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The objective of the research is to determine if it is possible to build a small-scale speech recognition

system that is comparable in performance and word error rate, to larger modern automated speech

recognition (ASR) systems. The hypothesis is that a small transformer-based ASR model will produce

comparable results, in word error rates, to traditional ASR models and compete with modern ASR

systems that are exponentially larger in computational size. A small-scale, character-based transformer

architecture is developed to create an end-to-end automated speech recognition model. The model

architecture consists of a small convolutional neural network and transformer architecture, consisting

of 2.214 million parameters, compared to modern speech recognition systems that have over 300

million parameters.

The resulting end-to-end transformer based ASR model designed in this research consists of a convolu-

tional neural network layer and a two-headed transformer with three encoder layers and three decoder

layers. The data used to train the model consisted of 2000 hours of Mozilla common voice 7.0 training

data and the 1000 hours of LibriSpeech English training data. Audio data is received as input data
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to the model. The output of the model has 30 character-based classes. The output of the model is

processed by a small 4-gram language model to improve word understanding as it is a character-based

ASR model.

The model is trained on limited audio of about 3000 hours, where modern systems are trained with

over 50 000 hours of speech data. The common voice and LibriSpeech training datasets were used for

training and produced a character error rate and word error rate of 27.89% and 54.5% respectively on

the common voice testing data as well as a word error rate of 16.03% and 35.51% on the LibriSpeech

test-clean and test-other datasets. An existing gated recurrent unit architecture produced a word error

rate of 11.9% and 31.1% respectively on the same LibriSpeech dataset, but at a significantly larger

computational cost, as the architecture had 52.5 million parameters, which is a factor of 24 times larger

than the architecture in this research. Modern transformer architectures produced a word error rate of

between 2% and 4% on the LibriSpeech test-clean dataset, but these architectures are 200 times larger

and are trained on 53 000 hours more data than the architecture from this research.

The main application of a small-scale ASR model is for use cases where practitioners do not have

access to industrial scale datasets and computing resources. The ASR model is a proof-of-concept for

under resourced languages that do not have large corpuses available for training large-scale speech

recognition and language models.
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

Automated speech recognition (ASR) is the process of translating a spoken language or command into

text using computer processing techniques [1]. End-to-end automated speech recognition uses modern

architectures, such as transformers, to directly translate the audio data into text without the need of

phoneme or lexicon data.

Speech recognition is used for many applications. One popular application is to generate text that can

be displayed along with audio for closed captions and subtitles. Other modern applications are voice

commands for smart devices and automatic translation. There are multiple reasons why subtitles are

added to multimedia and videos. The main reason is to be able to understand and interpret the video

that is being displayed. In [2], it is predicted that about 15% of Americans have hearing impairments.

Therefore, it is necessary to make videos understandable for the hearing impaired. Subtitles and closed

captions can make it possible for anyone with a hearing disability to still enjoy video content and

understand the context and content of the video [3]. This creates more viewers and therefore more

revenue. Some countries and multimedia services require all media that is broadcasted to include

subtitles by law. Text can be generated from audio files using automated audio processing and machine

learning. This method reduces the time it takes to create text files as the files are automatically

generated. The automation process also reduces the human input required. Any audio file containing

spoken language can theoretically be used and text can automatically be generated for the audio files

based on the available data [4].

Traditionally, ASR models consisted of separate acoustic and language models. Large acoustic models

such as [5] and [6], consist of very large deep neural networks (DNNs) that use large hidden Markov
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CHAPTER 1 INTRODUCTION

models (HMMs) and feedforward neural layers to represent the mapping between phonemes and

the audio signals or features. The phonemes are converted into words using large language model

dictionaries to produce an ASR system. The traditional ASR systems require an exceptionally large

model with multiple layers and billions of parameters to produce satisfactory results. Recurrent neural

network (RNN) models and long short-term memory (LSTM) models made a significant impact on

ASR, as the models could be trained to take the context of the speech into account by training the

model with sequential speech data [7, 8, 9]. A language model compares the probability of dependence

between the predicted words in a sentence. The model uses the previous words in the sentence to

predict the correct form of each following word in a sentence. Language models also improved

significantly with the introduction of RNNs, as the method of predicting words was based on longer

contextual sequencing around the word, when compared to original n-gram language models. Language

models are used to predict the correct text after the acoustic model has predicted the phonemes from

the extracted audio features. In [10] and [4], the authors compare n-gram language models to RNN

language models. The n-gram models perform better on small-scale language models, but have

diminishing gains based on data sizes. RNN language models perform better with larger datasets but

require more computational power and training time. In [11] and [12], LSTM language models are

shown to perform better than n-gram language models like [13], and RNN language models.

The introduction of attention-based models such as transformers from [14], allowed ASR models to be

more efficient by delivering the same results with less computational power required. The transformer

architecture was first developed for machine translation and text based tasks where it improved the

results compared to any previous RNN and CNN networks [15]. Transformer based models use

encoders and decoders linked with a self-attention system and improve on RNN and CNN models

due to the recurrence and convolution steps falling away. This allows more sequential data to be used

with less memory or parameters required. Modern end-to-end speech recognition systems cut out

the phoneme step to reduce the complexity of the system and to reduce error propagation. Attention

based architectures make this possible without the use of a very large RNN models. In this research,

a small character-based ASR model is designed and implemented, using a transformer architecture,

and is compared to larger transformer-based models and RNN models. The model consists of a small

convolutional neural network and a transformer network to predict characters based on the input audio

features. The input audio features and text are aligned using connectionist temporal classification

(CTC) from [16].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 1 INTRODUCTION

ASR requires large datasets and different machine learning algorithms to successfully translate audio

into text. Feature extraction takes place by separating the audio data, based on audio properties such as

pitch and frequency. Standard audio features are extracted from the raw audio data such as the Mel

frequency cepstral coefficient (MFCC) and the delta coefficients the MFCC values [17]. The audio

features are selected to reduce the amount of input features while still preserving most of the speech

signal. Multiple performance metrics are considered for evaluating the ASR models to ensure the model

evaluation is accurate. The word error rate (WER) and character error rate (CER) are performance

metrics to determine the percentage of words and characters that were predicted correctly.

1.1.2 Research gap

Text is created for audio and video files to interpret the audio without sound. This is an added function

in the media industry to ensure that people from different language backgrounds or people with hearing

impairments can understand the video and audio content. There are multiple reasons why text is added

to multimedia and videos. The main reason is to be able to understand and interpret the audio that is

being presented. Text can be generated using automated audio processing and machine learning. This

method reduces the time it takes to create text or subtitle files as the files are automatically generated.

The automation process also reduces the human input required. The goal of the research is to analyse

audio tracks and perform natural language processing techniques on the audio tracks.

Traditional automated speech recognition models are not very accurate in terms of word error rates,

therefore there is an opportunity for new development in the research field of automated speech

recognition [7]. There are different approaches to creating an automated speech recognition model.

Most modern automated speech recognition models use only a single model to predict text from

speech, as the model is required to be simple with the amount of training required [5]. The research

implemented will focus on designing state-of-the-art end-to-end model, using a transformer architecture,

to create an accurate speech recognition model. This is possible due to more processing power being

available of computations than in previous years as well as the simplification of language model

architectures.

Modern ASR models are very large and contain more than 100 million parameters in each model.

These models are almost impossible to train without industrial scale computer resources and very large

corpuses of training data. Modern ASR models use thousands of hours of training data, which is not

accessible when working with under resourced languages. The objective of this study is to develop a

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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small-scale ASR model for use cases where practitioners do not have access to industrial scale datasets

and computer resources. The ASR model is a proof-of-concept for under resourced languages that do

not have large corpuses available.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The main objective of the research is to determine if it is possible to build a small-scale speech

recognition system that is comparable in performance and word error rate (WER) to larger modern

ASR systems. The hypothesis is that a small transformer-based ASR model will produce similar results,

in word error rates, to traditional ASR models. The small-scale transformer-based ASR model will

compete with modern ASR systems that are exponentially larger in computational size, by combining

an acoustic model and a language model for an end-to-end automated speech recognition system.

This should improve the word error rate performance of the automated speech recognition system,

when compared to available automated speech recognition systems. Different architectures will be

investigated to determine if a transformer-based ASR model can outperform other existing architecture

models. The study should also determine if a small-scale ASR system is a viable approach for under

resourced languages with only small datasets available. Lastly the impact of the amount of training data

will be investigated to determine if small datasets can produce relatively accurate CERs and WERs,

when compared to larger datasets. During the course of the study, the following research questions

will be addressed:

• Is it possible and viable to reasonably combine an acoustic model and a language model into

one speech recognition model that will successfully convert speech to text?

• What will the effect of combining an acoustic and language model be to the word error rate of

an automated speech recognition system?

• How does a transformer model compare to other existing models when applied to speech

recognition processing?

• What is the most suitable neural network algorithm for acoustic modelling?

• Which audio feature extraction methods are the most efficient for natural language processing?

• How accurate does an automated speech recognition model have to be, to increase efficiency

and reduce human input required?

• Will a small transformer-based model produce a word error rate performance, that is comparable

and similar to larger modern automated speech recognition systems?

• Is it possible to build an accurate ASR model with a limited amount of speech data?

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 1 INTRODUCTION

1.3 APPROACH

A small-scale hybrid automated speech recognition (ASR) system will be developed and studied to

test if a small-scale ASR model can produce similar results to large scale models. A small transformer-

based architecture will be designed and trained to predict text based on audio data received. The

model will be trained on publicly available datasets such as the LibriSpeech dataset and the Mozilla

Common Voice dataset. The model performance will be evaluated by using the word error rate (WER)

and character error rate (CER) for the predicted text when compared to labelled text from the test

datasets.

In this research, the decision to train the model from scratch without utilizing pre-training or fine-tuning

with pre-existing models was deliberate. By opting for a new model architecture with training from

randomized weights and biases, the focus was on creating a model tailored to the specific objectives of

the study. This approach minimizes reliance on computational resources, as the model is retrained with

new data without the need for extensive fine-tuning processes typically associated with pre-trained

models.

In addressing the challenge of achieving results in smaller ASR models compared to current state-of-

the-art end-to-end models, an alternative approach was pursued in this research. While the established

methodology typically involves using model compression algorithms to reduce the parameters of a

trained model to the target size, this approach was not considered here. Instead, the focus was on

maximizing efficiency within available resources, particularly GPU memory constraints. The strategy

involved iteratively refining the model architecture to achieve the smallest feasible size while maintain-

ing satisfactory performance. This approach diverges from traditional model compression techniques

but was deemed appropriate given the specific constraints and objectives of the research.

1.3.1 Automated Speech Recognition Framework

A basic framework is developed for an automated speech recognition model to identify the different

processes and the requirements needed for each of these processes to work together and create a

working speech recognizer. A speech recognition model consists of a data pre-processing subsystem

where the audio data is filtered, and the text used is tokenized to character classes. The following

subsystem is the feature extraction section, where selected features are created from the audio data and

stored. The decoder subsystem forms the core of the speech recognition model. The decoder subsystem

is where a combination of neural network architectures is designed and implemented to train the speech

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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recognition model using the selected features and labels. The final subsystem is the post-processing

subsystem. This is where the predicted classes are converted back into text for human understanding.

An example of the speech recognition model framework can be seen in Figure 1.1.

Speech Data
Pre-

Processing

Feature

Extraction
Decoder

Language

Model

Acoustic

Model

Lexicon

Model

Post

Processing

Text and

Accuracy

Results

Figure 1.1. Example of a basic framework structure of an automated speech recognition model. The

structure consists of a pre-processing subsystem, a feature extraction subsystem, a decoder subsystem

where the neural network training occurs and finally a post-processing subsystem.

To create an automated speech recognition system using the methods discussed above, different

libraries will have to be used to implement different models. Python includes multiple different audio

processing libraries that can be used for cleaning the data and creating a neural network architecture.

Python includes libraries such as ‘torchAudio’ and ‘pyAudioProcessing’ to extract voice data out

of audio segments. For the proposed research, Python will be selected as the main programming

language, as there are a substantial number of libraries available for audio processing and machine

learning.

1.3.2 Available Datasets

In order to train an ASR model, sufficient training and testing data are required. Two publicly available

datasets used for the training and testing of the ASR model are known as the Mozilla Common Voice

dataset [18] and the LibriSpeech dataset [19]. The data is divided into training, validation and testing

data. The total data consists of about 3000 hours of English speech with different dialects, which is

limited, as most larger ASR models are pre-trained with over 53 000 hours of data [20]. In modern

Speech Recognition evolution, 3000 hours of data can be considered as a small dataset as most of the

modern models and pre-trained or trained on 40 000 hours and more of speech data. This might be
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CHAPTER 1 INTRODUCTION

labelled or unlabelled, but our research is based purely on total available data. English was used as a

proof of concept as other data was more difficult to work with due to restricted access and language

understanding. If we prove that it works for English it provides confidence that it will work for other

languages without any pre-training or fine-tuning from existing models. The data will be used to train

and test the model. The validation data will be used to tune hyperparameters during training and to

prevent overtraining.

The publicly available Mozilla Common Voice English 7.0 dataset [18], consists of 2015 hours of

validated English spoken voice data from different people with different sex and dialect. The dataset

used, had speech audio from 75879 different voices, but the data is a bit skewed as 45% of the data was

male, 15% female and 40% unknown. The data consists of 23% United States English, 8% England

English and 7% India and Asian English. The rest of the data are from other countries in the world.

About 1% of the data is from Southern Africa. The data consists of 24% speakers between the ages

of 19 and 29, 13% speakers between the ages of 30 and 39, 10% speakers between the ages of 40

and 49, 9% speakers over the age of 50 and 6% speakers under the age of 19. The rest of the data

was produced by speakers of unknown ages. The original data is sampled at 48kHz, single channel

and mp3 formatted. The Common Voice data consists of small segments of spoken speech data as

the input data. The labels of the input data are the actual text extracts that were read. The Common

Voice dataset has 464396 train audio segments, 16284 validation audio segments and 16284 test audio

segments.

The LibriSpeech [19] dataset consists of approximately 1000 hours of read English text data that was

derived from audiobooks. The data consists of different speakers consisting of male and female voices

with different accents and dialects. The data has been pre-processed into a clean segment and a noisy

segment. The clean segment of data consists of 464 hours of training data, 5.4 hours of development

data and 5.4 hours of testing data. The other noisy data consists of 497 hours of training data, 5.3 hours

of development data and 5.1 hours of testing data. The data is summarised in Table 1.1.

The LibriSpeech data consists of the spoken audiobook speech data as the input data. The labels of the

input data are the actual text extracts from the audiobooks. Small segments of the data are used at a

single training instance to improve data synchronisation and alignment.

The datasets require training, validation and testing sets to ensure that the ASR model being created is
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CHAPTER 1 INTRODUCTION

Table 1.1. Data subsets in the LibriSpeech dataset

subset hours
per-spk

minutes

female

speakers

male

speakers

total

speakers

dev-clean 5.4 8 20 20 40

test-clean 5.4 8 20 20 40

dev-other 5.3 10 16 17 33

test-other 5.1 10 17 16 33

train-clean-100 100.6 25 125 126 251

train-clean-360 363.6 25 439 482 921

train-other-500 496.7 30 564 602 1166

generalised for more speech data than just the given training data. If the model is tested on the data it

was trained with, the model will seem to be very accurate, but might produce unsatisfactory results for

any data outside the training dataset. The validation dataset is used to ensure that the model does not

overtrain for the given training data [21].

1.3.3 Model Selection

The selected model will mainly consist of a small transformer architecture. The model receives audio

data features such as MFCC values of Mel frequency values that were extracted from the sampled audio.

The transformer model will be tested with different encoder and decoder sizes as well as different

transformer head layers within allowed limitations. The ASR model will also require a small CNN

layer to transform the input feature data into multi-layered neurons for a better exploiting of data

features. The CNN layer will act as the first step of the acoustic model by mapping the audio features,

while the transformer layer will act as a language model to learn the context of the sequential audio

data. Python will be used to train the ASR model using a PyTorch backend. This process is required to

be relatively simple due to the vast amount of data that must be processed during training and the goal

of keeping the model small-scaled for low computer resource cases. The main recipe models that will

be focused on are transformer models.

Different architecture layers will be combined and tested using the Common Voice data and the

performance metrics such as CER and WER for each created ASR model will be compared. Once

the best available model has been selected, based on the performance metrics in Section 1.3.4, slight
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CHAPTER 1 INTRODUCTION

adjustments can be made to hyperparameters until an ideal ASR model is created. The model will be

compared to other existing models using the LibriSpeech dataset and the same performance metrics.

The larger the models become, the longer the training time will be and the larger the model parameter

count will be. This introduces limitations as the model is only trained on a single GPU (graphics

processing unit) device with 12 GB of VRAM (video random-access memory), therefore there might

be difficulties in testing large ASR models [22].

Different language models are added to the end-to-end character based ASR model. This will decrease

the word error rate of the models, as the predicted characters can be grouped into known English

words. Different language models will be used such as the bidirectional encoder representations from

transformers (BERT) language model [23] and a traditional 4-gram language model [13]. Language

models could increase the word error rate of the models if it predicts words that are correct in lingual

terms, but not what was said in the audio input data.

1.3.4 Performance Metrics

The different implemented ASR models will be trained and tested using the Common Voice and

LibriSpeech data. The models are then compared to ASR models from literature. ASR models can

be evaluated using many performance metrics. Different metrics might produce different results for

the same model. All the models and different implementations mentioned above will be trained and

evaluated using the following performance metrics.

