058 columns with

cells of 3km resolution. This dataset has a valid cell percentage of 17.91%, meaning that there

are approximately 488 311 valid cells to be analysed. The non-valid cells represent areas over

large waterbodies and have been assigned a NoData value of -9 999. The dataset represents

percentage of NOx concentration in the atmosphere, and its values range from 0.05% to

56.90%. This dataset has been sourced from the same repository as Dataset 1 and thus also

available under an open data license which allows for educational and non-commercial use.

Dataset 3 – South African Population

Dataset 3 is obtained from WorldPop49 and is available under the Creative Commons license.

It represents the unconstrained population count on 1km cells across South Africa in 2020.

The cells are arranged into a 2 176 by 1 591 grid, and with a valid percentage of 46.72%, this

makes it the largest test dataset with approximately 1 617 454 valid cells. This dataset has a

NoData value of -99 999 which is used for cells that do not fall within the borders of South

Africa.

In addition to size, the complexity (variance) of a dataset may also have an impact on the time

required for it to be processed. This is the same assumption as used in Section 4.2.2 where

the performance of different strategies for calculating LISA on raster datasets was evaluated

in order to identify the most optimal strategy. In that case, noise was added to the test datasets

at a global level by multiplying the variance by different magnitudes to create datasets with

low, medium, and high variances. A similar philosophy is used to test the autoESDA library,

however instead of inflating the variance globally, spatially autocorrelated noise was added.

This resulted in the presence of hotspots and coldspots in the simulated test datasets – which

provide varying levels of complexity for testing the library.

49Obtained from https://hub.worldpop.org/geodata/summary?id=33892

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://hub.worldpop.org/geodata/summary?id=33892
https://hub.worldpop.org/geodata/summary?id=33892

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 100 of 131

Table 13: Comparison of original raster test datasets

Dataset 1

(Global Precipitation)

Dataset 2

(EU NOx

Concentration)

Dataset 3

(RSA Population)

Dataset Units Millimetres (mm) Concentration (%) Count

Dimension 720 x 347 2 577 x 1 058 2 176 x 1 591

Valid Percentage 34.34 17.91 46.72

Total Valid Cells ≈ 85 796 ≈ 488 311 ≈ 1 617 454

Cell Resolution 0.5 degrees 3km 1km

DataType Float32 Float32 Float32

NoData Value -9 999 -9 999 -99 999

Minimum 0 0.05 0

Maximum 10 765.90 56.90 15 675.81

Mean 537.11 7.60 37.67

Standard Deviation 640.84 5.22 342.29

In order to incorporate random spatial clusters in the test datasets, 50 points were randomly

generated within the area of valid cells of each dataset. A random number in the original pixel

value range of the test dataset was assigned to each point. Three experimental variograms

were plotted by visually fitting a model with user defined values for the nugget, sill, and range.

The nugget and range values were kept constant for the three variograms, while the range

was adjusted to ensure variograms with a low, medium, and high range. The R script used to

carry out these steps can be viewed in Appendix D. The defined values and the experimental

variograms for each dataset can be viewed in Table 14 below.

Table 14: Values used in the three Kriging models (low, medium, and high range) for each dataset.

 Dataset 1 Dataset 2 Dataset 3

Nugget 0 0 0

Sill 10 000 000 600 20 000 000

Low Range 300 50 10

Medium Range 2 000 200 100

High Range 5 000 600 300

Model Spherical Spherical Spherical

The low, medium, and high ranged models were then used in a separate Kriging function to

simulate a surface of random low, medium, and high spatial autocorrelation. A mask was used

to ensure that the simulated surfaces matched the shape of the valid cells in the original

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 101 of 131

dataset. The simulated surfaces were then each added to the original dataset to create three

additional versions of each dataset. This means that each dataset size has four versions: the

original raster, original + low variance (low noise), original + medium variance (medium noise),

and original + high variance (high noise). Additionally, these four versions will be stacked to

form one raster with four bands.

Table 15 summarises the descriptive statistics for the surfaces created for the raster datasets

as well as their simulated surfaces of low, medium, and high noise.

Table 15: Descriptive statistics for each dataset and their simulated surfaces

Dataset 1

Band 1 Band 2 Band 3 Band 4

Description Original Low Noise Medium Noise High Noise

Minimum 0 230.00 199.17 198.75

Maximum 10 765.90 16 462.48 16 558.76 16 206.87

Mean 537.11 6 165.61 6 169.76 6 300.57

Standard Deviation 640.84 921.56 1 967.75 2 384.88

Dataset 2

Band 1 Band 2 Band 3 Band 4

Description Original Low Noise Medium Noise High Noise

Minimum 0.05 24.64 16.44 9.20

Maximum 56.90 97.44 106.74 110.27

Mean 7.60 48.20 47.80 47.60

Standard Deviation 5.22 5.36 7.52 14.28

Dataset 3

Band 1 Band 2 Band 3 Band 4

Description Original Low Noise Medium Noise High Noise

Minimum 0 999.22 189.50 131.03

Maximum 15 675.81 22 468.05 22 339.49 25 308.72

Mean 37.67 6 826.31 6 881.69 6 803.96

Standard Deviation 342.29 385.97 1477.10 2887.50

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 102 of 131

5.4 Results and Discussion

5.4.1 Vector Module

The average time taken to generate the autoESDA vector report for each dataset has been

recorded in Table 16. The general trend was that as the dataset number increased, so did the

mean processing time. The processing time has been divided amongst the features, numeric

attributes, and numeric values in an effort to standardise the results to aid comparison across

datasets. The output report size was also recorded, as the complexity of the plots may have

an impact on the processing time.

Table 16: Results for autoESDA vector report generation

Dataset 1 2 3 4 5 6

Mean processing time (min) 2.96 14.33 13.74 26.33 35.53 256.73

Time / feature (s) 2.31 8.60 3.52 8.93 2.00 4.96

Time / numeric attribute (s) 10.45 24.56 37.48 50.96 47.38 226.52

Time / numeric value (s) 0.14 0.25 0.16 0.29 0.04 0.07

Output report size (MB) 11.40 16.20 24.50 24.20 61.50 118.00

There is no obvious trend upon investigating the time spend per polygon feature in each

dataset. Dataset 5 has the lowest value with 2s per feature, while Dataset 4 has the greatest

value of 8.6s per feature. This is unexpected as Dataset 4 has the least neighbours on average

(3.55), while Dataset 5 has the second-highest average number of neighbours (5.99).

The average processing time per numeric attribute in general increased as the dataset number

increased, with the exception of Dataset 5. It was expected that the time required to create

the autoESDA vector report would be largely dependent on the number of theoretical

numerical values. This expected trend holds true for the most part, but with the exception of

Dataset 2 (3 500 theoretical numerical values), which has a mean processing time of 14.33

minutes which greater than that of Dataset 3 (5 148 theoretical numerical values), which is

13.74 minutes. Dataset 2 did have a greater average number of neighbours (6.84) when

compared to that of Dataset 3 (5.32). This could explain the greater processing time as a more

neighbours meant that more values needed to be considered in the LISA calculations.

Interestingly, the larger datasets (Dataset 5 and 6) have the lowest time spent per numeric

value, even though their total processing times were still the longest of the six datasets.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 103 of 131

Other factors that may have an impact on processing time could be the data types in the

datasets. The numeric data type (int or float) could impact the processing time, as well as the

precision (number of decimal places) of the value. Dataset 2’s numeric attributes are all of the

float data type with a precision of eight, whereas Dataset 3 only has integer data types with

no decimal places. This could possibly explain why Dataset 3 had a shorter processing time,

as irrespective of the greater number of numerical values, their complexity was less due to the

lack of decimal points.

5.4.2 Raster Module

The timing results for the raster module performance testing are displayed in Table 17. The

original file of each dataset was used as the input file, after which low, medium, and high noise

was added. Each of these inputs was processed individually, and then they were stacked into

one four-band stacked dataset which was then used to generate an autoESDA raster report.

Table 17: Average time (minutes) for autoESDA raster report generation

Values
represent

time in
minutes

Band 1 Band 2 Band 3 Band 4

Total Stacked

Original
+ Low

Noise

+ Med

Noise

+ High

Noise

Dataset 1 3.91 3.50 3.60 3.65 14.66 15.33

Dataset 2 34.10 34.43 36.51 37.38 142.42 152.48

Dataset 3 344.02 370.14 282.74 274.30 1 271.19 Missing*

*The stacked bands for Dataset 3 were large enough to crash the computer each time the process was run, as a

result there is no data available.

