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Abstract

We analyse a formulation of the quantum Wasserstein distance of order 1 and
set up a general theory leading to a Wasserstein distance of order 1 between
the unital maps from one specific algebra to another specified algebra. This
gives us a metric on the set of unital maps from one composite system to
another, which is deeply connected to the reductions of the unital maps. We
use the fact that channels are unital maps with extra structure, to systemati-
cally define a quantum Wasserstein distance of order 1 between channels, i.e.,
a metric on the set of channels. Lastly, the additivity and stability properties
of this metric are studied.

Keywords : quantum optimal transport; quantum Wasserstein distance of
order 1; quantum channels; quantum states; composite systems

ii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Acknowledgements

I thank everyone who has contributed to my academic journey thus far. First
and foremost, I thank my supervisor, Professor Rocco Duvenhage, for accept-
ing me into his research group. During the three years I’ve worked with him,
he has made an invaluable contribution to my growth as a student researcher.
His continuous support and humble approach to research is an inspiration.

Additionally, I thank my family and friends for their patience, financial
assistance and moral support over the last few years.

Lastly, I would like to acknowledge the financial assistance from my super-
visor, South Africa’s National Institute for Theoretical and Computational
Sciences (NITheCS) and the South African National Research Foundation
(NRF).

iii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Index of Symbols and
Conventions

∥·∥ : Standard norm, sometimes denoted with a subscript.
R : Field of real numbers.
C : Field of complex numbers.
N : Standard set of all natural numbers.
F : Abitrary field, in this dissertation, this represents

C or R.
inf(A) : Shorthand notation for the infimum of set A.
sup(A) : Shorthand notation for the supremum of set A

limn→∞ xn : limit of (xn) as n tends to ∞.
|·| : Modulus of complex numbers.

Mn(A) : The algebra of n× n matrices with entries from
a C*-algebra A.

Mn : The algebra of n× n matrices with complex entries.
Mn,m : The algebra of n×m matrices with complex entries.
1A, In : 1A is a unit of an algebra A and In is the unit of

Mn.
x∗ : The adjoint of x ∈ A for A some *-algebra.

Inv(A) : The set of all invertible elements of some algebra A.
σ(x) : Spectrum of an element x of some algebra.

L(A,B) : Space of linear maps A→ B.
L(A) : Shorthand notation for L(A,A).
ηi ◦ ηj : The composite map of linear maps ηi and ηj,

see for example Eq. 6.1.
A′′ : Algebraic dual of an algebra A.
c.p. : Short for completely positive map.

u.c.p. : Short for unital completely positive map.
⊕ : Direct sum.

spanF : Span of some set over scalars from field F. If there is
no subscript, take the span over the field of the
vector space containing the set.
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⟨·, ·⟩ : Inner product.
H,HA : A Hilbert space and a Hilbert space of some system

A respectively.
B(H) : The set of all bounded operators of some Hilbert

space H.
A⊙ B : Algebraic tensor product between spaces or algebras

A and B.
A⊗B : Complete tensor product between spaces or

algebras A and B.
a⊗ b : Elemenetary tensor of two elements from some

vector spaces over F.
A×B : Cartesian product of spaces A and B.
Cd : Standard d-dimensional complex vector space.

|ψ⟩ , ⟨ψ| : A vector and its adjoint in Dirac notation.
⟨·|·⟩ : Inner product in Dirac notation.

|ψ⟩ ⟨ϕ| : An operator in Dirac notation defined by
(|ψ⟩ ⟨ϕ|) |δ⟩ = ⟨ϕ|δ⟩ |ψ⟩ for any |δ⟩
in some inner product space.

A+ : The set of the positive elements of some algebra A.
Tr : The usual trace of a matrix.
Tri : The partial trace, see Eq. 4.9.

ConvC : The convex hull of some set C.
W1 : Wasserstein distance of order 1.
Aĵ : Tensor product space with jth factor left out.

|Aĵ
: Restriction of a map to the subspace Aĵ.

ηĵ : A map η restricted to a map between tensor product

spaces that have the jth factor left out, see Eq.4.11.
AT : The usual transpose of a matrix A.
TB : Partial transpose, see Eq.5.6.
δjn : The Kronecker delta.
idA : The identity map on algebra A.

K(A,B) : Space of u.c.p. maps between C*-algebras A and B.
Lu(A,B) : Set of pointed maps, see Defn. 6.1.2.

idA : The identity map on algebra A.
uA : A distinguished element of the space A.

(A,B, ν,L) : The pointed (W1, n) structure, see Defn. 6.3.3.
x ⋊⋉ y : Operator defined through (x ⋊⋉ y)z = xν(⟨y, z⟩η)

for all z ∈ Gη, see the proof of Prop. 7.1.1.
Pn : Collection of non-empty proper subsets of {1, . . . , n}.
J ′ : The complement of a set J ∈ Pn.
|J | : The cardinality of a set J ∈ Pn.
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AJ : Tensor product of Aj’s for all j ∈ J and any J ∈ Pn.
ηJ : The reduction of a map to any J ∈ Pn.
SJ : A set of maps that are reduced to any J ∈ Pn.
⊙⃗, ⊗⃗ : Tensor product indicating a specific order, see page 72.

αIJ , β
0
IJ : An ordering maps for tensor product algebras,

see page 72.
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Chapter 1

Introduction

Recent developments in quantum computing stimulate the growth of quan-
tum information theory, with one of the aims being the comparison of quan-
tum states. In classical information theory, two probability distributions can
be compared through something called optimal transport. Optimal transport
deals with finding the optimal cost of changing a probability distribution A
into another probability distribution B. A nice way of visualizing how the
transport part comes into the picture (making this a dynamical situation) is
by letting the probability distribution A be a pile of balls while B is a pile of
holes and assuming that moving a ball from A into a hole in B is associated
with some unique cost. In this case, the main aim of optimal transport would
be to compute the minimum (or lowest) cost of moving the balls (all of them)
from A into the holes in B. The minimum cost is what is used to define the
Wasserstein metrics (or distances).

In classical optimal transport, Wasserstein metrics have a wide range of
applications, from physics to artificial intelligence. This leads to the expec-
tation that these metrics will be equally important in quantum physics.

A number of approaches to formulating the quantum versions of the
Wasserstein metrics and quantum optimal transport are under active devel-
opment and being intensively investigated. See for example [12], [13], [14],
[18], [16], [20], [29], [30], [33] and [68]. Every approach has its own advantages
(the major differences will be covered towards the end of this introduction).

The framework provided by operator algebras and functional analysis is
a natural setting for much of this development. For finite dimensional state
spaces, the special case provided by linear algebra is sufficient as a framework
for developing quantum optimal transport. For the infinite-dimensional case,
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CHAPTER 1. INTRODUCTION

the theory of operator algebras and functional analysis become indispensable
(this dissertation is a clear example of this).

Reference [29] (referred to as the DMTL in the remainder of this disser-
tation) introduces a quantum Wasserstein distance of order 1 between the
states of a composite system with a finite dimensional state space, as a nat-
ural and very effective distinguishability measure with a number of desirable
properties.

This dissertation is devoted to devising a distance between channels which
is natural in the context of composite systems by analysing [29]’s approach.
The ability to distinguish and quantify how far or different a real quantum
channel is from an idealised channel is of great interest in quantum informa-
tion theory. There are various other measures for this, each with its pros and
cons [37]. In the DMTL approach the quantum W1 distance has properties
that are desired for quantum channels [11].

The metric resulting from the DMTL approach can be viewed as a quan-
tum version of Ornstein’s d̄ distance [58]. While we use some of the core ideas
of the DMTL approach, the extension to infinite dimensions and to unital
maps (including channels), involves significant changes in the approach, in-
cluding concepts and techniques not present in the finite dimensional case for
states. Although the term Wasserstein distance is typically used for states
(or probability distributions in the classical case), we nevertheless continue
to use the term in the cases of unital maps and channels as well.

The infinite dimensional setting of this dissertation is expressed in terms
of C*-algebras as a generalization of the matrix algebras Md (Chapter 4 is
a clear outline of this). We obtain a metric on the set of all channels from
one composite system to another, where both consist of n systems. The case
of states is obtained when the channels are taken to map to the complex
numbers. In particular, the DMTL approach is recovered when restricting
to finite dimensions, specifically to the algebras Md.

The DMTL approach starts with the concept of neighbouring states, a
form of which was introduced earlier in [1]. Broadly speaking, our approach
is to extend the idea of neighbouring states to neighbouring channels. This is
done through the reduction of channels. Given a channel from one composite
system to another, choose the j’th system in each, and reduce the channel
to the remaining systems. If two channels give the same channel after this
reduction for some j is applied to both, we consider them to be neighbouring

2
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CHAPTER 1. INTRODUCTION

channels. I.e., two channels are called neighbouring if they coincide after
the removal of two corresponding systems from the two composite systems
respectively. The neighbouring channels are then used to build a unit ball
leading to a norm on a certain space of linear maps and ultimately to a dis-
tance between any two channels. More precisely, we obtain a metric on the
set of channels from the one specific composite system to the other. All this
is illustrated concretely in finite dimensions in Chapter 5.

One of our intentions is to highlight the general mathematical structure
behind the quantum Wasserstein distance of order 1, through an abstract
approach (with the metric obtained in Chapter 2 as the starting point). This
involves first setting up the theory in general vector spaces, and subsequently
algebras, without reference to any positivity conditions on the maps between
these spaces. The C*-algebraic framework, with the maps taken as chan-
nels (unital completely positive maps between C*-algebras), is obtained as a
special case of the abstract setup. This clarifies the overall structure of our
approach, in particular, where and how complete positivity is used, and po-
tentially allows for cases other than C*-algebras and channels between them.

In order to clarify our basic approach, we give an abstract DMTL ap-
proach in the next chapter. We then discuss the finite dimensional cases of
states and channels. The C*-algebraic framework is a generalization of the
finite dimensional cases, and is very natural and relevant from the view of
quantum physics. The dissertation is written in such a way that the main
thread and results in the C*-algebraic case can be followed without going
through the more abstract approach mentioned above. The finite dimen-
sional situation is in turn obtained as a simple special case of the C*-algebraic
framework. The proofs of our results do depend on the abstract development,
though.

Chapter 2 defines an abstract norm, as a result of analysing the mathe-
matical structure of the DMTL approach. This includes the necessary back-
ground in relation to unit balls and norms that features throughout the rest
of this dissertation. Chapter 3 introduces the operator algebraic framework
(a summary, for cases where a reader is not that familiar with operator al-
gebra theory).

For the case of states, Chapter 4 gives an alternative but equivalent way
of defining the quantum W1 distance between states (when compared to the
DMTL approach).

3
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CHAPTER 1. INTRODUCTION

Chapter 5 gives an outline of our approach for channels in finite dimen-
sions, in a form that allows for a clear comparison to the DMTL approach.
It can be viewed as an extension of this introduction, explaining some of the
goals and motivation for this dissertation, but it also serves as an overview
for readers whose main interest is the finite dimensional case. Section 5.1 re-
views basic background related to channels, while Sections 5.3 and 5.4 take
an initial step in developing the theory behind the Wasserstein distance of
order 1 between channels.

Chapter 6 and chapter 7 develop the abstract theory to obtain our Wasser-
stein distance of order 1. The reader can in fact skip these two chapters upon
initial reading, and go directly to Section 7.3. There the definition and main
results leading to the Wasserstein distance of order 1 between channels in
the C*-algebraic framework, are presented with no reference to Chapters 6
and 7, although the proofs depend on those two chapters. Note that we’ll
usually simply say “Wasserstein distance” instead of “quantum Wasserstein
distance”, since our theory contains the special case of abelian C*-algebras.

