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In this paper, we present a numerical method based on the fast Fourier transform
(FFT) to price call options on the minimum of two assets, otherwise known as
two-asset rainbow options. We consider two stochastic processes for the underlying
assets: two-factor geometric Brownian motion and three-factor stochastic volatility.
We show that the FFT can achieve a certain level of convergence by carefully choos-
ing the number of terms and truncation width in the FFT algorithm. Furthermore,
the FFT converges at an exponential rate and the pricing results are closely aligned
with the results obtained from a Monte Carlo simulation for complex models that
incorporate stochastic volatility.
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1. Introduction
A rainbow option refers to an option that depends on more than one underlying risky asset, where
each asset is seen as a colour of the rainbow (Ouwehand and West, 2006). These options come in
various forms including the “best-of-𝑑” and “worst-of-𝑑” call options on 𝑑 underlying assets. Pricing
rainbow options is often challenging due to the absence of a closed-form solution; hence, numerical
methods must be employed.

The market for rainbow options is illiquid and these options are typically structured on demand.
However, this could change in the future. Roberts (2018) lists various applications for rainbow
options in the industry. Firstly, rainbow options can be used to gain exposure to the market at a lower
cost whilst reducing risk (Klyueva, 2014). Furthermore, “best-of-𝑑” call options can be used to
hedge currency risk if a company has the option to settle their liabilities in various foreign currencies
(Guillaume, 2008). Due to their potential, numerous methods have been proposed in the literature to
price rainbow options.

The first contribution made in the literature on the pricing of two-asset rainbow options can be
traced back to Stulz (1982). The author derived formulas for European call and put options on the
minimum or maximum of two risky assets that involve the calculation of the bivariate normal density
function. Ouwehand and West (2006) derived formulas for “best-of-3” and “worst-of-3” call options
using a change of numeraire technique. Eberlein et al. (2010) presented a general framework for the
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Fourier transform method of Carr and Madan (1999), which is used when certain conditions hold
like the existence of the dampened characteristic function. The framework allows for the pricing of
“best-of-𝑑” and “worst-of-𝑑” call and put options.

Fourier transformation is a mathematical method that decomposes a function into the sum of
simpler trigonometric functions. When uniformly spaced samples of a continuous function are input
to a Fourier transform, the transformation is called the discrete-time Fourier transform (DTFT). The
input data are discrete and the output DTFT is a continuous function. If samples of equal length
are taken from the DTFT output, then the transformation is called the discrete Fourier transform
(DFT). Computing the DFT directly requires a total of 𝑁2 operations to be performed, where 𝑁 is
the number of input data points. Therefore, the total computation time is 𝑂 (𝑁2).

The fast Fourier transform (FFT), pioneered by Cooley and Tukey (1965), is an efficient algorithm
for computing the DFT. The Cooley-Tukey FFT algorithm requires 𝑁 to be a power of 2, i.e., 𝑁 = 2𝑚,
where 𝑚 ≥ 0. This requirement leads to significant time saving compared to the direct computation
approach, with the total running time for Cooley-Tukey FFT algorithm being 𝑂 (𝑁 log(𝑁)).

Carr and Madan (1999) developed a Fourier transform for the price of a European call option in
terms of the characteristic function of the log of the stock price at the option maturity. The authors
applied the FFT algorithm to compute European call option prices given the Fourier transform and
concluded that the FFT yields significant improvement in terms of computation speed.

Hurd and Zhou (2010) extended the Fourier transform of Carr and Madan (1999) to the two-
dimensional case of spread options and concluded that the FFT produces accurate and efficient
spread option prices.

Building on the work of Eberlein et al. (2010), Roberts (2018) applied the two-dimensional FFT
method of Hurd and Zhou (2010) to price “worst-of-2” call options based on the two-factor geometric
Brownian motion (gBm) model. Roberts (2018) claims to be the first author to have applied the
two-dimensional FFT to price two-asset rainbow options.

In order to compute option prices using the two-dimensional FFT, the double integral that appears
in the Fourier transform must be approximated by truncating the domain R2 to a suitable lower and
upper bound. The lower and upper bounds are user defined and termed the “truncation width”.

Roberts (2018) shows that the FFT price for a “worst-of-2” call option can converge to the price
obtained from the Stulz (1982) formula using as few as 512 terms. However, Roberts (2018) mentions
that there is no single truncation width that works consistently well for all terms in the FFT and one
first needs a price estimate before an appropriate value for the truncation width can be chosen.
Moreover, further investigation is needed to test the accuracy of the FFT method for further in-the-
money rainbow options. Roberts (2018) showed that an in-the-money “worst-of-2” call option did
not converge to three decimals whereas all other strike prices did. Lastly, Roberts (2018) suggests that
more complex underlying models be considered to price rainbow options other than the two-factor
gBm.