It was expected that the greater the variance (bands 1 – 4), the longer the processing time

would be. This hypothesis however only holds true in the results for Dataset 2. Each of the

bands with simulated variance (bands 2 – 4) for dataset took shorter to process than the

original dataset. For Dataset 3, band 2 (low noise) took longer to process than the original

dataset (band 1); however band 3 (medium noise) and band 4 (high noise) took less time to

process than bands 1 and 2.

Although it was expected that the increase in noise would lead to an increase in the time taken

to generate the report, this assumed that an increase in mathematical variance would increase

the noise. The mathematical variance added was spatially autocorrelated, which could explain

why an increase in processing time was not always the case. The spatially autocorrelated

variance may have increased the mathematical noise of the dataset, while subsequently

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 104 of 131

making the raster surface more homogeneous with regards to the spatial distribution of its

high and low values.

The Total column in Table 17 is the sum of the processing time for bands 1 to 4 when

processed individually to generate four separate reports, while the Stacked column represents

the time to generate a single report from the same four bands stacked into one file. It was

expected that the sum of the individual times taken would be greater than the time taken to

generate the stacked report, as the four individual reports would require the carrying out tasks

four times whereas this would only be done once for the stacked report – such as the creation

of an HTML file, or more significantly, the vectorisation of the dataset. This discrepancy would

be interesting to investigate further, by recording the time for each component of the

autoESDA report. This would allow one to identify where bottlenecks in the processing

occurred and whether there were any potential ways to further optimise the process.

5.5 Discussion

The major limitation in the methodology used for this performance test of the updated

autoESDA library, is that only a single metric – total processing time is used. While this is

useful in comparing the overall process, it cannot be used to determine how the processing

time is divided amongst the various components of the output report. This could be

investigated further through code profiling, which analyses the time taken to execute each line

of code. This had not been done as part of this research project due to time limitations,

however, its results could assist in further optimising the autoESDA library, as time-consuming

tasks could be re-evaluated, and more efficient approaches could be incorporated.

Additionally, the effect of different file types and data types on processing time could add an

interesting perspective, which was not adequately been addressed in this project.

The simulations executed for the purpose of understanding the performance of the updated

autoESDA library do, however, prove that the ESDA workflow can be automated at least to

some degree. It would be an interesting project to compare the processing times recorded

here with the total time a user would require to generate the same results manually using other

platforms, such as GeoDa or ArcGIS. The comparison between the timed manual process and

the autoESDA report generation times would easily quantify whether autoESDA is a suitable

alternative to the traditional, manual approach to ESDA.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 105 of 131

CHAPTER 6: CONCLUSION

6.1 Chapter Overview

Chapter 6 concludes this dissertation by summarising the work that has been done and

assessing the extent to which the aim and each of the objectives were achieved. Finally, future

work with regards to the autoESDA library and automating ESDA as a whole is discussed.

6.2 Main Results

The aim of this research was to advance the automation of ESDA by implementing

improvements to the autoESDA library and evaluating their performance. The aim is broken

down into five objectives that are defined in Section 1.4. The main results from each of these

objectives should lead to the attainment of the aim of this study.

Objective 1: Review related literature in conjunction with previously suggested

improvements to the autoESDA Python library.

This objective was addressed in Chapter 2 where a variety of sources were consulted in the

formation of the literature review. The concept of spatial and big spatial data was discussed,

alongside the challenges that they bring about. EDA and ESDA were identified as potential

solutions to some of these challenges, as they can summarise large datasets and guide further

processing and analysis. One of the novel suggestions from the previously conducted

interviews was the support for ESDA specifically LISA on raster datasets. This was discussed

in Section 2.5. The literature review finished off with a summary of the ease with which some

popular ESDA functions can be automated. This was guided by a discussion of various calls

for new tools to deal with spatial data, as well as similar projects that have automated other

workflows related to spatial data. In order to automate the ESDA process, the new tool would

need to be largely automated, have error checking functionality, operate in real time, handle

unexpected scenarios, and efficiently (and repeatedly) generate reliable results. Automating

ESDA requires a fine balance between reducing human involvement for the purpose of

eliminating human-induced errors, while still including human input that is fundamental to the

exploratory, data-driven ESDA process.

Objective 2: Define requirements based on suggested improvements to the autoESDA

Python library.

Section 3.4.3 documents the feedback from the previously conducted interviews. We

acknowledge that thirteen participants constitute only a small sample size, however the

purposes of the interviews were to solicit feedback and not to make empirical conclusions. We

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 106 of 131

would recommend future studies to incorporate a larger sample size to allow for more accurate

inferences to be made. This formed a large component of the user stories which can be found

in Appendix B. Four high-level requirements were identified: these were the need for raster

functionality, an updated architecture of the library, some other minor improvements and

finally, adequate performance. These four requirements are introduced in Section 4.1, and are

discussed in greater detail in Sections 4.2, 4.3, 4.4, and Chapter 5 respectively.

Objective 3: Design and implement solutions that address the identified requirements.

Chapter 4 discusses the design and implementation of the improvements made in the second

major iteration of the autoESDA library. First, the inclusion of raster functionality was described

(Section 4.2). Different strategies for raster LISA were identified and compared and ultimately

it was decided that the optimal strategy was to first vectorise the raster dataset and then to

calculate the LISA using the pygeoda library. This strategy outperformed the other strategies,

which is most likely due to its C++ implementation.

The inclusion of raster functionality necessitated an overhaul of the architectural design of the

library so as to minimise code duplication, while allowing for improvements to be implemented

with greater ease. This is discussed in Section 4.3. The solution to this is an MVC-type design,

which splits the autoESDA library into two modules – raster and vector. Each module consists

of a controller and a model. The controller contains the functions with which the user interacts,

by calling different functions. The controller also makes numerous functions to the model and

combines all the created components into an output HTML report. The model contains all the

calculations and functions that are required in order to generate the results which are to be

included in the output report.

In addition to the architectural and raster functionality improvements, various other minor

improvements were made to improve the utility of the library. These improvements are largely

cosmetic and are described in detail in Section 4.4.

All of the updates discussed were implemented with the performance of the library in mind

and were designed to be as efficient as possible. Any decisions and limitations are discussed

throughout Chapter 4.

Objective 4: Evaluate the autoESDA library in terms of the defined requirements.

The updated architecture described in Chapter 4 meant that the various minor improvements

and raster functionality and other minor improvements could be added to the library with

relative ease. This process would be a significantly more complicated and would require more

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 107 of 131

time to implement, should the architecture not have been updated. This is due to it more

modular structure, brought about by the use of classes and an MVC-type design.

The raster functionality and other minor improvements were implemented in the most efficient

way possible, given the scope of this project. Various datasets have been used to test these

improvements and errors have been identified and corrected as part of the development stage.

The output reports from each of the datasets used in the performance evaluation were also

reviewed to identify potential shortfalls in the design of the library. These have been addressed

and/or discussed in Chapter 4.

The evaluation of the performance of the autoESDA library is necessary as it gives a

quantitative representation of how well the library achieves its goal. These results also set a

benchmark, from which any further improvements could take place.

To evaluate the library’s performance, numerous vector and raster datasets were sourced.

The vector datasets had varying amounts of features, attributes (numeric and non-numeric),

file sizes and geometries. Three different raster datasets of differing sizes were used, and

varying degrees of spatially autocorrelated noise were added to each dataset. This allowed

for the investigation of the effect of noise on the performance of the library. The generation

time for an autoESDA report varies according to the size and complexity of the input dataset.

This means that there is no easy way to determine whether autoESDA requires less time to

output results than a traditional, manual approach. The output times recorded and discussed

in Chapter 5 seem reasonable, however they have the potential to be optimised further.

Objective 5: Based on the results, draw conclusions regarding the success of

autoESDA as a means of automating the ESDA workflow.

Although we now have a measure of the time required by the library to generate the autoESDA

report, there is no comparative metric representing the time required to perform this process

manually. This means that we cannot compare the results obtained in Chapter 5 to a

traditional, manual ESDA workflow and comment on the time saved through the use of

autoESDA. As a result, the relative effectiveness of autoESDA with regards to time saved still

remains unknown. While the time taken to generate the report may be significant (depending

on the dataset size), the automation means that the user can focus on other tasks which the

report is generated.

Another advantage brought about by autoESDA, is that it has removed the need for constant

human input, which thereby eliminates the risk of human-induced errors. The user is required

to specify only the input dataset, and autoESDA will output an HTML summary report. This

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 108 of 131

means that the user is not required to specify any additional parameters, and the dataset can

be processed free from any bias or interactions.

