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ABSTRACT 
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autoESDA is a Python library developed with the aim of automating the Exploratory Spatial 

Data Analysis (ESDA) process. This is done by generating a HTML report made up of various 

ESDA graphs and statistics calculated according to the input dataset, requiring no other inputs 

from the user. ESDA (local spatial autocorrelation specifically) in Python has been a challenge 

for raster datasets, with software support lagging behind alternative platforms such as R. This 

dissertation documents the improvements made to the original library. These improvements 

include the support for raster datasets, an updated architectural design, and other minor, 

cosmetic improvements. The performance of the updated version of autoESDA is evaluated 

by investigating how its processing time varies according to vector and raster datasets that 

differ in size and complexity. These results are then discussed as a measure of how well the 

library has achieved its goal of automating the ESDA process. Finally, a roadmap for further 

improvements to the library is discussed. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Spatial data is currently generated at an unprecedented rate which is only expected to 

increase. The United Nations Initiative on Global Geospatial Information Management(UN-

GGIM) estimates that around 2.5 quintillion bytes of data each day, with a large portion of 

itexpected to have a spatial component (UN-GGIM, 2020). 

There are two main driving forces behind the magnitude of geospatial big data (UN-GGIM, 

2020). Firstly, the rise of new data sources, such as crowdsourced data or volunteered 

geographic information (VGI), Internet of Things (IoT) devices, self-driving cars, and satellites. 

The wealth of data sources allows for large volumes, varieties, and velocities of data to be 

generated – these three V’s are fundamental to defining geospatial big data (Gandomi and 

Haider, 2015; Li et al., 2016; Robinson et al., 2017). Secondly, there have been multiple 

technological advances which enable geospatial big data, such as cloud-computing, digital 

twins, machine learning, and artificial intelligence (UN-GGIM, 2020). While these technological 

advancements have been instrumental in handling geospatial big data, there have still been 

multiple calls for new tools that take advantage of the value of geospatial big data (Mennis 

and Guo, 2009; Vatsavai et al., 2012; Lee and Kang, 2015; Li et al., 2016). 

Exploratory Spatial Data Analysis (ESDA) is an extension of Exploratory Data Analysis (EDA). 

ESDA functions seek to describe and visualise spatial data. It achieves this through the 

identification of trends, patterns, and outliers, and displaying these results on a variety of 

graphs, maps, or other visual displays (Anselin, 1999). Often carried out under the umbrella 

of spatial data mining (Anselin, 1999), ESDA allows one to form hypotheses and suggest 

associations within a dataset. This is a particularly useful process when one may not have a 

firm theoretical understanding of the data being used. This is common due to the diverse 

nature of spatial data. The growth in size of spatial datasets has led to conceptual and 

computational challenges within the ESDA workflow (Anselin, 1999). 

1.2 Research Context 

autoESDA is a Python library and the proof of concept was first developed as part of my 

BScHons project, with the aim of automating the ESDA workflow. By doing so it removed the 

repetitive and time consuming process one would otherwise face when analysing large 

datasets (Higgins and Ray, 2022). The library was, however, very limited and it had not 

undergone extensive testing.  
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As part of the earlier project, various interviews were carried out which resulted in a wealth of 

feedback and potential improvements that could be added to the library and its output. One of 

the notable suggestions was the need for functionality to process raster datasets. The earlier 

project is summarised in an article that was published in 2022, and is included as Chapter 3 

of this dissertation. 

This project will expand on the autoESDA library by implementing improvements that have 

resulted from the earlier interviews, new technological advancements, and an improved 

understanding of the ESDA process and the tools on which autoESDA is built. 

Both projects have been carried out with the approval of the ethics committee of the Faculty 

of Natural and Agricultural Sciences at the University of Pretoria. The reference number is 

NAS229/2021, and the full approval letter can be viewed in Appendix A. 

1.3 Problem Statement 

ESDA is a repetitive and time-consuming process. It requires constant human input which 

means there is a large margin for human-induced errors. autoESDA is a Python library that 

was developed to address these issues. This proof of concept shows great potential; however 

it does not support raster datasets and its performance has not yet been evaluated. 

1.4 Research Aim and Objectives 

The aim of this research is to advance the automation of ESDA by implementing 

improvements to the autoESDA library and evaluating its performance.  

This will be achieved through successful attainment of the following objectives:  

1. Review related literature in conjunction with previously suggested improvements to the 

autoESDA Python library. 

2. Define requirements based on suggested improvements to the autoESDA Python 

library. 

3. Design and implement solutions that address the identified requirements. 

4. Evaluate the autoESDA library in terms of the defined requirements. 

5. Based on the results, draw conclusions regarding the success of autoESDA as a 

means of automating the ESDA workflow. 

1.5 Research Methodology 

Design science methodology refers to research which leads to the creation of successful 

artifacts, which is achieved through problem identification, definition of a solution, design and 

development, demonstration, evaluation, and communication (Peffers et al., 2007). This 
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project can be broken down into each of these stages, and its methodology is therefore 

considered to be of design science nature.  

The first stage of the project was to review existing literature relating to the project. This laid 

the foundation on which the motivation for a Python library to automate ESDA for vector and 

raster datasets is based. The existing autoESDA library was then described, along with some 

feedback from interviews that were previously conducted as part of existing research. This 

feedback led to the design of solutions to address multiple (mainly minor, cosmetic) 

improvements that were identified by interview participants. The most notable improvement is 

the support for raster datasets. Numerous strategies for automating ESDA (specifically local 

indicators of spatial autocorrelation - LISA) on raster datasets are discussed and compared. 

The optimal strategy is then included in the autoESDA library. In order to easily implement the 

upgrades, the existing autoESDA code was first refactored into a new architecture. The 

performance of the vector and raster modules of autoESDA are then evaluated with datasets 

of varying sizes and complexities. These results were used to evaluate the success of 

implementing a library to automate the ESDA process. Finally, limitations of this research were 

described, as well as opportunities for future work. 

1.6 Significance of Research 

Just as with EDA, ESDA is a repetitive and time consuming process (Higgins and Ray, 2022). 

Its results need to be generated through user interaction which opens up the risk of human-

induced errors (Borlongan et al., 2016; Murtiyoso et al., 2020). The autoESDA library aims to 

address these concerns and as such, any improvements to the library will have the same 

effect. Additionally, the added support for raster datasets is unique in that we are not aware of 

a tool that automates ESDA for this data format. These improvements and the design 

decisions behind them are documented and discussed as part of this dissertation which could 

be used as a guide for researchers conducting other projects – whether they are similar in 

nature to this one, or whether they are based on expanding this research and/or the autoESDA 

library.  

1.7 Overview of Chapters 

The remaining chapters in this dissertation are structured in the following manner: 

Chapter 2: Literature Review 

This chapter addresses objective one by presenting a body of literature that summarises and 

links together fundamental concepts related to automating the ESDA process. Spatial data is 

described, and an overview of geospatial big data is given. EDA and ESDA are identified as 
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strategies that address some issues brought about by geospatial big data. Use-cases for 

raster ESDA is discussed, as well as the motivation to automate ESDA. Similar automation 

projects are discussed to identify principles that could be adapted to automate ESDA. This is 

rounded off by a discussion on how easily some popular ESDA functions could be automated. 

Chapter 3: Towards an Open Source Library for Automated Exploratory Spatial Data 

Analysis (ESDA) 

This chapter was published as an article in 2022 and documents the initial design of the 

autoESDA library and the feedback and suggested improvements that resulted from a series 

of interviews.  These suggestions motivate for the updates that form the second iteration of 

autoESDA which is described in Chapter 4. 

Chapter 4: Second Iteration of autoESDA: Redesign and Expanding its Capabilities 

This chapter begins by documenting some high-level requirements for the second iteration of 

autoESDA. The remainder of this chapter documents and discusses how these requirements 

are met through the development of the updated library. The chapter concludes by highlighting 

some limitations, and paving the way for future improvements that could be implemented. 

Chapter 5: Performance Evaluation 

This chapter details the process taken to evaluate the performance of the autoESDA library, 

along with the implemented improvements. Vector and raster datasets of varying sizes and 

complexities were used the test the performance of autoESDA. The framework for how these 

tests were run is described, and the results obtained from this process are discussed. 

Chapter 6: Conclusion 

This chapter summarises the preceding chapters by discussing the extent to which each of 

the objectives were achieved. Final conclusions are drawn based on the work done, and 

further work is proposed. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Chapter Overview 

The literature review is intended to highlight the fundamental components on which this 

dissertation is based. Spatial data is described to introduce the concept and why it is different 

from regular data. This provides the foundation on which the concept of geospatial data is 

built, which highlights the need for automation and new strategies to be developed so that 

valuable insight can be efficiently extracted from spatial data. EDA and ESDA, along with their 

components are discussed as a means of addressing this challenge. Finally, similar work 

within the realms of dealing with geospatial big data, and the use of automation of other tasks 

related to the data life cycle, is discussed.  

2.2 Spatial Data 

While the terms spatial and geospatial data are often used interchangeably, they refer to 

slightly different concepts. Spatial data refers to any data linked to a point in space, this could 

include a Cartesian plane or an alternate or fictional universe, whereas geospatial data refers 

to data that relates to a point on or near the earth’s surface (Longley et al., 2015). 

Tobler’s (1970) First Law of Geography states that “everything is related to everything else, 

but near things are more related than distant things”. While not all spatial phenomena may 

adhere to this law, it does encourage one to exercise caution when working with spatial data. 

The law implies that spatial data is dependent on its surroundings, which means that it cannot 

be processed under the assumption of independence, as is the case for other statistical 

datasets (Anselin, 1989).  

As a subset of ordinary data, geospatial data is not exempt from the growing popularity of big 

data and it has not taken long for researchers to coin the term geospatial big data (Lee and 

Kang, 2015; Li et al., 2016; Robinson et al., 2017). Just as with big data, geospatial big data 

can also be described using the 3Vs – having large volume, high velocity, and great variety 

(Jin et al., 2015). The challenges of dealing with geospatial big data have already been 

identified (Anselin, 2010; Tsou, 2015), the rest of this section will discuss the 3Vs and their 

associated challenges within the context of geospatial big data. 

Volume 

Singleton and Arribas-Bel (2021) found that there has never been access to a greater amount 

of geospatial data than we have today. This is partly due to the velocity (and variety) at which 

we capture data, as well as the added temporal dimension due to the historical data we have 
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accumulated over time (Robinson et al., 2017). These factors both highlight the magnitude of 

the volume of geospatial data we have at our disposal. 

Before one can use raw geospatial big data to assist with decision making, it needs to be 

processed into information. This is achieved through the use of descriptive statistics (Li et al., 

2016) and visualisations which aid the end user in detecting various patterns and trends within 

their dataset (Coetzee and Rautenbach, 2017). Visualising geospatial big data is not a simple 

task as data often overlaps due to the various scales and levels of detail in which it is captured 

(Jern et al., 2008; Li et al., 2016). This makes it a challenge to develop effective solutions to 

visualise results, as the required visualisation can vary for per usage. Once computed, 

statistics and visualisations should be structured in an appropriate manner – such as a report. 

This will allow for additional insight into the data by the end user (Li et al., 2015; Robinson et 

al., 2017). Anselin (2010) highlights the need for software to be developed that is capable of 

handling the large volumes of spatial data. 

Velocity 

Internet and GPS enabled sensors are more accessible than ever. This is due to declining 

costs as well as integration into everyday devices such as smartphones (Armstrong et al., 

2019). Due to the widespread use of these sensors, geospatial data is increasingly available 

in real time. At the same time, multiple satellites consistently stream other geospatial data 

such as reflectance values, temperatures, and air quality measurements (Armstrong et al., 

2019. 

The challenge no longer lies in collecting geospatial data, but rather in how timeously it can 

be processed. Lee and Kang (2015) argue that data should be processed as soon as it is 

collected. This massive influx of data changes frequently and the results need to be viewed 

almost immediately so that decisions can be made in real time (Dangermond and Goodchild, 

2020). This argument is certainly applicable in certain situations such as dealing with 

immediate natural disasters. Despite the magnitude of big data, not all big data is immediately 

useful (Jin et al., 2015). Li et al. (2016) cautions that sensor data especially is largely irrelevant 

due to repetition and over sampling. Just as data may need to be processed immediately for 

real time decisions, it may be more beneficial to analyse temporal trends and investigate 

outliers. Regardless of whether data should be processed immediately at the time of collection 

or if trends are analysed at set time intervals, it is evident that the workflow followed will be 

repeated numerous times. 
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Variety 

Cressie (1993) outlines three spatial data models, namely: point pattern data, geostatistical 

data, and lattice data. Point patterns are used to represent point events. Consequently, the 

value of these datasets lie in the location/pattern of the point(s), rather than the value of a 

variable at these points. As such, the calculation of spatial autocorrelation of point patterns is 

of little value (Cressie, 1993). The primary objective of geostatistics is to predict the value of 

a variable at unknown locations. Conversely, the goal of a lattice-based approach is to detect 

spatial patterns and find an explanation for these patterns (Saveliev et al., 2007).  

A lattice dataset is created by dividing up a larger study area into a collection of smaller areas 

in a neighbourhood structure, each with an associated observation (Kaluzny et al., 1998; 

Saveliev et al., 2007). These smaller areas (also known as cells, units, or locations) do not 

overlap and need to share a common boundary. A regular lattice is made up of cells that have 

the same shape and size. Satellite data such as temperature or reflectance values are an 

example of data gridded in a regular lattice. Irregular lattices, on the other hand are formed by 

irregular shaped units such as political/administrative boundaries or Voronoi polygons 

(Kaluzny et al., 1998; Saveliev et al., 2007). 

Statistical analysis of lattice datasets are carried out to detect and explain spatial patterns 

(Saveliev et al., 2007). These objectives are by definition part of an ESDA workflow. Just as 

with the popular ESDA software, GeoDa1 (Anselin et al., 2006), this dissertation will primarily 

focus on lattice data. This means that any outcomes or statements may not hold the same 

truth when working with point pattern or geostatistical datasets. 

Most exploratory tools for geospatial big data are designed to handle specific (mainly vector) 

formats (Robinson et al., 2017). In order to capture the full value of the large variety of formats, 

software needs to support a variety of data formats. 

2.3 Exploratory Data Analysis (EDA) 

Tukey (1977) coined the term Exploratory Data Analysis and likened it to “quantitative 

detective work”, emphasising that it is purely exploratory rather than confirmatory 

(Fotheringham, 1992). Peng et al. (2021) describes EDA as “the process of understanding 

data through data manipulation and visualisation”, emphasising that it plays a vital role in every 

data science project. While it is clear that EDA can never tell the whole story of a dataset, it is 

a valuable tool for gathering initial insights to the dataset at hand. Anselin (1989) describes 

EDA as a data-driven approach, in which one must allow the data to speak for itself. One 

 

1 http://geodacenter.github.io/  
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should be allowed to freely choose which functions are used so that the data may be viewed 

from different perspectives (Morgenthaler, 2009). This means that there is no generic 

algorithm of EDA functions that can be applied to all datasets, as the results will be largely 

dependent on the individual dataset. Functions need to be executed without any underlying 

assumptions of the dataset, and the resulting visualisations, indicators and statistics should 

guide how the user further explores and analyses the data. Unlike with the more specialised 

ESDA, there is a great variety of proprietary and open source software platforms supporting 

EDA. There are also multiple libraries within the R and Python ecosystems that support EDA. 

Due to there being no clear boundary between EDA and other statistical research, there exists 

no authoritative list defining what functions fall within the EDA toolbox. There are, however, 

several popular techniques associated with EDA. These will be discussed in the remainder of 

this section.  

2.3.1 Descriptive Statistics 

Descriptive statistics are used to outline important features of a dataset (Devore and Berk, 

2012). These measures can provide important initial conclusions related to the dataset and 

are fundamental to any EDA workflow. There are four categories of descriptive statistics, 

namely: number of observations, measures of central tendency, measures of variation, and 

measures of shape (Myatt and Johnson, 2014).  

A dataset is made up of a collection of observations. The observations for random variable 

𝑋 can be defined as 𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛−1, 𝑥𝑛. The sample size (𝒏) of a dataset is the count of how 

many observations are in the dataset, thus indicating the size of the dataset. 

2.3.1.1 Measures of Central Tendency 

Mode 

The mode is the most frequently occurring value in a dataset. It can highlight errors or potential 

trends within a dataset to be further investigated. 

Median 

The median is the middle value of a dataset that has been arranged in ascending order. It is 

used as a measure of central tendency as it is not skewed by outliers. 
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Sample Mean (𝒙̅) 

The sample mean gives an indication of what an average/expected value of the dataset would 

be. It is greatly influenced by outliers. The formula for the sample mean is given as: 

𝑥̅ =  
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

where 𝑥𝑖 is an observation of random variable 𝑋. 

2.3.1.2 Measures of Variation 

Minimum and Maximum 

The minimum and maximum are the extreme values in the dataset. They refer to the smallest 

and largest value respectively. 

Range 

The range gives an indication of the spread of values in a dataset. It is calculated by 

subtracting the minimum value from the maximum value in the dataset. A larger range is 

indicative of a greater spread of values. 

Quartiles 

𝑄1 = 0.25(𝑛 + 1) 𝑄2 = 0.5(𝑛 + 1) 𝑄3 = 0.75(𝑛 + 1) 

𝑄1, 𝑄2, and 𝑄3 refer to the lower, middle, and upper quartiles respectively. 𝑄1, 𝑄2, and 𝑄3  

indicate the position of the values in the dataset (when arranged in ascending order) that divide 

the dataset into four quartiles. 

Sample Variance (𝒔𝟐) 

𝑠2 =
∑(𝑥𝑖 − 𝑥̅)

𝑛 − 1
 

The variance is a measure of the spread of the dataset by measuring how values differ from 

the mean. The greater the value for variance, the greater the spread of the dataset. Datasets 

with a greater variance are considered to have more noise as the values are further from the 

mean than datasets with a lower variance. 

Sample Standard Deviation (𝒔) 

𝑠 =  √𝑠2 

Standard deviation is the square root of variance. The greater the value for standard deviation, 

the greater the spread of the dataset. The statistic has a similar interpretation to that of 

variance, in that a greater standard deviation is indicative of a dataset with more noise as the 
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values are, on average, further away from the mean than datasets with a lower standard 

deviation. 

2.3.1.3 Measures of Shape 

Skewness (𝝁̃𝟑) 

The skewness is determined as 

𝜇̃3 =
∑(𝑥𝑖 − 𝑥̅)3

𝑠3(𝑛 − 1)
 

where 𝑠 is the sample standard deviation. 

 

A skewness value ranges from -1 to +1. Its value corresponds to how symmetric the dataset’s 

distribution is. A value of 0 indicates a symmetric distribution, while a positive and negative 

value represents a positive and negative skewed dataset respectively. 

Kurtosis (𝝁̃𝟒) 

𝜇̃4 =
𝑛 − 1

(𝑛 − 2)(𝑛 − 3)
((𝑛 + 1) (

(∑ (𝑥𝑖 − 𝑥̅)4𝑛
𝑖=1 )𝑛−1

((∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 )𝑛−1

)2
) − 3) + 6 

 

A kurtosis value represents the shape of the peak of a distribution. Values close to zero 

indicate an approximate normal distribution shape, while positive and negative values 

represent sharper and flatter peaks respectively. 

2.3.1.4 Measures of Association 

Pearson Correlation (𝒓𝒙𝒚) 

Pearson’s correlation coefficient is calculated as 

𝑟𝑥𝑦 =
∑((𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅))

√∑(𝑥𝑖 − 𝑥̅)2 ∑(𝑦𝑖 − 𝑦̅)2
  

Where 𝑥𝑖 and 𝑦𝑖  refer to an observation, and 𝑥̅ and 𝑦̅ refer to the sample mean of random 

variable 𝑋 or 𝑌 respectively. 

Pearson is the most popular correlation coefficient. It measures the linear relationship between 

two variables. The variables must be quantitative (interval or ratio measurements) and have a 

normal distribution. Values range from -1 to +1. A value of 0 represents no relationship, a 
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value of +1 represents a perfect positive linear relationship and a value of -1 indicates a perfect 

negative linear relationship. 

Spearman Correlation (𝝆) 

Spearman’s 𝜌 is also referred to as rank correlation. It does not require variables to follow a 

normal distribution. Variables can be ordinal, interval or ratio measurements. Values range 

from -1 to +1. A value of 0 represents no relationship, a value of +1 represents a perfect 

positive relationship and a value of -1 indicates a perfect negative relationship. In order to 

calculate Spearman’s 𝜌, the observations are first ranked from the smallest value to the largest 

value (Zuur et al., 2007). The rank of each observation is then compared to the rank value of 

the corresponding observation from the other variable. These distances are then used in the 

formula below: 

𝜌 =  1 − 
6 ∑ 𝑑𝑖

2

(𝑛3 − 𝑛)
  

where  𝑑𝑖 is the difference between the 𝑥𝑖 and 𝑦𝑖 variable ranks, and 𝑛 refers to the sample 

size. 

Kendall Correlation (𝝉) 

Kendall’s 𝜏 is used for measuring association of the ranks between pairs of variables. Values 

range from -1 to +1. A value of 0 represents no relationship, a value of +1 represents a perfect 

positive relationship (the ranking of observations is the same for both datasets). and a value 

of -1 indicates a perfect negative relationship (perfect disagreement of rankings). Values are 

first ordered and then ranked from 1 to n. A pair of observations is considered a concordant 

pair if the differences of their value and the value of another observation for that variable are 

in the same direction as the difference of the corresponding observations of the other variable. 

Conversely, a discordant pair occurs when the difference is in the opposite direction. If the 

difference between the observations are the same for both variables, it is considered a tie. 

The formula below is used to calculate Kendall’s 𝜏: 

𝜏 =
𝑛𝑐 − 𝑛𝑑

√(𝑛𝑐 + 𝑛𝑑 + 𝑡𝑥)(𝑛𝑐 + 𝑛𝑑 + 𝑡𝑦)
 

where 𝑛𝑐 is the number of concordant pairs, 𝑛𝑑 is the number of discordant pairs, 𝑡𝑥 is the ties 

in variable 𝑋 and 𝑡𝑦 is the ties in variable 𝑌. 

2.3.2 Visualisation Techniques 

The use of visualisation techniques is an effective method of aiding ones understanding of the 

distribution of a dataset (Myatt and Johnson, 2014). This section will describe some popular 

visualisation techniques that one may come across when conducting EDA. 
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2.3.2.1 Brushing 

Although not strictly an EDA function, brushing, or subset selection, is considered an important 

part of any EDA process as it aids the user in identifying spatial and statistical relationships in 

a dataset (Ward, 1994). Brushing, often accompanied by multiple linked windows (Haslett et 

al., 1990; Jern et al., 2007; Roberts, 2005), refers to the ability of the user to select only a 

subset of observations of a dataset for consideration in other statistics or visualisations that 

form a part of EDA (Ward, 1994). This allows the user to interact with the dataset and observe 

the effect of excluding certain observations, or only considering a subset of the dataset (Rey 

and Janikas, 2006). 

2.3.2.2 Box Plots 

Box plots, also referred to as box and whisker diagrams, are used to visualise the shape of a 

dataset (Morgenthaler, 2009). The box (illustrated in Figure 1) usually spans the interquartile 

range (IQR) which is the range between the first quartile (25th percentile) and third quartile 

(75th percentile). The median (50th percentile) is displayed in the box and its position will 

indicate the extent to which the dataset is skewed. The IQR is the length of the box and can 

be calculated by subtracting the 25th percentile (Q1) from the 75th percentile (Q3). Two points 

are plotted at the upper and lower limits. A line (whisker) is then drawn connecting these points 

to the edge of the box. Any values falling outside the limits are also plotted, these are referred 

to as outliers. 

 

Figure 1: Box plot (also known as a box and whisker diagram) 

 

2.3.2.3 Frequency and Probability Histograms 

The purpose of a histogram is to visualise the distribution of a dataset. This is done by 

arranging values into bins which are represented as bars on the histogram. The user 

determines the number and range of the bins. Bars on the histogram would represent each of 

the bins. A frequency histogram will use count to represent the height of the bars, whereas a 

probability histogram (also called a relative frequency histogram) will use probability to 
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represent the height of the bars (Myatt and Johnson, 2014). Figure 2 illustrates a frequency 

and probability histogram respectively. 

