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Abstract

Extreme value theory (EVT) encompasses statistical tools for modelling extreme events, which
are defined in the peaks-over-threshold methodology as excesses over a certain high threshold.
The estimation of this threshold is a crucial problem and an ongoing area of research in EVT.

This dissertation investigates extreme value mixture models which bypass threshold selection.
In particular, we focus on the Extended Generalised Pareto Distribution (EGPD). This is a
model for the full range of data characterised by the presence of extreme values. We consider
the non-parametric EGPD based on a Bernstein polynomial approximation. The ability of the
EGPD to estimate the extreme value index (EVI) is investigated for distributions in the Fréchet,
Gumbel and Weibull domains through a simulation study. Model performance is measured in
terms of bias and mean squared error. We also carry out a case study on rainfall data to
illustrate how the EGPD fits as a distribution for the full range of data. The case study also
includes quantile estimation.

We further propose substituting the Pareto distribution, in place of the GPD, as the tail model
of the EGPD in the case of heavy-tailed data. We give the mathematical background of this
new model and show that it is a member of the EGPD family and is thus in compliance with
EVT. We compare this new model’s bias and mean squared error in EVI estimation to the old
EGPD through a simulation study. Furthermore, the simulation study is extended to include
other estimators for Fréchet-type data. Moreover, a case study is carried out on the Belgian
Secura Re data.
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Chapter 1

Introduction

Extreme value theory encompasses statistical tools for modelling extreme events (Embrechts
et al., 1997). Examples of extreme events include stock market crashes, floods and tropical
cyclones. These kind of events occur with very little frequency but have high severity. Ex-
tremal data is thus inherently scarce (Hu, 2013). The power of extreme value models lies in
their ability to fit well to this scarce extremal data and provide reliable estimates of extreme
quantiles even beyond the range of the empirical distribution (Embrechts et al., 1997).

Heavy-tailed data can be observed in various fields: in computer science (e.g. sizes of files in
computer networks and systems), genetics (e.g. lengths of protein sequences in an organism’s
genetic makeup), and insurance (e.g. the sizes of the claims filed at an insurance company).
These phenomena are typically seen as anomalies, and not as events to be expected. As such,
modelling of these events is not popular in the literature, as most models assume light-tail
behaviour (Nair et al., 2022). Extreme value theory, however, can model the tails of distribu-
tions that exhibit heaviness. This dissertation will place a particular focus on heavy-tailed data.

The rest of this chapter details the problem to be addressed in this dissertation as well as the
objectives of the study.

1.1 Problem statement

Extreme Value Theory (EVT) is concerned primarily with studying the tails of a distribution
(Frigessi et al., 2002). The peaks-over-threshold approach to EVT is the most popular approach
in the literature. This method considers extreme observations as those exceeding a certain high
threshold (Smith, 1990). A crucial challenge within this framework is the determination of the
threshold. Setting the threshold too low results in ordinary values being considered extreme

1
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CHAPTER 1. INTRODUCTION 1.2. AIM AND OBJECTIVES

observations, thus leading to biased estimates in subsequent inference. In contrast, should this
value be set too high, then too few extreme observations are available to carry out a meaningful
analysis and the variances of parameter estimates are inflated. Threshold selection is an area of
ongoing research in EVT as no single best technique exists (Papastathopoulos and Tawn, 2013).

The peaks-over-threshold methodology is applied when the full data, that is both non-extreme
and extreme observations, are available. While tail estimation and extrapolation of risk quanti-
ties falling outside the range of the observed data is the main focus in EVT, there is also practical
significance in considering the distribution of the bulk data below the threshold (Naveau et al.,
2016).

There is, therefore, a need to develop models that can either efficiently estimate the threshold
or bypass it and its associated uncertainties. Furthermore, such models have to simultaneously
be able to model the bulk of the data and the tail well.

1.2 Aim and objectives

1.2.1 Aim

The aim of this study is to investigate and develop flexible extreme value mixture models that
can model well the bulk of the distribution along with its tail when the data is characterised
by the presence of extreme values.

1.2.2 Objectives

The primary objectives of this study are as follows:

i. Conduct an extensive simulation study to investigate the performance of the semi-
parametric EGPD model in estimating the extreme value index of data arising from
distributions in the Gumbel, Fréchet and Weibull domains of attraction (see Theorem 2.1
for an explanation of the different domains).

ii. Investigate the suitability of the semi-parametric Extended Generalised Pareto Distribu-
tion (EGPD) as both a bulk model and a tail model, through a comparative study.

iii. Implement the Pareto distribution as a tail model in the EGPD and study its performance
on data arising from distributions in the Fréchet domain.

DEPARTMENT OF STATISTICS, UNIVERSITY OF PRETORIA 2
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CHAPTER 1. INTRODUCTION 1.3. STRUCTURE OF THE DISSERTATION

1.3 Structure of the dissertation

This dissertation is structured as follows:

Chapter 2 provides an overview of EVT. Section 2.1 details the block maxima and peak over
threshold methods of choosing extreme values, the Generalised Extreme Value and Generalised
Pareto distributions as well as threshold selection methods. Section 2.2 discusses methods of
modelling the entire range of data in the EVT context. Section 2.3 details some case studies
in different areas of application of EVT.

Chapter 3 introduces the Extended Generalised Pareto Distribution (EGPD) for modelling the
entire range of data. Section 3.1 details the semi-parametric EGPD model based on Bern-
stein polynomial approximation. Section 3.2 is a detailed simulation study investigating how
the semi-parametric EGPD model fares in estimating the extreme value index of data arising
from distributions in the Gumbel, Fréchet and Weibull domains of attraction. Section 3.3 is a
comparative study to investigate the suitability of the semi-parametric EGPD as both a bulk
model and a tail model.

Chapter 4 discusses the Pareto tail model substitution in the EGPD for the case of distributions
in the Fréchet domain. Section 4.1 details the mathematical background of the EGPD (Pareto)
model and shows that it is a member of the EGPD family. A comprehensive simulation study
is carried out in Section 4.2. Section 4.3 is a case study illustrating the practical usefulness of
the EGPD (Pareto) model.

Finally, Chapter 5 concludes this dissertation by summarising the main objectives and findings
of the research and suggesting further research possibilities.

DEPARTMENT OF STATISTICS, UNIVERSITY OF PRETORIA 3
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Chapter 2

Extreme Value Theory

Extreme Value Theory (EVT) is a branch in the field of statistics that studies the distribution
of rare or unusual (from here on ”extreme”) events. EVT is primarily concerned with the
limit distribution of the maximum (minimum) variable amongst a sequence of Independent
and Identically Distributed (IID) random variables.

The earliest work in this field goes back to Bortkiewicz (1922) who is credited as having been
the first to explore the distribution for the largest value in an IID sequence of variables. This
distribution was further explored by von Mises (1923) who derived its expected value, and
Dodd (1923) who focused on the median value.

Furthermore, Fréchet (1927) discovered one possible limit distribution for the largest order
statistic among an IID sequence of variables. Fisher and Tippett (1928) established that limit
distributions for extreme order statistics can only be one of three (3) types. Jenkinson (1955)
combined these three distributions and introduced the Generalised Extreme Value (GEV) distri-
bution. The work of Gnedenko (1943) proved pivotal as it established a rigorous mathematical
foundation for the field of EVT, and developed the necessary and sufficient conditions for weak
convergence of extreme order statistics.

Juncosa (1949) provided an extension of the work done by Gnedenko (1943), which investigates
the asymptotic distribution of the minimum in the case when the sequence of variables is not
IID. Although this work is well-founded theoretically, it has but marginal practical applicability.

4
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CHAPTER 2. EXTREME VALUE THEORY 2.1. CLASSICAL THEORY OF
EXTREMES

2.1 Classical theory of extremes

Let Y1, Y2, . . . , YN be a sequence of IID random variables. The main concern in classi-
cal EVT is to find a limit distribution for the sample maximum of this sequence, YN :N =
max {Y1, Y2, . . . , YN}. Let F be the underlying Cumulative Distribution Function (CDF) of
{Yi}, with right endpoint at yF , that is yF = sup {y : F (y) < 1}. The sample maximum,
YN :N , converges in probability to yF . Furthermore, the limit distribution of YN :N is degener-
ate, which means that it is centred at a single point, as illustrated below (Smith, 1990):

P (max {Y1, Y2, . . . , YN} ≤ y) = P (Y1 ≤ y, Y2 ≤ y, . . . , YN ≤ y)

= P (Y1 ≤ y)× P (Y2 ≤ y)× · · · × P (YN ≤ y)

= FN(y)

N−→
∞

{
0 if y < yF

1 if y ≥ yF

This degenerate distribution for the sample maximum has no inferential value. A non-degenerate
distribution is thus necessary for inference regarding YN :N , and addressing the following perti-
nent problems in EVT (Smith, 1990):

• Estimation of the tail of the survival function, F = 1−F . That is, calculating p = F (y∗)
when y∗ > YN :N .

• Estimation of extreme quantities: y∗ = F−1(p) for small values of p.

The possibility of obtaining a non-degenerate limit distribution is explored by normalising YN :N .
Suppose there exist sequences (αN > 0) and (βN) such that:

P

(
YN :N − βN

αN
≤ y

)
N−→
∞

H(y) (2.1)

where H is a real-valued function which maps to the unit interval. When H is a non-degenerate
CDF, it is said that F is in the maximum domain of attraction of H and is denoted F ∈
MDA(H). The challenge is then to find the appropriate sequences (αN) and (βN) such that
H is non-degenerate (de Haan and Ferreira, 2006).

2.1.1 Generalised Extreme Value distribution

Fisher and Tippett (1928) and Gnedenko (1943) solved the limit problem in (2.1), and in so
doing established a class of non-degenerate limit distributions called extreme values distribu-
tions.

Theorem 2.1 (Fisher-Tippett-Gnedenko)
Let Y1, Y2, . . . , YN be a sequence of IID random variables from a population with CDF F .

DEPARTMENT OF STATISTICS, UNIVERSITY OF PRETORIA 5
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CHAPTER 2. EXTREME VALUE THEORY 2.1. CLASSICAL THEORY OF
EXTREMES

If for (2.1), F ∈ MDA(H), then H necessarily belongs to one of the following classes of
distributions:

I. Gumbel: H(y) = exp(− exp(−y)) for all y, γ = 0

II. Fréchet: H(y) = exp(−y−1/γ) for y > 0, γ > 0

III. Weibull: H(y) = exp(−|y|−1/γ) for y < 0, γ < 0

▲

The parameter γ in Theorem 2.1 is called the Extreme Value Index (EVI). This parameter is of
great importance in the classification of the three classes of extreme value distributions, and
in measuring the tail heaviness of the underlying distributions:

• Distributions in the Gumbel domain of attraction (γ = 0) have an infinite right endpoint,
an exponentially decaying tail, and all their moments exist.

• The Fréchet class (γ > 0) is also the limit case for distributions with an infinite right
endpoint. However, these distributions are heavy-tailed, and their moments of orders
greater than 1/γ do not exist.

• When the underlying distribution has a finite right endpoint and thus a short tail, then
the limiting distribution is in the Weibull class (γ < 0).

