

Mini-Dissertation

The Role of Traditional Leafy Vegetables in Informal Settlements

James Seeliger

December 2023

Affiliations: University of Pretoria, Faculty of Engineering, Built Environment & IT, Department of Architecture

> Pretoria, Gauteng, South Africa Email Address: u04506962@tuks.co.za

Acknowledgements: Guided by Research Leader: Ms Karen Botes

© University of Pretoria

DECLARATION OF ORIGINALITY

I declare that the mini-dissertation, The Role of Traditional Leafy Vegetables in Informal Settlements and Spatial Planning, which has been submitted in fulfilment of part of the requirements for the module of DIT 801 at the University of Pretoria, is my own work and has not previously been submitted by me for any degree at the University of Pretoria or any other tertiary institution.

I declare that I obtained the applicable research ethics approval in order to conduct the research that has been described in this dissertation.

I declare that I have observed the ethical standards required in terms of the University of Pretoria's ethic code for researchers and have followed the policy guidelines for responsible research.

Signature:J A Seeliger....

Date:2023/11/30.....

Abstract

The need for food security within informal settlements in South Africa and the world is crucial due to the increase of famine globally. Traditional leafy vegetables offer solutions towards food security in rural communities and informal settlements. This paper aims to understand the roles traditional leafy vegetables (TLVs) play and their importance in food security within the Plastic View low-income community. Using a mixed-method research design, this study involved fieldwork to gather primary data through semi-structured questionnaires administered by the researchers in an informal settlement called Plastic View. The data was statistically analysed by using basic spreadsheets and the bivariate Pearsons test in IBM SPSS Statistics software. Plastic View is an informal settlement situated on a large piece of open land, surrounded by residential properties in Pretoria-East. It is home to roughly fifteen-thousand residents. The site was originally living quarters for the construction workers who built the neighbouring church. Through a comprehensive understanding of the crucial roles that the daily intake of TLVs have on food security, encompassing aspects pertaining to nutrition, agriculture, economic value, and various social factors such as enjoyment, culture, and childhood memories, their promotion and implementation becomes increasingly pertinent. This study reveals that preferred TLVs of the Plastic View residents were mainly influenced by the ease of preparation, followed by accessibility, nutritional value, taste, and cultural factors. This study's findings suggest that factors related to convenience and practicality significantly impact food choices and preferences of the Plastic View residents. These results may have important implications for promoting healthy eating habits and improving overall health outcomes. Wild cultivation and marketing of TLVs in informal shops also contribute significantly to the economic value of these plants in food security. The study concludes that the accessibility to TLVs, their preparation methods and how informal shops supply TLVs play important roles in food security in Plastic View and can be implemented in rural communities across the global south.

Keywords: Traditional leafy vegetables, food security, food preferences, low-income communities.

Table of contents

1. Introduction	6
2. Literature Review	7
2.1 Roles of TLV	7
2.1.1 TLV Awareness & Uses	7
2.1.2 Nutritional & Medicinal Value	8
2.1.2 Agriculture & Economic Value	8
2.2 Socio-economic significant plants	9
2.3 TLV Preferences	10
2.4 Concluding Reflections	11
3. Methodology	11
3.1Study area and context	11
3.2 Study Theoretical Context	12
3.3 Sample size	12
3.4 Data Collection	12
3.5 Data Analysis	13
3.6 Ethical considerations	13
4. Results	14
4.1 Site Characteristics	14
4.2 Traditional Leafy Vegetables	15
4.2.1 Uses & Preferences	15
4.2.2 Agriculture & Economic Value	16
4.2.3 Consumption of TLV	18
4.2.4 Socio-economic correlations	19
4.2.5 TLV type correlations	19
5. Discussion	20
6. Conclusion	22
Reference List	23
Annexure 1 (a)	27
Annexure 1 (b)	32
Annexure 1 (c) – Community Consent Letter	33
Annexure 2	34
Annexure 3	61

List of tables

Table 1: Statistical correlations between Gender, Source, TLVs preferred, Personal
enjoyment and Nutritional preference19
Table 2:Statistical correlations between Gushe, Spiderplant, Okra, Ease of preparation and
Economic reasons for growing vegetables

List of figures

Figure 1:Plastic View Locality Map (Author, 2023), (Google Earth Pro, 2023).	11
Figure 2: Pie chart showing gender data in Plastic View.	14
Figure 3: Pie chart showing age data in Plastic View.	14
Figure 4: Pie chart showing profession data in Plastic View.	14
Figure 5: Pie chart showing income data in Plastic View.	14
Figure 6: Pie chart showing nationality data in Plastic View.	15
Figure 7: Pie chart showing South African tenure periods in Plastic View	15
Figure 8: Graph showing percentage of participants preferring Traditional vs Mainstream vegetables.	15
Figure 9: Venn diagram showing participants preferring Traditional and/or Mainstream vegetables.	15
Figure 10: Graph and table representing the reasons for preferring TLVs and not preferring TLVs.	16
Figure 11: A graph showing the different types of vegetables identified by participants, grown by themselves any time.	at 16
Figure 12:(a) Pie chart showing the percentage of participants that have grown their own vegetable gardens; (b)Pie chart showing the time frame in which the participants who have grown their own vegetable gardens; (c)Pie chart showing the percentage of Traditional or Mainstream vegetables are grown by participants themselves; (d)Pie chart showing the number of participants selected each reason for growing their own vegetables.	
Figure 13: A graph showing the different types of traditional vegetables consumed by participants.	18

Figure 14: A graph showing the number of participants who source their vegetables from an Informal Shop, Shop or Other (specified "The Bush"). 18

List of Appendices & Annexures

Annexure 1: Semi-structured Fieldwork Questionnaire.

Annexure 2: SPSS Results.

Annexure 3: Ethics Approval.

List of acronyms

TLV / TLVs – Traditional leafy vegetables.

SSA – Sub-Saharan Africa

CA – Conservation Agriculture

1. Introduction

To reduce the growing number hungry people on earth, agricultural production will have to rise by 70% (Sims, 2012). Satisfying the rapidly expanding population in Africa continues to pose a worldwide dilemma. While the need for nourishment is on the rise, climate variability, conversely, introduces further hurdles to agricultural efficiency, thereby endangering the assurance of an ample supply of both quantity and calibre of sustenance (Dube, 2018). Weeds are undesired and targeted for eradication. Despite this, some weeds are useful to humans as food or medicine (Maroyi, 2013). Indigenous vegetables are plants that form part of a community's culture due to their early and extended use as food (Ogoye-Ndegwa and Aagaard-Hansen, 2003). Schackleton et al. (2003) proposed the term Traditional Leafy Vegetables (TLV) to describe these "indigenous vegetables" or weeds. Research shows that rural households harvest TLVs to survive (Maroyi, 2013; Dube, 2018). They are versatile plants with ecological resilience, nutritional benefits, medicinal potential, and incomegenerating capabilities (Weinberger & Msuya, 2004; Abukutsa-Onyango, 2007).

Although TLVs form part of many South African diets and cultures (Shackleton, 2003; Vorster et al., 2007a), western diets are found to be more common. Due to industrialisation, workers have been drawn to urban areas with little to no agricultural activity or areas for wild harvesting. The decreasing use of TLVs and the promotion of exotic crops are also factors impacting the use of TLVs (Musinguzi et al., 2006; Vorster et al., 2007b). TLVs have been introduced to South Africa, growing in cultivated lands, fields, homesteads, or open spaces (Van Rensburg, 2007; Voster et al., 2007; Maroyi, 2013). They have played an important role in African survival strategies for centuries but have recently suffered a lack of importance and use worldwide. (Vorster et al., 2007a; Weinberger and Swai, 2006; Moore and Raymond, 2006).

Sub-Saharan Africa (SSA) has the largest percentage of urban residents residing in informal settlements, accounting for 56% in 2015, as the United Nations Human Settlements Programme (UN-Habitat, 2015) reported. The ongoing urbanization in this region, primarily driven by rural-to-urban migration and the natural growth of urban populations, results in heightened population density and entails the expansion of informal settlements in regions susceptible to hazards (Zerbo et al., 2019). Informal settlements face food security, crime, violence, and health risks (Zerbo et al., 2019). Limited research has been conducted on TLVs' significance within informal settlements (Maroyi, 2013).

This study conducted its research in Plastic View, an informal settlement of roughly 15000 inhabitants in Pretoria East, South Africa. The site was originally a destination for jobseekers in the surrounding high-developing area. Surrounded by vast open space and natural landscapes, the settlement is close to built-up urban areas but suffers from basic service delivery. Plastic View has a long history of vulnerability, poverty and crime, thus why the City of Tshwane Metropolitan Municipality plans to relocate the settlement. The attempted relocation and future planned relocation caused conflict in the community as spatial plans failed to incorporate social-ecological factors. The City of Tshwane plans to develop the surrounding natural areas, breaking all ties between Plastic View residents and their methods of wild harvesting TLVs. This influenced the choice of the research site to explore the roles of TLVs within the settlement.

To promote the use of TLVs in informal settlements, this paper will discuss the TLVs roles within the Plastic View settlement and the types of TLVs found across communities in South Africa. This has led to the following research question and sub-questions; 1) What value do TLVs have to the Plastic View low-income community? 1.1) How do TLVs contribute to food security in the Plastic View informal settlement? 1.2) What types of TLVs are preferred by the Plastic View community? This study looks at existing literature and research on the cultivation and consumption TLVs in the global south and discusses it in comparison to the findings in

this study, based in Plastic View. This study aims to promote TLVs as a strategy for informal settlements to increase food security and reduce malnutrition.

2. Literature Review

The literature review focuses on the roles of TLVs through previous studies in low-income informal communities. The review looks at the awareness and uses of TLVs to understand how and in what ways TLVs are used, and their popularity among communities. Literature on nutritional and medicinal value of TLVs were reviewed to understand their importance in food security along with their economic value through agriculture. Cultivation techniques of TLVs were reviewed to see how accessible and economically viable these crops are in informal settlements. Along with the cultivation of TLVs, the review looks at conserving these vegetables and how communities could safeguard these vegetables for sustained food security. The types of TLVs are touched on throughout the review, but studies on TLV preferences are reviewed to understand what types of TLVs are vital in the global south.

2.1 Roles of TLV

2.1.1 TLV Awareness & Uses

Traditional leafy vegetables (TLVs) have decreased in popularity (Fox & Norwood-Young, 1982). Voster et al. (2007) proposed to re-create awareness of TLVs, and the findings of that study showed the loss of status of TLVs and the need for an increase in their awareness. The biggest concern of many women was the loss of TLV knowledge (Voster et al, 2007). The increase in awareness of TLVs has an increase in use of TLVs (Dube, 2018).

TLVs have gained increasing significance as staple crops in numerous Sub-Saharan African countries, owing to their diverse applications. For instance, the leaves of crops like cassava and sweet potato serve as rich sources of micronutrient-packed vegetables, while their tuberous components contribute essential energy (Dube, 2018). These crops hold a dual importance, addressing both social and socio-economic aspects across Africa. They are recognized as versatile vegetables with environmental adaptability and possess nutritional and medicinal properties, as highlighted by Weinberger and Msuya (2004), Abukutsa-Onyango (2007), and Maroyi (2013). Moreover, TLVs play a crucial role in generating income for individuals along the supply chain, particularly benefiting economically disadvantaged populations (Schippers, 2000). More than 75% of the population in Zimbabwe incorporate these resources into their diets when accessible (DFID project 2309, 2003). Likewise, in the rural households of Limpopo, South Africa, nearly two-thirds of families partake in them as a staple, consuming them at least twice daily (Faber et al., 2010). This underscores their critical role in enhancing food and nutrition security.

TLVs were reported as being important for family consumption with nutritional value, 21% for medicinal uses, fewer reported fighting poverty and the least as edible weeds being cultivated for economic reasons. They play an important role in the community's daily food intakes and off-season consumption in the form of dried TLVs (Maroyi, 2013).

Dhewa (2017) mentioned that in urban areas, there was a discernible shift from the consumption of modernized foods, like the use of maize flour in staples, to a preference for traditional foods, exemplified by the rise of restaurants specialising in traditional cuisines that

prominently feature traditional crops, including TLVs. The popularity and uses of TLVs in the global south have increased within the last decade.

2.1.2 Nutritional & Medicinal Value

The World Health Organization (WHO) promotes the intake of traditional vegetables in sub-Saharan Africa (WHO, 2003). This is due to the medicinal and healthy bioactive compounds and phytochemicals (Smith & Eyzaguirre, 2007). TLVs as an answer to nutrient deficiency and food security have been researched extensively in the Global South (Lewu & Mavengahama, 2010), and mentions certain dietary phytochemicals to be helpful against some infectious diseases and noncommunicable chronic diseases. Some TLVs possess higher protein content, namely *Amaranthus* spp. (Morogo) and other higher mineral concentrations, namely *Cucumis metuliferus* (African horned cucumber) (Odhav, Beekrum, Akula, & Baijnath, 2007).

Sivakumar et al., (2018) revealed a knowledge gap in TLVs' nutritional significance of dietary phytochemicals in Southern parts of Africa and reviewed available information on dietary phytochemicals in TLVs and to discuss the influences graphical location, postharvest storage, genotypes, and agronomy practices have on them. In the paper, there is also a comprehensive exploration of phytochemical volumes present in various vegetables, alongside an investigation into the impact of antinutritional elements. β-carotene is similar to Vitamin A but contains higher antioxidant values. These nutritional values protect us from cardiovascular diseases and reduces the risks of muscular degenerative diseases and cancer (Krinsky, 1993). Ibrahim et al., (2015) revealed that Amaranthus hybridus leaves contain approximately 1136mg/kg of total carotenoids, which function as protective antioxidants, along with 184 mg/kg of β-carotene. Other vegetables, commonly consumed in Southern Africa such as Spider flower and Jew's mallow, contain more than 50 mg/kg of β -carotene phytochemicals (Agea et al., 2014). Environmental factors, agronomic practices and geographical locations influence the bioavailability of phytochemicals in fresh produce (Tiwari & Cummins, 2013). Sivakumar et al. (2018) states that some TLVs contain non-nutrient bioactive phytochemicals that contain some level of toxicity when consumed in copious quantities, according to several research reports. Oxalate and oxalic acid are organic acids considered as non-nutrients and found in vegetables like Cowpea (Vigna unguiculata). Environmental conditions, for example the dryer seasons, stimulated the synthesis of oxalates and phytates in the plants resulting in an increase in these non-nutrients (Molina et al., 2016). Post-harvest handling is important as TLVs have a highly perishable nature. Adopting appropriate packaging techniques can reduce the loss of phytochemicals in freshly harvested TLVs at markets (Sivakumar et al., 2018).

2.1.2 Agriculture & Economic Value

TLVs play a pivotal role in generating income opportunities for marginalized communities throughout the entire supply chain (Schippers, 2000). The smallholder farm sector has grown in popularity due to rapid urbanisation and changes in food consumption patterns, increasing various crops products in markets (Livelihoods and Food Security Programme (LFSP), 2017). Crops such as TLVs can offer sustainable food security to vulnerable communities as the vegetables are mostly produced and marketed by women, allowing them to fight against gender vulnerability and dependence syndrome (Dube, 2018). The TLV market is also economically viable to many communities as it is estimated to be worth billions of US dollars (Weinberger and Pichop, 2009). Dube (2018) has analysed the supply chain of TLVs in Zimbabwe and discussed seed quality, the costs of TLVs and reasons for household consumption. He concluded that there is potential for TLVs to improve food security across Southern Africa.

TLVs may be an attractive crop to farmers if the margins are higher and the cost of production is lower. The unavailability of quality seeds threatens the production of TLVs. In contrast, farmers have limited choices due to these undeveloped seed systems as the supply chain for TLVs in Southern regions is not organised. This lack of seed production is due to seed by-laws regarding TLVs as weeds (Seeds Act, 1971). Dried TLVs are consumed less by households because the vegetables lose some nutritional quality after they have been dried, and at times, they are deemed unacceptable to consumers (Mosha et al., 1997; Jansen van Rensburg et al., 2004), but van der Hoeven et al. (2013) found the drying and preservation of TLVs was crucial to the availability of TLVs throughout the season to increase food security within communities. Dube (2018) concluded that the margins of TLVs can increase if the seed quality is known and packaged. Dried TLVs that are packaged and sold at the markets also result in higher prices, which in turn the farmers are willing to pay as they would have greater returns (Dube, 2018).

Sustainable crop production intensification is the conceptual ecosystems approach that the Food and Agriculture Organization of the United Nations has added to their vision. This means the production and cultivation of crops forms part of the delivery of ES (FAO 2011). Enhancing food security, lowering poverty, and fighting climate change are challenges the SCPI approach deals with using conservation agriculture (CA) as a solution. Conservation agriculture (CA), in practice, sustains soil quality and results to high crop yields to lower damage to ecosystems. (Sims, 2012) explores how mechanisation manufactured locally (South Africa) plays a role in CA and the opportunities along with it. Smallholder farmers produce 80% of the food produced in Africa and Asia, and mechanisation offers these farmers the chance to better production and livelihoods. In CA, there are three methods to its success. First is keeping soil covered by organic matter and crop residues, second is to not disturb the topsoil unnecessarily and only by the needed amount for seeds to be sown. Thirdly is the knowledge required of crop rotations and associations (Sims, 2012). An example of mechanisation that aids CA, is the treadle pump, as it assists irrigation from natural resources enabling smallholder farmers on small plots to grow high value agricultural products, especially effective in lower-income areas (Sims, 2012).

The use of TLVs by rural communities and the indigenous knowledge related to TLVs in what (Maroyi, 2013) documented in the Shurugwi District, Zimbabwe, with focus of people's livelihoods and food security. Semi-structured interviews with residents regarding ethnobotanical information were documented, namely demographical information of participants, the edible weeds they collect, the preparation of the weeds, the availability, the impact of edible weeds on food security and other benefits. Maroyi (2013) found that the villages in the Shurugwi District actively use twenty-one different types of edible weeds, 17 of them being TLVs. These TLVs grow naturally in abandoned gardens, farmlands or independently of direct human contact. They are harvested from the wild or through cultivation (Maroyi, 2013). Heywood (1995) found that the most common agricultural weed invasions are that of the families Asteraceae and Poaceae, both being of the same families, most of the edible weeds found and used in Shurugwi, are from. Participants perceived edible weeds important contributors to food security and perceived these two accessible as they grow in many places.

2.2 Socio-economic significant plants

The survival of TLVs is in the hands of community members namely the seed custodians, and more recently, informal seed trading systems within communities. Women, especially older women, are the main custodians of TLVs responsible for most of its aspects and being assigned the seed custodian in safeguarding the supply of seeds (Voster et al., 2007), which

is crucial for future genetic diversity and survival of TLVs (Almekinders et al., 2000). Voster et al., 2007 found many women were not aware of a particular specie's extinction from the local village and once alerted, they orchestrated a conservancy plan to collect this specie's seed and distribute to only a few women in the village that could successfully introduce it back to the village (Vorster & Van Rensburg, 2004). More effective conservation could lead to higher food production in TLVs (Diversity and conservation ref.) Other literature on conservation of indigenous economic and medicinal plants could give insight to the safeguarding and management of TLVs in South Africa. Bello et al. (2019) studied the different economic and medicinal plants used in Katsina, Sudan; their conservation status and various threats affecting them. Interviews with specific groups of people were conducted, asking them to identify plants that they use, and their importance. Bello et al. (2019) found that the threats affecting the conservation of the identified plants were overexploitation, agriculture, desertification, invasive plants, urbanisation, erosion, and grazing, in descending order. Respondents dealing with ethnobotanical knowledge were mostly male, potentially because of their frequent interactions with the outdoors, and lacked formal education, threatening the safeguarding of indigenous knowledge. From the 169 plants identified, only twelve are globally recognised. Cunningham (1993) suggests that the conservation of the important plants and their socio-economic impact on communities should be addressed through local and international policy. Bello et al. (2019) concludes that the Savanna contained a great diversity of important economic and medicinal plants making it critical to conserve and promote their existence.

2.3 TLV Preferences

Voster et al., (2007) conducted awareness and training days, after which amaranth was greatly accepted due to its large leaf yield and taste. Other TLVs like cowpeas, pumpkins, jute mallow and spider plants are also being cultivated more than ever. Taste was the major criterion for the selection and cultivation of certain TLVs but during seasonal changes, the labour and space needed influenced their cultivation. Larger leaves and more compact bushy TLVs and less labour-intensive plants were preferred (Voster et al, 2007).

Geographical location, seasonal fluctuations, and precipitation levels exerted an impact on the accessibility and presence of TLVs. These TLVs were perceived as not only healthful and cost-effective but also delightful, thus gaining parental approval. Moreover, the youngsters evaluated dishes prepared with TLVs favourably concerning their appearance, aroma, and flavour. Swiss chard emerged as the preferred choice, likely attributable to the children's prior exposure to this vegetable. It was evident from the children's responses that they harboured a desire to incorporate these leafy greens into their diets twice weekly.

Maroyi (2013) and van der Hoeven et al. (2013) observed that Amaranthus spp. ranked among the most frequently utilized edible plants. Furthermore, Maroyi identified Chenopodium album, commonly referred to as senkgampapa, as a prevalent Traditional Leafy Vegetable (TLV). Notably, two plants, Momordica balsamina (known as Motangtang or Mistrikadika) and Physalis pyruviana (referred to as Sepatlapatla), were found to serve both medicinal and culinary purposes. The preference for specific TLVs appeared to be influenced by taste and their local availability. Van der Hoeven and colleagues (2013) reported that TLVs were predominantly located in natural habitats like bushes, farmlands, and areas with abundant water resources.

2.4 Concluding Reflections

Literature shows the importance of TLVs in South African rural communities' diets. Promoting TLVs as an answer to food security can be done by creating awareness and transferring knowledge. TLVs contain much needed nutrients that can replenish malnutritioned communities due to its availability from the natural environment. Smallholder agriculture propose great economic value by TLV cultivation and marketing of conserved or fresh produce. The conservation of TLVs is vital for its continued use. Different types of TLVs are more commonly used due to socio-economic reason like preference, availability and nutritional or medicinal value.