The dissertation then proceeds to the behaviour of the Wasserstein dis-
tance of order 1 with respect to subsystems of the composite systems, i.e.,
when we consider smaller composite systems consisting of a subset of the
original systems. The main result here is that this Wasserstein distance is
additive over tensor products of channels between such subsystems, with
stability as a special case. Again this result is first approached abstractly in
general vector spaces, before the C*-algebraic case is presented. As before,
the reader can page directly to Section 8.4 after Section 7.3, to see the C*-
algebraic results with a minimum of direct reference to the abstract theory,
although the proofs again rely on the latter.

To conclude this introduction, we briefly discuss previous work.

The study of quantum channels, including mathematical techniques to
analyse them theoretically, remains undeniably important. Refer for exam-
ple to [15, 43, 50] for an overview of a variety of aspects of quantum channels
and their significance. In particular, there have been other approaches to
distances between channels, in relation to channel discrimination. For ex-
ample, the diamond norm, also called the completely bounded trace norm;
see [48, 3] for early work in connection to quantum computation, and [69,
Section 3.3] for a more general finite dimensional overview in the context of
quantum information. Refer to [37] for a broader perspective on distances
between channels.

4
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CHAPTER 1. INTRODUCTION

On the other hand, there has also been much effort to obtain quantum
(or noncommutative) Wasserstein distances between states. Papers obtain-
ing Wasserstein distances (with a focus on order 2) which are actual metrics
on sets of quantum states, include [5, 12, 13, 14, 16, 18, 20, 33, 44, 70]. These
papers follow different approaches from this dissertation and [29], and to a
large extent from one another. Broadly speaking there have been two main
approaches, in analogy to the classical case: a coupling (or transport plan)
approach [5, 20, 33] and a dynamical approach [12, 13, 14, 16, 18, 44, 70].
The book [67] includes a nice introduction to the former, while [4] is the
origin of the latter. The DMTL approach and this dissertation, can roughly
be classified as part of the coupling approach. Other papers using the cou-
pling approach, though not obtaining all the usual metric properties, in-
clude [30, 38, 39, 40]. Papers treating various other approaches than [29]
to noncommutative or quantum Wasserstein distances of order 1, include
[2, 14, 17, 36, 57, 60, 63, 68]. Some of these use a dual formulation of the
coupling approach, which is closely related to Connes’ spectral distance in
noncommutative geometry, first introduced in [21], and studied further in
[22, 23, 27, 59], among others.

It seems that a theory of Wasserstein distances, by any approach, has
not before been extended from states to channels in the literature. This is
of course aside from attempting to apply the former directly to the latter
via the Choi-Jamio lkowski duality between states and channels. This dual-
ity holds under quite general conditions and could be applied beyond just
the finite dimensional case; see in particular [34, Section 3]. However, the
intention of this dissertation is rather to systematically rebuild such a the-
ory for the channels, which is not equivalent to merely translating via the
Choi-Jamio lkowski duality.

5
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Chapter 2

An abstract approach to norms
from unit balls

One should note that some background in functional analysis and linear al-
gebra is assumed throughout this chapter and the rest of this dissertation.
This chapter sets up some basic notions and elementary results for later use.
This is mainly done for easy reference because the references providing this
background in the preferred or needed form appear to be scarce. A some-
what different presentation of the following chapter is offered in [7, Section
I.1] and [55, Chapters 4 and 5].

One of the main aims of this chapter is to define a norm from an abstract
unit ball. It can be viewed as an abstract version of the corresponding ideas
in [29]. Most of the general background definitions and results regarding
analysis that are stated in this chapter, come from [51, 55, 62]. However,
the notions “absorbing set” and “ray-wise bounded set” are introduced in a
slightly different manner here than in other texts [7, 55], while the definition
and analysis of the norm∥·∥C are adapted in part from [29], all motivated by
the goal of obtaining an abstract form of [29]’s approach. We start with the
definition of a norm and a metric.

2.1 Norms and metrics

This section is merely a review of some basic definitions and facts about
seminorms, norms, pseudometrics and metrics.

6
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2.1 Norms and metrics

Definition 2.1.1 (Seminorm and norm). A seminorm ∥·∥ on a vector
space X over some field F is a real-valued function on X whose value at each
x ∈ X is denoted by ∥x∥ and has the following properties for any x, y ∈ X
and α ∈ F:

N.1. ∥x∥ ∈ [0,∞)

N.2. ∥αx∥ = |α|∥x∥ ‘Homogeneity’

N.3. ∥x+ y∥ ≤∥x∥ +∥y∥ ‘Triangle inequality’.

If in addition ∥·∥ has the following property,

N.4. if ∥x∥ = 0 then x = 0,

then ∥·∥ is called a norm on X . In this case, the pair (X ,∥·∥), or even X
itself when there is no ambiguity, is called a normed space.

We are interested in using our norm to induce a distance and we know
from functional analysis and topology that the abstract definition of a dis-
tance is that of a metric, and this is what we define below.

Definition 2.1.2 (pseudometric and metric). A pseudometric on a set
X is a real-valued function d on X whose value at each pair x, y ∈ X is
denoted by d (x, y) and has the following properties for any x, y, z ∈ X :

M.0. d (x, x) = 0

M.1. d (x, y) ∈ [0,∞)

M.2. d (x, y) = d (y, x) ‘Symmetric’

M.3. d (x, y) ≤ d (x, z) + d (z, y) ‘Triangle inequality’.

If in addition d has the following property,

M.4. if d (x, y) = 0 then x = y,
then d is called a metric. In this case, the pair (X , d), or even X itself when
there is no ambiguity, is called a metric space.

Remark 2.1.3. A note to make here is that the field of scalars F represents
R or C throughout this dissertation. In this chapter, we mostly use F to
represent R, the reason why we do not use R directly is to emphasise that
the definition or property in question also applies to C. By real or complex
vector space we refer to a vector space over R or C respectively.

In standard functional analysis literature they often show how a norm in-
duces a metric, but they rarely show how a seminorm induces a pseudometric,
hence we will show both in the following theorem.

7
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2.2 Unit balls

Theorem 2.1.4. Let X be a real vector space with a seminorm ∥·∥C defined
on it, then

d(x, y) :=∥x− y∥C
is a pseudometric on X for all x, y ∈ X . If ∥·∥C is a norm, then d is a
metric on X .

Proof. Assume that ∥·∥C is a seminorm defined on some real or complex
vector space X , and define

d(x, y) :=∥x− y∥C ,

for any x, y ∈ X . A vector space is by definition closed under addition, hence
x− y ∈ X . M.0 follows from N.2 since∥x− x∥C =∥0∥C = |0|∥0∥C = 0. M.1
follows from N.1. We also have that N.2 implies M.2 because d(x, y) =
∥x− y∥C =

∥∥(−1)(y − x)
∥∥
C

= |−1|∥y − x∥C = d(y, x). Lastly, we also have
that N.3 implies M.3 since

d(x, y) =∥x− y∥C by the definition of d

= ∥x− y − z + z∥C for any z ∈ X
=
∥∥(x− z) + (z − y)

∥∥
C

≤ ∥x− z∥C +∥z − y∥C by N.3 of ∥·∥C
= d(x, z) + d(z, y) by the definition of d.

Since M.0 - M.3 hold true, Definition 2.1.2 implies that d is a pseudo-
metric on X . If we assume that ∥·∥C is a norm, i.e., N.4 holds true, then we
have that if d(x, y) = 0 then∥x− y∥C = 0 with N.4 implying that x− y = 0,
hence x = y. So in conclusion, if ∥·∥C is a norm, then d is metric on X .

2.2 Unit balls

This section introduces the notion of an abstract unit ball.

In [29], they use the so-called set of neighbouring states to define their
norm, so the first question one may ask is what properties must a ball have
(in an abstract sense) to give us a of a norm? The following definitions are
the answer to this question, we in fact need to define a set similar to what’s
known as unit ball (similar in a general sense) in introductory topology (see
[25]).

8
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2.2 Unit balls

Definition 2.2.1 (Absorbing set). A subset C of a real vector space X is
said to be absorbing (for X ) if for every x ∈ X there is a number r > 0 such
that rx ∈ C.

Definition 2.2.2 (Convex set). A subset C of a real vector space X is
said to be convex if for any x, y ∈ C we have that ax + (1 − a)y ∈ C for
∀a ∈ [0, 1] ⊆ R.

Definition 2.2.3 (Symmetric set). A subset C of a real vector space X is
said to be symmetric if C = −C, in other words if x ∈ C then −x ∈ C.

Definition 2.2.4 (Ray-wise bounded). A subset C of a real vector space
X is said to ray-wise (or radially) bounded if for any non-zero x ∈ X there
is a number s0 > 0 such that sx /∈ C for all s > s0.

Using the above definitions we can define an abstract semi unit ball and
unit ball as the following.

Definition 2.2.5 (Semi unit ball and unit ball). A non-empty subset C
of a real vector space X , is called a semi unit ball of X if it is absorbing,
convex and symmetric. If in addition C is ray-wise bounded, then we call it
a unit ball of X .

We will later show the connection between a standard definition of a unit
ball from [25] and our Definition 2.2.5. Our definition is more general, in
the sense that it doesn’t require a prior norm or metric to be defined on the
vector space in question.

Lastly, we mention a result that will allow us to make the above connec-
tion.

Proposition 2.2.6. Let C be a semi unit ball in some real vector space X ,
then 0 ∈ C.

Proof. Let x ∈ C since C is non-empty by Definition 2.2.5. By the same
definition, we get that C is symmetric and convex, hence −x ∈ C and
ax + (1 − a)(−x) ∈ C for any a ∈ [0, 1] respectively. Thus, for a = 1/2, we
get that

ax+ (1 − a)(−x) =
1

2
x+

(
1 − 1

2

)
(−x) = 0 ∈ C,

hence 0 ∈ C as required.

9
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2.3 Norms from unit balls

2.3 Norms from unit balls

The main aim of this section is to obtain a norm from a unit ball through
what is known as a Minkowski functional or gauge function in a topological
space (see [55]). Given that our focus is on vector spaces, we define a gauge
function in our preferred setting as below.

Definition 2.3.1 (Gauge function). If C is a subset of a real vector space
X , then the Minkowski functional or gauge of C is defined to be the function
∥·∥C : X → R+, given by

∥x∥C := inf{t ≥ 0 : x ∈ tC}

for every x ∈ X , where R+ = {t ∈ R : t ≥ 0}.

The following definitions and lemma are needed to prove that the above
gauge function is a norm under certain conditions and to show that our
norm is more general when compared to [29, Definition 6] (in a mathematical
sense).

Definition 2.3.2 (Lower bound). The lower bound b of a non-empty sub-
set E of R is b ∈ R such that b ≤ x,∀x ∈ E.

Definition 2.3.3 (Infimum). The infimum of a non-empty subset E of R
is the greatest lower bound of E, denoted as inf (E).

Remark 2.3.4. In a similar way (as in Definition 2.3.2), we define the upper
bound by replacing ‘≤’ with ‘≥’. Then the supremum (denoted as sup) is
just defined as the least upper bound.

Remark 2.3.5. The minimum (denoted as min) of a non-empty subset E of
R is the greatest lower bound b of E such that b ∈ E, i.e. when an infimum
is contained in the set that it bounds it is called the minimum element of
that set.

A note on the generality of our norm, Definition 2.3.1 uses an infimum of
the set while [29, Definition 6] uses a minimum instead. The above remark
shows that from a mathematical standpoint Definition 2.3.1 is a generalisa-
tion of [29, Definition 6] in the sense that a minimum of a set is a special
case of the infimum.