The three classes of distributions in Theorem 2.1 have been unified into the standard Gener-
alised Extreme Value (GEV) distribution (Jenkinson, 1955):

Hγ(y) =

exp
[
− (1 + γy)−1/γ

]
γ ̸= 0 and 1 + γy > 0

exp [− exp(−y)] γ = 0

Defining Hγ,µ,ψ(y) = Hγ

(
y−µ
ψ

)
leads to the three-parameter, non-standard GEV distribution.

The parameters µ and ψ in Hγ,µ,ψ are the location and scale, respectively.

The GEV distribution is typically applied in the Block Maxima (BM) approach to EVT, illus-
trated in Figure 2.1. For a sample of size N , this method entails subdividing the N observations
into M non-overlapping blocks of size n. The blocks can sometimes appear naturally, for ex-
ample, a time series of daily returns of a stock can be blocked quarterly, semi-annually or
annually. In some applications, however, the number of blocks and block sizes are up to the
practitioner’s discretion. The set of extreme values under this approach is chosen as the max-
imum (minimum) observation in each block. For n large enough, the distribution of the block
maxima (minima) is approximated by the GEV distribution (Smith, 1990). This distribution is
commonly fitted using Maximum Likelihood (ML) estimation, or alternatively, the method of
Probability Weighted Moments (PWM) estimation can be used.

DEPARTMENT OF STATISTICS, UNIVERSITY OF PRETORIA 6
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CHAPTER 2. EXTREME VALUE THEORY 2.1. CLASSICAL THEORY OF
EXTREMES

Application of the BM method and fitting the GEV distribution allows the practitioner to,
amongst other things, (1) estimate extreme quantiles, (2) compute the return level, which is
the magnitude of a stress event (that is, the extreme event being modelled) and (3) compute
the return period, that is, the frequency of occurrence of a stress event. These quantities are
computed through the inverse of the CDF of the GEV distribution:

yp =

{
µ+ ψ

γ

{
[− log(1− p)]−γ − 1

}
if γ ̸= 0

µ− ψ log [− log(1− p)] if γ = 0

with p = P (Y > y). From the above, yp can be interpreted as the level expected to be
exceeded on average in 1/p periods (McNeil et al., 2015).

The BM approach has the weakness of being wasteful of data when there are multiple extremes
in the same block. Furthermore, in the case when there are blocks which do not contain
extremes, the GEV distribution is fitted to moderate observations, which skews inferences (Hu,
2013).

2.1.2 Generalised Pareto distribution

The Peaks Over Threshold (POT) approach to EVT offers a workaround for the issues ex-
perienced under the BM approach (Smith, 1990). This method defines extremes as those
observations exceeding a high threshold, t. The main objective is then to approximate the
distribution of the absolute excesses, X = Y − t|Y > t:

P (Y − t ≤ x|Y > t) =
F (x+ t)− F (t)

1− F (t)
(2.2)

where F is the CDF of Y .

The works of Balkema and De Haan (1974) and Pickands III (1975) proposed the Gener-
alised Pareto Distribution (GPD) as an approximate distribution for the excesses above a high
threshold.

Theorem 2.2 (Pickands-Balkema-de Haan)
Let Y be a random variable with CDF F which has a right endpoint at yF . For a large
enough threshold, t, the conditional distribution of the excesses above the threshold, that is,
the distribution of X = Y − t|Y > t, can be approximated by the GPD with distribution
function:

Hγ,ψt(x) =


1−

(
1 + γx

ψt

)−1/γ

γ ̸= 0

1− exp
(
− x
ψt

)
γ = 0

where ψt > 0, x ≥ 0 when γ ≥ 0 and 0 ≤ x ≤ −ψt/γ when γ < 0. ▲
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CHAPTER 2. EXTREME VALUE THEORY 2.1. CLASSICAL THEORY OF
EXTREMES

The parameter ψt is the threshold-dependent scale parameter, and γ is the shape parame-
ter. As with the GEV distribution, γ is the EVI. A necessary and sufficient condition for the
approximation in Theorem 2.2 is that F ∈MDA(Hγ).

The POT method is illustrated using sample data in Figure 2.1 below, alongside the BM
method.

Note: ▲ indicates an extreme value.

Figure 2.1: Illustration of how extreme values are chosen under the block maxima and
peaks over threshold methods, respectively.

The GPD is most commonly fitted using PWM or ML estimation to the extreme values that
have been determined by the POT method (Leadbetter, 1991). Similar to using the GEV
distribution, the GPD can be used to calculate return periods and return levels using its
quantile function:

yp =

{
ψt

γ
(p−γ − 1) if γ ̸= 0

−ψt log p if γ = 0

where yp is the return level and p = P (Y > y).
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CHAPTER 2. EXTREME VALUE THEORY 2.1. CLASSICAL THEORY OF
EXTREMES

2.1.2.1 Pareto distribution

The POT methodology, in the case of heavy-tailed data, is usually applied to the relative ex-
cesses above the threshold (i.e. Y/t) instead of the absolute excesses. The limit distribution
for the excesses is obtained from the condition of regular variation, as defined below in Def-
inition 2.1 (for an expansive definition, please see Bingham et al. (1989)). This condition is
useful in studying the rate of convergence of distributions.

Definition 2.1 (Regular variation)
A positive, Lebesgue measurable function (Baker, 1991), a, is regularly varying with index α if

lim
t→∞

a(ty)

a(t)
= yα for y > 0 and α ∈ R.

▲

The probabilistic interpretation of Definition 2.1 is that a distribution function F , defined on
R, has positive tail index γ if its survival function F is regularly varying with index −1/γ
(Charpentier and Flachaire, 2021):

P

(
Y

t
> z|Y > t

)
P−→ z−1/γ for t→ ∞ and 1 ≤ z <∞

The above expression is the survival function of a Pareto Distribution (PD) with shape param-
eter α = 1/γ and minimum ym = 1. Therefore, the distribution of the relative excesses above
a sufficiently high threshold is approximated by the PD, with CDF:

Hγ,1(y) =

{
0 for y < 1

1− y−1/γ for y ≥ 1

2.1.3 Threshold selection methods

Successful application of the POT method relies greatly on the threshold (Smith, 1990). As
per Theorem 2.2, t has to be large enough for the GPD (and PD, if applicable) approximation
to be valid. Selecting a threshold, t is a trade-off between variance and bias. Should t be set
too low, then the asymptotic justification of the GPD is not met, and bias is created in the
parameter estimation. Conversely, choosing t too high means too few observations lie above
the threshold for any meaningful inference to occur, and thus the variances of the parameters
are inflated. The topic of threshold selection is an area of ongoing research in EVT as no single
best technique exists (Beirlant et al., 2022). Below are a few of the most popular threshold
selection methods in the literature.
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CHAPTER 2. EXTREME VALUE THEORY 2.1. CLASSICAL THEORY OF
EXTREMES

2.1.3.1 Mean residual life plot

The mean residual life plot is a popular tool for finding a suitable threshold beyond which the
distribution of the excesses can be approximated by the GPD (Hu, 2013), as per Theorem 2.2.
The mean excess function is defined as

e(t) = E (Y − t|Y > t)

assuming that E(Y ) < ∞. For a given sample (y1, y2, . . . , yN), e(t) is estimated by êN(t),
defined as:

êN(t) =

N∑
k=1

(yk − t)I(t,∞)(yk)

N∑
k=1

I(t,∞)(yk)

where I(t,∞)(z) = 1 if z > t and 0 otherwise (Beirlant et al., 2004).

In practical applications, êN(t) is plotted at t = yN−j:N , j = 1, 2, . . . , N−1 which is the (j+1)th

largest sample observation. The plot is obtained by using the coordinates (yN−j:N , êj,N) in
increasing values of yN−j:N , or equivalently (j, êj,N) in decreasing order of j. The optimal
threshold is chosen as the order statistic at the point where the plot begins to show linearity
(McNeil, 1999).

2.1.3.2 Pareto quantile plot

Quantile-Quantile (Q-Q) plots assess the goodness-of-fit of a proposed distribution to data by
comparing their quantiles. The distributions being compared are accepted as being the same
if the plot shows a linear relation, with the points on the graph lying along the 45◦ line. In
EVT, a Pareto Q-Q plot is used with coordinates

{(− log(1− pk), log yk)}Nk=1

where y1, y2, . . . , yN is an observed sample and pi = k
N+1

∈ (0, 1). The log observations, for
a suitable fit, will lie linearly in the plot (Beirlant et al., 2004).

2.1.3.3 Parameter stability plot

The GPD shows a property of threshold stability, as is demonstrated in Lemma 2.1 below. As
such, this method chooses the threshold as the point beyond which, for higher thresholds, the
estimated shape parameter remains constant, while the scale parameter varies linearly.

Lemma 2.1
Given a threshold, t for which the GPD approximation is met, any higher threshold, say u ≥ t,
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CHAPTER 2. EXTREME VALUE THEORY 2.1. CLASSICAL THEORY OF
EXTREMES

will result in a GPD approximation for the excesses with the same shape parameter γ, but a
modified scale parameter ψ∗ = ψt + γ(u− t). ▲

2.1.3.4 Other methods

The graphical methods described above are difficult to use when the sample size is large.
Therefore, arbitrary thresholds are set at the discretion of the practitioner. A common choice
is to use a high quantile, like the 95th quantile, as the threshold.

2.1.4 Methods of estimating the EVI

The extreme value index (EVI) describes the tail heaviness of a distribution. This parameter
is thus crucial in estimating tail probabilities as well as extreme quantiles. Several methods for
estimating the EVI are discussed below.

The GPD is fitted to the excesses over a high threshold using ML or PWM estimation. The
strength of the GPD is in its ability to estimate the EVI on R. That is, the GPD can provide
an estimate for the EVI regardless of whether the tail of the underlying distribution is short,
light or heavy. It is important to note, however, that fitting the GPD using classical PWM
estimation is recommended for small values of the EVI, usually γ ∈ [−1/2, 1/2] (Naveau et al.,
2016).

2.1.4.1 Hill estimator

The Hill estimator, developed by Hill (1975), is a popular estimator of the EVI for heavy-tailed
data (γ > 0). The estimator, which is based on the top k + 1 order statistics is defined as

Hk,N =
1

k

k∑
j=1

log
YN−k+j:N

YN−k:N
for k = 1, 2, . . . , N − 1

where Y1:N ≤ Y2:N ≤ · · · ≤ YN−1:N ≤ YN :N are the order statistics. One challenge in using
the Hill estimator is determining the appropriate value of k. A visual tool that can be used
to choose this value is the Hill plot with coordinates (k,Hk,N) in increasing values of k. The
appropriate value of k is chosen where the estimate shows stability (McNeil, 1999).