3. Methodology

3.1Study area and context

The study area selected was an informal settlement in Pretoria-East, South Africa. Just off Garsfontein Road and next to the Moraletta Park Church, Plastic View sits within a 220-hectare undeveloped site (Figure 1). The small, dense settlement is formally demarcated with narrow streets containing roughly 700 – 800 housing structures since the high court ordered the City of Tshwane to rebuild the settlement after unlawful eviction in 2006. Residents of the surrounding affluent areas claim that the undocumented residents of Plastic View make it a crime hotbed (Moatshe, 2020). Due to past conflicts with government agencies, the residents of Plastic View are defensive and vulnerable, having been exposed to xenophobic threats. This put us at risk of crime when entering the premises and encouraged us to communicate with community members as to what our purpose of entering the premises was.

Figure 3: Plastic View Locality Map (Author, 2023), (Google Earth Pro, 2023).

3.2 Study Theoretical Context

In landscape architecture, research and practice are shaped by a multitude of influences, guiding both inquiries and methodologies. This interdisciplinary approach frequently incorporates methods from other domains, such as the social and natural sciences (Bruns et al., 2017; Swaffield and Deming, 2011). As a result, the discipline often adopts a pragmatic orientation, enabling researchers to draw upon diverse paradigms and techniques to effectively address their inquiries and establish meaningful connections between their studies and human experiences (University of Nottingham, n.d.). Swaffield and Deming (2011) emphasize the pivotal significance of methodological integrity and fitness for purpose in landscape architectural research.

This research aligns with a pragmatic philosophy, following Swaffield and Deming's (2011) assertion that a pragmatic approach facilitates the generation of transferable knowledge that can be applied in practical, real-world scenarios. This study aims to understand and represent reality as accurately as possible using quantitative and qualitative methods. It follows an exploratory interpretive research approach, meaning the goal is to gain insights and an understanding the collected data (George, 2023).

3.3 Sample size

A total of 50 questionnaires were completed by participants in Plastic View on the 27th and 28th of March 2023. Plastic View had eight thousand to nine thousand documented residents in 2020 (BHons 2020), and roughly fifteen thousand presently, therefore having had the number of questionnaires increased, the results would be more accurate. Therefore, the data has lower reliability but is still deemed valid because of the data collection techniques used to broaden the sample size. These techniques involved entering the site via two separate entrances, the northern entrance on day one, and the north-western clinic entrance on day two. We proceeded to walk to different areas asking randomly selected participants to partake in the questionnaires. The sample size is large enough to determine correlations between variables relating to participants' relationship with TLVs and household scale uses of TLVs. The sample group consisted of randomly selected households.

3.4 Data Collection

As noted by Leedy and Ormrod (2015), survey research entails gathering information, including opinions, experiences, or traits of a specific group, through a series of meticulously crafted questions posed to a sample of the population. These responses are subsequently subjected to quantitative analysis. Additionally, their study incorporated correlational research methods to assess how the characteristics or patterns exhibited by the sample group influenced other variables (Leedy and Ormrod, 2015). This study's fieldwork involved gathering primary data through semi-structured questionnaires (Annexure 1) administered by us, the researchers, and the use of photo-eliciting. Community leaders were contacted to guide the researchers through the settlement spaces and assist with translation.

The design of the questionnaires (provided in Annexure C) aimed to ensure a completion time of approximately 20 to 30 minutes. This approach aligns with the guidance of Leedy and Ormrod (2015), who recommend brief, straightforward questions to enhance participant engagement, acknowledging the value individuals place on their time. The survey employed a 'yes or no' response format, along with predefined answer options. Additionally, participants had the opportunity to provide any supplementary responses not covered by the predefined options. This format was complemented by the inclusion of rating scale questions, as

suggested by Leedy and Ormrod (2015) for capturing information on attitudes or preferences. The questionnaire featured response categories such as 'agree,' 'disagree,' and 'neither agree nor disagree' to address potential challenges in vegetable cultivation. Each response option was associated with numeric values to facilitate streamlined data analysis. For open-ended questions, numeric values were assigned based on the identified vegetables during data preparation. Qualitative analysis of open-ended questions involved grouping similar responses and assigning numeric values accordingly.

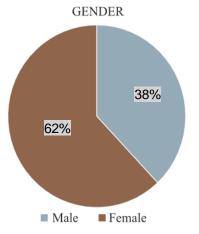
Inquiries about participants' knowledge of or experience with specific vegetables led to the creation of categories encompassing various types. These categories included TLVs (e.g., kale, rape, tsunga, or covo), mainstream leafy vegetables (e.g., lettuce, or cabbage), mainstream root vegetables (e.g., carrots, potato, or onions), mainstream vine plants (e.g., tomatoes, beans, or pumpkins), and maize.

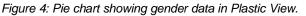
The semi-structured questionnaires often became interviews as the participants preferred being spoken to or not having the ability to read. The pictures became launching pads for discussions and insights into their preferences. Most questions were multiple-choice, and some asked participants to specify if based on their previous answers, leaving the questions open-ended. The questionnaires had three main sections. This paper focuses on the TLV uses, preferences and characteristics of the site.

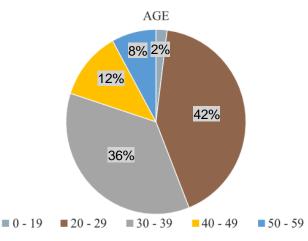
3.5 Data Analysis

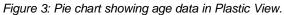
Data from the questionnaires were set up in an Excel spreadsheet. Basic statistical data was calculated from the Excel spreadsheet to find demographical information relating to different variables and significant information on the uses, types, sources and preferences regarding vegetables and traditional vegetables (TLV). Each question had a value of 0-99 for each respondent. IBM SPSS Statistics Windows (Version 28.0.1.0) was chosen to statistically analyse the data with a 95% confidence (p=0.05) interval to evaluate statistically significant correlations of various themes using the bivariate Pearsons test (See Annexure 2). The researcher interpreted data and correlations to respond to the research questions through a quantitative analysis.

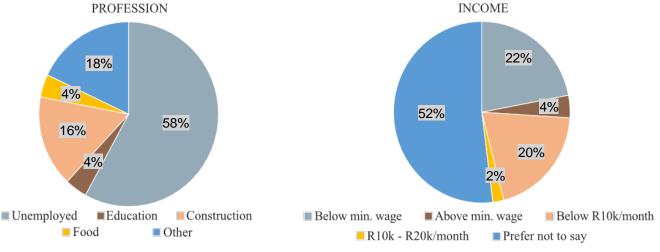
3.6 Ethical considerations


In the realm of research, it is essential to adhere to ethical procedures. Once the required ethical approval was granted by the Faculty of Engineering, Built Environment, and Information Technology (EBIT) at the University of Pretoria, the study implemented precise protocols following the approved guidelines, as detailed in Annexure 3. These protocols stipulated the necessity of obtaining consent from participants before conducting interviews or administering questionnaires and ensuring that participants were duly informed that their responses would be included in the study's findings. Once the application was accepted, community leaders created and filled in consent forms upon arrival. When approaching participants, researchers would introduce themselves and explain the reasons for their fieldwork. Once a consensus was reached, the participant was asked to help complete questionnaires regarding the study.


The Role of Traditional Leafy Vegetables in Informal Settlements


4. Results


4.1 Site Characteristics


The demographical data in Plastic View showed a high representation (62%) of female participants between the ages of 20 and 40 years (See Figure 2). This gave more insight into the roles women had within the community. Most (86%) participants were originally from a SADC country (Southern African Development Community Immigrant), 90% from Zimbabwe, and had resided in South Africa for over 10 years (Refer to Figure 6). Therefore, all the participants have African origins, meaning they are likely to possess traditional knowledge or preparation methods. Fifty-eight percent (58%) of participants were unemployed, while some partake in construction (16%) or handyman jobs (18%) (Refer to Figure 4). Only 4% of participants worked within the food industry (Refer to Figure 4). Although few participants indicated the food industry as being their source of income, the data on TLVs should provide insight to the roles food has in the participants' lives. Most participants (52%) preferred not to state their income category. Of the 48% that answered, 22% of participants earned below minimum wage and 20% earned below R10 000 per month (Refer to Figure 5). The lack of financial security strengthens the need for food security in survival. Only 2% indicated they earned between R10 000 and R20 000 monthly.

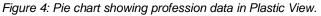
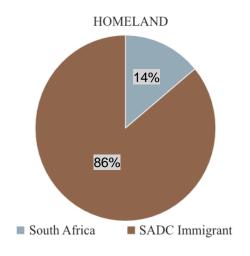
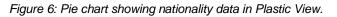




Figure 5: Pie chart showing income data in Plastic View.

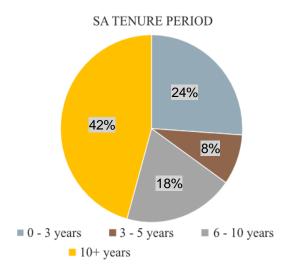


Figure 7: Pie chart showing South African tenure periods in Plastic View.

4.2 Traditional Leafy Vegetables

4.2.1 Uses & Preferences

All participants (100%) answered yes to eating vegetables. A total of 49 participants (98%) preferred TLVs, and a total of 41 participants (82%) preferred mainstream vegetables (See Figure 8). Eighteen percent (18%) of participants chose traditional vegetables over mainstream vegetables, and only 2% preferred mainstream vegetables over traditional vegetables (See Figure 9). The remaining 80% preferred both traditional and mainstream vegetables.

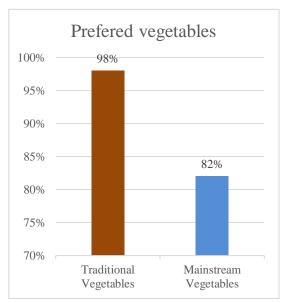


Figure 8: Graph showing percentage of participants preferring Traditional vs Mainstream vegetables.

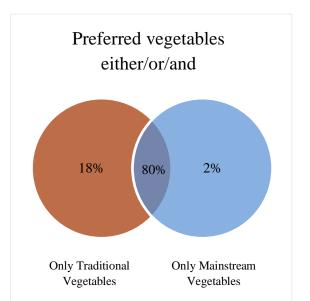


Figure 9: Venn diagram showing participants preferring Traditional and/or Mainstream vegetables.

Most participants (92%) indicated that the ease of preparing TLVs was a reason they preferred it. Furthermore, culture, childhood memories, medicinal value, availability and cost, and taste were selected as reasons for preferring TLVs (82%-84%). TLVs being viewed as a poverty crop along with its taste were the only two reasons selected for not preferring them (See Figure 10).

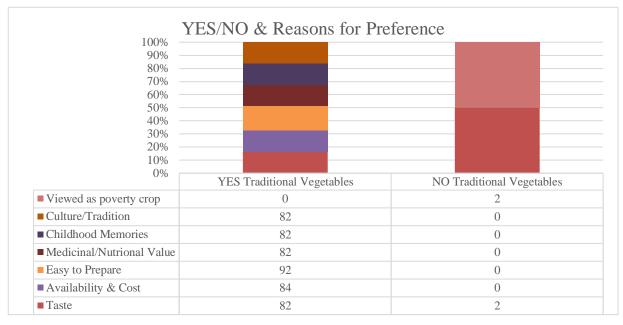


Figure 10: Graph and table representing the reasons for preferring TLVs and not preferring TLVs.

4.2.2 Agriculture & Economic Value

The types of vegetables identified when asked which vegetables were grown by the participants themselves were as follows, in descending order: Spinach, Cabbage, Covo, Rape, Onion, Tomatoes, Traditional Pumpkin, Carrot, Beans, Maize, Tsunga, Lettuce, Sweet potato, Soya, Wheat, Beet root, Gushe, Kale, Morogo, Pigweed, Spiderplant, Cowpea, Bitter melon and Okra (See Figure 11).

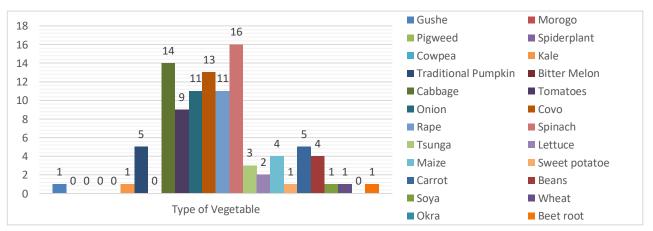


Figure 11: A graph showing the different types of vegetables identified by participants, grown by themselves at any time.

Most (62%) participants answered "yes" to having grown vegetable gardens for their own use (See Figure 12(a)). Twenty-seven percent (27%) of participants answered 'never' when asked when they grew vegetables, and 7% of participants were currently growing vegetables (See Figure 12(b)). Many participants (67%) mentioned mainstream vegetables when stating the types of vegetables they grow, and 33% of participants mentioned traditional vegetables (See Figure 12(c)). The strongest reason for the growing of vegetables was 'own consumption' at 27 (54%), second nutritional preference (19%), then economic reasons (34%) and personal enjoyment (32%). A small percentage (2%) indicated serving the community as an option (See Figure 12(d)).

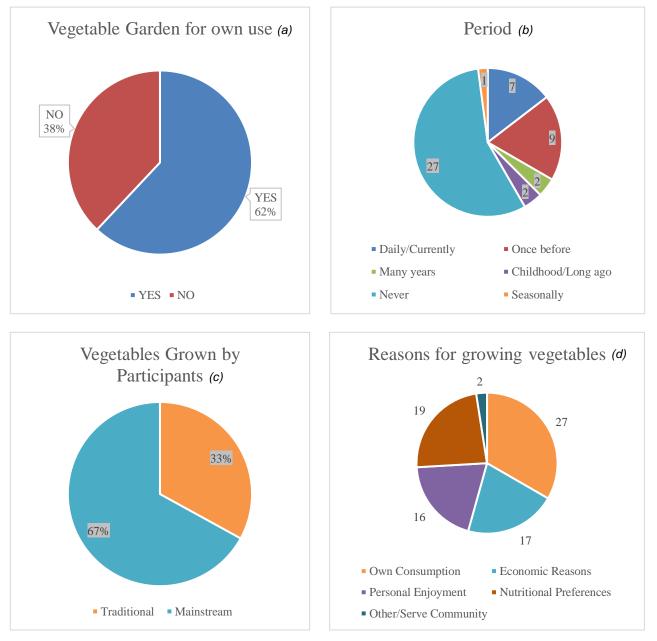


Figure 12:(a) Pie chart showing the percentage of participants that have grown their own vegetable gardens; (b)Pie chart showing the time frame in which the participants who have grown their own vegetable gardens; (c)Pie chart showing the percentage of Traditional or Mainstream vegetables are grown by participants themselves; (d)Pie chart showing the number of participants selected each reason for growing their own vegetables.

4.2.3 Consumption of TLV

Gushe, also known as 'Jute', was the most consumed traditional vegetable, followed by Spiderplant, Pigweed, Morogo, Traditional pumpkin, Cowpea, Kale, Bitter melon, Covo, Rape and Okra respectively (See Figure 13). Most participants (80%) said they got their vegetables from an informal shop, 20% from a shop and 28% said other, specifying 'from the bush' as an answer. This means that 28% of participants harvest TLVs from the natural environment around them (See Figure 14). These results offer insight into food security in urban-informal environments surrounded by wild terrain containing wild TLVs. Overall, participants were aware of TLVs due to the high number of TLVs mentioned compared to the mainstream vegetables when asked to list which vegetables they consumed.

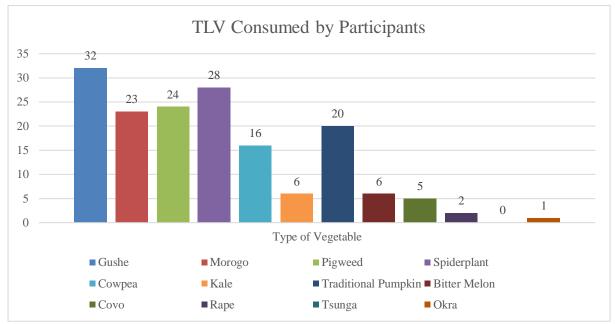


Figure 13: A graph showing the different types of traditional vegetables consumed by participants.

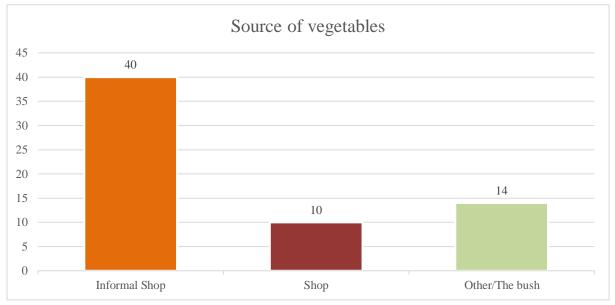


Figure 14: A graph showing the number of participants who source their vegetables from an Informal Shop, Shop or Other (specified "The Bush").

4.2.4 Socio-economic correlations

Table 1 shows the statistical correlations between gender, source, TLVs preferred, personal enjoyment and nutritional preference. Results from SPSS show a statistically significant (p < p0.05), moderate negative correlation (r= -0.381) between gender and source of TLVs. Males were more likely to get their TLVs from the bush than females. A significant moderate correlation (r=0.478) exists between the personal enjoyment of growing vegetables and the source of TLVs. Those who enjoyed growing vegetables sourced their vegetables from mostly everywhere (informal shop, shop, and the bush). Nutritional preference had a significant positive moderate relationship with the source of vegetables (r= 0.465). The participants who ate TLVs for nutritional reasons, also sourced their vegetables from mostly everywhere (informal shop, shop, and the bush).

Table 1: Statistical correlations between Gender, Source, TLVs preferred, Personal enjoyment and Nutritional preference.

		Corre	lations			
					Personal	Nutritional
		Gender	Source	TLV preferred	enjoyment	preference
Gender	Pearson Correlation					
	Ν	50				
Source	Pearson Correlation	381**				
	Sig. (2-tailed)	.006				
	Ν	50	50			
TLV preferred	Pearson Correlation	.182	280 [*]			
	Sig. (2-tailed)	.205	.049			
	Ν	50	50	50		
Personal enjoyment	Pearson Correlation	162	.478**	177		
	Sig. (2-tailed)	.382	.007	.341		
	Ν	31	31	31	31	
Nutritional preference	Pearson Correlation	372 [*]	.465**	145	.423*	
	Sig. (2-tailed)	.039	.008	.436	.018	
	Ν	31	31	31	31	31

-lati

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

4.2.5 TLV type correlations

Table 2 shows the statistical correlations between Gushe, Spiderplant, Okra, Ease of preparation and economic reasons for growing vegetables. Results from SPSS show that there is statistically significant (p < 0.05), moderate positive correlations between the ease of preparation with both Gushe (r=0,306) and Spiderplant (r=0.376). Participants that prefer to consume Gushe or Spiderplant, do so due to the ease of preparations needed to consume the leaves, while vegetables like Okra were negatively correlated (r= -0.429) to the ease of preparation and was not preferred due to its difficulty of preparation. Spiderplant had a 19

2023/11/30

significant negative correlation (r= -0.360) with economic reasons for growing vegetables. This was due to Spiderplant not being cultivated by many households (See Figure 11).

Table 2: Statistical correlations between Gushe, Spiderplant, Okra, Ease of preparation and Economic reasons for growing vegetables.

		Corre	lations			
						Economic
		Gushe	Spiderplant	Okra	Easy Prep	reasons
Gushe	Pearson Correlation					
	Ν	50				
Spiderplant	Pearson Correlation	.259				
	Sig. (2-tailed)	.070				
	Ν	50	50			
Okra	Pearson Correlation	190	161			
	Sig. (2-tailed)	.185	.264			
	N	50	50	50		
Easy Prep	Pearson Correlation	.306*	.376**	429**		
	Sig. (2-tailed)	.031	.007	.002		
	Ν	50	50	50	50	
Economic reasons	Pearson Correlation	.077	360 [*]	.166	.037	
	Sig. (2-tailed)	.679	.047	.373	.842	
	N	31	31	31	31	31

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

5. Discussion

TLVs were used by 98% of participants from Plastic View. Vegetables were part of all participants' diets, and the preference for traditional vegetables outweighed that of mainstream vegetables. These findings confirm their popularity. TLVs were mostly (80%) purchased from informal shops within Plastic View, indicating their economic significance for the residents. The heightened awareness of TLVs in Plastic View could be a result of the informal shops selling them, as Dhewa (2017) mentioned that TLVs increase in popularity when restaurants exemplify them in food menus. Most participants from Plastic View originate from Zimbabwe; therefore, other informal settlements with SADC immigrants could have similar uses and relationships with TLVs. When compared to existing statistics regarding Zimbabwean diets (DFID project 2309, 2003), TLVs are prominent components of their diets. There is no doubt that TLVs contain valuable nutritional value, and even more importantly, TLVs offer food security for the poor and vulnerable. The high number of participants who source TLVs from the bush or informal shops, explain why mostly mainstream vegetables are grown personally even though TLVs are consumed more. The informal shops that were the primary source for TLVs showed the significant economic value TLVs have in food industries in informal settlements and the probable existence of seed custodians and community TLV promoters.

The second-largest source of TLVs in Plastic View was the bush, aligning with the findings of Maroyi (2013) and van der Hoeven et al. (2013), who found that rural households harvest edible vegetables from their natural, wild surroundings. Plastic View is surrounded by large wild bushy areas of vegetation that have been 75% invaded by alien species (SANBI, 2010). TLVs form part of these alien species that grow wildly. The successful survival and easy access to TLVs near Plastic View make them a helpful solution to food security as they are cheap and accessible to the community. Thus, TLVs give the residents access to a supply of fresh produce from their natural environment to combat hunger.

Nutritional preference for growing one's vegetables was selected by 61% of participants, and a further 82% preferred TLVs due to their nutritional value. These findings differ from those of Sivakumar et al. (2018). Although the residents are likely to lack knowledge of carotenoids as antioxidants, they do, however, have inherited knowledge of the health benefits of TLVs in diets. Home-grown vegetables were mostly consumed by households and preferred for their nutritional values. Although the knowledge around growing and harvesting TLVs may seem low, purchasing them cheaply and processing is more attractive to most participants, even when many of the TLVs grow wildly around the settlement. This proves the large economic benefits TLVs have in agriculture and food security. The correct method of harvesting and finding good quality leaves seems too much of a hassle for most of the community members. In this study, nutritional and medicinal value was a strong reason for preferring TLVs. The ease of access and availability, together with nutritional value, confirms the role TLV plays in addressing micronutrient deficiencies in informal settlements.

