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INTRODUCTION

Changes in environmental conditions consistently
challenge animals in their lives, leading them to adjust
their behavior regularly. One of the important ways
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Abstract

Resource selection functions are commonly used to evaluate animals’ habitat
selection, for example, the disproportionate use of habitats relative to their
availability. While environmental conditions or animal motivations may vary
over time, sometimes in an unknown manner, studying changes in habitat
selection usually requires an a priori segmentation of time in distinct periods.
This limits our ability to precisely answer the question “When is an animal’s
habitat selection changing?” Here, we present a straightforward and flexible
alternative approach based on fitting dynamic logistic models to used/available
data. First, using simulated datasets, we demonstrate that dynamic logistic
models perform well in recovering temporal variations in habitat selection. We
then show real-world applications for studying diel, seasonal, and post-release
changes in the habitat selection of the blue wildebeest (Connochaetes
taurinus). Dynamic logistic models allow the study of temporal changes in
habitat selection in a framework consistent with resource selection functions
but without the need to segment time in distinct periods, which can be a diffi-
cult task when little is known about the process studied or may obscure
interindividual variability in timing of change. These models should undoubt-
edly find their place in the movement ecology toolbox. We provide R scripts to
facilitate their adoption. We also encourage future research to focus on how to
account for temporal autocorrelation in location data, as this would allow sta-
tistical inference from location data collected at a high frequency, an increas-
ingly common situation.

KEYWORDS
habitat selection, migration, post-release, resource selection function, seasonality, space use,
temporal variation, time-varying effects

animals do so is using the landscape they live in
differently, that is, by relocating themselves or selecting
habitats differently. This is most clearly exemplified by
migrations, which occur in response to seasonal changes
in weather and/or resource availability (Dingle, 2014).
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Changes at smaller time scales also occur, such as when
animals shift habitats in response to forage depletion or
day/night alternation in predation risk (Courbin et al.,
2019). Naturally, discovering and understanding such
changes in space use and habitat selection is a key goal of
ecologists.

Over time, habitat selection analysis (HSA) conducted
using the resource selection function (RSF) approach
(Boyce et al., 2002) has become the standard framework
for studying changes in animal habitat selection. RSF
analyses statistically compare the environmental charac-
teristics of used locations collected over a period of time
with the characteristics of locations available during that
period. As such, an RSF estimates the average strength of
selection for the various habitats considered over the
period of interest. How this period is defined is up to
the researcher, but strongly affects the results and the
associated interpretations (Mayor et al., 2009). As the
within-period variability in selection is averaged, finer
scale temporal dynamics (e.g., day/night changes when
the period covers weeks or months) in the selection are
overlooked, and the mean selection strength estimated
might represent an average that is not meaningful. This
would be the case if, for instance, the study period
encompasses two different phases in an animal’s habitat
selection behavior without the researcher being
aware of it.

Segmenting time to define biologically relevant
periods over which to conduct HSA may be difficult, and
often involves somewhat arbitrary decisions with
unknown consequences. This is true even for well stud-
ied periods like seasons (Basille et al., 2013) or day-night
periods (Richter et al., 2020). Starts and ends of seasons
vary between years, and can only be roughly defined
without ancillary data. Some seasons like spring or fall
are also clearly periods of environmental changes during
which patterns of habitat selection are unlikely to be con-
stant. Animal needs and motivations, and thus habitat
selection (Roever et al., 2014) may also change at
unpredictable (for the researcher) times, such as when
they disperse (Delgado et al., 2009). This again makes
segmentation of time into distinct periods difficult or
even irrelevant if one is interested in the dynamics of the
change itself. This issue has been recognized before and
various suggestions have been offered, from using a com-
bination of movement metrics and habitat use informa-
tion to define periods (but without estimating habitat
selection) (Basille et al., 2013), to integrating time as one
of the predictors in habitat selection models (but with a
constraint on the shape of the time dependence) (Picardi
et al., 2021), or using continuous-time movement models
(but with a complex implementation) (Hooten et al.,
2014). There is currently no simple yet flexible approach

to describe the temporal dynamics of habitat selection
that underlie the long-term, averaged, pattern revealed
by RSF analyses.