2.1.4.2 Extended Pareto Distribution
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CHAPTER 2. EXTREME VALUE THEORY 2.1. CLASSICAL THEORY OF
EXTREMES

Beirlant et al. (2009) developed the EPD for modelling the excesses above a threshold in the
case of heavy-tailed data. The EPD has CDF:

Hγ,δ,τ (y) =

{
0 for y ≤ 1

1− [y(1 + δ − δyτ )]−1/γ for y > 1

for τ < 0 and δ > max {−1, 1/τ}. This distribution is known to reduce the bias of estimates
of the EVI. Furthermore, the EPD can be fitted to bigger portions of data, as it allows for
lower thresholds to be used in the POT methodology.
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CHAPTER 2. EXTREME VALUE THEORY 2.2. MODELLING THE ENTIRE
RANGE OF DATA

2.2 Modelling the entire range of data

The POT method is applied when the full data (that is, both moderate and extreme data) are
available. Modelling excesses over a threshold and discarding the rest of the data may be a
wasteful exercise. Therefore, there is a great interest in literature to model the bulk and tail
in unison Hu (2013).

This section provides a brief overview of some of the existing methodologies for modelling the
entire range of data.

2.2.1 Extreme value mixture models

Extreme value mixture models emerged as an objective approach to choosing a suitable thresh-
old for the POT modelling. The main concept behind these models is to construct a two-
component model; wherein the first component captures the bulk (non-extreme or moderate)
data, and the other is a model for the excesses over the threshold (i.e a tail model). The
model fitted to the bulk component may be (1) parametric, (2) semi-parametric or (3) non-
parametric, while the tail is typically modelled with a GPD. These models typically treat the
threshold as a parameter to be estimated, thereby allowing for quantifying the uncertainties
associated with threshold selection. Figure 2.2 below illustrates the density function of an
extreme value mixture model.

Figure 2.2: An example of the density function of an extreme value mixture model, without
a continuity constraint at the threshold.
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CHAPTER 2. EXTREME VALUE THEORY 2.2. MODELLING THE ENTIRE
RANGE OF DATA

An overview of the mixture model(s) which will be used in this dissertation is given below. A
comprehensive discussion of extreme value mixture models can be found in Hu (2013).

Behrens et al. (2004) presented the most basic form of a mixture model. They proposed a
model to fit the full data (characterised by extreme values) where the threshold is directly
estimated. Let {Yi}Ni=1 be an IID sequence of variables, and t a threshold, then this model fits
a GPD to {Yi − t|Yi ≥ t} and takes {Yi|Yi < t} ∼ F (y|βββ), where F (y|βββ) can be a Gamma,
Weibull or Gaussian CDF, with βββ being the parameter vector for the chosen distribution. This
model has CDF:

G (y|βββ, t, γ, ψt) =

{
F (y|βββ) for y < t

F (t|βββ) + [1− F (t|βββ)]Hγ,ψt(y − t) for y ≥ t

An advantage of this model is that it is straightforward and flexible. Furthermore, Bayesian
inference is used throughout and thus expert prior information is drawn from to compensate
for the sparsity of extremal data. However, Bayesian inference treats the threshold and ψt as
independent parameters, thereby ignoring the relationship which clearly exists between them.
Moreover, this particular formulation of the model ignores the tail fraction, ϕt = P (Y > t).
This quantity can be included by alternatively defining the model as:

G(y|βββ, t, γ, ψt, ϕt) =

{
(1− ϕt) · F (y|βββ)

F (t|βββ) for y < t

(1− ϕt) + ϕt ·Hγ,ψt(y − t) for y ≥ t
(2.3)

ML estimation is used to fit this form of the mixture model. This can be performed with the
evmix package in R. It is worth noting that both formulations of this model have Probability
Density Function (PDF) that are discontinuous at the threshold. A continuity constraint can
be added, but it has been found in the literature to have a negligible effect on the model fit
(Hu, 2013).
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CHAPTER 2. EXTREME VALUE THEORY 2.3. AREAS OF APPLICATION

2.3 Areas of application

The different methodologies of EVT have been applied in several contexts including finance and
insurance. McNeil (1999) demonstrated the quantification of market risk using Value-at-risk
and expected shortfall as risk measures, which are calculated using the GPD fitted to excesses
over a threshold. Aviv (2018) employed EVT techniques to estimate the loss distributions in
the reinsurance context. The GEV distribution is used by Vyskocil and Koudelka (2021) to
estimate an insurance company’s losses, emanating from operational risk.

The fields of hydrology and meteorology have also made great use of the EVT framework.
Nadarajah and Shiau (2005) utilised the GEV distribution on the Taiwanese Pachang River’s
daily stream-flow data and their inference included estimating the recurrence intervals for flood
volume and peak. A study of flood frequencies in eleven southern African countries by Mkhandi
et al. (2000) demonstrated that the Generalised Pareto and GEV distributions are suitable for
use in such analyses. Tabari (2021) compared the fundamental approaches in EVT, namely
BM and POT, in analysing the impact of future climate change on extreme precipitation and
global floods. EVT was used by Maposa et al. (2021) in studying extreme temperatures in the
Limpopo province of South Africa, which has become prone to heat waves and a shortage of
rainfall.

Further applications of EVT include the field of engineering as can be seen in Chryssolouris et al.
(1994). Zheng et al. (2014), as well as Zheng and Sayed (2019), applied EVT methodology
in road safety analysis. EVT methods have also proven useful in modelling data from a sports
context, as Vicente (2012) demonstrated.
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Chapter 3

Extended Generalised Pareto
Distribution

EVT is frequently applied to sample maxima or high extremes, and thus the upper tail of a
distribution, with little focus on the lower tail. Consider a sequence of values, say {yk}, then
min {yk} = −max {−yk}. Thus, a sign change allows for applying the same EVT techniques
to the lower tail, as would be applied to the upper tail. Under the POT methodology, the
threshold (t) would naturally have to be low in this case.

Define the random variable X = −Y , where Y is non-negative. The distribution of the excesses
of this new variable beyond a threshold,−t, is approximately GPD, according to Theorem 2.2,
with a negative shape parameter, say γ = −1/κ for some κ > 0. That is,

P (Z = X + t > z|X > −t) → H−1/κ,ψt(z) as t→ 0 and 0 < z < t

The shape parameter is necessarily negative as the underlying distribution is bounded above,
and thus short-tailed. Moreover, the threshold has to be chosen such that H−1/κ,ψt(t) =
0. This constraint further leads to the condition that low values of Y should be described
adequately by a power law (Naveau et al., 2016):

P (Y ≤ y) ∝ yκ for small y ≥ 0 and κ > 0

Moving away from exclusively modelling the tail; the Extended Generalised Pareto Distribution
(EGPD) is introduced with the aim of modelling the full range of data with a density (distri-
bution) function which is in compliance with EVT in both tails, whilst bypassing the selection
of a threshold. Naveau et al. (2016) begin deriving the EGPD by considering the probability
integral transform described in Result A.1. Random draws from a GPD can be obtained by
defining

Z = H−1
γ,ψt

(U) for U ∼ U(0, 1)
because Z ∼ GPD(γ, ψt) under this construction, as per Result A.2. Flexibility can be added
to the above scheme by simply replacing the uniform draws with V = G−1(U), where G is a
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CHAPTER 3. EXTENDED GENERALISED PARETO DISTRIBUTION

continuous CDF defined on [0, 1]. Note that the previous formulation is a special case when
G(U) = U . A family of richer random variables is obtained by defining:

Z = H−1
γ,ψt

{
G−1(U)

}
(3.1)

The main problem now is to find a class of distributions for G that preserve the upper tail
behaviour of a GPD with shape parameter γ. Furthermore, the CDF of Z, for values near zero,
must behave like the function zκ, with κ > 0, as discussed above. These constraints are met
when the following conditions are fulfilled:

(i) lim
u→0

G(1− u)

u
= a for some finite a > 0.

(ii) lim
u→0

G {uω(u)}
G(u)

= b for some finite b > 0, and ω is an arbitrary positive function
satisfying ω(u) = 1 + o(u), as u→ 0.

(iii) lim
u→0

G(u)

uκ
= c for some finite c > 0.

These conditions are derived in Naveau et al. (2016). Below is an explanation of each of
the conditions. First, note that the CDF and survival function of Z as defined in (3.1), are
F (z) = G {Hγ,ψt(z)} and F (z) = G {Hγ,ψt(z)}, respectively. Thus, taking u = Hγ,ψt(z)
in condition (i) has the implication that the ratio F (z)/Hγ,ψt(z) converges to a constant as
z → ∞. Therefore, condition (i) ensures that the upper tail of Z is equivalent to a GPD tail,
Hγ,ψt(z).

Consider the ratio F (z)/G(z), which by using (3.1) can be expressed as:
F (z)

G(z)
=
G {Hγ,ψt(z)}

G(z)
=
G {z [Hγ,ψt(z)/z]}

G(z)
=
G {uω(u)}
G(u)

where ω(u) = Hγ,ψt(u)/u. Therefore, by condition (ii), the ratio F (z)/G(z) converges to
some non-null constant for small values of z. Thus, this condition implies that the CDF of Z,
for low values, is driven by G. Moreover, condition (iii) ensures that G adopts the behaviour
of a Weibull-type (i.e. short-tailed) GPD.

Following from these conditions, the EGPD family is defined below (Naveau et al., 2016).
Definition 3.1 (EGPD Family of Distributions)
A distribution function F is a member of the Extended Generalised Pareto Distribution (EGPD)
family if it can be expressed as

F (z) = G {Hγ,ψt(z)} ∀z > 0

where Hγ,ψt is the CDF of a GPD with shape parameter γ and scale parameter ψt. G is the
CDF of a continuous distribution on the unit interval. The corresponding PDF of a distribution
in this family is

f(z) = g {Hγ,ψt(z)} · hγ,ψt(z) ∀z > 0

▲
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CHAPTER 3. EXTENDED GENERALISED PARETO DISTRIBUTION 3.1.
SEMI-PARAMETRIC EGPD MODELS

Four parametric families for the CDF G in the EGPD family, which meet conditions (i), (ii)
and (iii) above have been studied in (Naveau et al., 2016):

(i) G(u) = uκ for κ > 0.

(ii) G(u) = puκ1 + (1− p)uκ2 for 0 < κ1 ≤ κ2 and p ∈ [0, 1] which is a mixing probability
for this mixture.

(iii) G(u) = 1−Fβ1/δ,2
{
(1− u)δ

}
for δ > 0, where Fβ1/δ,2 is the CDF of a Beta distribution

with parameters 1/δ and 2.

(iv) G(u) =
[
1− Fβ1/δ,2

{
(1− u)δ

}]κ/2
for δ, κ > 0, where Fβ1/δ,2 is as given in (iii).

Model (i), the simplest of these parametric models, has been found to be the best performing.
Model (iii) is sometimes comparable in performance to model (i), however, it suffers from the
poor estimation of its skewness parameter, δ.

In practice, the EGPD is fitted to data, used to estimate the EVI and calculate tail measures.
Furthermore, the definition of Z in (3.1) is useful in that it allows for an explicit formula for
computing the quantiles of the EGPD:

zp =

ψt

γ

{
[1−G−1(p)]

−γ − 1
}

if γ > 0

−ψt log {1−G−1(p)} if γ = 0

These quantiles are then used to compute return levels, as is done in the classical tail models
discussed in Chapter 2.