The relationship between men and their vegetable sourcing habits reveals their strong connection to the natural world. Individuals who cultivated their own produce were inclined to acquire additional vegetables through both commercial and foraged means. As indicated by Figure 6(b), the primary motivation for growing one's vegetables was for personal consumption. Therefore, the accessibility of fresh produce in local shops and in the wild plays a crucial role in promoting food security within the Plastic View community. The continued supply of wild fresh produce gives participants who own informal shops the ability to create a source of income from cultivated TLVs. Most participants interviewed were women, and according to Voster (2007), it could be the reason for the high statistical evidence of TLV knowledge. Packaging and seed knowledge factors were not a part of this study but play a role in the success of these informal shops. The introduction of CA and low-tech mechanisation in Plastic View could leave informal shops thriving economically by increasing TLV production and therefore increasing food security.

Through the provision of collages featuring an equal mix of mainstream and traditional vegetables (six of each), participants were able to identify 24 distinct plant species, with 12 of them falling under the category of Traditional Leafy Vegetables (TLVs). This demonstrates a heightened awareness of these plants within the Plastic View community. The identification of numerous corresponding species by residents echoes the findings of Dube (2018), who noted the consumption of commonly consumed TLVs in Africa. This reinforces the community's profound understanding and relationship with these plants. Amaranthus (Morogo or Pigweed) was a highly favorable vegetable and can be found in the natural environment. Gushe, Spiderplant, Pigweed, Morogo, Traditional pumpkin, Cowpea, Kale, Bitter melon, Covo, Rape, and Okra were preferred and eaten by most participants. These TLVs are mentioned in numerous other studies but not grouped in the same manner. This shows the existing knowledge of TLVs and the geographical availability of the plants playing a role in what types of vegetables participants preferred. In our findings, Spiderplant was preferred due to its ease of preparation, while van der Hoeven et al. (2013) reported its bitter taste and the need for boiling to improve the taste. This indicates the existing preparation knowledge regarding this vegetable in Plastic View, a much younger settlement than those in van der Hoeven's study.

Despite the large preference for traditional vegetables, the relationship between the types of vegetables grown by participants and reasons behind growing them themselves show a potential gap in traditional vegetable knowledge within this informal community. Results of TLV and where the participants source them from could give answers to the roles TLVs have in food security. The reasons given for preferring TLVs matched the needs of the community. The TLVs were said to be easy to cook, cheap and accessible, provide nutritional and medicinal value, taste good, and bring back childhood memories for the people in Plastic View. This gives the roles that TLVs have in Plastic View and confirms reasons of preference. Additional research on TLV awareness, TLV agriculture, and similar studies on different informal settlements in other regions are encouraged to promote TLVs and their ability to aid in food security within the global south.

6. Conclusion

The preferred TLVs in Plastic View were mainly influenced by the ease of preparation (92%), followed by accessibility (84%), nutritional value (82%), taste (82%), cultural factors (82%), and childhood memories (82%). The findings of this study suggest that factors related to convenience and practicality significantly impact the food choices and preferences of the residents, which may have important implications for promoting healthy eating habits and improving overall health outcomes. The economic value of wild cultivation and marketing of TLVs in informal shops were also pertinent to the importance of these plants in food security. The promotion of different types of TLVs, their cooking methods and how to successfully market the fresh or conserved produce, is what can be implemented in rural communities across the global south.

Reference List

- Abelson, A., B. Halpern, D. Reed, R. Orth, G. Kendrick, M. Beck, J. Belmaker, G. Krause, et al. 2015. Upgrading marine ecosystem restoration using ecological social concepts. BioScience 66: 156–163.
- Abukutsa-Onyango, M. O. (2007). Seed production and support systems for African leaf vegetables in three communities in western Kenya. African Journal of Food Agriculture and Nutrition Development. 7(3): 1-16.
- Agea, J. G., Kimondo, J. M., Woiso, D. A., Okia, C. A., Obaa, B. B., Isubikalu, P., ... Woiso, D. A. (2014). Proximate composition, vitamin C and beta-carotene contents of fifteen selected leafy wild and semi-wild food plants (WSWFPs) from BunyoroKitara Kingdom, Uganda. Journal of Natural Products and Plant Resources, 4, 1–12.
- Almekinders CJM and WS de Boef Institutional perspectives on participatory approaches to use and conservation of agro-biodiversity. In: Friis- Hansen E & B Sthapit. Technical Bulletin on Participatory Approaches in use and conservation of Plant Genetic Resources. IPGRI, Rome. 2000, 2: 22-26.
- Bello, A., Jamaladdeen, S., Elder, M. T., Yaradua, S. S., Kankara, S. S., Wagini, N. H., Stirton, C. H., & Muasya, M. (2019). Threatened medicinal and economic plants of the Sudan Savanna in Katsina State, northwestern Nigeria. *Bothalia*, 49(1). <u>https://doi.org/10.4102/abc.v49i1.2325</u>
- Bignante, E. (2010). The use of photo-elicitation in field research. *EchoGéo*(11). https://doi.org/10.4000/echogeo.11622
- Bois, M. d. (2019). Towards an Architecture of Civil Disobedience to Reclaim Informal Settlement's Right to the City University of Pretoria].
- Brown, G. (2004). Mapping Spatial Attributes in Survey Research for Natural Resource Management: Methods and Applications. *Society & Natural Resources*, *18*(1), 17-39. <u>https://doi.org/10.1080/08941920590881853</u>
- Bruns, D., Adri, V. D. B., Tobi, H. & Bell, S. (eds.) 2017. *Research in Landscape Architecture: Methods & Methodology,* New York: Routledge.
- Bullock, J.M., J. Aronson, A.C. Newton, R.F. Pywell, and J.M. Rey- Benayas. 2011. Restoration of ecosystem services and biodiversity: Conflicts and opportunities. Trends in Ecology & Evolution 26: 541–549.
- Benjamin Burkhard, Franziska Kroll, Stoyan Nedkov, Felix Müller, Mapping ecosystem service supply, demand and budgets, Ecological Indicators, Volume 21, 2012, Pages 17-29, ISSN 1470-160X, https://doi.org/10.1016/j.ecolind.2011.06.019.
- Cocks, M., Alexander, J., Mogano, L., & Vetter, S. (2016). Ways of Belonging: Meanings of "Nature" AMong Xhosa-Speaking Township Residents In South Africa. Journal of Ethnobiology, 36(4), 820-841. <u>https://doi.org/10.2993/0278-0771-36.4.820</u>
- Colding, J., Giusti, M., Haga, A., Wallhagen, M., & Barthel, S. (2020). Enabling Relationships with Nature in Cities. *Sustainability*, *12*(11). <u>https://doi.org/10.3390/su12114394</u>
- Corbin JD, D'Antonio CM. Gone but not forgotten? Invasive plants' legacies on community and ecosystem properties. Invasive Plant Sci Manag. 2012;5:117–124. https://doi.org/10.1614/IPSM-D-11-00005.1
- Degefu, M. A., Argaw, M., Feyisa, G. L., & Degefa, S. (2021). Dynamics of urban landscape nexus spatial dependence of ecosystem services in rapid agglomerate cities of Ethiopia. Sci Total Environ, 798, 149192. https://doi.org/10.1016/j.scitotenv.2021.149192
- Dhewa, C. (2017). How agric markets signal changes in consumption patterns. Herald, 24 August 2017. https://www.herald.co.zw/how-agric-markets-signal-changes-inconsumption-patterns/.
- DFID Research4Development Project Record (2003). Improving the livelihoods of peri-urban vegetable growers through markets promotion of fresh and processed indigenous vegetables. https://assets.publishing.service.gov.uk/media/R7487_FTR.pdf.

- Dlamini, S., Tesfamichael, S. G., Shiferaw, Y., & Mokhele, T. (2020). Determinants of Environmental Perceptions and Attitudes in a Socio-Demographically Diverse Urban Setup: The Case of Gauteng Province, South Africa. *Sustainability*, *12*(9). <u>https://doi.org/10.3390/su12093613</u>
- Dube, P. (2018). Traditional Leafy Vegetables in Zimbabwe: Agronomic and Market Studies [Dissertation].
- Dufour, S., A. Rollet, J. Oszwald, and X. de Sartre. 2011. Ecosystem services, an opportunity to improve restoration practices in river corridors. Unpublished research note (02/2012). https://hal. archives-ouvertes.fr/hal-00587959/document.
- Egerer, M., Ordóñez, C., Lin, B. B., & Kendal, D. (2019). Multicultural gardeners and park users benefit from and attach diverse values to urban nature spaces. *Urban Forestry* & *Urban Greening*, 46. <u>https://doi.org/10.1016/j.ufug.2019.126445</u>
- Erlingsson, C., & Brysiewicz, P. (2013). Orientation among multiple truths: An introduction to qualitative research. *African Journal of Emergency Medicine*, *3*(2), 92-99. https://doi.org/10.1016/j.afjem.2012.04.005
- Faber, M., Oelofse, A., Van Jaarsveld, P. J., Wenhold, F. A. M., & Jansen van Rensburg, W.
 S. (2010). African leafy vegetables consumed by households in the Limpopo and KwaZulu-Natal provinces in South Africa. South Africa Journal of Clinical Nutrition. 23 (1): 30-38.
- Fourie, L., Rouget, M., & Lötter, M. (2015). Landscape connectivity of the grassland biome in Mpumalanga, South Africa. *Austral Ecology*, 40(1), 67-76. <u>https://doi.org/10.1111/aec.12169</u>
- Fox FW and ME Norwood-Young Food From the Veld: Edible Wild Plants of Southern Africa. Delta Books, Johannesburg, South Africa, 1982.
- Gann, G.D., T. McDonald, B. Walder, J. Aronson, C.R. Nelson, J. Jonson, J. Hallett, C. Eisenberg, et al. 2019. International principles and standards for the practice of ecological restoration. Restoration Ecology 27: S1–S46.
- George, T. (2023b) Exploratory research: Definition, Guide, & Examples, Scribbr. Available at: https://www.scribbr.com/methodology/exploratory-research/ (Accessed: 26 July 2023).
- Hassan R, Mahlathi S. Evaluating the environmental and social net-worth of controlling alien plant invasions in the Inkomati catchment, South Africa. Water SA. 2020;46:54–65. https://doi.org/10.17159/wsa/2020.v46.i1.7881
- Ibrahim, M. I. M., Pieters, R., Abdel-Aziem, S. H., vander Walt, A. M., Bezuidenhout, C. C., Giesy, J. P., & Abdel-Wahhab, M. A. (2015). Protective effects of protective effects of Amaranthus hybridus against aflatoxin B1 and fumonisin B1 -induced genotoxicity in H4IIE-luc cells. Hepatoma Research, 1, 137–146.
- Junge, X., Hunziker, M., Bauer, N., Arnberger, A., & Olschewski, R. (2019). Invasive Alien Species in Switzerland: Awareness and Preferences of Experts and the Public. *Environ Manage*, *63*(1), 80-93. <u>https://doi.org/10.1007/s00267-018-1115-5</u>
- Klain, S. C., Olmsted, P., Chan, K. M. A., & Satterfield, T. (2017). Relational values resonate broadly and differently than intrinsic or instrumental values, or the New Ecological Paradigm. *PLoS One*, *12(8)*, *e0183962. https://doi.org/10.1371/journal.pone.0183962*
- Krinsky, N. I. (1993). Actions of carotenoids in biological systems. Annual Review of Nutrition, 13, 561–587. https://doi.org/10.1146/annurev.nu.13.070193.003021
- Le Roux JJ, Strasberg D, Rouget M, Morden CW, Koordom M, Richardson DM. Relatedness defies biogeography: The tale of two island endemics (Acacia heterophylla and A. koa). The New Phytol. 2014;204:230–242. https://doi.org/10.1111/nph.12900
- Leedy, P. D. & Ormrod, J. E. 2015. *Practical Research: Planning and Design,* Essex, Pearson.
- Lindemann-Matthies, P., Junge, X., & Matthies, D. (2010). The influence of plant diversity on people's perception and aesthetic appreciation of grassland vegetation. *Biological Conservation*, *143*(1), 195-202. <u>https://doi.org/10.1016/j.biocon.2009.10.003</u>

Mahlokwane, J. (2022) Tshwane plans to relocate residents in fire-prone informal settlements, Independent Online. Available at: https://www.iol.co.za/pretoria-news/news/tshwane-plans-to-relocate-residents-in-fire-prone-informal-settlements-b60ce63a-7b87-4e8d-a04a-fba3a71697ae (Accessed: 12 June 2023).

- Maroyi, A. (2013). Use of weeds as traditional vegetables in Shurugwi District, Zimbabwe. Maroyi Journal of Ethnobiology and Ethnomedicine, 9:60.
- McLean, P., Gallien, L., Wilson, J. R. U., Gaertner, M., & Richardson, D. M. (2017). Small urban centres as launching sites for plant invasions in natural areas: insights from South Africa. *Biological Invasions*, *19*(12), 3541-3555. https://doi.org/10.1007/s10530-017-1600-4
- Moatshe, R. (2020) New Township plans for plastic view residents hampered by objections, covid-19, Independent Online. Available at: https://www.iol.co.za/pretoria-news/news/new-township-plans-for-plastic-view-residents-hampered-by-objections-covid-19-1cbe1251-4a26-4040-a076-714c5c7dd66a (Accessed: 15 June 2023).
- Molina, E., González-Redondo, R., Moreno-Rojas, R., Montero-Quintero, K., Ferrer, R., & Sánchez-Urdaneta, A. B. (2016). Toxic and antinutritional substances content of Amaranthus dubius Mart. ex Thell. Effect of plant part and harvesting season. Revista de la Facultad de Agronomía (LUZ), 33, 19–38.
- Myburgh, W., Reilly, B., & Prinsloo, H. (2021). Identifying potential protected areas in the Grassland Biome of South Africa. *South African Journal of Science*, *117*(3/4). https://doi.org/10.17159/sajs.2021/7507
- NEMBA (2004). National Environmental Management: Biodiversity act (10/2004) (2021). Westville: Data Dynamics Digital Law.
- Ogoye-Ndegwa C, Aagaard-Hansen J: Traditional gathering of wild vegetables among the Luo of Western Kenya: a nutritional anthropology project. Ecol Food Nutr 2003, 42:69–89.
- Ruwanza, S., & Thondhlana, G. (2022). People's perceptions and uses of invasive plant Psidium guajava in Vhembe Biosphere Reserve, Limpopo Province of South Africa. *Ecosystems and People*, *18*(1), 64-75. https://doi.org/10.1080/26395916.2021.2019834
- SANBI (2010) Map viewers biodiversity BGIS. Available at: http://bgis.sanbi.org/MapViewer (Accessed: 23 July 2023).
- Schippers, R. R. (2000). African indigenous vegetables: An overview of the cultivated species. Natural Resources Institute/ACP-EU Technical Centre for Agricultural and Rural Cooperation. Chatham: Natural Resources Institute, University of Greenwich.
- Seddon, N., E. Daniels, R. Davis, A. Chausson, R. Harris, X. Hou- Jones, S. Huq, V. Kapos, et al. 2020. Global recognition of the importance of nature-based solutions to the impacts of climate change. Global Sustainability. https://doi.org/10.20944/preprints201810.0203.v2.
- Sibanda, A., Tui, S. H.-K., Van Rooyen, A., Dimes, J., Nkomboni, D., & Sisito, G. (2011). Understanding Community Perceptions of Land Use Changes in the Rangelands, Zimbabwe. *Experimental Agriculture*, *47*(S1), 153-168. https://doi.org/10.1017/s001447971000092x
- Sims, B. G. B., M. A.; Kienzle, J. (2012). Development of mechanisation options for smallholder farmers: examples of local manufacturing opportunities for sub-Saharan Africa. International Conference of Agricultural Engineering - CIGR-AgEng 2012: Agriculture and Engineering for a Healthier Life.
- Sivakumar, D., Chen, L., & Sultanbawa, Y. (2018). A comprehensive review on beneficial dietary phytochemicals in common traditional Southern African leafy vegetables. Food Sci Nutr, 6(4), 714-727. https://doi.org/10.1002/fsn3.643
- Swaffield, S. & Deming, M. E. 2011. Research strategies in landscape architecture: mapping the terrain. *Journal of Landscape Architecture*, 6, 34-45.

- Tiwari, U., & Cummins, E. (2013). Factors influencing levels of phytochemicals in selected fruit and vegetables during pre-and post-harvest food processing operations. Food Research International, 50, 497–506. https://doi.org/10.1016/j.foodres.2011.09.007
- Voster, I. H. J. J. v. R., W.; Zijl, J. J. B. van; Venter, S. L. (2007). Re-Creating Awareness of Traditional Leafy Vegetables in Communities. *African Journal of Food, Agriculture, Nutrition and Development, 7.*
- Vorster HJ and WSJ van Rensburg. 'A tale of two villages and "Phara" lost and found!' International Plant Genetic Resources Institute Newsletter for sub-Saharan Africa, No. 20, December 2004.
- Van Wilgen BW, Forsyth GG, Le Maitre DC, Wannenburgh A, Kotzé JDF, van den Berg E, Henderson L. An assessment of the effectiveness of a large, national-scale invasive alien plant control strategy in South Africa. Biol Conserv. 2012;148:28–38. https://doi.org/10.1016/j.biocon.2011.12.035
- Van der Hoeven et al. Journal of Ethnobiology and Ethnomedicine 2013, 9:78 http://www.ethnobiomed.com/content/9/1/78
- Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, et al. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol Lett. 2011;14:702–708. https://doi. org/10.1111/j.1461-0248.2011.01628.x
- Weidenhamer JD, Callaway RM. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J Chem Ecol. 2010;36:59–69. https://doi.org/10.1007/s10886-009-9735-0
- Weinberger, K., & Msuya, J. (2004). Indigenous vegetables in Tanzania—Significance and prospects. AVRDC Publication 04-600. Technical Bulletin No. 31. Shanhua: World Vegetable Center.
- Wessels, N., Sitas, N., Esler, K. J., & O'Farrell, P. (2021). Understanding community perceptions of a natural open space system for urban conservation and stewardship in a metropolitan city in Africa. *Environmental Conservation*, *48*(4), 244-254. https://doi.org/10.1017/s0376892921000345
- West, S., Haider, L. J., Masterson, V., Enqvist, J. P., Svedin, U., & Tengö, M. (2018). Stewardship, care and relational values. *Current Opinion in Environmental Sustainability*, 35, 30-38. <u>https://doi.org/10.1016/j.cosust.2018.10.008</u>
- WHO. World Health Organization: Diet, nutrition and the prevention of chronic diseases.
 Report of a Joint FAO/WHO Expert Consultation, WHO Technical Report Series #916, Geneva, 2003.
- Zoeller, K. C., Gurney, G. G., & Cumming, G. S. (2022). The influence of landscape context on the production of cultural ecosystem services. *Landscape Ecology*, *37*(3), 883-894. <u>https://doi.org/10.1007/s10980-022-01412-0</u>

[Heywood VH: Global biodiversity assessment. Cambridge: Cambridge

University Press; 1995. 3. Westbrooks R: Invasive plants, changing the landscape of America: fact book. Washington DC: Ficmnew Publishers; 1998.]

Annexure 1 (a)

QUESTIONNAIRE

This project aims to understand the potential application of edible living wall systems for household food production in Gauteng informal settlements. The research objective is to understand the community's perceptions and utilisation of vertical food production and traditional African vegetables.

Please indicate your preference for each question below according to the response categories. Please mark the applicable categories with an "X".

SECTION A: BIOGRAPHICAL DETAILS

This section will assist the study in better understanding the background of the respondents participating in this questionnaire.

A1. With which gender do you associate?

Male	Female	Neither
1	2	3

A2. Please select the age group applicable to you.

0 to 19 years	1
20 to 29 years	2
30 to 39 years	3
40 to 49 years	4
50 to 59 years	5
60 years or over	6

A3. Where did you grow up?

South Africa	1
SADC (Angola, Botswana, DR Congo, Lesotho, Madagascar, Malawi, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia and Zimbabwe)	2
Other, please specify	3

A4. How long have you been residing in South Africa?

0 to 3 years	1
3 - 5 years	2
6 - 10 years	3
more than 10 years	4

A5. What is your profession?

The Role of Traditional Leafy Vegetables in Informal Settlements

Unemployed	1
Energy/ oil/ gas	2
Retail	3
Education	4
Construction	5
Health	6
Food	7
Government	8
Other (please specify)	9

A6. Which category of income do you fall in?

Below minimum wage	1
Above minimum wage	2
Below R10000 per month	3
Between R10000 and R20000 per month	4
More than R20000 per month	5

SECTION B: Applying living wall systems with food plants

		No	Yes
B1.1	Have you grown a vegetable garden for your use?	0	1
B1.2	Do you know a friend/ family member who grows vegetables for their use?	0	1
B1.3	If yes to B1.1/ B1.2, are the vegetables grown in the person's yard?	0	1
B1.4	If yes to B1.1/ B1.2, are the vegetables grown in a communal space?	0	1
B1.5	(After showing a picture of a living wall and explaining what it is and the benefits) Have you seen/ used a living wall for plant production?	0	1
B1.6	Would you grow vegetables in a living wall to use in your household?	0	1

B2. If yes to B1.6, what are the benefits of vertical plant production in your opinion?

Save space when there is limited land available.	1
Will assist with the cooling of the house/ shack and environment	2
The food garden is close-by for security and maintenance reasons.	3
Will beautify the living environment	4
It will be more affordable than traditional food production if recycled materials are used.	5
Other (specify)	6

B3. If no to B1.6, what are the disadvantages of vertical plant production in your opinion?

Costly to build and maintain	1

Don't know how to build and maintain LWS with food plants	2
Other (specify)	3

B4. If yes to B1.1,

B4.1. Where and when did you grow a vegetable garden?

Specify where.....

Specify when.....

B4.2. What vegetables do you grow?

Specify.....

Specify.....

Specify.....