In this paper, we first attempt to replicate the FFT results in Roberts (2018) to test whether we
arrive at the same conclusions for “worst-of-2” call options. We then extend the work of Roberts
(2018) per the author’s suggestion by applying the three-factor stochastic volatility model in addition
to the two-factor gBm model for the underlying assets. We then apply the two-dimensional FFT
method of Hurd and Zhou (2010) to price “worst-of-2” call options based on these dynamics. Our
contribution to the literature is, therefore, the pricing of two-asset rainbow options with stochastic
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volatility using the FFT. To our knowledge, we are the first authors to apply the FFT method of Hurd
and Zhou (2010) to “worst-of-2” call options based on dynamics other than the two-factor gBm.

The field of quantitative finance draws on many concepts from mathematical statistics including
moment generating functions, characteristic functions, stochastic processes, and the multivariate
normal distribution, to name a few. This paper highlights the interplay between the fields of statistics
and quantitative finance and that statistics plays a vital role in further development of quantitative
finance.

The remainder of this paper is structured as follows. Section 2 introduces the underlying dynamics
that will be considered to price two-asset rainbow options. Section 3 shows the characteristic
functions for the two-asset gBm and three-factor stochastic volatility models. Section 4 introduces
the Hurd and Zhou (2010) two-dimensional FFT algorithm. Section 5 shows the numerical results,
and Section 6 concludes the paper.

2. Stock price dynamics for two-asset options
This section introduces two stochastic processes for options that depend on two underlying assets.
The choice of model generally depends on the behaviour of the market. One generally aims to choose
a model that describes the market dynamics of interest rates, stock prices, and volatility as closely
as possible. The first, and most basic, model we consider is two-factor geometric Brownian motion
(gBm).

2.1 Two-factor geometric Brownian motion
The two-factor gBm model was first introduced by Margrabe (1978) to price exchange options - the
option to exchange one risky asset for another. The two-factor gBm model takes the following form:



𝑑𝑆1 (𝑡) = (𝑟 − 𝛿1)𝑆1 (𝑡)𝑑𝑡 + 𝜎1𝑆1 (𝑡)𝑑𝑊𝑆1 (𝑡)
𝑑𝑆2 (𝑡) = (𝑟 − 𝛿2)𝑆2 (𝑡)𝑑𝑡 + 𝜎2𝑆2 (𝑡)𝑑𝑊𝑆2 (𝑡),

where 𝑆1 (𝑡), 𝑆2 (𝑡) denote the stock prices at time 𝑡; 𝑑𝑆1 (𝑡), 𝑑𝑆2 (2) are the increments of the respective
stock prices from time 𝑡 to time 𝑡 + 𝑑𝑡, with 𝑑𝑡 an infinitesimal quantity; 𝜎1, 𝜎2 are the annualised
volatility estimates for the two stocks; 𝛿1, 𝛿2 are the respective dividend yields; 𝑟 is the constant
risk-free rate, and 𝑑𝑊𝑆1 (𝑡)𝑑𝑊𝑆2 (𝑡) = 𝜌𝑆1 ,𝑆2𝑑𝑡, with 𝜌𝑆1 ,𝑆2 the correlation coefficient between the
two stock prices.

The two-factor gBm model assumes that the two stock prices each follow a log-normal distribution
with constant volatility. Clearly this assumption is very limiting since the model assumes symmetric
returns for the log of the stock price based on a normal distribution. Empirical evidence has shown
that returns for the log of the stock price tend to be negatively skewed (see Cont, 2001); hence, a
model that can account for asymmetry is preferred to describe the behaviour of the equity market.
Furthermore, the two-factor gBm model is unable to produce the fat-tailed returns often observed in
equity markets (see Cont, 2001).

Next, we introduce the three-factor stochastic volatility model that addresses some of the short-
comings in the two-factor gBm model.
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2.2 Three-factor stochastic volatility
The three-factor stochastic volatility model was first introduced by Dempster and Hong (2002) to
price spread options. The model assumes that both assets are driven by the same Cox et al. (1985)
variance process and takes the following form:




𝑑𝑆1 (𝑡) = (𝑟 − 𝛿1)𝑆1 (𝑡)𝑑𝑡 + 𝜎1
√︁
𝑣(𝑡)𝑆1 (𝑡)𝑑𝑊𝑆1 (𝑡)

𝑑𝑆2 (𝑡) = (𝑟 − 𝛿2)𝑆2 (𝑡)𝑑𝑡 + 𝜎2
√︁
𝑣(𝑡)𝑆2 (𝑡)𝑑𝑊𝑆2 (𝑡)

𝑑𝑣(𝑡) = 𝜅
(
�̄� − 𝑣(𝑡)