1.3.4.1 CTC loss

Connectionist temporal classification (CTC) from [16] determines the maximum likelihood label for

each input value. A blank token is added to the character classes to ensure repeating characters remain

repeating characters. The string of characters including the blank are the possible labels for each

input. The maximum likelihood labels for each input value are compressed by removing all repeating

characters without a blank token and finally removing the blank classes. This set of characters is the

model output and is compared to the corresponding text labels. The difference between the model

output characters and text labels is known as the CTC loss. The CTC loss is used to train the model and

adjust the weights and biases of the model to minimise CTC loss. The CTC loss uses the label error

rate (LER) measure for the training and evaluation of a model. Given the LER of the CTC classifier

hctc as the mean normalised edit distance between the classifications x, and the targets z, on a given

dataset Sdat so that,

LER(hctc,Sdat) =
1

|Sdat | ∑
(x,z)∈Sdat

ED(hctc(x),z)
|z|

, (1.1)
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CHAPTER 1 INTRODUCTION

where ED(a,b) is the edit distance between two sequences a and b. The edit distance is the minimum

number of substitutions, insertions and deletions required to chance sequence a into sequence b. The

classification characters, x, and the target characters, z, are used as the two sequences for calculating

the edit distance.

1.3.4.2 Word error rate and character error rate

The WER and CER are versions of classification accuracy performance metrics and are used for ASR

models as normal classification will not represent an accurate representation of the model results. To

determine the word error rate of the predicted and actual words in a sequence,

WER =
Sn +Dn + In

Nw
=

Sn +Dn + In

Sn +Dn +Cn
, (1.2)

where Sn is the number of substitutions, Dn is the number of deletions, In is the number of insertions,

Cn is the number of correct words, Nw is the number of words in the reference sequence, and

Nw = Sn +Dn +Cn.

The CER is calculated the same as the WER in equation 1.2, except that Cn is the number of correct

characters instead of words. The entire reference sequence is still used, but spaces are removed. CER

is a good indication of correct class identification for a character based ASR model, but the WER will

give a better indication of contextual accuracy of the ASR model [24].

The performance metrics are used to evaluate the different models implemented using the LibriSpeech

data. The performance metrics are the same performance metrics used in the literature and therefore

the implemented models can be compared to the existing literature models.

1.4 RESEARCH GOALS

The research has the main goal of attempting to minimise the size of an ASR model, using modern

architectures while limiting the reduction in performance to acceptable levels. This model is suitable

for cases where there is no access to industrial scaled datasets and a lack of computer resources. A

small-scale hybrid automated speech recognition (ASR) system will be studied to test if a small-scale

ASR model can produce similar results to large scale models. A small transformer based architecture

will be designed and trained to predict text based on audio data received. The model will be trained on

publicly available datasets such as the LibriSpeech dataset [19] and the Mozilla Common Voice dataset
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CHAPTER 1 INTRODUCTION

[18]. The model performance will be evaluated by using the word error rate (WER) and character error

rate (CER) for the predicted text when compared to labelled text from the test datasets. The model

performance is compared to the existing ASR models performances. Another goal is to determine if it

is possible to train a small-scale ASR model using a limited amount of speech data and still acquire

satisfactory performance from the model. This will provide as a proof-of-concept ASR model for

under resourced languages that do not have sufficient speech data.

1.5 RESEARCH CONTRIBUTION

Modern ASR models are extremely large and consist of hundreds of millions of parameters with over

a billion parameter language models added such as the model from [20]. There is limited research

on small-scale ASR models with modern architectures and how they compare to the larger ASR

models. The novel model that is presented in this work, consists of a small two layered CNNs that

receives audio MFCC and delta features as an input. The CNN output is then transferred to a small two

headed, dual layer transformer architecture for contextual training. The output of the model provides a

character based prediction instead of a word based prediction to decrease the model output classes.

The characters are then inserted into a small 4-gram language model to produce a more accurate

word error rate. The small-scale architecture produces results that are comparable to much larger

ASR models such as the gated recurrent unit (GRU) and Wav2Vec2 models from [25] and [20]. This

is possible due to transformer architectures requiring less parameters to produce the same accuracy

results. The model is trained on a single graphics card, due to more processing power being available

for computations on local single devices, than in previous years, as well as the simplification of ASR

model architectures.

1.6 RESEARCH OUTPUTS

The following article was submitted to a peer-reviewed and ISI accredited journal.

• A. Loubser, A. De Freitas, and P. de Villiers,“End-to-end automated speech recognition using a

character based small scale transformer architecture.” To be published. Accessed: Apr. 18, 2023.

[Online]. Available: https://dx.doi.org/10.2139/ssrn.4290605

1.7 OVERVIEW OF STUDY

Chapter 2 describes the review of the literature of traditional and modern ASR models and how they

are designed, created and trained. The model performances are also compared. In Chapter 3 the

research methodology is discussed. In this section the design methodology and architecture of the

small-scale ASR model is described in detail. The different experiments to test the small-scale model
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CHAPTER 1 INTRODUCTION

is also described. Chapter 4 outlines numerical and experimental results. The results mainly consist of

the performance metrics mentioned in Section 1.3.4 for the different versions and training datasets of

the small-scale ASR model. In Chapter 5 results are summarised and discussed. The designed model

is compared to existing traditional and modern ASR models. In Chapter 6 concluding remarks are

given.
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CHAPTER 2 LITERATURE STUDY

2.1 CHAPTER OVERVIEW

This chapter presents the literature study for this dissertation. Section 2.2 discusses the different data

pre-processing techniques for traditional and modern ASR models. In Section 2.3 traditional ASR

models with separate acoustic and language models are discussed. Section 2.4 discusses modern

end-to-end ASR models and transformer-based models.

2.2 AUDIO EXTRACTION AND FILTERING

2.2.1 Phoneme extraction and alignment

Creating an acoustic model requires a sequence of acoustic input vectors. These acoustic input vectors

are formed from speech. Syllables are created using a human’s mouth and vocal cords. When looking at

spoken words, a syllable contains a vowel sound and some surrounding consonants. These syllables are

added together to form words consisting out of letters. The same letters can be pronounced differently,

and each pronunciation is a different sound.A phoneme is any perceptually distinct units of sound

in a specified language that distinguish one word from another. The American English language has

44 phonemes, but this excludes names and places [26]. In our case we correspond phonemes with

pronunciations and sounds making up letters and words. The phonemes can be divided into frames

and be compared to frequency values received from an audio file that has been separated into different

frames. In [26], a comparison was performed between phoneme-based speech detection and word-

based speech detection. The word identification for clean speech, using a Gaussian mixture model

(GMM), produced a detection accuracy of 97.9%. The detection accuracy for phoneme detection, using

the same data and model was 98.3%. This slight improvement for clean speech data, increases for

noisy data. The speech data has to be correctly aligned to the phoneme labels for accurate training of

speech detection to occur. In [27], phoneme alignment was tested for a French acoustic hidden Markov

model (HMM) using the k-fold cross validation technique. The maximum likelihood, maximum a
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CHAPTER 2 LITERATURE STUDY

posteriori and maximum likelihood linear regression estimates were tested for data alignment. It was

found that the maximum a posteriori estimate performed better for speech to phoneme alignment

where the speech contained different accents, while the maximum likelihood linear regression estimate

produced better results for clean speech where the accents were similar. In [28], a boosted maximum

mutual information (MMI) function to improve discriminative training results for phoneme detection

was used. The method cancels any of the shared parts of the numerator and denominator statistics for

each frame of the input audio data. The boosted MME reduced the WER from 20.5% to 20.1% for 700

hours of English broadcast news data.

2.2.2 Audio extraction into features

The first step in audio extraction is to represent an audio file as a time varying signal. To detect the

selected features such as the frequency of the audio signal, the signal is divided into frames [29]. The

reason for sampling is that the audio signals in the time domain are represented as continuous signals

and modern digital signal processing techniques need to be applied to the audio signal, requiring

sampling of the signal. This in theory changes the data from analogue form to digital form. Different

features can be extracted from the sampled signals.

In [29], the linear predictive coefficient (LPC), fast Fourier transform (FFT) frequency samples and

Mel-frequency cepstral coefficients (MFCC) were extracted from speech data. The different features

were used to train a hidden Markov model (HMM). The performance of the HMM trained on different

features was tested and compared. The LPC features based HMM produced an accuracy of 79.5%

while the FFT features based HMM produced an accuracy of 89% and the MFCC features based HMM

produced an accuracy of 92%. The MFCC features also reduced the dimensionality of the feature

vector to the model when compared to the LPC and FFT features. The derivatives or deltas of the

MFCC features were added in [17]. This increased the training accuracy considerably for different

speakers as the change in frequency was considered and not just the frequency of the audio signals.

In [6], different audio features were tested for a supervised deep neural network (DNN) acoustic

model. Using the CCLR speech dataset from Chinese television, perceptual linear prediction (PLP),

MFCC and filter bank features were tested. The WER of the PLP features was 24%, while the WER

for the MFCC features was 23.5%. The WER of the filter bank features was found to be the best at

22.7% for the ASR model. Raw waveform signals with an added CNN layer were compared to MFCC

features for an acoustic model in [30], and it was found that the raw waveform data with an added CNN

outperformed the standard MFCC features by 5%. Perceptual Linear Prediction (PLP) is calculated
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CHAPTER 2 LITERATURE STUDY

very similarly to the MFCC method. The only differences are that equal loudness per-emphases is

added in the filtering of the frequencies and cube-root compression is used instead of log compression.

MFCCs produce slightly better results [31].

2.3 TRADITIONAL AUTOMATIC SPEECH RECOGNITION MODELS

Using a mixture of deep learning and natural language processing (NLP), a speech to text model

can transform audio into text as well as predict the highest probability text that belongs to the audio

section. This is in essence what automatic subtitle generation consists of [4]. ASR systems can be

created using two main models. The acoustic model represents the mapping or connection between the

audio features and phonemes. The language model represents the probability of dependency between

letters in a word or words in a sentence. Both these models require a very large amount of training as

well as very large vocabulary and phoneme libraries [22]. The acoustic model must be able to ignore

sounds that are not speech. The language model should be able to separate one word that has the same

phonemes as other words by looking at the previously predicted words. The model needs to be able to

distinguish between ‘bear’ and ‘bare’ using context training. This requires a significant volume of text

training data as well as a large vocabulary library [32].

2.3.1 Acoustic Modelling

Traditionally, ASR models consisted of separate acoustic and language models. Large acoustic models

such as [5] and [6], consist of very large deep neural networks (DNNs) that use large hidden Markov

models (HMMs) and feedforward neural layers to represent the mapping between phonemes and the

audio signals or features. The acoustic model architecture presented in [5] was a deep neural network

(DNN) with multiple hidden layers, low-rank approximation to the final weight matrix and many

contexts dependent hidden Markov model (HMM) states for large ASR datasets. The model was

trained using 10 million words from the DNTrain YouTube database. A GMM, with 18000 possible

output states, was trained using the same data and tested with noisy YouTube data and produced a

WER of 52.3% which is not very accurate. The DNN model with 7 hidden layers and 7000 possible

output states, produced a WER of 44% on the same data. The DNN model with 7 hidden layers and

45000 possible output states, produced a WER of 42.9% on the same data, but required significantly

more training time. Increasing the hidden layer states to 14, produced a WER of 40.9%. The model

did not produce very accurate results as the test data from YouTube was very noisy, but the more

parameters the model had, the better the results that were produced.

Clean speech data was used in [7] to train and test a DNN acoustic model and produced a WER of
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13.4% for speech and 13.1% for music. The cleaner the speech data, the more accurate the results were.

In [6], clean speech data from Chinese television was used to train a DNN acoustic model that was

combined with a GMM. The model produced a WER of 20.8% of the Chinese speech data compared

to 24.2% using a normal GMM model. Multiple DNN models can be combined to produce better

results. In [8], two DNN models were used for speech recognition. The first model was used for noise

reduction of the speech data. The second model was the acoustic model that used the output of the

first model as input data. A baseline GMM-HMM produced a WER of 25.7%. The acoustic model

produced a WER of 16.77% and the combined model produced a WER of 10.76%.

2.3.2 Recurrent Neural Networks

Recurrent neural network (RNN) models and long short-term memory (LSTM) models [12] made

a significant impact on ASR, as the models could be trained to take the context of the speech into

account by training the model with sequential speech data [7]. RNNs contain feedback loops that allow

previous information to persist in future calculations. Long term dependencies for data connection can

be a concern in neural networks. If context is derived from a large range of data as the case might be

in subtitle generation, normal RNNs might struggle to connect the data. LSTMs are a class of RNN

algorithms that can handle long term dependencies [11]. In [12], an LSTM algorithm is compared to

an RNN model and a FFNN model. The dataset used, consists of an English language model corpora

of 3.1 billion words which was reduced to 50 million words for training. The data has a vocabulary

of 150 000 different output states. The FFNN produced a WER of 11.3%. The RNN produced a

WER of 11.1% and the LSTM produced a WER of 10.4%. A fusion of a dual LSTM model and a

coupled HMM was developed in [22] and was tested using an English dataset and French dataset

separately. The English dataset produced a WER of 17.45% compared to a basic GMM-HMM WER

of 39.22%.

2.3.3 Language models

Statistical language modelling is a crucial part in ASR, as it makes the predicted text understandable

for a human by putting words in context with the sentences. The models also generally decrease

the word error rate for ASR dramatically. Recurrent Neural Network Language Models (RNNLMs)

provide a powerful and efficient method to model sequential data [33]. The first language models

consisted of n-gram models and HMMs [13]. The n-gram models and HMMs could be trained with

significantly less computation effort when compared to RNNLMs but did not produce as accurate

results as the more modern and larger RNNLMs. As more computational processing power became

possible as in [9], neural network models replaced n-gram models and HMMs. In [34], smaller n-gram
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language models, that were smoothed out to remove uncommon words were produced. This created

small n-gram language models that produced similar results to original n-gram language models, but at

double the speed and half the memory.

RNNs were initially tested for acoustic and language modelling, but the results obtained for the amount

of processing power and memory required was undesirable when compared to n-gram language models.

This has changed due to computers being able to process data faster and more efficiently. RNNs are

the preferred models over n-grams when it comes to large language models [13].

A language model with an RNN was tested and compared to an n-gram language model in [10].

Training data consisted of 8 billion words from three different sources: 880 million words from

spoken news, 1.7 billion words from Wikipedia and 6.1 billion words from web crawling popular sites.

Different final state (n-state) sizes were used. Increasing the n-state, increased the neural network size

and produced a better perplexity result, but required more training. Perplexity is another performance

metric for language models where it measures the understanding of words followed by one another.

For a standard 5-gram model using the given data in [10], the perplexity was 66.9%. The tested

RNN with 2048 states produced a perplexity of 45.2% and the RNN with 4096 states produced a

perplexity of 42.4%. The accuracy of the models are drastically improved using RNNs, but at a very

large computational cost. In [4], an RNN is used with GPU training to increase the training speed.

This makes large RNN architectures for ASR possible. The GPU trained RNN produced a WER of

15.16% on a 20 million words dataset. The same model, trained on a CPU, produced similar results,

but at a training cost of 53 times more time required than the GPU trained model. In [12], LSTM

language models are shown to perform better than n-gram language models and RNN language models.

Meaningful contextual information is the main required output for a language model.

A context-based language model was created in [35], that changes context available based on the

area of speech that is being used. This would be for a use case where the speech data topics are

previously known. Out of vocabulary (OOV) words were also considered, so that the context dependent

language model would still allow predicted words outside the language model vocabulary. This method

reduced the WER by 44% for the specific use cases, when compared to a large general language

model. Adaptive neural language modelling was attempted in [36], where the input and output layers

of the language model is changed based on the input representations and limited words. The original

language model used had 4371 million parameters. This was reduced to 1026 million parameters for
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a large language range model and 331 million parameters for a small language range model. The

small language range model produced similar results to the larger language range model, when a

small dataset was used. Multiple language models were decreased in size by using factorization and

compression of the output layers, based on the required language and word set being used. This caused

the increase in computational speed of language models and allowed language models to be added

as an extra word identification layer after end-to-end ASR models to create a complete ASR system

[37].

2.3.4 Selected Recurrent Neural Network Models

In [33], a combination of two singleton recurrent neural fuzzy networks (SRFRNR) are implemented to

train a speech recognition model with noisy data. The SRFRNR is compared to a multilayer perceptron

(MLP) model and a time-delay neural network (TDNN) model. The first SRFRNR model is used for

noise filtering and the second SRFRNR model is used for speech recognition. At a sound to noise

ratio (SNR) of 24 in the training and testing data, the SRFRNR model produced an accuracy of 85%

compared to the other models’ accuracy of between 70% and 78%. Different datasets provided WERs

between 15% and 45% for the RNN language models tested in [38]. The noisier the data, the larger

the WER.

The model in [25] uses CTC-based training for end-to-end ASR and is tested on the LibriSpeech

dataset. The model consists of two convolutional layers and 5 GRU layers with 52.5 million parameters.

The model produces a WER of 11.9% and 31.1% on the test-clean and test-other dataset respectively.

An added 4-gram language model produces a WER of 8.3% and 24.4% on the test-clean and test-other

dataset respectively. [39] also uses an older LSTM based architecture to create a character-based ASR

model.

2.4 MODERN AUTOMATED SPEECH RECOGNITION MODELS

The introduction of attention-based models such as transformers from [14], allowed ASR models

to be more efficient and deliver the same results with less computational power required. Modern

end-to-end speech recognition systems cut out the phoneme step to reduce the complexity of the

system and to reduce error propagation. Transformer architectures are state-of-the-art replacements for

LSTM architectures. Transformers are memory efficient, fast neural architectures that have reduced

parameters and increased training speed when compared to RNNs [40]. In [41], a Conformer is

introduced, an architecture that combines CNNs and Transformers for ASR tasks. This model achieves

state-of-the-art accuracies on the LibriSpeech benchmark, outperforming previous Transformer and
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CNN-based models by effectively modelling both local and global dependencies in audio sequences.

Our approach is similar but uses a CNN architecture before the transformer architecture, while [41]

builds the CNN inside of the transformer and the architecture is noticeably bigger in parameter size.