3.1 Semi-parametric EGPD models

Parametric forms of the function G in the EGPD family are convenient as they are fast to
implement and simple to interpret. Furthermore, as seen in models (i) – (iv), there are few pa-
rameters to estimate when fitting these models (Naveau et al., 2016). However, besides these
conveniences, there are no theoretical reasons for restricting the EGPD to these parametric
forms.

Tencaliec et al. (2019) proposed a non-parametric form for G based on Bernstein polynomials.
This choice is motivated by the fact that any continuous function on [0, 1] can be approximated
to some degree by Bernstein polynomials, as shown by Bernstein (1912). These polynomials
are defined below.
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CHAPTER 3. EXTENDED GENERALISED PARETO DISTRIBUTION 3.1.
SEMI-PARAMETRIC EGPD MODELS

Definition 3.2 (Bernstein polynomial)
The Bernstein polynomial approximation of a continuous function f defined on [0, 1], at the
point u, is defined as

Bm(f, u) =
m∑
i=0

f

(
i

m

)
· bi,m(u)

where the quantities

bi,m(u) =

(
m

i

)
ui(1− u)m−i , u ∈ [0, 1]

are the non-negative Bernstein bases. Furthermore, m ∈ N is the degree of the Bernstein
polynomial. ▲

Vitale (1975) studied the use of Bernstein polynomials in estimating density (distribution)
functions defined on the unit interval. This forms the basis for choosing a non-parametric
form for G in the EGPD. Since G is a CDF, a sample (from G) is necessary for computing
its Bernstein polynomial approximation. Vitale proposed replacing the unknown function (G)
by its Empirical Cumulative Distribution Function (ECDF), GN . Therefore, the Bernstein
polynomial approximation of G in line with Definition 3.2 is

Bm(G, u) =
m∑
i=0

GN

(
i

m

)
· bi,m(u)

Since G is continuous, its PDF is obtained by computing d
du
Bm(G, u). Therefore, the PDF of

G can be approximated by a Bernstein polynomial of degree m as (see Result B.1 for proof ):

ĝm,N(u) = m
m−1∑
i=0

{
GN

(
i+ 1

m

)
−GN

(
i

m

)}
bi,m−1(u)

Result B.2 shows that the above PDF can be equivalently, and more importantly, conveniently
expressed as:

ĝm,N(u) =
m∑
k=1

ωk,mβk,m−k+1(u) (3.2)

where ωk,m = GN(k/m)−GN((k − 1)/m) are the mixing proportions based on the ECDF of
G and βk,m−k+1 is the density of a Beta distribution with parameters k and m − k + 1. It is
important to note that (3.2) is not a mixture of Betas, in the classical sense, because there
is no latent component. This is because the number of components in the mixture (m), as
well as the parameters of each Beta distribution (k and m − k + 1), are known beforehand.
Moreover, the mixing proportions, ωk,m, are straightforward to calculate when GN is available.
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CHAPTER 3. EXTENDED GENERALISED PARETO DISTRIBUTION 3.1.
SEMI-PARAMETRIC EGPD MODELS

The approximated CDF, Ĝm,N(t), can be derived from (3.2) as follows:

Ĝm,N(u) =

∫ u

0

m∑
k=1

ωk,mβk,m−k+1(t)dt

=
m∑
k=1

ωk,m

∫ u

0

βk,m−k+1(t)dt

=
m∑
k=1

ωk,mFβk,m−k+1
(u) (3.3)

where Fβk,m−k+1
is the CDF of a Beta distribution with parameters k and m−k+1. Therefore,

the EGPD family based on the Bernstein polynomial approximation is defined as:

Fm,N(z) = Ĝm,N {Hγ,ψt(z)} for z > 0 (3.4)

where Ĝm,N is a CDF corresponding to ĝm,N as defined in (3.3). Tencaliec et al. (2019) show
that the above specification meets conditions (i), (ii) and (iii) as required under the EGPD
when ωm,m > 0 because:

(i) lim
z→0

Fm,N(z)

zs
= ψ−s

t

(
m− 1

s− 1

)
ωs,m > 0 where s is the position of the first positive weight

in ωωω. This satisfies conditions (ii) and (iii) of the EGPD family.

(ii) lim
z→∞

Fm,N(z)

Hγ,ψt(z)
= mωm,m > 0. This satisfies condition (i) of the EGPD family.

(iii) Let Y be a non-negative continuous random variable satisfying P (Y > z + t|Y > t)
t−→
∞

(1 + γ̃z

ψ̃t
)−1/γ̃.

If Y ∼ EGPD, i.e. Y = H−1
γ,ψt

{
Ĝ−1
m,N(U)

}
with U ∼ U(0, 1), and we have that

lim
u→0

Ĝm,n(1− u)

u
> 0, then γ̃ = γ.

Condition (iii) above ensures that the upper tail behaviour of the EGPD model is governed by
γ as is the case when a genuine EVT argument is used to justify the GPD.

With the theoretical background in place, the EGPD can now be used for inference. Algorithm
1 below, adapted from (Tencaliec et al., 2019), details how the EGPD model is fitted, given
data (yyy) and the degree of the Bernstein polynomial (m):
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CHAPTER 3. EXTENDED GENERALISED PARETO DISTRIBUTION 3.1.
SEMI-PARAMETRIC EGPD MODELS

Algorithm 1: Estimation of the semi-parametric EGPD model, given m

1. Obtain initial values for θθθ(0) =
(
γ(0), ψ

(0)
t

)
. Tencaliec et al. (2019) suggest fitting the

parametric EGPD model (i) with G(u) = uκ to yyy to obtain these values.

2. At the ith iteration:

2.1. Calculate the weights, ωωω(i), as follows:
2.1.1. Generate the pseudo-observations: Û = H

γ(i−1),ψ
(i−1)
t

(y).

2.1.2. Calculate GN , the ECDF based on Û .
2.1.3. Calculate ωk,m = GN(k/m)−GN((k − 1)/m).
2.1.4. Ensure the last weight is non-null. If ωm,m = 0, then:

2.1.4.1. Calculate: ωm,m = 1− Ĝm,N(1− 1/m).
2.1.4.2. Normalise the weights: ωωω = ωωω/

∑
ωωω.

2.2. Generate the pseudo-observations: Ẑ = H
γ(i−1),ψ

(i−1)
t

(y).

2.3. Calculate V̂ = Ĝm,N(Ẑ) using the fitted weights ωωω(i).
2.4. Generate GPD variables, X̂ = H−1

γ(i−1),ψ
(i−1)
t

(V̂ ), and compute the PWM estimates:

γ̂(i) =
m0 − 4m1

m0 − 2m1

and ψ̂t
(i)

= m0

(
1− γ̂(i)

)
where m0 = X̂ and m1 =

1
N

∑N
j=1

N−j
N−1

X̂j with X̂1 ≤ X̂2 ≤ · · · ≤ X̂N .

3. Check for convergence: if
∣∣γ̂(i) − γ̂(i−1)

∣∣ < 10−3 the algorithm has converged, else
repeat (2) above.

A non-parametric bootstrap can be used to obtain 100(1 − α)% confidence intervals as well
as the standard errors of the parameters γ and ψt.

3.1.1 Estimation of the degree of the Bernstein polynomial

Algorithm 1 details the fitting of the EGPD model when the degree of the Bernstein polynomial,
m, is known. In practice, this value is not known and is thus determined through Least Squares
Cross Validation (LSCV). This method finds the appropriate value for m as that value which
minimises (Tencaliec et al., 2019):∫

y

[
f̂m,N(y)− f(y)

]2
dy

=

∫
y

f̂ 2
m,N(y)dy − 2

∫
y

f̂ 2
m,N(y)f(y)dy +

∫
y

f 2(y)dy
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CHAPTER 3. EXTENDED GENERALISED PARETO DISTRIBUTION 3.1.
SEMI-PARAMETRIC EGPD MODELS

The last term in the above expression does not depend on m and is thus left out of subsequent
calculations. Furthermore, Silverman (1986) showed that sample data can be used to estimate
the second term:

2

∫
y

f̂ 2
m,N(y)f(y)dy ≈ 2

N

N∑
j=1

f̂
(−j)
m,N (Yj)

with f̂
(−j)
m,N being the approximated PDF corresponding to the CDF in (3.3), but calculated

based on all the data except Yj. The LSCV criterion can thus be written as:

LSCV (m) =

∫ ∞

0

f̂ 2
m,N(y)dy −

2

N

N∑
j=1

f̂
(−j)
m,N (Yj)

Recall that f̂m,N(y) = ĝm,N {Hγ,ψt(y)} · hγ,ψt(y). Define u = Hγ,ψt(y) = 1 −
(
1 + γy

ψt

)−1/γ

,
then we can rewrite

f̂m,N(y) =
1

ψt
ĝm,N(u) · (1− u)1+γ

Therefore, consider a change of variable in the integral in the calculation of LSCV (m) from
y to u = Hγ,ψt(y). The new bounds are:

y = 0 =⇒ u = Hγ,ψt(0) = 0 and y = ∞ =⇒ u = Hγ,ψt(∞) = 1

and we can write du = 1
ψt

(
1 + γy

ψt

)− 1+γ
γ
dy = 1

ψt
(1− u)1+γdy. This implies that the term in

the integrand is

f̂
(2)
m,N(y) =

1

ψ2
t

ĝ2m,N(u) ·
{
(1− u)1+γ

}2
=

1

ψt
ĝ2m,N(u) · (1− u)1+γ

du

dy

Therefore, we express LSCV (m) as follows:

LSCV (m) =

∫ 1

0

1

ψt
ĝ2m,N(u) · (1− u)1+γdu− 2

Nψt

N∑
j=1

ĝ
(−j)
m,N {Hγ,ψt(Yj)} · hγ,ψt(Yj)

=
1

ψt

{∫ 1

0

ĝ2m,N(u) · (1− u)1+γdu− 2

N

N∑
j=1

ĝ
(−j)
m,N (Zj) · (1− Zj)

1+γ

}

where Zj = Hγ,ψt(Yj). Applying the formula derived by Leblanc (2010) leads to ψtLSCV (m)
being written as:

m2

2m+ γ
GGGTAAAGGG− 2

N − 1

{
N∑
j=1

ĝm,N(Zj) · (1− Zj)
1+γ − 1

N

N∑
j=1

βkj+1,m−kj(Zj) · (1− Zj)
1+γ

}

where kj = [mZj], GGG : m× 1 is a vector with elements (gk) = GN(k/m)−GN((k − 1)/m),
and AAA : m×m is a matrix with elements:

(ai,j) =

(
m−1
i

)(
m−1
j

)(
2(m−1)
i+j

) for i, j = 0, 1, . . . ,m− 1
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CHAPTER 3. EXTENDED GENERALISED PARETO DISTRIBUTION 3.1.
SEMI-PARAMETRIC EGPD MODELS

In practice a sequence of values of m is chosen and LSCV (m) is calculated for each value
in the sequence. The appropriate m is then chosen as the value with the corresponding least
LSCV.