6.3 Future Work

While autoESDA is a step in the right direction, these is still a lot more that could be done to

enable a fully autonomous ESDA process. A challenge faced quite often when working with

data is the need for data cleaning. This is an important part of the data lifecycle and can have

a great effect on the results, however it is expected to take place before ESDA occurs.

At this stage, autoESDA still requires a human to interpret the report results and make any

decisions regarding further use of the dataset. Another limitation of the autoESDA report is

that it is not interactive, as is the case for other popular EDA/ESDA platforms. While this brings

about some advantages, such as ease of distribution of the results, it does mean that the

insights that can be extracted from the report are somewhat limited.

Although autoESDA is easy to use, it still requires the appropriate setup of a Python

environment and the knowledge about how to perform basic tasks using Python and

geopandas. This excludes a significant number of potential users who may lack these skills.

A potential solution to this would be the development of a QGIS plugin, for which a prototype

has already been designed; however this proof-of-concept still requires some work before it

could be released. This development would provide a graphical interface as part of a popular

GIS, making the autoESDA library accessible to a much larger number of people.

The performance testing of the autoESDA library has found that the processing time is largely

dependent on the size, and to an extent, the complexity of the input datasets. These trends

could be further investigated by using a greater number of test datasets, and varying the

filetype, test computers, datatypes, and any other parameters to observe their effect on the

library’s performance.

The report generation times should also be compared to the time required to carry out the

same process manually, which would allow one to draw conclusions about its role in saving

time in the greater data lifecycle. Currently, the only time benefit demonstrated is that the

automated process does not require user supervision once running, allowing the user to focus

on other, more important tasks. The use of code profiling would also enhance one’s

understanding of the library. This would allow one to see the time spent on each line of code

in the library, which would aid in the identification of bottlenecks and/or other time consuming

functions. These could then be addressed in further developments that could further optimise

the performance of the autoESDA library.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 109 of 131

The possibilities surrounding autoESDA and the automation of the ESDA process are endless,

and, as with most software lifecycles, there is always more that can be done. The second

iteration of autoESDA has brought about important improvements that benefit the library and

aid in the understanding of automation of the ESDA process as a whole. It would be interesting

to revisit this project in the near future once the available tools and understandings have

matured, in order to identify further potential improvements or dependencies that could further

optimise the automation of ESDA.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 110 of 131

REFERENCES

Amgalan, A., Mujica-Parodi, L., Skiena, S., 2022. Fast spatial autocorrelation. Knowledge and

Information Systems 64, 919–941. https://doi.org/10.1007/s10115-021-01640-x

Anselin, L., 2019. A local indicator of multivariate spatial association: Extending Geary’s C.

Geographical Analysis 51, 133–150. https://doi.org/10.1111/gean.12164

Anselin, L., 2012. From SpaceStat to cyberGIS: Twenty years of spatial data analysis software.

International Regional Science Review 35, 131–157.

https://doi.org/10.1177/0160017612438615

Anselin, L., 2010. Thirty years of spatial econometrics. Papers in Regional Science 89, 3–25.

https://doi.org/10.1111/j.1435-5957.2010.00279.x

Anselin, L., 2000. Computing environments for spatial data analysis. Journal of Geographical

Systems 2, 201–220. https://doi.org/10.1007/PL00011455

Anselin, L., 1999. The future of spatial analysis in the social sciences. Geographic Information

Sciences 5, 67–76. https://doi.org/10.1080/10824009909480516

Anselin, L., 1998. Exploratory spatial data analysis in a geocomputational environment, in:

Geocomputation: A Primer. Wiley, Chichester, England, pp. 77–94.

Anselin, L., 1996. Interactive techniques and exploratory spatial data analysis. Regional

Research Institute Working Papers.

Anselin, L., 1995. Local indicators of spatial association - LISA. Geographical Analysis 27, 93–

115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x

Anselin, L., 1989. What is special about spatial data? Alternative perspectives on spatial data

analysis, in: NCGIA Technical Reports. Presented at the UC Santa Barbara: National Center

for Geographic Information and Analysis, Syracuse University.

https://escholarship.org/uc/item/3ph5k0d4

Anselin, L., 1988. Spatial Econometrics: Methods and Models, Studies in Operational Regional

Science. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-015-7799-1

Anselin, L., Bao, S., 1997. Exploratory spatial data analysis linking SpaceStat and ArcView, in:

Fischer, M., Getis, A. (Eds.), Recent Developments in Spatial Analysis, Advances in Spatial

Science. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 35–59.

https://doi.org/10.1007/978-3-662-03499-6_3

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://doi.org/10.1007/s10115-021-01640-x
https://doi.org/10.1111/gean.12164
https://doi.org/10.1177/0160017612438615
https://doi.org/10.1111/j.1435-5957.2010.00279.x
https://doi.org/10.1007/PL00011455
https://doi.org/10.1080/10824009909480516
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://escholarship.org/uc/item/3ph5k0d4
https://doi.org/10.1007/978-94-015-7799-1
https://doi.org/10.1007/978-3-662-03499-6_3

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 111 of 131

Anselin, L., Getis, A., 1992. Spatial statistical analysis and geographic information systems.

Annals of Regional Science 26, 19. https://doi.org/10.1007/BF01581478

Anselin, L., Kim, Y., Syabri, I., 2004. Web-based analytical tools for the exploration of spatial

data. Journal of Geographical Systems 6, 197–218. https://doi.org/10.1007/s10109-004-

0132-5

Anselin, L., Li, X., Koschinsky, J., 2022. GeoDa, from the desktop to an ecosystem for exploring

spatial data. Geographical Analysis 54, 439–466. https://doi.org/10.1111/gean.12311

Anselin, L., Rey, S., 2022. Open source software for spatial data science. Geographical Analysis

54, 429–438. https://doi.org/10.1111/gean.12339

Anselin, L., Rey, S., 2014. Modern spatial econometrics in practice: A guide to GeoDa,

GeoDaSpace and PySAL. GeoDa Press LLC.

Anselin, L., Rey, S., 2012. Spatial econometrics in an age of cyberGIScience. International

Journal of Geographical Information Science 26, 2211–2226.

https://doi.org/10.1080/13658816.2012.664276

Anselin, L., Sridharan, S., Gholston, S., 2007. Using exploratory spatial data analysis to leverage

social indicator databases: the discovery of interesting patterns. Social Indicators Research

82, 287–309. https://doi.org/10.1007/s11205-006-9034-x

Anselin, L., Syabri, I., Kho, Y., 2006. GeoDa: An introduction to spatial data analysis.

Geographical Analysis 38, 5–22. https://doi.org/10.1111/j.0016-7363.2005.00671.x

Armstrong, M., Wang, S., Zhang, Z., 2019. The internet of things and fast data streams:

prospects for geospatial data science in emerging information ecosystems. Cartography and

Geographic Information Science 46, 39–56. https://doi.org/10.1080/15230406.2018.1503973

Batcheller, J., 2008. Automating geospatial metadata generation – an integrated data

management and documentation approach. Computers & Geosciences 34, 387–398.

https://doi.org/10.1016/j.cageo.2007.04.001

Bivand, R., 2006. Implementing spatial data analysis software tools in R. Geographical Analysis

38, 23–40. https://doi.org/10.1111/j.0016-7363.2005.00672.x

Bivand, R., 2002. Spatial econometrics functions in R: classes and methods. Journal of

Geographical Systems 4, 405–421. https://doi.org/10.1007/s101090300096

Bivand, R., 1998. Software and software design issues in the exploration of local dependence.

Journal of the Royal Statistical Society. Series D (The Statistician) 47, 499–508.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://doi.org/10.1007/BF01581478
https://doi.org/10.1007/s10109-004-0132-5
https://doi.org/10.1007/s10109-004-0132-5
https://doi.org/10.1111/gean.12311
https://doi.org/10.1111/gean.12339
https://doi.org/10.1080/13658816.2012.664276
https://doi.org/10.1007/s11205-006-9034-x
https://doi.org/10.1111/j.0016-7363.2005.00671.x
https://doi.org/10.1080/15230406.2018.1503973
https://doi.org/10.1016/j.cageo.2007.04.001
https://doi.org/10.1111/j.0016-7363.2005.00672.x
https://doi.org/10.1007/s101090300096

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 112 of 131

Borlongan, N., Cruz, R., Olfindo, N., Perez, A., 2016. Automation of lidar-based hydrologic

feature extraction workflows using GIS, in: Earth Resources and Environmental Remote

Sensing/GIS Applications VII. Presented at the Earth Resources and Environmental Remote

Sensing/GIS Applications VII, SPIE, pp. 203–218. https://doi.org/10.1117/12.2241972

Ciceli, T., 2015. Stakeholder profile in spatial data lifecycle defined from SDI perspective.