Recent developments of multistate step-selection
functions (SSF) (Nicosia et al., 2017; Prima et al., 2022)
now allow one to segment a movement trajectory, with-
out a priori knowledge, in periods differing by the way
the animal moves and selects habitats. Each period repre-
sents times when the animal is in one of a generally lim-
ited number of possible behavioral states. Being SSF
models, they do not estimate habitat selection at the
same scale as RSF models: they focus on establishing
whether habitats can explain that some “steps” (generally
over minutes or hours) are more likely than others. Thus,
while useful (see examples in Prima et al., 2022), multi-
state SSFs cannot answer the question whether the selec-
tion revealed by an RSF analysis represents a selection
constant over time, an average measure of a fluctuating
pattern of selection, or even whether contrasted selection
patterns during a period of interest cancel out in the RSF
estimation.

Here, we present how dynamic logistic regression
models allow one to easily estimate the temporal dynam-
ics of habitat selection that underlie the long-term, aver-
aged, pattern revealed by RSF analyses, without a priori
segmentation of time into distinct periods. Dynamic
logistic regression models are commonly used to analyze
binary time series in survival analysis (Martinussen &
Scheike, 2006), but can be applied to other data sources
(Fahrmeir, 1992). First, we use simulated movement data
to demonstrate that dynamic logistic regression models
can adequately recover time-varying habitat selection
coefficients. We also highlight the influence of parame-
ters, whose values are under the researcher’s control, on
the estimation process. Second, we illustrate the useful-
ness of the approach by applying time-varying HSA on
blue wildebeest (Connochaetes taurinus) tracking data,
showing how one can describe temporal variations of ani-
mal habitat selection such as diel, seasonal, and
post-release changes. The relevant R scripts are provided
to facilitate the adoption of the method by ecologists.

METHODS

Dynamic logistic models for
time-varying HSA

General principles of dynamic logistic models
Here, we briefly describe the discrete time state space

model developed by Fahrmeir (1992) to estimate
time-varying coefficients from generalized linear models,
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especially logistic models. Generally, discrete time state
space models relate observations over time to hidden
parameters, with hidden parameters following a
Markovian transition model (Auger-Méthé et al., 2021).
Applied to dynamic logistic regressions in the context of
time-varying HSA, such a model can be formulated using
the following equations:

logit(p,) = B0 + BraXe1 + o+ BryXem, (1)
Bt:Bt—1+vf’ Wlth vtNN(O’Q)a (2)

with p, = Pr(y, =1) the probability of the binary response
variable y, being one (i.e., used versus available),
(Bios--»Br) the hidden parameter vectors (ie., time-
varying selection coefficients), (x;1,...,X;,) the covariates
(i.e., environmental layers), v; the error process (i.e.,
sequence of independent random variables), Q the
covariance matrix of the Markov chain that contains
values that will affect the smoothness of the estimated
time series of habitat selection coefficients. Here, follow-
ing Fahrmeir (1992) and Christoffersen (2021, 2022), we
used a simple first-order random walk model for the state
equation (Equation 2). See Christoffersen (2021) for
details on second-order random walk model formulation.
The covariance matrix Q is a symmetric matrix of n+1
dimension, with initial values chosen by the experi-
menter (see the Implementation in the context of HSA
section to determine initial values) and then estimated
during the fitting process (see below).

The model coefficients and the values of the covari-
ance matrix over time are estimated from the EM algo-
rithm described by Fahrmeir (1992). First, the E-step
procedure recursively iterates prediction, correction, and
smoothing steps to approximate and maximize posterior
mode estimations of model coefficients, using the gener-
alized extended Kalman filter and smoother algorithm
described by Fahrmeir and Kaufmann (1991). Second,
the M-step procedure automatically updates the covari-
ance matrix over time. A more comprehensive descrip-
tion of the EM algorithm is provided by
Christoffersen (2021).