The rest of this chapter will evaluate the ability of the EGPD to estimate the EVI through a
simulation study. A case study will also be conducted to examine the suitability of the EGPD
in modelling the entire range of data and quantile estimation.
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CHAPTER 3. EXTENDED GENERALISED PARETO DISTRIBUTION 3.2.
SIMULATION STUDY

3.2 Simulation study

A comprehensive simulation study is carried out to investigate the performance of the semi-
parametric EGPD model in estimating the extreme value index (EVI) of data arising from
distributions in the Gumbel, Fréchet and Weibull domains of attraction. Model performance
is measured in terms of the bias and Mean Squared Error (MSE) of the estimator, as defined
below:

Bias(γ̂) = E(γ̂)− γ

MSE(γ̂) = E
[
(γ̂ − γ)2

]
3.2.1 Design

The simulation study is designed as follows:

• 1000 samples of size 1000 each are taken from 3 distributions in the Fréchet, Gumbel
and Weibull domains of attraction, respectively.

• For each sample, the EVI (γ̂k) is estimated for the threshold exceedances:

YN−k+j:N − YN−k:N , j = 1, 2, . . . , k

for each k = 2, 3, . . . , N , via the EGPD and the following well-known models:

– (i) GPD, (ii) Hill estimator and (iii) EPD for distributions in the Fréchet domain of
attraction.

– GPD for distributions in the Gumbel and Weibull domains of attraction.

• The performance for each estimator is measured by Bias and MSE where for each k,
Bias(γ̂k) and MSE(γ̂k) is calculated as the average across the 1000 samples.

Table 3.1 below details the distributions which are used in the simulation study, along with the
chosen parameters. The chosen values of the EVI for the different domains of attraction are
also given in the table. A comprehensive list of distributions in the different domains and how
they are parameterised to achieve specific values of the EVI can be found in Tables 2.1, 2.2
and 2.3 in Beirlant et al. (2004).
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CHAPTER 3. EXTENDED GENERALISED PARETO DISTRIBUTION 3.2.
SIMULATION STUDY

Distribution Chosen Parameters

Distributions in the Fréchet domain (γ = 1/2)

Fréchet(α) α = 2

Burr XII(λ, τ, η) λ = 1, τ = 2, η = 1

Half-t(ν) ν = 2

Distributions in the Gumbel domain (γ = 0)

Weibull(θ, τ) θ = 1, τ = 3/2

Gamma(θ, κ) θ = 2, κ = 3/2

log-Normal(µ, σ2) µ = 0, σ2 = 1

Distributions in the Weibull domain (γ = −1/2)

Beta (α, β) α = 1, β = 2

Reversed Burr (t1, t2) t1 = 1, t2 = 2

GPD(γ, ψt) γ = −1/2, ψt = 1

Table 3.1: Distributions in the Fréchet, Gumbel and Weibull domains of attraction, used
in the simulation study.

3.2.2 Results

The appropriate values of the degree of the Bernstein polynomial (m) are found through LSCV
as follows: for each domain; the value of m is calculated for each of the 1000 samples from
each of the chosen distributions in Table 3.1. The final value of m in each domain is then
determined as the median of these values, as this measure is insensitive to the outliers that
may occur due to sample variation. The results of this process are as follows: m = 30 in the
Fréchet domain, m = 40 in the Gumbel domain and m = 95 in the Weibull domain. These
are the values of m used in the estimation of the EVI.

Next, the bias and MSE are given for each of the considered models in the different domains
of attraction.
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CHAPTER 3. EXTENDED GENERALISED PARETO DISTRIBUTION 3.2.
SIMULATION STUDY

3.2.2.1 Distributions in the Fréchet domain

Figure 3.1 below illustrates the bias of the estimators of the EVI for distributions in the Fréchet
domain. The EVI is taken to be 1/2.
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(a) Fréchet(α = 2) distribution
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(b) Burr XII(λ = 1, τ = 2, η = 1) distribution
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Figure 3.1: Bias(γ̂k) for distributions in the Fréchet domain, i.e. Fréchet(α = 2), Burr
XII(λ = 1, τ = 2, η = 1) and half-T(ν = 2).
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SIMULATION STUDY

Figure 3.2 below illustrates the MSE of the estimators of the EVI for distributions in the Fréchet
domain. The EVI is taken to be 1/2.
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(a) Fréchet(α = 2) distribution
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(b) Burr XII(λ = 1, τ = 2, η = 1) distribution
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Figure 3.2: MSE(γ̂k) for distributions in the Fréchet domain, i.e. Fréchet(α = 2), Burr
XII(λ = 1, τ = 2, η = 1) and half-T(ν = 2).
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SIMULATION STUDY

3.2.2.2 Distributions in the Gumbel domain

Figure 3.3 below illustrates the bias of the estimators of the EVI for distributions in the Gumbel
domain. The EVI is zero (0) in this domain, by definition.
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(a) Weibull(θ = 1, τ = 3/2) distribution
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(b) Gamma(θ = 2, κ = 3/2) distribution
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Figure 3.3: Bias(γ̂k) for distributions in the Gumbel domain, i.e. Weibull(θ = 1, τ = 3/2),
Gamma(θ = 2, κ = 3/2) and log-Normal(µ = 0, σ2 = 1).
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Figure 3.4 below illustrates the MSE of the estimators of the EVI for distributions in the Gumbel
domain. The EVI in this domain is 0.
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(a) Weibull(θ = 1, τ = 3/2) distribution
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(b) Gamma(θ = 2, κ = 3/2) distribution
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Figure 3.4: MSE(γ̂k) for distributions in the Gumbel domain, i.e. Weibull(θ = 1, τ = 3/2),
Gamma(θ = 2, κ = 3/2) and log-Normal(µ = 0, σ2 = 1).
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3.2.2.3 Distributions in the Weibull domain

Figure 3.5 below illustrates the bias of the estimators of the EVI for distributions in the Weibull
domain. The EVI is taken to be −1/2.
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(a) Beta(α = 1, β = 2 ) distribution
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(b) Reversed Burr(t1 = 1, t2 = 2) distribution
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Figure 3.5: Bias(γ̂k) for distributions in the Weibull domain, i.e. Beta(α = 1, β = 2 ),
Reversed Burr(t1 = 1, t2 = 2) and GPD(γ = −1/2, ψt = 1).
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Figure 3.6 below illustrates the MSE of the estimators of the EVI for distributions in the Weibull
domain. The EVI is taken to be −1/2.
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(a) Beta(α = 1, β = 2 ) distribution
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Figure 3.6: MSE(γ̂k) for distributions in the Weibull domain, i.e. Beta(α = 1, β = 2 ),
Reversed Burr(t1 = 1, t2 = 2) and GPD(γ = −1/2, ψt = 1).
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3.2.3 Discussion of results

The EGPD model generally yields more stable estimates of the EVI when compared to the Hill,
EPD and GPD in the Fréchet domain. From Figure 3.1, the Hill estimator has the least bias
for very small values of k (i.e. the number of threshold exceedances), however, this bias is
inflated as k increases. This estimator is thus only suitable for use when modelling very few
threshold exceedances. The EPD model recorded the lowest bias for values of k ∈ (100, 400),
that is when modelling 10% − 40% of the data. This model thus allows for lower thresholds
than the Hill estimator. The EGPD model has the lowest bias as k increases, thus allowing
for modelling larger portions of the data. The bias of this model does however show a sharp
increase when modelling more than about 99% of the data. Furthermore, although the EGPD
had a lower bias for large k, an increase in bias with an increase in k was observed in the case
of the Burr XII and halt-T distributions. The GPD consistently performed poorer than all the
other models. The MSE of the EGPD model in Figure 3.1 is more stable and lowest for large k
when the data is generated from the Burr XII and half-T distributions. The EPD model reports
the lowest MSE for moderate values of k, while the Hill has the lowest MSE for small values of k.

Consider next the results pertaining to the Gumbel domain. Figure 3.3 shows that the EGPD
reduces bias in the estimation of the EVI over the GPD in the case of the Weibull and log-
Normal distributions. Thus, a larger portion of the data can be modelled via the EGPD while
maintaining a low bias. In the case of the Gamma distribution, however, the GPD reported
the lowest bias across all values of k. Figure 3.4 shows the EGPD consistently reporting the
lower MSE compared to the GPD for the Weibull and log-Normal distributions. In the case of
the Gamma distribution, however, the GPD reports lower MSE for small values of k, but the
MSEs of the two models are equivalent when more than half of the data is used to estimate
the EVI. Both Figures 3.3 and 3.4 once again demonstrate the increase in bias and variance of
the EGPD model when more than 99% of the data is used to fit the model.

Figure 3.5 shows that in the Weibull domain, the EGPD model has decreasing bias as the pro-
portion of data modelled increases. This plot also shows however that the GPD consistently
has a lower bias than the EGPD. Figure 3.6 shows that the GPD also has lower MSE than the
EGPD across all considered distributions in the Weibull domain.

The EGPD model can thus be fitted to a larger portion of the data than the other models it
was compared to, and this will reduce bias in estimating the EVI in the Fréchet and Gumbel
domains. This simulation study has, however, not demonstrated any merit to using this model
over existing models for data coming from distributions in the Weibull domain.
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3.3 Case study

A comparative study is conducted to investigate the suitability of the EGPD as both a bulk
model and a tail model. The data for this analysis is a record of 228 rainfall amounts (in
mm) recorded at 92 weather stations in France for the Fall (Autumn) season. Particular focus
is placed on Chartes weather station (48.46 Lat, 1.5 Lon), following the direction taken by
Tencaliec et al. (2019) where the data is obtained.

The EGPD is compared to the classic 3-parameter GPD tail model with: the threshold (t),
shape (γ) and scale (ψt) parameters. The parameterised tail fraction approach to the Gamma-
GPD mixture model proposed by Behrens et al. (2004) is also considered as an alternative full
distribution model. Recall from (2.3), the CDF of this model is:

P (Y ≤ y|t, θ, κ, γ, ψt, ϕt) =

{
(1− ϕt) · F (y|θ,κ)

F (t|θ,κ) for y ≤ t

(1− ϕt) + ϕt ·Hγ,ψt(y) for y > t

where F is the CDF of a Gamma distribution with shape and scale parameters given by κ and
θ, respectively. The tail fraction, ϕt = P (Y > t), is estimated as the sample proportion of
observations above the threshold, t. The choice of parametric bulk is motivated by the fit of
the Gamma distribution to the positive rainfall amounts. The Gamma Q-Q plot in Figure 3.7
below demonstrates that the Gamma distribution fits the bulk of the data well, but fits rather
poorly in the upper tail.
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Figure 3.7: Gamma Q-Q plot for positive rainfall (mm) at Chartes
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There are 228 rainfall amounts (mm) recorded at Chartes weather station, however, the mod-
elling is done on the 222 positive rainfall amounts. Furthermore, a small jitter is added to the
data to counter the excessive rounding thereof. The three models are fitted as follows:

1. GPD tail model is fitted via ML estimation using the evmix package in R. The threshold
is taken to be the 85% quantile (i.e. t = 4.9687), and 34 threshold exceedances are used
to fit the model.

2. The Gamma-GPD mixture model is also fitted using via ML estimation using the evmix
package.

3. The EGPD is fitted using Algorithm 1.

Table 3.2 below gives the estimated GPD parameters under the various models. The Gamma
scale and shape parameters in the Gamma-GPD mixture model are estimated to be θ̂ = 1.0992
and κ̂ = 2.6019, respectively. The threshold for this model is t̂ = 5.4567, and the tail fraction
is ϕ̂t = 0.1171.