)
𝑑𝑡 + 𝜎𝑣

√︁
𝑣(𝑡)𝑑𝑊𝑣 (𝑡),

where 𝑣(𝑡) denotes the variance of the stock prices at time 𝑡; 𝑑𝑣(𝑡) is the increment of the variance
from time 𝑡 to time 𝑡 + 𝑑𝑡; 𝜅 is the mean reversion speed of the variance; �̄� is the long-run mean of the
variance, and 𝜎𝑣 is the volatility of the variance. The Brownian motions are correlated as follows:

𝑑𝑊𝑆1 (𝑡)𝑑𝑊𝑆2 (𝑡) = 𝜌𝑆1 ,𝑆2𝑑𝑡,

𝑑𝑊𝑆1 (𝑡)𝑑𝑊𝑣 (𝑡) = 𝜌𝑆1 ,𝑣𝑑𝑡,

𝑑𝑊𝑆2 (𝑡)𝑑𝑊𝑣 (𝑡) = 𝜌𝑆2 ,𝑣𝑑𝑡.

The three-factor stochastic volatility model has the ability to produce asymmetric and fat-tailed
returns and is, therefore, more flexible than the two-factor gBm model.

In the next section, we introduce the work of Eberlein et al. (2010) along with the characteristic
functions for the two-factor gBm and three-factor stochastic volatility models. The next section
forms an integral part of the two-dimensional FFT method of Hurd and Zhou (2010), which will be
discussed in Section 4.

3. Rainbow options, Fourier transform and characteristic functions
Fourier transform methods have led to significant computational gains since their introduction to
option pricing by Carr and Madan (1999). The Fourier transform framework was further generalised
to multi-asset options by Eberlein et al. (2010) where the authors listed conditions under which
Fourier transform formulas are valid. In this section, we first introduce the payoff functions for
“best-of-2” and “worst-of-2” call options. Next, we discuss the general Fourier transform framework
of Eberlein et al. (2010). Lastly, we show the characteristic functions for the two-factor gBm and
three-factor stochastic volatility models.

3.1 Best-of-2 and worst-of-2 call options
Let 𝑉𝑚𝑎𝑥

(
𝑆1 (𝑡), 𝑆2 (𝑡)

)
and 𝑉𝑚𝑖𝑛

(
𝑆1 (𝑡), 𝑆2 (𝑡)

)
denote the values for a “best-of-2” and “worst-of-2”

call option depending on two assets
{
𝑆1 (𝑡), 𝑆2 (𝑡)

}
at time 𝑡 with strike price 𝐾 and maturity 𝑇 . At

maturity 𝑇 , the payoff formula for the call options is given by

𝑉𝑚𝑎𝑥
(
𝑆1 (𝑇), 𝑆2 (𝑇)

)
= max

(
max

(
𝑆1 (𝑇), 𝑆2 (𝑇)

)
− 𝐾, 0

)
, (1)

𝑉𝑚𝑖𝑛
(
𝑆1 (𝑇), 𝑆2 (𝑇)

)
= max

(
min

(
𝑆1 (𝑇), 𝑆2 (𝑇)

)
− 𝐾, 0

)
. (2)

From Eberlein et al. (2010), the Fourier transform corresponding to the payoff functions in equa-
tions (1) and (2) can be derived and will be discussed in the next subsection.
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3.2 The result of Eberlein, Glau, and Papapantoleon
Eberlein et al. (2010) presented a general framework for which Fourier transform formulas are valid.
For the two-dimensional case, the authors consider any payoff function 𝑓 : R2 → R+, for example
equation (1) or (2), and the dampened payoff function

𝑔(x) := 𝑒−α
⊤x 𝑓 (x) for x ∈ R2,

where α ∈ R2 is the dampening coefficient.
Let �̂� denote the Fourier transform of the function 𝑔; 𝐿1

𝑏𝑐 (R2) be the space of bounded, continuous
functions in 𝐿1 (R2), where 𝐿1 (R2) is the space of all integrable functions on R2. Moreover, let
X (0) = (

𝑥1 (0), 𝑥2 (0)
)⊤ =

(
log 𝑆1 (0), log 𝑆2 (0)

)⊤ and let 𝑀X𝑇 denote the moment generating
function for the random variable X (𝑇) = (

𝑥1 (𝑇), 𝑥2 (𝑇)
)⊤ =

(
log 𝑆1 (𝑇), log 𝑆2 (𝑇)

)⊤ at the option
maturity 𝑇 .