Specify.....

Specify.....

B4.3 Why do you grow vegetables?

Own consumption

Economic reasons (selling)

Personal enjoyment

Nutritional preferences

Other (Specify).....

B5 What is the biggest challenge in growing vegetables for your household?

Indicate whether you agree/ disagree with each of the following statements by selecting; 1=Disagree, 2=Neither disagree nor agree, or 3=Agree.

		Disagree	Neither disagree nor	Agree
B5.1	Installation costs	1	2	3
B5.2	Availability of space/ land	1	2	3
B5.3	Availability of plants/ seed	1	2	3
B5.4	Availability of/ access to clean water	1	2	3
B5.5	Cost of plants/ seed	1	2	3
B5.6	Maintenance costs related to pests and diseases	1	2	3
B5.7	Maintenance costs relating to watering crops	1	2	3
B5.8	Theft and security	1	2	3
B5.9	Contamination	1	2	3
B5.10	Cost of fertilisers	1	2	3
B5.11	Protection from the sun	1	2	3

B5.12	Other (please specify)	1	2	3

B6. If no to B1.1,

		No	Yes
B6.1	Do you eat vegetables?	0	1
B6.2	Do you buy vegetables from a shop?	0	1

SECTION C: Traditional African Vegetables

		No	Yes
C1	1 Do you eat vegetables?	0	1

C1.2 If yes, where do you get your vegetables?

Informal shop	1
Shop	2
Other (please specify)	3

C2. Do you prefer to eat;

		No	Yes
C2.1	Traditional African vegetables such as Amaranth, Kale, pumpkin, nightshade and Gushe	0	1
C2.2	Mainstream vegetables such as lettuce, cabbage and spinach	0	1

C3. If yes to C2.1, why do you prefer traditional African vegetables?

		No	Yes
C3.1	Taste	0	1
C3.2	Availability and cost	0	1
C3.3	Easy-to-use recipes and preparation	0	1
C3.4	Medicinal/ nutritional value	0	1
C3.5	Childhood memories	0	1
C3.6	Culture/ tradition	0	1
C3.7	Other (specify)	0	1

C4. If no to C2.1, why don't you prefer traditional African vegetables?

		No	Yes
C4.1	Taste	0	1
C4.2	Availability and cost	0	1
C4.3	No/ limited recipes	0	1
C4.4	Viewed as old fashioned/ poverty crop	0	1

C4.5	Other (Specify)	0	1

C5. If yes to C2.1, what traditional African vegetables do you eat?

Specify
Specify
Specify
Specify
Specify

C6. Why do you eat these vegetables in C5?

		No	Yes
C6.1	Taste	0	1
C6.2	Availability and cost	0	1
C6.3	Easy-to-use recipes and preparation	0	1
C6.4	Medicinal/ nutritional value	0	1
C6.5	Childhood memories	0	1
C6.6	Culture/ tradition	0	1
C6.7	Other (specify)	0	1

Thank you for taking the time to complete this survey.

Annexure 1 (b)

Informed consent form (Form for research participant's permission)

1. Project information

1.1 Title of the research project:

Analysing the barriers that exist in informal urban communities for applying/ using householdscale food production in the City of Tshwane

1.2 Researcher details:

Mr James Seeliger

Department of Architecture (University of Pretoria)

Email: u04506962@tuks.co.za

Tel: 076 081 2344

1.3 Research study description

i. Project and project objectives:

This project aims to determine the potential applications of edible living wall systems (LWSs) with traditional African vegetables (TAV) for household food production in informal settlements in Gauteng. The research objectives are to understand the community's perceptions and utilisation of vertical food production and TAV. A better understanding of social perceptions and factors hampering local communities using LWSs and TAV is necessary. The capturing of these perceptions and factors will guide future designs considering edible green infrastructure such as LWSs and TAV in informal urban communities.

ii. Participants will be required to:

View photos of LWSs and respond about their preferences, applications, needs and perceptions of food production of leafy vegetables in living walls.

iii. The risks to participants:

No psychological, physical, social, economic, or environmental risks are foreseen. The research entails collating and analysing community perceptions on growing vertical edible gardens and consumption of leafy vegetables and traditional African vegetables.

2. Informed consent

2.1 I, *(name of participant)*, hereby voluntarily grant my permission for participation in the project as explained to me by *Mr James Seeliger*.

2.2 The nature, objective, possible safety and health implications have been explained to me, and I understand them.

2.3 I understand my right to choose whether to participate in the project and that the information furnished will be handled confidentially. I am aware that the investigation results may be used for publication.

2.4 Upon signing this form, the participant will be provided with a copy.

Signed:	Date:
Witness:	Date:
Researcher:	Date:

Annexure 1 (c) - Community Consent Letter

Dear Sir/Madam,

I am a researcher in the Department of Architecture, University of Pretoria. My research titled *Analysing the barriers in informal urban communities for applying/ using household-scale food production in the City of Tshwane* investigates the community's perceptions and utilisation of vertical food production and vegetables, specifically traditional African vegetables. The study aims to determine the potential applications of edible living wall systems (LWSs) with traditional African vegetables (TAV) for household food production in informal settlements in Gauteng.

This questionnaire aims to understand social perceptions and factors hampering local communities using living walls for urban food production in informal communities. Your community were chosen as a respondent because you are an informal community in the City of Tshwane.

Your participation is voluntary, and you can withdraw at any time without penalty. Your privacy will be protected throughout the survey, and your participation will remain confidential. I do not wish to analyse data individually; all data will be transferred to a computer program to analyse the entire group. This means that you are assured of anonymity.

If you agree to participate, please complete the survey that follows this cover letter. By completing the survey, you indicate that you voluntarily participate in this research. It should take about 20 minutes of your time at the most. If you have any concerns, don't hesitate to contact me with the detail provided below.

Mr James Seeliger Email: u04506962@tuks.co.za Phone: 076 081 2344

By selecting the "Yes" option, I hereby voluntarily grant my permission for participation in this anonymous survey. The nature and the objective of this research have been explained to me, and I understand it.

I understand my right to choose whether to participate in the research project and that the information provided will be handled confidentially.

I am aware that the survey results may be used for academic publication.

□ Yes

 \square No

Annexure 2

Correlations

Descriptive Statistics											
	Mean	Std. Deviation	Ν								
A1 Gender	1.62	.490	50								
1 Gushe	.64	.485	50								
2 Morogo	.46	.503	50								
3 Pigweed	.52	.505	50								
4 Spiderplant	.56	.501	50								
5 Cowpea	.32	.471	50								
6 Kale	.14	.351	50								
7 Traditional Pumpkin	.56	1.053	50								
8 Bitter Melon	.12	.328	50								
9 Cabbage	.28	.454	50								
10 Tomatoes	.20	.404	50								
11 Onion	.20	.404	50								
12 Covo	.30	.463	50								
13 Rape	.22	.422	49								
14 Spinach	.40	.496	47								
15 Tsunga	.06	.240	50								
16 Lettuce	.04	.198	50								
17 Maize	.06	.240	50								
18 Sweet potatoe	.02	.141	50								
19 Carrot	.12	.328	50								
20 Beans	.04	.198	50								
21 Soya	.02	.141	50								
22 Wheat	.02	.141	50								
23 Okra	.02	.141	50								
24 Beet root	.02	.141	50								

							Correlat	ions								
									7	8						
		A1	1	2	3	4	5		Tradition	Bitter	9	10	11	12	13	14
		Gend	Gush	Morog	Pigwee	Spiderpla	Cowpe	6	al	Melo	Cabbag	Tomato	Onio	Cov	Rap	Spinac
		er	е	0	d	nt	а	Kale	Pumpkin	n	е	es	n	0	е	h
A1 Gender	Pearson Correlati on	1	.271	.061	.320*	.053	.272	- .159	.025	- .345*	246	227	.082	- .027	- .174	154
	Sig. (2- tailed)		.057	.673	.023	.714	.056	.270	.862	.014	.085	.114	.569	.852	.231	.302
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
1 Gushe	Pearson Correlati on	.271	1	.274	.197	.259	.336*	- .298 *	197	.021	.004	042	042	.218	- .019	232
	Sig. (2- tailed)	.057		.054	.171	.070	.017	.036	.171	.888	.980	.774	.774	.128	.898	.117
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
2 Morogo	Pearson Correlati on	.061	.274	1	.324*	.091	.141	- .257	226	.030	129	.241	.040	.009	- .092	.045
	Sig. (2- tailed)	.673	.054		.021	.532	.328	.072	.114	.838	.373	.092	.782	.952	.528	.766
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
3 Pigweed	Pearson Correlati on	.320*	.197	.324*	1	.439**	.487**	- .305	252	261	382**	220	020	- .245	- .180	234
	Sig. (2- tailed)	.023	.171	.021		.001	<,001	.032	.078	.067	.006	.124	.890	.087	.216	.113
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
4 Spiderpla nt	Pearson Correlati on	.053	.259	.091	.439**	1	.263	- .339 *	.012	169	075	161	161	.053	- .028	256
	Sig. (2- tailed)	.714	.070	.532	.001		.065	.016	.932	.242	.603	.264	.264	.716	.847	.083

The Role of Traditional Leafy Vegetables in Informal Settlements

	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
5 Cowpea	Pearson Correlati on	.272	.336*	.141	.487**	.263	1	- .153	245	.011	237	236	021	- .168	- .166	285
	Sig. (2- tailed)	.056	.017	.328	<,001	.065		.288	.086	.942	.098	.099	.883	.242	.254	.052
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
6 Kale	Pearson Correlati on	159	298*	257	305*	339*	153	1	.004	.206	123	.086	.231	- .013	.060	.205
	Sig. (2- tailed)	.270	.036	.072	.032	.016	.288		.976	.152	.394	.550	.107	.931	.683	.168
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
7 Tradition al	Pearson Correlati on	.025	197	226	252	.012	245	.004	1	080	036	.019	.019	.318 ,	- .049	094
Pumpkin	Sig. (2- tailed)	.862	.171	.114	.078	.932	.086	.976		.579	.805	.895	.895	.024	.736	.528
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
8 Bitter Melon	Pearson Correlati on	345*	.021	.030	261	169	.011	.206	080	1	.181	.585**	.123	.027	- .052	.138
	Sig. (2- tailed)	.014	.888	.838	.067	.242	.942	.152	.579		.209	<,001	.394	.853	.724	.356
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
9 Cabbage	Pearson Correlati on	246	.004	129	382**	075	237	- .123	036	.181	1	.245	.022	.175	- .015	.032
	Sig. (2- tailed)	.085	.980	.373	.006	.603	.098	.394	.805	.209		.086	.878	.224	.916	.829
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
10 Tomatoe s	Pearson Correlati on	227	042	.241	220	161	236	.086	.019	.585* *	.245	1	.375 [*] ,	.109	- .255	.260
	Sig. (2- tailed)	.114	.774	.092	.124	.264	.099	.550	.895	<,00 1	.086	50	.007	.451	.077	.077
11 Onion	N Pearson	.082	50 042	50 .040	50 020	50 161	50 021	50 .231	50 .019	50 .123	50 .022	50 .375**	50 1	50 .109	49 -	47 .370*
TT ONION	Correlati	.002	042	.040	020	101	021	.201	.013	.125	.022	.575		.103	.129	.570
	Sig. (2- tailed)	.569	.774	.782	.890	.264	.883	.107	.895	.394	.878	.007		.451	.377	.010
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
12 Covo	Pearson Correlati on	027	.218	.009	245	.053	168	- .013	.318*	.027	.175	.109	.109	1	.526 **	.087
	Sig. (2- tailed)	.852	.128	.952	.087	.716	.242	.931	.024	.853	.224	.451	.451		<,00 1	.561
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
13 Rape	Pearson Correlati on	174	019	092	180	028	166	.060	049	052	015	255	129	.526	1	.281
	Sig. (2- tailed)	.231	.898	.528	.216	.847	.254	.683	.736	.724	.916	.077	.377	<,00 1		.058
	Ν	49	49	49	49	49	49	49	49	49	49	49	49	49	49	46
14 Spinach	Pearson Correlati on	154	232	.045	234	256	285	.205	094	.138	.032	.260	.370*	.087	.281	1
	Sig. (2- tailed)	.302	.117	.766	.113	.083	.052	.168	.528	.356	.829	.077	.010	.561	.058	
15	N Pearson	47 .198	47 .014	47	47 .243	47	47 .007	47 .141	47 055	47	47	47 126	47 .084	47 .202	46 271	.140
15 Tsunga	Pearson Correlati on	.198	.014	064	.243	.054	.007	.141	055	.166	158	120	.084	.202	.271	.140
	Sig. (2- tailed)	.169	.923	.658	.089	.708	.960	.330	.705	.250	.275	.382	.561	.159	.060	.349
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
16 Lettuce	Pearson Correlati on	261	060	.016	008	230	140	- .082	.086	075	.100	102	102	.089	.383	174

The Role of Traditional Leafy Vegetables in Informal Settlements

	Sig. (2- tailed)	.067	.681	.910	.955	.108	.332	.570	.552	.603	.490	.481	.481	.538	.007	.243
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
17 Maize	Pearson Correlati on	323*	161	064	263	115	.007	.383	055	.425* *	.218	.295*	.084	- .165	- .137	.041
	Sig. (2- tailed)	.022	.263	.658	.065	.425	.960	.006	.705	.002	.129	.038	.561	.251	.346	.784
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
18 Sweet potatoe	Pearson Correlati on	.112	.107	.155	.137	.127	.208	- .058	077	053	.229	071	.286*	.218	- .078	121
	Sig. (2- tailed)	.439	.459	.283	.342	.381	.147	.691	.596	.716	.110	.622	.044	.128	.596	.416
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
19 Carrot	Pearson Correlati on	.036	.021	.030	261	293*	121	.028	.038	.053	.318*	.123	.431* *	.161	- .052	.205
	Sig. (2- tailed)	.807	.888	.838	.067	.039	.401	.845	.794	.715	.024	.394	.002	.264	.724	.168
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
20 Beans	Pearson Correlati on	.160	060	188	008	025	.079	- .082	012	075	.100	102	102	- .134	- .111	.041
	Sig. (2- tailed)	.268	.681	.190	.955	.865	.587	.570	.935	.603	.490	.481	.481	.355	.448	.784
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
21 Soya	Pearson Correlati on	182	.107	132	149	.127	098	- .058	.060	053	.229	071	071	- .094	- .078	121
	Sig. (2- tailed)	.205	.459	.361	.303	.381	.498	.691	.677	.716	.110	.622	.622	.518	.596	.416
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
22 Wheat	Pearson Correlati on	182	.107	132	149	.127	098	- .058	.060	053	.229	071	071	- .094	- .078	121
	Sig. (2- tailed)	.205	.459	.361	.303	.381	.498	.691	.677	.716	.110	.622	.622	.518	.596	.416
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
23 Okra	Pearson Correlati on	182	190	132	.137	161	098	- .058	.060	053	.229	071	071	- .094	.268	121
	Sig. (2- tailed)	.205	.185	.361	.342	.264	.498	.691	.677	.716	.110	.622	.622	.518	.062	.416
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47
24 Beet root	Pearson Correlati on	.112	.107	.155	149	161	098	- .058	.060	053	.229	.286*	071	.218	- .078	121
	Sig. (2- tailed)	.439	.459	.283	.303	.264	.498	.691	.677	.716	.110	.044	.622	.128	.596	.416
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	49	47

	Correlations														
		15	16	17	18 Sweet	19	20	21	22	23	24 Beet				
		Tsunga	Lettuce	Maize	potatoe	Carrot	Beans	Soya	Wheat	Okra	root				
A1 Gender	Pearson Correlation	.198	261	323 [*]	.112	.036	.160	182	182	182	.112				
	Sig. (2-tailed)	.169	.067	.022	.439	.807	.268	.205	.205	.205	.439				
	Ν	50	50	50	50	50	50	50	50	50	50				
1 Gushe	Pearson Correlation	.014	060	161	.107	.021	060	.107	.107	190	.107				
	Sig. (2-tailed)	.923	.681	.263	.459	.888	.681	.459	.459	.185	.459				
	Ν	50	50	50	50	50	50	50	50	50	50				
2 Morogo	Pearson Correlation	064	.016	064	.155	.030	188	132	132	132	.155				
	Sig. (2-tailed)	.658	.910	.658	.283	.838	.190	.361	.361	.361	.283				
	Ν	50	50	50	50	50	50	50	50	50	50				

	N	50	50	50	50	50	50	50	50	50	50
	Sig. (2-tailed)	.803	.841	.803		.006	.841	.888	.888	.888	.888
18 Sweet potatoe	Pearson Correlation	036	029	036	1	.387**	029	020	020	020	020
	N	50	50	50	50	50	50	50	50	50	50
17 Maize	Pearson Correlation Sig. (2-tailed)	064	052 .722	1	036 .803	093 .519	052 .722	.565 ^{**} <,001	.565 ^{**} <,001	036 .803	036
	N	50	50	50	50	50	50	50	50	50	50
	Sig. (2-tailed)	.722		.722	.841	.603	.774	.841	.841	<,001	.841
16 Lettuce	Pearson Correlation	052	1	052	029	075	042	029	029	.700**	029
101 -#	N	50	50	50	50	50	50	50	50	50	50
	Sig. (2-tailed)		.722	.660	.803	.519	.722	.803	.803	.803	.80
15 Tsunga	Pearson Correlation	1	052	064	036	093	052	036	036	036	03
	N	47	47	47	47	47	47	47	47	47	4
	Correlation Sig. (2-tailed)	.349	.243	.784	.416	.168	.784	.416	.416	.416	.41
14 Spinach	Pearson	.140	174	.041	121	.205	.041	121	121	121	12
	N	49	49	49	49	49	49	49	49	49	49
	Correlation Sig. (2-tailed)	.060	.007	.346	.596	.724	.448	.596	.596	.062	.596
13 Rape	Pearson	.271	.383**	137	078	052	111	078	078	.268	078
	N	50	.556	.231	50	.204	.355	.518	.518	.518	.120
12 0000	Correlation Sig. (2-tailed)	.202	.089	165	.218	.161	134	094	094	094	.128
12 Covo	N Pearson	50 .202	50 .089	50 165	50 .218	50 .161	50 134	50 094	50 094	50 094	.218
	Sig. (2-tailed)	.561	.481	.561	.044	.002	.481	.622	.622	.622	.622
	Correlation	.004	.102	.004	.200		.102		.071	.071	07
11 Onion	N Pearson	.084	50 102	50 .084	50 .286 [*]	50 .431	50 102	50 071	50 071	50 071	07
	Sig. (2-tailed)	.382	.481	.038	.622	.394	.481	.622	.622	.622	.04
10 Tomatoes	Pearson Correlation	126	102	.295	071	.123	102	071	071	071	.286
40 Tamat	N	50	50	50	50	50	50	50	50	50	5
	Correlation Sig. (2-tailed)	.275	.490	.129	.110	.024	.490	.110	.110	.110	.11
9 Cabbage	Pearson	158	.100	.218	.229	.318 [*]	.100	.229	.229	.229	.22
	N	50	50	50	50	50	50	50	50	50	5
	Correlation Sig. (2-tailed)	.250	.603	.002	.716	.715	.603	.716	.716	.716	.71
8 Bitter Melon	Pearson	.166	075	.425**	053	.053	075	053	053	053	05
	N	50	50	50	50	50	50	50	50	50	5
Pumpkin	Correlation Sig. (2-tailed)	.705	.552	.705	.596	.794	.935	.677	.677	.677	.67
7 Traditional	Pearson	055	.086	055	077	.038	012	.060	.060	.060	.060
	Sig. (2-tailed)	.330 50	.570 50	.006 50	.691 50	.845 50	.570 50	.691 50	.691 50	.691 50	.69 [.] 50
6 Kale	Pearson Correlation	.141	082	.383**	058	.028	082	058	058	058	058
	N	50	50	50	50	50	50	50	50	50	50
o oonpou	Correlation Sig. (2-tailed)	.960	.332	.960	.147	.401	.587	.498	.498	.498	.498
5 Cowpea	N Pearson	50 .007	50 140	50 .007	.208	50 121	50 .079	50 098	50 098	50 098	09
	Correlation Sig. (2-tailed)	.708	.108	.425	.381	.039	.865	.381	.381	.264	.26
4 Spiderplant	Pearson	.054	230	115	.127	293 [*]	025	.127	.127	161	16
	N	50	50	.065 50	.342 50	.067 50	.955 50	.303 50	.303 50	.342 50	.303
	Sig. (2-tailed)	.089	.955								

19 Carrot	Pearson Correlation	093	075	093	.387**	1	.239	053	053	053	.387**
	Sig. (2-tailed)	.519	.603	.519	.006		.095	.716	.716	.716	.006
	Ν	50	50	50	50	50	50	50	50	50	50
20 Beans	Pearson Correlation	052	042	052	029	.239	1	029	029	029	029
	Sig. (2-tailed)	.722	.774	.722	.841	.095		.841	.841	.841	.841
	Ν	50	50	50	50	50	50	50	50	50	50
21 Soya	Pearson Correlation	036	029	.565**	020	053	029	1	1.000**	020	020
	Sig. (2-tailed)	.803	.841	<,001	.888	.716	.841		.000	.888	.888
	Ν	50	50	50	50	50	50	50	50	50	50
22 Wheat	Pearson Correlation	036	029	.565**	020	053	029	1.000**	1	020	020
	Sig. (2-tailed)	.803	.841	<,001	.888	.716	.841	.000		.888	.888
	Ν	50	50	50	50	50	50	50	50	50	50
23 Okra	Pearson Correlation	036	.700**	036	020	053	029	020	020	1	020
	Sig. (2-tailed)	.803	<,001	.803	.888	.716	.841	.888	.888		.888
	Ν	50	50	50	50	50	50	50	50	50	50
24 Beet root	Pearson Correlation	036	029	036	020	.387**	029	020	020	020	1
	Sig. (2-tailed)	.803	.841	.803	.888	.006	.841	.888	.888	.888	
	Ν	50	50	50	50	50	50	50	50	50	50

*. Correlation is significant at the 0.05 level (2-tailed).

 $^{\ast\ast}.$ Correlation is significant at the 0.01 level (2-tailed).