Our approach uses MFCC audio features while the approach in [41] uses raw audio. In [42], a low

rank transformer was used for an end-to-end speech recognition system with reduced parameters and

increased training speed and inference. The model was based on mandarin speech and produced a

CER of 13.6% for an 8.7 million parameter model without an added language model on the mandarin

AiShell-1 dataset. An RNN model produced a CER of 19.43% and had exponentially more parameters

than the low rank transformer. [1] and [43] produce character-based ASR models with an added

language model. The models vary and have up to 48 layer transformers.

2.4.1 Transformer based language models

Transformers improved language models drastically as larger models could be trained more efficiently

[44]. Bidirectional encoder representations from transformers (BERT) models were one of the first

large transformer-based language models along with generative pre-trained transformer (GPT) models.

In [23] a multi-billion-word corpus was used to train a BERT language model that achieved a general

language understanding evaluation (GLUE) score of 80.5%. This was a 7.7% increase when compared

to any previous work. The BERT model can be fine-tuned using transfer learning on the last layer for

ASR word correction use cases. The GPT-3 language model is a 175 billion parameter model that is the

state-of-the-art transformer-based language models [45]. The model is too large and complex for purely

ASR. The language model is currently used for automated article and paper writing. Transformer-based

language modelling and decoding produced the ability to use lattice rescoring and predict text, based

on a longer range of history in the sequential text data. A weighted average method is used to determine

the importance of given words given their relative positions in sequences of words. In [46] the ‘XL-net’

language model is researched. The model consists fewer parameters than the BERT model, but still has

over 100 million parameters, while the BERT model has 110 million parameters for the small model

and over a billion parameters for the large model. Both the transformer-based language models produce

very similar results, but GPU memory availability caused an issue while running an ASR model with

an added transformer based language model. An older RNN based language model consisting of 15

million parameters produced very similar results on the ‘TED-LIUM’ dataset. The BERT model was

compressed in [47] using a compressed transformer model, while still producing the same results. The

compressed version of BERT is named ‘huBERT’ and still has between 90 million parameters and

over a billion parameters depending on the smallest and largest ‘huBERT’ model.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

19

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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In recent research, there has been notable exploration in enhancing Automatic Speech Recognition

(ASR) systems leveraging LLMs and knowledge transfer techniques. In [48], the integration of LLMs

into ASR systems was investigated to improve transcription accuracy. The study, utilizing the Aishell-1

and LibriSpeech datasets, evaluated the potential of employing LLMs’ in-context learning capabilities.

Despite initial experiments resulting in higher WER, the study shed light on the challenges of effectively

leveraging LLMs for ASR applications. Another approach presented in [49] addresses the data hunger

challenge in training end-to-end ASR systems by transferring knowledge from pretrained language

models. The paper proposes a method to transfer semantic knowledge from embedding vectors of

large-scale language models to improve ASR decoders’ performance without added computational

costs during decoding. The research in [49] is attempting to improve speech recognition by improving

the language context with the use of LLMs.

In [50] textless NLP is attempted to process language directly from the input speech units, but this

would give the speech understanding without text involved which would defeat the purpose of text

in an ASR environment. The model was used in conjunction with text based ASR models to provide

WERs that were comparable to standard older ASR models. In [51], a BERT model was directly used

for a mask based ASR model to predict text from raw audio. The linguistic characters from raw audio

were used as the input to the BERT mask based model and phoneme styled words were expected as an

output. Unfortunately, the model only produced CERs and WERs that were comparable to smaller

and older ASR systems. The BERT model uses a masked input training method, where one data

input of the sequence is masked, and the rest of the input sequence is used to predict the masked data

input value. In [51] a simple acoustic model was stacked on the pre-trained BERT model to reduce

error propagation, but produced CERs of between 54.6% and 99%, which is not satisfactory results

for an ASR model. Fairseq [52], is a fast and extensible sequence modelling toolkit for translation,

summarization and language modelling using transformers. The models were trained on an industrial

100Gb VRAM graphics card with a billion-word corpus. This toolkit was extended, and an ASR model

was created in [53].

2.4.2 Transformer based ASR models

Multiple end-to-end transformer models are compared in [54], using the LibriSpeech dataset [19].

The paper shows that transformer models are superior with a small volume of speech data, but as the

data volume is increased all models converge to the same results and rely less on language models for

accurate results. The transformer model with 322 million parameters and using CTC training, achieved
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a WER of 2.99% and 7.31% on the dev-clean and dev-other data respectively. The transformer also

achieved a WER of 3.09% and 7.40% on the test-clean and test-other data respectively. Adding a

4-gram language model increased the model accuracy slightly to a WER of 2.86% and 6.72% on the

test-clean and test-other data respectively. A Fairseq toolkit fast speech to text transformer model is

used in [53], that has 263 million parameters and has an added transformer-based language model that

was pre-trained on the ‘Wikitext’ text corpus of over a billion words. The model produces a WER of

3.3% and 7.7% on the test-clean and test-other LibriSpeech dataset respectively.

Modern very large ASR systems such as [55], produce lower word error rates, but are very large and

take significant computational power to train and run. In [55] and [56] the Wav2Vec ASR model,

consisting of mainly transformer-based architectures, is used for speech recognition. In [56], the model

outperforms the previous best character-based ASR model [57] with a WER of 3.2% using the Wall

Street Journal dataset, but at a significant reduction of training data. The Wav2Vec model still uses

over 53 000 hours of data, where the model in [57] used over 100 000 hours of speech data. In [20] it

is found that a model can be trained with as little as 10 minutes but states that “Using just ten minutes

of labeled data and pre-training on 53k hours of unlabelled data still achieves 4.8/8.2 WER”. The

model in this research focuses solely on labelled data without any pre-training or fine tuning as it is a

new model. This is a small scale direct classification model without pre-training to understand general

speech representations as this requires a lot of computational power and large amounts of original data.

A WER of 3.8% and 6.5% on the LibriSpeech test-clean and test-other data is achieved by [55], that

uses a very large transformer-based ASR model of over 300 million parameters called the Wav2Vec

architecture and a BERT language model that was fine-tuned with 53 000 hours of ‘Libri-Light’ text

data. [20] achieves a WER of 1.8% and 3.3% on the LibriSpeech clean and other test set. The model is

trained using 53 200 hours of audio. The model contains 24 transformer blocks of dimension 1024 and

inner dimensions of 4096 and 16 attention heads. The model is accompanied by a transformer-based

language model. The large model has 317 million parameters without the language model. Including

the language model it is over a billion parameters. In [58], a cross-lingual speech representation model

called XLSR is created from the wav2vec2.0 model from [20]. The existing model is fine-tuned with

Common Voice data [18] consisting of 53 languages and other multilingual datasets. The larger amount

of training data reduces the WER drastically when compared to other models. The model produces

an average WER of English Common Voice testing data of 7.6% over 53 languages with a 4 gram

language model. Using the Common Voice en 7.0 dataset in [59] the Wav2Vec2 XLSR model trained

on 53 000 hours of data produced a WER of 27.72% and a CER of 11.65% for the testing dataset.
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Adding a language model produced a WER of 20.85% and a CER of 11.01%.

A new transformer model named XLS-R, [60], produces a 2 billion parameters, transformer-based,

ASR system that is trained on 436 000 hours of data from over 128 languages. The model outperforms

all previous single language models for languages that have a small volume of training data available.

For English the Wav2Vec2 model outperforms the new XLS-R model when using the LibriSpeech

data for comparison by a WER of 5.6% compared to 5.9% using the test-clean dataset. XLS-R can be

fine-tuned with as little as 10 minutes of labeled training data after being fine tuned with the initial

436 000 hours of data, resulting in competitive Word Error Rates (WERs) when coupled with external

language models. This aspect highlights the model’s adaptability and efficiency in scenarios where

labeled training data is scarce. The model would still require the initially trained parameters to achieve

accurate results with limited audio. Once the model is initially trained it is also possible to train

the model using unlabelled data using self-supervised fine tuning languages without labelled data

[60].

All the character-based models mentioned above are trained using the CTC labelling method. In [16],

the CTC method of classifying and labelling unsegmented data is researched and discussed. CTC

uses a forward-backward algorithm with maximum likelihood training during the ASR model training

to maximise the probabilities of correct labelling. The method outperforms previous segmentation

methods such as the hidden Markov model segmentation method. CTC decodes the input data into

a known dictionary of classes which can be a set of characters or words. The CTC method can only

decode data into known classes; therefore an unknown class was added in [61] to take into account any

words and characters not seen before.

2.5 CHAPTER DISCUSSION

In Section 2.2 different data pre-processing techniques were explored. It was found that MFCC features,

and Mel frequency features are the most accurate for speech recognition models. The MFCC features

were selected due to the MFCC data features being more compressed than the Mel frequency feature

data, while containing most of the significant audio data.

Section 2.3 introduces traditional ASR models that consisted out of very large acoustic models with

added language models. The ASR models improved drastically with the introduction of RNNs. In [25]

an end-to-end ASR model, with GRU layers and 52.5 million parameters, produced a WER of 8.3%
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and 24.4% on the test-clean and test-other LibriSpeech dataset respectively. This was achieved with an

added 4-gram language model. Modern ASR models in Section 2.4 consists mostly of transformer-

based architectures. The end-to-end models in [54, 55, 20] have over 300 million parameters and

produce WERs of between 3% and 8% for the test-other dataset of the LibriSpeech dataset. A small-

scale architecture similar to the architecture in [42] will be designed to experiment if a small-scale,

transformer-based architecture is comparable to the modern larger ASR models.
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CHAPTER 3 METHODS AND DESIGN

3.1 CHAPTER OVERVIEW

This chapter presents the methodology, design and experiments of the small-scale, transformer-based

ASR model for this dissertation. Section 3.2 provides the methods and calculations of the selected

data pre-processing techniques for traditional and modern ASR models as well as the text tokenization.

In Section 3.3 the small-scale ASR model is designed with a CNN architecture and a transformer

architecture. The model is designed in detail and implemented with a modular approach to be able

to change the model size and hyperparameters. Section 3.4 implements different language models to

the ASR model, such as a traditional n-gram language model and a BERT language model. The basic

design of each language model is described and how it is implemented into the ASR model.

3.2 DATA PRE-PROCESSING

The audio files are sampled and filtered for a selection of audible frequencies. Selected features

are extracted that represent the speech from the sampled and filtered audio files. These features are

represented as vectors with real values that a learning model can use for training. The vector values

represent different frequencies which are grouped together to form phonemes. Phonemes are short

audio units representing parts of characters or words. The extracted phonemes from the audio are

compared to a library of existing phonemes or characters in this case by having each audio section or

phoneme labelled as a character or part of a word. This is to separate the sequential features, to match

the class labels of the audio data and ensuring accurate training of the model.

Creating an ASR model requires a sequence of acoustic input vectors that represent audio features.

These acoustic input vectors are formed from digital recordings of known speech. The digital recorded

speech is classified into two categories namely voiced and voiceless speech [26]. Voiced sound is

produced by a human’s vocal folds being tensed up and relaxed using air flow. This repeating cycle
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produces sound at different frequencies for men and women. The fundamental frequency produced by

each person is perceived as the pitch. Generally a male has a fundamental frequency around 125Hz

and a female has a fundamental frequency around 210Hz [26]. This can change dramatically based on

the person’s vocal folds. Voiceless sounds are produced without the vibrating effect of the vocal folds.

The sounds created are modulated by articulation to create different resonance sounds.

The lips, teeth and tongue are used with the speech sound for syllable creation. These syllables are then

added together to form words consisting out of letters. The same letters can be pronounced differently,

and each pronunciation is known as a phoneme. The American English language has 44 phonemes,

but this excludes names and places [26]. These phonemes can then be acoustically realised as phones.

Phones are the way phonemes are pronounced. Different phones exist for the same phonemes. The

recorded digital phones received from an audio file that has been separated into different frames are

labelled to the 44 known theoretical phonemes. In the case of an English character-based end-to-end

ASR model, the phonemes represent characters of the English language and multiple different sounds

can be classified as a single character and different characters might be predicted from the same sound.

This ambiguity is resolved by inspecting the surrounding predicted characters of the audio sequence to

predict the correct word.

3.2.1 Audio Data Sampling

The first step in audio extraction is to represent the audio file as a time varying signal. The signal will

consist of different amplitudes based on loudness. In speech the range of a human voice is generally up

to Fmax = 4kHz [17]. The sampling rate, Fsamp, is chosen as 8kHz or 16kHz to adhere to the Nyquist

sampling rate such that

Fsamp = 2×Fmax. (3.1)

The reason for sampling is that the audio signals in the time domain are represented as continuous

signals and modern digital signal processing techniques need to be applied to the audio signal, requiring

sampling of the signal. The sampling rate allows the amplitude data of the audio signal to be stored at

every 62.5us when sampled at 16kHz and every 125us when sampled at 8kHz for processing. This in

theory changes the data from analogue to digital.

The original audio data from the datasets used are read into the model as a time-based waveform and

resampled to either 8kHz or 16kHz. The resampling step first required the greatest common divisor
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between the original sampling rate and the new sampling rate of either 8kHz or 16kHz. The resampling

method uses a finite impulse response (FIR) low pass filter with a width of 6 and a roll-off value of

0.99. The resampling method used is sinc-interpolation,

xsinc(t) = ∑
i

x[i]sinc
(

π × forig ×
(

i
forig

− t
))

, (3.2)

where xsinc(t) can be exactly reconstructed from the input x[i] and forig is the original frequency divided

by the greatest common divisor between the original sampling rate and the new sampling rate.

The sinc-interpolated signal xsinc(t) can be sampled with a different sampling rate to produce y[ j]

using:

y[ j] = ∑
i

x[i]sinc
(

π × forig ×
(

i
forig

− j
fnew

))
, (3.3)

where fnew is the new frequency divided by the greatest common divisor between the original sampling

rate and the new sampling rate.

The newly sampled signal y[ j] is therefore the convolution of x[i], with a finite impulse response (FIR)

approximation filter stopping at the selected filter width of 6. Looking at equation (3.4) below,

y[ j+ fnew] = ∑
i

x[i+ forig]sinc
(

π × forig ×
(

i
forig

− j
fnew

))
, (3.4)

it is determined that, y[ j+1] until y[ j+ fnew] will have different weights, but will use the same filter.

Therefore, y[ j+ fnew] uses the same filter as y[ j], but on a shifted version of x by forig.

3.2.2 Audio Feature Extraction

At each sampled time instance, the signal can be converted into the frequency domain to represent the

different frequencies of the audio signal at different points in time. The spectrogram, representing the

frequency domain of the audio data, can be calculated from the original audio data that is separated

into fixed time frame segments. To detect the selected features such as the frequency of the audio

signal, the signal is divided into frames of between 20ms and 40ms. For audio signals there should be

enough data or signal points in the frame period to identify any frequencies in the possible range of

voice frequencies for that frame period. This is determined based on the sampling rate of the audio

signal. The ideal frame size is selected to be 25ms [17]. There are therefore 400 samples in every

frame when sampled at 16kHz and 200 samples in every frame when sampled at 8kHz. Each frame is

selected using a frame step size. The ideal speech recognition step size is 10ms or 160 samples at a

sampling frequency of 16kHz [17]. The first frame would be samples 0-400. The second frame would

then be samples 160-560 and so on.
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The first step is to calculate the Discrete Fourier transform (DFT) for each frame [17]. This is to extract

as much frequency and time-based data from the audio files as possible. The DFT is calculated as

follows:

Sd f t(k) =
N

∑
n=1

xi(n)h(n)e− j2πkn/Nsamp , (3.5)

where Sd f t(k) is the complex DFT for each frame, i, and each discrete frequency index k. The discrete

frequency index, k, ranges from 0 to the length of the DFT which would ideally be a 512 point FFT

[17]. Each FFT point corresponds to a bin. Each discrete frequency index k would be at the edges of

the bins and each bin size can be determined by taking Fsamp/FFTpoints. With 400 sample points there

would be 112 zero values added for the 512 point FFT. This is known as zero padding. xi(n) is the

time domain signal for each frame i and each sample point n. For this method, the FFT was selected to

be 400 points to remove the need of zero padding.

Filtering is required to gradually drop the signal amplitude at the edge of each frame. This is to reduce

sidelobes in the frequency domain. The function, h(n), is an Nsamp sample length analysis window for

filtering. An example would be the Hamming window or Hanning window. The formula is produced

as follows [31]:

h(n) = (1−α f ilt)−α f iltcos
(

2πn
Lwin −1

)
, (3.6)

where Lwin is the window length and α f ilt = 0.46164 for the Hamming window and α f ilt = 0.5 for the

Hanning window. The periodogram-based power spectral estimate, Pi(k), for each frame can then be

calculated as:

Pi(k) =
1

Nsamp
|Si(k)|2. (3.7)

In the case of a 400 point FFT, only the first 200 coefficients are generally kept as they represent

the frequencies from 0 to Fmax. These values represent the frequencies between 0Hz and 8kHz if the

data is sampled at 16kHz as in Figure 3.1. The number of FFT points Nsamp was selected to be 400
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to match the number of samples for a 16kHz sample rate and a 25ms frame period. The window

size was selected to be the same as the number of FFT points of 400. The window hop length (Lwin)

between DFT windows was selected to be half the number of FFT points and therefore 200. The

window method that was selected, is the Hanning window which returns 1 values everywhere inside the

window size. The final spectrogram function returns a data output of size (x, f req, time), where f req

is Nsamp/2+1 and time is the number of window hops or number of frames as in Figure 3.1.
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Figure 3.1. A spectrogram example of an audio track sampled at 16kHz, with a female voice saying:

“Maintain your health while you have it, it’s easier”. The spectrogram consists of 201 frequency bins

or FFT points and 577 time bins. It is noticed that the frequency amplitudes are higher in the lower

bins, therefore showing that the sampled frequency covers all the vocal data.

3.2.2.1 Mel-Spectrogram

The sampled spectrogram data can be converted into the Mel-spectrogram. The Mel-spectrogram is an

adjusted version of the normal spectrogram based on how frequency is perceived by the human ear.