Eberlein et al. (2010) make the following assumptions:

1. Assume that 𝑔 ∈ 𝐿1
𝑏𝑐 (R2) and �̂� ∈ 𝐿1 (R2);

2. Assume that 𝑀X𝑇 (α) exists;

Under these assumptions, the authors present the following Fourier transform formula for two-asset
options:

Theorem 1. If the asset price processes are modelled as two-factor gBm or three-factor stochastic
volatility processes and assumptions 1 and 2 hold, then the payoff function for a two-asset option 𝑉
at 𝑡 = 0 can be written as

𝑉
(
X (0)) = 𝑒α

⊤X (0)

(2𝜋)2
∫
R2
𝑒𝑖u

⊤X (0)𝑀X𝑇 (α + 𝑖u) 𝑓 (𝑖α − u)𝑑u,

where 𝑖 =
√
−1, u = [𝑢1, 𝑢2] ∈ R2, and 𝑓 (·) denotes the Fourier transform of the payoff function.

See Eberlein et al. (2010) for the proof.
Using Theorem 1, Eberlein et al. (2010) show that the Fourier valuation formula for a “worst-of-2”

call option at 𝑡 = 0 with strike 𝐾 and maturity 𝑇 is given by:

𝑉𝑚𝑖𝑛
(
𝑥1 (0), 𝑥2 (0)

)
=
𝑒−𝑟𝑇

4𝜋2

∫
R2
𝑒𝑥1 (0) (𝛼1+𝑖𝑢1 )𝑒𝑥2 (0) (𝛼2+𝑖𝑢2 )𝑀X𝑇 (𝛼1 + 𝑖𝑢1, 𝛼2 + 𝑖𝑢2)

× 𝐾1−𝛼1−𝛼2−𝑖𝑢1−𝑖𝑢2

(𝛼1 + 𝑖𝑢1) (𝛼2 + 𝑖𝑢2) (𝛼1 + 𝛼2 − 1 + 𝑖𝑢1 + 𝑖𝑢2) 𝑑𝑢. (3)

Assuming the moment generating function exists, the relationship between the moment generating
function 𝑀X𝑇 and the characteristic function 𝜙X𝑇 is given by

𝑀X𝑇 (u) = 𝜙X𝑇 (−𝑖u),

hence, the moment generating function in equation (3) can be replaced by 𝜙X𝑇 .
In the next section, we introduce the characteristic functions for the two-factor gBm and three-factor

stochastic volatility models.
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3.3 Two-factor gBm characteristic function
The characteristic function represents the joint distribution of X (𝑇) at the option maturity 𝑇 . From
Dempster and Hong (2002), the characteristic function for the two-asset gBm model is given by

𝜙𝑔𝐵𝑚(𝑢1, 𝑢2) = exp
(
𝑖𝑢1𝑥1 (0) + 𝑖𝑢2𝑥2 (0) + 𝜁𝑇 +

∑︁
𝑗=1,2

𝑢 𝑗 (𝑟 − 𝛿 𝑗 )𝑇
)
,

where
𝜁 := −1

2

[
(𝜎2

1𝑢
2
1 + 𝜎2

2𝑢
2
2 + 2𝜌𝑥1 ,𝑥2𝜎1𝜎2𝑢1𝑢2) + 𝑖(𝜎2

1𝑢1 + 𝜎2
2𝑢2)

]
.

The characteristic function can be used as input to equation (3) to price “worst-of-2” call options
under the two-factor gBm model.

As mentioned, the two-factor gBm model is not consistent with the behaviour of the equity market.
Therefore, we consider the three-factor stochastic volatility model next.

3.4 Three-factor stochastic volatility characteristic function
Dempster and Hong (2002) derived an expression for the characteristic function of the three-factor
stochastic volatility model where both assets are driven by a single Cox et al. (1985) variance process.
The expression for the characteristic function is given by

𝜙𝑆𝑉 (𝑢1, 𝑢2) = exp

(
𝑖𝑢1𝑥1 (0) + 𝑖𝑢2𝑥2 (0) +

(
2𝜁 (1 − 𝑒−𝛽𝑇 )

2𝛽 − (𝛽 − 𝛾) (1 − 𝑒−𝛽𝑇 )

)
𝑣(0)

+
∑︁
𝑗=1,2

𝑢 𝑗 (𝑟 − 𝛿 𝑗 )𝑇 − 𝜅�̄�
𝜎2
𝑣

Γ

)
,

where

Γ : =

[
2 log

(
2𝛽 − (𝛽 − 𝛾) (1 − 𝑒−𝛽𝑇 )

2𝛽

)
+ (𝛽 − 𝛾)𝑇

]
,

𝜁 : = −1
2

[
(𝜎2

1𝑢
2
1 + 𝜎2

2𝑢
2
2 + 2𝜌𝑥1 ,𝑥2𝜎1𝜎2𝑢1𝑢2) + 𝑖(𝜎2

1𝑢1 + 𝜎2
2𝑢2)

]
,

𝛾 : = 𝜅 − 𝑖(𝜌𝑥1 ,𝑣𝜎1𝑢1 + 𝜌𝑥2 ,𝑣𝜎2𝑢2)𝜎𝑣 ,

𝛽 : =
√︃
𝛾2 − 2𝜎2

𝑣 𝜁 .