Presented at the State Geodetic Administration, State Geodetic Administration, Zagreb.

https://doi.org/DOI: 10.13140/RG.2.1.1529.2648

Coetzee, S., Rautenbach, V., 2017. A design pattern approach to cartography with big geospatial

data. Cartographic Journal 54, 301–312. https://doi.org/10.1080/00087041.2017.1400199

Cressie, N., 1993. Statistics for Spatial Data, Revised edition. ed. John Wiley & Sons, Inc,

Hoboken, NJ.

Cura, R., 2019. Enriching exploratory spatial data analysis with modern computer tools, in:

European Colloquium of Theoretical and Quantitative Geography - ECTQG 2019. Mondorf-

les-Bains, Luxembourg.

Dall’erba, S., 2009. Exploratory spatial data analysis, in: Kitchin, R., Thrift, N. (Eds.), International

Encyclopedia of Human Geography. Elsevier, Oxford, pp. 683–690.

https://doi.org/10.1016/B978-008044910-4.00433-8

Dangermond, J., Goodchild, M., 2020. Building geospatial infrastructure. Geo-spatial Information

Science 23, 1–9. https://doi.org/10.1080/10095020.2019.1698274

De Smith, M., Goodchild, M., Longley, P., 2018. Geospatial analysis: A Comprehensive Guide to

Principles, Techniques And Software Tools, 6th ed. Winchelsea Press.

Devore, J., Berk, K., 2012. Modern Mathematical Statistics with Applications, Springer Texts in

Statistics. Springer New York, New York, NY. https://doi.org/10.1007/978-1-4614-0391-3

Fotheringham, A., 1992. Exploratory spatial data analysis and GIS. Environment and Planning A

24, 1675–1678.

Gandomi, A., Haider, M., 2015. Beyond the hype: big data concepts, methods, and analytics.

International Journal of Information Management 35, 137–144.

https://doi.org/10.1016/j.ijinfomgt.2014.10.007

Geary, R., 1954. The contiguity ratio and statistical mapping. The Incorporated Statistician 5, 115.

https://doi.org/10.2307/2986645

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://doi.org/10.1117/12.2241972
https://doi.org/DOI:%2010.13140/RG.2.1.1529.2648
https://doi.org/10.1080/00087041.2017.1400199
https://doi.org/10.1016/B978-008044910-4.00433-8
https://doi.org/10.1080/10095020.2019.1698274
https://doi.org/10.1007/978-1-4614-0391-3
https://doi.org/10.1016/j.ijinfomgt.2014.10.007
https://doi.org/10.2307/2986645

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 113 of 131

Goodchild, M., 2000. Spatial analysis: methods and problems in land use management, in:

Spatial Information for Land Use Management. Gordon and Breach Science Publishers,

Amsterdam.

Goodchild, M., 1997. Geographic information systems, in: Ten Geographic Ideas That Changed

the World. Rutgers University Press, New Brunswick, NJ, pp. 60–86.

Goodchild, M., 1992. Analysis, in: Geography’s Inner Worlds: Pervasive Themes in

Contemporary American Geography, Occasional Publications of the Association of American

Geographers. Rutgers University Press, New York, pp. 138–162.

Goodchild, M., Haining, R., Wise, S., 1992. Integrating GIS and spatial data analysis: problems

and possibilities. International Journal of Geographical Information Systems 6, 407–423.

https://doi.org/10.1080/02693799208901923

Goodchild, M., Longley, P., 2013. Geocomputation and GIScience, in: Handbook of Regional

Science. Springer, Dordrecht.

Haslett, J., Wills, G., Unwin, A., 1990. SPIDER – an interactive statistical tool for the analysis of

spatially distributed data. International Journal of Geographical Information Systems 4, 285–

296. https://doi.org/10.1080/02693799008941547

Higgins, C., Ray, S., 2022. Fast exploratory analysis with spatio-temporal aggregation over

polygonal regions, in: 2022 IEEE/ACM International Conference on Big Data Computing,

Applications and Technologies (BDCAT). Presented at the 2022 IEEE/ACM International

Conference on Big Data Computing, Applications and Technologies (BDCAT), IEEE,

Vancouver, WA, USA, pp. 30–39. https://doi.org/10.1109/BDCAT56447.2022.00012

Jackson, M.C., Huang, L., Xie, Q., Tiwari, R.C., 2010. A modified version of Moran’s I.

International Journal of Health Geographics 9, 33. https://doi.org/10.1186/1476-072X-9-33

Jern, M., Åström, T., Johansson, S., 2008. GeoAnalytics tools applied to large geospatial

datasets, in: 2008 12th International Conference Information Visualisation. Presented at the

2008 12th International Conference Information Visualisation, pp. 362–372.

https://doi.org/10.1109/IV.2008.27

Jern, M., Johansson, S., Johansson, J., Franzen, J., 2007. The GAV toolkit for multiple linked

views. Fifth International Conference on Coordinated and Multiple Views in Exploratory

Visualization (CMV 2007).

Jin, X., Wah, B., Cheng, X., Wang, Y., 2015. Significance and challenges of big data research.

Big Data Research, Visions on Big Data 2, 59–64. https://doi.org/10.1016/j.bdr.2015.01.006

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://doi.org/10.1080/02693799208901923
https://doi.org/10.1080/02693799008941547
https://doi.org/10.1109/BDCAT56447.2022.00012
https://doi.org/10.1186/1476-072X-9-33
https://doi.org/10.1109/IV.2008.27
https://doi.org/10.1016/j.bdr.2015.01.006

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 114 of 131

Kaluzny, S., Vega, S., Cardoso, T., Shelly, A., 1998. Analyzing lattice data, in: Kaluzny, S., Vega,

S., Cardoso, T., Shelly, A. (Eds.), S+SpatialStats: User’s Manual for Windows® and UNIX®.

Springer, New York, NY, pp. 110–145. https://doi.org/10.1007/978-1-4615-7826-0_5

Lee, J., Kang, M., 2015. Geospatial big data: challenges and opportunities. Big Data Research 2,

74–81. https://doi.org/10.1016/j.bdr.2015.01.003

Li, J., He, J., Liu, Y., Wang, D., Rafay, L., Chen, C., Hong, T., Fan, H., Lin, Y., 2019. Spatial

autocorrelation analysis of multi-scale damaged vegetation in the Wenchuan earthquake-

affected area, southwest China. Forests 10, 195. https://doi.org/10.3390/f10020195

Li, S., Dragicevic, S., Castro, F., Sester, M., Winter, S., Coltekin, A., Pettit, C., Jiang, B., Haworth,

J., Stein, A., Cheng, T., 2016. Geospatial big data handling theory and methods: a review

and research challenges. ISPRS Journal of Photogrammetry and Remote Sensing, Theme

issue “State-of-the-art in photogrammetry, remote sensing and spatial information science”

115, 119–133. https://doi.org/10.1016/j.isprsjprs.2015.10.012

Li, X., Anselin, L., Koschinsky, J., 2015. GeoDa web: enhancing web-based mapping with spatial

analytics, in: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in

Geographic Information Systems, SIGSPATIAL ’15. Association for Computing Machinery,

New York, NY, USA, pp. 1–4. https://doi.org/10.1145/2820783.2820792

Longley, P., Goodchild, M., Maguire, D., Rhind, D., 2015. Geographic Information Science &

Systems, Fourth edition. ed. Wiley, Hoboken, NJ.