 

Figure 2: Frequency (left) and probability (right) histogram. 

2.3.2.4 Scatter Plots 

A scatter plot is used to visualise the relationship between variables. The most common form 

of scatter plot is a 2D scatter plot, which plots two variables against each other on a Cartesian 

plane. One variable is plotted on the x-axis and another variable on the y-axis. Additional 

variables and axes may be added to form 3D or multidimensional scatter plots. It is a common 

practice to create a scatter plot matrix (Figure 3) in which a scatter plot is generated between 

each variable in a dataset. The diagonal is then filled with the frequency histogram 

corresponding to each variable. 

 

 

Figure 3: Pairwise plot made up of scatter plots and frequency histograms 
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2.4 Exploratory Spatial Data Analysis (ESDA) 

Most EDA functions assume independence which means that they are not suited for spatial 

datasets (Anselin, 1989). This creates a gap which is addressed by Exploratory Spatial Data 

Analysis (ESDA), which is an extension of EDA. This means that EDA can be considered as 

part of ESDA (Anselin and Rey, 2012), however the converse is not necessarily true. Anselin 

(1996) defines ESDA as a collection of tools used to describe and visualise spatial 

distributions, and any patterns that they may contain. This is achieved through the 

identification of spatial outliers, clusters, and other forms of spatial instability or spatial non-

stationarity. 

While objectives of ESDA remain the same as that of EDA, Goodchild (1992) argues that the 

value obtained from ESDA may even be greater than that of regular EDA. Just as with EDA, 

ESDA takes place after data cleaning in what is known as the exploratory phase (Anselin and 

Getis, 1992; Anselin and Rey, 2012). It aims to use all available data with minimum previous 

filters, selection criteria, and hypotheses and the outcomes of ESDA will guide how the dataset 

is further processed (Goodchild, 1997; Openshaw, 1995). As a data-driven approach, ESDA 

should impose as little structure as possible and use simple indicators to identify patterns and 

clusters (Anselin 1996; Anselin et al., 2007; Steiniger and Hunter, 2013).  

There are two spatial effects which ESDA should highlight, namely spatial heterogeneity and 

spatial autocorrelation (also known as spatial dependence) (Anselin 1998; Goodchild, 2000; 

Dall’erba, 2009). These two effects and their associated functions will be discussed in Section 

2.4.1 and 2.4.2 respectively. Section 0 will discuss some of the popular software platforms 

used for ESDA. 

2.4.1 Spatial Heterogeneity 

It is widely accepted that phenomenon are not homogeneous (similar) across space, which 

supports Tobler’s First Law in that near things are more related than distant things (Anselin, 

1988). This is known as spatial heterogeneity and is what makes each point in space unique, 

due to the fact that it’s attributes may differ from those at other locations (Goodchild and 

Longley, 2013). Various types of trends/patterns can occur, such as regions of similar values, 

or regions with great variance. Trends that occur in a dataset could be because the dataset is 

an accurate depiction of reality, however one should exercise caution as a trend could also be 

incorporated by imposing a spatial structure not suitable to that phenomenon (Anselin, 1988). 

It is therefore important that these patterns are investigated, as these findings could guide the 

user on how to further process a spatial dataset. Box plots, choropleth maps, and cartograms 

are all techniques used to visualise spatial heterogeneity (Dall’erba, 2009). 
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2.4.1.1 Choropleth Maps 

A choropleth map is a thematic map which represents the distribution of a variable by 

shading/colouring non-overlapping areas (such as provinces, wards, or raster cells) with 

different intensities according to the value of the attribute for that area (Longley et al., 2015; 

Slocum et al., 2014). Choropleth maps are vital tools in ESDA as they give an elementary 

visual understanding of the spatial distribution of a variable. There are numerous classification 

methods used to divide a dataset into classes, with each method having different advantages 

and disadvantages and their effectiveness being dependent on the distribution of the values 

in the dataset. Slocum et al. (2014) identified some popular classification schemes which are 

described in Table 1. These are also visualised in Figure 4. 

Table 1: Common classification schemes for choropleth maps 

Classification Description (Slocum et al., 2014) 

Boxmap 

Useful to highlight extreme values. Data is divided into six categories, namely 

the four quartiles, and then one each for extreme low and extreme high outliers 

respectively. 

Equal Intervals 

(Equal Steps) 

This method divides the observations in the dataset into a user-specified 

number of classes, with each class having the same interval. 

Quantiles 
In this method observations are arranged in ascending order and divided so 

that the same number of observations are present in each user-specified class. 

Mean-standard 

deviation 

This method forms classes by incrementally adding or subtracting the standard 

deviation from the mean of the data in accordance with the number of classes 

the user has specified. 

Maximum Breaks 

In this method data is ordered in ascending order and the difference between 

each observation is calculated. The greatest differences are then used as 

breaks between a user-specified number of classes. 

Fisher-Jenks 
This method uses statistical optimisation to minimise the sum of absolute 

differences between class medians. The number of classes are user-specified. 
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Figure 4: Choropleth maps with different classification schemes 

2.4.1.2 Cartograms 

A cartogram is used to visualise the magnitude of the variable of interest. It achieves this by 

distorting the size of the area in a way that is proportional to the target variable (Anselin et al., 

2007). This makes it easier to emphasise smaller enumeration areas that have large values 

and larger enumeration areas that have small values. Traditionally, the shape of the 

enumeration areas are maintained, however simple identical shapes (circles are used for 

Dorling cartograms) have been used instead so to allow for more detail to be displayed 

(Slocum et al., 2014). In addition to using size as a visual element, one can also colour the 

enumeration areas according to an attribute value. Figure 5 illustrates a regular cartogram 

with a single colour on the left, whereas the Dorling cartogram on the right has a colour scheme 

applied based on attribute values. 
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Figure 5: Regular cartogram (left) and a Dorling cartogram (right) 

2.4.2 Spatial Autocorrelation 

Slocum et al. (2014) define spatial autocorrelation as “the tendency for like things to occur 

near one another in geographic space”. One may even argue that spatial autocorrelation 

measures are used to quantify Tobler’s First Law. Positive spatial autocorrelation refers to 

clusters of observations where the observations share similar values (perfect clustering). This 

could be concentrations of high values (also known as hotspots) or low values (also known as 

coldspots). Negative spatial autocorrelation refers to the dispersion of variables in which there 

are no clusters of high or low values (perfect dispersion). Datasets may also exhibit no spatial 

autocorrelation, this is referred to as complete spatial randomness (Dall’erba, 2009).  

 

 

Figure 6: Examples of patterns of spatial autocorrelation 

Global spatial autocorrelation refers to spatial autocorrelation in the dataset as a whole. Global 

spatial autocorrelation statistics only indicate overall clustering or dispersion, but not where 

these hotspots/coldspots occur (Anselin et al., 2007). Local indicator(s) of spatial 
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autocorrelation (LISA) are therefore used to address this gap as they identify significant local 

clusters or outliers (Anselin and Bao, 1997).  

There are various measures of spatial autocorrelation. Join count statistics are used for binary 

data, which are usually nominal values (De Smith et al., 2018). Moran’s 𝐼 and Geary’s 𝐶 are 

global autocorrelation measures used for numeric data in lattice format (Anselin, 1988). Each 

measure also has an equivalent LISA – local Moran’s 𝐼 and local Geary’s 𝐶 (Anselin, 1995). 

The Getis and Ord G statistics may also be used to quantify spatial autocorrelation on a global 

and local level (Dall’erba, 2009).   

Univariate Moran’s 𝐼 and Geary’s 𝐶 are the original and most popular global autocorrelation 

statistics (Anselin, 1988; Dall’erba, 2009). These statistics, along with their LISA will be 

discussed in the following sections.  

2.4.2.1 Spatial Weights 

A spatial weights matrix is used to determine the neighbourhood of an observation. The 

identified neighbours are included in the calculation of the spatial lag of a variable, and by 

extension, spatial autocorrelation statistics such as Moran’s 𝐼 or Geary’s 𝐶 (Anselin, 1998). 

Spatial weights can be defined by whether the observations share boundaries (contiguity-

based) or whether they are within a certain distance of each other (distance-based) (Anselin, 

1998). Rook and queen are both cases of contiguity strategies, whereas kernel, distance-band 

and k-nearest neighbours are examples of distance based strategies (Anselin et al., 2006; 

Dall’erba, 2009). By definition, lattice data share common boundaries, making contiguity-

based approaches the most commonly used method to define neighbours (Anselin, 1998). 

Their popularity may be because they are less complex when compared to their distance-

based counterparts due to the subjectivity associated with the distance parameter. A single 

distance metric cannot be used generically as density of a phenomena is highly dependent on 

the nature of that phenomena. Depending on the projection of the dataset, the units used to 

represent distance in each dataset could differ. For this reason, this section will only discuss 

contiguity-based weights as they are simpler than their distance-based counterparts, whose 

creation is more of a challenge to automate. 

A rook’s case approach defines a neighbour as an observation that shares a border with the 

target observation (Anselin and Rey, 2014). A queen’s case, however, would consider all 

observations that share a vertex and/or border with the target observation as a neighbour 

(Anselin and Rey, 2014). In addition to the type of contiguity weights, one may also specify 

the order of a spatial weights matrix. The order refers to the number of steps of adjacency that 

are included in the identification of neighbours (Anselin and Rey, 2014). An example of 
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queen’s case and rook’s case contiguity is illustrated in Figure 7, where first order neighbours 

are shown in dark purple, and pink is used to represent cells that would only be considered if 

the order of contiguity is two.  

 

Figure 7: Rook (left) and queen (right) case contiguity. 

A spatial weights matrix can be represented as matrix 𝑊 = [𝑤𝑖𝑗], where 𝑤𝑖𝑗 represents the 

relationship between locations 𝑖 and 𝑗. Values in a contiguity-based matrix can either be 0 or 

1, with 0 indication 𝑖 and 𝑗 are not neighbours, while a value of 1 would indicate that 𝑖 and 𝑗 

are neighbours (Rogerson and Kedron, 2012). 

There is no agreement on which spatial weight format is the best to use, and Anselin (1988) 

argues that the structure of the spatial weights should be chosen based on the nature of the 

phenomenon represented in the dataset. Rey et al. (2023), however, state that the distinction 

between queen’s and rook’s case neighbours is negligible when working with an irregular 

lattice rather than a grid. The reason for this is because the shape of the cells in the dataset 

would have more of an impact on the defined neighbours than the strategy used.  

2.4.2.2 Moran’s 𝑰  

The Moran’s 𝐼 statistic is the most popular method to represent spatial autocorrelation (Anselin 

et al., 2007; De Smith et al., 2018). Its formula is shown in Table 2. Moran’s 𝐼 values range 

from -1 to +1, with -1 indicating negative spatial autocorrelation (perfect dispersion) and +1 

representing positive spatial autocorrelation (perfect clustering). Values close to zero are 

indicative of no clustering (complete spatial randomness). A Moran’s 𝐼  statistic can be 

visualised using a Moran’s 𝐼 scatter plot (see Figure 8), in which the spatial lag (y-axis) is 

plotted against the standardised value (z-score) of an observation (x-axis). The gradient of 

this scatter plot will be equivalent to the value of Moran’s 𝐼, meaning that a steeper the line, 

will be associated with a greater degree of spatial autocorrelation (Anselin, 1996; 1998). 
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Figure 8: Moran’s 𝑰 scatter plot 

The Moran’s 𝐼  scatter plot (Figure 8) is a useful tool for identifying outliers and can be 

decomposed into four quadrants. These quadrants form the foundation on which the local 

Moran’s 𝐼  categories are based (Anselin, 1996; Anselin and Bao, 1997). Two of these 

quadrants represent local clusters (high-high and low-low), while two quadrants represent 

local outliers (high-low and low-high). These quadrants form the four classes that are present 

in a LISA cluster map. While the scatter plot quadrants do provide a means for classifications, 

one needs to be cautioned that this does not indicate significance (Anselin et al., 2004). The 

local Moran’s 𝐼 value (𝐼𝑖 ) can also be calculated using a formula derived from the global 

statistic. This formula is also shown in Table 2. 

2.4.2.3 Geary’s 𝑪 

The Geary’s 𝐶 statistic follows a similar approach to the Moran’s 𝐼 formula, however instead 

of computing the cross product of standardised values, it uses the sum of squared differences 

instead (Geary, 1954). Warner and Shank (1997) describe global Geary’s 𝐶 as the average 

dissimilarity between points. Due to the fact that it uses the sum of squared distances, Geary’s 

𝐶 is less sensitive to linear relationships and could potentially identify spatial autocorrelation 

where Moran’s 𝐼 may not (Anselin, 2019). The interpretation of Geary’s 𝐶 values are different 

to those of Moran’s 𝐼. Values range from 0 to +2, those less than +1 are indicative of positive 

spatial autocorrelation, while values larger than +1 indicate negative spatial autocorrelation.  
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Table 2: Comparison of Moran's 𝑰 and Geary's 𝑪 

 Moran’s 𝑰 Geary’s 𝑪 

Global Formula 

𝐼 =  
𝑛

𝑆0

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥̅)(𝑥𝑗 − 𝑥̅)𝑗𝑖

∑ (𝑥𝑖 − 𝑥̅)2
𝑖

 𝐶 =  
(𝑛 − 1)

2𝑆0

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)2
𝑗𝑖

∑ (𝑥𝑖 − 𝑥̅)2
𝑖

 

where: 

• 𝑛 = sample size, 

• 𝑤𝑖𝑗 = connectivity spatial weight between units 𝑖 and 𝑗, 

• 𝑥𝑖 = observation in region 𝑖 

• 𝑥𝑗 = observation in region 𝑗 

• 𝑆0 =  ∑ ∑ 𝑤𝑖𝑗𝑗𝑖  

Range (-1, +1) (0, +2) 

Interpretation 

I < 0 → Dispersion 

I = 0 → Randomness 

I > 0 → Clustering 

I < 1 → Clustering 

I = 1 → Randomness 

I > 1 → Dispersion 

Local Formula 

𝐼𝑖 = (
𝑥𝑖 − 𝑥̅

∑ (𝑥𝑖 − 𝑥̅)2
𝑖

𝑛 − 1

) ∑ 𝑤𝑖𝑗(𝑥𝑗 − 𝑥̅)
𝑗

 
𝐶𝑖 = ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)2

𝑗

 

where: 

• 𝑥𝑖 and 𝑥𝑗 are the observations in region 𝑖 and 𝑗 respectively, and 

• 𝑤𝑖𝑗 is the connectivity spatial weight between regions 𝑖 and 𝑗 

2.4.2.4 Significance Tests 

The global and local versions of Moran’s 𝐼  and Geary’s C all indicate the presence of 

clustering, however they yield no measure of their significance. A permutation test is often 

used to address this shortfall. These tests are based on standardised z-values calculated from 

a permutation approach. The permutation approach (Anselin, 1995) calculates the statistic for 

each of a number of randomly simulated datasets. The number of simulations is dependent 

on the number of permutations (usually 999). The value calculated from the actual dataset is 

then compared to those obtained from the simulated datasets. This comparison allows for a 

significance value to be calculated, which usually accompanies the final statistic (Dall’erba, 

2009). The permutation approach brings with it a computational challenge due to the volume 

of calculations involved, which is notable in large datasets (Anselin, 1999). 
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2.4.3 ESDA Software 

This section will describe some of the popular software platforms that support ESDA on lattice 

data. A suitable ESDA tool is described as being capable of detecting recurring and isolated 

patterns without knowing in advance what to expect (Openshaw, 1995). There are multiple 

platforms that support ESDA (to varying extents), and this section will discuss GeoDa, PySAL2 

and spdep3 – each of which are popular open source platforms. These are not the only 

platforms that support ESDA, however only these three will be discussed. Table 3 is found at 

the end of this section and summarises the ESDA functions that are supported by the 

discussed platforms. 

2.4.3.1 GeoDa 

GeoDa is an upgrade of the SpaceStat4 platform brought about through the need for linked 

views, improved visualisations, and the popularity of larger datasets (Bivand, 1998; Anselin et 

al., 2006; Rey and Anselin, 2006). A beta version of GeoDa was made available in 2002, 

however it was only released as a complete open-source and cross-platform software tool in 

2011 (Anselin, 2000; Anselin et al., 2006; 2022). It was developed to address the lack of an 

easy to use, visual, and interactive platform targeted at non-GIS users. GeoDa’s design is 

centred around multiple, linked views that allow the use of brushing to interact with the data. 

This makes it quite a valuable tool for teaching ESDA. The interface is point and click based, 

requiring the user to have no programming knowledge. One of the major factors contributing 

to GeoDa’s success is that it has no dependency libraries. It can be downloaded as a 

standalone tool and is licensed under the open source GPL 3.0 license (Anselin, 2012). 

When describing its functionality, Anselin et al. (2006) breaks it down into six categories – 

spatial data manipulation and utilities, data transformation, mapping, EDA, spatial 

autocorrelation, and spatial regression. This illustrates that GeoDa’s functionality goes much 

further than that of only ESDA. 

The rgeoda5 R package and pygeoda6 Python library were both developed to allow users of 

each of these platforms to interface with the libgeoda library which is written in C++ (Anselin 

et al., 2022). While the libgeoda library is based on the original GeoDa platform, it does not 

currently have all the functionality of GeoDa as it unfortunately does not support global 

autocorrelation measures. As with GeoDa, pygeoda, rgeoda, and libgeoda do not support 

 
2 https://pysal.org/  
3 https://cran.r-project.org/web/packages/spdep/index.html  
4 https://biomedware.com/products/spacestat/spacestat-details/  
5 https://geodacenter.github.io/rgeoda/  
6 https://geodacenter.github.io/pygeoda/  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

https://pysal.org/
https://cran.r-project.org/web/packages/spdep/index.html
https://biomedware.com/products/spacestat/spacestat-details/
https://geodacenter.github.io/rgeoda/
https://geodacenter.github.io/pygeoda/
https://pysal.org/
https://cran.r-project.org/web/packages/spdep/index.html
https://biomedware.com/products/spacestat/spacestat-details/
https://geodacenter.github.io/rgeoda/
https://geodacenter.github.io/pygeoda/


 

  

Automating exploratory spatial data analysis (ESDA) for vector and raster data: 

development and evaluation of the autoESDA Python library 

 

Page 31 of 131 

 

raster datasets. This means that any raster dataset would first have to be vectorised before it 

can be processed using these platforms.  Anselin et al. (2022) compared the performance of 

these tools to that of spdep and PySAL by calculating a local Moran’s 𝐼 statistic, and found 

that the multithreading, use of the GPU processor, and C++ codebase all enabled the GeoDa-

based platforms to outperform spdep and PySAL.  

2.4.3.2 PySAL 

PySAL was developed as an open source Python library that supports various spatial 

analytical functions, among these are numerous ESDA functions (Anselin, 2012; Rey and 

Anselin, 2007). Its design is modular, and all its dependencies are Python based, meaning 

that it is compatible with most operating systems. PySAL is the foundation on which many 

desktop software systems have been built, as well as a toolbox for ArcGIS7, with plans for a 

QGIS8 plugin on the way (Rey et al., 2015). Various developments are in the works to ensure 

that PySAL can efficiently process geospatial big data. These include integration with desktop 

GIS platforms such as ArcGIS or QGIS, as well as cloud and parallel processing (Rey et al., 

2015; Rey et al., 2022). 

The design philosophy behind PySAL is that it is lightweight, resulting in its original, monolithic 

package being divided into separate Python packages that can be downloaded individually 

(Rey and Anselin, 2007; Rey et al., 2022). The esda package supports the exploratory analysis 

of spatial data, however, it depends on other packages in the PySAL ecosystem such as the 

libpysal package for constructing spatial weights matrices, and the mapclassify package for 

generating choropleth map classes (Rey et al., 2022). 

2.4.3.3 spdep 

There are numerous R packages available on the CRAN repository which can be freely 

downloaded if you work with spatial data (Bivand, 2006). The spdep and DCluster9 packages 

are both vital for tools for ESDA within the R ecosystem (Anselin et al., 2006). When comparing 

the documentation of the two packages, it is evident that spdep is the more comprehensive of 

the two, and as such, it will be the only one discussed in detail. 

spdep is similar to the esda PySAL sub-package in its functionality and is thus quite modular 

in its functionality (Bivand, 2002). One would need to rely on other R packages for certain 

ESDA functions, such as maptools10 to generate choropleth maps (Bivand, 2002; 2006). 

 
7 https://pro.arcgis.com/en/pro-app/latest/get-started/get-started.htm  
8 https://www.qgis.org/en/site/  
9 https://cran.r-project.org/web/packages/DCluster/index.html  
10 https://cran.r-project.org/web/packages/maptools/index.html  
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Table 3 is a comparison of the ESDA functionality of GeoDa, pygeoda, PySAL, and spdep. It 

is worth noting that while each platform supports the majority of the functions discussed, 

GeoDa is the only platform that supports regular EDA, while pygeoda is limited in that it does 

not support global spatial autocorrelation statistics. Both PySAL and spdep are extendible to 

include other functionality, however for the purpose of an as is comparison, potential support 

through external libraries has not been included in Table 3. 

Table 3: Comparing the functionality of various ESDA platforms. 

 GeoDa pygeoda PySAL spdep 

EDA 

Brushing 
Descriptive Statistics 
Box Plot 
Frequency Histogram 
Scatter Plot 

● 
● 
● 
● 
● 

○ 
○ 
○ 
○ 
○ 

○ 
○ 
○ 
○ 
○ 

○ 
○ 
○ 
○ 
○ 

ESDA 

Choropleth Map 
  Boxmap 
  Equal Intervals 
  Quantiles 
  Mean-Standard Deviation 
  Maximum Breaks 
  Fisher-Jenks 
Cartogram 
Spatial Weights 
  Contiguity (Queen) 
  Contiguity (Rook) 
  Contiguity Order 
  Distance (k-nearest neighbour) 
  Distance (kernel) 
  Distance (distance-band) 
Global Spatial Autocorrelation 
  Moran’s 𝐼  

  Moran’s 𝐼 Scatter Plot 

  Geary’s 𝐶 
  Getis-Ord 𝐺 
Local Spatial Autocorrelation 
  Local Moran’s 𝐼 

  Local Geary’s 𝐶 
  Getis-Ord 𝐺𝑖  Statistics 

 
● 
● 
● 
● 
● 
● 
● 
 

● 
● 
● 
● 
● 
● 
 

● 
● 
○ 
○ 
 

● 
● 
● 

 
● 
○ 
● 
● 
○ 
○ 
○ 
 

● 
● 
● 
● 
● 
● 
 

○ 
○ 
○ 
○ 
 

● 
● 
● 

 
● 1 
● 1 
● 1 
● 1 
● 1 
● 1 

      ○ 
 

● 2 
● 2 
● 2 
● 2 
● 2 
● 2 

 
● 3 
● 4 
● 3 
● 3 

 
● 3 
● 3 
● 3 

 
○ 
○ 
○ 
○ 
○ 
○ 
○ 
 

● 
● 
● 
● 
● 
● 
 

● 
● 
● 
● 
 

● 
● 
● 

*Available through the mapclassify1, libpysal2, esda3, and splot4 PySAL submodules respectively 

2.5 ESDA with Raster Datasets 

Section 2.2 discussed how lattice data can be regular or irregular in its structure. Raster 

datasets are by definition a regular lattice and the way an ESDA workflow is carried out is 

identical (Shortridge, 2007). There are, however, major technical differences brought about by 

the differing data structures (Rey et al., 2023). Although raster datasets have not traditionally 

been used for ESDA procedures, their use has become increasingly popular (Rey et al., 2023).   
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Local Moran’s 𝐼  has been calculated across raster surfaces to quantify concentration of 

vegetation index values (Zhou et al., 2021), changes in sand dunes brought about by the 

removal of vegetation (Walker et al., 2013), as well as the residuals of a regression model (Li 

et al., 2019). These studies would have either used GeoDa, presumably after first vectorising 

the raster dataset, or GeoRasters11 to carry out the calculations.  