10
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2.3 Norms from unit balls

Lemma 2.3.6. If P ⊆ R and the inf(P ) exists then there exists a sequence
(xn) ∈ P such that (xn) converges to inf(P ).

Proof. Assuming P ⊆ R has a lower bound, [41, The completeness axiom]
implies that P has an infimum in R, i.e., m := inf(P ). Definition 2.3.3
implies that for any n ∈ N, there exists xn ∈ P such that

m ≤ xn < m+
1

n
,

now taking note of the following

lim
n→∞

m+
1

n
= m and lim

n→∞
m = m,

[41, Sandwich rule] implies that

lim
n→∞

xn = m = inf(P ).

So there is a sequence that converges to the infimum.

Proposition 2.3.7. Let C be a semi unit ball in a real vector space X , then
its gauge function ∥·∥C is a seminorm on X . If C is a unit ball in X , then its
gauge function ∥·∥C is a norm on X .

Proof. Assuming that C is a semi umit ball in some real vector space X , then
for all x, y ∈ X and α ∈ R we prove the following about the gauge function
∥·∥C:

N.1. ∥x∥C ∈ [0,∞):

For any x ∈ X there is an r > 0 such that rx ∈ C, this follows from
Definition 2.2.5 and Definition 2.2.1. Hence x ∈ 1

r
C, and therefore

{t ≥ 0 : x ∈ tC} is a non-empty set with 0 as a lower bound. Hence the
infimum will be greater or equals to 0 because the infimum is the greatest
lower bound. In addition, inf{t ≥ 0 : x ∈ tC} ≤ 1

r
<∞.

N.2. ∥αx∥C = |α|∥x∥C:

Let t = |α|s for s ≥ 0 and α ̸= 0 then

∥αx∥C = inf{t ≥ 0 : αx ∈ tC}
= inf{|α|s ≥ 0 : αx ∈ |α|sC}
= |α| inf{s ≥ 0 : αx ∈ |α|sC}

= |α| inf{s ≥ 0 : x ∈ |α|
α
sC}

= |α| inf{s ≥ 0 : x ∈ sC} C is a symmetric set by Definition 2.2.5

= |α|∥x∥C .

11
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2.3 Norms from unit balls

For α = 0, it follows that ∥0x∥C =∥0∥C, but 0 ∈ 0C thus ∥0∥C = 0 = |0|∥x∥C,

so the homogeneity of the norm holds true.

N.3. ∥x+ y∥C ≤∥x∥C +∥y∥C:

Definition 2.3.1 implies that

∥x∥C = inf{t ≥ 0 : x ∈ tC} and ∥y∥C = inf{u ≥ 0 : y ∈ uC}.

If x = 0 or y = 0, then x ∈ 0C or y ∈ 0C implying that ∥x∥C = 0 or
∥y∥C = 0, hence ∥x+ y∥C =∥x∥C +∥y∥C. Thus, without any loss of generality
we may assume that x ̸= 0 and y ̸= 0. By Lemma 2.3.6 we have that there
exists sequences (tn) and (un) in {t ≥ 0 : x ∈ tC} and {u ≥ 0 : y ∈ uC}
(respectively) that converge to ∥x∥C and ∥y∥C respectively. For tn ̸= 0 and
un ̸= 0, we have that x

tn
, y

un
∈ C. Given that C is a semi unit ball, i.e., a

convex set by Definition 2.2.5 we have that

tn
tn + un

(
x

tn

)
+

(
un

tn + un

)(
y

un

)
∈ C,

which simplifies to
x+ y ∈ (tn + un)C.

So by the properties of the infimum we have the following

∥x+ y∥C ≤ tn + un ∀n ∈ N

hence,

∥x+ y∥C ≤ lim
n→∞

(tn + un)

= lim
n→∞

tn + lim
n→∞

un

=∥x∥C +∥y∥C .

For tn = 0 or un = 0 we have that x ∈ 0C or y ∈ 0C, implying that
x = 0c = 0 or y = 0c = 0 for some c ∈ C which clearly leads to
∥x+ y∥C =∥x∥C +∥y∥C as explained before.

Since N.1 - N.3 hold true, we have by Definition 2.1.1 that ∥·∥C is a
seminorm in X when C is a semi unit ball. If in addition, we have that C
is also ray-wise bounded (i.e., a unit ball by Definition 2.2.5), then we can
show that the following is true for any x, y ∈ X :

12
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2.3 Norms from unit balls

N.4. If ∥x∥C = 0 then x = 0:

We can follow the contrapositive statement and assume that x ̸= 0 to
prove that if x ̸= 0 then ∥x∥C ̸= 0. Since C is ray-wise bounded, there is
an r0 > 0 such that rx /∈ C for all r > r0. Hence x /∈ 1

r
C for 1

r0
> 1

r
> 0,

implying that ∥x∥C ≥ 1
r0
> 0, i.e., ∥x∥C ̸= 0.

This now implies that N.1 - N.4 hold true in this case, hence by Definition
2.1.1 we thus have that ∥·∥C is a norm on X when C is a unit ball.

To summarise Proposition 2.3.7, C being absorbing ensures that ∥·∥C is
well-defined and finite at every point of the vector space, convexity implies
the triangle inequality, symmetry implies the homogeneity, while ray-wise
boundedness guarantees that x = 0 whenever ∥x∥C = 0.

The assumption that C is a unit ball in a real vector space X implies
that X is a normed space with the norm ∥·∥C defined on X as in Definition
2.3.1. The next proposition mentions an interesting property and result of
this norm and unit ball.

Proposition 2.3.8. Let C be a unit ball in some real vector space X and
define ∥·∥C as in Definition 2.3.1, then

{x ∈ X : ∥x∥C < 1} ⊆ C ⊆ {x ∈ X : ∥x∥C ≤ 1}.

Proof. Let a ∈ {x ∈ X : ∥x∥C < 1}, then∥a∥C < 1 implying that there exists
some t ∈ [0, 1) such that a ∈ tC. For t = 0 we have that a = 0 ∈ C (see
Proposition 2.2.6). Assuming that t > 0 implies that there is a vector b ∈ C
such that b = 1

t
a. Since C is a convex set we have that

a = tb+ (1 − t)0 ∈ C.

Hence, {x ∈ X : ∥x∥C < 1} ⊆ C.
Assume a ∈ C, then Definition 2.3.1 implies that

∥a∥C = inf{t ≥ 0 : a ∈ tC} ≤ 1,

implying that a ∈ {x ∈ X : ∥x∥C ≤ 1}. Therefore,
C ⊆ {x ∈ X : ∥x∥C ≤ 1}.

Remark 2.3.9. From Proposition 2.3.8 it is clear that C = {x ∈ X : ∥x∥C ≤
1} is the closure of C, while C̊ = {x ∈ C : ∥x∥C < 1} is the interior of C. The
definitions and properties of the closure and interior that make these results
clear are in [64, Chapter 2]. This can be viewed as part of the motivation
behind our definition of the abstract unit ball.
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Chapter 3

The operator algebraic
framework

This chapter is devoted to gathering (or summarising) some of the impor-
tant definitions and results for our operator algebraic framework. In the first
section of this chapter we focus on important definitions from the theory of
operator algebras. Our focus in the subsequent sections is on the relevant
results. The majority of this chapter comes from [6, 10, 54, 66], where oper-
ator algebras are discussed in more detail.

A note to make here (as mentioned in Remark 2.1.3) is that every vector
space or algebra discussed in this chapter is over C, that is F = C in cases
where the field F is used. In those cases, F is mainly used to emphasise that
the definition or result also works for R.

3.1 Elementary definitions

We start with a few definitions. These are algebraic structures that result
from vector spaces that have more structure to them.

Definition 3.1.1 (Algebra, commutative algebra and unital algebra).
An algebra is a vector space A over C that is equipped with a multiplication
law or product A×A→ A : (x, y) 7→ xy, with the following distributive and
associative properties:

A.1. x (y + z) = xy + xz

A.2. α (xy) = (αx) y = x (αy)

A.3. x (yz) = (xy) z

14
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3.1 Elementary definitions

for all x, y, z ∈ A and α ∈ C. In addition, if xy = yx,∀x, y ∈ A, then A is
called a commutative algebra and if A has a unit (or multiplicative identity)
denoted 1A, i.e., 1A ∈ A such that for all x ∈ A we have that 1Ax = x1A = x,
then A is called a unital algebra.

Definition 3.1.2 (Inverse and spectrum). Let A unital algebra over C.
An element x ∈ A is said to be invertible if there exists another element
y ∈ A such that

xy = yx = 1A.

y is unique in this case and is called the inverse of x denoted by x−1. The
set of all invertible elements of A is denoted by

Inv(A) = {x ∈ A : x is invertible}.

The spectrum of x ∈ A is defined as the set

σ(x) = {λ ∈ C : λ1A − x /∈ Inv(A)}.

Definition 3.1.3 (*-algebra). An involution on an algebra A over C is a
map ∗ : A→ A : x 7→ x∗ which satisfies the following properties:

1. (x∗)∗ = x,

2. (xy)∗ = y∗x∗,

3. (αx)∗ = αx∗,

for all x, y ∈ A and α ∈ C. A *-algebra is an algebra A with an involution
defined on it. If in addition, 1A ∈ A such that 1∗

A = 1A, then A is called a
unital *-algebra.

Let (xn) be any sequence in some metric space (X , d). (xn) is a said to
be a Cauchy sequence if for every ϵ > 0 there exists Nϵ ∈ N such that for
all natural numbers n,m > Nϵ, we have that d(xn, xm) < ϵ. A metric space
(X , d) is called a complete metric space if every Cauchy sequence converges
to some point in X under d. A metric d is called a complete metric if (X , d)
is a complete metric space and a complete norm is a norm that induces a
complete metric.

Every finite dimensional vector space is complete (see [51, Theorem 2.4-
2]). This is not always true for infinite dimensional spaces. In this disserta-
tion, we are interested in spaces that are not necessarily finite dimensional.
Hence the role of completeness will be discussed clearly (for example, see
Section 6.2).
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3.1 Elementary definitions

Definition 3.1.4 (Submultiplicative norm and normed algebra). A
norm ∥·∥ defined on some algebra A is said to be submultiplicative if

∥xy∥ ≤∥x∥∥y∥

for all x, y ∈ A. A normed algebra is an algebra A with a submultiplicative
norm ∥·∥ defined on it.

Definition 3.1.5 (Banach *-algebra). A Banach *-algebra is a *-algebra
A with a complete submultiplicative norm ∥·∥ defined on it such that

∥x∗∥ =∥x∥

for all x ∈ A. In addition, if A has a unit 1A ∈ A such that ∥1A∥ = 1, then
A is called a unital Banach *-algebra.

Definition 3.1.6 (C*-algebra). A C*-algebra is a Banach *-algebra A
which satisfies

∥x∗x∥ =∥x∥2 (3.1)

for all x ∈ A. Equation (3.1) is sometimes referred to as the C*-property,
while a norm that satisfies this property is called a C*-norm. Additionally,
if A is a unital Banach *-algebra with the C*-property, then A is said to be
a unital C*-algebra.

The following examples are standard but important results that will also
play a role in Chapter 4.

Example 3.1.7. C is a unital C*-algebra.