Implementation in the context of HSA

The following steps are required to conduct time-varying
HSA using dynamic logistic models. First, as in RSF ana-
lyses, a sample of locations that could be considered
“available” is drawn. This can be, for instance, locations
sampled randomly within the animal home range. Each
used location (y, =1) obtained at time ¢ is paired with N
random locations (y;, = 0). Each used and available

location is then characterized using environmental vari-
ables or any other variable of interest (x¢1,...,Xn).
Finally, the time-varying parameters (B,;,...,B;,) are esti-
mated by fitting a dynamic logistic model, with the type
of location (used vs. available) as the response variable y,
and the time series x; , as predictors (cf. Equation 1).

Note that caution is required when estimating
time-varying habitat selection coefficients from location
data collected at relatively high frequency. Classical RSF
and the model presented here do not account for tempo-
ral autocorrelation in location data. In particular, it is
assumed that, within the time interval between two loca-
tions, the animal could relocate anywhere in the area in
which random locations are drawn. When this is not the
case, estimates of habitat selection coefficients are unbi-
ased but their standard errors are biased downward; that
is, they are too small. In this situation, one may either
subsample data to a lower frequency to obtain a valid sta-
tistical inference, or remain within the framework of a
descriptive analysis aiming at exploring data, for instance
for gaining insights on the possible existence of frequent
habitat selection changes.

Here we fitted the dynamic logistic model using the
“ddhazard” function from the dynamichazard R package
by Christoffersen (2021), which implements the method
described by Fahrmeir (1992). In Dejeante et al. (2023a),
we provide the script needed to run a time-varying HSA
on a simulated trajectory; the model fitting takes ~3 s on
this dataset, on a PC with an Intel(R) Xeon(R) CPU
E5-1650 0 @ 3.20GHz.

General guidelines to initialize the wiggliness
parameter (Q)

To fit a dynamic logistic model, one needs to first provide
initial values to fill in the covariance matrix, diagonal at
initialization, and initiate the estimation process. Here, we
provided the same initial values for all diagonal elements
(referred to as Q hereafter). As this initial value can greatly
affect the wiggliness of the model (see Results), we also
refer to Q as the wiggliness parameter. While using cau-
tion is thus required when choosing the initial value of Q,
our results show that this value can be increased until
(1) the estimates of Q after fitting converge toward a simi-
lar value (Appendix S1: Figure S1) and (2) the estimated
coefficients of habitat selection converge to a similar value
too (Appendix S1: Figure S2). Hence, we encourage users
of the model to test several initial values for Q. One way to
select among them is by looking at the correlations
between the estimated values of Q after fitting and/or the
correlations between the time series of the estimated
time-varying coefficients (Appendix S1).
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Evaluation of the accuracy of dynamic
logistic models for time-varying HSA

To assess the ability of our approach to detect shifts in
habitat selection patterns, we (1) simulated animal trajec-
tories emerging from time-varying selection for one envi-
ronmental variable, and (2) fitted dynamic logistic
models on the simulated data to compare the estimated
coefficients with the theoretical values used in the
simulations.

Landscape and movement simulation

For simplicity, animal trajectories were simulated on one
habitat layer (500 x 500 cells), with values that did not
vary over time. To mimic patchy landscapes, we used
spatially correlated Gaussian random fields, which attri-
bute a continuous value ranging from 0 to 1 to each cell,
using the localGibbs R package (Michelot, Blackwell, &
Matthiopoulos, 2019). Following Michelot, Blackwell,
and Matthiopoulos (2019), we then simulated animal tra-
jectories over 500 time steps using a local Gibbs move-
ment model. For each time ¢, 1000 potential locations
were uniformly generated within a 2 X 100-pixel radius
around the current location, and the location at time
t + 1 was sampled among them with probabilities propor-
tional to the strength of selection for potential locations.
This strength of selection was determined by the value of
the habitat layer at these locations, and by the model
coefficient describing how the strength of selection
changes with values of the habitat variable. An important
benefit of using a local Gibbs model is that the coefficient
of habitat selection used in the simulation model is theo-
retically equal to the one that should be estimated by an
RSF fitted on the data (Michelot, Blackwell, &
Matthiopoulos, 2019). The local Gibbs model, however,
does not allow one to directly simulate animal trajecto-
ries with time-varying habitat selection coefficients.
Hence, at each time ¢, we changed the value of the coeffi-
cient of the local Gibbs model to generate the location at
time t + 1, based on the location and on the coefficient
at time ¢.