2.5.1 Supporting Raster ESDA 

Descriptive statistics can be computed for raster datasets with relative ease. ENVI12, ArcGIS 

Pro, and QGIS each display various statistics relating to a raster surface without the need for 

the user to specify anything as the values are either stored in the metadata or calculated 

immediately upon loading the dataset. The values stored in the raster arrays could also be 

extracted for EDA visualisations quite easily. The challenge, however, emerges when 

calculating ESDA statistics. 

Rey et al. (2023) explain that conceptually, the calculation of spatial autocorrelation statistics 

on raster surfaces is very similar to that of an irregular polygon-based lattice, however from a 

technical perspective, the approach for each format would differ significantly. The main 

challenge is the creation of the spatial weights matrix to use for spatial autocorrelation.  

Currently GeoDa only supports discrete lattice data, and while planned developments aim to 

include support for flow data (Anselin et al., 2006), as of October 2023, there is no mention of 

planned support for raster file types in the GeoDa developer notes. The spdep R package 

allows one to create neighbours from grid cells using the cell2nb function and the raster R 

package allows the user to manually define a weights matrix. According to the spdep GitHub 

repository, this functionality was created in 2017, however similar functionality has only 

recently been developed in Python.  

As part of the Google Summer of Code13 (GSOC), (Sheckhar et al., 2020) developed an API 

for the PySAL library which allowed for the creation of PySAL spatial weights objects from 

raster datasets stored in a xarray14 DataArray object. This was a monumental development 

which allowed for the calculation of global and local spatial autocorrelation statistics in PySAL 

for raster datasets in addition to its existing vector support.  

Less popular Python platforms that support spatial autocorrelation do exist, however they are 

not optimal solutions for incorporating into autoESDA. MuseoToolBox15 only supports global 

 
11 https://georasters.readthedocs.io/en/latest/  
12 https://www.nv5geospatialsoftware.com/Products/ENVI  
13 https://gist.github.com/MgeeeeK/15426217eb5f368ca0ff12f66c2b5823  
14 https://docs.xarray.dev/en/stable/  
15 https://museotoolbox.readthedocs.io/en/latest/index.html  
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Moran’s 𝐼, requiring the user to manually create a weights matrix, while GeoRasters is simply 

a wrapper for various PySAL functions.  

2.6 Related Work 

Section 2.2 highlighted the challenges brought about by the 3 Vs of geospatial big data, while 

Section 2.3 and 2.4 introduced EDA and ESDA as potential solutions to some of these 

challenges. This section is comprised of two parts – the first part outlining the need for new 

tools to address geospatial big data, and the second part discussing some of the tools 

available, their design philosophy, and identifying principles that could aid the design of a 

Python library that automates the ESDA workflow. 

2.6.1 Call For New Developments 

Throughout the years, Openshaw (1995), Anselin (2010), Dangermond and Goodchild (2020), 

and Singleton and Arribas-Bel (2021) have all highlighted the need for new tools that address 

challenges brought about by geospatial big data. The automation of ESDA could play a role 

in addressing some of these challenges as insights could quickly be obtained and used to 

guide further analysis (Anselin, 1996). Jern et al. (2008) argue for the use of statistical 

methods as a strategy to understand geospatial big data. Statistics are a large part of the 

ESDA toolbox and, as such, an appropriate use of ESDA could address the need to 

understand and create value from voluminous datasets. 

There are two possible advantages to automating the ESDA workflow. The first is the 

increased efficiency as the time spent generating results could be minimised (Dangermond 

and Goodchild, 2020). This is beneficial when trying to keep up with the high velocity of big 

geospatial data. The second potential advantage is that the need for human input could be 

eliminated and by extension, any human-induced errors would be removed (Borlongan et al., 

2016; Armstrong et al., 2019). 

It is unclear whether removing human input from an ESDA workflow is an advantage. Anselin 

(1998) pointed out that ESDA is a data driven approach and thus the results need to guide 

further analysis. What is unclear is whether this feedback loop could also be automated, or if 

it can only proceed with human involvement. Datasets should also be processed without 

preconceived ideas, so that bias is not introduced into the results. Conversely, prior knowledge 

of the dataset could be advantageous as this may aid in the formulation of hypotheses. While 

Moncrieff et al. (2016) are of the opinion that data exploration is a user-driven approach, 

Goodchild et al. (1992) and Openshaw (1995) warn that the user can no longer be expected 

to be a trained statistician. This is increasingly likely due to the diverse nature of spatial data, 

meaning that end users are not always experts. For this reason, it would be beneficial to 
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automate the ESDA process as it eliminates the required input from potentially untrained 

users. 

Openshaw (1995) highlighted the weaknesses of the traditional ESDA process and provided 

some guidelines for new tools. The first is that there should be extensive automation. The tool 

should have error checking functionality and its performance should constantly be optimised. 

The tool must be able to operate in real time, handle unexpected scenarios, and, although it 

could be considered as a black box, the user should have a means of understanding its design. 

Dangermond and Goodchild (2020) add to this by explaining that new tools should be able to 

repeatedly produce reliable results and that emphasis should be placed on efficiency. Each of 

these principles need not be present in the first few steps towards automating ESDA, as they 

have various levels of complexity. These principles do, however, paint a good picture of what 

an optimal tool could look like, and any progress in automating ESDA should follow in the 

direction of these guiding principles.  

2.6.2 Similar Automation Projects 

There are numerous automated tools that have been developed to deal with geospatial big 

data at various stages of the spatial data lifecycle. Batcheller (2008) automated the generation 

of metadata for spatial datasets, Borlongan et al. (2016) automated feature extraction from 

LiDAR datasets, Coetzee and Rautenbach (2017) designed a method to automate the creation 

of thematic maps, which was further adapted for large point datasets by Pillay et al. (2019). 

The motivation for each of these projects was that the output artifact made some contribution 

towards the automation of the task it aimed to address. This not only streamlined the data 

workflows, but it minimised the need for humans to carry out repetitive tasks. In doing so they 

broadened the abilities of available tools to deal with the large amounts of spatial data, while 

eliminating opportunities for human error to be incorporated into the workflow. 

While there is no known tool that automates the ESDA workflow, there have been numerous 

advances in the automation of the EDA workflow. These projects can be discussed, and any 

learnings made can contribute towards to task of automating the ESDA workflow, which is 

merely an extension of EDA. Python libraries such as pandas-profiling (now officially known 

as ydata-profiling16), sweetviz17, and autovis18 allow a data analyst to easily carry out the EDA 

process by executing one line of code, which generates a HTML report that neatly summarises 

the results. 

 
16 https://ydata-profiling.ydata.ai/docs/master/index.html  
17 https://github.com/fbdesignpro/sweetviz  
18 https://github.com/AutoViML/AutoViz  
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DataPrep.EDA19 is a Python library that has been designed to automate the EDA workflow 

(Peng et al., 2021). The philosophy behind its design is that it is: easy to use, has interactive 

speed, and is easy to customise. Ease of use is an important quality for a tool to have, and 

DataPrep.EDA has addressed this by only requiring one-line, easy to execute functions. The 

output results also have “auto-insight” functionality which highlights any significant trends that 

are identified in the dataset. Interactive speed means that the processing time is dependent 

on the outcome required. This means that time is not unnecessarily spent generating results 

in which the user has no interest. The design of DataPrep.EDA means that smaller EDA tasks 

can be run by selecting specific variables, or only calling for specific functions, such as 

correlation analysis or missing-value analysis. This means that a full report does not need to 

be generated each time the library is used. Finally, DataPrep.EDA is easy to customise. A full 

EDA report will require hundreds of parameters to customise the report so that it is “perfect” 

for its use-case. This makes easy customisation a major challenge – and the only way this 

has been addressed is by developing a detailed help guide, which the user would need to 

familiarise themselves with should they want a completely customised report. 

Feature extraction from LiDAR datasets is another repetitive and time consuming spatial data 

workflow which has been successfully automated (Borlongan et al., 2016). The motivation 

behind its design was also to minimise the opportunities for human error. Just as with ESDA, 

it is not easy to completely eliminate human involvement from the workflow. Human input was 

instead handled by grouping similar tasks that did not require a decision to be made, thereby 

minimising the need for the user to be continuously involved. This reduced the likelihood of 

the user to introduce errors, regardless of their training (Borlongan et al., 2016). While the 

process of feature extraction from LiDAR has not been fully automated, the current work 

towards its automation has proven that task can be completed in less time, with results that 

are less prone to human-induced errors.  

While there are no known attempts to automate ESDA, this section has outlined the need for 

software to do so, along with some guiding principles and form similar automation projects. 

This should pave the way for any new developments related to the automation of ESDA. 

2.6.3 Similar Evaluation Methodologies 

There is limited literature available that document the performance evaluation of platforms that 

support ESDA. Anselin et al. (2022) outline their approach to evaluating the performance of 

the rgeoda, pygeoda, GeoDa desktop, spdep and PySAL in order to benchmark the 

performance of each platform. The time to generate a queen’s case matrix with an order of 

 
19 https://docs.dataprep.ai/user_guide/eda/introduction.html  
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one is recorded for each of the platforms. This is done with datasets of increasing magnitude 

of features (and by extension file size). A Local Moran’s I permutation test is then calculated 

for each platform and dataset. The number of permutations are also varied to investigate their 

effect on the processing time. The results of this study form the basis of multiple assumptions 

that are highlighted the sections to follow. This methodology, while simple has also been 

adapted to evaluate the performance of autoESDA and is discussed in more detail in Chapter 

4. 

2.7 Discussion on Automating ESDA Functions  

Section 2.3 and 2.4 described some functions that form part of EDA and ESDA, while Section 

2.6 outlined some considerations in the automation of data-related tasks. This section aims to 

evaluate how easily, and the extent to which, EDA and ESDA functions can be automated. 

Table 4 summarises the findings that will be discussed in the remainder of this section. 

One of the major contributors to how easily a function can be automated is what parameters 

are required to be specified by the user. The user may be required to specify multiple 

parameters that are specific to the selected platform. This section will only discuss the vital 

parameters that are relevant to the function, regardless of the software being used. 

The calculation of descriptive statistics can easily be automated as the user is not required to 

specify any parameters. The sample size, mode, median, mean, minimum and maximum 

values, range, quartiles, variance, standard deviation, skewness, and kurtosis are all formulas 

that only require values for their calculation. The same is true for the automation of a box plot 

as the user is not required to specify any additional parameters aside from the dataset, 

meaning that the same process can be used without being altered to have a different output. 

The generation of a histogram can also be easily automated. Apart from specifying whether a 

probability or frequency histogram is required, the only parameter that could potentially be 

specified is the number of bins. Matplotlib20 uses ten as a default number of bins, while 

seaborne21 automatically determines the number of bins to be used if this is not specified by 

the user. 

The generation of a single scatter plot requires the specification of two variables in a dataset 

to plot against one another. This makes it a challenge to automate, however the solution is to 

generate a scatter plot matrix, with scatter plots between each combination of all the variables. 

Fortunately the generation of a scatter plot matrix is not very computationally intensive; 

 
20 https://matplotlib.org/stable/  
21 https://seaborn.pydata.org/  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

https://matplotlib.org/stable/
https://seaborn.pydata.org/
https://matplotlib.org/stable/
https://seaborn.pydata.org/


 

  

Automating exploratory spatial data analysis (ESDA) for vector and raster data: 

development and evaluation of the autoESDA Python library 

 

Page 38 of 131 

 

however it could create large plots that are difficult to view when used for datasets with a lot 

of variables. 

The approach to automating correlation statistics is similar to that of scatter plots. Calculating 

a correlation value requires the specification of two variables, however the correlation 

coefficient may be calculated for every variable combination in a dataset, resulting in a 

correlation matrix. The other parameter a user may need to specify is the correlation type – 

this could be Pearson’s correlation coefficient, Spearman’s 𝜌, or Kendall’s 𝜏. Just as with 

scatter plots, the computation of correlation matrices is not intensive and thus a viable solution 

would be to automate this process by generating a correlation matrix for each correlation type 

– removing the need for the user to specify a correlation type. 

The generation of a choropleth map requires the user to specify the variable to be mapped, 

as well as the classification scheme and number of classes. PySAL uses a default number of 

five classes, which means that the user would only need to specify the variable and 

classification scheme. The process of generating choropleth maps could be automated by 

plotting numerous choropleth maps for each variable, using a variety of popular classification 

schemes. Ordinary cartograms can easily be automated as they only require the variable on 

which they are based to be specified.  

Creating a spatial weights matrix is arguably the most challenging part of an ESDA workflow 

to automate. This is due to the parameters that are required to generate the matrix, and their 

selection, which has the ability to skew the result of the function that uses the output weights 

matrix. The first decision required from the user is to specify the type of spatial weights matrix 

– this could be distance-based, contiguity-based, or a k-nearest-neighbour approach. If a 

distance-based matrix is chosen, the user would be required to specify the distance threshold 

as a parameter. Should a contiguity-based matrix be chosen, the user will have to specify the 

contiguity type and order. Finally, if a k-nearest-neighbour approach is selected, the user will 

have to specify k – the number of neighbours to be considered. GeoDa’s tutorials recommend 

a queen’s case contiguity matrix with an order of one as a default. Anselin et al. (2022) also 

use this combination in their experiment. Should the same approach be applied, one would 

be able to automate the generation of spatial weights matrix. 

Global Moran’s 𝐼 and Geary’s 𝐶 are identical in the parameters that they require. These are: 

target variable, a spatial weights matrix, and the number of permutations. If a spatial weights 

matrix has already been constructed, its specification can be automated. The selection of a 

target variable can be avoided by calculating these global statistics for each variable in the 

input dataset. A default of 999 permutations is used in PySAL and GeoDa and if this approach 

is used, the need to specify the number of permutations is unnecessary. Finally, the LISA 
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calculations can also be automated with moderate difficulty and a similar approach to the 

global autocorrelation measures.  

2.8 Conclusion 

This chapter has outlined the use of geospatial big data and the challenges that arise from it. 

EDA and ESDA are potential solutions to some of these challenges, however ESDA is 

currently a time consuming and repetitive process. There are, however, some software tools 

that have ESDA functionality, and they could be extended to automate the ESDA workflow. 

This automation could lead to a saving in time spent on the ESDA workflow, while 

simultaneously reducing opportunities for human-induced errors. Section 2.7 discusses how 

easily some ESDA functions could be automated, and how one could go about doing so. The 

next chapter will summarise the earlier research that has taken place and outline the current 

status of autoESDA and what improvements can be made.  
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Table 4: Potential automation of various EDA and ESDA functions 

Function Input Parameters Output Ease of Automation 

EDA 

Descriptive Statistics Dataset None Calculated statistics Easy 

Box Plot Dataset None Box plot figure Easy 

Histogram Dataset Number of bins Histogram figure Easy 

Scatter Plot Matrix Dataset None Scatter plot matrix Easy   

Correlation Matrix Dataset Correlation type Correlation matrix Easy 

ESDA 

Choropleth Map Spatial dataset 
Target variable 

Classification scheme 
Number of classes 

Choropleth map Moderate 

Cartogram (Ordinary) Spatial dataset Target variable Ordinary cartogram Easy 

Spatial Weights Matrix Spatial dataset 

Weights type  
(distance, knn, contiguity) 

Magnitude of weights  

(order, distance, n) 

Spatial weights matrix Difficult 

Global Moran’s 𝑰 
Spatial dataset 

Spatial weights matrix 
Target variable 

Number of permutations 
Moran’s 𝐼 statistic 

Moran’s 𝐼 scatter plot 
Moderate 

Global Geary’s 𝑪 
Spatial dataset 

Spatial weights matrix 
Target variable 

Number of permutations 
Geary’s 𝐶 statistic Moderate 

Local Moran’s 𝑰 
Local Geary’s 𝑪 

Spatial dataset 
Target variable 

Spatial weights matrix 
LISA cluster map 

LISA significance map 
Moderate 
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CHAPTER 3: TOWARDS AN OPEN SOURCE LIBRARY FOR 

AUTOMATED EXPLORATORY SPATIAL DATA ANALYSIS (ESDA) 

This chapter was presented in a poster session 22 at the International Society for 

Photogrammetry and Remote Sensing (ISPRS) congress 3 – 11 June 2022 in Nice, France, 

and published as an article23. It can be referenced using the following citation: 

De Kock, N., Rautenbach, V., Fabris-Rotelli, I., 2022. Towards An Open Source Library For 
Automated Exploratory Spatial Data Analysis. The International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B4-2022, 91–98. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-91-2022 

 

This chapter was taken “as-is” from the publicly available version which means there may be 

some repetition from other chapters in this dissertation. 

3.1 Abstract 

The exploratory spatial data analysis (ESDA) process refers to the use of various functions to 

gain an initial understanding of a spatial dataset. These include measures of spatial 

heterogeneity and spatial autocorrelation. Currently, the ESDA process is repetitive and time-

consuming. Additionally, while different results arise for different datasets, how these results 

are generated does not change significantly. Results are also generated individually for each 

variable which means that they cannot be easily compared or shared.  

The automation of the ESDA process would therefore have multiple benefits as it would not 

only save time, but it would also allow the data analyst to keep up with the rapid rate at which 

we generate data. This paper aims to introduce the first iteration of autoESDA – a Python 

library capable of automating the ESDA process by summarising the results into a single 

report.  

In this paper, we present the defined high-level requirements for the implementation of 

autoESDA. Various dependency libraries are discussed and a high-level overview of the 

workflow of autoESDA is described. The library is then evaluated against the requirements 

laid out earlier in the study. Semi-structured interviews were carried out, which yielded a 

wealth of feedback and suggestions from the participants, describing how the output report 

 
22https://isprs2022.stream-up.tv/media-272-towards-an-open-source-python-library-for-automated-
exploratory-spatial-data-analysis-esda?&fartype=cat&farval=138  
23 https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-91-2022  
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could be improved. Finally, a roadmap of proposed further developments and improvements 

is discussed.  

The first version demonstrates that the automation of ESDA is possible and lays the foundation 

for further development in this regard. This is an important contribution to understanding 

spatial data as it enables the data analyst to keep up with the magnitude of data that is 

generated on a daily basis. 

3.2 Introduction 

In recent years there has been a largescale increase in the volume of spatial data generated. 

This exponential increase in both the volume and velocity of spatial data is attributed partly to 

the decreasing price of sensors, along with a world where topics such as the Internet of Things 

(IOT) and big data analysis have experienced dramatically increased popularity (Armstrong et 

al., 2019). Spatial data is rapidly created through methods such as the geotagging of images 

on social media and traffic data from users of navigation software such as Google Maps. While 

there is great benefit in the availability of datasets, true value can only be obtained once this 

data is processed into useful information. 

The data lifecycle refers to numerous stages that result in the transition of raw data into 

information. The lifespan of a data lifecycle varies according to the dataset (Raju and Nathan, 

2018). Exploratory data analysis (EDA) is a process carried out near the beginning of a data 

lifecycle. Its purpose is to gain a basic understanding of the dataset. For spatial datasets, this 

process is known as exploratory spatial data analysis (ESDA) (Dall’erba, 2009).  

ESDA is made up of various functions that aid the exploration of spatial datasets and 

identification of patterns that may otherwise go unnoticed (Murray and Estivill-Castro, 1998). 

Results arising from the ESDA process often dictate how the data is further utilised. ESDA 

functions can be carried out on both vector and raster based spatial data (Moura and Fonseca, 

2020). The current iteration of autoESDA only supports data in vector polygon format, however 

work is currently underway to extend this functionality to support raster and other vector 

formats. 

Two important components of the ESDA process are spatial autocorrelation, and spatial 

heterogeneity. Spatial heterogeneity is investigated using choropleth maps, box plots, scatter 

plots, and histograms, for example, which allow one to identify trends or patterns that could 

have otherwise gone unnoticed. The results of spatial autocorrelation are vital, as they dictate 

whether or not the recorded instances of a phenomenon are spatially dependant on each other 

(Dall’erba, 2009).  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

  

Automating exploratory spatial data analysis (ESDA) for vector and raster data: 

development and evaluation of the autoESDA Python library 

 

Page 43 of 131 

 

The ESDA process is both repetitive and time-consuming and the automation thereof would 

allow the data analyst more time to be able to focus on more important aspects of the data 

lifecycle. In practice, ESDA functions are run individually, meaning that results are also 

displayed individually, which does not allow for comparisons to be made. 

There are numerous open source technologies with ESDA capabilities; the three most popular 

ones are Python libraries, R libraries, and GeoDa. Python has numerous advantages when 

working with spatial data, chief among which is its ability to handle large datasets. Various 

libraries also allow Python to easily integrate with geoportals, spatial database management 

systems, and other GIS technologies (Cura, 2019). Python libraries such as pandas 24 , 

geopandas25, PySAL, plotly and matplotlib are often used for executing ESDA functions and 

displaying these results. The seamless integration and wealth of available libraries make 

Python an ideal choice for automating the ESDA process. 

Automation of similar processes using Python are not unheard of. The EDA process has been 

automated using Python libraries such as pandas-profiling (now officially known as ydata-

profiling26), sweetviz27, and autovis28. These libraries allow a data analyst to easily carry out 

the EDA process by executing one line of code, which generates a HTML report that neatly 

summarises the results. 

Automation of various processes within the spatial data lifecycle are not uncommon. The 

curation of spatial metadata falls under the transformation stage of the lifecycle (Ciceli, 2015); 

it has been automated by Batcheller (2008). The generation of thematic maps falls under the 

distribution stage of the spatial data lifecycle and various efforts have been made to automate 

this process (Coetzee and Rautenbach, 2017; Pillay et al., 2019). While these examples are 

not entirely related to ESDA, they do, however, illustrate that there is a benefit to automating 

repetitive processes within the spatial data lifecycle. 

The aim of this paper is to present our first iteration of autoESDA, a library that automates the 

ESDA process in Python. The paper discusses the design and implementation of the library 

by describing the high-level requirements, dependency libraries, and workflow of the library 

itself. The library is then evaluated according to the defined requirements, and numerous 

 
24 https://pandas.pydata.org/  
25 https://geopandas.org/en/stable/index.html  
26 https://ydata-profiling.ydata.ai/docs/master/index.html  
27 https://github.com/fbdesignpro/sweetviz  
28 https://github.com/AutoViML/AutoViz  
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interviews are conducted in order to gain feedback on the first iteration. Finally, a roadmap for 

further development is discussed. 

3.3 Requirements and Implementation 

3.3.1 Requirements 

Multiple high-level functional and non-functional requirements were defined during the 

planning phase of this project. These requirements were decided on by identifying solutions 

to the major issues encountered by carrying out an ESDA process and what a potential 

solution would look like. Once the library was developed, the specified requirements were 

revisited to ensure that the high-priority requirements were satisfied. As this was an iterative 

process, if the functional requirements were not satisfied, the development phase was 

revisited to ensure that all the high-priority requirements were met.  

Functional requirements refer to functions that a system is required to perform (Young, 2003). 

Conversely, non-functional requirements refer to properties of a system that do not dictate 

what needs to be done, but rather how well it should be done. Table 5 summarises the high-

level functional and non-functional requirements that were defined for the development of the 

autoESDA library. 

Table 5: High-level functional requirements 

Functional 

Requirement 

Description 

Report Output 

(High Priority) 

The library should generate a HTML report that can be saved to the local 

computer. 

Spatial Heterogeneity 

(High Priority) 

The generated report should include a box plot, histogram, descriptive 

statistics, and correlation statistics. 

Spatial Autocorrelation 

(High Priority) 

The generated report should include a Moran’s 𝐼  simulation, the 

associated statistics, and a LISA cluster map. 

Data Type Detection 

(High Priority) 

The library should be able to distinguish between columns that can be 

plotted and have statistics calculated on them. It is assumed that data is 

already converted into the correct types and unsupported data types 

(such as strings and characters) should be ignored. 

Non-Functional 

Requirement 

Description 
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3.3.2 Design 

The first aspect of the design stages focused on deciding which ESDA functions to include in 

the library. These decisions were made according to how popular a certain ESDA function 

was, as well as how easily it could be automated. Functions that require the data analyst to 

specify numerous parameters that could not easily be set to a default setting, are assumed to 

be more difficult to automate. 