Correlations

Descriptive Statistics

	Mean	Std. Deviation	Ν
A2 Age	2.82	.962	50
A3 Nationality	1.86	.351	50
A4 Resided in SA	10.54	26.378	50
A5 Profession	3.44	3.183	50
A6 Income	52.46	48.937	50
1 Gushe	.64	.485	50
2 Morogo	.46	.503	50
3 Pigweed	.52	.505	50
4 Spiderplant	.56	.501	50
5 Cowpea	.32	.471	50
6 Kale	.14	.351	50
7 Traditional Pumpkin	.56	1.053	50
8 Bitter Melon	.12	.328	50
9 Cabbage	.28	.454	50
10 Tomatoes	.20	.404	50
11 Onion	.20	.404	50
12 Covo	.30	.463	50
13 Rape	.22	.422	49

14 Spinach	.40	.496	47
15 Tsunga	.06	.240	50
16 Lettuce	.04	.198	50
17 Maize	.06	.240	50
18 Sweet potatoe	.02	.141	50
19 Carrot	.12	.328	50
20 Beans	.04	.198	50
21 Soya	.02	.141	50
22 Wheat	.02	.141	50
23 Okra	.02	.141	50
24 Beet root	.02	.141	50

								0011	ciations									
		A2	A3 Nationali	A4 Reside d in	A5 Professi	A6 Incom	1 Gush	2 Morog	3 Pigwee	4 Spiderpla	5 Cowpe	6	7 Tradition al	8 Bitte r Melo	9 Cabba	10 Tomato	11 Onio	12 Cov
		Age	ty	SA	on	е	е	0	d	nt	а	Kale	Pumpkin	n	ge	es	n	0
A2 Age	Pearson Correlati on	1	.045	151	.486**	345 [*]	- .360 [*]	.006	.071	041	050	.016	.081	124	022	063	.094	- .060
	Sig. (2- tailed)		.758	.294	<,001	.014	.010	.968	.626	.780	.728	.914	.574	.391	.877	.664	.514	.681
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
A3 Nationalit y	Pearson Correlati on	.045	1	738**	053	045	.058	090	.189	009	.153	- .003	.106	206	134	231	- .375	.264
	Sig. (2- tailed)	.758		<,001	.713	.757	.691	.533	.188	.949	.288	.982	.463	.152	.355	.107	.007	.064
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
A4 Resided in SA	Pearson Correlati on	- .151	738	1	026	.123	103	.035	156	.108	208	- .117	161	.115	.141	.223	.047	- .201
	Sig. (2- tailed)	.294	<,001		.858	.396	.478	.811	.278	.456	.147	.420	.264	.427	.330	.119	.745	.162
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
A5 Professio n	Pearson Correlati on	.486	053	026	1	343 [*]	۔ 279 [•]	142	018	.047	.149	.127	.150	052	059	070	.025	- .188
	Sig. (2- tailed)	<,00 1	.713	.858		.015	.050	.327	.900	.746	.301	.381	.297	.722	.685	.630	.861	.190
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
A6 Income	Pearson Correlati on	- .345	045	.123	343 [*]	1	.193	.163	.196	.362**	.141	- .074	.016	.111	023	.082	- .019	.103
	Sig. (2- tailed)	.014	.757	.396	.015		.180	.259	.173	.010	.328	.609	.911	.444	.872	.572	.895	.477
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
1 Gushe	Pearson Correlati on	- .360	.058	103	279 [*]	.193	1	.274	.197	.259	.336*	- .298	197	.021	.004	042	- .042	.218
	Sig. (2- tailed)	.010	.691	.478	.050	.180		.054	.171	.070	.017	.036	.171	.888	.980	.774	.774	.128
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
2 Morogo	Pearson Correlati on	.006	090	.035	142	.163	.274	1	.324*	.091	.141	- .257	226	.030	129	.241	.040	.009
	Sig. (2- tailed)	.968	.533	.811	.327	.259	.054		.021	.532	.328	.072	.114	.838	.373	.092	.782	.952
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
3 Pigweed	Pearson Correlati on	.071	.189	156	018	.196	.197	.324*	1	.439**	.487**	- .305	252	261	382**	220	- .020	- .245
	Sig. (2- tailed)	.626	.188	.278	.900	.173	.171	.021		.001	<,001	.032	.078	.067	.006	.124	.890	.087
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
4 Spiderpla nt	Pearson Correlati on	- .041	009	.108	.047	.362**	.259	.091	.439**	1	.263	- .339	.012	169	075	161	- .161	.053
	Sig. (2- tailed)	.780	.949	.456	.746	.010	.070	.532	.001		.065	.016	.932	.242	.603	.264	.264	.716
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
5 Cowpea	Pearson Correlati on	- .050	.153	208	.149	.141	.336*	.141	.487**	.263	1	- .153	245	.011	237	236	- .021	- .168

Correlations

	Sig. (2- tailed)	.728	.288	.147	.301	.328	.017	.328	<,001	.065		.288	.086	.942	.098	.099	.883	.242
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
6 Kale	Pearson Correlati on	.016	003	117	.127	074	- .298 [*]	257	305 [*]	339 [*]	153	1	.004	.206	123	.086	.231	.013
	Sig. (2- tailed)	.914	.982	.420	.381	.609	.036	.072	.032	.016	.288		.976	.152	.394	.550	.107	.931
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
7 Tradition al	Pearson Correlati on	.081	.106	161	.150	.016	197	226	252	.012	245	.004	1	080	036	.019	.019	.318
Pumpkin	Sig. (2- tailed)	.574	.463	.264	.297	.911	.171	.114	.078	.932	.086	.976		.579	.805	.895	.895	.024
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
8 Bitter Melon	Pearson Correlati on	- .124	206	.115	052	.111	.021	.030	261	169	.011	.206	080	1	.181	.585**	.123	.027
	Sig. (2- tailed)	.391	.152	.427	.722	.444	.888	.838	.067	.242	.942	.152	.579		.209	<,001	.394	.853
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
9 Cabbage	Pearson Correlati on	- .022	134	.141	059	023	.004	129	382**	075	237	- .123	036	.181	1	.245	.022	.175
	Sig. (2- tailed)	.877	.355	.330	.685	.872	.980	.373	.006	.603	.098	.394	.805	.209		.086	.878	.224
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
10 Tomatoe s	Pearson Correlati on	- .063	231	.223	070	.082	042	.241	220	161	236	.086	.019	.585	.245	1	.375	.109
	Sig. (2- tailed)	.664	.107	.119	.630	.572	.774	.092	.124	.264	.099	.550	.895	<,00 1	.086		.007	.451
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
11 Onion	Pearson Correlati on	.094	375**	.047	.025	019	042	.040	020	161	021	.231	.019	.123	.022	.375**	1	.109
	Sig. (2- tailed)	.514	.007	.745	.861	.895	.774	.782	.890	.264	.883	.107	.895	.394	.878	.007		.451
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
12 Covo	Pearson Correlati on	- .060	.264	201	188	.103	.218	.009	245	.053	168	- .013	.318	.027	.175	.109	.109	1
	Sig. (2- tailed)	.681	.064	.162	.190	.477	.128	.952	.087	.716	.242	.931	.024	.853	.224	.451	.451	
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
13 Rape	Pearson Correlati on	- .050	.080	.016	021	256	019	092	180	028	166	.060	049	052	015	255	- .129	.526
	Sig. (2- tailed)	.734	.585	.916	.884	.076	.898	.528	.216	.847	.254	.683	.736	.724	.916	.077	.377	<,00
	N	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49
14 Spinach	Pearson Correlati on	- .044	386**	.231	.069	144	232	.045	234	256	285	.205	094	.138	.032	.260	.370*	.087
	Sig. (2- tailed)	.769	.007	.118	.647	.334	.117	.766	.113	.083	.052	.168	.528	.356	.829	.077	.010	.561
	N	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47
15 Tsunga	Pearson Correlati on	- .129	.102	073	196	.072	.014	064	.243	.054	.007	.141	055	.166	158	126	.084	.202
	Sig. (2- tailed)	.372	.481	.615	.173	.618	.923	.658	.089	.708	.960	.330	.705	.250	.275	.382	.561	.159
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
16 Lettuce	Pearson Correlati on	.146	.082	063	.069	215	060	.016	008	230	140	- .082	.086	075	.100	102	- .102	.089
	Sig. (2- tailed)	.313	.570	.665	.636	.134	.681	.910	.955	.108	.332	.570	.552	.603	.490	.481	.481	.538
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
17 Maize	Pearson Correlati on	.048	.102	070	.125	089	161	064	263	115	.007	.383	055	.425	.218	.295*	.084	.165
	Sig. (2- tailed)	.742	.481	.630	.387	.537	.263	.658	.065	.425	.960	.006	.705	.002	.129	.038	.561	.251
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
18 Sweet potatoe	Pearson Correlati on	.327	.058	036	.161	.137	.107	.155	.137	.127	.208	- .058	077	053	.229	071	.286*	.218
			.691	.805	.263	.342	.459	.283	.342	.381	.147	.691	.596	.716	.110	.622	.044	.128

	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
19 Carrot	Pearson Correlati on	.199	383**	.124	.066	138	.021	.030	261	293 [*]	121	.028	.038	.053	.318*	.123	.431	.161
	Sig. (2- tailed)	.166	.006	.390	.651	.339	.888	.838	.067	.039	.401	.845	.794	.715	.024	.394	.002	.264
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
20 Beans	Pearson Correlati on	.253	212	.316*	.101	010	060	188	008	025	.079	- .082	012	075	.100	102	- .102	134
	Sig. (2- tailed)	.076	.140	.025	.485	.943	.681	.190	.955	.865	.587	.570	.935	.603	.490	.481	.481	.355
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
21 Soya	Pearson Correlati on	.027	.058	041	.071	143	.107	132	149	.127	098	- .058	.060	053	.229	071	- .071	- .094
	Sig. (2- tailed)	.852	.691	.776	.625	.322	.459	.361	.303	.381	.498	.691	.677	.716	.110	.622	.622	.518
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
22 Wheat	Pearson Correlati on	.027	.058	041	.071	143	.107	132	149	.127	098	- .058	.060	053	.229	071	- .071	- .094
	Sig. (2- tailed)	.852	.691	.776	.625	.322	.459	.361	.303	.381	.498	.691	.677	.716	.110	.622	.622	.518
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
23 Okra	Pearson Correlati on	.027	.058	047	.071	152	190	132	.137	161	098	- .058	.060	053	.229	071	- .071	- .094
	Sig. (2- tailed)	.852	.691	.747	.625	.293	.185	.361	.342	.264	.498	.691	.677	.716	.110	.622	.622	.518
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
24 Beet root	Pearson Correlati on	- .123	.058	041	111	152	.107	.155	149	161	098	- .058	.060	053	.229	.286*	- .071	.218
	Sig. (2- tailed)	.395	.691	.776	.444	.293	.459	.283	.303	.264	.498	.691	.677	.716	.110	.044	.622	.128
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50

Correlations

RapeSpincelTsungeLettureMaizepotoeCarrotBeansSoyaWheatOkraOkraModeA2 Age Correlation-0000-0000-0000-1000-1000-100-100-100-100-000 <th></th> <th>24</th>														24
A2 Age Pearson Correlation -0.50 -0.44 -1.29 .146 .048 .327 .199 .253 .027 .027 .027 .129 Sig (2-tailed) .734 .769 .372 .313 .742 .020 .166 .076 .852 .852 .392 A3 Nationality Pearson Correlation .080 386" .102 .082 .102 .058 .50 50 <td< td=""><td></td><td></td><td>13</td><td>14</td><td>15</td><td>16</td><td>17</td><td>18 Sweet</td><td>19</td><td>20</td><td>21</td><td>22</td><td>23</td><td></td></td<>			13	14	15	16	17	18 Sweet	19	20	21	22	23	
Correlation					0									
N 49 47 50 </td <td>A2 Age</td> <td></td> <td>050</td> <td>044</td> <td>129</td> <td>.146</td> <td>.048</td> <td>.327*</td> <td>.199</td> <td>.253</td> <td>.027</td> <td>.027</td> <td>.027</td> <td>123</td>	A2 Age		050	044	129	.146	.048	.327*	.199	.253	.027	.027	.027	123
A3 Nationality Correlation Pearson Correlation .080 386" .102 .082 .102 585 421 .058 058 058 058 A4 Resided in SA		Sig. (2-tailed)	.734	.769	.372	.313	.742	.020	.166	.076	.852	.852	.852	.395
Correlation		Ν	49	47	50	50	50	50	50	50	50	50	50	50
No494750 <td>A3 Nationality</td> <td></td> <td>.080</td> <td>386**</td> <td>.102</td> <td>.082</td> <td>.102</td> <td>.058</td> <td>383``</td> <td>212</td> <td>.058</td> <td>.058</td> <td>.058</td> <td>.058</td>	A3 Nationality		.080	386**	.102	.082	.102	.058	383``	212	.058	.058	.058	.058
A4 Resided in SA Pearson Correlation .016 .231 073 063 070 036 124 316 041 041 047 041 SA Sig. (2-tailed) 916 118 615 665 630 300 225 776 776 747 776 A5 Profession Pearson Correlation 021 069 173 636 387 615 651 030 011 071 717 776 A5 Profession Pearson Correlation 021 069 173 636 387 623 651 485 625 630 630<		Sig. (2-tailed)	.585	.007	.481	.570	.481	.691	.006	.140	.691	.691	.691	.691
SA Correlation Co		Ν	49	47	50	50	50	50	50	50	50	50	50	50
N 49 47 50 </td <td>A4 Resided in SA</td> <td></td> <td>.016</td> <td>.231</td> <td>073</td> <td>063</td> <td>070</td> <td>036</td> <td>.124</td> <td>.316[*]</td> <td>041</td> <td>041</td> <td>047</td> <td>041</td>	A4 Resided in SA		.016	.231	073	063	070	036	.124	.316 [*]	041	041	047	041
A5 Profession Correlation Pearson Correlation 021 .069 196 .069 .125 .161 .066 .101 .071 .071 .071 .111 A5 Profession Correlation Sig. (2-tailed) .884 .647 .173 .636 .387 .263 .651 .485 .625 <t< td=""><td></td><td>Sig. (2-tailed)</td><td>.916</td><td>.118</td><td>.615</td><td>.665</td><td>.630</td><td>.805</td><td>.390</td><td>.025</td><td>.776</td><td>.776</td><td>.747</td><td>.776</td></t<>		Sig. (2-tailed)	.916	.118	.615	.665	.630	.805	.390	.025	.776	.776	.747	.776
$ \frac{\text{Correlation}}{\text{Sig. (2-tailed)}} = \frac{1}{884} = \frac{1}{647} = \frac{1}{173} = \frac{1}{636} = \frac{1}{887} = \frac{1}{648} = \frac{1}{168} =$		Ν	49	47	50	50	50	50	50	50	50	50	50	50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A5 Profession		021	.069	196	.069	.125	.161	.066	.101	.071	.071	.071	111
A6 Income Correlation Pearson Correlation 256 144 .072 215 089 .137 138 010 .143 143 152 152 Sig. (2-tailed) .076 334 .618 .134 .537 342 339 943 322 322 293 293 I Gushe Pearson Correlation 019 232 014 000 161 107 021 000 137 138 010 143 143 152 152 I Gushe Pearson Correlation 019 232 014 000 161 107 021 000 107		Sig. (2-tailed)	.884	.647	.173	.636	.387	.263	.651	.485	.625	.625	.625	.444
Correlation Correlation <thcorrelation< th=""> <thcorrelation< th=""></thcorrelation<></thcorrelation<>		Ν	49	47	50	50	50	50	50	50	50	50	50	50
N 49 47 50 </td <td>A6 Income</td> <td></td> <td>256</td> <td>144</td> <td>.072</td> <td>215</td> <td>089</td> <td>.137</td> <td>138</td> <td>010</td> <td>143</td> <td>143</td> <td>152</td> <td>152</td>	A6 Income		256	144	.072	215	089	.137	138	010	143	143	152	152
I Gushe Pearson Correlation 019 232 .014 060 161 .107 .021 060 .107 <t< td=""><td></td><td>Sig. (2-tailed)</td><td>.076</td><td>.334</td><td>.618</td><td>.134</td><td>.537</td><td>.342</td><td>.339</td><td>.943</td><td>.322</td><td>.322</td><td>.293</td><td>.293</td></t<>		Sig. (2-tailed)	.076	.334	.618	.134	.537	.342	.339	.943	.322	.322	.293	.293
Correlation		Ν	49	47	50	50	50	50	50	50	50	50	50	50
N 49 47 50 </td <td>1 Gushe</td> <td></td> <td>019</td> <td>232</td> <td>.014</td> <td>060</td> <td>161</td> <td>.107</td> <td>.021</td> <td>060</td> <td>.107</td> <td>.107</td> <td>190</td> <td>.107</td>	1 Gushe		019	232	.014	060	161	.107	.021	060	.107	.107	190	.107
2 Morogo Pearson Correlation 092 .045 064 .016 064 .155 .030 132 132 132 .131 .131		Sig. (2-tailed)	.898	.117	.923	.681	.263	.459	.888	.681	.459	.459	.185	.459
Correlation Sig. (2-tailed) .528 .766 .658 .910 .658 .283 .838 .190 .361 .361 .361 .283		Ν	49	47	50	50	50	50	50	50	50	50	50	50
	2 Morogo		092	.045	064	.016	064	.155	.030	188	132	132	132	.155
N 49 47 50 50 50 50 50 50 50 50 50 50 50 50 50		Sig. (2-tailed)	.528	.766	.658	.910	.658	.283	.838	.190	.361	.361	.361	.283
		Ν	49	47	50	50	50	50	50	50	50	50	50	50

3 Pigweed	Pearson Correlation	180	234	.243	008	263	.137	261	008	149	149	.137	149
	Sig. (2-tailed)	.216 49	.113 47	.089 50	.955 50	.065 50	.342 50	.067 50	.955 50	.303 50	.303 50	.342 50	.303
4 Spiderplant	Pearson Correlation	028	256	.054	230	115	.127	293*	025	.127	.127	161	50 161
	Sig. (2-tailed)	.847 49	.083 47	.708 50	.108 50	.425 50	.381 50	.039 50	.865 50	.381 50	.381 50	.264 50	.264 50
5 Cowpea	Pearson Correlation	166	285	.007	140	.007	.208	121	.079	098	098	098	098
	Sig. (2-tailed)	.254	.052	.960	.332	.960	.147	.401	.587	.498	.498	.498	.498
	N	49	47	50	50	50	50	50	50	50	50	50	50
6 Kale	Pearson Correlation	.060	.205	.141	082	.383**	058	.028	082	058	058	058	058
	Sig. (2-tailed)	.683	.168	.330	.570	.006	.691	.845	.570	.691	.691	.691	.691
7 Traditional	N	49	47	50	50	50	50	50	50	50	50	50	50
7 Traditional Pumpkin	Pearson Correlation	049	094	055	.086	055	077	.038	012	.060	.060	.060	.060
	Sig. (2-tailed)	.736	.528	.705	.552	.705	.596	.794	.935	.677	.677	.677	.677
8 Bitter Melon	Pearson	49 052	47 .138	50 .166	50 075	50 .425 ^{**}	50 053	50 .053	50 075	50 053	50 053	50 053	50 053
	Correlation Sig. (2-tailed)	.724	.356	.250	.603	.002	.716	.715	.603	.716	.716	.716	.716
	N	49	47	50	.003	50	50	50	.003	50	50	50	50
9 Cabbage	Pearson Correlation	015	.032	158	.100	.218	.229	.318 [*]	.100	.229	.229	.229	.229
	Sig. (2-tailed)	.916	.829	.275	.490	.129	.110	.024	.490	.110	.110	.110	.110
	Ν	49	47	50	50	50	50	50	50	50	50	50	50
10 Tomatoes	Pearson Correlation	255	.260	126	102	.295*	071	.123	102	071	071	071	.286 [*]
	Sig. (2-tailed)	.077	.077	.382	.481	.038	.622	.394	.481	.622	.622	.622	.044
	Ν	49	47	50	50	50	50	50	50	50	50	50	50
11 Onion	Pearson Correlation	129	.370`	.084	102	.084	.286 [*]	.431"	102	071	071	071	071
	Sig. (2-tailed)	.377	.010	.561	.481	.561	.044	.002	.481	.622	.622	.622	.622
10 Cava	N	49	47	50	50	50	50	50	50	50	50	50	50
12 Covo	Pearson Correlation	.526"	.087	.202	.089	165	.218	.161	134	094	094	094	.218
	Sig. (2-tailed)	<,001 49	.561 47	.159 50	.538 50	.251	.128 50	.264 50	.355 50	.518 50	.518 50	.518 50	.128
13 Rape	Pearson Correlation	49	.281	.271	.383**	50 137	078	052	111	078	078	.268	50 078-
	Sig. (2-tailed)		.058	.060	.007	.346	.596	.724	.448	.596	.596	.062	.596
	N	49	46	49	49	49	49	49	49	49	49	49	49
14 Spinach	Pearson Correlation	.281	1	.140	174	.041	121	.205	.041	121	121	121	121
	Sig. (2-tailed)	.058		.349	.243	.784	.416	.168	.784	.416	.416	.416	.416
	Ν	46	47	47	47	47	47	47	47	47	47	47	47
15 Tsunga	Pearson Correlation	.271	.140	1	052	064	036	093	052	036	036	036	036
	Sig. (2-tailed)	.060	.349		.722	.660	.803	.519	.722	.803	.803	.803	.803
101	N	49	47	50	50	50	50	50	50	50	50	50	50
16 Lettuce	Pearson Correlation	.383"	174	052	1	052	029	075	042	029	029	.700**	029
	Sig. (2-tailed)	.007	.243	.722	FO	.722	.841	.603	.774	.841	.841	<,001	.841
17 Maize	Pearson	49 137	47 .041	50 064	50 052	50 1	50 036	50 093	50 052	50 .565 ^{**}	50 .565 ^{**}	50 036	50 036
	Correlation				052	1		093	052	.005			
	Sig. (2-tailed)	.346	.784	.660	.122		.803	.519	.122	<,001	<,001	.803	.803
	Ν	49	47	50	50	50	50	50	50	50	50	50	50
18 Sweet potatoe	Pearson Correlation	078	121	036	029	036	1	.387**	029	020	020	020	020
	Sig. (2-tailed)	.596	.416	.803	.841	.803		.006	.841	.888	.888	.888	.888