Shape (γ) Scale (ψt)

GPD tail model

0.3504 2.2770

Gamma-GPD mixture model

0.2016 3.0870

EGPD model with m = 5

0.1022 (0.05, 0.2446) 2.4448 (2.1577, 2.9417)

Note: the 95% confidence intervals for the parameters under the EGPD model are based on a
non-parametric bootstrap of 500 samples.

Table 3.2: Estimated shape and scale parameters of the GPD, under the GPD tail fit,
Gamma-GPD mixture model and the EGPD.

It is evident from Table 3.2 above that all three models have consistently estimated the tail
index (shape parameter) as being positive, indicating a heavy-tailed underlying process. The
EGPD model has reported the lowest estimate for the upper tail shape parameter, but it does
however have a wide 95% confidence interval for this parameter. The GPD tail model has
estimated a very high value of the shape parameter, compared to the other two models. The
Gamma-GPD model has overestimated the scale parameter ψt compared to the other models.

Figure 3.8 below gives Q-Q plots for the fitted models. From this, it is evident that all three
models have been an overall good fit for the data. The EGPD has captured the upper tail as
well as the GPD tail model has. Furthermore, this model has also captured the bulk of the
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data well. This has also been observed in the Gamma-GPD. mixture model. The strength of
the EGPD over this model is that it is a simpler model with only 3 parameters versus the 6
parameters of the Gamma-GPD mixture.
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(c) EGPD model

Figure 3.8: Q-Q plots for positive rainfall (mm) at Chartes, under the GPD tail, Gamma-
GPD mixture and EGPD models.
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Figure 3.9 below gives the fitted densities of the three models overlaid on the data, which
is visibly heavy-tailed. Model fit results are similar to the conclusions reached in the Q-Q
plots in Figure 3.8. The Gamma-GPD mixture model is discontinuous at the threshold. A
continuity constraint can be imposed on this model but has been found in the literature to
have a negligible effect on inference.
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Figure 3.9: Histogram of positive rainfall (mm) at Chartes with Fitted GPD, Gamma-
GPD and EGPD (m = 5) densities overlaid.
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Figure 3.10 below gives the estimated return levels of rainfall at Chartes weather station. The
blue dotted-lines represent the 90%, 95% and 99% quantiles of the data, respectively (from
bottom to top).

Figure 3.10: Estimates of return levels for rainfall (mm) recorded at Chartes weather
station.

From Figure 3.10 above, it is evident that the Gamma-GPD and EGPD models perform well in
estimating quantiles for the rainfall (mm) at Chartes. The estimates yielded by these models
are similar in the lower tail and again beyond the 95% quantile. The EGPD model, however,
estimates the quantiles well only up to the 99% quantile. Also evident from the plot is that
the GPD tail model consistently overestimates extreme quantiles above the chosen threshold
(t = 4.9687).

The above figure thus validates the suitability of the EGPD model as both bulk and tail model.
Furthermore, this model has the advantage of being a parsimonious model, as it only used 3
parameters compared to the 6 parameters of the Gamma-GPD model.

3.4 Conclusion

This chapter discussed the Extended Generalised Pareto Distribution (EGPD) model developed
to model the full range of data characterised by the presence of extreme values. Section 3.1
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detailed the semi-parametric EGPD model based on Bernstein polynomials. The model-fitting
procedure as well as a data-driven approach to estimating the degree of the Bernstein polyno-
mial were also described in detail.

A comprehensive simulation study was carried out in section 3.2. This study demonstrated
that, when compared to other models, the EGPD model can be more efficiently fitted to larger
portions of data arising from distributions in the Fréchet domains. In the Gumbel domain, the
performance of the EGPD varied depending on the underlying distribution. This model was
not the best-performing model in the Weibull domain.

Section 3.3 was dedicated to a detailed case study which showed that the EGPD can model
the tail of a distribution as well as the classic GPD tail model does. Furthermore, this model
can also model the bulk of the distribution well, while bypassing threshold selection and being
simpler and parsimonious compared to parametric mixture models.

The rest of this mini-dissertation will study this model only in the Fréchet domain, where it
performed well.
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Chapter 4

Semi-parametric Extended Pareto
Distribution

Heavy-tailed distributions are defined as those distributions which have heavier tails than the
exponential distribution (Nair et al., 2022). Let Y be a random variable with CDF F . Mathe-
matically, Y is said to have a heavy-tailed distribution if:

lim
y→∞

1− F (y)

e−λy
= lim

y→∞

F (y)

e−λy
= ∞ for λ > 0

In essence, it is clear that e−λy → 0 as y → ∞; while this is also true of the tail (F ) of a
heavy-tailed distribution, it happens much slower than for the exponential distribution.

Heavy-tailed distributions, in the context of EVT, are in the Fréchet domain of attraction.
The simulation study that was carried out in section 3.2 of Chapter 3 demonstrated the ability
of the EGPD to efficiently estimate the EVI for larger portions of data than other considered
models in the Fréchet domain. This study, however, also showed a sharp increase in the bias
of the EGPD model when working with more than 99% of the data. The cause of this is that
the GPD tail model sometimes estimates negative values of the EVI. One possible solution for
this would be to restrict the EVI in the model so that γ ≥ 0 as in Tencaliec et al. (2019).
The objective of this chapter is to consider another adjustment to the EGPD specifically for
heavy-tailed data with the goal of reducing bias in the estimation of the EVI.

4.1 Pareto substitution

The Pareto distribution is the limiting distribution for the relative excesses (Y/t) of data aris-
ing from distributions in the Fréchet domain (γ > 0), as previously mentioned in Chapter 2.
Furthermore, it is documented in the literature that the Pareto distribution and its extensions
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CHAPTER 4. SEMI-PARAMETRIC EXTENDED PARETO DISTRIBUTION 4.1.
PARETO SUBSTITUTION

are better POT models than the GPD (Beirlant et al., 2009, 2022). We thus propose substi-
tuting the Pareto distribution as the tail model in the EGPD, in place of the GPD. This new
semi-parametric extended Pareto distribution is characterised by its CDF:

Fm,N(z) = Ĝm,N {Hγ,zm(z)} for z > zm > 1 (4.1)

where Ĝm,N is a CDF corresponding to ĝm,N as defined in (3.3), Hγ,zm is the CDF of a
Pareto(zm, 1/γ) distribution and zm is the minimum value that the random variable can take.
The constraints on Ĝm,N that need to be in place to ensure that Fm,N is part of the EGPD
family defined in Definition 3.1 were given in Chapter 3. This was done assuming a GPD tail
model. We can, however, show that the Pareto distribution is a special case of the non-standard
GPD as follows:

Hγ,ψt,µ(z) = 1−
[
1 + γ

(
z − µ

ψt

)]−1/γ

= 1−
[
1 + γ

(
z

ψt
− ψt
γψt

)]−1/γ

by taking µ = ψt/γ

= 1−
[
1 + z

γ

ψt
− γ

γ

]−1/γ

= 1−
[
1 +

z

zm
− 1

]−1/γ

by defining zm := ψt/γ

= 1−
(
z

zm

)−1/γ

= Hγ,zm

Therefore, if the last weight is non-null (i.e. ωm,m > 0), then we have:

(i) lim
z→0

Fm,N(z)

zs
= (γzm)

−s
(
m− 1

s− 1

)
ωs,m > 0. This follows from the above derivation

(ψt = γzm) and as proven in Tencaliec et al. (2019).

(ii) lim
z→∞

Fm,N(z)

Hγ,zm(z)
= mωm,m > 0. See Result B.3 for proof.

(iii) Let Y be a non-negative continuous random variable satisfying P (Y/t > z|Y > t)
t−→
∞

(y/ym)
−1/γ̃. If Y is a semi-parametric EPD variable, i.e. Y = H−1

γ,ym

{
Ĝ−1
m,N(U)

}
with

U ∼ U(0, 1), and we have that lim
u→0

Ĝm,n(1− u)

u
> 0, then γ̃ = γ. See Result B.4 for

proof.

These three conditions above confirm the semi-parametric EPD in (4.1) is a member of the
EGPD family. Furthermore, the last of these conditions, (iii), ensures that the upper tail
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behaviour of this model is governed by γ, as would be the case when using a genuine EVT
argument.

With the theoretical background in place, the semi-parametric EPD can now be used for
inference. Algorithm 2 below details how the semi-parametric EPD model is fitted, given data
(yyy) and the degree of the Bernstein polynomial (m). This algorithm is adapted from (Tencaliec
et al., 2019) and adjusted accordingly for the Pareto distribution.

Algorithm 2: Estimation of the semi-parametric EPD model, given m

1. Obtain an initial value for the EVI, for γ(0) by fitting the Pareto distribution to yyy.

2. At the ith iteration:

2.1. Calculate the weights, ωωω(i), as follows:
2.1.1. Generate the pseudo-observations: Û = H

γ(i−1),y
(i−1)
m

(y).
2.1.2. Calculate GN , the ECDF based on Û .
2.1.3. Calculate ωk,m = GN(k/m)−GN((k − 1)/m).
2.1.4. Ensure the last weight is non-null. If ωm,m = 0, then:

2.1.4.1. Calculate: ωm,m = 1− Ĝm,N(1− 1/m).
2.1.4.2. Normalise the weights: ωωω = ωωω/

∑
ωωω.

2.2. Generate the pseudo-observations: Ẑ = H
γ(i−1),y

(i−1)
m

(y).

2.3. Calculate V̂ = Ĝm,N(Ẑ) using the fitted weights ωωω(i).
2.4. Generate PD variables, X̂ = H−1

γ(i−1),y
(i−1)
m

(V̂ ), and compute the ML estimate, as
derived in Result B.5:

γ̂(i) =
1

N

N∑
i=1

log
X̂i

min
{
X̂1, X̂2, . . . , X̂N

}
3. Check for convergence: if

∣∣γ̂(i) − γ̂(i−1)
∣∣ < 10−3 the algorithm has converged, else

repeat (2) above.

Similar to the EGPD, the non-parametric bootstrap approach can be taken to obtain a 100(1−
α)% confidence interval as well as the standard error of the EVI, γ.

The value of m in Algorithm 2 above is obtained using LSCV as follows:

LSCV (m) =

∫ ∞

0

f̂ 2
m,N(y)dy −

2

N

N∑
j=1

f̂
(−j)
m,N (Yj)
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where f̂m,N(y) = ĝm,N {Hγ,ym(y)} · hγ,ym(y). Define u = Hγ,ym(y) = 1−
(

y
ym

)−1/γ

, then we
can rewrite

f̂m,N(y) =
1

γym
ĝm,N(u) · (1− u)1+γ

Following in the same direction as in section 3.1.1, we can express LSCV (m) as:

LSCV (m) =
1

γym

{∫ 1

0

ĝ2m,N(u) · (1− u)1+γdu− 2

N

N∑
j=1

ĝ
(−j)
m,N (Zj) · (1− Zj)

1+γ

}

where Zj = Hγ,ym(Yj). Applying the formula derived by Leblanc (2010) leads to γymLSCV (m)
being written as:

m2

2m+ γ
GGGTAAAGGG− 2

N − 1

{
N∑
j=1

ĝm,N(Zj) · (1− Zj)
1+γ − 1

N

N∑
j=1

βkj+1,m−kj(Zj) · (1− Zj)
1+γ

}

with kj , GGG and AAA as defined in section 3.1.1. In order to obtain the appropriate value of m, a
sequence of values of m is chosen and LSCV (m) is calculated for each value in the sequence.
The appropriate m is then chosen as the value with the corresponding least LSCV.