Mennis, J., Guo, D., 2009. Spatial data mining and geographic knowledge discovery – an

introduction. Computers, Environment and Urban Systems 33, 403–408.

https://doi.org/10.1016/j.compenvurbsys.2009.11.001

Moncrieff, S., Turdukulov, U., Gulland, E., 2016. Integrating geo web services for a user driven

exploratory analysis. ISPRS Journal of Photogrammetry and Remote Sensing 114, 294–305.

https://doi.org/10.1016/j.isprsjprs.2016.01.015

Moura, A., Fonseca, B., 2020. ESDA (exploratory spatial data analysis) of vegetation cover in

urban areas—recognition of vulnerabilities for the management of resources in urban green

infrastructure. Sustainability 12, 1933. https://doi.org/10.3390/su12051933

Morgenthaler, S., 2009. Exploratory data analysis. WIREs Computational Statistics 1, 33–44.

https://doi.org/10.1002/wics.2

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://doi.org/10.1007/978-1-4615-7826-0_5
https://doi.org/10.1016/j.bdr.2015.01.003
https://doi.org/10.3390/f10020195
https://doi.org/10.1016/j.isprsjprs.2015.10.012
https://doi.org/10.1145/2820783.2820792
https://doi.org/10.1016/j.compenvurbsys.2009.11.001
https://doi.org/10.1016/j.isprsjprs.2016.01.015
https://doi.org/10.3390/su12051933
https://doi.org/10.1002/wics.2

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 115 of 131

Murray, A., Estivill-Castro, V., 1998. Cluster discovery techniques for exploratory spatial data

analysis. International Journal of Geographical Information Science 12, 431–443.

https://doi.org/10.1080/136588198241734

Murtiyoso, A., Veriandi, M., Suwardhi, D., Soeksmantono, B., Harto, A., 2020. Automatic workflow

for roof extraction and generation of 3d CITYGML models from low-cost UAV image-derived

point clouds. ISPRS International Journal of Geo-Information 9, 743.

https://doi.org/10.3390/ijgi9120743

Myatt, G., Johnson, W., 2014. Making Sense of Data I: A Practical Guide to Exploratory Data

Analysis and Data Mining, Second edition. ed. John Wiley & Sons, Inc, Hoboken, New

Jersey.

Myint, S., Wentz, E., Purkis, S., 2007. Employing spatial metrics in urban land-use/land-cover

mapping: comparing the Getis and Geary indices. Photogrammetric Engineering and

Remote Sensing 73, 1403–1415. https://doi.org/10.14358/PERS.73.12.1403

Openshaw, S., 1995. Developing automated and smart spatial pattern exploration tools for

geographical information systems applications. Journal of the Royal Statistical Society.

Series D (The Statistician) 44, 3–16. https://doi.org/10.2307/2348611

Paudel, A., Puri, S., 2022. Accelerating spatial autocorrelation computation with parallelization,

vectorization and memory access optimization: with a focus on rapid recalculation of covid

related spatial statistics for faster geospatial analysis and response, in: 2022 22nd IEEE

International Symposium on Cluster, Cloud and Internet Computing (CCGrid). Presented at

the 2022 22nd International Symposium on Cluster, Cloud and Internet Computing (CCGrid),

IEEE, Taormina, Italy, pp. 544–554. https://doi.org/10.1109/CCGrid54584.2022.00064

Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S., 2007. A design science research

methodology for information systems research. Journal of Management Information Systems

24, 45–77. https://doi.org/10.2753/MIS0742-1222240302

Peng, J., Wu, W., Lockhart, B., Bian, S., Yan, J., Xu, L., Chi, Z., Rzeszotarski, J., Wang, J., 2021.

DataPrep.EDA: task-centric exploratory data analysis for statistical modelling in Python, in:

Proceedings of the 2021 International Conference on Management of Data. Presented at the

SIGMOD/PODS ’21: International Conference on Management of Data, ACM, Virtual Event

China, pp. 2271–2280. https://doi.org/10.1145/3448016.3457330

Pillay, L., Schaab, G., Coetzee, S., Rautenbach, V., 2019. A comprehensive workflow for

automating thematic map geovisualization from univariate big geospatial point data.

International Cartographic Association 2, 8. https://doi.org/10.5194/ica-proc-2-100-2019

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://doi.org/10.1080/136588198241734
https://doi.org/10.3390/ijgi9120743
https://doi.org/10.14358/PERS.73.12.1403
https://doi.org/10.2307/2348611
https://doi.org/10.1109/CCGrid54584.2022.00064
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1145/3448016.3457330
https://doi.org/10.5194/ica-proc-2-100-2019

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 116 of 131

Raju, P., Nathan, B., 2018. The data life cycle. Strategic Finance 100, 62–63.

Rey, S., Anselin, L., 2007. PySAL: a python library of spatial analytical methods. Review of

Regional Studies 37, 5–27.

Rey, S., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., Koschinsky, J., 2015. Open geospatial

analytics with PySAL. ISPRS International Journal of Geo-Information 4, 815–836.

https://doi.org/10.3390/ijgi4020815

Rey, S., Arribas-Bel, D., Wolf, L.J., 2023. Geographic Data Science with Python.

Rey, S.J., Anselin, L., 2006. Recent advances in software for spatial analysis in the social

sciences. Geographical Analysis 38, 1–4. https://doi.org/10.1111/j.0016-7363.2005.00670.x

Rey, S.J., Anselin, L., Amaral, P., Arribas-Bel, D., Cortes, R., Gaboardi, J., Kang, W., Knaap, E.,

Li, Z., Lumnitz, S., Oshan, T., Shao, H., Wolf, L., 2022. The PySAL ecosystem: philosophy

and implementation. Geographical Analysis 54, 467–487.

https://doi.org/10.1111/gean.12276

Rey, S.J., Janikas, M., 2006. STARS: Space–time analysis of regional systems. Geographical

Analysis 38, 67–86. https://doi.org/10.1111/j.0016-7363.2005.00675.x

Roberts, J., 2005. Exploratory visualization with multiple linked views, in: Dykes, J., MacEachren,

A., Kraak, M. (Eds.), Exploring Geovisualization, International Cartographic Association.

Elsevier, Oxford, pp. 159–180. https://doi.org/10.1016/B978-008044531-1/50426-7

Robinson, A., Demšar, U., Moore, A., Buckley, A., Jiang, B., Field, K., Kraak, M., Camboim, S.,

Sluter, C., 2017. Geospatial big data and cartography: research challenges and

opportunities for making maps that matter. International Journal of Cartography 3, 32–60.

https://doi.org/10.1080/23729333.2016.1278151

Rogerson, P., Kedron, P., 2012. Optimal weights for focused tests of clustering using the local

Moran statistic. Geographical Analysis 44, 121–133. https://doi.org/10.1111/j.1538-

4632.2012.00840.x

Sapre, A., Vartak, S., 2020. Scientific computing and data analysis using numpy and pandas.

International Research Journal of Engineering and Technology 7, 1334-1346.

Saveliev, A., Mukharamova, S., Zuur, A., 2007. Analysis and modelling of lattice data, in:

Analysing Ecological Data. Springer, New York, pp. 321–339.

Sheckhar, M., Lumnitz, S., Arribas-Bel, D., 2020. GSOC 2020 project report: Raster Awareness

in PySAL.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://doi.org/10.3390/ijgi4020815
https://doi.org/10.1111/j.0016-7363.2005.00670.x
https://doi.org/10.1111/gean.12276
https://doi.org/10.1111/j.0016-7363.2005.00675.x
https://doi.org/10.1016/B978-008044531-1/50426-7
https://doi.org/10.1080/23729333.2016.1278151
https://doi.org/10.1111/j.1538-4632.2012.00840.x
https://doi.org/10.1111/j.1538-4632.2012.00840.x

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 117 of 131

Shortridge, A., 2007. Practical limits of Moran’s autocorrelation index for raster class maps.

Computers, Environment and Urban Systems, GeoComputation 2005 31, 362–371.

https://doi.org/10.1016/j.compenvurbsys.2006.07.001

Singleton, A., Arribas-Bel, D., 2021. Geographic data science. Geographical Analysis 53, 61–75.

https://doi.org/10.1111/gean.12194

Slocum, T., McMaster, R., Kessler, F., Koward, H., 2014. Thematic cartography and

geovisualization, 3. ed., Pearson new international. ed, Always learning. Pearson education

limited, Harlw.

Steiniger, S., Hunter, A., 2013. The 2012 free and open source GIS software map – a guide to

facilitate research, development, and adoption. Computers, Environment and Urban

Systems 39, 136–150. https://doi.org/10.1016/j.compenvurbsys.2012.10.003

Syromiatnikov, A., Weyns, D., 2014. A Journey through the land of Model-View-Design patterns,

in: 2014 IEEE/IFIP Conference on Software Architecture. Presented at the 2014 IEEE/IFIP

Conference on Software Architecture (WICSA), IEEE, Sydney, Australia, pp. 21–30.

https://doi.org/10.1109/WICSA.2014.13

Tobler, W., 1970. A computer movie simulating urban growth in the Detroit region. Economic

Geography 46, 234. https://doi.org/10.2307/143141

Tsou, M., 2015. Research challenges and opportunities in mapping social media and big data.

Cartography and Geographic Information Science 42, 70–74.

https://doi.org/10.1080/15230406.2015.1059251

Tukey, J.W., 1977. Exploratory data analysis, Addison-Wesley series in behavioural science.