Scenarios of temporally changing habitat
selection

To test whether changes in habitat selection strength
could be robustly recovered by dynamic logistic models,
we built scenarios that differed in terms of how often the
model’s coefficient of habitat selection changed over
time. We did so by random sampling, in the [-5, 5]

range, and either changing every 20 steps (referred to as
the “frequent change” scenario) or every 250 steps
(referred to as the “rare change” scenario) the model’s
habitat selection coefficient. To avoid having sudden,
step-like, changes in habitat selection, we then used
spline regressions to smooth the variations of habitat
selection over time. For each scenario, we generated
100 trajectories per simulated landscape, and replicated
this on 100 different landscapes. We then tested our abil-
ity to recover the temporal changes in the model’s habitat
selection coefficient by fitting a dynamic logistic regres-
sion model to each trajectory as presented above, drawing
100 available locations at each time step within the 99%
utilization distribution location-based kernel of each sim-
ulated trajectory. We also assessed to what extent the
model’s estimation was affected by the value of
the wiggliness parameter Q. We did so by fitting, for each
dataset of each scenario, a set of models with different
values of Q, ranging from 0.01 (i.e., low wiggliness) to
2 (i.e., high wiggliness). For each value of Q, we then
averaged the estimated coefficients over each set of
100 simulated trajectories per landscape, and fitted a lin-
ear regression with the mean estimated coefficient as
response and theoretical coefficients, which were used in
the simulations, as predictors, adding a random intercept
with replication number. A slope near 1 would indicate
that a dynamic logistic model is able to estimate the tem-
poral changes in the habitat selection coefficient cor-
rectly, and an intercept near 0 would indicate that the
estimations are not biased.

In addition, to demonstrate that the time-varying
HSA approach reveals the temporal dynamics of the
selection process that is commonly studied using RSF
analyses, we averaged the time-varying coefficients esti-
mated from 5000 trajectories (of 500 time steps each) cov-
ering a broad range of selection patterns and landscape
composition, and compare these values with the coeffi-
cients estimated by a conventional RSF analysis on the
same trajectories.

Time-varying HSA: Applications

To illustrate some applications of time-varying HSA, we
analyzed wildebeest movement datasets collected in
Hluhluwe-iMfolozi Park (South  Africa). There,
surface-water availability, which is high during the wet
season (October to March) as temporary waterholes are
filled up by the rains, becomes low in the dry season
(April to September), with water remaining available
only in a few rivers. Because wildebeests are
water-dependent grazers that preferentially forage in
open grasslands, we used the distance to the closest main
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river and the habitat openness as relevant habitat vari-
ables to demonstrate the use of dynamic logistic models.
For each study below, we fitted the models with a rela-
tively high value for Q (Q = 2), as simulations showed
that high wiggliness in the estimates led to better results
(see Results section). We used the amt R package to gen-
erate random points and extract the values of predictors
at used and available locations (Signer et al., 2019).

Short-term temporal variations: Diel changes in
habitat selection

We used tracking data collected on one wildebeest over
1 month in the dry season, at a fixed rate of one location
every 15 min. In the context of the model presented here,
such data are highly autocorrelated and estimated stan-
dard errors and confidence intervals are likely to be biased
downward. Interpretation of results should therefore be
done with caution. Habitat selection coefficients remain
however estimated without bias, and we included the
analysis here to show how it allows exploring changes in
habitat selection at short time scales. Other analyses, more
statistically robust, are presented below.