The rest of this chapter will evaluate the ability of the semi-parametric EPD to estimate the EVI
through a simulation study. A case study will also be conducted to demonstrate the practical
usefulness of this model.
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SIMULATION STUDY

4.2 Simulation study

A simulation study is carried out to investigate the performance of the semi-parametric Ex-
tended Pareto Distribution (from here on ”EGPD (Pareto)”) model in estimating the extreme
value index (EVI) of data arising from distributions in the Fréchet domain of attraction. Model
performance is measured in terms of the bias and MSE of the estimator.

4.2.1 Design

The simulation study is designed as follows:

• 1000 samples of size 1000 each are taken from 4 distributions in the Fréchet domain of
attraction.

• For each sample, the EVI (γ̂k) is estimated for the threshold exceedances:

YN−k+j:N − YN−k:N , j = 1, 2, . . . , k

for each k = 2, 3, . . . , N . Estimation methods are detailed below.

• The performance for each estimator considered is measured by Bias and MSE where for
each k, Bias(γ̂k) and MSE(γ̂k) is calculated as the average across the 1000 samples.

The following distributions are used in the study: Pareto(α = 4), Pareto(α = 2), Fréchet(α =
4) and Fréchet(α = 2). This parameterisation will show how the estimators behave under
different tail-heaviness. The EGPD (Pareto) is compared to the original EGPD model in the
case of Pareto data. EVI estimators for heavy-tailed distributions are expected to perform very
well in the case of exact Pareto data, and thus this will be a good evaluation of the suitability of
the EGPD (Pareto) model (McNeil, 1999). For the Fréchet distributions, the EGPD (Pareto)
model is compared to the EPD, GPD and Hill estimators.

4.2.2 Results

The results of the simulation study are given below. Plot of Bias and MSE are given for each
of the considered distributions. The results are discussed in subsection 4.2.3
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4.2.2.1 Pareto distributions

Figure 4.1 below illustrates the bias and MSE of the estimators of the EVI for the Pareto(α = 4)
and Pareto(α = 2) distributions. The corresponding EVIs are 1/4 and 1/2, respectively. The
EGPD (Pareto) model is given the alias ”S-EPD” in the plots.
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Figure 4.1: Bias(γ̂k) and MSE(γ̂k) for Pareto(α = 4) and Pareto(α = 2) distributions.
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4.2.2.2 Fréchet distributions

Figure 4.2 below illustrates the bias and MSE of the estimators of the EVI for the Fréchet(α =
4) and Fréchet(α = 2) distributions. The corresponding EVIs are 1/4 and 1/2, respectively.
The EGPD (Pareto) model is given the alias ”S-EPD” in the plots.
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Figure 4.2: Bias(γ̂k) and MSE(γ̂k) for Fréchet(α = 4) and Fréchet(α = 2) distributions.
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4.2.3 Discussion of results

The results in Figure 4.1 are discussed first. The EGPD (Pareto) shows more stable estimates
of the EVI across k. Furthermore, this model reduces bias in the estimation of the EVI as k
increases, that is, as larger portions of the data are modelled. Evidently, the Pareto substitution
also reduces the MSE of the EGPD model. Moreover, there is a sharp increase (in absolute
value) in the bias of the EGPD model when more than 99% of the data, however, the EGPD
(Pareto) does not suffer from this.

In the case of Fréchet distribution in Figure 4.2, the Hill estimator has the least bias for small k.
The EPD allows for larger portions of data to be modelled than the GPD and Hill estimators.
The EGPD (Pareto) model, however, shows the most stable estimates of the EVI and reduces
bias in the estimation more than the other models. All models save for the GPD, show higher
bias and MSE as tail-heaviness increases.

The EGPD (Pareto) model can thus be fitted to a larger portion of the data than the other
models it was compared to, and this will reduce bias in estimating the EVI in the Fréchet
domain. This result is consistent regardless of the tail-heaviness of the underlying distribution.
This study has also shown that the Pareto substitution reduces the variance in the original
EGPD model.
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4.3 Case study

A case study is carried out on the Secura Belgian Re data of 371 automobile insurance claims
in excess of €1,200,000. These claims were filed over the period from 1988 to 2001, and have
been adjusted for inflation. This data is publicly available in the ReIns package in R, and was
previously analysed in Beirlant et al. (2004) and Beirlant et al. (2009). The primary objective
of the study done on this data is to price an excess-of-loss reinsurance contract with a retention
limit (operational priority) of R. The re-insurer in this type of contract pays out only on claims
exceeding the priority level, and the contract is thus priced in accordance with this limit.

The net premium for an excess-of-loss reinsurance contract with operational priority R is
calculated as

Π(R) := E [(Y −R)+] = e(R) · F (R)

where e(.) is the mean excess function defined in Chapter 2. In this study, Π(R) is first
calculated using a simple non-parametric approach which uses the following data-driven formula
for the net premium:

Π(R) = êN(R) · FN(R)

where êN(.) is the sample mean excess function defined in Chapter 2, and FN is the ECDF.

We also consider the EGPD (Pareto), EPD and Hill estimators. Beirlant et al. (2004) showed
that the net premium, for Pareto-type models, can be calculated as follows:

Π(R) =
R

1
γ̂
− 1

· k
N

·
(

R

YN−k:N

)− 1
γ̂

where k is the number of observations over the threshold, YN−k:N . The above formula is used
to calculate Π(R) for the Hill and EPD estimators. The net premium for the EGPD (Pareto)
model is estimated as:

Π(R) =
R

1
γ̂
− 1

Fm,N(R)

The calculation of the net premium for the Pareto-type models depends on the estimated EVI.
Figure 4.3 below shows the trajectories of the EVI estimates for the models considered above,
as well as the GPD for consistency.
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Figure 4.3: Estimates of the EVI for the Secura Belgian Re data.

The EPD and Hill estimators show the most stability around k = 95 with an estimated EVI of
around 0.3. The EGPD model shows relative stability in the EVI estimates for small changes
in k.

Table 4.1 below gives the estimated net premium for different priority levels, using the non-
parametric estimator, the Hill and EPD estimators with k = 95 and YN−k:N =€2,580,026, as
well as the EGPD (Pareto) model. Notice that the non-parametric estimator cannot extrapolate
beyond the observed range of data, because it relies on the empirical CDF.

R Non-
parametric

Hill EGPD
(Pareto)

EPD

3 000 000 161 728.11 163 793.14 165 966.71 191 948.09

3 500 000 108 837.24 108 214.64 112 747.48 132 641.17

4 000 000 74 696.34 75 570.89 81 138.10 96 303.53

4 500 000 53 312.31 55 057.08 61 404.52 72 611.21

5 000 000 35 888.04 41 474.22 48 403.56 56 402.68

7 500 0000 1 074.50 13 941.06 22 882.08 21 336.32

10 000 000 – 6 432.13 17 487.11 10 704.79

Table 4.1: Estimated net premium, in €, calculated for varying priority levels, R for the
Secura Belgian Re data.
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CHAPTER 4. SEMI-PARAMETRIC EXTENDED PARETO DISTRIBUTION 4.4.
CONCLUSION

The non-parametric estimator yields conservative premiums, while the EPD yields the highest
premiums. However, for R ≥€7,500,000 the EGPD (Pareto) model yields the highest estimate,
because of its heavier right tail. Contrary to this, the non-parametric estimator calculates very
low premiums for large R, owing to the small number of observations exceeding these values.
The results in Table 4.1 thus show the strength of extreme value models in extrapolation.

The estimators considered above are also used to calculate exceedance probabilities, p =
P (Y > R) for large R. Table 4.2 below gives the calculated values of p when R =€7,000,000.

Estimator P (Y > R)P (Y > R)P (Y > R)

Non-parametric 0.0081

Hill 0.0065

EPD 0.0075

EGPD (Pareto) 0.0094 (0.0062, 0.0154)

Note: the 95% confidence interval for the EGPD model is based on a non-parametric bootstrap of 500
samples.

Table 4.2: Estimated exceedance probabilities, p = P (Y > R) for R =€7,000,000, for the
Secura Belgian Re data.

The EGPD (Pareto) model allows for more observations in the right tail than the other estima-
tors, as can be seen in the estimated exceedance probability and corresponding 95% confidence
interval in Table 4.2.

4.4 Conclusion

This chapter introduced the Pareto substitution as the tail model in the EGPD, thus defining
the EGPD (Pareto) model. Motivation for the Pareto substitution and an algorithm to fit the
model to data was also given.

A simulation study of the EGPD (Pareto) model’s performance in EVI estimation was con-
ducted in section 4.2. This study showed that the Pareto substitution not only reduces bias
in the estimation of the EVI, but it also corrected for the erroneous negative estimates of the
EVI that were calculated by the EGPD model in the case of heavy-tailed data.

Section 4.3 was a case study on the Secura Belgian Re data. The EGPD model was compared
to the EPD, Hill and non-parametric estimator in estimating the EVI of the data, calculating a
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CHAPTER 4. SEMI-PARAMETRIC EXTENDED PARETO DISTRIBUTION 4.4.
CONCLUSION

net premium and estimating an exceedance probability. The EGPD model had relatively stable
estimates of the EVI and proved to extrapolate better than the other models considered.
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Chapter 5

Conclusion

This research aimed to investigate extreme value mixture models, in particular, the Extended
Generalised Pareto Distribution (EGPD) and its extension for Fréchet-type data.

Chapter 2 provided an overview of EVT, detailing tail modelling and the threshold selection
problem in POT modelling. Extreme value mixture models were also discussed in this chapter.

The EGPD was defined in Chapter 3, in both its parametric and non-parametric forms. An
extensive Monte Carlo simulation study was conducted to investigate this model’s effectiveness
as an estimator of the Extreme Value Index (EVI). This study showed that the EGPD allowed
for larger portions of data to be modelled than its contemporaries, while maintaining a low
bias, for data arising from distribution in the Fréchet and Gumbel domains. The EGPD was
not found to make an improvement over existing EVI estimators in the Weibull domain of
attraction. A case study done on rainfall data demonstrated the ability of the EGPD to model
the bulk and tail of a distribution while bypassing threshold selection, and do so well.

Chapter 4 introduced the Pareto distribution tail model substitution in the EGPD for the case
of heavy-tailed data. This model was shown to be a valid member of the EGPD family and
its compliance with EVT was illustrated. A comprehensive simulation study was carried out,
which showed a tenuous reduction in the variance of the EVI estimator when using the Pareto
distribution as opposed to the GPD as the tail model in the EGPD. The Pareto substitution
also corrected for the inflated bias of the EVI estimator when modelling more than 99% of
the data. A case study was also considered to illustrate the practical usefulness of the EGPD
(Pareto) model in calculating the net premium and exceedance probabilities in excess-of-loss
reinsurance contracts.
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CHAPTER 5. CONCLUSION 5.1. FUTURE WORK

5.1 Future work

Future research work on this topic could investigate:

• adjusting the EGPD model for the case of incomplete data. This includes when data is
truncated or randomly right-censored.