Most ESDA functions are simple enough to automate; however, parallel coordinate plots 

(PCPs), measures of autocorrelation, and choropleth maps are all seen to be complex to 

automate. This is due to the fact that they have numerous parameters that need to be 

specified. The combination of variables to include in the PCP will depend greatly on the 

dataset used and a generic solution for automation cannot easily be implemented (Zhou et al., 

2018). The same argument can be made for the automation of spatial autocorrelation and 

choropleth maps, as the input parameters could have a huge effect on the outputted results. 

The functionality to allow the user to specify their own spatial weights matrix has not been 

included in the current version of autoESDA. Spatial autocorrelation, however, is seen as a 

high priority requirement, meaning that there needs to be some degree of spatial 

autocorrelation in the output report, and the utility thereof can be evaluated in the interviews. 

For this version of autoESDA, it was decided that a Moran’s 𝐼 simulation with a queen’s case 

Simple Execution 

(High Priority) 

The library should be simple to use, meaning that only one parameter 

(the GeoDataFrame) is required to generate the report.  

Offline Availability 

(Low Priority) 

The generated report should not reference any external sources, this 

would mean that the report does not require an internet connection to 

display correctly. 

Colour Use 

(Medium Priority) 

A suitable colour scheme/theme for the report should be selected that is 

both appealing and free from any alternate connotations. 

About Page 

(Medium Priority) 

The report should include an about page which tells the user what 

defaults have been set for the generated figures and statistics. 

Data Sample 

(High Priority) 

A subset of the dataset should be displayed in the report. 

Performance 

(Low Priority) 

The library should generate a report timeously once the function has 

been executed. 
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first-order matrix along with a LISA map would be included in the report as measures of global 

and local spatial autocorrelation. Moran’s 𝐼  was the chosen function as it is the most 

commonly used measure of spatial autocorrelation (Jackson et al., 2010). A first order queen’s 

case matrix was used as the default spatial weights matrix. 

Due to their importance in visualising the spatial distribution of different variables, the decision 

was made to include choropleth maps. To overcome the need for the user to specify which 

classification scheme to use for these maps, the decision was made to include four choropleth 

maps, each with a different classification scheme, for each variable. It was also decided to 

use the geopandas default number of intervals, which is five. 

With the exception of those mentioned above, the majority of ESDA functions do not require 

input parameters and could therefore be automated with relative ease. These include generic 

five number summaries (minimum, mean, median, maximum, and standard deviation), box 

plots, histograms, scatter plots, and correlation matrices. 

There are numerous Python libraries that exist with the intention of solving various problems 

or addressing different needs within the Python development community. In the development 

of this library, existing functions from other libraries were used. Table 6 describes the libraries 

referenced in autoESDA, which are known as dependencies. Each of these libraries have 

been included as they serve a specific purpose in the autoESDA library. These libraries have 

been chosen according to the functions which they provide, and their relative popularity. 

Choosing libraries according to popularity has two major advantages, namely: readily 

available support, and a community of contributors who help to ensure updates and bug fixes 

are routinely rolled out. 

Table 6: Dependencies of the autoESDA library 

Dependency 

(Version) 
Description 

geopandas 

(0.8.1) 

The geopandas library is an extension of the popular pandas library which defines 

DataFrames as a way to structure data. geopandas adapts this as a way to store 

spatial data such that this GeoDataFrame is the attribute table, where there are 

additional columns for geometry or coordinates.  

libpysal 

(4.4.0) 

This is the core library that PySAL is based on. It is used in this project to create the 

spatial weights matrix which is used in the autocorrelation calculations. 

PySAL 

(2.3.0) 

This library, along with its dependencies, allow for the plotting of the choropleth maps 

as well as the Moran’s scatter plot and LISA cluster map. 

matplotlib 

(3.4.2) 

matplotlib is a popular library for creating graphs and other visual aids. This library 

enables the use of grids and annotations to combine the numerous figures together. 
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3.3.3 Implementation 

Once the decisions were made regarding which ESDA functions and dependencies to include, 

it was time to design how the functions would work together to generate an appropriate report. 

This workflow is visualised in Figure 9. 

To begin with, the library will accept a GeoDataFrame, from which it will determine which 

columns have a numeric data type and which do not. The ESDA functions for autoESDA are 

calculated from numeric data, which is why this differentiation needs to take place.  

seaborn 

(0.11.2) 

seaborn is similar to matplotlib, however it has extra functions such as the heatmap 

and pairplot function which was used in this project. 

io 

(3.8.10) 

This library converts images into objects made up of bytes. In conjunction with the 

base64 library, it allows for images to be embedded/stored directly in the HTML file. 

base64 

(3.8.10) 

The base64 library was used to encode images as objects and works in conjunction 

with the io library to enable storage and embedding of images within the HTML file. 

This avoids the need for external files. 
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Figure 9: Workflow of the autoESDA library 

Both non-numeric and numeric variables are required for the Summary Page, an example of 

which is shown in Figure 10. This is because the Summary Page displays a sample of the 

dataset, as well as a description of which datasets were included in the report (numeric 

variables) and which variables were not included (non-numeric variables). In addition to the 

dataset sample, the Summary Page also includes a basic outline of the study area, descriptive 

statistics, and a data overview which includes basic metadata, such as the projection used. 

The next block of code entails a loop through the variables in order to create a Variable 

Information Page for each numeric column in the GeoDataFrame. Each iteration of the loop 

will create a box plot, histogram, various choropleth maps and a Moran’s 𝐼  and LISA 

simulation. An example of a Variable Information Page is shown in Figure 11. 

Finally, the Correlation Page (shown in Figure 12), composed of a heatmap and pairwise plot, 

was created using the numeric variables. The Correlation Page, along with the Summary Page 
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and all the Variable Information Pages is combined into a HTML report, which is then saved 

to the working file directory.  

3.3.4 Availability and Usage 

The source code for autoESDA is available in a GitHub repository29 under the BSD 3-Clause 

license. An example report generated by autoESDA can also be viewed online30.  

 

 
29 https://github.com/NicholasDeKock/autoESDA  
30 https://autoesda.github.io/autoESDA-static/  
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Figure 10: Summary Page 
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Figure 11: Variable Information Page 
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Figure 12: Correlation Page 
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3.4 Evaluation 

3.4.1 Evaluation Against Requirements 

In Table 5, four functional requirements and six non-functional requirements were defined. 

This was used as a guide for the researcher to gauge how much development still needed to 

take place for the first iteration of the library. This section discusses how each of the 

requirements were met, whereas the interviews and discussion investigate how well these 

requirements were met. 

3.4.1.1 Functional Requirements 

The library generates a HTML report which is saved to the working directory, thus satisfying 

the first functional requirement.  

Measures of spatial heterogeneity include a descriptive statistics table which has a count, 

mean, standard deviation, minimum, 25th percentile, median, 75th percentile, as well as a 

maximum value for each variable. Furthermore, there are box plots, histograms, and 

numerous choropleth maps for each variable, as well as a correlation matrix.  

Spatial autocorrelation has been addressed through the inclusion of a reference distribution 

(to evaluate the statistical significance of the calculated values), Moran’s 𝐼 scatter plot, and 

LISA cluster map. The reference distribution plot also displays the Moran’s 𝐼 value, sample 

size, p-value, z-score, and number of permutations.  

The final functional requirement refers to the library’s ability to discern numerical variables 

from the rest. This is because mathematical plots and statistics can only be generated from 

data that is numeric in nature. This is done in the first few lines of code of the library. 

3.4.1.2 Non-functional Requirements 

The first non-functional requirement which has a high priority is that the library runs using only 

one line of code, making it simple to use. While the library can be called using one line of code, 

it is currently not a published library which means that this requirement is not entirely satisfied. 

The library currently accepts no parameters except for the GeoDataFrame itself.  

Offline functionality was a low priority non-functional requirement, which was not satisfied 

through the development of this library. The requirement aims to ensure that the report can 

be viewed without an internet connection, however this is not the case as it references two 

external style sheets. While the report will still display when offline, the experience for the user 

may be different.  
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The use of appropriate colour schemes that are neither conflicting, nor misleading, was listed 

as a medium priority non-functional requirement. This is a challenging requirement to meet as 

it is very subjective in nature. The researcher made all possible efforts to choose suitable 

colour schemes and the chosen colours were put through a colourblind simulator31. The 

colours used deemed to not be misleading or conflicting and are appropriate for people with 

colour vision impairment. For this reason, it is argued that the requirement for suitable colours 

has been met, and the extent to which this requirement has been satisfied will be determined 

through the interview process. 

Other non-functional requirements include the presence of an About Page, describing 

decisions and default values made in order to generate the report, as well as a sample of the 

original dataset. Due to time constraints, the current iteration of autoESDA does not have an 

About Page, however there are plans to include this in future iterations. The library does, 

however, show the first and last five rows as a sample of the dataset.  

Performance is the final non-functional requirement. It was listed as low priority and was not 

tested. In order to test performance, a benchmark needed to be identified – this benchmark 

has not yet been decided on. As such, it cannot be said if or how well this requirement was 

satisfied. There are, however, plans to test the performance of autoESDA in the future. 

3.4.2 Interview Process 

Numerous interview participants with varying experience, careers, and frequency of using 

ESDA were used in the interview process in order to generate a variety of feedback. These 

interviews took place as part of an earlier project in 2021. Table 7 summarises the 

demographic information of these participants. The interviews that took place were semi-

structured in format. Table 8 shows the predefined questions which were used as a guide for 

the interview process. This was seen as the most effective strategy to adopt as it allowed the 

researcher to gain a further understanding regarding some statements that were made by the 

participants. 

 

31 https://www.color-blindness.com/  
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Table 7: Demographics of the interview participants 

Participant 
Years of 

experience 
Sex Industry Job title 

How often do you 

use ESDA 

functions? 

1 2 M 
Software 

Engineering 
Software Engineer Never 

2 20 M GIS education Associate Professor Monthly 

3 4 F Commercial GIS 
Geospatial 

Consultant 
Monthly 

4 1 M Commercial GIS Data Scientist Monthly 

5 6 M Commercial GIS Geospatial Developer Every two months 

6 1 M GIS 
Geoinformation 

Specialist 
Never 

7 2 F GIS Student Assistant Monthly 

8 24 M GIS/Cartography Senior Cartographer Weekly 

9 25 M Education 
Freelance Data 

Analyst 
Monthly 

10 8 M GIS & research GIS Analyst, Lecturer Weekly 

11 4 M IT/ Data science Data Scientist Monthly 

12 17 F Research Associate Professor Never 

13 1 F Research Lecturer Never 

 

The interviews were carried out on the Zoom video conferencing platform as this allowed for 

the researcher to share their screen and eliminated the need for any travel or physical 

meetings between the researcher and the participants. This also allowed for a wider variety of 

participants as travel was not necessary. 

The participants were sent an example report beforehand, so that they had time to look at it 

and consider some feedback before they were interviewed. 

Table 8: Interview questions 

Interview questions 

1. What position do you hold, and how does it require you to make use of ESDA functions? 

2. What challenges do you currently have when conducting an ESDA process? 

3. Could you tell us about the process you follow when you are performing ESDA process? 

[Show prototype] 

4. General 

a. How comfortable are you using Python? 
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b. Can you think of any improvements that could be made to the structure/layout of the 

report? 

c. Are the titles of each section clear or are they misleading i.e. do you get the information 

you expect when selecting them? 

d. For each page, could you say whether this section is useful to you? What improvements 

would you recommend? 

e. Now that you have seen what the library can do, would you use it where necessary? 

f. What hesitations do you have about the use of this library? 

5. Summary page 

a. Are there any other features/statistics you would like or expect to be on the summary 

page? 

b. Are the statistics on the summary page useful to you? 

6. Choropleth maps 

a. Are there extra classification schemes for choropleth maps that you would like to be 

included in this library? 

b. Would you prefer there to be more/less classes for the choropleth maps? 

c. Do you feel that the colour scheme is suitable? If not, do you have a recommendation 

as to what it should be? 

d. Would you recommend any other improvements to be made to the choropleth maps 

section? 

7. Autocorrelation 

a. Are there any extra statistics you would expect to find in a report like this? 

b. Do you feel that it is necessary to include the probability distribution and scatter plot? 

c. A queen’s case contiguity matrix with an order of one has been set as the default, do 

you feel that this is a good idea? Is there another strategy which you would prefer? 

d. Are there other important autocorrelation measures that you would prefer to Moran’s 𝑰? 

8. Correlation 

a. How easy is it for you to interpret the correlation matrix/heatmap? 

b. Do you think it is necessary to include the scatter plots for each relationship? 

c. Do you think the colour scheme is suitable? If not, do you have a recommendation as to 

what colour scheme should be used? 

9. Pairwise plot 

a. Do you like the layout of the pairwise plot or do you find it confusing to understand? 

b. What colour scheme do you feel should be used for the pairwise plot? 

c. How many bars do you think a histogram should have? 

 

 

3.4.3 Interview Feedback 

There were thirteen participants who gave feedback, each with different academic 

backgrounds, work experience and experience levels. This variety lead to a huge amount of 

varied and sometimes contradictory feedback.  

The feedback is divided into four sections, namely: the Summary Page, the Variable 

Information Page, the Correlation Page, and the About Page. All of the participants were 

impressed with the library prototype and agree that the progress has been in the right direction. 
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Participant 2 said that the report was “great, and very useful” which was supported by 

Participant 3 who said that the tool filled a “definite need in the GIS industry”. Participant 5 

stated that the report was “useful and well implemented” which backs up the opinion of 

Participant 10 in that “everything I looked for was here”. 

3.4.3.1 Summary Page 

The first major element on the Summary Page (as shown in Figure 10) is the map of the study 

area. In general, the participants were glad that it was present and provided the user with 

some insight about the shape of the area that is described in the report. Participants 2 – 6 all 

indicated that they see value in this map being interactive, with popups providing them with 

the relevant information for each of the polygons when hovered over. Participant 7 also 

recommended the use of colour in the study area map to make it more appealing. While this 

would improve the library’s appearance, the issue would be selecting an appropriate colour 

scheme that does not have any potential connotations depending on the datasets used in the 

report. It was also suggested that there should be a name of the study area above the map. 

This may be challenging due to the versatility of the library being able to generate generic 

reports, however it was suggested that the call function of the library should have a parameter 

where the user could specify a name. 

Participant 2 who comes from a GIS education background, mentioned that students may be 

confused by the use of the terms rows and columns as it is too similar to raster data, and that 

the terms attributes and fields should be used instead. 

There was not much feedback given from the participants relating to the dataset overview 

table with the exception of participants 5 and 11 who mentioned that they would like to see 

some spatial statistics included in it. Examples they gave included average area of the 

polygons and average number of neighbours. 

The other major element on the Summary Page was the descriptive statistics table. In general, 

the participants were satisfied that most statistics that they would look for were present, with 

the exception of the skewness, kurtosis, as well as the number of null or unique values in each 

column. The majority of participants made this comment. Additionally, Participant 2 also 

suggested that the descriptive statistics table include a Moran’s 𝐼 value. 

The final element on the Summary Page is the dataset sample which consisted of the first and 

last ten rows to give the user an idea of what the original dataset looked like. There were 

contrasting views amongst the participants regarding what constitutes a suitable sample. 

Participants 1, 9, and 11 were of the opinion that showing 20 rows was excessive and that 
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only the first and last five rows were necessary. Participant 2, however felt that all the rows in 

the dataset should be included and that the user should be allowed to query these in order to 

aid their understanding of the dataset. Strategies such as only showing the first ten rows, or a 

random ten rows were also suggested by Participants 4 and 5. 

3.4.3.2 Variable Information Page 

The first two elements on the Variable Information Page (as shown in Figure 11) were the box 

plot and the histogram. No major comments were received from any of the participants; 

however, each of them emphasised the importance of having these present. Once asked 

about the number of bins recommended for the histogram, the participants seemed to be 

happy with the default value of ten bins and did not see the need for this to change. 

The reference distribution drew quite a lot of feedback from the participants. While it is a good 

inclusion in the report, the lack of a key for the red and blue lines on the diagram, coupled with 

the non-descriptive title, gave some of the participants the impression that it could be 

improved. The x-axis and y-axis could be more descriptive such as indicating what they 

represent. The values in the textbox could also be coloured red or blue to link them to the line 

on the reference distribution that they relate to. One of the participants also suggested that a 

“clustered/not clustered” label should be included on the reference distribution. Some of these 

changes would be challenging to implement as it would involve the modification of code in the 

existing PySAL library. 

One the major issues identified with the Moran’s 𝐼 scatter plot was that the visual gradient of 

the line of best fit does not match the Moran’s 𝐼 value (this should not be the case). This was 

brought about by the stretching of the scatter plot to match the size of the other subplots; 

however, it is misleading. One of the participants also commented on the colours used in the 

scatter plot, citing the fact that the user is not told what these colours represent, and therefore 

unsure whether they relate to the LISA scatter plot or not. 

The participants also indicated that they valued the inclusion of the LISA cluster map as part 

of the report. There was, however, a comment on the colour scheme chosen with one of the 

participants having the opinion that a single, graduated colour scheme would be more suitable 

than the Red-Blue colour scheme currently being used. Some of the participants also found 

the labels in the legend to be difficult to understand, and that inexperienced users may not 

understand that HH refers to features that have High-High autocorrelation or ns which 

represents polygons that do not have significant spatial autocorrelation with its neighbours.  
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All of the participants were of the opinion that Moran’s 𝐼 was an appropriate measure to be 

used as a measure of autocorrelation, rather than another measure such as Geary’s 𝐶. While 

the participants did not express strong opinions regarding what spatial weights format was the 

most appropriate, they indicated that the default of a queen’s case contiguity with an order of 

one was acceptable, provided that this was indicated somewhere. Participants 9, 10 and 11 

all indicated that they would like the functionality that would allow them to specify their own 

spatial weights matrix as a parameter of the call function for the report. 

The choropleth maps generated a lot of discussion, with the majority of the feedback being 

directed towards the legend placement, that covered a large portion of the map. Although the 

matplotlib parameter of “best position” is used, it is evident that the placement is not always 

optimal. Some suggestions to overcome this from the participants included placing the legends 

outside the map, removing the decimals (which are unnecessary) from the legend and making 

it a horizontal rather than a vertical legend. It was also mentioned that the variable name 

should be included in the title of the map and not in the legend. Regarding the classification 

schemes chosen, the participants were in general, happy with those that were present, 

however some participants did suggest a box map and standard deviation classification 

scheme to also be included. When questioned about the number of classes for maps (currently 

the default of 5 is used), none of the participants considered this to be a problem. The colour 

scheme was also mentioned in the interviews, with the majority of the participants happy with 

the current one being used. One comment regarding the colour scheme which arose from two 

of the participants was that it should be inverted, so that values with a greater magnitude are 

assigned the darker, more intense colours. 

Participant 10 questioned if the report was suitable for those who are colourblind. This was 

not a consideration in the lifecycle of the project, and it was decided to test the report using 

an online colourblind simulator. Red and green colour-blindness are the most common types, 

which is what was simulated. The results show that there is an effect of these types of colour-

blindness, however all features still vary enough to the colourblind eye to be differentiated 

from each other. 

Concluding remarks relating to the Variable Information Page were that it feels very 

congested, and that this could be avoided by increasing the spacing between plots and 

removing the borders from the choropleth maps.  

3.4.3.3 Correlation Page 

The Correlation Page (as show in Figure 12) was made up of a correlation heatmap and a 

pairplot. The majority of the participants found benefit in there being both a correlation 
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heatmap as well as a pairwise plot. Participants 3, 6, 8, and 9 who are all very experienced in 

the GIS industry, suggested that the values in the correlation heatmap should be rounded up 

to two decimal values. The colour scheme of the heatmap was also discussed, with some 

participants of the opinion that it is too closely related to the colours used in the autocorrelation 

subplots, and therefore misleading. Participants 12 and 13 stated that a colour ramp outside 

of the correlation matrix would improve their understanding. Importantly, Participants 10-13 

also questioned which type of correlation was used as it was not stated anywhere, and that a 

user should be able to choose which correlation measure they would like to be present in the 

report. 

While captioned as a pairplot, it was brought to the attention of the researcher that the diagram 

should more appropriately be called a pairwise plot. The pairwise plot could be made more 

user friendly through the use of more labels, and red borders for the subplots with significant 

relationships (correlation values above |0.7|). Statistics such as coefficient of determination, 

trendlines and adjusted R2 values would also be of value to the user. One of the participants 

also stated that a correlation value is not suitable if the data is not linear, and for this reason 

it may be beneficial to include a warning for relationships that are non-linear yet are found to 

have a significant correlation. 

Finally, the placement and layout of the Correlation Page drew a reasonable amount of 

discussion. Some of the participants preferred both the pairwise plot and the heatmap to be 

square in shape and rather placed under each other for more space. Other participants, 

however, were of the opinion that only the upper or lower triangle were necessary and that 

instead these two elements should be combined so as to maximise the use of space, while 

minimising the duplication of information on the page. This would be a valuable improvement, 

however due to the pairwise plot being a function from the seaborne library, these suggestions 

would be difficult to implement. 

3.4.3.4 About Page 

While this page was not in the prototype shown to the participants, there was a lot of discussion 

around the necessity of an About Page and, therefore, it has been given its own subheading. 

The About Page should act as a manual for the generated report that users could navigate to 

so that they may improve their understanding of the report. Some elements that were 

suggested to be included here were the number of histogram bins, significance values and 

parameters used for the construction of the spatial weights matrix used for the Moran’s 𝐼 

simulation, description of each of the subplots, number of default classes for the choropleth 

maps and correlation type used in the correlation heatmap. Additionally, Participant 9 
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suggested that the date and time that the report was generated be included, as well as a 

disclaimer relating to how the report should be used. 

3.5 Roadmap of Further Developments 

The development of autoESDA is an ongoing process, meaning that the current version has 

laid the foundation for more features to be included in the future. 

A major improvement to autoESDA will be the ability to accept multiple data formats. Currently, 

the library only works with vector polygon geometries, however there is scope for this to be 

improved to support vector line and point data, as well as data in raster format.  

Results from the interviews are discussed in Section 3 and highlight multiple opportunities for 

further developments. An example of this is the ability of the user to specify their own spatial 

weights matrix. This means that instead of using the current default of a queen’s case first-

order matrix, the user could specify as a parameter the shape and order of their preferred 

spatial weights matrix.  

Interview Participants also mentioned that including additional ESDA functions such as 

Geary’s 𝐶, would add to the wealth of information in the generated report. 

Participants had numerous suggestions that would improve the layout of the report. These 

suggestions included the repositioning of some of the elements, as well as increasing the 

spacing between figures so that the report does not feel so congested. 

A popular suggestion amongst the interview participants was the inclusion of an About Page 

in the report. This would provide the user with information relating to the autoESDA library, as 

well as the report metadata such as the date generated, the default values for choropleth 

maps, or the type of spatial weights matrix used in the spatial autocorrelation calculations. 

Testing the scalability and performance of the library is another aspect of autoESDA that could 

be addressed through future work. This includes investigating how efficient the script is in 

processing datasets, as well as if it has the capability to handle large volumes of data with the 

same efficiency. 

One important milestone planned for the autoESDA library is the refactoring of the code so 

that it may be used in a QGIS plugin. This will eliminate the need for a user to have a 

knowledge of Python and will allow the user to generate an autoESDA report through a 

graphical user interface on the popular GIS platform. 
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3.6 Conclusion 

The aim of this research was to present the first iteration of autoESDA. This was achieved by 

describing the process of defining requirements and designing the library’s workflow. 

autoESDA was then evaluated against the predefined requirements, as well as through the 

use of interviews to solicit feedback. While the first iteration of autoESDA is functional, there 

are planned improvements and additional functionality. Aspects of the library such as 

scalability and performance could also be investigated to ensure that the library is capable of 

handling the large datasets that are common in today’s data-driven world. This article 

presented the first iteration of autoESDA and in doing so, has laid the foundation for more 

work to be carried out in the automation of the ESDA workflow. The next chapter will define a 

new set of requirements on which the development of the next iteration of autoESDA will be 

based.  
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CHAPTER 4: SECOND ITERATION OF AUTOESDA: REDESIGN 

AND EXPANDING ITS CAPABILITIES 

4.1 Chapter Overview 

Chapter 4 describes the updates and improvements that have been incorporated into the 

second iteration of autoESDA. This includes the architectural and cosmetic design decisions 

and their motivation thereof. The majority of these improvements have been recommended in 

the interviews that are described in Chapter 3, however some improvements have also been 

brought about by an increased understanding of software design. The feedback from the 

interviews have been converted into user stories which can be viewed in Appendix B. This 

chapter has been divided into three sections, each one addressing a different high-level 

requirement (Chapter 5 discusses the performance requirement). These requirements are 

summarised in Table 9 below. 