Following the practical implementation of
time-varying HSA described above, we estimated the habi-
tat selection of this wildebeest by (1) generating, for each
time ¢, 100 random locations within its home range (99%
utilization distribution location-based kernel),
(2) extracting the environmental characteristics of used
and random locations, and (3) fitting a dynamic logistic
regression to compare the habitat openness and the dis-
tance to the closest main river between the used and avail-
able locations over time. A preliminary visual inspection
of the GPS tracking data suggested day/night relocations
of the wildebeest (Appendix S2: Figure S1). To check
whether these changes were associated with changes in
habitat selection, we estimated the temporal autocorrela-
tion of the time-varying habitat selection coefficients.

Long-term temporal variations: Seasonal
changes in habitat selection

We used tracking data collected on one wildebeest over
1year at a fixed rate of one location every 15 min. To
avoid issues related to the temporal autocorrelation in
location data, and because the temporal scale of the anal-
ysis does not require locations to be collected at such a
high frequency, we subsampled our dataset to one loca-
tion per day and one location per night. A preliminary
visual inspection of the spatial data showed that the indi-
vidual moved mostly westward and then eastward during

the period (Appendix S2: Figure S2). Hence, in addition
to habitat openness and distance to the closest river, we
added longitude to the model’s predictors. We generated
10 random locations per time ¢ within its home range to
fit the time-varying HSA. To provide an example of how
one can subsequently delineate temporal periods that are
homogeneous in terms of habitat selection, we further
segmented the time series of each model’s coefficients
separately, using the segmentation method described,
and implemented in the segclust2d R package, by Patin
et al. (2020).

Event-based variations: Post-release changes in
habitat selection

We used the tracking data of three wildebeests simulta-
neously introduced into the park in October 2020. Data
were collected over the 100 days following the release
date, at a fixed rate of one location every hour. As in the
previous analysis on the long-term temporal variations of
wildebeest’s habitat selection, we subsampled the dataset
to one location per night and one location per day to
avoid issues with the temporal autocorrelation in location
data. We then estimated wildebeest habitat selection by
drawing 100 random locations, for each time ¢, within
their individual home ranges. To incorporate the dis-
persal of the released individuals into HSA, we added
longitude and latitude to the model’s predictors. Hence,
we fitted a dynamic logistic model for each individual,
using habitat openness, distance to the closest river, lon-
gitude, and latitude as predictors.

RESULTS
Theoretical evaluation

In general, we found that dynamic logistic models
allowed us to adequately recover the temporal changes in
the coefficients of habitat selection used in the simula-
tions. When the true coefficients did not often change
(“rare change” scenarios), the wiggliness parameter had
little impact and estimations were always good
(Figure 1a,b; Appendix S1: Figure S3). When the true
coefficients did often change (“frequent change” scenar-
ios), it became critical to use high values of the wiggliness
parameter to obtain estimates matching the theoretical
coefficients (Figure 1c,d; Appendix S1: Figure S3).
Importantly, the effect of the wiggliness parameter
tended to stabilize at large values of Q (Appendix S1:
Figure S4), making it safe to use large values when inves-
tigating large and frequent changes in habitat selection.
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The average of the time-varying coefficients was
nearly equal to the coefficient estimated by a conven-
tional RSF (Figure 2a), demonstrating that the
time-varying HSA approach addresses the same selection
process as the one studied by conventional RSF analyses,
while providing more information as it describes the tem-
poral dynamics of selection. Also, it can reveal whether
the coefficients of an RSF are biologically relevant (when
time-varying selection coefficients have uni-modal distri-
butions; Figure 2b) or not (when time-varying selection
coefficients have multimodal distribution; Figure 2c), and
RSF coefficients represent a statistical average that never
represents the true selection process.