	N	49	47	50	50	50	50	50	50	50	50	50	50
19 Carrot	Pearson Correlation	052	.205	093	075	093	.387**	1	.239	053	053	053	.387**
	Sig. (2-tailed)	.724	.168	.519	.603	.519	.006		.095	.716	.716	.716	.006
	N	49	47	50	50	50	50	50	50	50	50	50	50
20 Beans	Pearson Correlation	111	.041	052	042	052	029	.239	1	029	029	029	029
	Sig. (2-tailed)	.448	.784	.722	.774	.722	.841	.095		.841	.841	.841	.841
	N	49	47	50	50	50	50	50	50	50	50	50	50
21 Soya	Pearson Correlation	078	121	036	029	.565	020	053	029	1	1.000**	020	020
	Sig. (2-tailed)	.596	.416	.803	.841	<,001	.888	.716	.841		.000	.888	.888
	Ν	49	47	50	50	50	50	50	50	50	50	50	50
22 Wheat	Pearson Correlation	078	121	036	029	.565**	020	053	029	1.000**	1	020	020
	Sig. (2-tailed)	.596	.416	.803	.841	<,001	.888	.716	.841	.000		.888	.888
	Ν	49	47	50	50	50	50	50	50	50	50	50	50
23 Okra	Pearson Correlation	.268	121	036	.700**	036	020	053	029	020	020	1	020
	Sig. (2-tailed)	.062	.416	.803	<,001	.803	.888	.716	.841	.888	.888		.888
	Ν	49	47	50	50	50	50	50	50	50	50	50	50
24 Beet root	Pearson Correlation	078	121	036	029	036	020	.387 ^{**}	029	020	020	020	1
	Sig. (2-tailed)	.596	.416	.803	.841	.803	.888	.006	.841	.888	.888	.888	
	N	49	47	50	50	50	50	50	50	50	50	50	50

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Correlations

Descriptive Statistics

	Mean	Std. Deviation	Ν
B4.1.1 Where did you grow veg garden	40.50	48.252	50
B4.1.2 When	56.78	48.126	50
B4.3.1 Own consumption	38.16	48.115	50
B4.3.2 Economic reasons	37.96	48.274	50
B4.3.3 Personal enjoyment	37.94	48.290	50
B4.3.4 Nutritionalpref	38.00	48.242	50
B4.3.5 Other	37.66	48.510	50
1 Gushe	.64	.485	50
2 Morogo	.46	.503	50
3 Pigweed	.52	.505	50
4 Spiderplant	.56	.501	50
5 Cowpea	.32	.471	50
6 Kale	.14	.351	50
7 Traditional Pumpkin	.56	1.053	50
8 Bitter Melon	.12	.328	50
9 Cabbage	.28	.454	50
10 Tomatoes	.20	.404	50

11 Onion	.20	.404	50
12 Covo	.30	.463	50
13 Rape	.22	.422	49
14 Spinach	.40	.496	47
15 Tsunga	.06	.240	50
16 Lettuce	.04	.198	50
17 Maize	.06	.240	50
18 Sweet potatoe	.02	.141	50
19 Carrot	.12	.328	50
20 Beans	.04	.198	50
21 Soya	.02	.141	50
22 Wheat	.02	.141	50
23 Okra	.02	.141	50
24 Beet root	.02	.141	50

							Cor	relati	ions									
		B4. 1.1 Wh ere																
		did you gro w veg gard en	B4. 1.2 Wh en	B4.3.1 Own consum ption	B4.3.2 Econo mic reaso	B4.3.3 Perso nal enjoy	B4.3.4 Nutrition alpref	B4. 3.5 Oth er	1 Gus he	2 Mor ogo	3 Pigw eed	4 Spider plant	5 Cow	6 Kal e	7 Traditi onal Pumpk in	8 Bitt er Mel on	9 Cabb	10 Tomat
B4.1.1 Where did you grow veg	Pearso n Correla tion	1	.72 5	.958**	ns .959"	.958**	.958**	.95 9 ^{**}	.01 5	.065	.214	.067	pea .140	- .21 2	283 [*]	- .17 8	age 239	oes 306*
garden	Sig. (2- tailed)		<,0 01	<,001	<,001	<,001	<,001	<,0 01	.91 9	.653	.136	.646	.332	.14 0	.046	.21 7	.095	.031
B4.1.2 When	N Pearso n Correla tion	50 .725 	50 1	50 .691 ^{**}	50 .693**	50 .691	50 .691 [⊷]	50 .69 3 ^{**}	50 .09 2	50 .099	50 .362 ^{**}	50 .270	50 .175	50 - .22 9	50 331 [°]	50 - .16 8	50 342 [*]	50 156
	Sig. (2- tailed)	<,00 1		<,001	<,001	<,001	<,001	<,0 01	.52 6	.492	.010	.058	.224	.10 9	.019	.24 5	.015	.279
B4.3.1 Own consump tion	N Pearso n Correla tion	50 .958 	50 .69 1	50 1	50 1.000 [°] .	50 1.000 ^{**}	50 1.000 ^{**}	50 1.0 00	50 .07 3	50 .104	50 .257	50 .113	50 .170	50 - .19 6	262	50 - .16 3	50 304 [*]	50 289 [*]
	Sig. (2- tailed)	<,00 1	<,0 01		<,001	<,001	<,001	<,0 01	.61 7	.473	.072	.435	.239	.17 2	.066	.25 9	.032	.042
B4.3.2 Economi c reasons	N Pearso n Correla tion	50 .959 	50 .69 3	50 1.000	50 1	50 1.000**	50 1.000 ^{**}	50 1.0 00	50 .07 3	50 .102	50 .256	50 .111	50 .167	50 - .19 6	50 263	50 - .16 1	50 301 ⁻	50 287
	Sig. (2- tailed)	<,00 1	<,0 01	<,001		<,001	<,001	<,0 01	.61 6	.479	.073	.445	.245	.17 2	.065	.26 5	.033	.043
B4.3.3 Personal enjoyme nt	N Pearso n Correla tion	50 .958 	50 .69 1	50 1.000 ^{**}	50 1.000 [*] .	50 1	50 1.000 ^{**}	50 1.0 00	50 .07 3	50 .104	50 .255	50 .111	50 .169	50 - .19 5	50 263	50 - .16 0	50 304 [*]	50 287`
	Sig. (2- tailed)	1	<,0 01	<,001	<,001		<,001	<,0 01	.61 4	.474	.074	.443	.242	.17 5	.065	.26 6	.032	.043
B4.3.4 Nutrition alpref	N Pearso n Correla tion	50 .958 	50 .69 1	50 1.000 ^{**}	50 1.000 [°] .	50 1.000	50 1	50 1.0 00	50 .07 3	50 .104	50 .257	50 .112	50 .169	50 - .19 7	50 263	50 - .16 2	50 303 [*]	50 289 [•]

	Sig. (2- tailed)	<,00 1	<,0 01	<,001	<,001	<,001		<,0 01	.61 3	.471	.072	.438	.241	.17 1	.065	.26 0	.032	.042
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
B4.3.5 Other	Pearso n Correla tion	.959 	.69 3	1.000**	1.000 [*] .	1.000**	1.000"	1	.07 2	.104	.257	.113	.170	.19 6	263	.16 3	305	289
	Sig. (2- tailed)	1	<,0 01	<,001	<,001	<,001	<,001		.62 0	.471	.071	.435	.238	.17 2	.065	.25 9	.031	.042
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
1 Gushe	Pearso n Correla tion	.015	.09 2	.073	.073	.073	.073	.07 2	1	.274	.197	.259	.336*	- .29 8⁺	197	.02 1	.004	042
	Sig. (2- tailed)	.919	.52 6	.617	.616	.614	.613	.62 0		.054	.171	.070	.017	.03 6	.171	.88 8	.980	.774
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
2 Morogo	Pearso n Correla tion	.065	.09 9	.104	.102	.104	.104	.10 4	.27 4	1	.324	.091	.141	- .25 7	226	.03 0	129	.241
	Sig. (2- tailed)	.653	.49 2	.473	.479	.474	.471	.47 1	.05 4		.021	.532	.328	.07 2	.114	.83 8	.373	.092
-	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
3 Pigweed	Pearso n Correla tion	.214	.36 2 [⊷]	.257	.256	.255	.257	.25 7	.19 7	.324*	1	.439"	.487**	.30 5`	252	- .26 1	- .382 ^{**}	220
	Sig. (2- tailed)	.136	.01 0	.072	.073	.074	.072	.07 1	.17 1	.021		.001	<,00 1	.03 2	.078	.06 7	.006	.124
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
4 Spiderpla nt	Pearso n Correla tion	.067	.27 0	.113	.111	.111	.112	.11 3	.25 9	.091	.439 [⊷]	1	.263	- .33 9⁺	.012	- .16 9	075	161
	Sig. (2- tailed)	.646	.05 8	.435	.445	.443	.438	.43 5	.07 0	.532	.001		.065	.01 6	.932	.24 2	.603	.264
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
5 Cowpea	Pearso n Correla tion	.140	.17 5	.170	.167	.169	.169	.17 0	.33 6 [°]	.141	.487**	.263	1	.15 3	245	.01 1	237	236
	Sig. (2- tailed)	.332	.22 4	.239	.245	.242	.241	.23 8	.01 7	.328	<,001	.065		.28 8	.086	.94 2	.098	.099
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
6 Kale	Pearso n Correla tion	- .212	- .22 9	196	196	195	197	- .19 6	- .29 8`	- .257	305	339`	153	1	.004	.20 6	123	.086
	Sig. (2- tailed)	.140	.10 9	.172	.172	.175	.171	.17 2	.03 6	.072	.032	.016	.288		.976	.15 2	.394	.550
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
7 Tradition al Pumpkin	Pearso n Correla tion	- .283	- .33 1 [*]	262	263	263	263	- .26 3	- .19 7	- .226	252	.012	245	.00 4	1	- .08 0	036	.019
	Sig. (2- tailed)	.046	.01 9	.066	.065	.065	.065	.06 5	.17 1	.114	.078	.932	.086	.97 6		.57 9	.805	.895
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
8 Bitter Melon	Pearso n Correla tion	- .178	- .16 8	163	161	160	162	- .16 3	.02 1	.030	261	169	.011	.20 6	080	1	.181	.585"
	Sig. (2- tailed)	.217	.24 5	.259	.265	.266	.260	.25 9	.88. 8	.838	.067	.242	.942	.15 2	.579		.209	<,001
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
9 Cabbage	Pearso n Correla	- .239	- .34 2 [*]	304 [*]	301 [*]	304 [*]	303*	- .30 5⁺	.00 4	- .129	- .382**	075	237	- .12 3	036	.18 1	1	.245
	tion		2					5						5				

	Sig. (2- tailed)	.095	.01 5	.032	.033	.032	.032	.03 1	.98 0	.373	.006	.603	.098	.39 4	.805	.20 9		.086
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
10 Tomatoe	Pearso n	- .306	- .15	289 [*]	287 ⁻	287 [*]	289 [*]	- .28	- .04	.241	220	161	236	.08 6	.019	.58 5	.245	1
S	Correla tion	.000	6					9°	2									
	Sig. (2- tailed)	.031	.27 9	.042	.043	.043	.042	.04 2	.77 4	.092	.124	.264	.099	.55 0	.895	<,0 01	.086	
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
11 Onion	Pearso n Correla tion	- .408 	- .16 1	392**	391**	390**	393"	- .39 1	- .04 2	.040	020	161	021	.23 1	.019	.12 3	.022	.375
	Sig. (2- tailed)	.003	.26 3	.005	.005	.005	.005	.00 5	.77 4	.782	.890	.264	.883	.10 7	.895	.39 4	.878	.007
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
12 Covo	Pearso n Correla tion	- .536	- .29 4 [*]	513**	512"	514**	514"	- .51 2	.21 8	.009	245	.053	168	- .01 3	.318 [*]	.02 7	.175	.109
	Sig. (2- tailed)	<,00 1	.03 8	<,001	<,001	<,001	<,001	<,0 01	.12 8	.952	.087	.716	.242	.93 1	.024	.85 3	.224	.451
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
13 Rape	Pearso n Correla tion	- .346	- .20 3	328 [*]	328 [*]	330 [*]	327 [*]	.32 7'	- .01 9	- .092	180	028	166	.06 0	049	.05 2	015	255
	Sig. (2- tailed)	.015	.16 2	.021	.021	.021	.022	.02 2	.89 8	.528	.216	.847	.254	.68 3	.736	.72 4	.916	.077
	Ν	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49	49
14 Spinach	Pearso n Correla tion	- .470 	.30 8 [*]	530 ^{**}	530 ^{**}	528 ^{**}	528 ^{**}	- .52 9 ^{**}	- .23 2	.045	234	256	285	.20 5	094	.13 8	.032	.260
	Sig. (2- tailed)	<,00 1	.03 5	<,001	<,001	<,001	<,001	<,0 01	.11 7	.766	.113	.083	.052	.16 8	.528	.35 6	.829	.077
	N	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47
15 Tsunga	Pearso n Correla tion	- .207	.05 4	199	197	199	199	- .19 8	.01 4	- .064	.243	.054	.007	.14 1	055	.16 6	158	126
	Sig. (2- tailed)	.149	.70 9	.166	.170	.166	.165	.16 8	.92 3	.658	.089	.708	.960	.33 0	.705	.25 0	.275	.382
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
16 Lettuce	Pearso n Correla tion	- .165	- .22 6	159	160	162	158	.16 0	- .06 0	.016	008	230	140	- .08 2	.086	- .07 5	.100	102
	Sig. (2- tailed)	.254	.11 4	.269	.267	.261	.273	.26 7	.68 1	.910	.955	.108	.332	.57 0	.552	.60 3	.490	.481
	Ν	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
17 Maize	Pearso n Correla tion	- .207	- .29 0`	197	197	195	198	- .19 8	- .16 1	- .064	263	115	.007	.38 3"	055	.42 5	.218	.295
	Sig. (2- tailed)	.149	.04 1	.170	.170	.174	.169	.16 8	.26 3	.658	.065	.425	.960	.00 6	.705	.00 2	.129	.038
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
18 Sweet potatoe	Pearso n Correla tion	- .118	- .15 5	111	113	113	114	- .11 2	.10 7	.155	.137	.127	.208	- .05 8	077	- .05 3	.229	071
	Sig. (2- tailed)	.414	.28 2	.441	.433	.433	.432	.43 9	.45 9	.283	.342	.381	.147	.69 1	.596	.71 6	.110	.622
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
19 Carrot		.178	.28 9'	289°	287	288°	289	.28 8 [°]	.02 1	.030	261	293°		.02 8	.038	.05 3	.318 [*]	.123

	Sig. (2- tailed)	.217	.04 2	.042	.043	.043	.042	.04 2	.88. 8	.838	.067	.039	.401	.84 5	.794	.71 5	.024	.394
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
20 Beans	Pearso n Correla tion	.043	- .02 9	161	158	160	160	- .16 0	- .06 0	- .188	008	025	.079	- .08 2	012	- .07 5	.100	102
	Sig. (2- tailed)	.768	.84 1	.263	.274	.267	.266	.26 7	.68 1	.190	.955	.865	.587	.57 0	.935	.60 3	.490	.481
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
21 Soya	Pearso n Correla tion	- .118	- .16 7	111	110	110	111	- .11 2	.10 7	- .132	149	.127	098	- .05 8	.060	- .05 3	.229	071
	Sig. (2- tailed)	.414	.24 6	.441	.445	.445	.444	.43 9	.45 9	.361	.303	.381	.498	.69 1	.677	.71 6	.110	.622
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
22 Wheat	Pearso n Correla tion	- .118	- .16 7	111	110	110	111	- .11 2	.10 7	- .132	149	.127	098	- .05 8	.060	- .05 3	.229	071
	Sig. (2- tailed)	.414	.24 6	.441	.445	.445	.444	.43 9	.45 9	.361	.303	.381	.498	.69 1	.677	.71 6	.110	.622
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
23 Okra	Pearso n Correla tion	- .115	- .15 8	111	110	113	111	- .11 2	.19 0	- .132	.137	161	098	- .05 8	.060	- .05 3	.229	071
	Sig. (2- tailed)	.426	.27 2	.441	.445	.433	.444	.43 9	.18 5	.361	.342	.264	.498	.69 1	.677	.71 6	.110	.622
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
24 Beet root	Pearso n Correla tion	- .118	- .15 8	111	110	110	111	- .11 2	.10 7	.155	149	161	098	- .05 8	.060	- .05 3	.229	.286 [*]
	Sig. (2- tailed)	.414	.27 2	.441	.445	.445	.444	.43 9	.45 9	.283	.303	.264	.498	.69 1	.677	.71 6	.110	.044
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50

						Corre	elations								
									18						24
		11	12	_13	14	_ 15	16	17	Sweet	19	20	21	22	23	Beet
		Onion	Covo	Rape	Spinach	<u> </u>			potatoe		Beans	Soya	Wheat	Okra	root
B4.1.1 Where did you grow	Pearson Correlation	- .408**	- .536**	346*	470**	207	165	207	118	178	.043	118	118	115	118
veg garden	Sig. (2- tailed)	.003	<,001	.015	<,001	.149	.254	.149	.414	.217	.768	.414	.414	.426	.414
	Ν	50	50	49	47	50	50	50	50	50	50	50	50	50	50
B4.1.2 When	Pearson Correlation	161	294*	203	308*	.054	226	290*	155	289*	029	167	167	158	158
	Sig. (2- tailed)	.263	.038	.162	.035	.709	.114	.041	.282	.042	.841	.246	.246	.272	.272
	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50
34.3.1 Own	Pearson Correlation	- .392**	- .513**	328*	530**	199	159	197	111	289*	161	111	111	111	111
	Sig. (2- tailed)	.005	<,001	.021	<,001	.166	.269	.170	.441	.042	.263	.441	.441	.441	.441
	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50
B4.3.2 Economic	Pearson Correlation	۔ .391**	- .512**	328*	530**	197	160	197	113	287*	158	110	110	110	110
reasons	Sig. (2- tailed)	.005	<,001	.021	<,001	.170	.267	.170	.433	.043	.274	.445	.445	.445	.445
	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50
34.3.3 Personal enjoyment	Pearson Correlation	- .390**	- .514**	330*	528**	199	162	195	113	288*	160	110	110	113	110
	Sig. (2- tailed)	.005	<,001	.021	<,001	.166	.261	.174	.433	.043	.267	.445	.445	.433	.445
	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50

B4.3.4 Nutritionalpref	Pearson Correlation	- .393**	- .514**	327*	528**	199	158	198	114	289*	160	111	111	111	111
	Sig. (2- tailed)	.005	<,001	.022	<,001	.165	.273	.169	.432	.042	.266	.444	.444	.444	.444
	Ν	50	50	49	47	50	50	50	50	50	50	50	50	50	50
B4.3.5 Other	Pearson Correlation	۔ 391**	۔ **512	327*	529**	198	160	198	112	288*	160	112	112	112	112
	Sig. (2- tailed)	.005	<,001	.022	<,001	.168	.267	.168	.439	.042	.267	.439	.439	.439	.439
	Ν	50	50	49	47	50	50	50	50	50	50	50	50	50	50
1 Gushe	Pearson Correlation	042	.218	019	232	.014	060	161	.107	.021	060	.107	.107	190	.107
	Sig. (2- tailed)	.774	.128	.898	.117	.923	.681	.263	.459	.888	.681	.459	.459	.185	.459
	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50
2 Morogo	Pearson Correlation	.040	.009	092	.045	064	.016	064	.155	.030	188	132	132	132	.155
	Sig. (2- tailed)	.782	.952	.528	.766	.658	.910	.658	.283	.838	.190	.361	.361	.361	.283
	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50
3 Pigweed	Pearson	020	245	180	234	.243	008	263	.137	261	008	149	149	.137	149
	Correlation Sig. (2- tailed)	.890	.087	.216	.113	.089	.955	.065	.342	.067	.955	.303	.303	.342	.303
	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50
4 Spiderplant	Pearson	161	.053	028	256	.054	230	115	.127	293*	025	.127	.127	161	161
	Correlation Sig. (2-	.264	.716	.847	.083	.708	.108	.425	.381	.039	.865	.381	.381	.264	.264
	tailed)	50	50	49	47	50	50	50	50	50	50	50	50	50	50
5 Cowpea	Pearson	021	168	166	285	.007	140	.007	.208	121	.079	098	098	098	098
	Correlation Sig. (2-	.883	.242	.254	.052	.960	.332	.960	.147	.401	.587	.498	.498	.498	.498
	tailed)	50	50	10	47	50	50	50	50	50	50	50	50	50	
	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50
6 Kale	Pearson Correlation	.231	013	.060	.205	.141	082	.383**	058	.028	082	058	058	058	058
	Sig. (2- tailed)	.107	.931	.683	.168	.330	.570	.006	.691	.845	.570	.691	.691	.691	.691
	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50
7 Traditional Pumpkin	Pearson Correlation	.019	.318*	049	094	055	.086	055	077	.038	012	.060	.060	.060	.060
	Sig. (2- tailed)	.895	.024	.736	.528	.705	.552	.705	.596	.794	.935	.677	.677	.677	.677
	Ν	50	50	49	47	50	50	50	50	50	50	50	50	50	50
8 Bitter Melon	Pearson Correlation	.123	.027	052	.138	.166	075	.425**	053	.053	075	053	053	053	053
	Sig. (2- tailed)	.394	.853	.724	.356	.250	.603	.002	.716	.715	.603	.716	.716	.716	.716
	Ν	50	50	49	47	50	50	50	50	50	50	50	50	50	50
9 Cabbage	Pearson Correlation	.022	.175	015	.032	158	.100	.218	.229	.318*	.100	.229	.229	.229	.229
	Sig. (2- tailed)	.878	.224	.916	.829	.275	.490	.129	.110	.024	.490	.110	.110	.110	.110
	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50
10 Tomatoes	Pearson Correlation	.375**	.109	255	.260	126	102	.295*	071	.123	102	071	071	071	.286
	Sig. (2- tailed)	.007	.451	.077	.077	.382	.481	.038	.622	.394	.481	.622	.622	.622	.044
	Ν	50	50	49	47	50	50	50	50	50	50	50	50	50	50
11 Onion	Pearson Correlation	1	.109	129	.370*	.084	102	.084	.286*	.431**	102	071	071	071	071
	Sig. (2- tailed)		.451	.377	.010	.561	.481	.561	.044	.002	.481	.622	.622	.622	.622
	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50
12 Covo	Pearson Correlation	.109	1	.526**	.087	.202	.089	165	.218	.161	134	094	094	094	.218
	Sig. (2- tailed)	.451		<,001	.561	.159	.538	.251	.128	.264	.355	.518	.518	.518	.128