In the next section, we introduce the two-dimensional FFT method of Hurd and Zhou (2010).

4. The two-fimensional FFT method
Hurd and Zhou (2010) initially developed the two-dimensional FFT method to price spread options.
Using equation (3) and applying the same logic to “worst-of-2” call options with 𝐾 = 1 and maturity
𝑇 , the Fourier representation of the “worst-of-2” call option payoff function 𝑉𝑚𝑖𝑛 (𝑥1 (𝑇), 𝑥2 (𝑇)) =
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max
(
min(𝑒𝑥1 (𝑇 ) , 𝑒𝑥2 (𝑇 ) ) − 1, 0) is given by

𝑉𝑚𝑖𝑛
(
𝑥1 (0), 𝑥2 (0)

)
=
𝑒−𝑟𝑇

4𝜋2

∫
R2+𝑖ϵ

𝑒𝑥1 (0) (𝛼1+𝑖𝑢1 )𝑒𝑥2 (0) (𝛼2+𝑖𝑢2 )𝜙{𝑔𝐵𝑚,𝑆𝑉 } (𝑢1 − 𝑖𝛼1, 𝑢2 − 𝑖𝛼2)

× 11−𝛼1−𝛼2−𝑖𝑢1−𝑖𝑢2

(𝛼1 + 𝑖𝑢1) (𝛼2 + 𝑖𝑢2) (𝛼1 + 𝛼2 − 1 + 𝑖𝑢1 + 𝑖𝑢2) 𝑑u, (4)

where 𝛼1, 𝛼2 > 0, 𝜙{𝑔𝐵𝑚,𝑆𝑉 } is the characteristic function under either the two-factor gBm or three-
factor stochastic volatility model, and 𝜖1, 𝜖2 < 0 with 𝜖1 + 𝜖2 < −1. The parameters 𝜖1, 𝜖2 can be
chosen freely within their given constraints. Roberts (2018) showed that “worst-of-2” call option
prices are insensitive to the choice of 𝜖1 and 𝜖2. Furthermore, let

�̂�𝑚𝑖𝑛 (𝑢1, 𝑢2) :=
11−𝛼1−𝛼2−𝑖𝑢1−𝑖𝑢2

(𝛼1 + 𝑖𝑢1) (𝛼2 + 𝑖𝑢2) (𝛼1 + 𝛼2 − 1 + 𝑖𝑢1 + 𝑖𝑢2) .

The integral in equation (4) can be approximated as follows. Let

Γ = {u(k) = (
𝑢1 (𝑘1), 𝑢2 (𝑘2)

) | k = (𝑘1, 𝑘2) ∈ {0, 1, ..., 𝑁 − 1}2}, 𝑢𝑖 (𝑘𝑖) = −�̄� + 𝑘𝑖𝜉,

where 𝑁 = 2𝑚 with 𝑚 ≥ 0, 𝜉 is the lattice spacing, and �̄� = 𝑁 𝜉
2 .

Furthermore, let the reciprocal lattice be given by

Γ∗ = {x(l) = (𝑥1 (𝑙1), 𝑥2 (𝑙2)) | l = (𝑙1, 𝑙2) ∈ {0, 1, ..., 𝑁 − 1}2}, 𝑥𝑖 (𝑙𝑖) = −𝑥 + 𝑙𝑖𝜉∗,

where 𝜉∗ = 𝜋
�̄� is the reciprocal lattice spacing and 𝑥 = 𝑁 𝜉 ∗

2 .
The integral in equation (4) is approximated by the following double sum for each pair

(
𝑥1 (𝑙1), 𝑥2 (𝑙2)

)
in Γ∗:

𝑉𝑚𝑖𝑛
(
𝑥1 (𝑙1), 𝑥2 (𝑙2)

) ≈ 𝑒−𝑟𝑇
4𝜋2

𝑁−1∑︁
𝑘1=0

𝑁−1∑︁
𝑘2=0

𝑒𝑥1 (𝑙1 ) (𝛼1+𝑖 (𝑢1 (𝑘1 )+𝑖 𝜖1 ) )𝑒𝑥2 (𝑙2 ) (𝛼2+𝑖 (𝑢1 (𝑘1 )+𝑖 𝜖1 ) )