Short-term temporal variations: Diel
changes in habitat selection

A time-varying HSA conducted with a dynamic logistic
model suggested that the wildebeest’s selection for open
habitats and rivers varied greatly over the 1 month of the
study (Figure 3). In particular, the wildebeest’s selection
for open habitats apparently changed across the
day/night cycle, as the autocorrelation period of the coef-
ficient was approximately 24 h (Appendix S2: Figure S3).
Open habitats seemed to be strongly selected during
night-time, but not selected, and sometimes even
avoided, during daytime (Figure 3a). Such day/night
shifts were not noticeable for the selection of areas close
to rivers (Figure 3b), but there seemed to be variations
over periods of 3 or 4days. Contrary to the diel
variations in the selection of open habitats, such varia-
tions would be hard to detect using the common HSA
approach based on a segmentation of time into distinct
periods.

Long-term temporal variations: Seasonal
changes in habitat selection

The time-varying HSA showed clear seasonal changes in
the wildebeest’s habitat selection, which could then be
separated into several periods according to the segmented
time series (Figure 4). The existence and timing of some
of these periods were unpredictable a priori. For example,

FIGURE 1 (a-d)Estimated coefficient of habitat selection
(purple) according to the frequency of change of the expected
coefficient (yellow) and to the value of the model wiggliness
parameter Q. The estimated coefficient is averaged on

100 simulations. Lighter ribbons show standard deviation, and
darker ribbons show 95% confidence intervals.

85U8017 SUOWIWOD 3A11e81D) 3ol jdde ayy Aq peuenob ae sajole YO ‘SN JO Sa|nI 0} Aiq1 T 8UlUO AS|IA LD (SUOHIPUOD-PUE-SWLBIL0D A3 1M A1 1[BUl[UO//SdNL) SUONIPUOD PUe SWie 1 84} 88S *[7202/T0/62] U0 AkeiqiTauliuO AB]IM ‘UoIessay 91PN UedLyY LINoS AQ £62tA99/200T OT/I0p/uod"Aa|IM Afeid 1jpulUO'S feuInofesa//sdny Wwolj pepeojumod ‘0 ‘0LT66E6T



ECOLOGY

| 7 0f 12

(a) 4]

N

Coefficient (tv-HSA)
o

-2
-4 i
-4 -2 0 2 4
Coefficient (RSF)
(b) Q=2 Frequent change scenario
0.151 —— RSF
> 0.101
i)
c
a
0.051
0.001
-5 0 5
Coefficient
(c) Q =2 Rare change scenario
0.251 —e— RSF
0.201
2 0.151
(]
o
a 0.10
0.05
0.00 1
0.0 2.5 5.0
Coefficient

FIGURE 2 Comparison between time-varying habitat selection
analysis (HSA) and conventional resource selection function (RSF).
(a) Relationship between the coefficients of habitat selection
estimated from time-varying HSA and averaged over the time series,
to the RSF coefficient. Each dot shows the coefficients estimated
from the trajectory of one individual simulated over 500 time steps.
(b, c) Examples of the distribution of the time-varying coefficients.
The vertical line shows the average value of the time-varying
coefficients, whereas the point and range above the distribution
shows the RSF coefficient and its 95% confidence interval.

this wildebeest maintained the same overall strength of
selection for open habitats from November to August,
whereas this period covers months from both the dry and
wet seasons (Figure 4a). Also, we note that during the
dry season (April to June) this wildebeest did not prefer-
entially use areas close to rivers, but selected areas close
to rivers consistently from July to mid-August (green seg-
ment) and probably made back-and-forth trips to and
away from the rivers from mid-August to October (yellow
segment; Figure 4b).

Event-based variations: Post-release
changes in habitat selection

After their release, the three wildebeest generally selected
open habitats, but their level of selection differed
between individuals (Appendix S2: Figure S4), particu-
larly toward the end of the study period (Figure 5a).
Differences in the selection for areas close to rivers
(Figure 5b) or in the longitude (Figure 5c) and latitude
(Figure 5d) of the park also became apparent at the end
of the first month after release. Then, although the three
wildebeest established in different areas (see difference in
selection for longitude and latitude), the selection of
areas close to rivers remained and was similar for two
wildebeests (colored in green and yellow), whereas the
third one avoided the areas close to rivers (colored in

purple).