Proof. By [51, Theorem 1.4-4] we have that C is a metric space with a metric
induced by the modulus. It’s straightforward to verify that the multiplication
of complex numbers satisfy Definition 3.1.1’s A.1 - A.3. The involution is
simply the complex conjugate of each complex number (i.e., for any z ∈ C
we have that z∗ = z). The modulus is the norm, and it has the following
properties:

|z| = |z| = |z∗| and |yz| = |y||z| ,

for any y, z ∈ C. Hence we have that, |z∗z| = |z∗||z| = |z|2. Hence the
modulus is a complete submultiplicative C*-norm, implying that C is a unital
C*-algebra with 1A = 1 the unit (or multiplicative identity).
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3.1 Elementary definitions

Remark 3.1.8. Looking at the definition of a field [41, Section 2.2], we can
say that every field is an algebra, but an algebra is not necessarily a field.

In the following example, one should note that we define and denote
Mn(A) as the set of all n× n matrices with the entries being elements of A.

Example 3.1.9. Let A be any C*-algebra, then Mn(A) is a C*-algebra.

Proof. See the proof of [54, Theorem 3.4.2.].

In particular, the set Mn(C) (which we simply denote as Mn) of n × n
complex matrices is a unital C*-algebra.

Lastly, from the examples in [9, p. 20] and [66, p. 4], we arrive at the
well-known conclusion that B(H), the set of all bounded linear maps on
some Hilbert space H is a unital C*-algbera, when it’s equpped with the
norm

∥T∥B(H) = sup
{
∥Tx∥H : x ∈ H, ∥x∥H = 1

}
, (3.2)

for any T ∈ B(H), with ∥·∥H being a norm defined on H.

Definition 3.1.10 (Adjoint, self-adjoint and positive). Let A be a C*-
algebra. For any element x ∈ A, the element x∗ ∈ A is called the adjoint
of x. If x = x∗ then x is said to be self-adjoint. If in addition to being
self-adjoint, σ(x) ⊂ [0,∞), then x is said to be positive and is denoted by
x ≥ 0.

Remark 3.1.11. Let A be given as in Definition 3.1.10, then for any x ∈ A,
we have that x∗x ≥ 0 and for any y ∈ A such that y ≥ 0, we have that there
exists z ∈ A such that y = z∗z. These results come from [54, Section 2.2].

We are now interested in maps between any of the above algebraic struc-
tures, the reasons behind this interest will become more evident in Chapters
4 and 5.
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3.1 Elementary definitions

Definition 3.1.12 (Linear maps). Consider any two vector spaces A and
B over the same field of scalars F. A linear map from A to B is a function
λ that maps the elements of A into B with the following properties for any
x, y ∈ A and α ∈ F,

1. λ(x+ y) = λ(x) + λ(y),

2. λ(αx) = αλ(x).

We denote the set of all such linear maps by L(A,B). A linear map is
sometimes referred to as a linear operator. If B = A then L(A,B) is simply
denoted as L(A), and is called the set of all linear operators on A.

Remark 3.1.13. If we consider three vector spaces A,B and C over the
same field of scalars F, then a bilinear map ϕ : A × B → C is defined as a
function ϕ that maps the cartesian product of two vector spaces A and B into
another vector space C, such that ϕ is a linear map in each of its arguments
separately. This is analogously extended to a definition of multilinear maps.

The following definitions will play an important role when it comes to
connecting the DMTL approach [29] to our work in Chapter 4.

Definition 3.1.14 (Linear functionals and algebraic dual space). A
linear functional is a linear map from a vector space A to its field of scalars F.
The algebraic dual space of A is the set of all such linear functionals denoted
by A′′.

Remark 3.1.15. It is easy to show that L(A,B) is a vector space over the
field F, one just needs to use the properties from Definition 3.1.12 to show
that the axioms of a vector space as given in [51, pp. 50-51] are true for this
set. This also applies to the algebraic dual space (see [51, pp. 106-107]).

Next, we expand on our notions of maps as follows,

Definition 3.1.16 (morphisms). Let A and B be algebras, then a ho-
momorphism π is defined as a linear map from A into B that preserves
multiplication (i.e., π(a1a2) = π(a1)π(a2) for all a1, a2 ∈ A). In addition,
when A and B are *-algebras, if π preserves the involution, then it’s called
a ∗-homomorphism. Additionally, a ∗-isomorphism is defined as a bijective
∗-homomorphism.
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3.1 Elementary definitions

Definition 3.1.17 (Positive map). Let A,B be C*-algebras. A positive
map is linear map ϕ ∈ L(A,B) such that ϕ(x) ≥ 0 for any x ∈ A such that
x ≥ 0.

Remark 3.1.18. An alternative but equivalent definition of a positive map
is that it is any ϕ ∈ L(A,B) such that ϕ(x∗x) ≥ 0 for any x ∈ A (This is a
clear consequence of the results mentioned in Remark 3.1.11).

Definition 3.1.19 (Unital map). Let A,B be unital algebras. A unital
map is linear map ω ∈ L(A,B) such that ω(1A) = 1B.

In the case of C*-algebras, we are mainly interested in the following linear
maps.

Definition 3.1.20 (States). A state ω of a unital C*-algebra A is a linear
functional that maps A into C satisfying the following properties:

1. ω is a positive map,

2. ω is a unital map.

Remark 3.1.21. We use the term “state” in Definition 3.1.20 because those
linear maps represent the states of a physical quantum system (see Theorem
4.1.4).

Definition 3.1.22 (Completely positive map). For A and B some C*-
algebras, let ϕ be a linear map from A to B, then ϕ is said to be completely
positive if the induced map

ϕ(n) : Mn(A) →Mn(B),

which is obtained by applying ϕ entrywise is positive for all n.

Remark 3.1.23. It’s clear that a completely positive map is a positive map
(when n = 1, since 1 × 1 matrices can be treated as the field of entries). We
will sometimes use c.p. to refer to completely positive maps. If in addition ϕ
is a unital map, then we will use u.c.p. to denote a unital completely positive
map. According to [6, II.6.9.6], a state is a u.c.p. map to C, hence states
are a special case of u.c.p. maps. In a C*-algbera setting, [6, II.6.2.2 and
II.6.9.2] implies that states and completely positive maps are bounded linear
maps. Hence, they are continuous (see [51, Theorem 2.7-9]).
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3.2 Composite spaces and algebras

The following is a crucial result. It simplifies working with c.p. maps
in the context of Chapter 5. Before that, one should note that by Mn,m we
denote the set of all n×m complex matrices and by Mn, we denote Mn(C)
(which is a C*-algebra by Example 3.1.7).

Theorem 3.1.24. Let ϕ be a linear map from Mn to Mm then ϕ is completely
positive if and only if it admits the expression

ϕ(X) =
k∑
i=1

V ∗
i XVi

for all X ∈Mn, where {V1, . . . , Vk} ⊆Mn,m for any k ∈ N.

Proof. See [19] for the proof.

Remark 3.1.25. From [19, Remark 4], we get that we may in the above
theorem, require that {V1, . . . , Vk} be linearly independent. In such a case,
we get that k ≤ nm.

3.2 Composite spaces and algebras

Following the DMTL approach, we are also interested in composite spaces
(or algebras), i.e., larger vector spaces that are a result of combining smaller
vector spaces. In this section we introduce two ways in which one can con-
struct these composite spaces. The first part focuses on direct sums and
representations while the second part is on tensor products. Tensor products
play a big role in the DMTL approach, so we will use them for most of our
composite spaces. We will only use direct sums to combine representations
into larger representations.

3.2.1 Direct sums

This subsection is devoted to summarising direct sums to an extent that
is sufficient for the remainder of this dissertation (this is mostly aimed at
addressing some of the definitions that we need in the next section). We
start with a definition that’s motivated by [49, Section II.6].

Definition 3.2.1 (Direct sum). Let A and B be some vector spaces over
F, then the (external) direct sum of A and B, denoted A ⊕ B, is a vector
space that is defined as follows: The underlying set is the cartesian product,
that is the set A × B of ordered pairs (a, b) for a ∈ A and b ∈ B. Addition
and scalar multiplication are defined by:
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3.2 Composite spaces and algebras 3.2.1 Direct sums

1. (a1, b1) + (a2, b2) = (a1 + a2, b1 + b2),

2. α(a1, b1) = (αa1, αb1),

for ai ∈ A and bi ∈ B and α ∈ F. It is thus clear that the above is a vector
space that can be defined as

A⊕B := spanF
{

(a, b) : a ∈ A, b ∈ B
}
.

Remark 3.2.2. Direct sums are associative, i.e., A1⊕A2⊕A3 = (A1⊕A2)⊕
A3 = A1 ⊕ (A2 ⊕ A3), with the elements of A1 ⊕ A2 ⊕ A3 being the triples
(a1, a2, a3) for all ai ∈ Ai.

From [46, p. 121], we can conclude that, if Hi for i ∈ Λ = {1, 2, ..., n} is
a family of Hilbert spaces, then elements of the direct sum H =

⊕
i∈Λ Hi =

H1⊕H2⊕· · ·⊕Hn are denoted by the n-tuple (hi)i∈Λ = (h1, h2, . . . , hn). This
direct sum space is itself a Hilbert space with the following inner product

⟨x, y⟩ =
∑
i∈Λ

⟨xi, yi⟩Hi
, (3.3)

for any x = (xi)i∈Λ ∈ H and y = (yi)i∈Λ ∈ H, with ⟨·, ·⟩Hi
as the inner

product on Hi for each i ∈ Λ. The case of an infinite number of Hilbert
spaces is discussed in [24, p. 24] and [46, p. 123]. In such a case, we simply
set Λ = {1, 2, ...} in the above arguments and assume that

∑
i∈Λ∥xi∥Hi

<∞,
for any x = (xi)i∈Λ ∈ H. A note to make here is that ∥·∥Hi

is a norm on Hi

for each i ∈ Λ and H is still a Hilbert space (see [24, Proposition 6.2] and
[46, pp. 123-124]).

The ideas about (3.3) apply to bilinear maps as well, that is if ϕi is a
bilinear map for each i ∈ Λ, then equation (3.3) gives a bilinear map on
H. The above is easy to verify, we will show the linearity of one argument,
the second one follows in a similar fashion. Assume that ϕi is a bilinear
map for each i ∈ Λ, then for any x = (xi)i∈Λ ∈ H, y = (yi)i∈Λ ∈ H and
z = (zi)i∈Λ ∈ H define

ϕ(x, y) :=
∑
i∈Λ

ϕi(xi, yi), (3.4)

then
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3.2 Composite spaces and algebras 3.2.2 Representations

ϕ(x+ y, z) =
∑
i∈Λ

ϕi(xi + yi, zi)

=
∑
i∈Λ

(
ϕi(xi, zi) + ϕi(yi, zi)

)
since ϕi is a bilinear map

=
∑
i∈Λ

ϕi(xi, zi) +
∑
i∈Λ

ϕi(yi, zi)

= ϕ(x, z) + ϕ(y, z).

(3.5)

From the above ideas (3.5), we can also conclude that ϕ(αx, z) = αϕ(x, z)
for any α ∈ F.

3.2.2 Representations

This subsection describes and summarises representations of algebras, this
includes the role played by constructions when it comes to representations.
As mentioned before, this is not an in-depth discussion, so we will mostly
focus on relevant definitions and results.

Definition 3.2.3 (Representation). A representation of a C*-algebra A
is a pair (H, π) where H is some Hilbert space and π : A → B(H) is a ∗-
homomorphism. (H, π) is said to be a faithful representation if π is injective.
If there is a vector Ω in H for which the linear subspace

π(A)Ω =
{
π(a)Ω : a ∈ A

}
is dense in H, then the triple (H, π,Ω) is called a cyclic representation of A,
and Ω is termed a cyclic vector (or generating vector) for π.