× 𝜙{𝑔𝐵𝑚,𝑆𝑉 }
(
𝑢1 (𝑘1) + 𝑖𝜖1 − 𝑖𝛼1, 𝑢2 (𝑘2) + 𝑖𝜖2 − 𝑖𝛼2

)
�̂�𝑚𝑖𝑛

(
𝑢1 (𝑘1) + 𝑖𝜖1, 𝑢2 (𝑘2) + 𝑖𝜖2

)
= (−1)𝑙1+𝑙2𝑒−𝑟𝑇

( 𝜉𝑁
2𝜋

)2
𝑒 (𝛼1−𝜖1 )𝑥1 (𝑙1 )+(𝛼2−𝜖2 )𝑥1 (𝑙2 ) [ifft2(𝐻)] (𝑙1, 𝑙2),

where

𝐻 (𝑘1, 𝑘2) = (−1)𝑘1+𝑘2𝜙{𝑔𝐵𝑚,𝑆𝑉 }
(
𝑢1 (𝑘1) + 𝑖𝜖1 − 𝑖𝛼1, 𝑢2 (𝑘2) + 𝑖𝜖2 − 𝑖𝛼2

)
× �̂�𝑚𝑖𝑛

(
𝑢1 (𝑘1) + 𝑖𝜖1, 𝑢2 (𝑘2) + 𝑖𝜖2

)
,

and ifft2(𝐻) represents the two-dimensional FFT applied to matrix 𝐻.
Recall that equation (4) is for the specific case where 𝐾 = 1. Roberts (2018) explains that equation

(4) can be generalised for any 𝐾 > 0 by scaling the initial share prices

x(0) =
(

log
( 𝑆1 (0)
𝐾

)
, log

( 𝑆2 (0)
𝐾

))
.
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To determine the option price, a grid search is done to find x(0) in Γ∗. If x(0) does not perfectly
fall on the lattice Γ∗, an interpolation scheme must be used to find x(0).

The implementation of the two-dimensional FFT method is outlined in Alfeus and Schlögl (2018).
Algorithm 1 below follows directly from their paper.

Algorithm 1 Two-dimensional FFT
1. Input : 𝑁 , a power of two; �̄�, truncation width; ϵ, damping factor.

2. Set x(0) =
(

log
(
𝑆1 (0)
𝐾

)
, log

(
𝑆2 (0)
𝐾

))
∈ (
𝑥1 (𝑙1), 𝑥2 (𝑙2)

)
.

3. for all k, l ∈ {1, 2, ..., 𝑁 − 1}2 do

𝐻 (𝑘1, 𝑘2) = (−1)𝑘1+𝑘2𝜙{𝑔𝐵𝑚,𝑆𝑉 } (𝑢1 (𝑘1) + 𝑖𝜖1 − 𝛼1, 𝑢2 (𝑘2) + 𝑖𝜖2 − 𝛼2)
× �̂�𝑚𝑖𝑛 (𝑢1 (𝑘1) + 𝑖𝜖1, 𝑢2 (𝑘1) + 𝑖𝜖1);

𝐶 (𝑙1, 𝑙2) = (−1)𝑙1+𝑙2
(
𝜉𝑁

2𝜋

)2

𝑒 (𝛼1−𝜖1 )𝑥1 (𝑙1 )+(𝛼2−𝜖2 )𝑥2 (𝑙2 ) ;

4. end
5. 𝑉𝑚𝑖𝑛

(
𝑥1 (𝑙1), 𝑥2 (𝑙2)

)
= ℜ(𝐶 × ifft2(𝐻)) whereℜ(·) denotes the real part of the complex number.

6. 𝑃← 𝐾 ×𝑉𝑚𝑖𝑛
(
x(0)) using an interpolation scheme to find x(0) in Γ∗.

Output : 𝑃.

In the next section, we present our numerical results for “worst-of-2” call options based on the
FFT method of Hurd and Zhou (2010) and various dynamics for the underlying assets.

5. Numerical results
In this section, we first compare our pricing results of the FFT and two-factor gBm model with the
results in Roberts (2018). We also test various values for the truncation width in the FFT algorithm
to see whether an optimal value exists. Thereafter, we test the accuracy of the FFT under the three-
factor stochastic volatility by comparing the FFT prices to the prices obtained from a Monte Carlo
simulation.

The code was implemented in Python on an HP laptop Intel(R) Core(TM) i5 – 1.60GHz with 16 GB
memory.

5.1 FFT and two-factor gBm
Table 1 shows our results for “worst-of-2” call options using the FFT and two-factor gBm model.
The prices are compared to the prices obtained from the Stulz (1982) formula, as shown in Roberts
(2018). Furthermore, we use the exact same values for 𝑁 and �̄� as Roberts (2018) to compare the
accuracy of our implementation.

Table 2 shows the absolute difference between our FFT prices and the Stulz (1982) prices across
strike.