The Mel scale relates the perceived frequency also known as the pitch of audio to the actual measured

or calculated frequency. Humans can interpret small changes in pitch for lower frequencies. As the
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frequency is increased, the human ear can not distinguish between small pitch changes any more. The

original spectrogram data is multiplied with a Mel filterbank consisting of triangular frequency ranges

consisting of a preselected amount of filterbank triangles.

The Mel-spaced filterbank, which consists of triangular filters that are applied to the periodogram

power spectral estimate calculated in equation 3.7, is calculated. The selected number of filters was

chosen to be 81. The filterbank consists of 81 vectors of length 200 each due to the FFT size. Most of

the vector values will be zero except at the frequencies where there are active audio frequencies.

To create the Mel-filterbank, the minimum and maximum frequencies are selected. This would

generally be 0Hz and 8kHz, when sampled at 16kHz [17]. The bottom and top frequencies are then

transformed into the Mel scale, M( f ), where

M( f ) = 2595 · log
(

1+
f

700

)
. (3.8)

Once the minimum and maximum Mel values have been calculated, there are 81 linearly spaced values

taken in between, thus creating 83 Mel discrete frequency values for an 81 filter Mel-filterbank. The

83 values are transformed back to the frequency scale using

M−1(m) = 700
(

e(m/1125)−1
)
. (3.9)

The 83 computed Mel frequency values will not exactly correspond to the 200 frequency values of the

FFT. The Mel frequency values are just rounded to the nearest corresponding frequency bin index of

the FFT, given the sampling rate. The FFT frequency values are calculated using the sampling rate of

16kHz and the FFT size of 512.

The actual filterbanks can now be created. Each filterbank will have a 0 at the starting point, a peak

value at the next point and reach a 0 at the 3rd point as follows:

Hm(k) =



0 k < f (m−1),

k− f (m−1)
f (m)− f (m−1) f (m−1)≤ k ≤ f (m),

f (m+1)−k
f (m+1)− f (m) f (m)≤ k ≤ f (m+1),

0 k > f (m+1),
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where m is the number of the 81 different filters and f (·) is the frequency value in the list of 81+2

Mel-spaced frequencies. The discrete frequency index k, is between 0 and 200. The equation above

produces a frequency distribution similar to a 10 filter bank example in Fig 3.2 below.
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Figure 3.2. Example of a set of 10 filter banks, where each triangle represents a set of frequencies and

their corresponding amplitude levels. Each triangle is known as a filterbank. Image extracted from

[17].

Each Mel-filterbank is multiplied with the power spectrum and the coefficients of all 200 vectors are

added together. This produces an energy value for each filterbank. The 81 energy values from the

filterbanks are transformed into log filterbank values such as in Figure 3.3

3.2.2.2 Mel Frequency Cepstral Coefficient

A discrete cosine transform (DCT) is applied to the Mel-spectrogram to form the Mel frequency

cepstral coefficients (MFCC). MFCCs decrease the features of the data while keeping most of the

information of the original audio data. The 81 Mel features were decreased to 16 MFCCs. The DCT

formula used was:

XDCT [k] =
NMel−1

∑
n=0

Mspec(n)cos
[

π

NMel

(
n+

1
2

)
k
]
, for k = 0, . . . ,NMFCC −1. (3.10)

The DCT, XDCT [k], of the Mel-spectrogram Mspec(n) is calculated with NMel being the number of

Mel features, n being an index with values ranging from 0 to NMel − 1 and k being an index with

values arranged from 0 to NMFCC −1. The Discrete Cosine Transform (DCT) of the 81 log filterbanks

produced 16 cepstral coefficients. The 16 MFCCs produced are features for each frame section of the
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Figure 3.3. A Mel-spectrogram example of an audio track sampled at 16kHz, with a female voice

saying: “Maintain your health while you have it, it’s easier”. The Mel-spectrogram consists of 81

frequency bins or FFT points and 577 time bins. It is noted that the vocal data is more distinguishable

from the silence data, than in the normal spectrogram.

audio data. The MFCC features are more decorrelated than the Mel spectrogram which is beneficial to

the linear parts of the model.

3.2.2.3 Delta Coefficients

The deltas or change in MFCC values with respect to sample time are also calculated and added. The

deltas of the MFCC values were also calculated to append to the features of the audio and consider

change in frequency to improve the model for multiple different speakers. The delta MFCC describes

the change in MFCC values for frames. As such, the number of feature values will double, since there

are 16 MFCC coefficients and 16 delta coefficients. The Delta MFCC, Dt , is calculated as

Dt =
∑

Ndel
n=1 n(Ct+n −Ct−n)

2∑
Ndel
n=1 n2

. (3.11)
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The value Ndel =
lwin−1

2 , where lwin is the selected delta window length. The delta window length

determines how many MFCC time samples are used to calculate the MFCC delta value. A lwin value

of 2 was selected to take the change between two MFCC time samples. Dt is the calculated delta

coefficient and Ct is the static MFCC coefficients.

The MFCC and delta coefficients were concatenated into a single matrix in Figure 3.4. The MFCC

values represents the first 16 frequency bins, and the delta coefficients represent the second 16 frequency

bins. The MFCC data represents the voice data in terms of frequency while the delta coefficients

represent a change in frequency between MFCC bins.
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Figure 3.4. A combined MFCC and delta coefficients example of an audio track sampled at 16kHz,

with a female voice saying: “Maintain your health while you have it, it’s easier”. The MFCC consists

of 16 frequency bins and the delta coefficients consist of the next 16 frequency bins. There are also

590 time bins. It is noted that most of the plot is filled with usable data and the frequency features are

reduced from 201 features to 32 features.
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3.2.3 Feature pre-processing

Different pre-processing methods such as “SpecAugment” and time stretching is implemented to

introduce random perturbations of selected audio data during training. This virtually increases training

data and generalises the ASR model for more different speech types.

3.2.3.1 Spectral Augmentation

The first pre-processing method was completed by augmenting the audio features during training

using the “SpecAugment” method. This method removes a small percentage of randomly selected

data features. Some frequency and time feature vector components of the audio features are removed

randomly, by making some values zero. This is to create a larger variety of training data and a more

robust model. The “SpecAugment” approach is implemented after extracting the Mel spectrogram

of the audio data and before the MFCC values, due to the MFCC values already being a smaller

representation of the Mel spectrogram in terms of feature reduction. The Mel spectrogram has 81

features compared to 32 MFCC features. During each training batch, there is a 50% chance that the

feature data will be augmented. If the data is randomly selected to be augmented there is a 50% chance

that only one sequence of frequency domain values and one section of the time domain values will be

removed. Otherwise, there will be two separate sequences removed in the frequency domain and two

separate sequences removed in the time domain.

The frequency masking is completed by removing a random section of the Mel frequency domain.

The size of the frequency bins to zero is randomly selected between 0 and a max frequency mask

parameter of 15 bins out of the possible 81 Mel frequency bins. The time masking is completed by

removing a random section of the time domain. The size of the time bins to zero is randomly selected

between 0 and a max time mask parameter of 35 bins, where the time bins usually consist of over 100

bins depending on the audio data size. An example of the “SpecAugment” method can be seen in

Figure 3.5(b) where different sections of the frequency bins and time frames are zeroed.

3.2.3.2 Time Stretching

The second pre-processing method was completed by applying time stretching of 10% randomly to

the data during training, to ensure that the speed of the audio is considered. This method stretches or

shrinks the audio data by 10% of randomly selected data features without modifying the pitch of the

audio data. The time stretching approach is implemented after extracting the complex values of the

original spectrogram of the audio data. During each training batch, there is a 50% chance that the
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(a) Original MFCC and delta coefficients.
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(b) Spectral augmented MFCC and delta coefficients.

Figure 3.5. A combined MFCC and delta coefficients example of an audio track sampled at 16kHz,

with a female voice saying: “Maintain your health while you have it, it’s easier”. (a) Original version

without ‘SpecAug’ implementation. (b) ‘SpecAug’ applied version where two sections of the time

domain and two small sections of the frequency domain were removed.

feature data will be time stretched. If the data is randomly selected to be augmented there is a 50%

chance that the data will be stretched by 10%, otherwise the data will be shrunk by 10%.

The time stretching method uses a phase vocoder to interpolate the information of the audio data

by using the phase information from the spectrogram. The vocoder changes the phases of specific

frequency components to stretch or shrink the sound. A time step matrix Ts is created, where s is

the different time instances. The time step matrix has a new amount of time instances where each

time instance contains a set of spectrogram frequency values. These time instances are between 0

and the new required time based on the stretching or shrinking. This creates the new size of the new

time step matrix. Two new copies of the original spectrogram with the original time steps are created.

The spectrogram values at time instance Ts of the original spectrogram are copied to the first copy

Spec0 and the spectrogram values at time instance Ts +1 of the original spectrogram are copied to the

second copy Spec1. The phases and magnitudes of the copied spectrograms are used to create the final

time stretched spectrogram. The new phase is calculated using multiple equations. The first equation
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is:

Pnew1 = PAng1 −PAng0 −PAdv, (3.12)

where PAng1 is the angle of Spec1, PAng0 is the angle of Spec0 and PAdv is the phase advance. The

phase advance is the expected phase change for each bin. PAdv is a linear step vector, that steps from

0 to π ∗ lhop with 201 equal steps inbetween, which is the number of frequency points and lhop is the

length between DFT windows. The phase is then kept between −π and π by applying:

Pnew2 = Pnew1 −2×π × round
(

Pnew1

2×π

)
.

The expected phase change PAdv is added back to the new phase again:

Pnew3 = Pnew2 +PAdv,

and lastly the new phase Pnew3 is concatenated to the phase of the original spectrogram and the

cumulative summation of the phase vector is used for the new spectrogram.

The new phase can also be calculated by adding the phases PAng1 and PAng0 in the complex domain

using −exp(−i(PAng1 +PAng0)), and then get the angle of the resultant complex number.

The magnitude of the new spectrogram is calculated as follows:

Magnew = αmod ×norm1 +(1−αmod)×norm0, (3.13)

where αmod is the Ts %1.0, norm1 is the magnitude of Spec1 and norm0 is the magnitude of Spec0.

Using the magnitude and phase of the new spectrogram, the final time stretched spectrogram is

produced. In Figure 3.6(a), a time shrunk reproduction of the MFCC and delta coefficient features

from Figure 3.4 is displayed. The spectral data remains very similar, but the time frames are decreased

from 577 frames to 525 frames. In Figure 3.6(b), a time stretched reproduction of the MFCC and delta

coefficient features from Figure 3.4 is displayed. The spectral data remains very similar, but the time

frames are increased from 577 frames to 642 frames.

3.2.4 Text Data

The text data corresponding to the features and used as labels was pre-processed into lower-case,

English alphabetic letters only. A few added classes were also included, such as a space and an

apostrophe. These characters could change the way the audio is perceived and was therefore added.

The text or label data was tokenized into numerical values, by simply mapping each character to

an integer as seen in 3.1, for class vector creation to train the model. An extra class was added for
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(a) Time shrunk MFCC and delta coefficients.
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(b) Time stretched MFCC and delta coefficients.

Figure 3.6. A combined MFCC and delta coefficients example of an audio track sampled at 16kHz,

with a female voice saying: “Maintain your health while you have it, it’s easier”. (a) Time shrunk

implementation of 10% with 525 time frames. (b) Time stretched implementation of 10% with 642

frames.

unknown characters or letters not seen before by the model. The label data and the pre-processed audio

data are not the same size and therefore each input value does not have a given class. To fix this for

training, connectionist temporal classification (CTC) is used to align the audio data to the label data

[16]. Each input is given an output distribution over all possible labels. An added pad class is added to

the 29 classes for the CTC method to determine when the same character is being repeated. A pad

token would be added in between repeating characters. In Table 3.1, the selected characters and their

corresponding tokens can be inspected.

3.3 MODEL

The ASR model architecture, as in Figure 3.7, consists of a sequential CNN and transformer network

that are connected with normalisation layers. The CNN expands the input audio features into multi-

layered neurons or data points to be used by the transformer architecture. The time instances in a

sequence of inputs are reduced by the CNN to enable more information to be stored as features using

data over multiple time instances. The audio features are abstracted into a feature map consisting of

128 feature values at each time instance as input to the transformer architecture. The CNN consists
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Table 3.1. A representation of the character-based tokenization, where each character class used in the

ASR model is transformed to a number that is used for training the model.

Character Token Character Token

<blank> 0 n 15

<space> 1 o 16

a 2 p 17

b 3 q 18

c 4 r 19

d 5 s 20

e 6 t 21

f 7 u 22

g 8 v 23

h 9 w 24

i 10 x 25

j 11 y 26

k 12 z 27

l 13 ’ 28

m 14 <unknown> 29

of a one dimensional convolution layer, a dropout layer and a normalisation layer. The output of the

CNN is the input of a dense architecture, which changes the dimensions of the data and normalises

the data for the transformer. The dense architecture consists of a fully connected linear layer and

normalisation layer as well as a Gaussian error linear unit (GELU) layer and a dropout layer. The 4

layers are repeated twice, and each layer has a size of 128 feature inputs and outputs.

The transformer architecture has a two-headed layout, where each head contains two encoder layers

and two decoder layers with a final feedforward layer that has a hidden layer size of 1024 nodes. A

basic layout of one head of the transformer can be seen in Figure 3.7. The output of the transformer ar-

chitecture is transferred to a final normalisation layer and dropout layer. The output of the dropout layer

is reduced to 30 output classes using a final linear feedforward neural network (FFNN) layer.
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Figure 3.7. The flow diagram on the left, describing the basic layout of the architecture used to

train the small-scale ASR system. The model consists of a one dimensional CNN layer and a dense

layer to restructure and normalise the audio data. A transformer layer (right) is used to train the

model according to the sequential correlation of the data. The normalisation and linear layers after

the transformer are used to convert the data into 30 classes of the output characters of the model.

The flow diagram on the right describes the two-headed transformer architecture. The diagram is a

representation of one of the heads. Each head contains three encoder layers and three decoder layers

with normalisation layers after the encoder and decoder.

3.3.1 Convolutional Neural Network Architecture

The convolutional neural network (CNN) architecture uses a convolutional operation to incorporate

spatial context for the input data features in multiple dimensions. The MFCC and delta coefficients

are represented by a two-dimensional matrix that represents the audio feature data in the frequency

domain and the sequential time domain. The MFCC values and delta coefficients are normalised

during pre-processing to reduce the bias of smaller and bigger values during training of the CNN by

applying:

x′MFCC = (xMFCC − xMFCCmin)/(xMFCCmax − xMFCCmin). (3.14)

The MFCC and delta input features act as channels in the CNN. The computational units used in a CNN

layer are n-dimensional filters that are convolved with the input of each layer. The first layer input will
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be the data, while the input of following layers will be the output of the previous layers. In this case,

only one layer will be used for parameter reduction of the model. The filters used in the convolutional

layers consist of randomly instantiated values that form a smaller dimensions than the input, therefore

allowing spacial capturing of the input features in time, while reducing the dimensionality. The

spatial capturing allows for a new relationship of the data features between the different input values.

This allows for the sequential time-based features to be mapped during training. The same filter is

used across the entire input sequence and allows for parameter reduction by sharing filter parameters

between sequential inputs.

The CNN allows new local features to be learned based on the MFCC and delta coefficients, in each

time step, used as inputs to the CNN architecture. New features such as noise changes based on

different frequencies are learned. Stacking convolution layers can create more local features to be

learned, but at a computational cost of using more parameters, memory, and training time. The main

component of any CNN is the convolutional unit. The convolutional units are used as filters to extract

new features from input data. A FFNN or linear layer produces a one-dimensional output layer, while

a CNN generally produces multi-dimensional feature maps.

The filter in a convolutional layer consists of a grid of numbers or weights. The convolution between a

section of the input matrix and the filter grid is applied, and the filter is moved across the input matrix

horizontally based on a stride parameter lstride. This process is repeated until the entire input matrix is

convoluted with the filter matrix, essentially creating the output values for each channel of a CNN. The

convoluted results are stored in an output matrix and the filter shifts horizontally with the stride length.

The process is also known as cross-correlation which can be seen in Equation 3.15, but convolution

has an added filter flip in the horizontal and vertical axis before multiplication and addition. This is

not necessary in machine learning as the filter parameters or weights change during training of the

model. Cross correlation is the measure of similarity or displacement between two different vector or

functions. It is also known as the sliding dot product as a new matrix is formed by using the dot product

on two matrices being cross-correlated. The cross correlation function can be described as:

RXY ≜ E[XY], (3.15)
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where X = (X1, ...,Xm) and Y = (Y1, ...,Yn) are both vectors and this can be written component wise

as:

RXY =


E [X1Y1] E [X1Y2] · · · E [X1Yn]

E [X2Y1] E [X2Y2] · · · E [X2Yn]
...

...
. . .

...

E [XmY1] E [XmY2] · · · E [XmYn]

 .

The stride distance lstride, affects the reduction in dimensionality between the input matrix and output

matrix of a CNN layer. This is known as sub-sampling. The output matrix can be padded to keep the

dimensionality constant, but a dimensionality reduction also results in a parameter reduction, which is

one of the main goals of the model design. The output dimensions are given by:

lout =

(
lin − fconv + lstride

lstride

)
(3.16)

and

wout =

(
win − fconv + lstride

lstride

)
, (3.17)

where lout x wout represents the output dimension size and lin x win represent the input dimension size.

In our case l represents the time dimension w represents the Mel frequency dimension. The l x w

image represents the entire spectrogram. The filter size is represented by fconv x fconv and lstride is

the stride length. In the case of audio processing, the 32 audio features are 32 different channels and

cross-correlation from Equation 3.15 occurs for the sequential time units over all the channels. This

requires only Equation 3.16 as the filter and the inputs would both have 32 channels. Adding slight

padding does retain some time-based information and ensures that data is not lost between the changes

for data over time. Adding padding changes Equation 3.16 to:

lout =

(
lin +2× lpad − fconv −2

lstride
+1

)
, (3.18)

where lpad is the padding size.