In the above definition, one should recall that a set S in some metric
space (M, d) is said to be dense in M, if for all m ∈ M and any ϵ > 0 there
exists s ∈ S such that d(m, s) < ϵ.

Remark 3.2.4. If A is just an algebra then the pair (H, π) will be considered
a represention if π is a homomorphism (a note to make in this case is that
H is not necessarily a Hilbert space, in Chapter 7 we will construct such a
representation).

One may now ask if any arbitrary C*-algebra will always have such a
representation or not, the GNS construction is a well-known answer to this
question (see the following results).
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3.2 Composite spaces and algebras 3.2.2 Representations

Theorem 3.2.5. Let A be a C*-algebra and consider ϕ as a state of A,
then there exists a representation (Hϕ, πϕ) associated with ϕ called the GNS
representation of A.

Proof. Let A be a C*-algebra and assume that ϕ is a state of A, then ϕ
is a positive linear functional on A by Definition 3.1.20. According to [6,
II.6.4.1] and [54, pp. 93-94], since ϕ is a positive linear functional on A, we
can always use the GNS construction to manufacture a GNS representation
(Hϕ, πϕ) associated with ϕ.

Remark 3.2.6. Following [6, II.6.4.2], we have that in the above theorem,
there also exists a cyclic vector Ωϕ ∈ Hϕ associated with the state ϕ. I.e.,
πϕ(A)Ωϕ is dense in Hϕ, implying that the triple (Hϕ, πϕ,Ωϕ) is a cyclic
representation of A.

According to Theorem 3.2.5, every state of a C*-algebra A has its own
representation. Let Λ be the set of all states of A, then for each λ ∈ Λ we
get that (Hλ, πλ)λ∈Λ is a set of the representations of A associated with each
state. The direct sum (H, π) of these representations is itself a representation
of A defined by setting

H =
⊕
λ∈Λ

Hλ and π(a)x = (πλ(a)xλ)λ∈Λ ∈ H,

for any x = (xλ)λ∈Λ ∈ H and any a ∈ A. (H, π) is called the universal
representation of A.

Remark 3.2.7. It’s easy to show that (H, π) is a representation in the above
arguments. From the arguments leading up to (3.3), the direct sum is an
inner product space, hence H is simply its completion. π is clearly a ∗-
homomorphism, for the sake of argument we will show that π preserves addi-
tion (the rest of the properties can be proven in a similar way). Let a, b ∈ A
for any x = (xλ)λ∈Λ ∈ H, then

π(a+ b)x = (πλ(a+ b)xλ)λ∈Λ

= (πλ(a)xλ + πλ(b)xλ)λ∈Λ since πλ is a ∗ -homomorphism

= (πλ(a)xλ)λ∈Λ + (πλ(b)xλ)λ∈Λ by Definition 3.2.1

= π(a)x+ π(b)x.

We can at last conclude the following from the GNS construction.
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3.2 Composite spaces and algebras 3.2.3 Tensor products

Theorem 3.2.8. Let A be a C*-algebra, then A has faithful representation,
namely its universal representation.

Proof. See the proof of Theorem 3.4.1 in [54].

Remark 3.2.9. A clear note to make about universal representations is that
they are not limited to C*-algebras, in other words, given a set of repre-
sentations for some algebra, the direct sum will always give us a universal
representation of that algebra (for an example, see Chapter 7).

3.2.3 Tensor products

We start this subsection with a basic non-constructive definition of algebraic
tensor products, followed by some key interesting properties. These properties
are going to play important roles in the rest of the dissertation. A note to
keep in mind here, is that every algebra in this subsection is over the same F,
unless we specify otherwise. We also make the assumption that the reader is
familiar with tensor product spaces when it comes to finite dimensional vector
spaces, this includes finite dimensional Hilbert spaces. A detailed discussion
of the above topics is given in [26, Section 4]. Another assumption that the
reader must bear in mind is that this is nowhere near a complete discussion
of tensor product algebras, we are merely defining some of the words that
will show up in Section 7.3 and stating some relevant results. For a more
rigorous treatment of these ideas, see [10, 6].

Definition 3.2.10 (Algebraic tensor product space). Let A and B be
vector spaces over the same field F, then the vector space

A⊙B := span {a⊗ b : a ∈ A, b ∈ B} ,

is their algebraic tensor product space, where

⊙ : A×B → A⊙B : (a, b) 7→ a⊗ b

is a bilinear map, such that A⊙ B satisfies the universal property of tensor
products in the following sense:
For C being any vector space over F and ϕ : A × B → C any bilinear map,
there exists a unique linear map ϕ′ : A⊙B → C such that ϕ′(a⊗ b) = ϕ(a, b)
for all a ∈ A and b ∈ B.

Elements of the form a ⊗ b (read “a tensor b”) for a ∈ A and b ∈ B are
called simple or elementary tensors. A⊙B is defined in a way such that the
following properties hold true for all a1, a2 ∈ A, b1, b2 ∈ B and c ∈ F:
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3.2 Composite spaces and algebras 3.2.3 Tensor products

T.1. c (a1 ⊗ b1) = (ca1) ⊗ b1 = a1 ⊗ (cb1),

T.2. (a1 + a2) ⊗ b1 = a1 ⊗ b1 + a2 ⊗ b1,

T.3. a1 ⊗ (b1 + b2) = a1 ⊗ b1 + a1 ⊗ b2.

If in addition A and B are *-algebras then A ⊙ B is a *-algebra where the
adjoints and multiplication satisfy the following:

T.4. (a1 ⊗ b1)
∗ = a∗1 ⊗ b∗1,

T.5. (a1 ⊗ b1) (a2 ⊗ b2) = a1a2 ⊗ b1b2.

Remark 3.2.11. The elements in A1⊙A2 cannot all be expressed as simple
tensors but in many cases as linear combinations of simple tensors. One clear
consequence of T.1 is that if x ∈ A⊙B, then

x =
∑

ai ⊗ bi,

for ai ∈ A and bi ∈ B. The other consequence is that for a1 ∈ A1 and
a2 ∈ A2, if a1 = 0 or a2 = 0, then a1 ⊗ a2 = 0.

One of the basic ideas of tensor products is the notion of a tensor product
map. This idea is a clear consequence of linear algebra and the universal
property. It states that, if A1, A2, B1, B2 are vector spaces over the same
field F and ϕi : Ai → Bi for i = 1, 2 are linear maps, then there exists a
unique linear map

ϕ1 ⊙ ϕ2 : A1 ⊙ A2 → B1 ⊙B2,

which is called the tensor product of ϕ1 and ϕ2, such that

ϕ1 ⊙ ϕ2 (a1 ⊗ a2) = ϕ1 (a1) ⊗ ϕ2 (a2)

for all a1 ∈ A1 and a2 ∈ A2.

We are interested in tensor products of vector spaces, unital algebras and
unital C*-algebras. In the case of unital C*-algebras, reference [10, p. 72]
tells us that A ⊙ B may carry multiple C*-norms (this was first proven by
Takesaki [65]).

A C*-norm∥·∥α on A⊙B is defined in the usual way, i.e., it’s a norm that
satisfies all the properties of a C*-norm as stated in Definition 3.1.6. It’s a
fact that C*-norms always exist for algebraic tensor products.
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3.2 Composite spaces and algebras 3.2.3 Tensor products

In general, for vector spaces A and B over the same field F, we denote
A ⊗ B as the completion of A ⊙ B under some arbitrary norm defined on
A⊙B.

Remark 3.2.12. Tensor products are also associative, i.e., for vector spaces
A1, A2 and A3 over the same field F, we have that A1⊙A2⊙A3 = (A1 ⊙ A2)⊙
A3. Similarly for the completions, we also have that A1 ⊗ A2 ⊗ A3 =
(A1 ⊗ A2) ⊗ A3.

For C*-algebras, the following are the most natural definitions of norms
on A⊙B.

Definition 3.2.13 (Maximal C*-norm). Let A and B be C*-algebras,
then we define the maximal C*-norm on A⊙B as

∥x∥max = sup
{∥∥π (x)

∥∥
B(H)

| π : A⊙B → B(H) a ∗-homomorphism
}
,

where the supremum is taken over all representations (H, π) of A ⊙ B. We
will denote the completion of A⊙B with respect to∥·∥max as A⊗maxB, which
is also a C*-algebra normally referred to as the maximal tensor product of A
and B.

Definition 3.2.14 (Minimal or spatial C*-norm). Let A and B be C*-
algebras with faithful representations πA : A → B(HA) and πB : B →
B(HB), then the minimal C*-norm on A⊙B is defined by

∥x∥min =
∥∥∥∑ πA(ai) ⊗ πB(bi)

∥∥∥
B(HA⊗HB)

,

for all x =
∑
ai ⊗ bi ∈ A ⊙ B. We denote the completion of A ⊙ B with

respect to ∥·∥min as A ⊗min B, which is also a C*-algebra normally referred
to as the minimal tensor product of A and B.

The remainder of [10, Chapter 3] verifies some of the properties related
to ∥·∥max and ∥·∥min.
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Chapter 4

An outline for the case of
quantum states

In this dissertation, we are interested in formulating a distance between chan-
nels. We define the notion of a channel in Chapter 5 and proceed to show that
channels are unital completely positive maps between two unital C*-algebras.
From Remark 3.1.23, we know that states are special cases of u.c.p. maps,
hence they are a special case of channels, so a distance between channels
gives us a distance between states as a special case.

The main aim of this chapter and Chapter 5 is to motivate the method
that we will use to formulate our quantum Wasserstein distance of order 1
between channels. This chapter focuses on the case of states. It will further
illustrate the connection between the states of a physical quantum system
and the states of a C*-algebra (clarifying the use of the word “state” in the
context of C*-algebras).

4.1 The setting

In this section, we review some basic quantum theory. We will assume that
the reader is familiar with both the Hilbert space and density formalism of
quantum mechanics. A detailed discussion of these is given in [56].

The incorporation of time evolution in a quantum system gives rise to mul-
tiple mathematical formulations. The Schrödinger picture and the Heisen-
berg picture are the two most important such formulations. In the next para-
graph, we give a basic summary of the main assumptions in each formulation.
For a detailed discussion on the pros and cons of each formulation, includ-
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4.1 The setting

ing the equivalence between them, see [53, Chapter 14 (Quantum dynamics)].

In the more commonly used Schrödinger picture, the states of a quan-
tum system are set to be time-dependent, while the observables are time-
independent. In the Heisenberg picture, the states of a quantum system are
set to be time-independent, while the observables are time-dependent.

In this dissertation, we will focus on the Heisenberg picture, i.e., the states
of our quantum systems are time-independent.

Using a few ideas from Chapter 3, let

HA = Cd

be a finite dimensional Hilbert space associated with some isolated physical
quantum system A. A standard result of linear algebra implies that the
unital C*-algebra of linear maps (or operators) on HA denoted L(HA) can
be represented by complex matrices Md, i.e., L(HA) = Md. Let

A = Md,

then A is a unital C*-algebra sometimes referred to as the observable algebra
of A.