Table 9: High-level requirements for the second iteration of autoESDA 

Requirement Description 

Raster Functionality 

The updated library should be capable of accepting raster datasets 

and processing them to generate an autoESDA report. The raster 

report should generate efficiently and can largely be based off the 

vector report. 

Updated Architecture 

The architectural design of autoESDA should be updated so that it 

is more modular. This will allow for changes to be implemented more 

efficiently. 

Other Minor Improvements 
This includes a variety of cosmetic and other minor improvements 

resulting from the interviews described in Chapter 3. 

Performance The library should be capable of generating a report timeously. 

Section 4.2 describes the new raster functionality and the comparison of different strategies 

in order to identify the optimal strategy for ESDA calculations with raster datasets. Section 4.3 

describes the new architectural design of the library to allow for the raster functionality to be 

incorporated into autoESDA. This modular architecture streamlined the process of 

implementing a variety of other minor improvements – these are described in Section 4.4. 

Finally, Section 4.5 will discuss some limitations of the second iteration of autoESDA and 

outline potential future improvements.  
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4.2 Raster Functionality 

One novel suggestion that arose from the earlier interviews was that the autoESDA library 

should have the functionality to process raster datasets. The first iteration of autoESDA was 

only compatible with a GeoDataFrame of vector polygons. Raster grids and vector polygons 

both conform to the definition of a lattice dataset in that they cover an area and are divided 

into smaller, discrete areas known as cells or units (Cressie, 1993). These units do not overlap; 

however they share common boundaries. A raster grid is an example of a regular lattice as 

each cell has the same shape, size, and orientation, whereas a lattice of vector polygons is 

referred to as an irregular lattice.  

Lattice datasets are commonly used to detect spatial patterns and find a suitable explanation 

for their occurrence (Saveliev et al., 2007). As forms of lattice datasets, albeit with different 

data models, one could reasonably expect software platforms capable of ESDA to support 

both raster grids and vector polygons. Regular EDA functions (descriptive statistics, box plots, 

histograms, and scatter plots) could easily handle raster data as they only rely on the numeric 

values, and not the spatial component and definition of neighbours. The challenge with ESDA 

on raster datasets is the calculation of local indicators of spatial autocorrelation (LISA), which 

are the most computationally intensive part of the ESDA workflow due to the large number of 

permutations (Anselin et al., 2022).  

The xarray32, rasterio33, and rioxarray34 Python packages are used to work with the raster data 

structures. Just as with pandas, xarray is geared towards non-spatial datasets that could have 

multiple dimensions and variables. Geopandas is an extension of the pandas library. Similarly, 

rasterio and rioxarray are extensions of the xarray library, catering for spatial datasets by 

importing common spatial raster formats such as GeoTIFF or netCDF files.  

4.2.1 Strategies for LISA Calculations 

LISA are regarded as the most computationally intensive part of an ESDA workflow (Amgalan 

et al., 2022; Anselin et al., 2022; Paudel and Puri, 2022). The optimisation of these calculations 

is thus vital in minimising the overall time to generate the autoESDA report. The vector 

component of autoESDA supports local Geary’s 𝐶 and local Moran’s 𝐼. Similarly, this section 

will only discuss these two measures with the intention of the raster functionality of autoESDA 

mirroring that of vector datasets.  

 
32 https://docs.xarray.dev/en/stable/  
33 https://rasterio.readthedocs.io/en/stable/intro.html  
34 https://corteva.github.io/rioxarray/html/index.html  
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Three strategies for calculating LISA on raster datasets have been identified. These will be 

described along with their advantages and disadvantages. The first strategy processes the 

raster datasets in its original array format, with the second and third strategies requiring the 

raster dataset to first be converted into a GeoDataFrame comprised of a regular lattice of 

polygons (cells). This process is known as vectorisation, and while is does require additional 

processing, the trade-off could be worth the use of vector-based processing. 

4.2.1.1 Strategy 1: Raster + PySAL 

The first strategy relies purely on the newly developed methods to create spatial weights 

matrix using PySAL. The weights matrix is then used with the spatial autocorrelation function 

(Moran, local_moran, Geary, local_geary) in the PySAL library. One could reasonably 

assume that the calculation of LISA using this approach would be more efficient than with 

vector polygons due to the simplicity of the raster data model. 

Unfortunately, the functionality of generating queen’s first order spatial weights matrix from 

raster datasets and LISA calculations is relatively new to PySAL, which means that there is 

still room for improvement. A queen’s case weight matrix with a first order contiguity will be 

used for these experiments. Sheckhar et al. (2020) explained that the generation of weights 

has the potential of being optimised using dask (a Python library for parallel computing)35, 

however this has not yet been done. Additionally, the lack of documentation meant that 

although some PySAL LISA functions have the potential to be parallelised using joblib’s loky36 

(a library that allows for Python functions to be parallelised) – this could not be achieved for 

this comparison. It would be interesting to revise this approach in the future once the 

functionality has been given the opportunity to mature.   

4.2.1.2 Strategy 2: Vectorise + PySAL 

The second strategy is to use the PySAL functionality (Moran, local_moran, Geary, 

local_geary) on the vectorised data. This increases the processing required before being 

able to create the spatial weights matrix or calculate LISA. The PySAL functions used for 

strategy 1 will be identical to those used in this strategy, making this strategy unlikely to be 

faster due to the additional time required to vectorise the dataset.  

4.2.1.3 Strategy 3: Vectorise + pygeoda 

The final strategy is to use the pygeoda LISA functionality. Currently, pygeoda only supports 

vector datasets, meaning that the raster dataset would first need to be vectorised. Just as with 

 
35 https://www.dask.org/  
36 https://github.com/joblib/loky  
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strategy 2, this additional step would increase the processing required, however this trade-off 

could be worth the ability to then calculate LISA in pygeoda. This library functions as an API 

to the libgeoda library, which is written in C++, which is known to be faster than Python. 

pygeoda outperformed PySAL when calculating LISA for the vector functionality of autoESDA, 

and there is reason to believe this approach may be the most efficient for raster datasets too. 

4.2.2 Comparing LISA Strategies 

In order to identify the optimal strategy for LISA calculations with raster datasets, the strategies 

needed to be compared in terms of both performance and scalability. To evaluate this, 

datasets of different sizes and levels of noise (variance) were used, and the time it took to 

perform different tasks were recorded. Additionally, each strategy was broken down into six 

tasks to assist in the identification of which tasks require the most amount of time to complete. 

4.2.2.1 Datasets 

Each strategy was tested with three datasets37, each with three bands and each of a different 

size. The variance (σ2) of the bands were inflated such that band one had a small variance, 

band two a medium variance, and band three having the greatest variance. This was achieved 

by generating a variance surface of the same shape as the original raster that followed a 

normal distribution, but with increasing standard deviation. The simulated surfaces of low, 

medium, and high variance were each added to the original raster to create bands 1, 2, and 3 

respectively. The code used to simulate these surfaces can be viewed in Appendix C. Table 

10 gives the statistical content summary of each band in each dataset. One can observe the 

increasing minimum/maximum values and standard deviation of the bands in each dataset as 

the band number increases. 

 
37 All three datasets are actually clips of different sizes areas from the same CHIRPS dataset which 
was obtained from https://www.chc.ucsb.edu/data/chirps  
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Table 10: Statistical summary of datasets used to test raster LISA calculations 

 Dataset 1 Dataset 2 Dataset 3 

Size 231 x 180 575 x 409 903 x 593 

Valid % 70.90 88.56 87.88 

Valid Cells ≈ 29 481 ≈ 208 271 ≈ 470 579 

Band 1 2 3 1 2 3 1 2 3 

Min 0.49 3.09 1.92 0.72 3.00 3.36 0.00 0.05 0.17 

Max 320.89 429.81 690.59 732.79 1 340.99 2 281.75 449.01 732.03 1 103.95 

Mean 48.03 106.88 165.00 142.64 316.11 488.65 49.58 157.79 267.70 

Std 35.01 56.21 95.74 104.63 167.46 281.47 69.27 107.54 178.58 

 

4.2.2.2 Tasks 

The LISA calculations that will be included in the autoESDA report can be broken down into 

six tasks, these are described below. 

Task 1: Preprocessing 

This involves the vectorisation of the raster dataset and is therefore only relevant in strategy 

2 and 3. When vectorisation occurs, the raster grid is only vectorised once and the values from 

each band are transferred to the newly created GeoDataFrame. This means that the 

vectorisation process that makes up task 1 is only carried out once per dataset, instead of 

once per band. Tasks 2 – 6, however, will be repeated for each band that exists within a 

dataset. 

Task 2: Spatial Weights Creation 

This task involves the creation of the spatial weights object that will be used in the LISA 

calculations. For strategy 1 this requires the use of the Queen.from_xarray function to 

create the sparse queen’s case weight matrix and then calls the WSP2W function to convert the 

sparse weights matrix to a full one. For strategy 2 and 3, the NoData values are first removed 

from the GeoDataFrame before the Queen.from_dataframe function is called. The weights 

matrix is then transformed using the transform function. All functions used in task 2 are 

available through the libpysal weights module. 
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Task 3: Local Moran Calculation 

Task 3 and task 5 are the most computationally intensive functions of the tasks and therefore 

require the most time to complete. In task 3, the local Moran object is created by calling the 

moran.Moran_Local function in the esda PySAL module.  

Task 4: Local Moran Plotting 

Once created, the attributes of the local Moran object can be called to populate the rows of 

the GeoDataFrame with their labels and significance values. The values that have a 

significance of 0.05 or lower are then plotted. 

Task 5: Local Geary Calculation 

In task 5, the local Geary object is created by calling the geary.Geary_Local function in 

the esda PySAL module.  

Task 6: Local Geary Plotting 

Once created, the attributes of the local Geary object can be called to populate the rows of 

the GeoDataFrame with their labels and significance values. The values that have a 

significance of 0.05 or lower are then plotted. 

4.2.2.3 Methodology 

All experiments were conducted on a desktop computer that has a 64-bit operating system 

with Windows 10 Enterprise installed. It has an Intel Xeon CPU E3-1270 v6 processor runs 

with a clock speed of 3.80 GHz. There is also 64 GB of RAM installed as well as 32 GB 

graphics card.The code was run in an Anaconda environment with Python 3.9 installed, 

including any dependencies required. All data was saved onto the local SSD storage to ensure 

efficient data retrieval and writing.  

The code for each test simulation was run at least three times and the average of these runs 

was used in the results section for this comparison. If the values in the first three runs differed 

noticeably, then the process was rerun until three sets of times that were similar to each other 

were produced. These were used to calculate an average and the irregular results were 

discarded. To allow for a consistent comparison, the computer was not used for anything else 

while the code was running. 

Each of the three datasets had three bands (low, medium, and large variance), which meant 

that 16 timestamps were recorded for each dataset (one for task 1, and one for tasks 2 – 6 for 

each band). The simulation was run three times for each dataset, and the average values of 

the three runs was used for the results and discussion in the following section. 
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4.2.2.4 Results 

The average time to generate the spatial weights matrix, local Moran object, and local Geary 

object were each recorded and can be viewed in Table 11. As expected, the size of the dataset 

is a contributing factor to the LISA processing time. Results were generated significantly faster 

for Dataset 1, regardless of the strategy used, followed by Dataset 2, and Dataset 3 which had 

the longest processing time. In all cases, the total processing time for the first band in each 

dataset is the greatest. This is expected as the first time a spatial weights matrix is created, 

PySAL indexes the dataset which makes the processing of bands 2 and 3 more efficient. 

Likewise, the time required to vectorise (task 1) – required in strategy 2 and 3 - is only allocated 

to band 1 due to the fact that this process only needs to be carried out for a dataset and it will 

be the same regardless of how many bands there are. This is because the cost of vectorisation 

is assigned only to the first band. 

It was expected that tasks 3 and 5 (LISA calculations) would require the most amount of time 

to run out of all the tasks. However, not all values in Table 11 support this hypothesis, which 

only holds true for Dataset 2 and 3 for the PySAL Vector and PySAL Raster strategies. In the 

case of the pygeoda Vector strategy, the plotting times were quite often greater than that of 

the LISA calculation time.  

Figure 13, Figure 14, and Figure 15 illustrate the cumulative processing time (for tasks 1 – 6) 

for all bands in Dataset 1, 2, and 3 respectively. The y-axis scale differs for each plot, which 

means that it is not immediately evident that the datasets have different processing times; but 

upon investigation of the values, it is clear that Dataset 3 (Figure 15) required significantly 

more processing time as evident in the large range of values on the y-axis. It is interesting to 

note that the time required to plot (tasks 4 and 6) the vectorised raster (as vectorised cells) in 

strategy 2 and 3, is significantly more than plotting the results as a raster surface as in strategy 

1 – this is most likely due to the fact that the cells are plotted as individual polygons, rather 

than as a surface.  
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Table 11: Timing results (seconds) for different raster LISA strategies 

 PySAL Raster PySAL Vector pygeoda Vector 

 Task 
Band 1 

Low σ2 

Band 2 

Med σ2 

Band 3 

High σ2 

Band 1 

Low σ2 

Band 2 

Med σ2 

Band 3 

High σ2 

Band 1 

Low σ2 

Band 2 

Med σ2 

Band 3 

High σ2 

D
a
ta

s
e
t 

1
 

1 - - - 2.64 - - 3.55 - - 

2 3.86 0.30 0.30 1.91 1.97 2.05 0.14 0.15 0.15 

3 14.10 1.53 1.58 1.36 1.62 1.42 1.35 1.36 1.36 

4 0.16 0.21 0.12 2.46 1.67 1.16 2.54 2.88 3.12 

5 3.46 1.56 1.51 1.64 1.63 1.75 1.45 1.42 1.43 

6 0.13 0.12 0.11 4.56 1.51 1.04 4.94 4.93 5.10 

Total 21.71 3.71 3.62 14.57 8.38 7.42 13.97 10.73 11.15 

Total 29.04 30.37 35.85 

D
a
ta

s
e
t 

2
 

1 - - - 14.15 - - 20.60 - - 

2 6.10 1.97 1.86 13.17 13.69 14.28 1.15 1.26 1.24 

3 102.80 91.75 91.55 89.75 90.42 88.81 24.83 25.02 25.47 

4 0.46 0.22 0.19 21.69 14.77 8.84 22.09 23.63 25.70 

5 91.83 91.76 92.93 91.71 89.89 90.07 28.11 29.22 29.45 

6 0.46 0.24 0.15 33.83 12.30 6.84 33.90 34.61 35.39 

Total 201.64 185.94 186.69 264.29 221.06 208.84 130.68 113.73 117.24 

Total 574.27 694.19 361.65 

D
a
ta

s
e
t 

3
 

1 - - - 30.94 - - 46.33 - - 

2 7.72 4.28 3.94 29.06 29.93 31.75 2.69 3.05 3.13 

3 465.09 453.28 453.61 446.85 450.28 450.24 69.26 69.72 70.16 

4 1.01 0.32 0.27 53.45 30.86 21.82 55.11 58.78 62.10 

5 456.56 455.61 455.01 451.94 453.28 453.44 77.77 78.19 78.29 

6 1.00 0.26 0.21 73.02 26.58 15.39 74.56 75.93 77.76 

Total 931.37 913.74 913.04 1 085.26 990.93 972.65 325.73 285.67 291.44 

Total 2 758.15 3 048.84 902.84 
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Figure 13: Stacked bar chart of average times for LISA calculations on Dataset 1 

 

 

Figure 14: Stacked bar chart of average times for LISA calculations on Dataset 2 
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Figure 15: Stacked bar chart of average times for LISA calculations on Dataset 3 

The other trend that is noticeable in Figure 13, Figure 14, and Figure 15 is that the first band 

of each dataset has the longest processing time. This is expected as strategy 1 will cache the 

raster array when processing the first band, which will optimise the processing of band 2 and 

3. Similarly, the vectorisation time (task 1) that is required for strategy 2 and 3, is allocated 

only to the first band in the dataset. This would address the reason why band 1 requires the 

most processing time, regardless of the strategy or the size of the dataset. 

If one were to ignore the cumulative time for band 1 and compare only the cumulative 

processing times for bands 2 and 3, the comparison becomes quite interesting. The time to 

process each of the two bands appear identical in strategy 1. Their processing time decreases, 

however, as the band number increases for strategy 2, while the processing time increases 

as the band number increases for strategy 3. This trend holds true regardless of the dataset 

size. One would expect that the time to process the bands would increase as the band number 

increases, as the test datasets were altered such that the noise increased for each band. This 

could indicate that the effect of noise in a dataset (band) on processing time is greater for 

pygeoda (strategy 3) than PySAL, as increasing processing times are not evident for strategy 

1 and 2 which make use of the PySAL library. 

4.2.2.5 Discussion 

The comparison of times for each of the strategies for LISA with raster data illustrates that 

pygeoda is more efficient when processing large datasets. The smallest test dataset used was 

231 by 180 cells and it is expected that the majority of the datasets that autoESDA would be 

0

200

400

600

800

1000

1200

Band 1 Band 2 Band 3 Band 1 Band 2 Band 3 Band 1 Band 2 Band 3

Raster + PySAL Vectorise + PySAL Vectorise + pygeoda

Ti
m

e 
(s

)

Task 6

Task 5

Task 4

Task 3

Task 2

Task 1

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

  

Automating exploratory spatial data analysis (ESDA) for vector and raster data: 

development and evaluation of the autoESDA Python library 

 

Page 73 of 131 

 

used for would be larger than that. This makes the pygeoda strategy (strategy 3) the preferred 

one to incorporate into the autoESDA library in order to calculate LISA. This comes as no 

surprise as Anselin et al. (2022) came to the same conclusion when comparing pygeoda to 

PySAL. pygeoda’s underlying C++ codebase allows its processing to be faster than that of 

Python-based PySAL. 

Although this is currently regarded as the most efficient strategy, it would be interesting to 

revisit these comparisons in the future. One of the advantages of the raster storage format is 

that their grid-like nature, which is made up of multiple numpy arrays, should enable it to 

handle calculations such as LISA more efficiently than vector data GeoDataFrames (Sapre 

and Vartak, 2020). The PySAL weights functionality is still relatively new, and one could expect 

performance improvements that may enable it to rival the processing time of pygeoda. 

For this reason, pygeoda will be incorporated into the raster module of autoESDA. While it is 

near identical to the pygeoda code used in the vector module, the decision has been made to 

keep the code separate, to allow for updates and/or changes to be easily made in the future 

once the raster functionality has been improved. 

While Moran’s 𝐼 and Geary’s 𝐶 and their local counterparts are regarded as the most popular 

spatial autocorrelation statistics, they are not suitable for use on large datasets (Amgalan et 

al., 2022). While Moran’s 𝐼 and Geary’s 𝐶  may be suited for vector datasets, the grid-like 

structure of a raster very quickly translates to a large dataset of vector cells. Although these 

statistics will be incorporated into the autoESDA raster module due to their popularity, it may 

be beneficial in the future to include other measures of spatial autocorrelation that are more 

suited to large datasets (Amgalan et al., 2022). Another approach could be the incorporation 

of parallelization and other optimisation strategies (Paudel and Puri, 2022). 

4.3 Updated Architecture 

The first iteration of autoESDA was not designed with future improvements in mind. It 

consisted of a single script file that accepted a GeoDataFrame as an input and saved an output 

HTML file to the working file directory. This monolithic script was made up of multiple functions 

being called and numerous HTML strings being passed between them. This design was 

inefficient for multiple reasons. Firstly, there was an unnecessary number of variables stored 

that were only called once, which meant that memory was not conserved. Secondly, there was 

no clear structure to the code, which, combined with the various HTML strings being 

concatenated at various parts of the scripts’ runtime, meant that any change was a challenging 

task.  
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The original architectural design was based solely on support for vector data, making the 

decision to include raster functionality the primary motivator to restructure the autoESDA 

architecture. The newer, more modular design made it easier to address any existing errors 

in the code, while also being able to make minor improvements (discussed in Section 4.4) and 

incorporating the raster functionality discussed in Section 4.2. These tasks have all been 

easier to implement due to the updated architectural design, as the components are no longer 

as tightly coupled as they were in the first iteration. Figure 16 illustrates the architectural design 

differences through the use of a package diagram for each iteration. 

 

Figure 16: Package diagrams illustrating the architectural design of the first (left) and second (right) 

iterations of autoESDA 

The Model-View-Controller (MVC) architecture is an approach that splits the design of a 

software platform into three components (Syromiatnikov and Weyns, 2014). The Model 

consists of a set of classes that make up the structure of the data in the system, the View is 

what the user engages with, while the Controller handles the input and output of the software 

by functioning as the link between the Model and the View (Syromiatnikov and Weyns, 2014).  

The design of the second iteration autoESDA is loosely based on the MVC approach. The 

library is split into two modules – vector and raster. Each module works with their namesakes’ 

data format - the vector module accepts a GeoDataFrame as its input, and the raster module 

accepts a xarray DataArray as its input. These are referred to as the input vector and input 

raster respectively. Each module is made up of two components – a model and controller. The 

model defines the classes that are relevant for that module (depending on whether vector or 
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raster data is being used). The class functions are called to generate the components that 

make up the output report. The controller currently acts as the view and controller as these 

two components are still tightly coupled. The controller makes numerous calls to the model 

and then combines the results into the HTML report which is the final output of autoESDA. 

Section 4.3.1 and Section 4.3.2 will discuss the model and controller respectively for both the 

vector and raster modules. 

4.3.1 Model 

One of the major changes that has been brought about by the redesign of the autoESDA 

library is the use of classes to structure the various ESDA outputs that can be generated from 

a dataset. This enables one to implement new functionality more easily than on the previous 

design. The raster and vector models differ slightly due to the different input formats; however 

they are designed to be as similar to each other as possible. Each model is based on a parent-

child class schema allowing for only one instance of parent to be created, which have at least 

one instance of the child class relating to it. For the vector model the parent class is referred 

to as a Dataset, while the child class is referred to as a Variable. In the raster model the 

parent class is referred to as a Raster, while its child class is referred to as a Band. 

Each model is built on the premise that the parent class only needs to be created once for the 

input dataset, and that its creation would automatically generate the required number of child 

classes based upon the number of variables (vector datasets) or bands (raster datasets). 

When the autoESDA report is generated, the relevant function or attribute from the classes 

are called, which then returns an object to include in the report. Depending on the output, this 

object may take on a variety of forms, such as a figure or DataFrame. 

4.3.1.1 Vector Module 

The vector model is made up of a Dataset parent class and a Variable child class, as 

illustrated in Figure 17. The Dataset class is created from the input vector, and its attributes 

and functions relate to the entire dataset. It’s first attribute, gdf, is the input vector which is 

stored as a GeoDataFrame. The numeric_columns attribute is a list of names of the numeric 

columns in the dataset – these are the only columns that are included in the calculations as 

other data types are not yet supported. The final two attributes are pygeoda_weights and 

pysal_weights – each are spatial weights objects for their respective library. The pygeoda 

weights object is used for the LISA calculations, while the PySAL weights object is used for 

the calculation of global spatial autocorrelation statistics. Although it is more efficient at 

calculating LISA, pygeoda, at the time of writing unfortunately does not support global spatial 
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autocorrelation statistics. This necessitated the creation of a PySAL weights object which 

enable the calculation of global measures of spatial autocorrelation using PySAL. Fortunately, 

these global functions are less computationally intensive than their local counterparts.  