3.3.1.1 Model Implementation

The CNN selected for this ASR model applies a small one-dimensional convolution over the time-based

dimension input for all the 32 audio feature channels. The process can be described for each input

sequence L with:

(Nbat ,Cout) = b(Cout)+
Cin−1

∑
k=0

w(Cout ,k)⋆ in(Nbat ,k), (3.19)

where the input size is (Nbat ,Cin,L) and Nbat is the batch size. The channels Cin and Cout are the number

of input feature channels and output feature channels respectively and L is the sequential length of the

input audio signal. The ⋆ symbol represents the cross-correlation operator. The CNN layer has a set of
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bias values b and a set of weight values w that are adjusted during training using a loss function and

back propagation to adjust the CNN to predict the correct classifications. The weight and bias values

are randomly initialised using a random Gaussian distribution before training to ensure the model does

not start training with a bias to a certain local minimum.

The model uses an input of multiple sequential time-based inputs lin x win, where each time-based

input has 32 channels or features. The output lout is selected to have the same number of 32 channels,

but half the time-based outputs. The convolving filter size f is selected to be 10 and a stride length

lstride of 2 is used. A zero padding value p of 5 was selected to add 5 zeros on each side of the input

features. Therefore, using Equation 3.16, it can be determined that the output would be half the size

after the convolution process occurs:

lout =

(
lin +2×5−10−2

2
+1

)
,

∴ lout =

(
lin
2

)
.

3.3.1.2 Model Additions

A normalisation layer is applied to the batch output data of the CNN to produce a normalised output y

given x, such that:

y =
x−E[x]√
Var[x]+ ε

× γ +β , (3.20)

where E[x] is the mean of the probability distribution of the batch data and Var[x] is the variance of the

probability distribution of the batch data. The parameters, γ and β , are learnable parameters for each

element in the data to ensure the data remains discriminate. A small value of 1×10−5 is added as ε to

the variance of x, to ensure that division by zero does not occur if the variance is 0. The normalisation

layer ensures that the feature values of the data are transformed to similar ranges and therefore reducing

the risk of any vanishing or exploding gradient problems when an activation function is added during

training.

The normalisation layer is followed by a Gaussian error linear unit (GELU) activation function, which

is implemented to the data so that:

x = x×Φ(x), (3.21)

and Φ(x) is the cumulative distribution function for a Gaussian distribution such that:

Φ(x) = 0.5× x× (1+Tanh(
√
(2/π)× (x+0.044715× x3))). (3.22)
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The GELU activation function introduces non-linearity to the data by adding weights to the inputs

based on their percentile in the cumulative distribution function.

The final layer of the CNN system is a dropout layer. The dropout layer is used to randomly mask or

zero selected channel features during training, using samples from a Bernoulli distribution to select

which channel features are to be zeroed. Each channel has independent zero values on each forward

training call. A probability p value determines the probability that an item is zeroed during training

such that

zi ∼ Bernoulli(p), zi ∈ z,

where the zero zi is a Bernoulli distribution with a given probability p and z is the same size dimension

as the input data. The randomly masked positions are then multiplied to the input data to zero the

selected data. A dropout value of 0.1 was selected during training. The output values are scaled to 1
1−p ,

to ensure that the data remains normalised. During evaluation the probability value is set to 0 and the

module computes an identity matrix during the prediction forward call. A basic flow diagram of the

CNN architecture is displayed in Figure 3.8(a) to understand the process of each of the layers in the

CNN architecture.

3.3.2 Dense Architecture

A dense architecture subsystem is appended to the output of the CNN subsystem. This subsystem

consists of linear layers, normalisation layers, activation functions and dropout layers. The dense

subsystem is used to normalise and reshape the data for the transformer architecture. The first layer is a

linear layer or also known as a dense layer. This layer is used to change the dimensionality of the output

from the input data given. In this case, the linear layers are used to change the dimensionality of the

output of the CNN architecture and prepare the data for the main transformer architecture. The linear

layer uses a weight matrix and matrix multiplication to transform input features into output features.

The 32 input features from the CNN dropout layer are passed as a flattened one dimensional matrix and

multiplied by a weight matrix. The output features are produced using a linear transformation:

y = Wx+b, (3.23)

where y are the output features, x are the input features, W represents the weight matrix and b represents

the added bias parameters. The weight and bias values are randomly initialised, where the weight

matrix W has a size of (yn×xn) where yn is the number of output features and xn is the number of input

features. The bias vector b has a size of yn. The values are initialised using the mean υ(−
√

k,
√

k),

where k = 1
xn

. The first linear layer converts the 32 features xn into 128 features yn for each unit in
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(a) A basic layout of the CNN architecture used in the

small-scale ASR system.
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(b) A representation of the dense architecture consist-

ing of two sets of linear layers and additional normalisa-

tions, GELU and dropout layers.

Figure 3.8. (a) describes the basic layout of the CNN architecture used to in the small-scale ASR

system. The CNN model consists of the main 1 dimensional convolutional layer and additional

normalisation, GELU and dropout layers. (b) describes the dense architecture. The dense architecture

consists of two sets of fully connected linear layers as the main layers. The architecture also has

additional normalisations, GELU and dropout layers.

time.

The linear layer is followed by a normalisation layer identical to the normalisation layer used in the

CNN architecture in 3.3.1.2. The normalisation layer has the same properties as in Equation 3.20,

but only difference is that the amount of inputs is 128 features. An activation function layer is also

introduced to allow the dense architecture to learn non-linear relationships. The GELU activation
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function, as in Equation 3.21, is used with 128 features following the normalisation process. The final

layer is another dropout layer to introduce masked elements into the model. A dropout probability p,

of 0.1 was selected for the Bernoulli distribution probability.

The 4 layers in the dense architecture are repeated to ensure model stability during training. The 4

layers ensure that the parameters do not change drastically during training and therefore the received

input data can be slightly different and still produce an accurate result. This increases prediction

accuracy for the case of voice data where different people have different accents and produce different

input features for the same output. The second linear layer has an identical number of input and output

features of 128. The repeated normalisation layer, GELU activation function layer and dropout layer

are identical to the first set of dense layers. The only changes are the weight and bias parameter values

that are adjusted during training of the model. The dense architecture creates a linear relationship

between the output features of the CNN and the input features of the transformer. The dense layer also

allows for data feature normalisation before the data is received by the transformer architecture. A

basic flow diagram of the dense architecture is displayed in Figure 3.8(b) to understand the process of

each of the layers in the dense architecture.

3.3.3 Transformer Architecture

RNNs introduced the opportunity to train sequential data and by producing time-based predictive

models. This was achieved by introducing feedback connections for sequential data processing. The

transformer architecture is a modern evolution of neural architectures that replaced RNNs, such

as LSTMs. Attention mechanisms were added to RNN networks for improved performance by

reducing the vanishing gradient problem and adding tokens that depend on previous tokens. Attention

mechanisms within RNN structures produces sequential tokens that stored information about the

sequential data, but the processing had to be sequential. Removing the RNN structure and using purely

attention-based mechanisms removed the need for sequential processing. Transformers consist of

attention mechanisms on their own, without the RNN structure, eliminating sequential processing and

using parallel processing [15]. Transformers make use of positional encodings of the sequential data

to eliminate the remembering process of RNNs. A transformer consists of an encoder and decoder

architecture as in Figure 3.7. The encoder layers have self-attention units that process the input data

from previous encoders or the input sequence data and their relevant weight functions iteratively one

layer at a time. The encoder layers produce output values that are transferred to a FFNN layer to

process each output encoding individually for the next encoder as input. The decoder layers have
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self-attention units as well as an additional attention mechanism that draws information from the

outputs of the encoders. Each encoder and decoder layer are accompanied by a FFNN layer for residual

connections and layer normalisation. The first decoder takes positional information and embeddings of

the output sequence as input. Masking is used to block the decoder from inspecting current or future

sequential output data, therefore preventing reverse information flow. The last decoder implements

a final linear transformation and softmax layer to produce output probabilities for the given output

classes or vocabulary [14]. The softmax activation function is a mathematical function that converts

the output layer vectors of values into vectors of probabilities, where each vector of probabilities sums

to unity. The probabilities of the values are proportional to the relative values stored in the vectors.

The softmax function σ can be expressed as:

σ =
exi

∑
k
j ex j

, (3.24)

where xi represents a particular node in the vector and k represents all the values in the vector.

Transformer networks use scaled dot product attention units as the main mathematical functions in the

encoders and decoders. Every attention unit input has a corresponding weight value. The attention

weights are calculated between every token simultaneously to produce embeddings for every token in

context. This context contains information about the token and a weighted combination from other

relevant tokens, weighted by attenuation weights. Each attention unit consists of a query weight Wq,

a key weight Wk and a value weight Wv matrix. Each token i consists of the input word embedding

xi, multiplied with each of the three weight matrices. This produces a query vector qi = xiWq, a key

vector ki = xiWk and a value vector vi = xiWv. The attention weights are calculated from the query and

key vectors, where each attention weight ai j is the dot product of qi and k j from i to j. The attention

weights are also divided by
√

dk, which is the dimension of the key vector, to stabilise the gradient

during training. Lastly, the attention weights are passed through a softmax function to normalise the

data to sum to unity. The different weight matrices Wq and Wk allow for the model attention to be

non-symmetric. If a token i attends to a token j, the dot product of the query vector qi with the key

vector k j is large, but does not determine that token j will attend to token i. This is one of the reasons

multiple weight matrices are used. The output of an attention unit for a token i is the weighted sum of

the value vectors for all tokens weighted by ai j. The attention calculation for all tokens is therefore a

large matrix calculation for matrices Q,K and V representing all the tokens qi,ki and vi. This produces

the attention equation from [14],

Att(Q,K,V ) = so f tmax
(

QKT
√

dk

)
V. (3.25)
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One set of attention units with weights (Wq,Wk and Wv) is known as an attention head [14]. Each

layer in a transformer model consists of multiple attention heads. One attention head attends to

tokens that are relevant to each individual token. Multiple attention heads help the model to create

different definitions of relevance between tokens. Multi-head attentions are processed in parallel and

concatenated to be passed through a final FFNN layer for further processing. An illustration of the

scaled-dot attention as in Equation 3.25, can be inspected in Figure 3.9(a) and an illustration of one

layer of a multi-head attention can be inspected in Figure 3.9(b).

MatMul

SoftMax

Mask

Scale

MatMul

Q K V

(a) Scaled dot-product attention.

Linear

Concat

Scaled Dot-Product Attention

Linear Linear Linear

V K Q

(b) One layer of multi-head attention. Multi-head

attention will stack attention layers and linear layers

on top of each other to run in parallel, while the final

concatenate layer and linear layer are used to combine

the data from the multi-head attention layers.

Figure 3.9. (a) describes the basic layout of the scaled dot-product attention. (b) describes the multi

head attention layers and how they run in parallel for multi-head attention.

3.3.3.1 Model Implementation

Multiple transformer architectures are used for the model experimentation, but the main transformer

architecture consists of two heads and each head consists of two or three encoder layers and two or

three decoder layers. The first encoder receives a (t ×b× x) dimensional input where t is the amount

of time-based inputs, b is the batch size of 32 or 64 and x is the input features from the dense layer that

consists of 128 features. The input and its positional encodings are used in the attention function from

Equation 3.25 to produce an output of dimension (t ×b× x). The first encoder output is passed to the

input of the second encoder and the process is continued for the amount of encoder layers to create
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an encoder system. The first decoder receives a (t × b× x) dimensional input of the input features

from the dense layer as well as the output of the encoder system as a separate input. The input and its

positional encodings are used in the attention function from Equation 3.25 to produce an output of

dimension (t ×b× x) for the decoder. The current and future outputs are masked to ensure the model

does not have reverse flow information. This would cause the model to have the value that is to be

predicted already available. The following decoder layer uses the input of the previous decoder layer

as well as the output of the encoder layer to calculate the output of the encoder layer. This process is

continued for the amount of decoder layers to create a decoder system. An example of a two-encoder

two-decoder layer transformer can be seen in Figure 3.7.

The encoder layer consists of multiple sub-layers. The first sub-layer is an attention layer that receivers

the input of the encoder. A normalisation layer that receives both the input to the encoder and the

output of the attention layer follows. The normalisation layer is followed by two linear layers. The first

linear layer has 1024 nodes, and the second layer has 128 nodes to keep the output dimensions of the

encoder the same as the input dimensions. The final layer of the encoder is a normalisation layer that

receives the output of the final linear layer and the output of the first normalisation layer. The second

encoder layer is identical to the first encoder layer but receives the output of the first encoder layer

with dimensions (t ×b× x) as the input and has different weight values in the sub-layers. The second

encoder layer produces an output with identical dimensions as it’s input of (t ×b× x). The process is

repeated for the given amount of encoders. The final layer in the encoder system is a normalisation

layer to normalise the data for the decoder system. A representation of the encoder system is displayed

in Figure 3.10.

The decoder layer consists of multiple sub-layers. The first sub-layer is an attention layer that receives

the output of the dense layer. A normalisation layer that receives both the output of the dense layer and

the output of the attention layer follows. The normalisation layer is followed by another attention layer

that receives the output of the encoder system as well as the output of the first normalisation layer. The

output of the second attention layer and the first normalisation layer is passed to a second normalisation

layer. The second normalisation layer is followed by two linear layers. The first linear layer has 1024

nodes, and the second layer has 128 nodes to keep the output dimensions of the decoder the same as

the input dimensions. The final layer of the decoder is a third normalisation layer that receives the

output of the final linear layer and the output of the second normalisation layer. The second decoder

layer is identical to the first decoder layer but receives the output of the first decoder layer and the
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Output

LayerNorm

Dropout

Linear

Dropout

Linear

LayerNorm

Dropout

Attention Layer

Input (from Dense)

Figure 3.10. A representation of the encoder subsystem, consisting of an attention layer, two normal-

isation layers and two linear layers with 1024 nodes each.

output of the encoder system. The second decoder layer has different weight values in the sub-layers.

The second encoder layer produces an output with identical dimensions as the input of (t × b× x).

The process is repeated for the given amount of decoders. The final layer in the decoder system is a

normalisation layer to normalise the data for the final output of the transformer. A representation of

the decoder system is displayed in Figure 3.11.

3.3.3.2 Model Additions

The transformer architecture is followed by a final normalisation, dropout, and linear layer. The

normalisation layer is applied to the batch output data of the transformer to produce a normalised

output as seen in Equation 3.20. The γ and β parameters from the equation are learnable parameters

for discriminate data. The ε value remains 1×10−5 to remove the possibility of division by 0. The

following dropout layer is used to randomly mask or zero selected elements during training, using

samples from a Bernoulli distribution. Each channel has independent zeroes values on each forward
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Output

LayerNorm

Dropout

Linear

Dropout

Linear

LayerNorm

Dropout

Attention LayerLayerNorm

Dropout

Attention Layer

Input (from Dense) Input (from Encoder)

Figure 3.11. A representation of the decoder subsystem. The decoder receives two inputs. One from

the previous encoder system, and another from the dense system before the encoders. The decoder has

an attention layer for each of the inputs and two normalisation layers before the linear layers. There

are two linear layers with 1024 nodes each and a final normalisation layer to produce the output data.

training call. A probability p value of 0.1 was selected to determine the probability that an item is

zeroed during training. A final linear layer is added to the model to change the dimensions of the data

from (t ×b×128) to (t ×b×30). The t represents the time-based dimension size and b represents

the batch size. The final 30 features represent the 30 possible character classes of the model. A final

softmax function layer is applied to enable a cost function to compare predicted output classes to the

actual target classes during training.
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3.3.4 Model Initialisation and Training

The weight and bias parameters are all randomly initialised before training. The weight and bias

matrices define the different functions of the ASR model. The CNN weights and biases represent the

convolution function, the dense weights and biases represent the linear function, and the transformer

weights and biases represent the transformer function. All these weight and bias parameters map the

ASR network and are adjusted and updated during the training process to achieve the desired label

results by minimising a cost function E. Back propagation is used to update the weights and biases for

all the subsystems in the ASR model by using gradient descent. Each weight associated with a node or

data point in the model is updated using:

wt+1
i j = wt

i j −η
∂E

∂wt
i j
, (3.26)

where t is the current time step of the model and η is the learning rate. The learning rate must be small

enough to avoid instabilities in the model by stepping over error local minima, but large enough to

train the model effectively.

Cross-entropy loss is a cost function that could be used as it specialises in multi-class classification

where outputs are one-hot encoded and there is only one correct class per input. The cross-entropy

loss is calculated as:

L(p,y) =−
Nclass

∑
no=1

ynolog(pno), (3.27)

where p is the predicted network output, y is the actual target vector with a one corresponding to the

correct class and zeros as the incorrect classes. The value Nclass is the total number of elements or

classes in the vector. This loss function could not be used as each input feature set did not have a

correlating character assigned to it.

The CTC loss function is a more specific loss function for ASR models and is selected for the model

training. The other loss functions require each input to have a correlating output or target. CTC loss

is used to calculate the loss between a continuous time series and a target sequence. Using the CTC

algorithm, the maximum likelihood label is determined for each input value. A blank token is added

to the character classes to ensure repeating characters remain repeating characters. The string of

characters including the blank are the possible labels for each input. The maximum likelihood labels

for each input value are compressed by removing all repeating characters without a blank token and

finally removing the blank classes. This set of characters is the model output and is compared to the

corresponding text label targets. The difference between the model output characters and text labels
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targets is known as the CTC loss. The CTC loss is used to train the model and adjust the weights and

biases of the model to minimise CTC loss. The mean difference between the predicted and actual

labels is calculated as the CTC loss as in Equation 3.28. This loss function is used to adjust the weights

and biases by using back propagation through the entire model. The probabilities of all the possible

alignments of the input sequence and target sequence is summed to produce a loss value. In CTC

loss, the label error rate (LER) can be defined as the normalised edit distance between the output

classifications of a classifier model hctc and the classification targets such that:

LER(hctc,S′) =
1
Y ∑

(x,y)∈Sdat

ED(hctc(x)) , (3.28)

where Sdat is a dataset with dimensions (x× y) and Y is the total number of target labels. The edit

distance, ED(p,q) is the distance between two sequences p and q which would be the predicted and

target sequences respectively. The edit distance is the minimum number of insertions, deletions or

substitutions required to change sequence p into sequence q [16].