For simplicity, in the case of Hilbert spaces, we will use Dirac notation
to represent vectors. Let the canonical basis of Cd be the set of vectors
{|1⟩ , ..., |d⟩} such that a pure state |ψ⟩ of the quantum system can be written
as

|ψ⟩ = ψ1 |1⟩ + · · · + ψd |d⟩

with
⟨ψ| = ψ1 ⟨1| + · · · + ψd ⟨d| ,

for ψ1, ψ2, ..., ψd ∈ C. In this case we denote the inner product between the
normalised states |ψ⟩ , |ϕ⟩ ∈ HA as

⟨ψ|ϕ⟩ ,

with
|ψ⟩ ⟨ψ|

defining a projection operator on HA given by(
|ψ⟩ ⟨ψ|

)
|ϕ⟩ = ⟨ψ|ϕ⟩ |ψ⟩ .
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4.1 The setting

Since T |α⟩ ∈ HA, for all |α⟩ ∈ HA, it follows that |ψ⟩ ⟨ψ| ∈ L(HA). We also
have that the inner product between |ψ⟩ and T |α⟩ is denoted as

⟨ψ|T |α⟩ .

According to the fundamental theorem of invertible matrices, we know
that a matrix T ∈ A is invertible if and only if det(T ) ̸= 0. Hence, by
Definition 3.1.2 the spectrum of T is given by

σ(T ) = {λ ∈ C : det(λ1A − T ) = 0},

which is a set of all the eigenvalues of T . The eigenvalue equation in Dirac
notation, can be stated as

T |i⟩ = λi |i⟩ , (4.1)

where the λis are the eigenvalues (i.e., λi ∈ σ(T )) with their associated

eigenvectors |i⟩ ∈ HA (which are normalisable). To summarise [49, Theorem
3.21] further, we have by the spectral theorem that if T is self-adjoint (i.e.,
T ∗ = T ), then there exists an orthonormal set of eigenvectors of T that span
HA such that T admits the expression:

T =
d∑
i=1

λi |i⟩ ⟨i| ,

with λi being an eigenvalue of T associated with the eigenvector |i⟩ ∈ HA
for each i. By orthornormal, we simply mean that the elements of the set
satisfy the following property:

⟨i|j⟩ = δij =

{
1 when i = j,

0 when i ̸= j,

with δij being the standard Kronecker delta.

The following are definitions of specific elements of A.

Definition 4.1.1 (Positive matrix). A matrix X ∈ A = Md is said to be
a positive matrix if X is self-adjoint and

⟨ψ|X|ψ⟩ ≥ 0,

for any |ψ⟩ ∈ HA. The set of all positive matrices in A = Md is denoted
A+ = M+

d .
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4.1 The setting

Considering the above definition, since A is a unital C*-algebra, take
X ∈ A such that X ≥ 0. Definition 3.1.10 implies X is self-adjoint (i.e.,
X∗ = X) and σ(X) ⊂ [0,∞). From (4.1) we get that

X |i⟩ = λi |i⟩ ,

where the λis are the eigenvalues of X (i.e., λi ∈ σ(X) such that λi ≥ 0)
with their associated eigenvectors |i⟩ ∈ HA being an orthonormal basis of
HA (this is guaranteed by [49, Spectral theorem]). Thus for any |ψ⟩ ∈ HA
we have that

|ψ⟩ =
∑
i

ψi |i⟩ ,

with each ψi ∈ C. This implies that

⟨ψ|X |ψ⟩ =
∑
i

ψψ ⟨i|X |i⟩

=
∑
i

ψiψi ⟨i|λi |i⟩ by (4.1)

=
∑
i

ψiψiλi ⟨i|i⟩

=
∑
i

ψiψiλi the |i⟩ ’s are orthonormal

≥ 0 since ψiψi ≥ 0 and λi ≥ 0 for each i.

Thus Definition 3.1.10 implies Definition 4.1.1. The converse is also true.

Let X ∈ A such that X is a positive matrix, Definition 4.1.1 implies that X
is self-adjoint and

⟨ψ|X|ψ⟩ ≥ 0,

for any |ψ⟩ ∈ HA. Let λi be the eigenvalues of X with the associated eigen-
vectors given by |i⟩ ∈ HA (we again assume that these form an orthonormal
basis), then (4.1) implies that X |i⟩ = λi |i⟩ and since |i⟩ ∈ HA, it follows
that

0 ≤ ⟨i|X|i⟩ = λi ⟨i|i⟩ = λi,

implying that σ(X) ⊂ [0,∞).

Remark 4.1.2. The above arguments imply that Definitions 3.1.10 and 4.1.1
are in agreement (in the sense that one implies the other). We can always
drop the condition that X is self-adjoint in Definition 4.1.1 (see [49, Propo-
sition 3.17]), but that is not necessary for our goal.
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4.1 The setting

One should also note that in the physics literature, the adjoint X∗ of any
X ∈ A is sometimes denoted as X† with a self-adjoint matrix sometimes
being called a Hermitian matrix. We will stick with the notation that we
have been using thus far.

Definition 4.1.3 (Density matrix). ρ ∈ A = Md is called a density matrix
if it satisfies the following properties:

1. Tr (ρ) = 1 ‘Trace condition’

2. ρ ≥ 0 ‘positivity condition’

The Tr in the above definition (including the rest of this dissertation) is
the usual trace for matrices.

According to [56, Part I, Section 2.4], a density matrix represents a state
of some physical quantum system. One can then make the conclusion that
the set of density matrices in A is the set of the physical states of system A.
Under this representation of physical states, let ρ ∈ A = Md be a physical
state (in other words, a density matrix) and let X ∈Md be an observable of
quantum system A, then

Tr (ρX)

is the expected value of the observable X, when the system is in the state ρ.

The next property tells us that any density matrix induces a state on
the unital C*-algebra Md. This result is what moves us into the algebraic
framework. Before we start, let Bjk denote the j, k’th entry of any matrix
B ∈ Md and write S = Md for the matrix algebra containing the density
matrices of system A. Another note to make here is that the multiplicative
unit of A is given by Id, i.e., 1A = Id.

Proposition 4.1.4. For the unital C*-algebra Md of d×d complex matrices,
let ω be any map from Md into C, then ω is a state on Md if and only if there
exists a density matrix ρ ∈Md such that ω (A) = Tr (ρA) for every A ∈Md.

Proof. Assume that ω is a state and let Eij’s be the basis elements of the
complex vector space Md, where Eij is a d × d matrix with 1 in the i, j
position and zeroes in the rest of its entries, then any matrix A ∈Md can be
written as

A =
∑
ij

AijEij. (4.2)
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4.1 The setting

Given that ω is a state on Md, Definition 3.1.20 implies that ω (Id) = 1
and ω (B) ≥ 0 for Id the unit of Md and any B ∈ Md such that B ≥ 0. Let
ρ ∈Md, such that

ρ =
∑
ij

ω
(
Eji
)
Eij. (4.3)

Since ω is a linear functional, (4.2) implies that

ω (A) =
∑
ij

Aijω
(
Eij
)
. (4.4)

Let us consider the following trace,

Tr (ρA) =
∑
k

(ρA)kk

=
∑
jk

ρkjAjk

=
∑
jk

ω
(
Ejk
)
Ajk by (4.2) and (4.3)

= ω(A) by (4.4).

(4.5)

Since ω is a positive map, then by [6, II.6.2], we have for any B ∈Md that

ω(B∗) = ω(B). Hence, given Eij = E∗
ji, we get that ω

(
Eij
)

= ω
(
E∗
ij

)
=

ω
(
Eji
)
. But from (4.3) we have that

ρ∗ =
∑
ij

ω
(
Eij
)
Eij =

∑
ij

ω
(
Eji
)
Eij,

thus ρ = ρ∗, i.e., ρ is self-adjoint. Since ρ is self-adjoint, the spectral decom-
position of ρ is

ρ =
∑
i

λiPi for Pi ∈Md, (4.6)

where the λi’s are the eigenvalues of ρ while the Pi’s are projection operators
onto 1-dimensional orthogonal subspaces of the eigenspaces. In other words,
the Pi’s are self-adjoint, orthogonal, indempotent and have a trace of 1, i.e.,
P ∗
i = Pi, PiPj = 0 for i ̸= j while PiPj = Pi for i = j and Tr (Pi) = 1. These

properties imply the following
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4.1 The setting

ρPi = λiPiPi = λiPi (4.7)

Hence,

λi = Tr (ρPi)

= ω (Pi) follows from (4.5)

= ω (PiPi) because Pi is indempotent

= ω (P ∗
i Pi) because Pi is self-adjoint

≥ 0 see Remark 3.1.18 .

(4.8)

So each eigenvalue λi of ρ is in [0,∞). This implies that σ(ρ) ⊂ [0,∞),
thus by Definition 3.1.10, we have that ρ ≥ 0. We also have that ω (Id) = 1,
this implies that Tr (ρId) = Tr (ρ) = 1, hence by the definition of a density
matrix we have that ρ ∈ S.

For the converse, suppose ρ is any density matrix (i.e., ρ ∈ S), and
consider the linear functional ω(A) = Tr (ρA) for any A ∈ Md. Let B ∈ S,
then by Remark 3.1.18, we get that there exists C ∈Md such that B = C∗C.
Hence for B we have

ω(B) = Tr (ρC∗C)

= Tr (CρC∗) by the cyclic property of Tr.

By [6, Corollary II.3.1.5], we have that CρC∗ ≥ 0. This means that the

eigenvalues of CρC∗ are non-negative, hence their sum is non-negative. Since
the trace of a matrix is equal to the sum of the eigenvalues of the matrix, we
have that ω(B) ≥ 0. We also have that ω(Id) = Tr (ρId) = Tr (ρ) = 1, by
Definition 4.1.3. By Definition 3.1.20, ω is indeed a state.

Remark 4.1.5. The above proposition essentially states that the density
matrices of S can be compared (distance-wise) by comparing the states of
Md. For instance, if we have a metric, say W1 on the states of Md then we
can use it to compare any two known or given density operators from S.

We can thus conclude that the physical states of some quantum system
are equivalent to the states of its observable algebra.

A note to make here is that in classical information theory the basic (or
smallest) unit of information is a binary digit often called a bit, and at any
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4.1 The setting

point a bit has a value of 0 or 1 but not both (i.e., the state of a bit can only
be a 0 or a 1). In quantum information theory the story is a little different
in that the quantum version of a bit is called a qubit and is at any time
a linear combination of the physical states |0⟩ and |1⟩. Hence a qubit is a
physical state of the quantum system C2, which is spanned by {|0⟩ , |1⟩}. A
qudit is a generalised qubit, i.e., it is physical state of the quantum system Cd.

For the remainder of this chapter and the next, we will make use of the
partial trace, [56, Part I, Section 2.4.3] defined as the normal trace over a
specific factor of a tensor product space, i.e., if Ai = Mqi such that A =
A1 ⊗ A2 then, for a simple tensor X ⊗ Y ∈ A, we have that

Tr1(X ⊗ Y ) = Tr(X)Y and Tr2(X ⊗ Y ) = XTr(Y ). (4.9)

Our focus from here onwards is on composite spaces as defined through
the tensor products of Subsection 3.2.3. According to [56, Part I, Subsection
2.2.8] a composite system is a quantum system made up of two or more dis-
tinct quantum systems, with the composite system simply defined as their
tensor product.

The main advantage of representing the physical states of a quantum
system as density matrices is how it describes the subsystems of a composite
system (see the following remark).

Remark 4.1.6. The state space of a composite physical system is the tensor
product of the state spaces of the component physical systems. Moreover, if
we have systems A and B, and system A is prepared in the state ρ while B
is prepared in the state σ, then the joint state of the composite system AB
is given by:

ρAB = ρ⊗ σ. (4.10)

One of the deepest applications of formulating quantum mechanics using
density matrices is how they describe the subsystems of a composite quantum
sysetm. Given a state ρAB on the composite system, we can define a reduced
density matrices ρA and ρB of systems A and B respectively by

ρA := TrB

(
ρAB

)
and ρB := TrA

(
ρAB

)
.