Our results do not support the findings in Roberts (2018). Firstly, our prices are noticeably
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Table 1. FFT prices under two-factor gBm with 𝑆1 (0) = 100, 𝑆2 (0) = 96, 𝛿1 = 0.05, 𝛿2 =
0.05, 𝑟 = 0.1, 𝜎1 = 0.1, 𝜎2 = 0.2, 𝜌𝑥1 ,𝑥2 = 0.5, 𝜖1 = −3, 𝜖2 = −1, 𝛼1 = 0.75, 𝛼2 = 0.75, 𝑇 = 1.

𝑁 = 64 𝑁 = 128 𝑁 = 256 𝑁 = 512 𝑁 = 1024 𝑁 = 2048
𝐾 Stulz �̄� = 30 �̄� = 50 �̄� = 90 �̄� = 120 �̄� = 130 �̄� = 130

90 8.274176 8.276002 8.273253 8.274178 8.274173 8.274158 8.274158
92 7.118883 7.122826 7.177980 7.118794 7.118871 7.118862 7.118862
94 6.055238 6.041106 6.055158 6.055197 6.055214 6.055220 6.055220
96 5.087925 5.072448 5.087190 5.087892 5.087903 5.087914 5.087914
98 4.220092 4.210246 4.219182 4.220043 4.220087 4.220090 4.220090
100 3.452949 3.451947 3.452913 3.452951 3.452948 3.452948 3.452948
102 2.785485 2.791147 2.785838 2.785476 2.785481 2.785482 2.785482
104 2.214392 2.222128 2.214398 2.214413 2.214401 2.214396 2.214396

Table 2. Absolute difference between FFT and Stulz prices.

𝑁 = 64 𝑁 = 128 𝑁 = 256 𝑁 = 512 𝑁 = 1024 𝑁 = 2048
𝐾 �̄� = 30 �̄� = 50 �̄� = 90 �̄� = 120 �̄� = 130 �̄� = 130

90 0.001826 0.000923 0.000002 0.000003 0.000018 0.000018
92 0.006057 0.000903 0.000089 0.000012 0.000021 0.000021
94 0.014132 0.000080 0.000041 0.000024 0.000018 0.000018
96 0.015477 0.000735 0.000033 0.000022 0.000011 0.000011
98 0.009846 0.000910 0.000049 0.000005 0.000002 0.000002
100 0.001002 0.000036 0.000002 0.000001 0.000001 0.000001
102 0.005662 0.000353 0.000009 0.000004 0.000003 0.000003
104 0.007736 0.000006 0.000021 0.000009 0.000004 0.000004

more accurate than the prices in Roberts (2018). Based on the author’s implementation, the FFT
did not converge to three decimal places for 𝐾 = 90. However, we find that the FFT converges
for 𝐾 = 90 up to five decimals using 256 or 512 terms. Roberts (2018) recommends that further
investigation be done to conclude the accuracy of the FFT applied to further in-the-money options.
Based on our implementation, there is nothing that suggests the FFT method is less accurate for
further in-the-money options.

Another interesting observation is that our FFT results converge faster than the results in Roberts
(2018). The author mentioned that all FFT prices apart from 𝐾 = 90 converged to three decimal
places from 512 terms. Based on our implementation, we find that the FFT converges to at least three
decimals using 256 terms for all strikes. From 512 terms, the FFT converges to at least four decimals
for all strikes.

Lastly, Roberts (2018) stated that it is preferable to use the Fourier-cosine series expansion (COS)
method of Ruĳter and Oosterlee (2012) to price rainbow options since it is faster and more robust than
the FFT method. In terms of accuracy, our FFT implementation is very much aligned with the COS
pricing results in Roberts (2018) (and in many cases even more accurate). This leads us to believe that
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Figure 1. Two-factor gBm FFT Price as a function of truncation width �̄� with 𝑁 = 512.

there is an error in the FFT implementation in Roberts (2018). Upon further investigation, Roberts
(2018) mentioned that the dampening factors in the FFT method should be restricted to 𝛼2 < 0 and
𝛼1 +𝛼2 > 1, where, in fact, the dampening factors should be restricted to 𝛼1, 𝛼2 > 0 and 𝛼1 +𝛼2 > 1
as per Eberlein et al. (2010). The question remains whether it is truly better to use the COS method
rather than the FFT method for “worst-of-2” call options. We will attempt to clarify this.

5.2 Testing the truncation width
The FFT algorithm of Hurd and Zhou (2010) requires an appropriate choice for the truncation width
�̄�. Figure 1 shows the FFT price for a “worst-of-2” call option with 𝐾 = 98 and 𝑇 = 1 as a function
of �̄�.

From Figure 1, it is clear that the choice of �̄� can have a significant impact on the FFT price. If
�̄� is chosen too small, the FFT price will be understated. Alternatively, choosing a value that is too
large will overestimate the price.