	Ν	50	50	49	47	50	50	50	50	50	50	50	50	50	50
13 Rape	Pearson Correlation	129	.526**	1	.281	.271	.383**	137	078	052	111	078	078	.268	078
	Sig. (2- tailed)	.377	<,001		.058	.060	.007	.346	.596	.724	.448	.596	.596	.062	.596
	N	49	49	49	46	49	49	49	49	49	49	49	49	49	49
14 Spinach	Pearson Correlation	.370*	.087	.281	1	.140	174	.041	121	.205	.041	121	121	121	121
	Sig. (2- tailed)	.010	.561	.058		.349	.243	.784	.416	.168	.784	.416	.416	.416	.416
	Ν	47	47	46	47	47	47	47	47	47	47	47	47	47	47
15 Tsunga	Pearson Correlation	.084	.202	.271	.140	1	052	064	036	093	052	036	036	036	036
	Sig. (2- tailed)	.561	.159	.060	.349		.722	.660	.803	.519	.722	.803	.803	.803	.803
	Ν	50	50	49	47	50	50	50	50	50	50	50	50	50	50
16 Lettuce	Pearson Correlation	102	.089	.383**	174	052	1	052	029	075	042	029	029	.700**	029
	Sig. (2- tailed)	.481	.538	.007	.243	.722		.722	.841	.603	.774	.841	.841	<,001	.841
	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50
17 Maize	Pearson Correlation	.084	165	137	.041	064	052	1	036	093	052	.565**	.565**	036	036
	Sig. (2- tailed)	.561	.251	.346	.784	.660	.722		.803	.519	.722	<,001	<,001	.803	.803
40.0	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50
18 Sweet potatoe	Pearson Correlation	.286*	.218	078	121	036	029	036	1	.387**	029	020	020	020	020
	Sig. (2- tailed)	.044	.128	.596	.416	.803	.841	.803		.006	.841	.888	.888	.888	.888
19 Carrot	N Pearson	50 .431**	50 .161	49 052	47 .205	50 093	50 075	50 093	50 .387**	50 1	50 .239	50 053	50 053	50 053	50 .387**
19 Carlot	Correlation														
	Sig. (2- tailed)	.002	.264	.724	.168	.519	.603	.519	.006	50	.095	.716	.716	.716	.006
20 Beans	N Pearson	50 102	50 134	49 111	47 .041	50 052	50 042	50 052	50 029	50 .239	50 1	50 029	50 029	50 029	50 029
20 Deans	Correlation Sig. (2-	.481	.355	.448	.041	052	.042	052	.841	.239	1	.841	.841	.841	029
	tailed)	.401	50	.440	.764	.722	50	50	.041	.093	50	50	.041	.041	.041
21 Soya	Pearson	071	094	078	121	036	029	.565**	020	053	029		1.000**	020	020
21 0094	Correlation Sig. (2-	.622	.518	.596	.416	.803	.841	<,001	.888	.716	.841		.000	.888	.888
	tailed)														
00.14/1	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50
22 Wheat	Pearson Correlation	071		078	121	036	029	.565**	020	053		1.000**	1	020	020
	Sig. (2- tailed)	.622	.518	.596	.416	.803	.841	<,001	.888	.716	.841	.000		.888	.888
	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50
23 Okra	Pearson Correlation	071	094	.268	121	036	.700**	036	020	053	029	020	020	1	020
	Sig. (2- tailed)	.622	.518	.062	.416	.803	<,001	.803	.888	.716	.841	.888	.888		.888
	Ν	50	50	49	47	50	50	50	50	50	50	50	50	50	50
24 Beet root	Pearson Correlation	071	.218	078	121	036	029	036	020	.387**	029	020	020	020	1
	Sig. (2- tailed)	.622	.128	.596	.416	.803	.841	.803	.888	.006	.841	.888	.888	.888	
	N	50	50	49	47	50	50	50	50	50	50	50	50	50	50

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Correlations

Descriptive Statistics

	Mean	Std. Deviation	Ν
B4.1.1 Where did you grow veg garden	40.50	48.252	50
B4.1.2 When	56.78	48.126	50
B4.3.1 Own consumption	38.16	48.115	50
B4.3.2 Economic reasons	37.96	48.274	50
B4.3.3 Personal enjoyment	37.94	48.290	50
B4.3.4 Nutritionalpref	38.00	48.242	50
B4.3.5 Other	37.66	48.510	50
4 Spiderplant	.56	.501	50
11 Onion	.20	.404	50
12 Covo	.30	.463	50
13 Rape	.22	.422	49
14 Spinach	.40	.496	47
19 Carrot	.12	.328	50

		Correl	ations			
		B4.1.1 Where did you grow veg garden	B4.1.2 When	B4.3.1 Own consumption	B4.3.2 Economic reasons	B4.3.3 Personal enjoyment
B4.1.1 Where did you grow veg garden	Pearson Correlation	1	.725**	.958**	.959**	.958**
	Sig. (2-tailed)		<,001	<,001	<,001	<,001
	Ν	50	50	50	50	50
B4.1.2 When	Pearson Correlation	.725**	1	.691**	.693**	.691**
	Sig. (2-tailed)	<,001		<,001	<,001	<,001
	Ν	50	50	50	50	50
B4.3.1 Own consumption	Pearson Correlation	.958**	.691**	1	1.000**	1.000**
	Sig. (2-tailed)	<,001	<,001		<,001	<,001
	Ν	50	50	50	50	50
B4.3.2 Economic reasons	Pearson Correlation	.959**	.693**	1.000**	1	1.000**
	Sig. (2-tailed)	<,001	<,001	<,001		<,001
	Ν	50	50	50	50	50
B4.3.3 Personal enjoyment	Pearson Correlation	.958**	.691**	1.000**	1.000**	1
	Sig. (2-tailed)	<,001	<,001	<,001	<,001	
	Ν	50	50	50	50	50
B4.3.4 Nutritionalpref	Pearson Correlation	.958**	.691**	1.000**	1.000**	1.000**
	Sig. (2-tailed)	<,001	<,001	<,001	<,001	<,001
	Ν	50	50	50	50	50
B4.3.5 Other	Pearson Correlation	.959**	.693**	1.000**	1.000**	1.000**
	Sig. (2-tailed)	<,001	<,001	<,001	<,001	<,001
	Ν	50	50	50	50	50
4 Spiderplant	Pearson Correlation	.067	.270	.113	.111	.111

2023/11/30

	Sig. (2-tailed)	.646	.058	.435	.445	.443
	Ν	50	50	50	50	50
11 Onion	Pearson Correlation	408**	161	392**	391**	390**
	Sig. (2-tailed)	.003	.263	.005	.005	.005
	N	50	50	50	50	50
12 Covo	Pearson Correlation	536**	294*	513**	512**	514**
	Sig. (2-tailed)	<,001	.038	<,001	<,001	<,001
	N	50	50	50	50	50
13 Rape	Pearson Correlation	346*	203	328*	328*	330*
	Sig. (2-tailed)	.015	.162	.021	.021	.021
	Ν	49	49	49	49	49
14 Spinach	Pearson Correlation	470**	308*	530**	530**	528**
	Sig. (2-tailed)	<,001	.035	<,001	<,001	<,001
	N	47	47	47	47	47
19 Carrot	Pearson Correlation	178	289*	289*	287*	288*
	Sig. (2-tailed)	.217	.042	.042	.043	.043
	N	50	50	50	50	50

Correlations B4.3.4 Nutritionalpref B4.3.5 Other 4 Spiderplant 11 Onion 12 Covo 13 Rape B4.1.1 Where did you grow veg garden Pearson Correlation .958** .959** .067 -.408** -.536** -.346* Sig. (2-tailed) <,001 <,001 .646 .003 <,001 .015 Ν 50 50 50 49 50 50 B4.1.2 When Pearson Correlation .691** .693** .270 -.161 -.294* -.203 Sig. (2-tailed) <,001 <,001 .058 .263 .038 .162 Ν 50 50 50 50 50 49 B4.3.1 Own consumption **Pearson Correlation** 1.000** 1.000** .113 -.392* -.513** -.328* Sig. (2-tailed) <,001 <.001 .435 .005 <,001 .021 Ν 50 50 50 50 50 49 B4.3.2 Economic reasons Pearson Correlation 1.000** 1.000** .111 -.391** -.512** -.328* <,001 <,001 Sig. (2-tailed) .445 .005 .021 <,001 Ν 50 50 50 50 50 49 B4.3.3 Personal enjoyment **Pearson Correlation** 1.000** 1.000** .111 -.390** -.514** -.330* Sig. (2-tailed) <,001 <,001 .443 .005 <,001 .021 Ν 50 50 50 50 50 49 Pearson Correlation B4.3.4 Nutritionalpref 1.000** .112 -.393* -.514* - 327* 1 Sig. (2-tailed) <,001 .438 .005 .022 <.001 Ν 50 50 49 50 50 50 B4.3.5 Other Pearson Correlation 1.000** 1 .113 -.391** -.512** -.327* Sig. (2-tailed) <,001 .435 .005 <,001 .022 Ν 50 50 50 49 50 50 4 Spiderplant Pearson Correlation -.161 .053 -.028 .112 .113 1 Sig. (2-tailed) .438 .435 .264 .716 .847 Ν 50 50 49 50 50 50 11 Onion Pearson Correlation -.393** -.391** -.161 .109 -.129 1 Sig. (2-tailed) .005 .005 .264 .451 .377 Ν 50 50 50 50 49 50 12 Covo Pearson Correlation -.514** -.512** .053 .109 1 .526* Sig. (2-tailed) <,001 <,001 .716 .451 <,001 Ν 50 50 50 50 50 49 13 Rape **Pearson Correlation** -.327* -.327* -.028 -.129 .526* 1 Sig. (2-tailed) .847 .022 .022 .377 <,001 Ν 49 49 49 49 49 49 14 Spinach Pearson Correlation -.528** -.529** -.256 .370* .087 .281 Sig. (2-tailed) <,001 <,001 .083 .010 .561 .058

	Ν	47	47	47	47	47	46
19 Carrot	Pearson Correlation	289*	288*	293*	.431**	.161	052
	Sig. (2-tailed)	.042	.042	.039	.002	.264	.724
	Ν	50	50	50	50	50	49

	Correlations		
		14 Spinach	19 Carrot
B4.1.1 Where did you grow veg garden	Pearson Correlation	470**	178
	Sig. (2-tailed)	<,001	.217
	Ν	47	50
B4.1.2 When	Pearson Correlation	308*	289*
	Sig. (2-tailed)	.035	.042
	Ν	47	50
B4.3.1 Own consumption	Pearson Correlation	530**	289*
	Sig. (2-tailed)	<,001	.042
	Ν	47	50
B4.3.2 Economic reasons	Pearson Correlation	530**	287*
	Sig. (2-tailed)	<,001	.043
	Ν	47	50
B4.3.3 Personal enjoyment	Pearson Correlation	528**	288*
	Sig. (2-tailed)	<,001	.043
	N	47	50
B4.3.4 Nutritionalpref	Pearson Correlation	528**	289*
	Sig. (2-tailed)	<,001	.042
	N	47	50
B4.3.5 Other	Pearson Correlation	529**	288*
	Sig. (2-tailed)	<,001	.042
	N	47	50
4 Spiderplant	Pearson Correlation	256	293 [*]
	Sig. (2-tailed)	.083	.039
	N	47	50
11 Onion	Pearson Correlation	.370*	.431**
	Sig. (2-tailed)	.010	.002
	N	47	50
12 Covo	Pearson Correlation	.087	.161
	Sig. (2-tailed)	.561	.264
	N	47	50
13 Rape	Pearson Correlation	.281	052
	Sig. (2-tailed)	.058	.724
	N	46	49
14 Spinach	Pearson Correlation	1	.205
	Sig. (2-tailed)		.168
	N	47	47
19 Carrot	Pearson Correlation	.205	1
	Sig. (2-tailed)	.168	
	Ν	47	50

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Correlations

Descriptive Statistics Std. Deviation Mean Ν C1.1 Do you eat veg 50 1.00 .000 C1.2 Source 1.76 1.153 50 C2.1 TLV pref .98 .141 50 C2.2 Mainstream veg pref 4.78 19.431 50 C3.1 Taste .404 50 .80 C3.2 Availability and Cost .82 .388 50 C3.3 Easy Prep .90 .303 50 C3.4 Medicinal or Nutritional Value .80 .404 50 C3.5 Childhood memories .80 .404 50 C3.6 Culture .80 .404 50 C3.7 Other .02 .141 50 1 Gushe .64 .485 50 2 Morogo .46 .503 50 3 Pigweed 50 .52 .505 4 Spiderplant 50 .56 .501 5 Cowpea .32 .471 50 6 Kale .14 .351 50 .56 50 7 Traditional Pumpkin 1.053 8 Bitter Melon .12 .328 50 12 Covo .30 .463 50 13 Rape .22 .422 49 15 Tsunga .06 .240 50 23 Okra .02 .141 50

						Correla	ations						
		C1.1 Do you eat veg	C1.2 Source	C2.1 TLV pref	C2.2 Mainstream veg pref	C3.1 Taste	C3.2 Availability and Cost	C3.3 Easy Prep	C3.4 Medicinal or Nutritional Value	C3.5 Childhood memories	C3.6 Culture	C3.7 Other	1 Gushe
C1.1 Do you	Pearson	,a	a	a	a	a	a	a	a	a		a	_a
eat veg	Correlation												
	Sig. (2- tailed)			-	-	-			-				
	Ν	50	50	50	50	50	50	50	50	50	50	50	50
C1.2 Source	Pearson Correlation	.a	1	- .280*	.044	.114	.175	.047	061	193	018	095	085
	Sig. (2- tailed)	•		.049	.761	.431	.224	.747	.672	.180	.904	.511	.559
	Ν	50	50	50	50	50	50	50	50	50	50	50	50
C2.1 TLV pref	Pearson Correlation	. ^a	280*	1	.028	.286*	067	048	.286*	.286*	071	.020	107
	Sig. (2- tailed)		.049		.847	.044	.644	.743	.044	.044	.622	.888	.459
	Ν	50	50	50	50	50	50	50	50	50	50	50	50
C2.2 Mainstream	Pearson Correlation	a	.044	.028	1	.101	.092	.069	.101	149	406**	028	054
veg pref	Sig. (2- tailed)		.761	.847		.486	.525	.634	.486	.303	.003	.847	.709
	N	50	50	50	50	50	50	50	50	50	50	50	50
C3.1 Taste	Pearson Correlation	.a	.114	.286*	.101	1	.416**	.167	.375**	.125	.000	.071	063
	Sig. (2- tailed)		.431	.044	.486		.003	.247	.007	.387	1.000	Other .a 50 095 .511 50 .020 .888 50 028 .847 .847 50	.666
	Ν	50	50	50	50	50	50	50	50	50	50	8 095 4 .511 0 50 1 .020 2 .888 0 50 3 .847 0 50 0 .071 0 .071 0 .071 0 .622 0 50	50
	Pearson Correlation	.a	.175	067	.092	.416**	1	.538**	.416**	.286*	.286*	Other 0 500 0 500 0 500 0 501 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 500 0 600	.082

C3.2 Availability	Sig. (2- tailed)	•	.224	.644	.525	.003		<,001	.003	.044	.044	.644	.569
and Cost	N	50	50	50	50	50	50	50	50	50	50	50	50
C3.3 Easy Prep	Pearson Correlation	.a	.047	048	.069	.167	.538**	1	.333*	.500**	.333*	.048	.306*
	Sig. (2- tailed)	•	.747	.743	.634	.247	<,001		.018	<,001	.018	.743	.031
	N	50	50	50	50	50	50	50	50	50	50	50	50
C3.4 Medicinal or	Pearson Correlation	.ª	061	.286*	.101	.375**	.416**	.333*	1	.375**	.000	.071	.250
Nutritional Value	Sig. (2- tailed)		.672	.044	.486	.007	.003	.018		.007	1.000	.622	.080
	N	50	50	50	50	50	50	50	50	50	50	50	50
C3.5 Childhood	Pearson Correlation	.a	193	.286*	149	.125	.286*	.500**	.375**	1	.625**	.071	.250
memories	Sig. (2- tailed)		.180	.044	.303	.387	.044	<,001	.007		<,001	.622	.080
	Ν	50	50	50	50	50	50	50	50	50	50	50	50
C3.6 Culture	Pearson Correlation	.a	018	071	406**	.000	.286*	.333*	.000	.625**	1	.071	.146
	Sig. (2- tailed)		.904	.622	.003	1.000	.044	.018	1.000	<,001		.622	.312
	Ν	50	50	50	50	50	50	50	50	50	50	50	50
C3.7 Other	Pearson Correlation	.a	095	.020	028	.071	.067	.048	.071	.071	.071	1	.107
	Sig. (2- tailed)		.511	.888	.847	.622	.644	.743	.622	.622	.622		.459
	Ν	50	50	50	50	50	50	50	50	50	50	50	50
1 Gushe	Pearson Correlation	. ^a	085	107	054	063	.082	.306*	.250	.250	.146	.107	1
	Sig. (2- tailed)		.559	.459	.709	.666	.569	.031	.080	.080	.312	.459	
	Ν	50	50	50	50	50	50	50	50	50	50	50	50
2 Morogo	Pearson Correlation	.ª	052	155	.019	040	.224	.174	.161	.161	.261	.155	.274
	Sig. (2- tailed)	•	.720	.283	.896	.782	.119	.227	.265	.265	.067	.283	.054
	Ν	50	50	50	50	50	50	50	50	50	50	50	50
3 Pigweed	Pearson Correlation	.a	272	.149	009	080	.071	.080	.220	.220	.120	.137	.197
	Sig. (2- tailed)	•	.056	.303	.951	.580	.625	.580	.124	.124	.406	.342	.171
	Ν	50	50	50	50	50	50	50	50	50	50	50	50
4 Spiderplant	Correlation	.ª		127	.178	141	.109	.376**	.060	040	040	.127	.259
	Sig. (2- tailed)	•	.295	.381	.215	.329	.451	.007	.677	.781	.781	.381	.070
	N	50	50	50	50	50	50	50	50	50	50	50	50
5 Cowpea	Pearson Correlation	.ª	194	.098	.077	.021	.098	.086	.343*	.129	.021	098	.336*
	Sig. (2- tailed)	•	.177	.498	.595	.883	.497	.554	.015	.373	.883	.498	.017
0.14	N	50	50	50	50	50	50	50	50	50	50	50	50
6 Kale	Pearson Correlation	.ª	.135	.058	085	.058	.189	.134	086	.058	.202	058	298*
	Sig. (2- tailed)		.349	.691	.556	.691	.189	.352	.550	.691	.160	.691	.036
	N	50	50	50	50	50	50	50	50	50	50	50	50
7 Traditional Pumpkin	Pearson Correlation	.a	.029	.077	.578**	.125	.052	.051	.029	.077	259	077	197
	Sig. (2- tailed)		.842	.596	<,001	.388	.720	.724	.843	.596	.069	.596	.171
0.014	N	50	50	50	50	50	50	50	50	50	50	50	50
8 Bitter Melon	Pearson Correlation	.a	.239	.053	076	123	.013	.123	.031	.185	.185	053	.021
	Sig. (2- tailed)		.094	.716	.601	.394	.930	.394	.832	.199	.199	.716	.888
	Ν	50	50	50	50	50	50	50	50	50	50	50	50

12 Covo	Pearson Correlation	.a	.138	218	.312*	.109	.080	.218	.000	109	.000	094	.218
	Sig. (2- tailed)	•	.340	.128	.028	.451	.583	.128	1.000	.451	1.000	.518	.128
	N	50	50	50	50	50	50	50	50	50	50	50	50
13 Rape	Pearson Correlation	.a	.105	268	114	092	124	142	092	456**	092	078	019
	Sig. (2- tailed)		.472	.062	.434	.531	.397	.331	.531	<,001	.531	.596	.898
	N	49	49	49	49	49	49	49	49	49	49	49	49
15 Tsunga	Pearson Correlation	.a	021	.036	050	.126	.118	.084	084	.126	.126	036	.014
	Sig. (2- tailed)		.887	.803	.732	.382	.413	.561	.561	.382	.382	.803	.923
	N	50	50	50	50	50	50	50	50	50	50	50	50
23 Okra	Pearson Correlation	.a	095	.020	028	286*	305*	429**	.071	286*	286*	020	190
	Sig. (2- tailed)		.511	.888	.847	.044	.031	.002	.622	.044	.044	.888	.185
	N	50	50	50	50	50	50	50	50	50	50	50	50