If we take the state given in (4.10) into consideration, we get by the trace
condition of density matrices and (4.9) that

ρA = TrB

(
ρAB

)
= TrB (ρ⊗ σ) = Tr (σ) ρ = ρ

34

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



4.2 Neighbouring states

and
ρB = TrA

(
ρAB

)
= Tr (ρ)σ = σ.

It is thus clear that if we know the state of a composite system, we can
desribe the states of the component physical systems.

Next, we move towards the DMTL approach and Chapter 2. For consis-
tency between our work and [29], we will introduce some notation from [29].
Let the canonical basis of Cd be the set of vectors

{|1⟩ , ..., |d⟩}
and by taking the tensor product n times, set

Hn = Cd ⊗ · · · ⊗ Cd

to be the Hilbert space of n qudits. I.e., Hn =
(
Cd
)⊗n

. Let On be the set
of the self-adjoint operators on Hn, denote OT

n ⊂ On as the subset of trace-
less self-adjoint operators and let Sn ⊂ On be the subset of density operators.

The Kronecker product [26, Section 4] implies that Hn can be treated as
Cdn with the set of all operators on Hn contained in the unital C*-algebra
Mdn , in particular, Sn ⊂Mdn and OT

n ⊂ On ⊂Mdn .

4.2 Neighbouring states

In this section we use the notation from the previous section to introduce the
notion of neighbouring states.

The following definition from [29] plays an important role, the definition
is stated in a slightly different manner here to avoid confusion.

Definition 4.2.1 (Neighbouring density operators). ρ, σ ∈ Sn are called
neighbouring density operators if Triρ = Triσ for some i ∈ [n] = {1, ..., n},
i.e., they coincide after discarding a suitable qudit. Let Nn ∈ OT

n be set of
the differences between couples of neighbouring density operators as follows:

Nn =
n⋃
i=1

N (i)
n , N (i)

n = {ρ− σ ; ρ, σ ∈ Sn,Triρ = Triσ}, i ∈ [n]

and write

Bn =
n∑
i=1

pi

(
ρ(i) − σ(i)

)
: pi ≥ 0,

n∑
i=1

pi = 1, ρ(i), σ(i) ∈ Sn, Triρ
(i) = Triσ

(i)
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4.2 Neighbouring states

for the convex hull of Nn.

Remark 4.2.2. According to [8, Part I, Section 2.1.4], A convex hull of some
set C, denoted convC, is the set of all convex combinations of points in C,
i.e.,

convC =


k∑
i=1

θixi : xi ∈ C, θi ≥ 0,
k∑
i=1

θi = 1

 .

In addition, convC is the smallest convex set containing C. The above clearly
implies that we can simply write Bn = convNn.

The remark above allows us to note an elementary result which will be
relevant in Section 6.1 when proving the absorbing property.

Lemma 4.2.3. Let X be a real vector space. Consider any symmetric subset
N of X such that X = spanN . Then its convex hull C = convN is absorbing
for X .

Proof. For any non-zero x ∈ X we can write x = s1x1 + · · · + skxk for some
k < ∞, xj ∈ N and sj > 0. Let t = s1 + · · · + sk and pj = sj/t to have
x = ty with y = p1x1 + · · · + pkxk ∈ C. The case x = 0 is trivial.

In the DMTL approach [29], they use Definition 4.2.1 and the trace norm
to define a metric on Sn. It is possible to do this without a prior norm.
One just needs to show that OT

n is a real vector space and Bn is a unit ball
(as defined in Definition 2.2.5), then Definition 2.3.1 and Proposition 2.3.7
will give us a norm on OT

n , which induces a metric on Sn (because for any
ρ, σ ∈ Sn we clearly have that ρ− σ ∈ OT

n , implying that Bn ⊂ OT
n ). What

you end up with is the same metric (or a more general version of it) as given
in [29, Definition 7].

One may now wonder if the metric induced by Proposition 2.3.7 does
indeed produce a quantum version of the classical Wasserstein distance of
order 1. The simplest answer is a yes and it follows from [29, Proposition
6], where they prove that this induced metric can indeed be reduced to the
classical version under some assumptions. Hence, we can proceed to use the
term “Wasserstein distance of order 1” in the remainder of this dissertation.
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4.3 The W1 metric for states

4.3 The W1 metric for states

We can now define a metric W1 on the set of states as follows. Let

Aj = Md and Bj = C.

Then as explained before, via the Kronecker product, we get

A =
n⊗
j=1

Aj = Mdn and B =
n⊗
j=1

Bj = C.

The reason for formulating things in this way, is to clarify the transition
to channels (which will be discussed in the next chapter) instead of states,
where (in the current context) the Bj’s will be matrix algebras. Ultimately
the Aj’s and Bj’s will be arbitrary unital C*-algebras (see Section 7.3).

It should also be clear that Idn =
⊗n

j=1 Id and 1 =
⊗n

j=1 1 are the units
of A and B respectively. We can now consider the space of maps

L(A,B) = L(Mdn ,C),

and define
LS(A,B) :=

{
η ∈ L(A,B) : η(Idn) = 1

}
.

Let L be any set of states on A, that is L ⊂ LS(A,B) by Definition
3.1.20. Note now that for any η, θ ∈ L, we have (η − θ) (Idn) = 0, thus one
can define the real vector space

O = {λ ∈ spanR L : λ(Idn) = 0}.

We now obviously have that, η− θ ∈ O, so defining a norm on O induces
a metric on the set of states. This is the route we will follow to define the
metric W1. The notion of neighbouring states is what allows us to define the
norm, which will be denoted ∥·∥W1

.

Note that a partial trace as in (4.9) removes a factor of the tensor product,
e.g., for a simple tensor a1 ⊗ a2 ⊗ a3 ⊗ · · · ⊗ an ∈ A, Tr2 gives

Tr2(a1 ⊗ a2 ⊗ a3 ⊗ a4 ⊗ · · · ⊗ an) = a1 ⊗ Tr(a2) ⊗ a3 ⊗ a4 ⊗ · · · ⊗ an

= Tr(a2) a1 ⊗ a3 ⊗ a4 ⊗ · · · ⊗ an

∈ A1 ⊗ A3 ⊗ A4 ⊗ · · · ⊗ An,

where A1 ⊗ A3 ⊗ A4 ⊗ · · · ⊗ An is A with A2 left out of the tensor product.
More generally, we write

Aĵ = A1 ⊗ ...Âj...⊗ An and Bĵ = B1 ⊗ ...B̂j...⊗Bn,
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4.3 The W1 metric for states

where these are A and B with Aj and Bj respectively left out of the tensor

products, for any j. Note that Âj is used to indicate the factor that is left out

of the tensor product (the same applies to B̂j). We correspondingly use the
same notation for elementary tensors. Any η ∈ L(A,B), can be restricted to
the map

ηĵ = η|Aĵ
(a1⊗ ...âj...⊗an) = η(a1⊗ ...⊗aj−1⊗ 1Aj

⊗aj+1⊗ ...⊗an). (4.11)

The above (4.11) is sufficient for this case, unlike in the later, more general
cases (see Chapter 6 and Section 5.3). The reason for this being the fact that
Bĵ = C = B (see the Kronecker product [26]), hence ηĵ : Aĵ → Bĵ. The
notation âj indicates the absence of aj in the elementary tensor. We can now
bring in a notion of neighbouring states (similar to Definition 4.2.1, but more
abstract), and say η, θ ∈ L ⊂ L(A,B) are neighbouring states if and only if
ηĵ = θĵ for some jth factor of the tensor product. We can now define

Nj = {η − θ : θ, η ∈ L with θĵ = ηĵ} (4.12)

and

N =
n⋃
j=1

Nj.

Allowing us to then define ∥·∥W1
as the norm on O which has the convex

hull
C = convN

of N as its unit ball. I.e.,

∥ω∥W1
= inf{t ≥ 0 : ω ∈ tC} (4.13)

where tC = {tω : ω ∈ C} for any real number t. According to Proposition
2.3.7, the above is only a norm when C is indeed a unit ball (as given in
Definition 2.2.5). The proof that C is a unit ball will be given in a more
general setup, in later chapters. This norm clearly induces a metric on L,
since the difference between any two elements of L is in O.

An alternative but similar (and equivalent) approach, which defines a
norm on the set of density matrices (or operators) Sn will be discussed in the
next chapter. This is done in a more general setting (see the end of Section
5.4), where we start with channels and show how this reduces to the case of
density operators.
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Chapter 5

W1 between quantum channels

This chapter is aimed developing a quantum Wasserstein distance of order
1 between quantum channels by extending the approach for states. We do
this in a finite dimensional setting (see Section 5.3 and Section 5.4). A much
more general setup is covered Section 7.3. In this chapter, we try to give a
complete presentation of the finite dimensional W1, we leave the major proofs
of the W1 to the general setup that will follow after this chapter.

5.1 Quantum channels

This section defines the notion of a quantum channel and related background,
while the subsequent sections are aimed at formulating the Wasserstein dis-
tance of order 1 between quantum channels. This is all done in a finite
dimensional setup.

In quantum information theory we may be required to transmit quantum
information, say from one quantum system B to another A. Since the states
of a quantum can be described by density matrices (see Chapter 4), we know
that a linear map E that maps any density matrix of system B to a denstiy
matrix in system A may be sufficient. The question is what other properties
must E have, in order to achieve this goal? We will briefly discuss some ideas
that will lead us to an answer for this question and more. Most of the ideas
presented here are a summary of the work done in [26] and [56].

Fix an orthonormal basis |1B⟩ , ..., |rB⟩ for the Hilbert space HB of the
system B. Similarly fix |1A⟩ , ..., |qA⟩ for system A. Represent the observable
algebra of B in terms of the given basis as the matrix algebra B = Mr, and
similarly use A = Mq for A.
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5.1 Quantum channels

To keep the distinction between states (or density matrices in our case)
and observables conceptually and notationally clear, we also write SA = Mq

for the matrix algebra containing the density matrices of A, and similarly
SB = Mr for B.

The first property that E needs is positivity because Definition 4.1.3 tells
us that density matrices are positive, so E has to satisfy Definition 3.1.17.
However, quantum systems are not necessarily isolated, they can be entan-
gled with other systems, i.e., they can be a part of some composite system
(in other words a tensor product). Hence, positivity is not always sufficient,
in such cases we need complete positivity.

The second property also follows from the need to guarantee that a den-
sity matrix is mapped to a density matrix, the property is that E must be
trace-preserving, i.e., for any X ∈ B we require that Tr(X) = Tr(E(X)).

Hence, the map E such that

E : SB → SA,

has to be completely positive and trace-preserving.

We start with a simpler definition of a completely positive map (simpler
in this context, when compared to Definition 3.1.22). The definition is equiv-
alent to the one given in Chapter 3 via Theorem 3.1.24. We will then add
the trace-preserving property, in order to get a map that satisfies our two
properties.

Definition 5.1.1 (Completely positive map). A map E : SB → SA is
said to be completely positive if it is given by

E(X) =
k∑
i=1

ViXV
∗
i

for all X ∈ B, where {V1, . . . , Vk} ⊆Mq,r and any k ∈ N.

Remark 5.1.2. Definition 5.1.1 makes use of Vi (·)V ∗
i instead of V ∗

i (·)Vi as
in Theorem 3.1.24, but the former is equivalent to (V ∗

i )∗ (·)V ∗
i , because if we

introduce Wi = V ∗
i for each i, then we have that W ∗

i (·)Wi.
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5.1 Quantum channels

From here onwards E refers to a completely positive map as given in the
above definition. It is clear that E is a linear map and it maps SB into SA,
this follows from matrix addition and multiplication. We now verify that
this map indeed satisfies our required properties. The following proposition
is for the first property.