The chain rule is used to calculate the gradients of the respective weights in the entire network for each

layer L′ and each node i using:

∂E
∂wL′

i j
=

∂E
∂ pi

∂ pi

∂ai

∂ai

∂wL′
i j
, (3.29)

= δ
L′
i x j,

and

δ
L′
i = (pi − yi)h′i(ai),

where δ L′
i is the error signal at node i for layer L′. The function ai = ∑ j wi jx j is the weighted sum

of all the inputs to node i before an activation function and h′i is the derivative of the mathematical

function layer for each subsystem with respect to the function ai. The predicted value pi and the actual

value yi are the predicted and actual output values for node i and x j is the output of the previous layer

node connected with a weight wL
i j. The gradient of the selected CTC loss cost function is calculated

for each weight and each input. A batch of weights from multiple inputs are added together, and the

weight updates are applied. The weight updates are iteratively applied during training to attempt to

achieve a minimum loss function of zero.

The learning rate controls the size of the update step from gradient calculations. The model weights

and biases are updated using Equation 3.26. The “AdamW” optimizer adds to this equation as not all

the weights and biases require different learning rates for efficient learning of the model. The “AdamW”
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optimizer uses the square of recent gradients and momentum to adjust different weights based on their

gradient error. L2 regularisation is used to add the sum of squares of all the weights wall , multiplied by

a selected hyperparameter called the weight decay parameter wd, to the original loss lsinit value such

that:

ls f in = lsinit +wd × ∑w2
all

2
. (3.30)

This creates an updated weight decay equation that changes Equation 3.26 to:

wt+1
i j = wt

i j −η
∂E

∂wt
i j
−η ×wd ×wt

i j. (3.31)

The weight decay equation is used in practice instead of the L2 regularisation as updating the cost

function would add substantially more computations than adding wd×wt
i j to the weight update function.

The “AdamW” optimizer uses the weight decay equation with added momentum to produce:

wt+1
i j = wt

i j −η ×moveavg −η ×wd ×wt
i j,

where moveavg is:

moveavg
t = αmom ×moveavg

t−1 +(1−αmom)×
∂E

∂wt
i j
.

The αmom coefficient is another hyperparameter to control the momentum. The “AdamW” optimizer

only performs the weight decay equation after the parameter-wise step size is implemented. Therefore,

the weight decay portion does not have moving averages and is proportional to each weight itself. For

the selected “AdamW” optimizer an initial learning rate of 1×10−3 is selected. The weight decay

parameter wd is selected to be 1× 10−2. Both these values are selected based on general starting

parameter values in machine learning [62].

The learning rate controls the size of the update step from gradient calculations. If the learning rate is

too large, the model might never converge, and if the learning rate is too small, the model might get

stuck in local minima. Learning rate scheduling is added to find the perfect balance for the learning

rate value. Generally, the learning rate starts at a relatively large value for an initial learning rate which

is still very small, to ensure the model does not become stationary in a local minimum during initial

training. As the training of the model progresses, the learning rate is decreased to ensure the model

converges during training. A “reduce on plateau” scheduler is added that reduces the learning rate by a

factor of 0.5, if no loss value improvement has been recorded for 6 iterations. Different factors values

are tested for optimum training efficiency. The goal is to ensure the model trains with as few iterations

as possible and still reaching the lowest possible loss value.
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3.4 LANGUAGE MODELS

Language models are added to the end-to-end character-based ASR model to enhance the understanding

of words from the predicted characters. The character-based ASR model learns different sounds and

characters and can develop a correlation between the given character classes and spaces. A language

model improves the ASR model by using the predicted characters and changing them into existing

words. A language model adds natural language processing (NLP) to the existing ASR model and

adds word understanding. There are two types of language models namely deterministic and statistical

models. Deterministic language models are defined by grammar rules and are not as common in NLP.

Statistical language models use the probability of occurrence of a sequence of words based on previous

words. These are the language models typically used in NLP [23]. Two popular statistical language

models presented in literature are the n-gram language model and the BERT transformer-based

language model [34, 23]. The n-gram language models are smaller and practical for a small-scaled

ASR system but lack the diverse correlation between words and deep sequential understanding of

sequences of words that the BERT language model contain.

3.4.1 N-gram language model

N-gram language models were one of the first language models used in NLP [13]. The model uses a

statistical probability of words occurring based on previous and following words. Statistical language

modelling estimates the prior probability P(W ) for a sequence or string of words W in a total vocabulary

V . The vocabulary V can be thousands to hundreds of thousands of words depending on the selected

language model. The sequence of words W is usually broken into small sequences or sentences that

are conditionally independent so that:

P(W ) =
n

∏
i=1

P(wi|w1,w2, ...,wi−1) . (3.32)

The surrounding words Wk−1 = (w1,w2, ...,wi−1) are used in a function φ(Wk−1) to determine the

predicted word wk. Therefore, Equation 3.32 can be rewritten as:

P(W )≃
n

∏
i=1

P(wk|φ(Wk−1)) .

Language models use different methods to find a function φ to estimate P(wk|φ(Wk−1)). The n-gram

language model uses φ(Wk−1) = wk−n+1,wk−n+2, ...wk−1, so that the ‘n+1’ number of words before

the selected word is taken as φ(Wk−1).

The basis of an n-gram model uses count statistics. The probability that the word ‘happy’ occurs after

‘I am’, is the number of times ‘I am happy’ occurs divided by the number of times ‘I am’ occurs so
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that:

P(‘happy’|‘I am’) =
C(‘I am happy’)

C(‘I am’)
,

where C is the number of times the sequence of words or the word appears in the vocabulary. There-

fore:

P
(
Wn|W n−1

1

)
=

C
(
W n−1

1 Wn
)

C
(
W n−1

1

) . (3.33)

The n-gram language model uses the basic idea mentioned above and expands it for sequencing

probabilities, for a collection of words, by using a combination of Bayes theorem and Markov

assumptions. Bayes theorem states that:

P(B|A) = P(A,B)
P(A)

, (3.34)

and

P(A,B) = P(A) ·P(B|A).

This rule can be expanded for multiple occurrences in sequence such that there are more than two

elements that are correlated. This can represent multiple words in a sequence so that:

P(A,B,C,D) = P(A) ·P(B|A) ·P(C|A,B) ·P(D|A,B,C).

Equation 3.33 and Equation 3.34, is in essence how the probabilities of the words are calculated for

every sequence using an n-gram language model. Certain words of the sequence might not be in the

vocabulary or corpus of the language model, but these words can be excluded while still determining

the probability of the word given the rest of the words in the sequence without the non-vocabulary

words. Using the Markov assumption Bayes equation can be changed to only use the last ‘n’ words

given the n-gram model. For a trigram model, Equation 3.34 is changed to:

P(A,B,C,D) = P(A) ·P(B|A) ·P(C|A,B) ·P(D|B,C),

and the n-gram model probability can be redefined as:

P
(
Wn|W n−1

1

)
≃ P

(
Wn|W n−1

n−N+1

)
. (3.35)

To measure the performance of an n-gram language model, different quality measures are used.

Perplexity and WER are generally used for language models [10]. The log perplexity of a model

PP(W ), can be calculated as:

PP(W ) =− 1
m

m

∑
k=1

logn [P(Wi|Wi−1)] , (3.36)

for an n-gram language model. The word error rate as calculated in Equation 1.2 is a better quality

measure as the final result is word prediction from a combination of an end-to-end ASR model and an

n-gram language model.
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3.4.1.1 N-Gram implementation

Once the end-to-end ASR model has predicted the output text, the text is inserted into a 4-gram language

model. Different 4-gram language models were tested and created using the kenLM toolkit from [34].

The toolkit uses Equation 3.33 to create probabilities for word relationships as in Equation 3.35. The

toolkit created a large dictionary with relationships between all the words in the corpus for 1-gram

to the selected n-gram relationship. A 4-gram model was selected as any larger model would be too

big for a small-scale ASR system. The 4-gram model data was collected from the text corpus of the

‘LibriSpeech data’ with 200 003 different word entries. In Table 3.2, the amount of combinations for

each n-gram with a probability attached to each combination is provided. Other pre-existing 4-gram

language models are also tested and compared from different text corpuses.

Table 3.2. 4-gram language model with word combinations for 1-gram to 4-gram relationships. Model

created using the LibriSpeech dataset corpus.

N-gram
Number of

combinations

1-gram 200 003

2-gram 38 229 161

3-gram 45 941 329

4-gram 60 975 692

Each output sequence of the ASR model, consisting of the predicted classes based on the speech input,

is transferred to the 4-gram language model. A beam search method is implemented where the output

of the entire sequence with the best probability is selected over a beam search value of 500 different

output sequences. Each beam search output sequence is transferred to the 4-gram language model,

word for word. For each sequence, the language model recommends a word based on the previous three

words, until the sequence is complete. If the predicted word has a high probability, the original output

word in the sequence might be changed. The language model receives two weighting ratio values

namely alpha αlang and beta βlang. The αlang value gives a weighting associated with the language

model probabilities. An αlang value of 0 would mean the language model has no effect and a value

of 1 would take the total probability of the language model prediction. The βlang value is the weight

associated with the probabilities of different words in the beam search. Multiple combinations of αlang

and βlang values were tested to find the ideal values of αlang = 0.4 and βlang = 0.85. An alpha value

that is too high changes the words to satisfy the language model probabilities, but the original words
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from the speech are more susceptible to being replaced. This is not desired in a speech recognition

model. The final output of the language model is converted from tokens to characters and joined to

produce the predicted output sequence.

3.4.2 BERT language model

The drawback of using n-gram language models, is that only a few words, prior the predicted word

are used in the prediction process. RNNs can use the entire sequence to predict a word, without

using excessive amounts of computing memory. RNNs use the same number of parameters for word

sequences with different lengths. Transformer-based models do the exact same as RNNs, but are even

more memory and parameter use efficient. The bidirectional encoder representations from transformers

(BERT) model uses data in the entire sequence to predict or correct words in a sequence. Other

transformer-based models such as generative pre-trained transformer (GPT) 3 models and transformer

5 (T5) models are too large for speech correction. They are used for summarization and text creation.

The BERT model uses only the encoder part of a transformer model and encodes the entire sequence

with positional embeddings to predict the most probable word for each given word in a sequence. The

BERT model uses the data from the sequence in both directions of the masked word that must be

predicted [23].

The BERT base model consists of 12 layers or transformer encoder blocks, with 12 attention heads

and over 110 million parameters. The BERT large model has 24 layers or transformer encoder blocks

with 16 attention heads. The BERT large model has just over 340 million parameters. The model is

pre-trained with a large collection of English words from the ‘BookCorpus’ with 800 million words

and English Wikipedia with 2.5 billion words. During training, a random selection of 15% of the input

data is masked at 80% of the time. The other 10% of the time, the randomly selected 15% is replaced

with a random token (word or character) and the last 10% of the time, the randomly selected 15% is

kept as is. The BERT language model uses a masked language modelling approach, where one word

in the sequence is masked and predicted based on all the surrounding words in the sequence.

Each word in the sequence is tokenized and positional embedding or encodings are added to the word

to determine the position of each word in the sequence. The positional information is crucial for the

model to understand the sequential order of words. Selected words are then masked and predicted. The

positional encodings PE, have the same dimensions d as the model and can be defined as sine and
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cosine functions where:

PE(pos,2i) = sin
(

pos

10000
2i
d

)
, (3.37)

and

PE(pos,2i+1) = cos
(

pos

10000
2i
d

)
(3.38)

where pos is the position and i is the dimension. This allows each dimension of the positional encoding

to correspond to a sinusoid. The wavelengths are selected from 2π to 10000 ·2π and allows the model

to attend to relative positions with a fixed offset. Different embedding values can be represented as a

linear function of PE. It’s important to note that the positional encodings play a critical role in helping

the model understand the sequential context of words within the input sequence. By incorporating

positional information, the model can capture the relationships between words based on their positions

in the sequence, which is essential for tasks such as language modeling and speech recognition.

The model assumes that the words surrounding the masked word in the sequence are correct and

therefore if a large amount of words in a sequence are incorrect the language modelling will not be as

accurate. The tokenized words and positional embeddings are delivered to a set of encoder layers that

are similar to the encoder in Figure 3.10 from the transformer architecture in the speech recognition

model. Using many parallel transformer heads with multiple encoder layers and attention mechanisms

as in Equation 3.25, the model learns different relationships between words in a sequence in terms of

positioning in the sequence and word correlations. The BERT model uses transfer learning where the

base BERT model is fine-tuned for different tasks by changing the parameters of the final layer of the

BERT model for the required task such as sentence correction in our case for speech recognition.

3.4.2.1 BERT implementation

The BERT model was fine-tuned using a ‘Huggingface’ library in python to ensure that the vocabulary

of the model matches the vocabulary of the data used in the end-to-end speech recognition model. The

fine-tuned model continued to have a larger vocabulary than the data used in the end-to-end speech

recognition model, to ensure that the model could predict other words from the English dictionary that

do not occur in the Common Voice dataset and LibriSpeech dataset. This creates a more generalised

model.

The BERT model is implemented with the output data of the beam search method, where the predicted

sequence with the highest probability is used. The highest predicted output sequence is received by

the BERT language model. Each word in the sequence is iteratively masked, and the language model

predicts the 50 most probable words for the masked word. The language model predicted words are
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compared to the original word before masking and the word most similar to the original word is used.

This method ensures that the language model does not attempt to change words in the sequence that

were not present in the original speech. The output words of the language model are also checked

to ensure that only tokens from the original character classes of the ASR model is used. If a word is

changed or corrected using the language model, the input sequence is updated before the next word in

the sequence is masked and predicted by the BERT language model.

3.5 CHAPTER DISCUSSION

In Chapter 3, the methodology, design, and initial experiments for the small-scale, transformer-based

ASR model were presented. In Section 3.2, various data pre-processing techniques were explored,

including audio data sampling, feature extraction methods like the Mel-Spectrogram and MFCC,

and text tokenization. In Section 3.3 the model’s design involved a modular approach, allowing for

flexibility in adjusting size and hyperparameters, utilizing both CNN and transformer architectures.

In Section 3.4 different language models, including traditional N-gram and BERT models, were

integrated into the ASR framework. Overall, Chapter 3 provides a comprehensive overview of the

development process, setting the stage for the subsequent experimentation and analysis in the following

chapters.
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CHAPTER 4 EXPERIMENTS

4.1 CHAPTER OVERVIEW

This section describes the different experiments and training methods used to train the designed

ASR model using the different datasets as well as different pre-processing techniques and evaluation

techniques. Section 4.2 provides the first attempt at training the ASR model and compares the model

with different parameters and compares the model to a similar model with an LSTM architecture

instead of a transformer architecture. In Section 4.3, the different pre-processing techniques and output

methods are tested for the Common Voice dataset. Section 4.4 describes the experiments in training

the ASR model with the ideal pre-processing techniques and output methods for the Common Voice

dataset and LibriSpeech dataset.

4.2 MODEL COMPARISONS

4.2.1 Batch Size and Pre-Processing

The first designed model was selected to be a small transformer-based model with a single attention

head and a single encoder/decoder layer. The model has 32 input features with 16 MFCC values

and 16 MFCC delta values described in Section 3.2.2. The data is a subset of the Mozilla Common

Voice English 7.0 dataset [18] and is sampled at 8kHz. The model has 30 classes describing each

character in the alphabet and other important symbols for ASR as in Table 3.1. The model has an

initial learning rate of 1×10−3 and a dropout value of 0.1 for all the dropout layers during training.

The model weights and biases are randomly initialised. The evaluation subset of the Common Voice

English dataset is used to evaluate the model after every epoch and adjust the learning rate if necessary,

using the “AdamW" optimizer. If the model training is stuck at a local minimum for CTC loss over a

few training iterations, the optimizer increases the learning rate to change the weight and bias training

values more rapidly and to improve training efficiency. Training is continued until the model reaches a

minimum CTC loss value for the evaluation data and the loss value does not decrease over 10 iterations.
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CHAPTER 4 EXPERIMENTS

This prevents overtraining the model for the specific training data that is provided. The first model is

tested with different batch sizes. A batch size of 16, 32 and 64 produced a CTC loss value of 2.9758,

2.4326 and 2.038 after 150 epochs, respectively.

The data pre-processing was changed to produce 81 Mel spectrogram features instead of the 32 MFCC

and delta features for the same model with a batch size of 64 and produced a CTC loss of 2.606

after 150 epochs. In Table 4.1 it is indicated that the reduced MFCC features produced significantly

better results than the 81 Mel spectrogram features for a batch size of 64 input sequences at 150

epochs.

Table 4.1. The first experiment testing the CTC loss of a 1-headed transformer, with 1 encoder layer

and 1 decoder layer using a subset of the Common Voice training and validation dataset. The different

model experiments have different batch sizes and features.

Model

(1 head

transformer)

Features Batch Size
Sampling Rate

(kHz)
LR Epochs

CTC loss

(train)

CTC loss

(valid)

Experiment 1
MFCC + Delta

(32)
16 8000 1×10−3 150 2.9061 2.9758

Experiment 2
MFCC + Delta

(32)
32 8000 1×10−3 150 2.3867 2.4326

Experiment 3
MFCC + Delta

(32)
64 8000 1×10−3 150 2.2558 2.0380

Experiment 4
Mel Spectrogram

(81)
64 8000 1×10−3 150 2.6131 2.6068

4.2.2 Architecture Comparison

The transformer-based model in Section 4.2.1 with 32 features and a batch size of 64 is compared

to an LSTM architecture with a single LSTM layer. The single LSTM layer model contains 4 790

141 parameters, while the single head transformer only contains 762 109 parameters. The LSTM

architecture produced a CTC loss of 2.0265 while the transformer architecture produced a similar CTC

loss value of 2.038 with 4 million fewer parameters.