DISCUSSION

There is clear evidence that animals’ habitat selection
changes regularly and at different time scales, from diel
to seasonal shifts, or during key life-history events such
as dispersal. Unfortunately, ecologists have had limited
and often unsatisfactory options to study these changes.
Most commonly, an a priori segmentation of time into
distinct periods of apparent biological relevance is made,
although this segmentation can sometimes be difficult to
justify, let alone validate. The alternative approach of
simply integrating time as a predictor in an RSF has limi-
tations (see discussion in Picardi et al., 2021), and more
statistically complex approaches (Hooten et al., 2014) are
unlikely to be broadly used. In this work, we propose a
novel approach based on dynamic logistic models
(Fahrmeir, 1992) to estimate temporal changes in habitat
selection easily, in a framework consistent with RSF. We
demonstrate, using simulations, its general validity, while
highlighting a point of attention (parameter Q). We also
showcase its use for the study of diel, seasonal, and
post-release changes in habitat selection.
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FIGURE 3 Estimations of short-term temporal variations of wildebeest’s selection for open habitats (a) and areas close to rivers (b).

Positive coefficients indicate selection for open habitats or areas far from rivers. Ribbons show 95% confidence interval. Note, however, that

location data used in this analysis were collected every 15 min, probably leading to confidence intervals biased downward (i.e., too small)

because of autocorrelation. The selection coefficients are however unbiased. The night phases are shown by dark colors in the background.

With this time-varying HSA approach, one can simul-
taneously estimate both the timing and the amplitude of
habitat selection changes. Estimation of the timing
of change from the data is what makes this approach
novel and attractive. Many times, a priori segmentation
of time into distinct periods requires expert knowledge or
is based on ancillary data (e.g., climate data) whose rele-
vance for a particular dataset is not warranted. “Letting
the data speak” allows for revealing the actual pattern of
change. This may be of particular importance, for
instance, in the study of interindividual variability, as the
timing of change can be one of the differencing variables,
as evidenced in our post-release study case. As recognized
by Picardi et al. (2021), time-varying HSA opens a new
avenue to broaden the scope of the studies of
interindividual differences in space use, which has so far
focused on movement characteristics or habitat selection
strength. More generally, even when the relevance of an
a priori segmentation of time into distinct periods is eas-
ier to ascertain, such as when comparing daytime to
night-time habitat selection, time-varying HSA allows
one to immediately identify unusual periods (e.g., night

of 27 August, when the wildebeest did not increase its
selection for open habitat). These unusual periods may
either be of interest (in such case, one would have to con-
duct one standard HSA per night to have discovered
this), or be “noise” that should not affect the estimation
of habitat selection strength during more “usual” periods
(conversely to what occurs in a standard HSA).
Importantly, data-driven estimation of the timing of
change in habitat selection makes it possible to derive
“segments” of homogeneous habitat selection, and opens
the way to estimate specific habitat selection “modes” of
animals defined by the strength of habitat selection.
Behavioral modes relevant to space use are commonly
defined by movement characteristics such as speed and
turning angles (McClintock & Michelot, 2018; Patin
et al., 2020), but do not integrate information about habi-
tat selection. The use of segmentation-clustering algo-
rithms such as segclust2d or hidden-Markov models on
the time series coefficients obtained by time-varying HSA
will allow one to extract habitat selection modes and to
estimate the duration and frequencies of such modes.
This could complement very recent works developing
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FIGURE 4 Estimations of long-term temporal variations of wildebeest’s selection for open habitats (a) and areas close to rivers (b).

Positive coefficients indicate selection for open habitats or areas far from rivers. Ribbons show 95% confidence interval. Data used in this

analysis were subsampled to one location per night and one location per day to avoid issues with autocorrelation. Common definitions of

wet (blue) and dry (red) seasons are shown in the background in panels (a, b). Lines and ribbons are colored on a purple-to-yellow gradient,

with colors corresponding to segments of homogeneous habitat selection, as obtained with the segclust2d approach.

behavioral-mode detection approaches based on SSF
(Klappstein et al., 2022; Nicosia et al., 2017; Prima et al.,
2022), although by definition the temporal scale of selec-
tion considered is much different.