Addison-Wesley Pub. Co, Reading, Mass.

UN-GGIM, 2020. Future trends in geospatial information management: the five to ten year vision.

https://ggim.un.org/meetings/GGIM-committee/10th-

Session/documents/Future_Trends_Report_THIRD_EDITION_digital_accessible.pdf

Vatsavai, R., Ganguly, A., Chandola, V., Stefanidis, A., Klasky, S., Shekhar, S., 2012.

Spatiotemporal data mining in the era of big spatial data: algorithms and applications, in:

Proceedings of the 1st ACM SIGSPATIAL International Workshop on Analytics for Big

Geospatial Data, BigSpatial ’12. Association for Computing Machinery, New York, NY, USA,

pp. 1–10. https://doi.org/10.1145/2447481.2447482

Walker, I., Eamer, J., Darke, I., 2013. Assessing significant geomorphic changes and

effectiveness of dynamic restoration in a coastal dune ecosystem. Geomorphology, Coastal

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://doi.org/10.1016/j.compenvurbsys.2006.07.001
https://doi.org/10.1111/gean.12194
https://doi.org/10.1016/j.compenvurbsys.2012.10.003
https://doi.org/10.1109/WICSA.2014.13
https://doi.org/10.2307/143141
https://doi.org/10.1080/15230406.2015.1059251
https://doi.org/10.1145/2447481.2447482

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 118 of 131

Geomorphology and Restoration 44th Binghamton Geomorphology Symposium 199, 192–

204. https://doi.org/10.1016/j.geomorph.2013.04.023

Ward, M., 1994. XmdvTool: integrating multiple methods for visualizing multivariate data, in:

Proceedings Visualization ’94. Presented at the Proceedings Visualization ’94, pp. 326–333.

https://doi.org/10.1109/VISUAL.1994.346302

Warner, T., Shank, M., 1997. Spatial autocorrelation analysis of hyperspectral imagery for feature

selection. Remote Sensing of Environment 60, 58–70. https://doi.org/10.1016/S0034-

4257(96)00138-1

Young, R., 2003. Requirements Engineering Handbook. Artech House, Norwood, United

States.

Zhou, S., Zhang, W., Wang, S., Zhang, B., Xu, Q., 2021. Spatial–temporal vegetation dynamics

and their relationships with climatic, anthropogenic, and hydrological factors in the Amur

River basin. Remote Sensing 13, 684. https://doi.org/10.3390/rs13040684

Zhou, Z., Ye, Z., Yu, J., Chen, W., 2018. Cluster-aware arrangement of the parallel coordinate

plots. Journal of Visual Languages & Computing 46, 43–52.

https://doi.org/10.1016/j.jvlc.2017.10.003

Zuur, A., Ieno, E., Smith, G., 2007. Analysing ecological data, Statistics for Biology and Health.

Springer, New York, NY.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://doi.org/10.1016/j.geomorph.2013.04.023
https://doi.org/10.1109/VISUAL.1994.346302
https://doi.org/10.1016/S0034-4257(96)00138-1
https://doi.org/10.1016/S0034-4257(96)00138-1
https://doi.org/10.3390/rs13040684
https://doi.org/10.1016/j.jvlc.2017.10.003

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 119 of 131

REFERENCED DATASETS AND SOFTWARE

Datasets

2012 and 2016 Presidential Elections, available online at https://geodacenter.github.io/data-

and-lab/county_election_2012_2016-variables/, downloaded 3 October 2023

Admin 0 – Countries without boundary lakes, available online at

https://www.naturalearthdata.com/downloads/110m-cultural-vectors/, downloaded 13

August 2023

AirBnB Chicage 2015, available online at https://geodacenter.github.io/data-and-lab/airbnb/,

downloaded 5 October 2023

Census 2011 Descriptive Results, available online at

http://superweb.statssa.gov.za/webapi/jsf/login.xhtml, downloaded 4 October 2023

CHIRPS Africa Monthly Rainfall [2023.03], available online at

https://data.chc.ucsb.edu/products/CHIRPS-2.0/africa_monthly/tifs/, downloaded 9

May 2023

EU Air Quality 2016, available online at https://github.com/andrea-ballatore/open-geo-data-

education, downloaded 1 August 2023

Global Precipitation 1950-2017, available online at https://github.com/andrea-ballatore/open-

geo-data-education, downloaded 1 August 2023

Local Municipality Boundaries 2011, available online at https://dataportal-mdb-

sa.opendata.arcgis.com/datasets/8466ca680a3e4f35b69dddca4f11e357,

downloaded 4 October 2023

Malaria in Colombia (1998), available online at https://geodacenter.github.io/data-and-

lab/colomb_malaria/, downloaded 5 October 2023

Simulated Spatial Autocorrelation, available online at https://geodacenter.github.io/data-and-

lab/grid100/, downloaded 16 August 2023

South African Population Counts, available online at

https://hub.worldpop.org/geodata/summary?id=33892, downloaded 17 August 2023

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 120 of 131

Software

ArcGIS, available online at https://pro.arcgis.com/en/pro-app/latest/get-started/get-

started.htm, accessed 16 September 2023

AutoVis, available online at https://github.com/AutoViML/AutoViz, accessed 16 September

2023

Colblindor, available online at https://www.color-blindness.com/, accessed 16 September

2023

Dask, available online at https://www.dask.org/, accessed 16 September 2023

DataPrep.EDA, available online at https://docs.dataprep.ai/user_guide/eda/introduction.html,

accessed 16 September 2023

DCluster, available online at https://cran.r-project.org/web/packages/DCluster/index.html,

accessed 16 September 2023

ENVI, available online at https://www.nv5geospatialsoftware.com/Products/ENVI, accessed

24 October 2023

GeoDa, available online at http://geodacenter.github.io/, accessed 16 September 2023

Geopandas, available online at https://geopandas.org/en/stable/index.html, accessed 16

September 2023

Geoplot, available online at https://residentmario.github.io/geoplot/index.html, accessed 16

September 2023

GeoRasters, available online at https://georasters.readthedocs.io/en/latest/, accessed 16

September 2023

Joblib, available online at https://joblib.readthedocs.io/en/stable/, accessed 16 September

2023

MapTools, available online at https://cran.r-project.org/web/packages/maptools/index.html,

accessed 16 September 2023

Matplotlib, available online at https://matplotlib.org/stable/, accessed 16 September 2023

MuseoToolBox, available online at https://museotoolbox.readthedocs.io/en/latest/index.html,

accessed 16 September 2023

Numpy, available online at https://numpy.org/, accessed 16 September 2023

Pandas, available online at https://pandas.pydata.org/, accessed 16 September 2023

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://pro.arcgis.com/en/pro-app/latest/get-started/get-started.htm
https://pro.arcgis.com/en/pro-app/latest/get-started/get-started.htm
https://github.com/AutoViML/AutoViz
https://www.color-blindness.com/
https://www.dask.org/
https://docs.dataprep.ai/user_guide/eda/introduction.html
https://cran.r-project.org/web/packages/DCluster/index.html
http://geodacenter.github.io/
https://geopandas.org/en/stable/index.html
https://residentmario.github.io/geoplot/index.html
https://georasters.readthedocs.io/en/latest/
https://joblib.readthedocs.io/en/stable/
https://cran.r-project.org/web/packages/maptools/index.html
https://matplotlib.org/stable/
https://museotoolbox.readthedocs.io/en/latest/index.html
https://numpy.org/
https://pandas.pydata.org/

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 121 of 131

pygeoda, available online at https://geodacenter.github.io/pygeoda/, accessed 16 September

2023

PySAL, available online at https://pysal.org/, accessed 16 September 2023

Python, available online at https://www.python.org/, accessed 16 September 2023

QGIS, available online at https://www.qgis.org/en/site/, accessed 16 September 2023

R, available online at https://www.r-project.org/, accessed 16 September 2023

Rasterio, available online at https://rasterio.readthedocs.io/en/stable/intro.html, accessed 16

September 2023

rioxarray, available online at https://corteva.github.io/rioxarray/html/index.html, accessed 16

September 2023

seaborne, available online at https://seaborn.pydata.org/, accessed 16 September 2023

SpaceStat, available online at https://biomedware.com/products/spacestat/spacestat-

details/, accessed 16 September 2023

spdep, available online at https://cran.r-project.org/web/packages/spdep/index.html,

accessed 16 September 2023

Sweetviz, available online at https://github.com/fbdesignpro/sweetviz, accessed 16