The transformer-based model in Section 4.2.1 was increased to a two-headed transformer architecture,

with two encoder layers and two decoder layers to produce a CTC loss value of 1.412 after 150 epochs.
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CHAPTER 4 EXPERIMENTS

In Table 4.2, the comparison between parameters and CTC loss results for the two different transformer

architectures and the LSTM architecture is presented.

Table 4.2. Different architectures are tested to determine which architecture produced the best CTC

loss value for a subset of the Common Voice dataset and taking the architecture parameter size into

account.

Model Parameters Features Batch Size
Sampling Rate

(kHz)
LR Epochs

CTC loss

(train)

CTC loss

(valid)

LSTM

(1 layer)
4 790 141

MFCC + Delta

(32)
64 8000 1×10−3 150 1.7713 2.0265

Transformer

(1 head :

1 enc + 1 dec)

762 109
MFCC + Delta

(32)
64 8000 1×10−3 150 2.2558 2.0380

Transformer

(2 head :

2 enc + 2 dec)

1 488 125
MFCC + Delta

(32)
64 8000 1×10−3 150 1.7393 1.412

Table 4.3 displays the model parameter sizes for different architectures. All the architectures use the

same batch size of 64 with 32 input data features. Due to experimenting on smaller models only and

setting a VRAM limitation of 12 GB, larger models were not tested as more VRAM was required.

The transformer architecture increases parameters based on the amount of encoder layers and decoder

layers. The number of heads does not affect the trainable parameters, but they do affect the GPU

VRAM due to parallel processing. The two layer LSTM architecture and transformer architecture with

more than two heads is too large to train with the available VRAM. The two-headed transformer, with

more than two encoder layers and two decoder layers is also too large to train when using a batch size

of 64 for the training data.

The two-headed transformer model with a batch size of 64 was selected to train the large Common

Voice dataset. In Figure 4.1, the average CTC loss of a subset of the Common Voice training data is

provided per epoch. The model was trained using the MFCC and delta audio features, sampled at 8kHz.

The results indicate that the ASR model trained to minimise the CTC loss value until a minimum value

was reached. The training was stopped to prevent overtraining. In Figure 4.2, the average CTC loss

for a subset of the Common Voice validation data is provided per epoch. The validation data is used

to optimise the training of the model. When the validation CTC loss value did not drop for 5 epochs,
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CHAPTER 4 EXPERIMENTS

Table 4.3. Different architectures and their parameter counts.

Model Parameters

LSTM (1 layer) 4 790 141

LSTM (2 layers) 13 186 941

Transformer (1 head : 1 enc + 1 dec) 762 109

Transformer (2 head : 2 enc + 2 dec) 1 488 125

Transformer (2 head : 3 enc + 3 dec) 2 214 141

Transformer (2 head : 4 enc + 4 dec) 2 940 157

the “Adam” optimizer changed the learning rate of the model to allow a larger jump in weight values.
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Figure 4.1. Average training CTC loss per epoch for the small-scale two head transformer model,

using a subset of the Common Voice 7.0 English training dataset. The graph indicates that the average

CTC loss value decreased from 2.78 to 1.73.

4.3 PRE-PROCESSING AND OUTPUT METHOD

The end-to-end transformer-based ASR model with a two head transformer architecture is fully trained

using the entire Common Voice 7.0 English training dataset and validation dataset. The trained model

is evaluated using a subset of 500 sequences from the Common Voice testing data. The evaluation

metrics used are the CER and WER so that the model can be evaluated as an actual ASR system. CTC

loss represents a loss value that the model attempts to minimise during training.
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Figure 4.2. Average Validation CTC loss per Epoch for the small-scale two head transformer model,

using a subset of the Common Voice 7.0 English training dataset. The validation data was used to

optimise the model by changing the learning rate of the model based on the output of the average

validation CTC loss per epoch.

4.3.1 Output method and language models

The output of the ASR model is used to predict the text from the given audio speech. Different

methods are used to predict the output text as seen in Table 4.4. Each original model is tested using

different output methods. The greedy decoding method takes the highest probability output character

for each input audio segment and combines the characters using the CTC compression to produce

output characters. The beam search method used the most likely sequence of characters based on the

top 500 output sequences. A spell checker toolkit called ‘Textblob’ added as an output method to

determine if a normal spell checker would improve the ASR model. The final output method was a

language model. The 4-gram language model was selected as it is a large dictionary of words with a

statistical probability that they are close to each other. A larger transformer-based language model,

BERT is also tested, but it consists of a model with billions of parameters and defeats the purpose of

building a small-scale ASR model. The CERs and WERs are not very low, but this is due to the small

testing sample selected. The BERT language model produces worse results than the smaller n-gram

language model, and therefore it was decided that the 4-gram language model would be used with the

ASR model. The 4-gram language model is also smaller than the BERT language model and therefore

reduces the system complexity with respect to the number of parameters.
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CHAPTER 4 EXPERIMENTS

Table 4.4. CERs and WERs for different output methods of the Common Voice 7.0 validation data.

Output Method Performance Metrics

Performance Metrics CER % WER %

Greedy Decoding 43.00 90.43

Beam Search 500 41.99 91.04

4-gram lm (LibriSpeech) 41.91 86.43

4-gram lm (CV + LibriSpeech) 41.82 74.27

BERT 42.84 89.56

Textblob Spell Checker 42.92 87.64

4.3.2 Common Voice Pre-processing

In Table 4.5, the different CERs and WERs are displayed for different pre-processing techniques

and different model output methods. A higher sampling rate was selected to determine if 16kHz

would improve the results when compared to 8kHz. The testing data used was a small segment of the

Common Voice validation dataset consisting of 500 audio segments. In Table 4.5, the beam search

method with an added 4-gram language model produces the best results for all data pre-processing

types.

Table 4.5. CERs and WERs for different sampling frequencies and pre-processing methods of the

Common Voice 7.0 validation data.

Pre-Processing Performance Greedy Decoding Beam Search 500
Beam Search 500

and 4-gram lm

Performance Metrics CER % WER % CER % WER % CER % WER %

Normal MFCC

8kHz
43.00 90.43 41.99 91.04 41.82 74.27

MFCC with Spec

Augment 16kHz
41.31 86.79 39.62 86.91 36.59 67.40

Normal MFCC 16kHz 40.63 86.66 38.45 85.50 35.15 65.22

MFCC with

time stretching 16kHz
35.84 82.01 34.17 80.08 29.98 59.83
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The first model was created by using the MFCC and delta audio features during training. This model

was trained with a sampling rate of 8kHz and 16kHz respectively. The results show that the audio data

features sampled at 16kHz produced a CER of 35.15% and a WER of 65.22% compared to a CER of

41.82% and a WER of 74.27% using the 8kHz sampled audio features. The “SpecAugment” method

increased the CER and WER slightly. This is most likely due to the audio features being MFCC values

and their deltas and not a full spectrogram, therefore, the “SpecAugment” method removes too much

necessary data from the audio features. Time stretching was introduced instead of the “SpecAugment”

method. The time stretching method randomly stretched or shrank the length of audio segments by

10% while keeping all the audio data constant. The time stretching improved the CER to 29.98% and

the WER to 59.83% as seen in Table 4.5.

4.4 COMMON VOICE AND LIBRISPEECH

The experiments in Section 4.2 and Section 4.3 determined that the ideal ASR architecture to use

is the two-headed transformer with two encoder layers and two decoder layers. The ideal sampling

frequency of the audio data is 16kHz and the ideal batch size is 64. The time-stretching pre-processing

method during training improves the model accuracy as the time-stretching creates more data from

the original dataset. The best output method to predict text from the audio is determined to be a beam

search method with a 4-gram language model.

The Common Voice dataset and LibriSpeech dataset are separately trained and tested using the designed

end-to-end ASR model. A final model is trained using a combination of the Common Voice dataset

and LibriSpeech dataset. The Common Voice model, LibriSpeech model and combination model are

compared to existing modern ASR models.

Another end-to-end ASR model with a transformer architecture consisting of two heads, but three

encoder layers and three decoder layers is also created and trained using both the LibriSpeech and

Common Voice dataset. The larger ASR model can run on the limiting 12 GB VRAM if the batch size

of the data is reduced to 32. All other aspects of the model are identical to the smaller ASR model.

The larger end-to-end ASR model is compared to the smaller ASR model as well as existing modern

ASR models.

4.5 CHAPTER DISCUSSION

Chapter 4 provided a detailed overview of the experiments conducted to train the ASR model, utilizing

various datasets, pre-processing techniques, and evaluation methods. In Section 4.2, we explored
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CHAPTER 4 EXPERIMENTS

the initial training attempts of the ASR model, comparing different parameters and architectures.

Specifically, experiments were conducted to compare the performance of the model with varying batch

sizes and pre-processing techniques, as well as to contrast it with an LSTM architecture. Section 4.3

focused on testing different pre-processing techniques and output methods for the Common Voice

dataset. Experiments were carried out to evaluate the impact of output methods and language models

on the model’s performance, along with exploring specific pre-processing techniques tailored for the

Common Voice dataset. In Section 4.4, experiments involving the training of the ASR model with

optimal pre-processing techniques and output methods for both the Common Voice and LibriSpeech

datasets were discussed. This section provided insights into the effectiveness of various techniques

when applied to different datasets, highlighting the importance of dataset-specific approaches in ASR

model training.

Overall, Chapter 4 encapsulated the experimentation phase of our ASR model development, showcasing

the iterative process of refining parameters, exploring pre-processing techniques, and evaluating

performance across diverse datasets. These experiments laid the groundwork for the subsequent results

presented in the following chapters.
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CHAPTER 5 RESULTS

5.1 CHAPTER OVERVIEW

This section describes the different results captured during the testing of the two end-to-end transformer-

based ASR models designed and selected in Section 3 and Section 4. The ASR models are tested on the

Common Voice and LibriSpeech datasets. Section 5.2 provides the training results for the two-headed

transformer architecture with two encoder layers and two decoder layers as well as the training results

of the two-headed transformer architecture with three encoder layers and three decoder layers on the

Common Voice training and validation dataset. In Section 5.3, the two models are tested using the

Common Voice testing dataset and compared to pre-existing ASR models. Section 5.4 describes the

results for the two models tested on the LibriSpeech testing dataset.

5.2 TRAINING

In Figure 5.1, the average CTC loss of the Common Voice training data is provided per epoch. The

model was trained using the MFCC and delta MFCC audio features, sampled at 16kHz, and time

stretching random audio segments during training. The main architecture used for the training was

a two-headed transformer with two encoder layers and two decoder layers. The results indicate that

the ASR model trained to minimise the CTC loss value until a minimum value was reached. The

training was stopped to prevent overtraining. In Figure 5.2, the average CTC loss for the Common

Voice validation data is provided per epoch. The validation data is used to optimise the training of the

model. When the validation CTC loss value did not drop for 5 epochs, the “Adam” optimizer changed

the learning rate of the model to allow a larger jump in weight values. In Figure 5.1, there are sudden

drops in CTC loss at a few epochs. This is due to the optimizer changing the learning rate of the model.

In Figure 5.3, the average CTC loss of the Common Voice training data is provided per epoch. The
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Figure 5.1. Average training CTC loss per epoch for the smaller transformer model, using the Common

Voice 7.0 English training dataset. The graph indicates that the average CTC loss value decreased from

2.1419 to 0.8380. The audio data was sampled at 16kHz and converted to 16 MFCC values and 16

MFCC delta values. Time stretching of 10% was applied to the training data to simulate more data. 30

possible character classes were selected as possible outputs of the model.
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Figure 5.2. Average validation CTC loss per epoch for the smaller transformer model, using the

Common Voice 7.0 English validation dataset. The graph indicates that the average CTC loss value

decreased from 1.9049 to 1.0914. The validation data was used to optimise the model by changing the

learning rate of the model based on the output of the average validation CTC loss per epoch.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

68

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5 RESULTS

model was trained using the MFCC and delta MFCC audio features, sampled at 16kHz, and time

stretching random audio segments during training. The main architecture used for the training was

a two-headed transformer with three encoder layers and three decoder layers. The results indicate

that the ASR model trained to minimise the CTC loss value until a minimum value was reached. The

training was stopped to prevent overtraining. In Figure 5.2, the average CTC loss for the Common

Voice validation data is provided per epoch. The validation data is used to optimise the training of

the model using the “AdamW” optimizer. In Figure 5.3, there are sudden drops in CTC loss at a few

epochs. This is due to the optimizer changing the learning rate of the model.

0 20 40 60 80 100 120 140 160 180 200 220 240 260

1

1.5

2

Epochs

C
T

C
L

os
s

Figure 5.3. Average training CTC loss per epoch for the larger transformer model, using the Common

Voice 7.0 English training dataset. The graph indicates that the average CTC loss value decreased from

1.9268 to 0.7174. The audio data was sampled at 16kHz and converted to 16 MFCC values and 16

MFCC delta values. Time stretching of 10% was applied to the training data to simulate more data. 30

possible character classes were selected as possible outputs of the model.

The training results indicate that the ASR model with three encoder layers and three decoder layers

performs better than the ASR model with two encoder layers and two decoder layers when training

and evaluating a model on the Common Voice 7.0 English dataset. The two layered architecture

produced a final CTC evaluation loss of 1.0914, while the three layered architecture produced a final

CTC evaluation loss of 0.9818. This is an improvement of 0.1096 for a parameter increase of 50%.

Both models are tested using the Common Voice testing dataset to determine the CER and WER

improvement.
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Figure 5.4. Average validation CTC loss per epoch for the larger transformer model, using the

Common Voice 7.0 English validation dataset. The graph indicates that the average CTC loss value

decreased from 1.7829 to 0.9818. The validation data was used to optimise the model based on the

output of the average validation CTC loss per epoch.

5.3 COMMON VOICE RESULTS

Table 5.1 compares the two final trained small-scale transformer models results to existing large

transformer-based models on the Common Voice validation dataset and testing dataset. With reference

to Table 5.1, it is interesting to note that the small-scale transformer ASR models do not perform

as well as the larger Wav2Vec2 models from [60] and [58]. The ASR models from previous work

consist of architectures that have over 300 million parameters, while the models presented in this

research only consists of 1.49 million parameters and 2.21 million parameters respectively. This is a

parameter reduction by a factor of approximately 150. The other models are also pre-trained with over

50 000 hours of speech data, before being fine-tuned with the Common Voice dataset. The small-scale

transformer-based models are only trained on the 2000 hours of Common Voice data.

The end-to-end small-scale transformer with two encoder layers and two decoder layers and an added

4-gram language model produced a CER of 24.87% and a WER of 52.51% on the validation dataset

and a CER of 29.98% and a WER of 58.57% on the testing dataset. The end-to-end small-scale

transformer with three encoder layers and three decoder layers and an added 4-gram language model

produced a CER of 22.54% and a WER of 48.17% on the validation dataset and a CER of 27.89%

and a WER of 54.50% on the testing dataset. The larger transformer-based architecture ASR model
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Table 5.1. Comparison of the small-scale transformer-based ASR models presented in this research, to

other large transformer-based ASR models described in literature, using the Common Voice validation

dataset and testing dataset.

Common Voice

Testing
Validation Data Testing Data

Parameters Hours Trained CER % WER % CER % WER %

End-to-end small-

scale transformer

(2head: 2 enc, 2dec)

1 488 254 2000 CV 24.87 52.51 29.98 58.57

End-to-end small-

scale transformer

(2head: 3 enc, 3dec)

2 214 141 2000 CV 22.54 48.17 27.89 54.50

Wav2Vec2 XLS-R

300 [60]
300 million

436000 Pre-Train

+ 2000 CV
7.36 30.71 N/A N/A

Wav2Vec2 XLSR53

[58, 59]
317 million

56000 Pre-Train

+ 2000 CV
7.69 19.06 11.65 27.72

Wav2Vec2 XLSR53 With LM

[58, 59]
317 million

56000 Pre-Train

+ 2000 CV
6.84 14.81 11.01 20.85

produces slightly better results, therefore, the parameter count does influence the accuracy of the ASR

model.

The random chance of a single character being guessed correctly by the model is 3.33% and a sequence

of characters reduces that probability exponentially. Therefore, a CER of 29.98% and 27.89% for

both the models respectively is a good result for small-scale speech recognition models. The CER and

WER could be improved by using a larger language model or training the model with more audio data.

From the results it is observed that a small improvement in CER allows the language model to better

understand words and produces a better WER. The CER difference between the smaller ASR model

and the larger ASR model for the Common Voice testing data is 2.09%, but the difference in WER is

larger at 4.07%.

The CERs from the larger existing transformer-based ASR models are less than half of the small-scale

ASR models. However, it is important to note that the comparison is limited due to the larger existing
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CHAPTER 5 RESULTS

models being trained on 50 000 hours more speech data, so the parameter count is not the only

influential factor between the models from this research and pre-existing models.

5.4 LIBRISPEECH RESULTS

5.4.1 LibriSpeech Testing

Table 5.2 and Table 5.3 compares the results of the two small-scale transformer models trained on

only 2000 hours of Common Voice data and the same models trained on 1000 hours of LibriSpeech

data. The models are also trained on a combination of the Common Voice dataset and LibriSpeech

dataset. The models are tested on the LibriSpeech dev and test datasets. The fine-tuned model, with

the Common Voice training dataset and the additional training data from LibriSpeech, outperforms the

original Common Voice trained model and the original LibriSpeech trained model drastically. The

larger transformer-based architecture with three encoder layers and three decoder layers performs better

than the smaller transformer-based architecture with two encoder layers and two decoder layers.

Table 5.2. LibriSpeech Dev and Test results for a small-scale transformer-based ASR model, with

two encoder layers and two decoder layers, trained on the Common Voice dataset and the same model

being fine-tuned with the LibriSpeech training dataset.