• Bayesian methods of parameter estimation, as these methods have been shown in the
literature to reduce both bias and variance of the EVI estimators for the GPD and its
extensions.
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Appendix A

Results stated without proof

Result A.1 (Probability Integral Transform)
Let Y be a continuous random variable with CDF F which is a continuous function. Define
the random variable X = F (Y ). Then X ∼ U(0, 1), i.e. X is uniformly distributed over the
interval [0, 1]. ▲

The probability integral transform in Result A.1 above is used in the result below in order to
generate random variables from any continuous population with an invertible CDF.

Result A.2
Let Y be a continuous random variable with CDF F . Suppose F is continuous and one-to-one,
such that F−1 exists. Define the random variable Z = F−1(U), with U ∼ U(0, 1). Then Z
has the same distribution as Y , i.e P (Z ≤ z) = F (z). ▲
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Appendix B

Derivations

Result B.1
Let G be a continuous CDF defined on the unit interval, with Bernstein polynomial approxi-
mation

Bm(G, u) =
m∑
i=0

GN

(
i

m

)
· bi,m(u).

The approximation of the corresponding PDF is

ĝm,N(u) = m
m−1∑
i=0

{
GN

(
i+ 1

m

)
−GN

(
i

m

)}
bi,m−1(u)

▲

Proof
The PDF corresponding to G is obtained by differentiation as follows:

ĝm,N(u) =
d

du
Bm(G, u)

=
d

du

{
m∑
i=0

GN

(
i

m

)
· bi,m(u)

}

=
d

du

{
m∑
i=0

GN

(
i

m

)(
m

i

)
ui(1− u)m−i

}

=
m∑
i=0

GN

(
i

m

)(
m

i

)[
iui−1(1− u)m−i − (m− i)ui(1− u)m−i−1

]
(B.1)

The first term in the brackets in (B.1) is equal to 0 when i = 0. Therefore, the first term of
ĝm,N(u) can be rewritten as:

m∑
i=0

GN

(
i

m

)(
m

i

)[
iui−1(1− u)m−i]

58

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



APPENDIX B. DERIVATIONS

=
m−1∑
i=0

GN

(
i+ 1

m

)(
m

i+ 1

)
(i+ 1)ui+1−1(1− u)m−i−1

=
m−1∑
i=0

GN

(
i+ 1

m

)
m!

(i+ 1)!(m− i− 1)!
(i+ 1)ui(1− u)m−i−1

=
m−1∑
i=0

GN

(
i+ 1

m

)
m[(m− 1)!]

(i+ 1)(i!)(m− i− 1)!
(i+ 1)ui(1− u)m−i−1

= m
m−1∑
i=0

GN

(
i+ 1

m

)(
m− 1

i

)
ui(1− u)m−1−i

= m
m−1∑
i=0

GN

(
i+ 1

m

)
bi,m−1(u)

Similarly, the second term in the brackets in (B.1) is equal to 0 when i = m. Therefore, the
second term of ĝm,N(u) can be rewritten as:

m∑
i=0

GN

(
i

m

)(
m

i

)[
(m− i)ui(1− u)m−i−1

]
=

m−1∑
i=0

GN

(
i

m

)(
m

i

)
(m− i)ui(1− u)m−i−1

=
m−1∑
i=0

GN

(
i

m

)
m[(m− 1)!]

i!(m− i)[(m− i− 1)!]
(m− i)ui(1− u)m−i−1

= m
m−1∑
i=0

GN

(
i

m

)(
m− 1

i

)
ui(1− u)m−1−i

= m
m−1∑
i=0

GN

(
i

m

)
bi,m−1(u)

Putting these two terms together yields

ĝm,N(u) = m
m−1∑
i=0

{
GN

(
i+ 1

m

)
−GN

(
i

m

)}
bi,m−1(u)

▲
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Result B.2
The Bernstein polynomial approximation of the PDF of the unknown distribution function G:

ĝm,N(u) = m
m−1∑
i=0

{
GN

(
i+ 1

m

)
−GN

(
i

m

)}
bi,m−1(u)

can be equivalently expressed as:

ĝm,N(u) =
m∑
k=1

ωk,mβk,m−k+1(u)

where ωk,m = GN(k/m)−GN((k−1)/m) and βk,m−k+1 is the density of the Beta distribution
with parameters k and m− k + 1. ▲

Proof
The approximation of the density function is

ĝm,N(u) = m

m−1∑
i=0

{
GN

(
i+ 1

m

)
−GN

(
i

m

)}
bi,m−1(u)

In the above expression, put k = i+1, which implies i = k−1. Then, the PDF can be written
as:

ĝm,N(u) = m
m∑
k=1

{
GN

(
k

m

)
−GN

(
k − 1

m

)}
bk−1,m−1(u)

= m
m∑
k=1

{
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(
k

m

)
−GN

(
k − 1

m

)}(
m− 1

k − 1

)
uk−1(1− u)m−1−(k−1)

= m
m∑
k=1

{
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(
k

m

)
−GN

(
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m

)}
(m− 1)!
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=
m∑
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{
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(
k

m

)
−GN

(
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m
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m(m− 1)!

(k − 1)!(m− k)!
uk−1(1− u)(m−k+1)−1

=
m∑
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{
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(
k

m

)
−GN

(
k − 1

m
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m!

(k − 1)!(m− k)!
uk−1(1− u)(m−k+1)−1

=
m∑
k=1

{
GN

(
k

m

)
−GN

(
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m
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Γ(m+ 1)

Γ(k)Γ(m− k + 1)
uk−1(1− u)(m−k+1)−1

=
m∑
k=1

{
GN

(
k

m

)
−GN

(
k − 1

m
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Γ {(m− k + 1) + k}
Γ(k)Γ(m− k + 1)

uk−1(1− u)(m−k+1)−1

=
m∑
k=1

{
GN

(
k

m

)
−GN

(
k − 1

m

)}
1

B(k,m− k + 1)
uk−1(1− u)(m−k+1)−1

=
m∑
k=1

ωk,mβk,m−k+1(u)

where ωk,m = GN(k/m)−GN((k−1)/m) and βk,m−k+1 is the density of the Beta distribution
with parameters k and m− k + 1. ▲
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Result B.3
The upper tail of the semi-parametric extended Pareto distribution in (4.1) is equivalent to the
tail of the Pareto distribution when ωm,m > 0, i.e.

lim
z→∞

Fm,N(z)

Hγ,zm(z)
= mωm,m > 0

▲

Proof

lim
z→∞

Fm,N(z)

Hγ,zm(z)
= lim

z→∞

Ĝm,N {Hγ,zm(z)}
Hγ,zm(z)

= lim
u→0

Ĝm,N(1− u)

u
where u = Hγ,zm(z)

= lim
u→0

1− Ĝm,N(1− u)

u
= lim

u→0
ĝm,N(1− u) by l’Hopital’s rule

= ĝm,N(1)

=
m∑
k=1

ωk,mβk,m−k+1(1) from (3.2)

=
m∑
k=1

ωk,m × Γ(m+ 1)

Γ(k)Γ(1)
× 0m−k

= ωm,m
Γ(m+ 1)

Γ(m)

= ωm,m
mΓ(m)

Γ(m)

= mωm,m > 0

▲
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Result B.4
Let Y be a non-negative continuous random variable satisfying P (Y/t > z|Y > t)

t−→
∞

(y/ym)
−1/γ̃.

If Y is a semi-parametric EPD variable, i.e. Y = H−1
γ,ym

{
Ĝ−1
m,N(U)

}
with U ∼ U(0, 1), and

we have that lim
u→0

Ĝm,n(1− u)

u
> 0, then γ̃ = γ. ▲

Proof

P (Y/t > z|Y > t) = P (Y > zt|Y > t)

=
P (Y > zt, Y > t)

P (Y > t)

=
P
(
H−1
γ,ym

{
Ĝ−1
m,N(U)

}
> zt

)
P
(
H−1
γ,ym

{
Ĝ−1
m,N(U)

}
> t

)
=
P
(
Ĝ−1
m,N(U) > Hγ,ym(zt)

)
P
(
Ĝ−1
m,N(U) > Hγ,ym(t)

)
=
P
(
U > Ĝm,N {Hγ,ym(zt)}

)
P
(
U > Ĝm,N {Hγ,ym(t)}

)
=

1− Ĝm,N {Hγ,ym(zt)}
1− Ĝm,N {Hγ,ym(t)}

=
Ĝm,N {Hγ,ym(zt)}

Ĝm,N {Hγ,ym(t)}

=
Ĝm,N(1− u)

Ĝm,N(1− u∗)
with u = Hγ,ym(zt) and u

∗ = Hγ,ym(t)

=
Ĝm,N(1− u)

u
× u∗

Ĝm,N(1− u∗)
× u

u∗

As t→ ∞, we have that u→ 0 and u∗ → 0. Using the product limit law and l’Hopital’s rule
we get that as t→ ∞:

P (Y/t > z|Y > t) → ĝm,N(1− u)

ĝm,N(1− u∗)
× u

u∗

→ ĝm,N(1)

ĝm,N(1)
× u

u∗

=
u

u∗
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=
(zt/ym)

−1/γ

(t/ym)−1/γ

=

(
zt · ym
t · ym

)−1/γ

= z−1/γ = Hγ,1(z)

This implies that for large t, γ̃ → γ. ▲
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Result B.5
Let Y be a random variable with a Pareto distribution with parameters α = 1/γ and ym, i.e.

hγ,ym(y|α, ym) =
αyαm
yα+1

for y > ym > 0.

Let yyy = (y1, y2, . . . , yN)
T be a sample from this population. The ML estimate for γ is

γ̂ =
1

N

N∑
i=1

log
yi
ym

. ▲

Proof
The log-likelihood function for γ and ym is derived as follows:

L(γ, ym|yyy) =
N∏
i=1

hγ,ym(yi|γ, ym)

=
N∏
i=1

1

γ
y1/γm y

− 1+γ
γ

i

∴ l(γ|yyy) = logL(γ|yyy) =
N∑
i=1

{
log γ−1 +

1

γ
log ym − 1 + γ

γ
log yi

}

= −N log γ +
N

γ
log ym − 1 + γ

γ

N∑
i=1

log yi

Differentiating this function with respect to γ yields:

∂

∂γ
l(γ|yyy) = −N

γ
− 1

γ2
+
N

γ2

N∑
i=1

log yi = −N
γ

+
1

γ2

N∑
i=1

log
yi
ym

The ML estimate for γ is obtained by setting the partial derivative to zero:

N

γ
=

1

γ2

N∑
i=1

log
yi
ym

Nγ =
N∑
i=1

log
yi
ym

∴ γ̂ =
1

N

N∑
i=1

log
yi
ym

▲
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