Based on our implementation, the FFT converges to at least four decimal places for �̄� ∈ [90, 200]
for 𝐾 = 98 and 𝑁 = 512 compared to the Stulz (1982) price. Roberts (2018) mentioned that it is
not possible to choose an optimal value for �̄�. However, we have shown that a value of 𝑁 = 512 and
�̄� ∈ [90, 200] will be sufficient to achieve convergence up to four decimals under the two-factor gBm
model. In Table 1, for 𝑁 = 512, we used a value of �̄� = 120, which falls in the interval [90, 200].
All FFT prices converged to at least four decimal places, which further supports our finding.

An area where the COS method does seem to outperform the FFT is the rate of convergence.
Based on the results in Roberts (2018), the COS method converged to three decimal places using
as few as 64 terms. Based on our implementation of the FFT, convergence to three decimals was
only achieved from 256 terms. Although the COS method does seem to be faster, there is not much
that differentiates the pricing results between the COS and FFT methods. Therefore, if speed is an
important factor, the COS method is preferable to the FFT method which aligns with the results in
Roberts (2018). However, it takes only 3 seconds to price a single option when using the FFT method
with 256 terms.
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Table 3. MC and FFT prices under three-factor stochastic volatility with 𝑆1 (0) = 100, 𝑆2 (0) =
96, 𝛿1 = 0.05, 𝛿2 = 0.05, 𝑟 = 0.1, 𝜎1 = 1, 𝜎2 = 0.5, 𝑣(0) = 0.04, 𝜅 = 1, �̄� = 0.04, 𝜎𝑣 =
0.05, 𝜌𝑥1 ,𝑥2 = 0.5, 𝜌𝑥1 ,𝑣 = −0.5, 𝜌𝑥2 ,𝑣 = 0.25, 𝜖1 = −3, 𝜖2 = −1, 𝛼1 = 0.75, 𝛼2 = 0.75, 𝑇 =
1, 𝑁 = 512, �̄� = 100.

𝐾 MC Price FFT Price Absolute Difference

90 7.642450 7.642304 0.000145
92 6.436579 6.436327 0.000252
94 5.340944 5.340803 0.000141
96 4.363270 4.363219 0.000052
98 3.507569 3.507650 0.000081
100 2.773671 2.773815 0.000141
102 2.157198 2.157236 0.000038
104 1.650093 1.650149 0.000056

In summary, it is possible to choose an optimal value for �̄� to achieve a certain level of convergence
to the Stulz (1982) price. Next, we implement the three-factor stochastic volatility model of Dempster
and Hong (2002).

5.3 FFT and three-factor stochastic volatility
In this subsection, we compare the FFT prices for “worst-of-2” call options under the three-factor
stochastic volatility model of Dempster and Hong (2002) with a Monte Carlo simulation and show
the convergence speed of the FFT by varying the number of terms 𝑁 .

To test the accuracy of the FFT, Table 3 compares the FFT pricing results for “worst-of-2” call
options based on the three-factor stochastic volatility model with a Monte Carlo simulation of
20,000,000 samples for various 𝐾 , where the Monte Carlo simulation is seen as the benchmark price.
We show the results up to 6 decimal places:

The results in Table 3 indicate that the FFT and Monte Carlo prices are aligned to at least three
decimal places for all strikes considered which confirms the accuracy of the FFT.

To illustrate the FFT convergence, Figure 2 plots the logarithm of the absolute difference for a
“worst-of-2” call option with 𝐾 = 98 and𝑇 = 1 as a function of 𝑁 , where 𝑁 = 8196 is the benchmark
price. The results are based on the same parameters shown in Table 3.

Figure 2 shows that the FFT converges at an exponential rate. Monte Carlo simulation, on the
other hand, is known to converge at a rate of 𝑂

(√
𝑁

)
– to achieve a tenfold increase in accuracy, a

hundredfold increase in the number of simulations is required (see Glasserman, 2003). FFT is far
superior to Monte Carlo simulation in terms of efficiency.

6. Conclusion
In this paper, we implemented the two-factor gBm model and three-factor stochastic volatility model
of Dempster and Hong (2002) to price “worst-of-2” call options. Using the two-dimensional FFT
method of Hurd and Zhou (2010), we showed that it is possible to achieve a certain level of
convergence to the Stulz (1982) and Monte Carlo prices under the two-factor gBm and three-factor
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Figure 2. FFT convergence under the three-factor stochastic volatility model.

stochastic volatility models respectively. We also showed that an optimal value for the truncation
width can be chosen which contradicts a previous finding in the literature.

The FFT gives practitioners a powerful way of calculating rainbow option prices without the need
to perform a costly Monte Carlo simulation. As rainbow option trading becomes more popular, the
FFT method is likely to shine.
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