September 2023

ydata-profiling, available online at https://ydata-profiling.ydata.ai/docs/master/index.html,

accessed 16 September 2023

xarray, available online at https://docs.xarray.dev/en/stable/, accessed 16 September 2023

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://geodacenter.github.io/pygeoda/
https://pysal.org/
https://www.python.org/
https://www.qgis.org/en/site/
https://www.r-project.org/
https://rasterio.readthedocs.io/en/stable/intro.html
https://corteva.github.io/rioxarray/html/index.html
https://seaborn.pydata.org/
https://biomedware.com/products/spacestat/spacestat-details/
https://biomedware.com/products/spacestat/spacestat-details/
https://cran.r-project.org/web/packages/spdep/index.html
https://github.com/fbdesignpro/sweetviz
https://ydata-profiling.ydata.ai/docs/master/index.html
https://docs.xarray.dev/en/stable/

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 122 of 131

APPENDIX A: ETHICAL CLEARANCE

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 123 of 131

APPENDIX B: USER STORIES

Chapter 3 describes numerous interviews were conducted in order to generate feedback and

identify potential improvements that could be made to the autoESDA ecosystem. Before

conducting the interviews, users were sent an example report to investigate. The interviews

were unstructured with numerous leading questions posed to the participants by the

researchers. The interview participants had varying levels of experience and came from a

variety of industries, ranging from software development to education. This allowed for a

wealth of feedback as each interview participant brought with them a different perspective.

This feedback has been translated into user stories which have been categorised into four

themes, namely: General Functionality, Summary Page, Variable Information Page, and

Correlation Page.

General Functionality

1. As a user I would like the library to have the functionality to accept and process raster

datasets as this will allow me to work with this data format which is not supported by

other popular platforms.

2. As a user I would like there to be an “About” page which describes the default settings

for the various charts as well as the metadata such as the spatial weight matrix used

and the date and time the report was generated. This would improve my understanding

and therefore the value of the information I can extract from the report.

3. As a user I would like the library to be available on a popular platform such as PyPi or

conda-forge as this will allow me to install it more easily.

4. As a developer I would like the code of the library to be refactored so that it is more

modular and does not rely on the transfer of HTML strings between functions. This will

improve how quickly new contributors can understand and improve the code or add

new functionality.

Summary Page

1. As a user I would like the study area map to be interactive and allow popups so that I

can further interact with and understand the dataset and its attributes.

2. As a user I would like to have the ability to specify the name of the study area as a

parameter so that it is displayed above the study area map.

3. As a user I would like the terms “rows” and “columns” to be replaced by attributes and

fields so that I do not get confused by thinking it refers to raster cells.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 124 of 131

4. As a user I would like various spatial statistics such as the average area of polygons

and average number of neighbours to be shown in the dataset overview table so that

I can have a better understanding of the dataset I am working with.

5. As a user I would like to see additional descriptive statistics such as skewness,

kurtosis, and the number of null and unique values as this will aid my understanding of

the dataset.

6. As a user I would like to see the global Moran’s 𝐼 statistics in the descriptive statistics

table as this will give me a quick overview and allow me to easily compare this statistic

between all the attributes.

7. As a user I would like the dataset sample to consist of ten randomly selected rows as

this will allow a greater chance of detecting irregularities in the dataset that may not be

in the first or last five rows.

Variable Information Page

1. As a user I would like to see a key that shows what the red and blue lines of the

reference distribution mean as this will improve my understanding of the chart.

2. As a user I would like to see a clustering/no clustering label on the reference

distribution so as to easily understand what the interpretation of the Moran’s 𝐼 statistic

is.

3. As a user I would like the axes to have the same scaling so that the line is not distorted

as the gradient of this is usually equivalent to the Moran’s 𝐼 value.

4. As a user I would like a legend to illustrate what the colours on the Moran’s 𝐼 scatter

plot mean as this will increase my understanding of the chart.

5. As a user I would like the abbreviations in the LISA scatter plot to be written out in full

as this will allow me to understand what they refer to.

6. As a user I would like to specify my own spatial weights matrix as a parameter so that

I have control over how my results are calculated.

7. As a user I would like the type of spatial weights used to be specified somewhere so

that I know how results were calculated and I can gauge the effect the weights have

on the results.

8. As a user I would like the legend of the choropleth maps to be moved outside of the

map so that I can see all the features on the map.

9. As a user I would like to see additional classification schemes such as boxmap and

mean-standard deviation as this will allow me to see how these schemes visualise the

dataset.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 125 of 131

10. As a user I would like the colour scheme on the choropleth maps to be reversed such

that the darker colours are used to represent greater values as this is in line with

conventional cartographic principles.

Correlation Page

1. As a user I would like the values in the correlation heatmap to be rounded off to two

decimal places as this is more visually appealing.

2. As a user I would like to see a colour ramp outside the correlation heatmap as this will

enable me to understand what the colours are indicative of.

3. As a user I would like to specify the correlation type (Pearson, Spearman, Kendall) as

this will allow me to ensure that the most suitable one is used for the data that I am

working with.

4. As a user I would like the name “Pairplot” to be changed to “Pairwise plot” as this is a

more descriptive title.

5. As a user I would like there to be red borders around scatter plots with significant

relationships (correlation > 0.7) as this will allow me to quickly identify strong

relationships.

6. As a user I would like the scatter plots to have trendlines, coefficients of variation and

adjusted R2 values as this will improve the wealth of information given by the plot.

7. As a user I would like the layout of the correlation page to be improved so that I do not

have to scroll so much and can spend more time understanding the data.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 126 of 131

APPENDIX C: R SCRIPT (ORDINARY VARIANCE)

The R script below was used to inflate the variance of datasets for testing raster LISA

calculations:

library(tiff)

library(raster)

#Read in data

small <- raster('chirps-small-231x180.tif')

medium <- raster('chirps-medium-575x409.tif')

large<-raster('chirps-large-903x593.tif')

#Store raster to matrix

Smatrix <- values(small)

Mmatrix <- values(medium)

Lmatrix <- values(large)

#Set all potential NoData values to 0

smallempty <- small@file@nodatavalue

Smatrix[Smatrix == smallempty] <- 0

Smatrix[is.na(Smatrix)] <- 0

Smatrix[Lmatrix == -9999] <- 0

mediumempty <- medium@file@nodatavalue

Mmatrix[Mmatrix == mediumempty] <- 0

Mmatrix[is.na(Mmatrix)] <- 0

Mmatrix[Lmatrix == -9999] <- 0

largeempty <- large@file@nodatavalue

Lmatrix[Lmatrix == largeempty] <- 0

Lmatrix[is.na(Lmatrix)] <- 0

Lmatrix[Lmatrix == -9999] <- 0

#Export rasters with 0 values

values(small) <- Smatrix

writeRaster(small,"small-variance-chirps-small-231x180.tif",

overwrite=TRUE)

values(medium) <- Mmatrix

writeRaster(medium,"small-variance-chirps-medium-575x409.tif",

overwrite=TRUE)

values(large) <- Lmatrix

writeRaster(large,"small-variance-chirps-large-903x593.tif",

overwrite=TRUE)

#Rescale function

rescale <- function(image){

 minn <- min(image)

 maxx <- max(image)

 newimage <- (image-minn)/(maxx-minn)

 return(newimage)

}

#New variance function

newvariance <- function(image,varvolume){

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 127 of 131

 newvar <- rnorm(n=length(image),mean=0,sd = varvolume)

 newimage <- image

 for (i in 1:length(image)){

 if (image[i] !=0){

 newimage[i] = image[i]+abs(newvar[i])

 }

 }

 return(newimage)

}

###SMALL IMAGE###

newsmall <- rescale(Smatrix)

sdSmall <- sqrt(var(c(newsmall)))

medvarsmall <- newvariance(newsmall,varvolume = sdSmall*2)

sqrt(var(c(medvarsmall)))

medvarsmallraster <- small

values(medvarsmallraster) <- medvarsmall

plot(small)

plot(medvarsmallraster)

writeRaster(medvarsmallraster,"medium-variance-chirps-small-231x180.tif",

overwrite=TRUE)

largevarsmall <- newvariance(newsmall,varvolume = sdSmall*4)

sqrt(var(c(largevarsmall)))

largevarsmallraster <- small

values(largevarsmallraster) <- largevarsmall

plot(small)

plot(largevarsmallraster)

writeRaster(largevarsmallraster,"large-variance-chirps-small-

231x180.tif",overwrite=TRUE)