The init function forms part of any Python class and is used to create a new instance of a 

class. In this case, a new Dataset is created. This function requires the specification of a 

GeoDataFrame as its only parameter. Each of the attributes described in the paragraph above 

(gdf, numeric_variables, pygeoda_weights, and pysal_weights) will be derived 

once the init function is called. These attributes can then be accessed by the functions in 

the Dataset class and do not need to be derived each time they are required, thus avoiding 

unnecessary extra processing. 

The overview_statistics function returns a DataFrame of information relating to the 

dataset. This includes the coordinate system, number of features and attributes, and which 

are the numeric attributes which have been included in the report, or attributes of other data 

types that have been excluded. The purpose of the overview statistics table is to provide the 

user with quick information relating to the makeup of the dataset and what information has 

been included or excluded in the autoESDA report. 

The study_area_figure function returns a basic plot of the dataset made up of black 

outlines and hollow polygons. The purpose of this map is not to be visually appealing, but to 

illustrate the shape of the dataset to the user so that any irregularities can immediately be 

identified. The coordinates (based on the Coordinate Reference System (CRS) of the input 

vector) are also included on the axes so that the user can assess whether they are consistent 

with what would be expected. 

The numeric_variables function initialises a new Variable class for each 

numeric_column in the Dataset and returns these as a list of Variable objects. To 

analyse each Variable in the Dataset, this list can be iterated through, or one could access 

each Variable individually by calling the list and specifying the respective index relating to 

that Variable.  

The dataset_statistics function returns a DataFrame containing the descriptive 

statistics for each Variable in the Dataset. The output DataFrame is created by combining 

the DataFrames returned from the variable_statistics function for each Variable. 

The dataset_sample function returns a DataFrame consisting of ten randomly selected 

features and their attributes from the input vector. The geometry column is excluded as its 
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contents are often lengthy and are difficult to display in its entirety in the output report. The 

sample is selected using the pandas sample function which returns the user specified number 

of randomly selected rows from a DataFrame (GeoDataFrame) – in this case, the input vector. 

The correlation_figure function returns a figure made up of three correlation heatmaps. 

Three correlation matrices (Pearson, Kendall, and Spearman) are calculated using the pandas 

corr function and are then coloured as a heatmap using seaborne’s heatmap function. 

Finally, the pairplot_figure function returns a pairwise plot of each Variable in the 

Dataset. The plot is generated using the pairplot function from the seaborne library. 

 

Figure 17: UML class diagram for the vector model 

A Dataset will have a Variable class for each numeric column in the input vector. A 

Variable helps encapsulate the various components related to that specific column, and in 

doing so it enables the same code to be reused regardless of how many instances of the 

Variable class are created for the Dataset. 

A Variable is instantiated by calling the init function, which requires the specification of 

the parent GeoDataFrame, column name (string), and the parent PySAL and pygeoda weights 

objects. Each of these parameters are stored as attributes of that instance of the Variable 

class. Additionally, the values (observations) relating to that variable are extracted from the 

original GeoDataFrame. These are stored as a pandas series and can be accessed by calling 

the values class attribute. 

The first function in the Variable class is variable_statistics. This function uses the 

pandas describe, skew, kurt, nunique and isna functions along with the global Moran 

and Geary functions from PySAL. These functions yield various descriptive statistics which 

are combined into a DataFrame that is returned when the function is called. 
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The descriptive_figure function returns a figure made up of three axes. The first is a 

box plot which is generated using the matplotlib boxplot function; the second is a probability 

histogram which is generated using seaborne’s histplot function, and the third is a 

cartogram which is generated using geoplot’s38 cartogram function. 

The local_moran_figure and local_geary_figure operate almost identically. Each 

function uses the respective pygeoda local_moran or local_geary function to create a 

LISA object. 

When creating a LISA object for local Moran or local Geary, pygeoda automatically assigns a 

value of zero to fields that have been left empty or contain a NaN. This is misleading as, if no 

error is given, one can still plot the results for which all of the polygon features will display as 

High-High clusters (local Moran) or Negative clusters (local Geary) – both with very high 

significance. To address this issue, the following line of code has been added: 

undefined_values = values.isna().tolist() 

This line creates an array of Boolean (True/False) values which will then be used when the 

local Moran or local Geary function is called. The array acts like a mask and ensures that 

missing values are not considered in the construction of the LISA object.  

Once created, the LISA objects are then passed to the _plot_lisa function. This global 

function in the autoESDA vector model was created to avoid the duplication of code for each 

statistic and will accept a LISA object and return a figure containing both a cluster map and a 

significance map. 

Finally, the choropleth_figure function returns a figure made up of six choropleth maps 

– each with a different classification scheme. The maps are plotted using matplotlib using 

classification schemes provided by the mapclassify library. 

4.3.1.2 Raster Module 

Just as with the vector model, the raster model is also made up of parent and child classes, 

known respectively as Raster and Band, as illustrated in Figure 18. The only parameter 

required to create a Raster class is the input raster (in the form of a rioxarray DataArray 

object). The init function is called to create an instance of the Raster class. When a 

Raster is created, three attributes are derived, namely: vectorised, geoda_object, and 

geoda_weights. The vectorised attribute is the output GeoDataFrame once the input 

 

38 https://residentmario.github.io/geoplot/index.html  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

https://residentmario.github.io/geoplot/index.html
https://residentmario.github.io/geoplot/index.html


 

  

Automating exploratory spatial data analysis (ESDA) for vector and raster data: 

development and evaluation of the autoESDA Python library 

 

Page 79 of 131 

 

raster has been vectorised. The geoda_object attribute is then created from the vectorised 

GeoDataFrame and is used to create the geoda weights object, which is stored under the 

geoda_weights attribute. These attributes are be used by the functions within the Raster 

class. 

The overview_statistics function returns a DataFrame containing information relating to 

the raster dataset. This includes the CRS, number of bands/rows/columns, resolution, extent, 

and other metadata that could be extracted from the input raster. These are obtained by calling 

the crs, shape, resolution, bounds, and attrs methods which are defined in the xarray 

DataArray object or it’s rioxarray extension. 

The bands function is similar to the numeric_variables function in the Dataset class of 

the autoESDA vector model. This creates a new instance of the Band child class in the raster 

autoESDA model for each band in the dataset. The bands function returns a list of Band 

objects, its length being dependent upon the number of bands in the raster dataset. 

The correlation_figure and pairplot_figure functions are identical to the functions 

of the same name in the vector model, as they use the GeoDataFrame created by 

vectorisation. The code has been purposely duplicated to allow for one to easily refactor it in 

the future so that it is built on the input raster rather than on its vectorised form. This would 

allow it to be altered more easily in the future, should there be a need to use a different, more 

efficient strategy. 

 

Figure 18: UML class diagram for the raster model 

Each Raster class will have at least one Band relating to it. The Band class helps 

encapsulate various components that relate to that specific band, avoiding the need to 

duplicate code. To create an instance of a Band class, three parameters are required. These 
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are: a band xarray DataArray object, the vectorised GeoDataFrame, and the pygeoda weights 

object. These parameters are either assigned to or used to derive the ten attributes associated 

with a Band class, namely: name, band, datatype, crs, nodatavalue, bandseries, 

bandnodataremoved, vectorised, geoda_weights, and pysal_weights.  

A Band is created by calling its init function which requires the specification of the band 

GeoDataFrame and a geoda weights object. When a Band is created, various attributes are 

automatically derived for use in the class functions. The name attribute is extracted from the 

band parameter required to create the Band class.  

The band attribute stores a xarray DataArray object identical to the parameter, however with 

the addition of an attribute called nodatavals which is added using this line of code: 

band = band.rio.update_attrs(new_attrs={"nodatavals": [band.rio.nodata]}) 

This is a necessary step as PySAL uses the hard coded nodatavals name for this attribute 

and, if it cannot be found, it will generate a spatial weights matrix for the entire grid extent 

rather than just the cells that have values. Consequently, when a local Geary or local Moran 

object was constructed, the result was an error due to the dimension mismatch of the spatial 

weights matrix and the already masked array of data values. The specification of an attribute 

with the name nodatavals rather than nodata or _FillValue which is used in rioxarray, 

means that a spatial weight matrix can still be created. This shortfall has been logged as an 

issue on the PySAL repository, and once it is addressed, the workaround described here will 

no longer be necessary. 

The datatype, crs, and nodatavalue attributes are extracted from the band parameter 

which has stored attributes called dtype, crs, nodata respectively. The vectorised 

attribute stores the GeoDataFrame of the vectorised raster, with geoda_weights and 

pysal_weights referring to their respective spatial weights object for each library. 

The histogram_figure function returns a figure in the form of a probability histogram of 

the values in the band. This is created using the histplot function from the seaborne library. 

The band_statistics function returns a DataFrame of various descriptive statistics of the 

values in the band. The values are arranged in a pandas series and the pandas describe 

function is used for the aspatial statistics, while PySAL’s Moran and Geary functions are used 

to calculate the global spatial autocorrelation statistics. All of these statistics are collated into 

the DataFrame before it is returned. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

  

Automating exploratory spatial data analysis (ESDA) for vector and raster data: 

development and evaluation of the autoESDA Python library 

 

Page 81 of 131 

 

The local_moran_figure and local_geary_figure each return a figure with two plots 

– the respective LISA cluster map, as well as a map illustrating its significance. The code is 

practically identical to the functions of the same names in the Variable class. The code has 

been duplicated on purpose as the functionality works for the vectorised input raster, however 

it is expected that in the future there will be a more efficient strategy to compute these statistics 

that does not require vectorisation. This motivation is discussed in greater detail in Section 

4.2. 

The output of the choropleth_figure function is a figure of six choropleth maps with 

different classification schemes, just as is the case for the function with the same name in the 

Variable class. The technical component however differs slightly as the raster array is 

plotted, rather than a GeoDataFrame. Consequently, the classes need to be calculated 

separately and the cells with no values must be masked. 

4.3.2 Controller 

Just as with the design of the model for autoESDA, the workflow for the raster and vector 

modules are very similar, with slight differences due to each data structure and how each is 

processed. The workflow is carried out in the controller in each module, and it begins when 

the user calls the generate_report function. For both the raster and the vector modules, 

the user is required to specify an input dataset (GeoDataFrame or xarrayDataArray). The user 

can optionally specify a string to be used as the name for the output HTML report file, and in 

the case of the vector model, the user can specify a report name which will be displayed on 

the Summary Page of the report. Once the generate_report function is called, a timer is 

initialised (to time the report generation process) and the input dataset is used to create a 

Dataset or Raster object in the modules’ model. These classes are created by calling their 

__init__ constructor function. 

Various calls are made to the Dataset/Variable and Raster/Band classes (located in the 

model) throughout the workflow and the response will take the form of either a pandas 

DataFrame or a matplotlib figure. The pandas to_html function is used to convert the 

DataFrames into an HTML compatible string, and the matplotlib figures are converted into a 

string which makes up a HTML image tag. The latter is done by calling the internal 

_encode_image function of the controller and specifying the figure that is to be encoded as 

a parameter.  

For each controller there are four internal functions that are called which are responsible for 

creating the Summary, Variable/Band Information, Correlation, and About Pages respectively. 
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Each of these functions make numerous calls to the respective model to generate the various 

components of their namesake’s page. These internal functions are used to group the calls 

made to the model. All the interactions between functions and different parts of the module 

are illustrated and numbered in the UML sequence diagrams for the vector module (Figure 

19) and the raster module (Figure 20). 

The generation of the Summary Page, and the Variable/Band Information Page differs 

between the two modules and will be discussed separately. The latter half of the workflow – 

generating the Correlation and About Pages, along with the final report output, will then be 

discussed in terms of both the vector and raster modules as this process is identical for each 

module. 

4.3.2.1 Vector Module 

The UML sequence diagram in Figure 19 illustrates the interactions between the different 

components in the vector module.  

The _summary_page function is an internal function of the controller and requires the created 

Dataset, and optionally, the report title (string) as parameters. This function creates the 

Summary Page and groups together sequences 3 to 20 in Figure 19. When called, this 

function will call the overview_statistics, study_area_figure, 

dataset_statistics and dataset_sample functions of the Dataset class in the vector 

model. These functions will return a DataFrame of overview statistics, study area figure, 

DataFrame of dataset statistics and DataFrame sample respectively. The generation of the 

DataFrame of dataset statistics is made up from the individual DataFrames of the variable 

statistics. As a result, executing the dataset_statistics function necessitates the call of 

the numeric_variables function in the Dataset class which initialises a Variable class 

for each Variable in the Dataset class. The variable_statistics function is then 

called for each Variable, and the returned DataFrames are combined to create the 

DataFrame of dataset statistics. 

The internal _variable_information function of the controller is slightly different to the 

other functions as it loops through each Variable in the model rather than dealing with the 

parent Dataset object. The other difference is that it returns two strings – a tab string and a 

page string. The tab string is the HTML string required to create the buttons along the top of 

the report to toggle between pages and needs to be created in the 

_variable_information as it requires the iteration through each of the Band objects to 

obtain their name to use as a label for these buttons. The page string is the HTML string that 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

  

Automating exploratory spatial data analysis (ESDA) for vector and raster data: 

development and evaluation of the autoESDA Python library 

 

Page 83 of 131 

 

represents the Variable Information Page for each Variable. Sequence numbers 21 to 31 in 

Figure 19 represent the workflow in this function. Each Variable Information page is made up 

of a table of variable statistics, descriptive figure, local Moran figure, local Geary figure and 

the choropleth figure. Each of these components are created by calling the 

variable_statistics, descriptive_figure, local_moran_figure, 

local_geary_figure, and choropleth_figure functions of the relevant Variable 

instance. A HTML string representing each Variable Information Page is returned which is 

combined into one long HTML string which is finally returned by the internal 

_variable_information function within the controller. 

 

Figure 19: UML sequence diagram of the vector module workflow 
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4.3.2.2 Raster Module  

The UML sequence diagram in Figure 20 shows the interaction between the different 

components of the raster module. These processes are all part of the raster module workflow, 

which is responsible for transforming the input raster (xarray.DataArray) into an autoESDA 

report which is then returned to the user. 

The _summary_page function groups together the various interactions (sequences 5 to 15) 

between the model and controller that are required to create the Summary Page and requires 

the specification of a Raster object as its only parameter. The Summary Page is made up of 

a table of overview statistics and a table of raster statistics. These are returned as DataFrames 

when the overview_statistics and raster_statistics class functions of Raster 

are called. In order to generate the DataFrame of raster statistics, the numeric_variables 

function of Raster is called which creates an instance of Variable for each 

numeric_column in Dataset. To create an instance of Band, the Raster class in the 

model makes a call to the __init__ (constructor) function of Band which requires the 

specification of the vectorised GeoDataFrame, column name (string), PySAL weights object 

and GeoDa weights object. This enables the code in the raster_statistics function of 

Raster to call the band_statistics function for each Band. The returned DataFrame from 

each of these calls are then combined to form one DataFrame that is returned when the 

raster_statistics function is called. 

The internal _band_information function groups together the interactions (sequences 21 

to 31) between the controller and instances of Band in the model to allow for the creation of 

the Band Information Page(s). A Band Information Page is made up of a table of band 

statistics, a histogram figure, local Moran and local Geary maps (each with their associated 

significance map) and a choropleth figure. These are generated by calling the 

band_statistics, histogram_figure, local_moran_figure, 

local_geary_figure, and choropleth_figure functions of the respective Band. A 

HTML string representing each Band Information Page is returned which is combined into one 

long HTML string which is finally returned by the internal _band_information function 

within the controller. 
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Figure 20: UML sequence diagram of the raster module workflow 

4.3.2.3 Both Modules (Correlation and About Pages, Report Output) 

The _correlation_page and _about_page functions are currently identical to each other 

and have been duplicated on purpose as a placeholder so that changes can easily be 

implemented for one module without affecting the other. The _correlation_page function 

accepts the relevant Dataset/Raster object and calls the respective 

correlation_figure and pairplot_figure functions. The output of each of these 

functions is a figure which will be added to the Correlation Page string once encoded. The 

_about_page function accepts the start time (derived when the generate_report is 

called) as a parameter which it uses to calculate the elapsed time to generate the report. The 
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remainder of the About Page is a static HTML string with the exception of a data and time text, 

which is calculated and then included in the about page string which is the output of the 

_about_page function. 

The strings resulting from the functions described above are all concatenated with other HTML 

strings that are hard coded – these include the various elements that make up the structure 

and functionality of the report, such as inline CSS and JavaScript. The final HTML string is 

then written to a newly created file. If the user specified a name, the output file will be assigned 

that name with a .html extension, alternatively, if no name was supplied, a default of 

“autoESDA-vector-report.html” or “autoESDA-raster-report.html” will be used. 

4.4 Other Minor Improvements 

Just as is the case for every software project, autoESDA requires continuous improvements. 

These improvements are discussed in the remainder of this section and are grouped according 

to the element of the report to which they relate. While these can immediately be seen in the 

report, improvements are not just cosmetic and have been applied to the core workflow of the 

library, not just changes to the HTML layout. 

4.4.1 General 

The general improvements refer to the library as a whole, rather than one of the components 

of the report. This includes the addition of an About Page in the generated reports, as well as 

an updated layout of the HTML pages. The library is also available for download from PyPI39 

– the official Python package index, as well as on conda-forge40 under the BSD 3-Clause 

license. As of October 2023, the library has been downloaded over 1200 times from PyPI and 

its GitHub repository41 has been visited over 1900 times. 

The About Page (pictured in Figure 21) appears in both the vector and raster versions of the 

generated HTML report. Its purpose is similar to that of a metadata file, in that it provides the 

user with miscellaneous information relating to the report as well as how it is generated and 

how it could be interpreted. This is achieved by informing the user of any default parameters 

used to generate the report – allowing the user to identify potential limitations. This is done by 

including a link to a User Guide which is stored in the autoESDA GitHub repository. The user 

will, however, require an internet connection to access the User Guide. In addition to a link to 

the User Guide, the About Page also contains a link to the source code of the autoESDA 

 
39 https://pypi.org/project/autoesda/  
40 https://anaconda.org/conda-forge/autoesda  
41 https://github.com/NicholasDeKock/autoESDA  
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library as well as the data and time that the report was generated, and how long it took to 

generate the report. 

 

Figure 21: The About Page that is present in both the vector and raster autoESDA reports 

The HTML layout has been improved so that it is more modular and can be customised more 

easily. Each page has adopted a CSS grid structure, made up of various grid elements. Each 

grid element can be positioned on the grid by specifying its row and column index, and how 

far it can stretch in each dimension. This also ensures that the position of each of the elements 

in relation to each other are fixed and should exceed the page size.  The overflow for each 

grid element is set to “auto” which means that should the contents of the grid item exceed that 

which is allocated to the grid item, a scroll bar will appear. This will enable the user to toggle 

the view so that they can see everything in that grid element, without the overflow having an 

effect on any of the other elements on the page. Previously, the Variable Information Page 

was one matplotlib figure with multiple axes. The revamped design makes use of numerous 

figures which allow for each one to be assigned a different grid element and heading.  

4.4.2 Summary Page 

As a way of customising the report, the user may now optionally specify a name that will be 

displayed on the Summary Page above the study area plot. Previously this heading just read 

Study Area, and this has been left as the default text should a user not specify a name to use. 

Within the dataset overview table, the names rows and columns have been replaced by 

features and attributes respectively. This was changed to avoid confusion, as one of the 

interview participants pointed out that the row/column terminology, although applicable when 

using a GeoDataFrame, could confuse the user into thinking they were working with a raster 

dataset. The updated names are consistent with the ESRI’s definition42 of an attribute table. 

Several statistics have been added to the descriptive statistics table. These include skewness, 

kurtosis, and a count of null values. Skewness and kurtosis are calculated using the pandas 

 
42 https://support.esri.com/en-us/gis-dictionary/attribute-table  
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skew and kurt functions respectively, which by default skip null and non-numeric values. The 

null (NaN) values are counted by using the pandas isna function in conjunction with the sum 

function. Each null value returns a value of one which in turn is counted to determine the total 

number of null values. Global Moran’s 𝐼 and Geary’s 𝐶 and their respective p-values have also 

been included to allow the user to compare measures of spatial autocorrelation across 

variables. 

The last improvement made to the Summary Page is the way in which the dataset sample is 

composed. Originally it was made up of the first and last five features in the GeoDataFrame, 

but this has now changed to include ten randomly selected features. This was changed to 

allow the user to identify faults in the dataset that could systematically be missing from the 

first and/or last features. All the changes described in this section can be viewed in Figure 22. 

 

Figure 22: Updated Summary Page for autoESDA vector report 

4.4.3 Variable Information Page 

The most obvious change to the Variable Information Page (pictured in Figure 23) is that the 

layout is more complex. Previously the page was made up of one figure with multiple axes, 

however the updated layout is comprised of multiple figures and a table of descriptive statistics 

specifically related to the respective variable (a subset of the full descriptive statistics table 

that forms part of the Summary Page). Previously a frequency histogram was used, however 

this has been changed to be a probability histogram. This was done as the probability 
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histogram can be compared with that of other variables. It also avoids duplication as the main 

diagonal of the Pairwise Plot on the Correlation Page is comprised of a frequency histogram 

for each variable. A final method of visualising spatial heterogeneity is the newly incorporated 

cartogram which visualises the magnitude of the variable for each feature. This is created 

using the cartogram feature from the geoplot library.  

The LISA section of the Variable Information Page has been completely revamped. The 

reference distribution with various statistics has been removed, as numerous interview 

participants were confused by this and did not see its relevance. The Moran’s scatter plot has 

also been removed. In order to visualise the local Moran and local Geary calculations, a cluster 

map and significance map are used for each statistic. The calculations and classes are 

computed using the local_moran and local_geary function of the pygeoda library. 

pygeoda was chosen as it calculates faster than PySAL and its creation of a LISA object allows 

one to extract the cluster classes, labels, colours, and p-values more efficiently. Once 

extracted, each of these components are used in conjunction with geopandas to plot the 

cluster and significance maps. This new approach allows for the plotting of each of the results, 

and the figures can be more easily customised as they no longer form part of the output from 

the plot_local_autocorrelation function form the splot library, which was used 

previously. 

The choropleth maps in the Variable Information Page also received a facelift. There are now 

six maps with the Boxmap, Equal Interval, Quantiles, Mean-Standard Deviation, Maximum 

Breaks, and Fisher-Jenks classification schemes. Each of these are plotted using a 

combination of geopandas and, by extension, mapclassify. The colour ramp has been 

reversed such that larger values are now visualised using darker colours - as is the norm in 

cartography (Slocum et al., 2014). The colour scheme has been changed from viridis to YlOrBr 

as the yellow-orange-brown palette is considered to be more neutral than the green-yellow-

purple colours it used previously. This is important as the colour choice needs to be generic 

enough such that it avoids potential connotations when used for various types of data. For 

both the choropleth and LISA maps, the decision was made to place the legends below the 

map. Previously the legend placement was set to best, however it was evident that this has 

some limitations and an optimal legend location inside the map could not be chosen as the 

optimal placement would depend upon the shape of the dataset. 
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Figure 23: Updated Variable Information Page for autoESDA vector report 
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4.4.4 Correlation Page 

Originally the correlation heatmap was constructed using Pearson correlation, however this is 

limited in that it is only suitable for linear variables (Devore and Berk, 2012). Some of the 

interview participants suggested that the user should be allowed to specify their preferred 

correlation type should they desire. The decision was made to include a heatmap matrix for 

Pearson, Kendall, and Spearman correlation. This is the same approach used in the pandas-

profiling library and does not affect performance as the calculation is not computationally 

intensive. This leaves the user to interpret the results as they see fit. All values for the 

correlation heatmaps are now rounded off to two decimal places to avoid the values extending 

beyond their respective cells. The colour bar has also been included as per numerous 

suggestions; this allows the user to more easily comprehend the scale of the various colours 

used. 

The pairwise plot had been updated to include a regression line. The use of a regression line 

is only suitable for linear relationships; however the responsibility has once again been left to 

the user to interpret it as they see fit.  

The addition of extra correlation heatmaps have the added benefit of improving the layout of 

the Correlation Page. The heatmaps are stacked under each other to the left of the page with 

the pairwise plot to their right. The figures will all rescale according to the size of the page and, 

as a result, the viewing experience will have slightly improved from what it was previously, as 

less scrolling is required. The updated Correlation Page is shown in Figure 24. 