LibriSpeech

Testing
Dev Clean Dev Other Test Clean Test Other

End-to-end small-

scale transformer

(2 head: 2 enc, 2 dec)

CER % WER % CER % WER % CER % WER % CER % WER %

Trained on Common Voice 15.42 34.81 28.49 55.82 15.74 35.31 29.59 57.40

Trained on LibriSpeech 10.61 25.49 23.44 47.93 10.61 25.51 24.48 49.82

Trained on Common Voice

and LibriSpeech
8.25 20.55 19.95 41.73 8.52 20.76 21.07 43.92

In Table 5.2 the CER of the smaller ASR model, using the test-clean dataset, is reduced from 15.74%

to 8.52% and the WER is reduced from 35.31% to 20.76%. The overall results for the model on the

LibriSpeech data is a lot better than the Common Voice data, as the LibriSpeech data consists of

more clear speech and is only in an American accent. The model also performs better with the added

LibriSpeech training data due to an additional 1000 hours of audio data used to train the model. The

LibriSpeech training data is also more similar to the LibriSpeech dev and test data.
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Table 5.3. LibriSpeech Dev and Test results for a small-scale transformer-based ASR model, with

three encoder layers and three decoder layers, trained on the Common Voice dataset and the same

model being fine-tuned with the LibriSpeech training dataset.

LibriSpeech

Testing
Dev Clean Dev Other Test Clean Test Other

End-to-end small-

scale transformer

(2 head: 3 enc, 3 dec)

CER % WER % CER % WER % CER % WER % CER % WER %

Trained on Common Voice 13.57 30.61 26.29 51.39 13.89 30.93 27.49 53.58

Trained on LibriSpeech 12.08 28.91 25.54 51.85 12.55 30.14 26.56 53.75

Trained on Common Voice

and LibriSpeech
6.04 15.45 15.90 33.47 6.40 16.03 16.73 35.51

In Table 5.3 the CER of the larger ASR model, using the test-clean dataset, is reduced from 13.89%

to 6.40% and the WER is reduced from 30.93% to 16.03%. The overall results for the model on the

LibriSpeech data is significantly better than the Common Voice data, as the LibriSpeech data consists

of more clear speech and is only in an American accent. The model also performs better with the

added LibriSpeech training data due to an additional 1000 hours of audio data used to train the model.

In addition, the LibriSpeech training data is more similar to the LibriSpeech dev and test data when

compared to the Common Voice training data.

The larger ASR model CERs and WERs in Table 5.3 performed better overall in comparison to the

smaller ASR model CERs and WERs in Table 5.2 for the models trained on both the Common Voice

and LibriSpeech training datasets. The difference in CER and WER for the LibriSpeech test clean

dataset was 2.12% and 5.31% respectively. The larger ASR model has 2 214 141 parameters, while

the smaller model has 1 488 254 parameters, which is a difference of 725 887 parameters. The larger

model is therefore 48.77% larger than the smaller model. The 48.77% increase in model size improved

the WER for the test clean data by 5.31%, indicating that an increase in parameters or layers in a

transformer architecture has a significant impact on model performance, but only if sufficient training

data is available for training the model.

The larger ASR model WER and CER in Table 5.3 performed worse, when using less training data,

than the smaller ASR model CER and WER in Table 5.2 for the models trained on only the 1000 hours

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

73

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5 RESULTS

of LibriSpeech training dataset. The difference in CER and WER for the LibriSpeech test clean dataset

was 1.94% and 4.63% respectively. The smaller ASR model produces better results for the LibriSpeech

dataset, even though the larger ASR model has more layers and parameters. This indicates that an

increase in the number of parameters or layers in a transformer architecture has a negligible effect on

model accuracy if insufficient data is available for training the ASR model. The larger model would

theoretically perform better as it can create better paths between the input speech data and output

speech text, but due to the data being limited to only 1000 hours, the smaller model performed slightly

better than the larger model.

5.4.2 LibriSpeech Comparisons

Table 5.4 presents the WERS of the two final small-scale transformer models, trained on Common

Voice and LibriSpeech training data. The two models’ WERs can be compared to existing large

transformer-based models’ WERs using the LibriSpeech dev dataset and test dataset. With reference to

Table 5.4, it is interesting to note that the small-scale transformer ASR model does not perform as well

as the larger Wav2Vec2 and large transformer models but is comparable to older GRU-based models

when it comes to WERs of the LibriSpeech dev dataset and test dataset. The transformer-based ASR

models from previous work consist of architectures that are 150 times larger than the models in this

research, based on the parameter count. The other models are also pre-trained with over 53 000 hours

of speech data, before being fine-tuned with the LibriSpeech dataset. The small-scale transformer is

only trained on the 3000 hours of Common Voice and LibriSpeech data.

The larger end-to-end small-scale ASR model, with an added 4-gram language model produced a

WER of 16.03% and 35.51% on the test-clean and test-other data respectively on the LibriSpeech

dataset. The model also produced a WER of 15.45% and 33.47% on the dev-clean and dev-other

data respectively. The small-scaled end-to-end ASR model with an added 4-gram language model

produced the given CER and WER using a model that was trained and tested using less than 12GB

of video RAM, which was the limitation for this model. The other large transformer models require

large clusters of graphics cards to train models that require over 120GB of video RAM. The result

from an older GRU-based model in [25], produced a WER of 31.1% for the test other dataset, which is

relatively close to the WER achieved by the best small-scale transformer, but at a significantly larger

computational cost, as the architecture had 52.5 million parameters, which is a factor of 24 times larger

than the architecture from this research. The small-scale transformer trains computationally faster, as

it optimises parallel processing with the use of transformer architecture layers. The larger modern
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Table 5.4. LibriSpeech dataset WER results for two small-scale transformer models compared to very

large ASR models using mainly transformer-based architectures. The small-scale transformer models

have 1.49 million parameters and 2.21 million parameters respectively, with an added 4-gram language

model. All the other large scale transformer models contain over 52.5 million parameters without their

added language models.

LibriSpeech

Testing
Dev Clean Dev Other Test Clean Test Other

Parameters Hours Trained WER % WER % WER % WER %

End-to-end small-

scale transformer

(2 head: 2 enc, 2 dec)

1 488 254

+ lang model
1000 LibriSpeech 25.49 47.93 25.51 49.82

End-to-end small-

scale transformer

(2 head: 2 enc, 2 dec)

1 488 254

+ lang model

2000 Pre-Train

+ 1000 LibriSpeech
20.55 41.73 20.76 43.92

End-to-end small-

scale transformer

(2 head: 3 enc, 3 dec)

2 214 141

+ lang model
1000 LibriSpeech 28.91 51.85 30.14 53.75

End-to-end small-

scale transformer

(2 head: 3 enc, 3 dec)

2 214 141

+ lang model

2000 Pre-Train

+ 1000 LibriSpeech
15.45 33.47 16.03 35.51

CTC-based GRU model

[25]
52.5 million

Pre-Train

+ 1000 LibriSpeech
N/A N/A 11.9 31.1

CTC-based GRU model

with 4gram LM [25]

52.5 million

+ lang mod

Pre-Train

+ 1000 LibriSpeech
N/A N/A 8.3 24.4

CTC-Based Transformer

[54]
322 million

53800 Pre-Train

+ 1000 LibriSpeech
2.99 7.31 3.09 7.40

CTC-Based Transformer with

transformer LM [54]

322 million

+ lang mod

53800 Pre-Train

+ 1000 LibriSpeech
2.63 6.20 2.86 6.72

Wav2Vec2 Transformer

[55]

300 million

+ lang mod

53200 Pre-Train

+ 1000 LibriSpeech
3.4 6.0 3.8 6.5

Wav2Vec2.0 Transformer

[20]

317 million +

transformer lang mod

53200 Pre-Train

+ 1000 LibriSpeech
1.6 3.0 1.8 3.3

Crowd-sourced human level

performance [57]
N/A N/A N/A N/A 5.83 12.69

transformer-based ASR models outperformed with WERs of under 5% for the test clean dataset and

WERs of under 10% for the test other datasets. This is due to the models being trained with about 50

000 hours more speech data. The models also have over 300 million parameters with multiple deep

layers to create different mathematical paths, with different weights, between the input data and the
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output classes.

All the examples selected were CTC-based ASR models that use character-based recognition with

added language models to form the words for a given language. These models are the state-of-the-art

ASR models, as they require the least amount of classes and parameters to train a very accurate ASR

model. Older word-based models have up to 80 000 classes, based on the amount of possible words

that can be predicted.

5.5 CHAPTER DISCUSSION

Chapter 5 presented the results of testing two end-to-end transformer-based ASR models on both the

Common Voice and LibriSpeech datasets. In Section 5.2, we discussed the training outcomes of these

models on the Common Voice dataset, showcasing variations in performance based on the number

of encoder and decoder layers. Section 5.3 provided an analysis of the models’ performance on the

Common Voice testing dataset, highlighting their competitive performance compared to pre-existing

ASR models. In Section 5.4, we detailed the results of testing the models on the LibriSpeech dataset.

Notably, training the models with a combination of Common Voice and LibriSpeech data resulted in

significant improvements in performance.

Overall, the smaller-scale transformer ASR models demonstrated promising performance, showcasing

competitive results compared to larger models while utilizing reduced computational resources. These

findings underscore the potential of small-scale ASR models for practical applications, paving the way

for further exploration and refinement in the field.
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CHAPTER 6 DISCUSSION OF RESULTS

6.1 RESEARCH OBJECTIVES

The main objective of the research was to determine if it is possible to build a small-scale speech

recognition system that is comparable in CER and WER to larger modern ASR systems. The hypothesis

was that a small transformer-based ASR model will produce similar WER results to traditional ASR

models and compete with modern ASR systems that are exponentially larger in computational size.

The results in Chapter 5, provided evidence that a small-scale end-to-end ASR model is comparable to

older GRU-based ASR models and modern transformer-based ASR models when it comes to WERs,

but modern transformer-based models produced a better WER accuracy due to the fact that they all

were significantly larger in parameter size than the models designed in this research. The modern

ASR models had over 300 million parameters while the models in this research had 1.48 million

parameters and 2.21 million parameters respectively. That is a factor difference of roughly 150. The

modern ASR models were also pre-trained on at least 53 000 hours of data before being fine-tuned

for the LibriSpeech dataset that was used to measure the model performances. The models used in

this research were pre-trained on 2000 hours of Common Voice training data before being fine-tuned

for the LibriSpeech dataset that was used to measure the model performances. Therefore, the modern

models were trained with 50 000 more hours. With all the given limitations, the final end-to-end ASR

model still produced accurate results when compared to the larger modern ASR models and human

level performance.

The results from the experiments provide sufficient evidence that a small-scale ASR system is a

viable approach for under resourced languages with only small datasets available. The models can be

pre-trained on different language data that uses the same alphabet or characters, and then be fine-tuned

for the given language. The experiments also provide evidence that the quantity of training data plays

a role in the model performance. In Figure 5.3 a larger model produces similar results to a smaller
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model due to the amount of training data being insufficient. Larger datasets make the models more

generalised for different speakers and accents or dialects. The following research questions were

answered in the research:

• Question: Is it possible and viable to reasonably combine an acoustic model and a language

model into one speech recognition model that will successfully convert speech to text?

• Answer: Most modern ASR models use an end-to-end approach that combines the acoustic

model characteristics and language model characteristics into a single model. This results in a

model directly converting audio data into text, without the phoneme calculation step in between.

Adding a small secondary language model improves ASR model performance even more when

it comes to WERs as the language model assists in combining characters into understandable

words and words into understandable sentences.

• Question: What will the effect, of combining an acoustic and language model, be to the word

error rate of an automated speech recognition system?

• Answer: End-to-end ASR models produce better word error rates, and the models are exponen-

tially smaller. Language models are still very beneficial to ASR model accuracies.

• Question: How does a transformer model compare to other existing models when applied to

speech recognition processing?

• Answer: Transformer-based models are the state-of-the-art architectures used in modern ASR

systems. The transformer-based models produce the same or better results as other architectures

but use significantly fewer parameters.

• Question: What is the best neural network algorithm for acoustic modelling?

• Answer: A combination of CNN architectures and transformer-based architectures produce the

best results for ASR acoustic model characteristics.

• Question: Which audio feature extraction methods are the most efficient for natural language

processing?

• Answer: Mel frequency cepstral coefficients and delta features were found to produce the best

accuracy for ASR models.

• Question: How accurate does an automated speech recognition model have to be, to increase

efficiency and reduce human input required?
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• Answer: No ASR model will predict speech with a 0% WER. ASR models with WERs of less

than 20% produce text that is 80% or more accurate. This would increase the efficiency as the

human input required would be to correct the proportion of text that was predicted incorrectly.

• Question: Will a small transformer-based model produce a word error rate performance, that is

comparable and similar to larger modern automated speech recognition systems?

• Answer: The small end-to-end transformer-based ASR model produced WER accuracies that

were not as accurate as modern larger ASR models.

• Question: Is it possible to build an accurate ASR model with a limited amount of speech data?

• Answer: It is possible to build an ASR model with a limited amount of speech data, but if the

data is too little, the model is restricted to the data rather than the model size and parameters and

will therefore not be as accurate as modern ASR models.

6.2 ASR MODEL OUTPUT

The final end-to-end transformer-based ASR model designed in the research consisted of a CNN layer

and a 2-headed transformer with three encoder layers and three decoder layers. The data used to train

the model was the 2000 hours of Mozilla Common Voice 7.0 training data and the 1000 hours of

LibriSpeech training data. The audio data was transformed to 32 MFCC and MFCC delta features

as the input to the model. The output of the model was 30 character-based classes. The output of the

model was processed by a small 4-gram language model to improve word understanding as it is a

character-based ASR model.

The model produced a CER and WER of 27.89% and 54.5% respectively for the very noisy Common

Voice testing dataset. The model also produced a CER and WER of 6.40% and 16.03% respectively

for the LibriSpeech test clean dataset. A CER of 6.4% implies that 93.6% of the characters were

predicted correctly for the test clean dataset and WER of 16.03% implies that 83.97% of the words

were predicted correctly for the test clean dataset. This provides sufficient evidence that the small-scale

ASR model is a viable speech recognition model.

6.3 SHORTCOMINGS

The final end-to-end transformer-based ASR model designed had a few limitations that caused the

model not to be as accurate as modern ASR systems. The maximum available VRAM for the model

was selected to be 12 GB as the goal of the model was to be small-scaled for use cases where industrial

scale computer resources are not available. Another limitation was the amount of available data for

training of the small-scaled ASR model. The available data consisted out of 3000 hours of data.
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Modern ASR systems are all trained on over 40 000 hours of voice data and have computational sizes

that require over 120 GB of VRAM for training on cluster type servers. More data would have allowed

the research to determine how close the results of the small-scale ASR model would be to much larger

modern ASR models, using the same data.

The n-gram language model used was a small statistical language model with a limited vocabulary.

Larger, more modern language models can be added to improve the WER given the good CER achieved

by the end-to-end ASR model.

6.4 FUTURE DEVELOPMENT

The research only looked at a limited number of combinations of CNN and transformer architectures.

Future development would include experimenting on different neural network architectures and differ-

ent layers within the transformer architecture. The transformer architecture can also be increased to

have more heads and more encoder layers and decoder layers if more VRAM is available for training.

Different modern language models can also be implemented along with the character-based ASR

model depending on the scale of the final ASR system.

The main goal of this research was to develop a small-scale ASR model for use cases where practitioners

do not have access to industrial scale datasets and computer resources. The ASR model is a proof

of concept for under resourced languages that simply do not have large corpuses available. The first

step in future development would be to test the small-scale ASR model architecture on different under

resourced languages with limited datasets.

The model was also designed to be small enough to create a portable standalone ASR device, that

can be used as a communication tool, where there isn’t necessarily an internet connection for Google

Translate and larger speech recognition tools. The next step to achieve this goal would be to create a

portable device that the trained small-scale ASR model could be loaded onto for real life use.
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CHAPTER 7 CONCLUSION

A character-based small-scale transformer architecture was used to create an end-to-end automated

speech recognition model that produces comparable results in performance and word error rate (WER)

to large scale character-based ASR models. The model did not produce WERs that were significantly

close to the WERS of large modern character-based ASR models, but this is due to the model in this

research having over 150 times fewer parameters and being trained with up to 53 000 hours less voice

data than the larger modern ASR systems. The model produced, was trained on the Common Voice

and LibriSpeech training datasets, and produced a CER and WER of 27.89% and 54.5% respectively

on the Common Voice testing data as well as a CER and WER of 6.40% and 16.03% respectively on

the LibriSpeech test-clean dataset. The best current large ASR model produced a WER of 1.8% on

the LibriSpeech test-clean dataset, but with a 317 million parameter model and a transformer-based

language model consisting of over 400 million parameters. The model in this paper has 2.214 million

parameters and a small 4-gram language model. The model was comparable to an older GRU-based

model that produced a WER of 11.9% and 31.1% respectively on the same LibriSpeech dataset, but at

a significantly larger computational cost, as the architecture had 52.5 million parameters, which is a

factor of 24 times larger than the architecture in this paper.

The small-scale model could be improved by adding more transformer layers, but this would increase

the total parameters of the model and require more video RAM for training. The larger modern

transformer ASR systems outperform the small-scale transformer ASR model, but adding more training

data should increase the performance of the small-scale model significantly. All the character-based

end-to-end ASR models still require a small language model to ensure that the predicted characters are

transformed into actual words. A small 4-gram language model decreased the WER by over 20% in the

Common Voice English 7.0 testing data. The main goal of this paper was to develop a small-scale ASR

model for use cases where practitioners do not have access to industrial scale datasets and computer
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resources. The ASR model is a proof of concept for under resourced languages that fall under the

category of not having large corpuses available. The model was also designed to be small enough to

create a portable standalone ASR device, that can be used as a communication tool, where there isn’t

necessarily an internet connection for Google Translate and larger speech recognition tools.
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