###MEDIUM IMAGE###

newmedium <- rescale(Mmatrix)

sdMedium <- sqrt(var(c(newmedium)))

medvarmedium <- newvariance(newmedium,varvolume = sdMedium*2)

sqrt(var(c(medvarmedium)))

medvarmediumraster <- medium

values(medvarmediumraster) <- medvarmedium

plot(medium)

plot(medvarmediumraster)

writeRaster(medvarmediumraster,"medium-variance-chirps-medium-

575x409.tif", overwrite=TRUE)

largevarmedium <- newvariance(newmedium,varvolume = sdMedium*4)

sqrt(var(c(largevarmedium)))

largevarmediumraster <- medium

values(largevarmediumraster) <- largevarmedium

plot(medium)

plot(largevarmediumraster)

writeRaster(largevarmediumraster,"large-variance-chirps-medium-

575x409.tif",overwrite=TRUE)

###SMALL IMAGE###

newlarge <- rescale(Lmatrix)

sdLarge <- sqrt(var(c(newlarge)))

medvarlarge <- newvariance(newlarge,varvolume = sdLarge*2)

sqrt(var(c(medvarlarge)))

medvarlargeraster <- large

values(medvarlargeraster) <- medvarlarge

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 128 of 131

plot(large)

plot(medvarlargeraster)

writeRaster(medvarlargeraster,"medium-variance-chirps-large-903x593.tif",

overwrite=TRUE)

largevarlarge <- newvariance(newlarge,varvolume = sdLarge*4)

sqrt(var(c(largevarlarge)))

largevarlargeraster <- large

values(largevarlargeraster) <- largevarlarge

plot(large)

plot(largevarlargeraster)

writeRaster(largevarlargeraster,"large-variance-chirps-large-

903x593.tif",overwrite=TRUE)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 129 of 131

APPENDIX D: R SCRIPT (SPATIALLY AUTOCORRELATED

VARIANCE)

The R script below was used to simulate spatially autocorrelated variance in raster datasets

to test the performance of the autoESDA library.

library(viridis)

library(ggplot2)

library(sf)

library(gstat)

library(gridExtra)

library(stars)

setwd()

mycrs <- st_crs(4326)

input_points <- read.table("50-random-points.csv", sep=",", header=T)

input_points <- st_as_sf(input_points, coords=c("x_coord","y_coord"),

crs=mycrs)

mask <- read_stars("INPUT_DATASET")

st_crs(mask) <- mycrs

options(scipen=999)

g <- gstat(id=c("random_num"), formula=random_num~1, data=input_points)

vg <- variogram(g)

#CHANGE PSILL AND RANGE VALES DEPENDING ON EXPERIMENTAL VARIOGRAM

plot(vg, plot.numbers=TRUE)

vgm_low_range <- vgm(nugget=0, psill=20000000, range=10, model="Sph")

plot(vg, vgm_low_range, main="Experimental Variogram of random_num (Low

Range)")

vgm_med_range <- vgm(nugget=0, psill=20000000, range=100, model="Sph")

plot(vg, vgm_med_range, main="Experimental Variogram of random_num (Med

Range)")

vg_high_range <- variogram(g)

vgm_high_range <- vgm(nugget=0, psill=20000000, range=300, model="Sph")

plot(vg, vgm_high_range, main="Experimental Variogram of random_num (High

Range)")

vgm_line_low = variogramLine(vgm_low_range, maxdist = 650)

vgm_line_med = variogramLine(vgm_med_range, maxdist = 650)

vgm_line_high = variogramLine(vgm_high_range, maxdist = 650)

line_types <- c("Low Range"="#66c2a5", "Medium Range"="#fc8d62", "High

Range"="#8da0cb")

ggplot(vg, aes(x = dist, y = gamma)) +

 theme_bw() + theme(plot.title = element_text(hjust = 0.5)) +

 geom_point() +

 geom_line(data = vgm_line_low, colour='#66c2a5', size=1) +

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 130 of 131

 geom_line(data = vgm_line_med, colour='#fc8d62', size=1) +

 geom_line(data = vgm_line_high, colour='#8da0cb', size=1) +

 xlab("Distance") + ylab("Semivariance") + ggtitle("Dataset 3 -

Experimental Variogram") + scale_color_identity(name = "Model fit", breaks

= c("#66c2a5", "#fc8d62", "#8da0cb"), labels = c("Linear", "Quadratic",

"Cubic"),guide = "legend")

krig_low_res_low_range <- krige(random_num~1, input_points, newdata=mask,

vgm_low_range)

names(krig_low_res_low_range)[1] <- "random_num.pred"

names(krig_low_res_low_range)[2] <- "random_num.var"

krig_low_res_med_range <- krige(random_num~1, input_points, newdata=mask,

vgm_med_range)

names(krig_low_res_med_range)[1] <- "random_num.pred"

names(krig_low_res_med_range)[2] <- "random_num.var"

krig_low_res_high_range <- krige(random_num~1, input_points, newdata=mask,

vgm_high_range)

names(krig_low_res_high_range)[1] <- "random_num.pred"

names(krig_low_res_high_range)[2] <- "random_num.var"

ggplot() +

 geom_stars(data=krig_low_res_low_range["random_num.pred"]) +

 scale_fill_gradient(low="yellow", high="dark blue") +

 geom_sf(data=input_points, shape=1, aes(size=random_num))

ggplot() +

 geom_stars(data=krig_low_res_med_range["random_num.pred"]) +

 scale_fill_gradient(low="yellow", high="dark blue") +

 geom_sf(data=input_points, shape=1, aes(size=random_num))

ggplot() +

 geom_stars(data=krig_low_res_high_range["random_num.pred"]) +

 scale_fill_gradient(low="yellow", high="dark blue") +

 geom_sf(data=input_points, shape=1, aes(size=random_num))

write_stars(krig_low_res_low_range["random_num.pred"],

"output_low_range.tif")

write_stars(krig_low_res_med_range["random_num.pred"],

"output_med_range.tif")

write_stars(krig_low_res_high_range["random_num.pred"],

"output_high_range.tif")

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Automating exploratory spatial data analysis (ESDA) for vector and raster data:

development and evaluation of the autoESDA Python library

Page 131 of 131

APPENDIX E: LINKS TO OUTPUT AUTOESDA REPORTS

Vector Reports Raster Reports

Dataset 1

AirBnB Chicago 2015

Global Terrestrial Precipitation
Band 1 | Band 2 | Band 3 | Band 4 | Stacked

Dataset 2

Grid 100

EU NOx Concentration

Band 1 | Band 2 | Band 3 | Band 4 | Stacked

Dataset 3

South African 2011 Census

South African Population

Band 1 | Band 2 | Band 3 | Band 4

Dataset 4

Natural Earth Country Boundaries

Dataset 5

Malaria in Colombia

Dataset 6

USA Election Results

** Dissertation Ends **

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://nicholasdekock.github.io/autoesda/example_reports/v1-airbnb.html
https://nicholasdekock.github.io/autoesda/example_reports/rain_1_original.html
https://nicholasdekock.github.io/autoesda/example_reports/rain_1_low_range.html
https://nicholasdekock.github.io/autoesda/example_reports/rain_1_med_range.html
https://nicholasdekock.github.io/autoesda/example_reports/rain_1_high_range.html
https://nicholasdekock.github.io/autoesda/example_reports/rain_1_stacked.html
https://nicholasdekock.github.io/autoesda/example_reports/v2-grid100.html
https://nicholasdekock.github.io/autoesda/example_reports/eu_air_1_original.html
https://nicholasdekock.github.io/autoesda/example_reports/eu_air_1_low_range.html
https://nicholasdekock.github.io/autoesda/example_reports/eu_air_1_med_range.html
https://nicholasdekock.github.io/autoesda/example_reports/eu_air_1_high_range.html
https://nicholasdekock.github.io/autoesda/example_reports/eu_air_1_stacked.html
https://nicholasdekock.github.io/autoesda/example_reports/v3-southafrica.html
https://nicholasdekock.github.io/autoesda/example_reports/za_pop_1_original.html
https://nicholasdekock.github.io/autoesda/example_reports/za_pop_1_low_range.html
https://nicholasdekock.github.io/autoesda/example_reports/za_pop_1_med_range.html
https://nicholasdekock.github.io/autoesda/example_reports/za_pop_1_high_range.html
https://nicholasdekock.github.io/autoesda/example_reports/v4-naturalearth.html
https://nicholasdekock.github.io/autoesda/example_reports/v5-colombia.html
https://nicholasdekock.github.io/autoesda/example_reports/v6-usa.html