 

Figure 24: Updated Correlation Page for the autoESDA vector report 
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4.5 Limitations and Future Developments 

The updates to autoESDA architecture and output reports are considered to be significant 

improvements over earlier versions. There are, however, further improvements that could be 

made to either improve the utility of the library, or to address current limitations. 

File formats 

Currently the raster module is only functional with GeoTIFF files. A user will be able to specify 

another file format (such as PNG, JPEG, or netCDF), however it has not been extensively 

tested to see how autoESDA will handle these. The structure of a GeoTIFF file ensures that 

arrays are referred to as bands, and as such, when opened with rioxarray, the terms band, 

and x and y coordinates are used. This is, however, different for other formats such as netCDF 

files where bands are named rather by the attribute they represent, and lat and long are used 

as names for the values that represent cell coordinates. Once the input of the raster dataset 

is addressed, the rest of the library should be capable of handling the data from other file 

formats. 

Spatial weights 

autoESDA currently uses queen’s case contiguity weights with an order of one by default. 

Unfortunately, this is a limitation as the user has no way of using a different type of weights 

matrix. It could be beneficial in the future to include functionality for the user to specify the type 

of weights matrix (contiguity/distance-based/knn) and to specify the associated parameters 

(shape/order/distance/number of neighbours). The functionality could even be expanded to 

allow the user to specify their own, previously created weights file as a parameter.  

Additionally, the output report could display the number of islands, as is done when creating 

the weights matrix in GeoDa. This should be a straightforward task as a warning message is 

already displayed in the command line when neighbour-less observations (islands) are 

detected. Other informative measures such as the minimum, maximum, and mean number of 

neighbours could also be displayed. 

Report structure 

The structure of the current HTML reports (vector and raster) are functional, however there is 

still excessive whitespace, and the design often requires the user to scroll more than what 

should be necessary. Currently the same report structure is used each time the report is 

generated, and it could be beneficial for the user to customise which elements are included in 

the report. This could include specifying what data to include in the report, which would mean 
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that time is not spent processing variables or bands that are of no interest to the user. The 

same could be true for the various plots, allowing the user to specify when they may only be 

interested in generating a Correlation Page, or seeing only the choropleth maps and 

histograms – speeding up processing time as intensive LISA calculations may not be required. 

This same philosophy is behind the design of DataPrep.EDA where Peng et al. (2021) allowed 

the user to run certain ad-hoc EDA tasks, rather than a colossal report. This allowed for an 

interactive processing speed that is dependent on the required task. 

Improved error handling 

The updates to autoESDA has begun incorporating some error handling, however there is still 

a large room for improvement as it is not uncommon to come across an unexpected error. 

Currently, if an error is encountered in the generation of a plot, the error message is displayed 

in the area where the plot would be. This allows the report generation to continue even if an 

error is encountered, however, this solution could be improved. The displayed error message 

is a direct copy of the exemption thrown from the source code. This means that the user may 

not easily understand what has caused the error– especially if they have no programming 

experience. 

Another problem is that there also seem to be frequent geometry errors that yield exceptions. 

If one tries to generate a vector report with a GeoDataFrame that has multipolygons, the 

following error message appears: 

TypeError: 'MultiPolygon' object is not iterable 

If the multipolygon features are simplified to form multiple individual polygons, the following 

error message appears instead: 

TypeError: 'MultiLineString' object is not iterable 

This seems to be a problem that is dependent on which version of shapely is installed, however 

more research into the problem needs to take place before a suitable solution can be 

developed. 

Additional EDA and ESDA functionality 

The functions included in autoESDA are not meant to be an exhaustive list of all the tools 

available under the EDA/ESDA umbrella. There are endless possibilities regarding what 

functionality could be incorporated into the output report. Increased functionality could greatly 

increase the utility of the library; however it comes at the cost of increased complexity and 

processing time. 
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Interactive Reports 

The ability to interact with ESDA outputs is extremely effective, especially when working with 

large datasets (Anselin, 1996). The autoESDA report is static, meaning that no animations or 

brushing have been incorporated. Brushing, interactive maps, popups and other features 

could be incorporated into the report; however this would increase the file size of the report. 

Larger file sizes mean that the reports cannot easily be shared with other parties.  

4.6 Conclusion 

This chapter has documented the design and implementation of numerous improvements to 

the autoESDA library. Four high-level requirements were identified, namely: raster 

functionality, updated architecture, various minor improvements, and performance. The first 

three of these requirements have been addressed through the discussions within this chapter. 

In the next chapter, the final requirement – performance, will be addressed. This is done by 

testing how autoESDA handles vector and rater datasets that vary in their size and complexity. 
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CHAPTER 5: PERFORMANCE EVALUATION 

5.1 Chapter Overview 

This chapter aims to evaluate the performance of the updated autoESDA library in how it 

processes datasets of varying complexity and size. This addresses the final high-level 

requirement defined at the beginning of Chapter 4. The measure of performance used will be 

the time taken to generate the autoESDA report for each dataset. The results and their 

implications will be discussed. The output reports can be viewed online, their links are provided 

in Appendix E. 

5.2 Method 

All experiments were conducted on a desktop computer that has a 64-bit operating system 

with Windows 10 Enterprise installed. It has an Intel Xeon CPU E3-1270 v6 processor runs 

with a clock speed of 3.80 GHz. There is also 64 GB of RAM installed as well as 32 GB 

graphics card. 

The code was run in an Anaconda environment with Python 3.9 installed, including any 

dependencies required. All data was saved onto the local SSD storage to ensure efficient data 

retrieval and writing.  

For both the vector and raster tests, the respective generate_report function was called 

from the controller of each module. The appropriate test dataset was given as a parameter, 

and the report name was specified. The report name was made up from the dataset, the 

version, and the number of the run simulation (e.g. Dataset1_LowRange_1).  

The code for each test simulation was run at least three times and the average computation 

time for the runs is used in the results section for this comparison. If the values in the first three 

runs differed significantly then the process was rerun until three sets of times that were similar 

to each other were achieved. These were then used to calculate an average and the irregular 

results were discarded. To allow for consistent results, the computer was not used for anything 

else while the code was running.  

5.3 Description of Test Datasets 

A variety of raster and vector datasets were sourced to evaluate the performance of the 

updated autoESDA library. The remainder of this section will describe these datasets 

qualitatively and statistically. The source of these datasets, and any license or restrictions that 

they may carry, will also be highlighted. The principle on which the autoESDA library is built is 
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that it is data agnostic, and that the same workflow is applied to each dataset regardless of 

the thematic nature of the dataset. The assumption is that the user will interpret the report to 

ensure that the results are understood correctly. The thematic nature of a dataset should also 

not have any effect on the library performance. As such, the thematic nature of the test 

datasets are described in this section, however the purpose of this is only to be of interest to 

the reader. Any interpretation of the output autoESDA reports is beyond the scope of this 

project. 

5.3.1 Vector Datasets 

These datasets vary in file size, numbers of features and number of attributes. The library only 

processes numeric attributes, so it is expected that only their values will impact the processing 

time. The theoretical numeric values are calculated as the product of the number of features 

and numeric attributes. As there may be some missing values in the datasets, the actual 

number of values may differ from the theorical one. 

The complexity of the polygons in the lattice of the different datasets may have an impact on 

the computation time. For this reason, a queen’s first order spatial weights matrix has been 

created and the number of geometries, vertices, and average number of neighbours has been 

recorded. This impact of geometry complexity is not expected to be significant, however, as 

the average time taken to generate the spatial weights matrices for the tests described in 

Section 3.3 were found to be negligible when compared to the LISA calculations. The test 

datasets are qualitatively described below, and their statistics are compared in Table 12.  

Dataset 1 – AirBnB Chicago 2015 

This dataset has been sourced from the GeoDa data portal43, 44, although it is curated from 

data that has been sourced from AirBnB and the Chicago data portal. The dataset is made up 

of 77 community area polygons, and 20 attributes ranging from AirBnB response/acceptance 

rates to other crime, population, and socioeconomic data. This dataset is available under the 

Creative Commons 4.0 license. 

Dataset 2 – Grid 100 

Sourced from the GeoDa data portal, this simulated dataset is made up of a 10 by 10 grid of 

cells, making 100 polygons. There are 36 attributes which are all randomly simulated, 

 
43 https://geodacenter.github.io/data-and-lab/  

44 The limitation of using this portal is that data may have been cleaned to make it easier for students 
to work with. 
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autocorrelated observations. This dataset has been created purely for testing purposes and is 

not based on anything in reality. It is available for download “as is”. 

Dataset 3 – South African 2011 Census 

This dataset is the result of combining various demographic metrics from the 2011 census 

conducted by Statistics South Africa45, with local municipal boundaries sourced from the 

Municipal Demarcation Board46. The demographic data represents population groups, age, 

gender, and primary languages – this makes up 33 total attributes for each of the 234 local 

municipal polygons.  

Dataset 4 – Natural Earth Country Boundaries 

Obtained directly from the Natural Earth Website47, this dataset represents the 1:110m country 

boundaries. There are 177 polygons and 167 attributes, however most of the attributes are 

text labels, meaning there are only 31 numeric attributes. The numeric attributes are not all 

statistics or measurements, some are simply zoom levels or label sizes, which may not be of 

any relevance for this study. This dataset is available with no license or restrictions. 

Dataset 5 – Malaria in Colombia 

This dataset, also downloaded from the GeoDa data portal, represents malaria incidence in 

Colombia in 1998, as well as various census figures and annual population projections. Each 

of the 50 attributes are observed in each of the 1 068 municipal polygons that cover the entire 

administrative area of Colombia. This dataset is available “as is”. 

Dataset 6 – USA Election Results 

The final dataset has been downloaded from the GeoDa data portal. It is composed of 2012 

and 2016 election results, along with other socioeconomic and demographic data for 3 108 

county polygons in the United States of America. There are 74 attributes, of which 68 are 

numeric. 

 
45 https://superweb.statssa.gov.za/webapi/jsf/login.xhtml  
46 https://www.demarcation.org.za/  
47 https://www.naturalearthdata.com/downloads/110m-cultural-vectors/  
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Table 12: Comparison of vector test datasets 

Dataset 1 2 3 4 5 6 

File size (MB) 0.57 0.06 18.28 0.70 1.99 19.8 

Features (Polygons) 77 100 234 177 1 068 3 108 

Attributes 20 36 33 167 50 74 

Numeric attributes 17 35 22 31 45 68 

Numeric values 1 309 3 500 5 148 5 487 48 060 211 344 

No. geometries 79 100 244 288 1 118 3 946 

No. vertices 52 641 500 1 103 235 10 654 87 955 885 633 

Mean no. neighbours 5.12 6.84 5.32 3.55 5.99 5.84 

 

5.3.2 Raster Datasets 

Three single band raster datasets were used to evaluate the performance of the raster module 

of autoESDA and how it is impacted by the size and complexity of the dataset. autoESDA only 

works with the valid cells (i.e. cells with values other than the defined NoData values) of a 

raster grid which makes the number of valid cells the logical statistic to quantify the size of a 

dataset. Each of the test datasets have a STATISTICS_VALID_PERCENT attribute in their 

metadata which represents the proportion of valid cells in the grid. This attribute could be used 

to calculate the total number of valid cells for each test dataset. The dataset will still be 

processed, regardless of the number of NoData values, however these values will just be 

ignored. Each of the datasets are briefly described below, and their numeric summaries can 

be viewed in Table 13. 

Dataset 1 – Global Terrestrial Precipitation 

This raster surface represents the total terrestrial precipitation in 2017. This is measured in 

millimetres and values range from 0 to 10 765.90. Data is only present for terrestrial areas and 

as such, cells over the ocean are assigned a NoData value of -9 999. The dataset has been 

sourced from a GitHub repository48 under an open data license for educational and non-

commercial use. While this dataset has the largest extent (global), it also has the largest cell 

resolution (0.5 degrees). The 720 by 347 grid has a valid cell percentage of 34.34%, meaning 

 
48Obtained from https://github.com/andrea-ballatore/open-geo-data-education  
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that there are approximately 85 796 valid cells to be analysed. This makes it the smallest 

raster test dataset. 

Dataset 2 – EU NOx concentration 

This dataset represents the average concentration of Nitrate and Nitrite (NOx) in the 

atmosphere for 2016. It covers the European region with 2 577 rows and 1 058 columns with 

cells of 3km resolution. This dataset has a valid cell percentage of 17.91%, meaning that there 

are approximately 488 311 valid cells to be analysed. The non-valid cells represent areas over 

large waterbodies and have been assigned a NoData value of -9 999. The dataset represents 

percentage of NOx concentration in the atmosphere, and its values range from 0.05% to 

56.90%. This dataset has been sourced from the same repository as Dataset 1 and thus also 

available under an open data license which allows for educational and non-commercial use. 

Dataset 3 – South African Population 

Dataset 3 is obtained from WorldPop49 and is available under the Creative Commons license. 

It represents the unconstrained population count on 1km cells across South Africa in 2020. 

The cells are arranged into a 2 176 by 1 591 grid, and with a valid percentage of 46.72%, this 

makes it the largest test dataset with approximately 1 617 454 valid cells. This dataset has a 

NoData value of -99 999 which is used for cells that do not fall within the borders of South 

Africa. 

In addition to size, the complexity (variance) of a dataset may also have an impact on the time 

required for it to be processed. This is the same assumption as used in Section 4.2.2 where 

the performance of different strategies for calculating LISA on raster datasets was evaluated 

in order to identify the most optimal strategy. In that case, noise was added to the test datasets 

at a global level by multiplying the variance by different magnitudes to create datasets with 

low, medium, and high variances. A similar philosophy is used to test the autoESDA library, 

however instead of inflating the variance globally, spatially autocorrelated noise was added. 

This resulted in the presence of hotspots and coldspots in the simulated test datasets – which 

provide varying levels of complexity for testing the library. 

 

 
49Obtained from https://hub.worldpop.org/geodata/summary?id=33892  
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Table 13: Comparison of original raster test datasets 

 
Dataset 1 

(Global Precipitation) 

Dataset 2 

(EU NOx 

Concentration) 

Dataset 3 

(RSA Population) 

Dataset Units Millimetres (mm) Concentration (%) Count 

Dimension 720 x 347 2 577 x 1 058 2 176 x 1 591 

Valid Percentage 34.34 17.91 46.72 

Total Valid Cells ≈ 85 796 ≈ 488 311 ≈ 1 617 454 

Cell Resolution 0.5 degrees 3km 1km 

DataType Float32 Float32 Float32 

NoData Value -9 999 -9 999 -99 999 

Minimum 0 0.05 0 

Maximum 10 765.90 56.90 15 675.81 

Mean 537.11 7.60 37.67 

Standard Deviation 640.84 5.22 342.29 

In order to incorporate random spatial clusters in the test datasets, 50 points were randomly 

generated within the area of valid cells of each dataset. A random number in the original pixel 

value range of the test dataset was assigned to each point. Three experimental variograms 

were plotted by visually fitting a model with user defined values for the nugget, sill, and range. 

The nugget and range values were kept constant for the three variograms, while the range 

was adjusted to ensure variograms with a low, medium, and high range. The R script used to 

carry out these steps can be viewed in Appendix D. The defined values and the experimental 

variograms for each dataset can be viewed in Table 14 below. 

Table 14: Values used in the three Kriging models (low, medium, and high range) for each dataset. 

 Dataset 1 Dataset 2 Dataset 3 

Nugget 0 0 0 

Sill 10 000 000 600 20 000 000 

Low Range 300 50 10 

Medium Range 2 000 200 100 

High Range 5 000 600 300 

Model Spherical Spherical Spherical 

The low, medium, and high ranged models were then used in a separate Kriging function to 

simulate a surface of random low, medium, and high spatial autocorrelation. A mask was used 

to ensure that the simulated surfaces matched the shape of the valid cells in the original 
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dataset. The simulated surfaces were then each added to the original dataset to create three 

additional versions of each dataset. This means that each dataset size has four versions: the 

original raster, original + low variance (low noise), original + medium variance (medium noise), 

and original + high variance (high noise). Additionally, these four versions will be stacked to 

form one raster with four bands.  

Table 15 summarises the descriptive statistics for the surfaces created for the raster datasets 

as well as their simulated surfaces of low, medium, and high noise. 

Table 15: Descriptive statistics for each dataset and their simulated surfaces 

 
Dataset 1 

Band 1 Band 2 Band 3 Band 4 

Description Original Low Noise Medium Noise High Noise 

Minimum 0 230.00 199.17 198.75 

Maximum 10 765.90 16 462.48 16 558.76 16 206.87 

Mean 537.11 6 165.61 6 169.76 6 300.57 

Standard Deviation 640.84 921.56 1 967.75 2 384.88 

 
Dataset 2 

Band 1 Band 2 Band 3 Band 4 

Description Original Low Noise Medium Noise High Noise 

Minimum 0.05 24.64 16.44 9.20 

Maximum 56.90 97.44 106.74 110.27 

Mean 7.60 48.20 47.80 47.60 

Standard Deviation 5.22 5.36 7.52 14.28 

 
Dataset 3 

Band 1 Band 2 Band 3 Band 4 

Description Original Low Noise Medium Noise High Noise 

Minimum 0 999.22 189.50 131.03 

Maximum 15 675.81 22 468.05 22 339.49 25 308.72 

Mean 37.67 6 826.31 6 881.69 6 803.96 

Standard Deviation 342.29 385.97 1477.10 2887.50 
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5.4 Results and Discussion 

5.4.1 Vector Module 

The average time taken to generate the autoESDA vector report for each dataset has been 

recorded in Table 16. The general trend was that as the dataset number increased, so did the 

mean processing time. The processing time has been divided amongst the features, numeric 

attributes, and numeric values in an effort to standardise the results to aid comparison across 

datasets. The output report size was also recorded, as the complexity of the plots may have 

an impact on the processing time. 

Table 16: Results for autoESDA vector report generation 

Dataset 1 2 3 4 5 6 

Mean processing time (min) 2.96 14.33 13.74 26.33 35.53 256.73 

Time / feature (s) 2.31 8.60 3.52 8.93 2.00 4.96 

Time / numeric attribute (s) 10.45 24.56 37.48 50.96 47.38 226.52 

Time / numeric value (s) 0.14 0.25 0.16 0.29 0.04 0.07 

Output report size (MB) 11.40 16.20 24.50 24.20 61.50 118.00 

There is no obvious trend upon investigating the time spend per polygon feature in each 

dataset. Dataset 5 has the lowest value with 2s per feature, while Dataset 4 has the greatest 

value of 8.6s per feature. This is unexpected as Dataset 4 has the least neighbours on average 

(3.55), while Dataset 5 has the second-highest average number of neighbours (5.99). 

The average processing time per numeric attribute in general increased as the dataset number 

increased, with the exception of Dataset 5. It was expected that the time required to create 

the autoESDA vector report would be largely dependent on the number of theoretical 

numerical values. This expected trend holds true for the most part, but with the exception of 

Dataset 2 (3 500 theoretical numerical values), which has a mean processing time of 14.33 

minutes which greater than that of Dataset 3 (5 148 theoretical numerical values), which is 

13.74 minutes. Dataset 2 did have a greater average number of neighbours (6.84) when 

compared to that of Dataset 3 (5.32). This could explain the greater processing time as a more 

neighbours meant that more values needed to be considered in the LISA calculations. 

Interestingly, the larger datasets (Dataset 5 and 6) have the lowest time spent per numeric 

value, even though their total processing times were still the longest of the six datasets. 
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Other factors that may have an impact on processing time could be the data types in the 

datasets. The numeric data type (int or float) could impact the processing time, as well as the 

precision (number of decimal places) of the value. Dataset 2’s numeric attributes are all of the 

float data type with a precision of eight, whereas Dataset 3 only has integer data types with 

no decimal places. This could possibly explain why Dataset 3 had a shorter processing time, 

as irrespective of the greater number of numerical values, their complexity was less due to the 

lack of decimal points.  

5.4.2 Raster Module 

The timing results for the raster module performance testing are displayed in Table 17. The 

original file of each dataset was used as the input file, after which low, medium, and high noise 

was added. Each of these inputs was processed individually, and then they were stacked into 

one four-band stacked dataset which was then used to generate an autoESDA raster report. 

Table 17: Average time (minutes) for autoESDA raster report generation 

Values 
represent 

time in 
minutes 

Band 1 Band 2 Band 3 Band 4 

Total Stacked 

Original 
+ Low 

Noise 

+ Med 

Noise 

+ High 

Noise 

Dataset 1 3.91 3.50 3.60 3.65 14.66 15.33 

Dataset 2 34.10 34.43 36.51 37.38 142.42 152.48 

Dataset 3 344.02 370.14 282.74 274.30 1 271.19 Missing* 

*The stacked bands for Dataset 3 were large enough to crash the computer each time the process was run, as a 

result there is no data available. 

It was expected that the greater the variance (bands 1 – 4), the longer the processing time 

would be. This hypothesis however only holds true in the results for Dataset 2. Each of the 

bands with simulated variance (bands 2 – 4) for dataset took shorter to process than the 

original dataset. For Dataset 3, band 2 (low noise) took longer to process than the original 

dataset (band 1); however band 3 (medium noise) and band 4 (high noise) took less time to 

process than bands 1 and 2.  

Although it was expected that the increase in noise would lead to an increase in the time taken 

to generate the report, this assumed that an increase in mathematical variance would increase 

the noise. The mathematical variance added was spatially autocorrelated, which could explain 

why an increase in processing time was not always the case. The spatially autocorrelated 

variance may have increased the mathematical noise of the dataset, while subsequently 
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making the raster surface more homogeneous with regards to the spatial distribution of its 

high and low values. 

The Total column in Table 17 is the sum of the processing time for bands 1 to 4 when 

processed individually to generate four separate reports, while the Stacked column represents 

the time to generate a single report from the same four bands stacked into one file. It was 

expected that the sum of the individual times taken would be greater than the time taken to 

generate the stacked report, as the four individual reports would require the carrying out tasks 

four times whereas this would only be done once for the stacked report – such as the creation 

of an HTML file, or more significantly, the vectorisation of the dataset. This discrepancy would 

be interesting to investigate further, by recording the time for each component of the 

autoESDA report. This would allow one to identify where bottlenecks in the processing 

occurred and whether there were any potential ways to further optimise the process.  

5.5 Discussion 

The major limitation in the methodology used for this performance test of the updated 

autoESDA library, is that only a single metric – total processing time is used. While this is 

useful in comparing the overall process, it cannot be used to determine how the processing 

time is divided amongst the various components of the output report. This could be 

investigated further through code profiling, which analyses the time taken to execute each line 

of code. This had not been done as part of this research project due to time limitations, 

however, its results could assist in further optimising the autoESDA library, as time-consuming 

tasks could be re-evaluated, and more efficient approaches could be incorporated. 

Additionally, the effect of different file types and data types on processing time could add an 

interesting perspective, which was not adequately been addressed in this project. 

The simulations executed for the purpose of understanding the performance of the updated 

autoESDA library do, however, prove that the ESDA workflow can be automated at least to 

some degree. It would be an interesting project to compare the processing times recorded 

here with the total time a user would require to generate the same results manually using other 

platforms, such as GeoDa or ArcGIS. The comparison between the timed manual process and 

the autoESDA report generation times would easily quantify whether autoESDA is a suitable 

alternative to the traditional, manual approach to ESDA.  
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CHAPTER 6: CONCLUSION 

6.1 Chapter Overview 

Chapter 6 concludes this dissertation by summarising the work that has been done and 

assessing the extent to which the aim and each of the objectives were achieved. Finally, future 

work with regards to the autoESDA library and automating ESDA as a whole is discussed. 

6.2 Main Results 

The aim of this research was to advance the automation of ESDA by implementing 

improvements to the autoESDA library and evaluating their performance. The aim is broken 

down into five objectives that are defined in Section 1.4. The main results from each of these 

objectives should lead to the attainment of the aim of this study. 

Objective 1: Review related literature in conjunction with previously suggested 

improvements to the autoESDA Python library. 