Despite that, rigorously, conventional RSF models are
not time series models, our approach is closer to the RSF
than to the SSF framework. Indeed, by generating ran-
dom points within the whole animal’s home range, the
estimated time-varying coefficients measure when an
animal is spending time in a “rare” habitat relative to its
large-scale availability. The selection process measured
here is the fact that animals move and stay in rare habi-
tats over time, and not the “step” selection resulting from
the animal’s choice within the steps allowed by the sam-
pling rate. Hence, we make the biological and statistical
assumption that the animal’s habitat selection at time
t depends on the history of the animal’s habitat selection
up to t (Fahrmeir, 1994). An example of why such an
assumption makes sense is animal migration: once
established in a new range, coefficients from an SSF

(i.e., fine scale) would not show a selection for this new
range, while coefficients from an RSF (i.e., large scale)
would show a selection for such areas when considering
the whole study area as available.

One common use of habitat selection modeling is to
predict and map population distribution within land-
scapes (Morris et al., 2016). How to best map predicted
space use from a time-varying HSA is not obvious as coef-
ficients are, by definition, time-varying. However, one
can perform a time-varying HSA to detect temporal
periods of homogeneous habitat selection (as done in this
work), and use the average of coefficients to predict the
distribution of space use within the periods of interest,
which for instance could be seasons. When habitat selec-
tion is continuously changing, it does not make sense to
predict a static distribution, either from a conventional
RSF or from a time-varying HSA. A time-varying analy-
sis, however, allows one to actually verify whether habi-
tat selection is changing or not over the period of
interest.
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Results from the time-varying approach proposed
here are, to some extent, sensitive to the model’s
wiggliness. In particular, but without surprise, a model
allowing for little wiggliness (small values of Q) can pro-
vide a poor fit to the data when habitat selection often
changes. Models allowing for high wiggliness generally
perform much better, especially if habitat selection often
changes. There was no obvious evidence of an optimum
value of Q to look for, as correlations between the esti-
mates of habitat selection plateaued when increasing
Q values. Therefore, running a time-varying HSA with a
high value for Q appears to be a safe way to conduct
robust analyses. Note however that dynamic logistic
models do not account for the temporal autocorrelation
that could characterize the used locations if these were
collected at a high frequency, relative to the movement of
the animal. In such cases, the estimated standard errors
of the models’ coefficients would be biased downward
(i.e., be too small), which could lead to overconfident
interpretations. Some movement modeling frameworks
such as integrated SSF (Avgar et al., 2016), MCMC move-
ment models (Michelot et al., 2020) or continuous-time
models (Michelot, Gloaguen, et al., 2019) naturally
account for autocorrelation. These models however esti-
mate average habitat selection at the temporal scale of
data collection (SSF and MCMC models) or at a
near-instantaneous scale (continuous-time models),
which may not be what ecologists are interested in when
they focus on large-scale behavioral decisions.
Continuous-time models could have time-varying formu-
lations (Michelot et al., 2021), but unfortunately fitting
these models is computationally heavy and thus slow.
The RSF framework and dynamic logistic models remain
therefore attractive. How to best account for temporal
autocorrelation in location data in RSF models is cur-
rently being studied (see Alston et al., 2023), and
we encourage future research to focus on how to account
for temporal autocorrelation in dynamic logistic models.
As the estimation of the coefficients themselves is not
biased in the presence of autocorrelation, the analysis
of high-frequency data with dynamic logistic models
could still be useful to obtain a visual description of
the temporal trend in habitat selection if interpreted
with caution.

In conclusion, we think dynamic logistic models offer
an easy yet powerful approach to conducting
time-varying HSA for both exploratory and inferential
studies. Our work, in which we show real-world applica-
tions and provide R scripts, aims to facilitate the appro-
priation of the method by ecologists and enrich their
statistical toolbox. Novel questions about how animals
time their response to environmental changes can now
be addressed.
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