Correlations 2 3 4 5 6 7 Traditional 8 Bitter 12 13 15 23 Morogo Pigweed Spiderplant Cowpea Kale Pumpkin Melon Covo Rape Tsunga Okra C1.1 Do you eat .a .a .a .a .a .a a .a a Pearson a a veg Correlation Sig. (2-tailed) Ν 50 50 50 50 50 50 50 50 49 50 50 C1.2 Source Pearson -.052 -.272 -.151 -.194 .135 .029 .239 .138 .105 -.021 -.095 Correlation Sig. (2-tailed) .720 .056 .295 .177 .349 .842 .094 .340 .472 .887 .511 50 50 Ν 50 50 50 50 50 50 50 49 50 C2.1 TLV pref .058 Pearson -.155 .149 -.127 .098 .077 .053 -.218 -.268 .036 .020 Correlation Sig. (2-tailed) .283 .303 .381 .498 .691 .596 .716 .128 .062 .803 .888 Ν 50 50 50 50 50 50 50 50 49 50 50 C2.2 Mainstream Pearson .019 -.009 .178 .077 -.085 .578* -.076 .312* -.114 -.050 -.028 Correlation veg pref Sig. (2-tailed) .896 .951 .215 .595 .556 <,001 .601 .028 .434 .732 .847 Ν 50 50 50 50 50 50 50 50 49 50 50 C3.1 Taste Pearson -.040 -.080 -.141 .021 .058 .125 -.123 .109 -.092 .126 -.286 Correlation Sig. (2-tailed) .782 .580 .329 .883 .691 388 .394 .451 .531 .382 044 50 Ν 50 50 50 50 50 50 50 49 50 50 C3.2 Availability Pearson .080 .224 .071 .109 .098 .189 .052 .013 -.124 .118 -.305 and Cost Correlation Sig. (2-tailed) .119 .625 .451 .497 .189 .720 .930 .583 .397 .413 .031 Ν 50 50 50 50 50 50 50 50 49 50 50 C3.3 Easy Prep Pearson .174 .080 .376* .086 .134 .051 .123 .218 -.142 .084 _ Correlation .429* Sig. (2-tailed) .227 .580 .007 .554 .352 .724 .394 .128 .331 .561 .002 Ν 50 50 50 50 50 50 50 50 49 50 50 C3.4 Medicinal or Pearson .161 .220 .060 .343* -.086 .029 .031 .000 -.092 -.084 .071 Nutritional Value Correlation Sig. (2-tailed) .265 .124 .677 .015 .550 .843 .832 1.000 .531 .561 .622 50 49 50 50 Ν 50 50 50 50 50 50 50 C3.5 Childhood Pearson .161 .220 -.040 .129 .058 .077 .185 -.109 -.456* .126 -.286* memories Correlation .781 Sig. (2-tailed) .265 .124 .373 .691 .596 .199 .451 <,001 .382 .044 50 Ν 50 50 50 50 50 50 50 50 49 50 C3.6 Culture Pearson .261 .120 -.040 .021 .202 -.259 .185 .000 -.092 .126 -.286 Correlation Sig. (2-tailed) .067 .406 .781 .883 .160 .069 .199 1.000 .531 .382 .044 Ν 50 50 50 50 50 50 50 50 49 50 50 C3.7 Other Pearson .155 .137 .127 -.098 -.058 -.077 -.053 -.094 -.078 -.036 -.020 Correlation Sig. (2-tailed) .283 .342 .381 .498 .691 .596 .716 .596 .518 .803 .888

	Ν	50	50	50	50	50	50	50	50	49	50	50
1 Gushe	Pearson Correlation	.274	.197	.259	.336*	- .298*	197	.021	.218	019	.014	19
	Sig. (2-tailed)	.054	.171	.070	.017	.036	.171	.888	.128	.898	.923	.18
	N	50	50	50	50	50	50	50	50	49	50	5
2 Morogo	Pearson Correlation	1	.324*	.091	.141	257	226	.030	.009	092	064	13
	Sig. (2-tailed)		.021	.532	.328	.072	.114	.838	.952	.528	.658	.36′
	Ν	50	50	50	50	50	50	50	50	49	50	50
3 Pigweed	Pearson Correlation	.324*	1	.439**	.487**	- .305*	252	261	245	180	.243	.137
	Sig. (2-tailed)	.021		.001	<,001	.032	.078	.067	.087	.216	.089	.342
	Ν	50	50	50	50	50	50	50	50	49	50	50
4 Spiderplant	Pearson Correlation	.091	.439**	1	.263	- .339*	.012	169	.053	028	.054	16′
	Sig. (2-tailed)	.532	.001		.065	.016	.932	.242	.716	.847	.708	.264
	N	50	50	50	50	50	50	50	50	49	50	50
5 Cowpea	Pearson Correlation	.141	.487**	.263	1		245	.011	168	166	.007	098
	Sig. (2-tailed)	.328	<,001	.065		.288	.086	.942	.242	.254	.960	.498
	N	50	50	50	50	50	50	50	50	49	50	50
6 Kale	Pearson Correlation	257	305*	339*	153	1	.004	.206	013	.060	.141	058
	Sig. (2-tailed)	.072	.032	.016	.288		.976	.152	.931	.683	.330	.691
	N	50	50	50	50	50	50	50	50	49	50	50
7 Traditional Pumpkin	Pearson Correlation	226	252	.012	245	.004	1	080	.318*	049	055	.060
	Sig. (2-tailed)	.114	.078	.932	.086	.976		.579	.024	.736	.705	.677
	N	50	50	50	50	50	50	50	50	49	50	50
8 Bitter Melon	Pearson Correlation	.030	261	169	.011	.206	080	1	.027	052	.166	053
	Sig. (2-tailed)	.838	.067	.242	.942	.152	.579		.853	.724	.250	.716
40.0	N	50	50	50	50	50	50	50	50	49	50	50
12 Covo	Pearson Correlation	.009	245	.053		013	.318*	.027	1	.526**	.202	094
	Sig. (2-tailed)	.952	.087	.716	.242	.931	.024	.853		<,001	.159	.518
12 Pape	N Pearson	50	50 180	50	50 166	50	50	50 052	50 .526**	49 1	271	269
13 Rape	Correlation	092	180	028		.060	049			1	.271	.268
	Sig. (2-tailed)	.528	.216	.847	.254	.683	.736	.724			.060	.062
45 Tours	N	49	49	49	49	49	49	49	49	49	49	49
15 Tsunga	Pearson Correlation	064	.243	.054	.007	.141	055	.166	.202	.271	1	036
	Sig. (2-tailed)	.658	.089	.708	.960	.330	.705	.250	.159	.060		.803
00.01	N	50	50	50	50	50	50	50	50	49	50	50
23 Okra	Pearson Correlation	132	.137	161		058	.060	053	094	.268	036	
	Sig. (2-tailed)	.361	.342	.264	.498	.691	.677	.716	.518	.062	.803	
	N	50	50	50	50	50	50	50	50	49	50	50

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

a. Cannot be computed because at least one of the variables is constant.

Correlations

D	escriptive Statistics		
	Mean	Std. Deviation	N
C1.2 Source	1.76	1.153	50
C2.1 TLV pref	.98	.141	50
C2.2 Mainstream veg pref	4.78	19.431	50
C3.1 Taste	.80	.404	50
C3.2 Availability and Cost	.82	.388	50
C3.3 Easy Prep	.90	.303	50
C3.4 Medicinal or Nutritional Value	.80	.404	50
C3.5 Childhood memories	.80	.404	50
C3.6 Culture	.80	.404	50
C3.7 Other	.02	.141	50
9 Cabbage	.28	.454	50
10 Tomatoes	.20	.404	50
11 Onion	.20	.404	50
14 Spinach	.40	.496	47
16 Lettuce	.04	.198	50
17 Maize	.06	.240	50
18 Sweet potatoe	.02	.141	50
19 Carrot	.12	.328	50
20 Beans	.04	.198	50
21 Soya	.02	.141	50
22 Wheat	.02	.141	50
24 Beet root	.02	.141	50

Correlations

								C3.4				
			C2.1	C2.2		C3.2	C3.3	Medicinal or	C3.5			
		C1.2	TLV	Mainstream	C3.1	Availability	Easy	Nutritional	Childhood	C3.6	C3.7	9
		Source	pref	veg pref	Taste	and Cost	Prep	Value	memories	Culture	Other	Cabbage
C1.2 Source	Pearson Correlation	1	280*	.044	.114	.175	.047	061	193	018	095	.326*
	Sig. (2- tailed)		.049	.761	.431	.224	.747	.672	.180	.904	.511	.021
	Ν	50	50	50	50	50	50	50	50	50	50	50
C2.1 TLV pref	Pearson Correlation	280*	1	.028	.286*	067	048	.286*	.286*	071	.020	229
	Sig. (2- tailed)	.049		.847	.044	.644	.743	.044	.044	.622	.888	.110
	Ν	50	50	50	50	50	50	50	50	50	50	50
C2.2 Mainstream	Pearson Correlation	.044	.028	1	.101	.092	.069	.101	149	406**	028	.102
veg pref	Sig. (2- tailed)	.761	.847		.486	.525	.634	.486	.303	.003	.847	.481
	Ν	50	50	50	50	50	50	50	50	50	50	50
C3.1 Taste	Pearson Correlation	.114	.286*	.101	1	.416**	.167	.375**	.125	.000	.071	022
	Sig. (2- tailed)	.431	.044	.486		.003	.247	.007	.387	1.000	.622	.878
	Ν	50	50	50	50	50	50	50	50	50	50	50
	Pearson Correlation	.175	067	.092	.416**	1	.538**	.416**	.286*	.286*	.067	056

C3.2 Availability	Sig. (2- tailed)	.224	.644	.525	.003		<,001	.003	.044	.044	.644	.701
and Cost	N	50	50	50	50	50	50	50	50	50	50	50
C3.3 Easy Prep	Pearson Correlation	.047	048	.069	.167	.538**	1	.333*	.500**	.333*	.048	089
	Sig. (2- tailed)	.747	.743	.634	.247	<,001		.018	<,001	.018	.743	.538
	N	50	50	50	50	50	50	50	50	50	50	50
C3.4 Medicinal or	Pearson Correlation	061	.286*	.101	.375**	.416**	.333*	1	.375**	.000	.071	134
Nutritional Value	Sig. (2- tailed)	.672	.044	.486	.007	.003	.018		.007	1.000	.622	.355
	N	50	50	50	50	50	50	50	50	50	50	50
C3.5 Childhood	Pearson Correlation	193	.286*	149	.125	.286*	.500**	.375**	1	.625**	.071	356*
memories	Sig. (2- tailed)	.180	.044	.303	.387	.044	<,001	.007		<,001	.622	.011
	N	50	50	50	50	50	50	50	50	50	50	50
C3.6 Culture	Pearson Correlation	018	071	406**	.000	.286*	.333*	.000	.625**	1	.071	245
	Sig. (2- tailed)	.904	.622	.003	1.000	.044	.018	1.000	<,001		.622	.086
	Ν	50	50	50	50	50	50	50	50	50	50	50
C3.7 Other	Pearson Correlation	095	.020	028	.071	.067	.048	.071	.071	.071	1	089
	Sig. (2- tailed)	.511	.888	.847	.622	.644	.743	.622	.622	.622		.538
	Ν	50	50	50	50	50	50	50	50	50	50	50
9 Cabbage	Pearson Correlation	.326*	229	.102	022	056	089	134	356*	245	089	1
	Sig. (2- tailed)	.021	.110	.481	.878	.701	.538	.355	.011	.086	.538	
	N	50	50	50	50	50	50	50	50	50	50	50
10 Tomatoes	Pearson Correlation	.193	.071	101	250	026	.167	.000	.250	.250	071	.245
	Sig. (2- tailed)	.180	.622	.486	.080	.858	.247	1.000	.080	.080	.622	.086
	N	50	50	50	50	50	50	50	50	50	50	50
11 Onion	Pearson Correlation	.280*	.071	.154	125	.104	.167	.000	.125	.125	071	.022
	Sig. (2- tailed)	.049	.622	.286	.387	.472	.247	1.000	.387	.387	.622	.878
44.0 : 1	N	50	50	50	50	50	50	50	50	50	50	50
14 Spinach	Pearson Correlation	.547**	179	172	.070	040	138	101	207	.005	.c	.032
	Sig. (2- tailed)	<,001	.229	.246	.639	.790	.356	.498	.162	.976	•	.829
401	N	47	47	47	47	47	47	47	47	47	47	47
16 Lettuce	Pearson Correlation	136	.029	040	153	436**	272	.102	153	153	029	.100
	Sig. (2- tailed)	.347	.841	.782	.288	.002	.056	.481	.288	.288	.841	.490
47.14-1	N	50	50	50	50	50	50	50	50	50	50	50
17 Maize	Pearson Correlation	.053	.036	054	084	.118	.084	.126	084	084	036	.218
	Sig. (2- tailed)	.714	.803	.709	.561	.413	.561	.382	.561	.561	.803	.129
10 Sweet	N	50	50	50	50	50	50	50	50 286*	50 296*	50	50
18 Sweet potatoe	Pearson Correlation	.155	.020	.700**	.071	.067	.048	.071	286*	286*	020	.229
	Sig. (2- tailed) N	.282	.888 50	<,001	.622 50	.644	.743 50	.622	.044	.044	.888	.110
19 Carrot	Pearson	.347*	.053	.241	.185	.013	082	.031	123	123	50 053	50 .318*
19 Carrol	Correlation Sig. (2-	.347	.053	.241	.185	.930	082	.031	123	.123	.716	.318
	tailed)											
	IN	50	50	50	50	50	50	50	50	50	50	50

20 Beans	Pearson Correlation	.132	.029	040	.102	170	272	153	153	153	029	.100
	Sig. (2- tailed)	.360	.841	.782	.481	.238	.056	.288	.288	.288	.841	.490
	Ν	50	50	50	50	50	50	50	50	50	50	50
21 Soya	Pearson Correlation	095	.020	028	.071	.067	.048	.071	286*	286 [*]	020	.229
	Sig. (2- tailed)	.511	.888	.847	.622	.644	.743	.622	.044	.044	.888	.110
	Ν	50	50	50	50	50	50	50	50	50	50	50
22 Wheat	Pearson Correlation	095	.020	028	.071	.067	.048	.071	286*	286*	020	.229
	Sig. (2- tailed)	.511	.888	.847	.622	.644	.743	.622	.044	.044	.888	.110
	Ν	50	50	50	50	50	50	50	50	50	50	50
24 Beet root	Pearson Correlation	095	.020	028	.071	.067	.048	.071	.071	.071	020	.229
	Sig. (2- tailed)	.511	.888	.847	.622	.644	.743	.622	.622	.622	.888	.110
	N	50	50	50	50	50	50	50	50	50	50	50

Correlations 10 11 14 16 17 18 Sweet 19 20 21 22 24 Beet Soya Tomatoes Onion Spinach Maize Carrot Beans Wheat Lettuce potatoe root C1.2 Source Pearson .193 .280 .547 -.136 .053 .155 .347 .132 -.095 -.095 -.095 Correlation Sig. (2-tailed) .180 .049 <,001 .347 .714 .282 .013 .360 .511 .511 .511 N 50 50 47 50 50 50 50 50 50 50 50 C2.1 TLV pref Pearson .071 .071 -.179 .029 .036 .020 .053 .029 .020 .020 .020 Correlation Sig. (2-tailed) .622 .622 .229 .841 .803 .888 .716 .841 .888 .888 .888 50 Ν 50 47 50 50 50 50 50 50 50 50 -.028 C2.2 Mainstream Pearson -.101 .154 -.172 -.040 -.054 .700* .241 -.040 -.028 -.028 veg pref Correlation Sig. (2-tailed) .486 .286 .246 .782 .709 <,001 .092 .782 .847 .847 .847 Ν 50 50 47 50 50 50 50 50 50 50 50 Pearson C3.1 Taste -.250 -.125 .070 -.153 -.084 .071 .185 .102 .071 .071 .071 Correlation Sig. (2-tailed) .080 .387 .639 .288 .561 .622 .199 .481 .622 .622 .622 Ν 50 50 47 50 50 50 50 50 50 50 50 C3.2 Availability Pearson -.026 .104 -.040 -.436* .118 .067 .013 -.170 .067 .067 .067 and Cost Correlation Sig. (2-tailed) .858 .472 .790 .002 .413 .644 .930 238 .644 .644 .644 Ν 50 50 47 50 50 50 50 50 50 50 50 .048 -.082 .048 C3.3 Easy Prep Pearson .167 .167 -.138 -.272 .084 -.272 .048 .048 Correlation Sig. (2-tailed) .247 .247 .356 .056 .561 .743 .571 .056 .743 .743 .743 Ν 50 50 47 50 50 50 50 50 50 50 50 C3.4 Medicinal or Pearson .000 .000 -.101 .102 .126 .071 .031 -.153 .071 .071 .071 Nutritional Value Correlation 1.000 1.000 .498 .481 .382 .622 .832 .288 .622 .622 .622 Sig. (2-tailed) Ν 50 50 47 50 50 50 50 50 50 50 50 C3.5 Childhood Pearson .250 .125 -.207 -.153 -.084 -.286 -.123 -.153 -.286 -.286 .071 Correlation memories Sig. (2-tailed) .080 .387 .162 .288 .561 .044 .394 .288 .044 .044 .622 50 50 Ν 50 50 47 50 50 50 50 50 50 C3.6 Culture Pearson .250 .125 .005 -.153 -.084 -.286* -.123 -.153 -.286 -.286* .071 Correlation Sig. (2-tailed) .080 .387 .976 .288 .561 .044 .394 .288 .044 .044 .622 Ν 50 50 47 50 50 50 50 50 50 50 50 C3.7 Other Pearson -.071 -.071 -.029 -.036 -.020 -.053 -.029 -.020 -.020 -.020 .c Correlation Sig. (2-tailed) .622 .622 .841 .803 .888 .716 .841 .888 .888 .888 50 50 47 50 50 50 50 50 50 50 50 Ν 9 Cabbage Pearson .245 .022 .032 .100 .218 .229 .318 .100 .229 .229 .229 Correlation .086 .878 .829 .490 .110 .024 .490 .110 .110 Sig. (2-tailed) .129 .110

	Ν	50	50	47	50	50	50	50	50	50	50	50
10 Tomatoes	Pearson Correlation	1	.375**	.260	102	.295*	071	.123	102	071	071	.286*
	Sig. (2-tailed)		.007	.077	.481	.038	.622	.394	.481	.622	.622	.044
	Ν	50	50	47	50	50	50	50	50	50	50	50
11 Onion	Pearson Correlation	.375**	1	.370*	102	.084	.286*	.431**	102	071	071	071
	Sig. (2-tailed)	.007		.010	.481	.561	.044	.002	.481	.622	.622	.622
	Ν	50	50	47	50	50	50	50	50	50	50	50
14 Spinach	Pearson Correlation	.260	.370*	1	174	.041	121	.205	.041	121	121	121
	Sig. (2-tailed)	.077	.010		.243	.784	.416	.168	.784	.416	.416	.416
	N	47	47	47	47	47	47	47	47	47	47	47
16 Lettuce	Pearson Correlation	102	102	174	1	052	029	075	042	029	029	029
	Sig. (2-tailed)	.481	.481	.243		.722	.841	.603	.774	.841	.841	.841
	N	50	50	47	50	50	50	50	50	50	50	50
17 Maize	Pearson Correlation	.295*	.084	.041	052	1	036	093	052	.565**	.565**	036
	Sig. (2-tailed)	.038	.561	.784	.722		.803	.519	.722	<,001	<,001	.803
	Ν	50	50	47	50	50	50	50	50	50	50	50
18 Sweet potatoe	Pearson Correlation	071	.286*	121	029	036	1	.387**	029	020	020	020
	Sig. (2-tailed)	.622	.044	.416	.841	.803		.006	.841	.888	.888	.888
	Ν	50	50	47	50	50	50	50	50	50	50	50
19 Carrot	Pearson Correlation	.123	.431**	.205	075	093	.387**	1	.239	053	053	.387**
	Sig. (2-tailed)	.394	.002	.168	.603	.519	.006		.095	.716	.716	.006
	Ν	50	50	47	50	50	50	50	50	50	50	50
20 Beans	Pearson Correlation	102	102	.041	042	052	029	.239	1	029	029	029
	Sig. (2-tailed)	.481	.481	.784	.774	.722	.841	.095		.841	.841	.841
	Ν	50	50	47	50	50	50	50	50	50	50	50
21 Soya	Pearson Correlation	071	071	121	029	.565**	020	053	029	1	1.000**	020
	Sig. (2-tailed)	.622	.622	.416	.841	<,001	.888	.716	.841		.000	.888
	Ν	50	50	47	50	50	50	50	50	50	50	50
22 Wheat	Pearson Correlation	071	071	121	029	.565**	020	053	029	1.000**	1	020
	Sig. (2-tailed)	.622	.622	.416	.841	<,001	.888	.716	.841	.000		.888
	Ν	50	50	47	50	50	50	50	50	50	50	50
24 Beet root	Pearson Correlation	.286*	071	121	029	036	020	.387**	029	020	020	1
	Sig. (2-tailed)	.044	.622	.416	.841	.803	.888	.006	.841	.888	.888	
	N	50	50	47	50	50	50	50	50	50	50	50

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

c. Cannot be computed because at least one of the variables is constant.

Annexure 3 ETHICS APPROVAL - ETHIC APPLICATION: EBIT/30/2023

Faculty of Engineering, Built Environment and Information Technology

Fakulteit Ingenieurswese, Bou-omgewing en Inligtingtegnologie / Lefapha la Boetšenere, Tikologo ya Kago le Theknolotši ya Tshedimošo

16 March 2023

Reference number: EBIT/30/2023

Mr JA Seeliger Department: Architecture University of Pretoria Pretoria 0083

Dear Mr JA Seeliger,

FACULTY COMMITTEE FOR RESEARCH ETHICS AND INTEGRITY

Your recent application to the EBIT Research Ethics Committee refers.

Conditional approval is granted.

This means that the research project entitled "Living Wall Systems for Household-scale Food Production" is approved under the strict conditions indicated below. If these conditions are not met, approval is withdrawn automatically.

Conditions for approval:

Contacts of the participants are to be sourced with compliance to POPIA.

This approval does not imply that the researcher, student or lecturer is relieved of any accountability in terms of the Code of Ethics for Scholarly Activities of the University of Pretoria, or the Policy and Procedures for Responsible Research of the University of Pretoria. These documents are available on the website of the EBIT Ethics Committee.

If action is taken beyond the approved application, approval is withdrawn automatically.

According to the regulations, any relevant problem arising from the study or research methodology as well as any amendments or changes, must be brought to the attention of the EBIT Research Ethics Office.

The Committee must be notified on completion of the project.

The Committee wishes you every success with the research project.

Kri-Yir

Prof K. Y. Chan Chair: Faculty Committee for Research Ethics and Integrity FACULTY OF ENGINEERING, BUILT ENVIRONMENT AND INFORMATION TECHNOLOGY