This objective was addressed in Chapter 2 where a variety of sources were consulted in the 

formation of the literature review. The concept of spatial and big spatial data was discussed, 

alongside the challenges that they bring about. EDA and ESDA were identified as potential 

solutions to some of these challenges, as they can summarise large datasets and guide further 

processing and analysis. One of the novel suggestions from the previously conducted 

interviews was the support for ESDA specifically LISA on raster datasets. This was discussed 

in Section 2.5. The literature review finished off with a summary of the ease with which some 

popular ESDA functions can be automated. This was guided by a discussion of various calls 

for new tools to deal with spatial data, as well as similar projects that have automated other 

workflows related to spatial data. In order to automate the ESDA process, the new tool would 

need to be largely automated, have error checking functionality, operate in real time, handle 

unexpected scenarios, and efficiently (and repeatedly) generate reliable results. Automating 

ESDA requires a fine balance between reducing human involvement for the purpose of 

eliminating human-induced errors, while still including human input that is fundamental to the 

exploratory, data-driven ESDA process. 

Objective 2: Define requirements based on suggested improvements to the autoESDA 

Python library. 

Section 3.4.3 documents the feedback from the previously conducted interviews. We 

acknowledge that thirteen participants constitute only a small sample size, however the 

purposes of the interviews were to solicit feedback and not to make empirical conclusions. We 
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would recommend future studies to incorporate a larger sample size to allow for more accurate 

inferences to be made. This formed a large component of the user stories which can be found 

in Appendix B. Four high-level requirements were identified: these were the need for raster 

functionality, an updated architecture of the library, some other minor improvements and 

finally, adequate performance. These four requirements are introduced in Section 4.1, and are 

discussed in greater detail in Sections 4.2, 4.3, 4.4, and Chapter 5 respectively. 

Objective 3: Design and implement solutions that address the identified requirements. 

Chapter 4 discusses the design and implementation of the improvements made in the second 

major iteration of the autoESDA library. First, the inclusion of raster functionality was described 

(Section 4.2). Different strategies for raster LISA were identified and compared and ultimately 

it was decided that the optimal strategy was to first vectorise the raster dataset and then to 

calculate the LISA using the pygeoda library. This strategy outperformed the other strategies, 

which is most likely due to its C++ implementation. 

The inclusion of raster functionality necessitated an overhaul of the architectural design of the 

library so as to minimise code duplication, while allowing for improvements to be implemented 

with greater ease. This is discussed in Section 4.3. The solution to this is an MVC-type design, 

which splits the autoESDA library into two modules – raster and vector. Each module consists 

of a controller and a model. The controller contains the functions with which the user interacts, 

by calling different functions. The controller also makes numerous functions to the model and 

combines all the created components into an output HTML report. The model contains all the 

calculations and functions that are required in order to generate the results which are to be 

included in the output report. 

In addition to the architectural and raster functionality improvements, various other minor 

improvements were made to improve the utility of the library. These improvements are largely 

cosmetic and are described in detail in Section 4.4. 

All of the updates discussed were implemented with the performance of the library in mind 

and were designed to be as efficient as possible. Any decisions and limitations are discussed 

throughout Chapter 4.   

Objective 4: Evaluate the autoESDA library in terms of the defined requirements. 

The updated architecture described in Chapter 4 meant that the various minor improvements 

and raster functionality and other minor improvements could be added to the library with 

relative ease. This process would be a significantly more complicated and would require more 
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time to implement, should the architecture not have been updated. This is due to it more 

modular structure, brought about by the use of classes and an MVC-type design. 

The raster functionality and other minor improvements were implemented in the most efficient 

way possible, given the scope of this project. Various datasets have been used to test these 

improvements and errors have been identified and corrected as part of the development stage. 

The output reports from each of the datasets used in the performance evaluation were also 

reviewed to identify potential shortfalls in the design of the library. These have been addressed 

and/or discussed in Chapter 4. 

The evaluation of the performance of the autoESDA library is necessary as it gives a 

quantitative representation of how well the library achieves its goal. These results also set a 

benchmark, from which any further improvements could take place.  

To evaluate the library’s performance, numerous vector and raster datasets were sourced. 

The vector datasets had varying amounts of features, attributes (numeric and non-numeric), 

file sizes and geometries. Three different raster datasets of differing sizes were used, and 

varying degrees of spatially autocorrelated noise were added to each dataset. This allowed 

for the investigation of the effect of noise on the performance of the library. The generation 

time for an autoESDA report varies according to the size and complexity of the input dataset. 

This means that there is no easy way to determine whether autoESDA requires less time to 

output results than a traditional, manual approach. The output times recorded and discussed 

in Chapter 5 seem reasonable, however they have the potential to be optimised further. 

Objective 5: Based on the results, draw conclusions regarding the success of 

autoESDA as a means of automating the ESDA workflow. 

Although we now have a measure of the time required by the library to generate the autoESDA 

report, there is no comparative metric representing the time required to perform this process 

manually. This means that we cannot compare the results obtained in Chapter 5 to a 

traditional, manual ESDA workflow and comment on the time saved through the use of 

autoESDA. As a result, the relative effectiveness of autoESDA with regards to time saved still 

remains unknown. While the time taken to generate the report may be significant (depending 

on the dataset size), the automation means that the user can focus on other tasks which the 

report is generated.  

Another advantage brought about by autoESDA, is that it has removed the need for constant 

human input, which thereby eliminates the risk of human-induced errors. The user is required 

to specify only the input dataset, and autoESDA will output an HTML summary report. This 
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means that the user is not required to specify any additional parameters, and the dataset can 

be processed free from any bias or interactions.  

6.3 Future Work 

While autoESDA is a step in the right direction, these is still a lot more that could be done to 

enable a fully autonomous ESDA process. A challenge faced quite often when working with 

data is the need for data cleaning. This is an important part of the data lifecycle and can have 

a great effect on the results, however it is expected to take place before ESDA occurs.  

At this stage, autoESDA still requires a human to interpret the report results and make any 

decisions regarding further use of the dataset. Another limitation of the autoESDA report is 

that it is not interactive, as is the case for other popular EDA/ESDA platforms. While this brings 

about some advantages, such as ease of distribution of the results, it does mean that the 

insights that can be extracted from the report are somewhat limited. 

Although autoESDA is easy to use, it still requires the appropriate setup of a Python 

environment and the knowledge about how to perform basic tasks using Python and 

geopandas. This excludes a significant number of potential users who may lack these skills. 

A potential solution to this would be the development of a QGIS plugin, for which a prototype 

has already been designed; however this proof-of-concept still requires some work before it 

could be released. This development would provide a graphical interface as part of a popular 

GIS, making the autoESDA library accessible to a much larger number of people. 

The performance testing of the autoESDA library has found that the processing time is largely 

dependent on the size, and to an extent, the complexity of the input datasets. These trends 

could be further investigated by using a greater number of test datasets, and varying the 

filetype, test computers, datatypes, and any other parameters to observe their effect on the 

library’s performance.  

The report generation times should also be compared to the time required to carry out the 

same process manually, which would allow one to draw conclusions about its role in saving 

time in the greater data lifecycle. Currently, the only time benefit demonstrated is that the 

automated process does not require user supervision once running, allowing the user to focus 

on other, more important tasks. The use of code profiling would also enhance one’s 

understanding of the library. This would allow one to see the time spent on each line of code 

in the library, which would aid in the identification of bottlenecks and/or other time consuming 

functions. These could then be addressed in further developments that could further optimise 

the performance of the autoESDA library. 
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The possibilities surrounding autoESDA and the automation of the ESDA process are endless, 

and, as with most software lifecycles, there is always more that can be done. The second 

iteration of autoESDA has brought about important improvements that benefit the library and 

aid in the understanding of automation of the ESDA process as a whole. It would be interesting 

to revisit this project in the near future once the available tools and understandings have 

matured, in order to identify further potential improvements or dependencies that could further 

optimise the automation of ESDA. 
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APPENDIX A: ETHICAL CLEARANCE 
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APPENDIX B: USER STORIES 

Chapter 3 describes numerous interviews were conducted in order to generate feedback and 

identify potential improvements that could be made to the autoESDA ecosystem. Before 

conducting the interviews, users were sent an example report to investigate. The interviews 

were unstructured with numerous leading questions posed to the participants by the 

researchers. The interview participants had varying levels of experience and came from a 

variety of industries, ranging from software development to education. This allowed for a 

wealth of feedback as each interview participant brought with them a different perspective. 

This feedback has been translated into user stories which have been categorised into four 

themes, namely: General Functionality, Summary Page, Variable Information Page, and 

Correlation Page.  

General Functionality 

1. As a user I would like the library to have the functionality to accept and process raster 

datasets as this will allow me to work with this data format which is not supported by 

other popular platforms. 

2. As a user I would like there to be an “About” page which describes the default settings 

for the various charts as well as the metadata such as the spatial weight matrix used 

and the date and time the report was generated. This would improve my understanding 

and therefore the value of the information I can extract from the report. 

3. As a user I would like the library to be available on a popular platform such as PyPi or 

conda-forge as this will allow me to install it more easily. 

4. As a developer I would like the code of the library to be refactored so that it is more 

modular and does not rely on the transfer of HTML strings between functions. This will 

improve how quickly new contributors can understand and improve the code or add 

new functionality. 

Summary Page 

1. As a user I would like the study area map to be interactive and allow popups so that I 

can further interact with and understand the dataset and its attributes. 

2. As a user I would like to have the ability to specify the name of the study area as a 

parameter so that it is displayed above the study area map. 

3. As a user I would like the terms “rows” and “columns” to be replaced by attributes and 

fields so that I do not get confused by thinking it refers to raster cells. 
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4. As a user I would like various spatial statistics such as the average area of polygons 

and average number of neighbours to be shown in the dataset overview table so that 

I can have a better understanding of the dataset I am working with. 

5. As a user I would like to see additional descriptive statistics such as skewness, 

kurtosis, and the number of null and unique values as this will aid my understanding of 

the dataset. 

6. As a user I would like to see the global Moran’s 𝐼 statistics in the descriptive statistics 

table as this will give me a quick overview and allow me to easily compare this statistic 

between all the attributes. 

7. As a user I would like the dataset sample to consist of ten randomly selected rows as 

this will allow a greater chance of detecting irregularities in the dataset that may not be 

in the first or last five rows. 

Variable Information Page 

1. As a user I would like to see a key that shows what the red and blue lines of the 

reference distribution mean as this will improve my understanding of the chart. 

2. As a user I would like to see a clustering/no clustering label on the reference 

distribution so as to easily understand what the interpretation of the Moran’s 𝐼 statistic 

is. 

3. As a user I would like the axes to have the same scaling so that the line is not distorted 

as the gradient of this is usually equivalent to the Moran’s 𝐼 value.  

4. As a user I would like a legend to illustrate what the colours on the Moran’s 𝐼 scatter 

plot mean as this will increase my understanding of the chart. 

5. As a user I would like the abbreviations in the LISA scatter plot to be written out in full 

as this will allow me to understand what they refer to. 

6. As a user I would like to specify my own spatial weights matrix as a parameter so that 

I have control over how my results are calculated. 

7. As a user I would like the type of spatial weights used to be specified somewhere so 

that I know how results were calculated and I can gauge the effect the weights have 

on the results. 

8. As a user I would like the legend of the choropleth maps to be moved outside of the 

map so that I can see all the features on the map. 

9. As a user I would like to see additional classification schemes such as boxmap and 

mean-standard deviation as this will allow me to see how these schemes visualise the 

dataset. 
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10. As a user I would like the colour scheme on the choropleth maps to be reversed such 

that the darker colours are used to represent greater values as this is in line with 

conventional cartographic principles. 

Correlation Page 

1. As a user I would like the values in the correlation heatmap to be rounded off to two 

decimal places as this is more visually appealing. 

2. As a user I would like to see a colour ramp outside the correlation heatmap as this will 

enable me to understand what the colours are indicative of. 

3. As a user I would like to specify the correlation type (Pearson, Spearman, Kendall) as 

this will allow me to ensure that the most suitable one is used for the data that I am 

working with. 

4. As a user I would like the name “Pairplot” to be changed to “Pairwise plot” as this is a 

more descriptive title. 

5. As a user I would like there to be red borders around scatter plots with significant 

relationships (correlation > 0.7) as this will allow me to quickly identify strong 

relationships. 

6. As a user I would like the scatter plots to have trendlines, coefficients of variation and 

adjusted R2 values as this will improve the wealth of information given by the plot. 

7. As a user I would like the layout of the correlation page to be improved so that I do not 

have to scroll so much and can spend more time understanding the data. 
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APPENDIX C: R SCRIPT (ORDINARY VARIANCE) 

The R script below was used to inflate the variance of datasets for testing raster LISA 

calculations: 

library(tiff) 

library(raster) 

 

#Read in data 

small <- raster('chirps-small-231x180.tif') 

medium <- raster('chirps-medium-575x409.tif') 

large<-raster('chirps-large-903x593.tif')  

 

#Store raster to matrix 

Smatrix <- values(small) 

Mmatrix <- values(medium) 

Lmatrix <- values(large) 

 

#Set all potential NoData values to 0 

smallempty <- small@file@nodatavalue 

Smatrix[Smatrix == smallempty] <- 0 

Smatrix[is.na(Smatrix)] <- 0 

Smatrix[Lmatrix == -9999] <- 0 

 

mediumempty <- medium@file@nodatavalue 

Mmatrix[Mmatrix == mediumempty] <- 0 

Mmatrix[is.na(Mmatrix)] <- 0 

Mmatrix[Lmatrix == -9999] <- 0 

 

largeempty <- large@file@nodatavalue 

Lmatrix[Lmatrix == largeempty] <- 0 

Lmatrix[is.na(Lmatrix)] <- 0 

Lmatrix[Lmatrix == -9999] <- 0 

 

#Export rasters with 0 values 

values(small) <- Smatrix 

writeRaster(small,"small-variance-chirps-small-231x180.tif", 

overwrite=TRUE) 

 

values(medium) <- Mmatrix 

writeRaster(medium,"small-variance-chirps-medium-575x409.tif", 

overwrite=TRUE) 

 

values(large) <- Lmatrix 

writeRaster(large,"small-variance-chirps-large-903x593.tif", 

overwrite=TRUE) 

 

#Rescale function 

rescale <- function(image){ 

  minn <- min(image) 

  maxx <- max(image) 

  newimage <- (image-minn)/(maxx-minn) 

  return(newimage) 

} 

 

#New variance function 

newvariance <- function(image,varvolume){ 
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  newvar <- rnorm(n=length(image),mean=0,sd = varvolume) 

  newimage <- image 

  for (i in 1:length(image)){ 

      if (image[i] !=0){ 

        newimage[i] = image[i]+abs(newvar[i]) 

      }  

    } 

  return(newimage) 

} 

 

###SMALL IMAGE### 

newsmall <- rescale(Smatrix) 

sdSmall <- sqrt(var(c(newsmall))) 

medvarsmall <- newvariance(newsmall,varvolume = sdSmall*2) 

sqrt(var(c(medvarsmall))) 

medvarsmallraster <- small 

values(medvarsmallraster) <- medvarsmall 

plot(small) 

plot(medvarsmallraster) 

writeRaster(medvarsmallraster,"medium-variance-chirps-small-231x180.tif", 

overwrite=TRUE) 

 

largevarsmall <- newvariance(newsmall,varvolume = sdSmall*4) 

sqrt(var(c(largevarsmall))) 

largevarsmallraster <- small 

values(largevarsmallraster) <- largevarsmall 

plot(small) 

plot(largevarsmallraster) 

writeRaster(largevarsmallraster,"large-variance-chirps-small-

231x180.tif",overwrite=TRUE) 

 

###MEDIUM IMAGE### 

newmedium <- rescale(Mmatrix) 

sdMedium <- sqrt(var(c(newmedium))) 

medvarmedium <- newvariance(newmedium,varvolume = sdMedium*2) 

sqrt(var(c(medvarmedium))) 

medvarmediumraster <- medium 

values(medvarmediumraster) <- medvarmedium 

plot(medium) 

plot(medvarmediumraster) 

writeRaster(medvarmediumraster,"medium-variance-chirps-medium-

575x409.tif", overwrite=TRUE) 

 

largevarmedium <- newvariance(newmedium,varvolume = sdMedium*4) 

sqrt(var(c(largevarmedium))) 

largevarmediumraster <- medium 

values(largevarmediumraster) <- largevarmedium 

plot(medium) 

plot(largevarmediumraster) 

writeRaster(largevarmediumraster,"large-variance-chirps-medium-

575x409.tif",overwrite=TRUE) 

 

###SMALL IMAGE### 

newlarge <- rescale(Lmatrix) 

sdLarge <- sqrt(var(c(newlarge))) 

medvarlarge <- newvariance(newlarge,varvolume = sdLarge*2) 

sqrt(var(c(medvarlarge))) 

medvarlargeraster <- large 

values(medvarlargeraster) <- medvarlarge 
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plot(large) 

plot(medvarlargeraster) 

writeRaster(medvarlargeraster,"medium-variance-chirps-large-903x593.tif", 

overwrite=TRUE) 

 

largevarlarge <- newvariance(newlarge,varvolume = sdLarge*4) 

sqrt(var(c(largevarlarge))) 

largevarlargeraster <- large 

values(largevarlargeraster) <- largevarlarge 

plot(large) 

plot(largevarlargeraster) 

writeRaster(largevarlargeraster,"large-variance-chirps-large-

903x593.tif",overwrite=TRUE) 
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APPENDIX D: R SCRIPT (SPATIALLY AUTOCORRELATED 

VARIANCE) 

The R script below was used to simulate spatially autocorrelated variance in raster datasets 

to test the performance of the autoESDA library. 

library(viridis) 

library(ggplot2) 

library(sf) 

library(gstat) 

library(gridExtra) 

library(stars) 

 

setwd() 

 

mycrs <- st_crs(4326) 

 

input_points <- read.table("50-random-points.csv", sep=",", header=T) 

input_points <- st_as_sf(input_points, coords=c("x_coord","y_coord"), 

crs=mycrs) 

 

mask <- read_stars("INPUT_DATASET") 

st_crs(mask) <- mycrs 

 

options(scipen=999) 

 

g <- gstat(id=c("random_num"), formula=random_num~1, data=input_points) 

 

vg <- variogram(g) 

 

#CHANGE PSILL AND RANGE VALES DEPENDING ON EXPERIMENTAL VARIOGRAM 

plot(vg, plot.numbers=TRUE) 

vgm_low_range <- vgm(nugget=0, psill=20000000, range=10, model="Sph") 

plot(vg, vgm_low_range, main="Experimental Variogram of random_num (Low 

Range)") 

 

vgm_med_range <- vgm(nugget=0, psill=20000000, range=100, model="Sph") 

plot(vg, vgm_med_range, main="Experimental Variogram of random_num (Med 

Range)") 

 

vg_high_range <- variogram(g) 

vgm_high_range <- vgm(nugget=0, psill=20000000, range=300, model="Sph") 

plot(vg, vgm_high_range, main="Experimental Variogram of random_num (High 

Range)") 

 

vgm_line_low = variogramLine(vgm_low_range, maxdist = 650) 

vgm_line_med = variogramLine(vgm_med_range, maxdist = 650) 

vgm_line_high = variogramLine(vgm_high_range, maxdist = 650) 

 

line_types <- c("Low Range"="#66c2a5", "Medium Range"="#fc8d62", "High 

Range"="#8da0cb") 

 

ggplot(vg, aes(x = dist, y = gamma)) + 

  theme_bw() + theme(plot.title = element_text(hjust = 0.5)) + 

  geom_point() + 

  geom_line(data = vgm_line_low, colour='#66c2a5', size=1) + 
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  geom_line(data = vgm_line_med, colour='#fc8d62', size=1) + 

  geom_line(data = vgm_line_high, colour='#8da0cb', size=1) + 

  xlab("Distance") + ylab("Semivariance") + ggtitle("Dataset 3 - 

Experimental Variogram") +  scale_color_identity(name = "Model fit", breaks 

= c("#66c2a5", "#fc8d62", "#8da0cb"), labels = c("Linear", "Quadratic", 

"Cubic"),guide = "legend") 

 

krig_low_res_low_range <- krige(random_num~1, input_points, newdata=mask, 

vgm_low_range) 

names(krig_low_res_low_range)[1] <- "random_num.pred" 

names(krig_low_res_low_range)[2] <- "random_num.var" 

 

krig_low_res_med_range <- krige(random_num~1, input_points, newdata=mask, 

vgm_med_range) 

names(krig_low_res_med_range)[1] <- "random_num.pred" 

names(krig_low_res_med_range)[2] <- "random_num.var" 

 

krig_low_res_high_range <- krige(random_num~1, input_points, newdata=mask, 

vgm_high_range) 

names(krig_low_res_high_range)[1] <- "random_num.pred" 

names(krig_low_res_high_range)[2] <- "random_num.var" 

 

ggplot() + 

  geom_stars(data=krig_low_res_low_range["random_num.pred"]) + 

  scale_fill_gradient(low="yellow", high="dark blue") + 

  geom_sf(data=input_points, shape=1, aes(size=random_num))  

ggplot() + 

  geom_stars(data=krig_low_res_med_range["random_num.pred"]) + 

  scale_fill_gradient(low="yellow", high="dark blue") + 

  geom_sf(data=input_points, shape=1, aes(size=random_num))  

ggplot() + 

  geom_stars(data=krig_low_res_high_range["random_num.pred"]) + 

  scale_fill_gradient(low="yellow", high="dark blue") + 

  geom_sf(data=input_points, shape=1, aes(size=random_num))  

 

write_stars(krig_low_res_low_range["random_num.pred"], 

"output_low_range.tif") 

write_stars(krig_low_res_med_range["random_num.pred"], 

"output_med_range.tif") 

write_stars(krig_low_res_high_range["random_num.pred"], 

"output_high_range.tif") 
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APPENDIX E: LINKS TO OUTPUT AUTOESDA REPORTS 

 

Vector Reports Raster Reports 

Dataset 1 

AirBnB Chicago 2015 

Global Terrestrial Precipitation 
Band 1 | Band 2 | Band 3 | Band 4 | Stacked 

Dataset 2 

Grid 100 

EU NOx Concentration 

Band 1 | Band 2 | Band 3 | Band 4 | Stacked 

Dataset 3 

South African 2011 Census 

South African Population 

Band 1 | Band 2 | Band 3 | Band 4 

Dataset 4 

Natural Earth Country Boundaries 
 

Dataset 5 

Malaria in Colombia 
 

Dataset 6 

USA Election Results 
 

 

 

 

 

 

** Dissertation Ends ** 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

https://nicholasdekock.github.io/autoesda/example_reports/v1-airbnb.html
https://nicholasdekock.github.io/autoesda/example_reports/rain_1_original.html
https://nicholasdekock.github.io/autoesda/example_reports/rain_1_low_range.html
https://nicholasdekock.github.io/autoesda/example_reports/rain_1_med_range.html
https://nicholasdekock.github.io/autoesda/example_reports/rain_1_high_range.html
https://nicholasdekock.github.io/autoesda/example_reports/rain_1_stacked.html
https://nicholasdekock.github.io/autoesda/example_reports/v2-grid100.html
https://nicholasdekock.github.io/autoesda/example_reports/eu_air_1_original.html
https://nicholasdekock.github.io/autoesda/example_reports/eu_air_1_low_range.html
https://nicholasdekock.github.io/autoesda/example_reports/eu_air_1_med_range.html
https://nicholasdekock.github.io/autoesda/example_reports/eu_air_1_high_range.html
https://nicholasdekock.github.io/autoesda/example_reports/eu_air_1_stacked.html
https://nicholasdekock.github.io/autoesda/example_reports/v3-southafrica.html
https://nicholasdekock.github.io/autoesda/example_reports/za_pop_1_original.html
https://nicholasdekock.github.io/autoesda/example_reports/za_pop_1_low_range.html
https://nicholasdekock.github.io/autoesda/example_reports/za_pop_1_med_range.html
https://nicholasdekock.github.io/autoesda/example_reports/za_pop_1_high_range.html
https://nicholasdekock.github.io/autoesda/example_reports/v4-naturalearth.html
https://nicholasdekock.github.io/autoesda/example_reports/v5-colombia.html
https://nicholasdekock.github.io/autoesda/example_reports/v6-usa.html