Proposition 5.1.3. E as given in Definition 5.1.1 is a positive map, i.e., if
X ∈ S+

B then E(X) ∈ S+
A.

Proof. Let X ∈ S+
B = M+

r , then by Definition 4.1.1 we have that X = X∗ and
⟨ψB|X |ψB⟩ ≥ 0 for any |ψB⟩ ∈ HB. It is also clear by matrix multiplication
that ViXV

∗
i ∈ SA = Mq, for any Vi ∈ Mq,r. Note that V ∗

i |ψA⟩ ∈ HB for any
|ψA⟩ ∈ HA, so denote |ψB⟩ = V ∗

i |ψA⟩, which implies that ⟨ψB| = ⟨ψA|Vi.
Consider

(ViXV
∗
i )∗ =

(
(Vi) (XV ∗

i )
)∗

=
(
(XV ∗

i )∗ (Vi)
∗)

=
(
(V ∗

i )∗X∗)V ∗
i

= ViXV
∗
i by Definition 3.1.3,

(5.1)

and

⟨ψA|ViXV ∗
i |ψA⟩ = ⟨ψB|X |ψB⟩

≥ 0.
(5.2)

Hence, 5.1 and 5.2 imply that ViXV
∗
i ∈ S+

A . A sum of positive matrices
is clearly positive so E(X) ∈ S+

A .

For the second property, we get that assuming

k∑
i=1

V ∗
i Vi = 1B

in Definition 5.1.1 guarantees that E preserves the trace. This is summarised
by the following proposition.

Proposition 5.1.4. For E as given in Definition 5.1.1, if

k∑
i=1

V ∗
i Vi = 1B,

then Tr(E(X)) = Tr(X) for any X ∈ SB.

41

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



5.1 Quantum channels

Proof. Let E be as given in Definition 5.1.1. For any X ∈ SB assume

k∑
i=1

V ∗
i Vi = 1B,

then by the properties of the trace (trace of a sum and the cyclic property)
we have that

Tr(E(X)) = Tr

 k∑
i=1

ViXV
∗
i


=

k∑
i=1

Tr(ViXV
∗
i )

=
k∑
i=1

Tr(V ∗
i ViX)

= Tr


 k∑

i=1

V ∗
i Vi

X


= Tr(1BX)

= Tr(X).

We now use some of these properties to define a map that satisfies all our
required properties.

Definition 5.1.5 (Quantum channel). A map E : B → A is said to be a
quantum channel if it is completely positive and satisfies Proposition 5.1.4.
I.e., it is given by

E(X) =
k∑
i=1

ViXV
∗
i

for all X ∈ B, where {V1, . . . , Vk} ⊆Mq,r with k ∈ N and

k∑
i=1

V ∗
i Vi = 1B.

Hence we say a quantum channel is a completely positive trace-preserving
map (denoted c.p.t.p. map).
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5.1 Quantum channels

Let E be a quantum channel as in Definition 5.1.5, then E has a dual
representation in terms of the observable algebras. To see this, we apply the
sum and cyclic properties of the trace to the following,

Tr
(
Y E(X)

)
= Tr

Y k∑
i=1

ViXV
∗
i


=

k∑
i=1

(
Tr(Y ViXV

∗
i )
)

=
k∑
i=1

(
Tr(V ∗

i Y ViX)
)

= Tr


 k∑

i=1

V ∗
i Y Vi

X


= Tr

(
E(Y )X

)
,

(5.3)

for any Y ∈ A, X ∈ SB with

E : A→ B

such that

E(Y ) =
k∑
i=1

V ∗
i Y Vi,

It is clear from Theorem 3.1.24 that E is a a c.p. map. We can now
consider E acting on the unit 1A of A as follows,

E(1A) =
k∑
i=1

V ∗
i 1AVi

=
k∑
i=1

V ∗
i Vi

= 1B by Definition 5.1.5.

(5.4)

From (5.4), we get that E is a unital completely positive map and a dual

representation of E since (5.3) works both ways, i.e., starting with any unital
completely positive map we can use (5.3) to get a quantum channel. From
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5.2 The Choi-Jamio lkowski duality

here onwards, we will refer to both E and E as channels since they are dual
representations of one another, but the term quantum channel will be used
when discussing E .

By the above definitions and our earlier discussion (in this chapter), we
now know that a quantum channel is a completely positive map that trans-
mits quantum information from one quantum system to another. This chap-
ter is interested in formulating a distance between any two quantum channels
from one specific quantum system to another specified quantum system. We
want to cover this in a general sense, hence we will consider composite quan-
tum systems in Sections 5.3, 5.4.

For a general setup, we know from Chapter 3 that B and A are unital
C*-algebras, so Section 7.3 formulates a distance between unital completely
positive maps (i.e., channels) from one specific composite C*-algebra to an-
other specified composite C*-algebra. In this setting of C*-algebras, we see
that Definition 5.1.5 generalises Definition 3.1.20 (see Remark 3.1.23 for a
better explanation of this). This implies that states are a special case of
channels, hence a distance between channels will also give us a distance be-
tween states.

The next section shows a duality between density matrices and quantum
channels.

5.2 The Choi-Jamio lkowski duality

Following the setup of the previous section, we fix an orthonormal basis
|1B⟩ , ..., |rB⟩ for the Hilbert space HB of quantum system B and similarly
fix |1A⟩ , ..., |qA⟩ for quantum system A. We also represent the observable
algebra of B in terms of the given basis as the matrix algebra B = Mr, and
similarly use A = Mq for A. Let E be a quantum channel from B to A.

From [56, Subsection 8.2.3] we can define the maximally entangled state
vector of the composite system BB (i.e., a system consisting of two copies of
B) as

|Ω⟩ =
1√
r

r∑
i=1

|iB⟩ ⊗ |iB⟩ ∈ HB ⊗HB.
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5.2 The Choi-Jamio lkowski duality

The above state is represented by the following density matrix:

|Ω⟩ ⟨Ω| =
1

r

r∑
i=1

r∑
j=1

|iB⟩ ⟨jB| ⊗ |iB⟩ ⟨jB| .

It is easy to show that |Ω⟩ ⟨Ω| is a density matrix. |Ω⟩ ⟨Ω| ≥ 0 because it
is a self-adjoint sum and tensor product of positive operators. Taking note
of the fact that the Tr(X1 ⊗ X2) = Tr(X1)Tr(X2) and other properties of
the trace we have that

Tr
(
|Ω⟩ ⟨Ω|

)
=

1

r

r∑
i=1

r∑
j=1

Tr
(
|iB⟩ ⟨jB|

)2
=

1

r

r∑
i=1

r∑
j=1

δij

= 1,

where δij is the standard Kronecker delta. So |Ω⟩ ⟨Ω| is a denstiy matrix by

Definition 4.1.3.

For any quantum channel E , we define the Choi-matrix representation of
E in BA as

κE :=
1

r

r∑
i=1

r∑
j=1

|iB⟩ ⟨jB| ⊗ E(|iB⟩ ⟨jB|). (5.5)

It is clear from the arguments about |Ω⟩ ⟨Ω| being a density matrix and
E being a quantum channel (preserving trace and positivity) that κE is also
a density matrix in BA.

The above result is called the Choi-Jamio lkowski duality which states that
any quantum channel E from system B to A corresponds to a density matrix
κE in the composite system BA. This implies that one way to compare two
quantum channels E1, E2 (i.e., find the distance between them) is to do this
by comparing κE1 and κE2 in the composite system. Our aim is to formulate
a distance between E1 and E2 that avoids this relationship.

In our approach, we will instead adapt the DMTL directly to channels,
while using the Choi-Jamio lkowski duality to highlight the correspondence
of our approach to the special case of states.

45

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



5.2 The Choi-Jamio lkowski duality

For the above to work we need to make sure that every quantum channel
has its own density matrix, in other words, mapping a quantum channel to
a density matrix is injective (or one to one).

To do this we need to note that for any quantum channel E with its
associated κE as given in (5.5), we have that

κTB
E =

1

r

r∑
m=1

r∑
n=1

(
|mB⟩ ⟨nB|

)T
⊗ E(|mB⟩ ⟨nB|)

=
1

r

r∑
m=1

r∑
n=1

(
|nB⟩ ⟨mB|

)
⊗ E(|mB⟩ ⟨nB|),

(5.6)

where TB is the partial transposition over B as shown above. Using (5.6)
and noting that we have an orthonormal basis, we get that

r
(
⟨jB| ⊗ 1B

)
κTB
E

(
|iB⟩ ⊗ 1B

)
=
(
⟨jB| ⊗ 1B

)( r∑
m=1

r∑
n=1

|nB⟩ ⟨mB| ⊗ E(|mB⟩ ⟨nB|)

)(
|iB⟩ ⊗ 1B

)
=

r∑
m=1

r∑
n=1

⟨jB|nB⟩ ⟨mB|iB⟩ E(|mB⟩ ⟨nB|)

=
r∑

m=1

r∑
n=1

δjnδmiE(|mB⟩ ⟨nB|)

= E(|iB⟩ ⟨jB|),

(5.7)

where 1B the unit of B = Mr. (5.6) and (5.7) imply that we can recover a

quantum channel from its Choi-matrix, so any two distinct quantum channels
cannot have the same choi-matrix.

Remark 5.2.1. It can be shown that the Choi-matrix κE of a quantum
channel E from system B to A reduces to a maximally mixed state (density
matrix) of B. In fact, we can show that the association of a Choi-matrix and
its quantum channel is surjective (i.e., any density matrix that reduces to a
maximally mixed state of B defines a quantum channel via (5.7)). This is
the reason why this association is called the Choi-Jamio lkowski duality. We
are not going to show these results in detail because they don’t play any role
here.
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5.2 The Choi-Jamio lkowski duality

As mentioned before, our ultimate aim is to side-step the Choi-
Jamio lkowski duality, in other words, formulate a W1 distance that compares
quantum channels more directly. Before we get there we need to discuss a
few results of the Choi-matrix. (5.3) defines a channel from E : A 7→ B for
any quantum channel E . It is straightforward to show that the action of E
can be defined via the Choi-matrix κE . Similar to before, taking the partial
transposition over B in the second order of |Ω⟩ ⟨Ω| implies that

κTA
E =

1

r

r∑
m=1

r∑
n=1

|mB⟩ ⟨nB| ⊗ E
((

|mB⟩ ⟨nB|
)T)

=
1

r

r∑
m=1

r∑
n=1

|mB⟩ ⟨nB| ⊗ E(|nB⟩ ⟨mB|).
(5.8)

When we consider the following,

TrA

(
rκTA

E (1B ⊗ Y )
)

=

TrA

( r∑
m=1

r∑
n=1

|mB⟩ ⟨nB| ⊗ E(|nB⟩ ⟨mB|)

)
(1B ⊗ Y )


= TrA

( r∑
m=1

r∑
n=1

|mB⟩ ⟨nB| ⊗ E(|nB⟩ ⟨mB|)Y

)
=

r∑
m=1

r∑
n=1

|mB⟩ ⟨nB|Tr
(
E(|nB⟩ ⟨mB|)Y

)
=

r∑
m=1

r∑
n=1

|mB⟩ ⟨nB|Tr
(
Y E(|nB⟩ ⟨mB|)

)
=

r∑
m=1

r∑
n=1

|mB⟩ ⟨nB|Tr
(
E(Y ) |nB⟩ ⟨mB|

)
by (5.3)

=
r∑

m=1

r∑
n=1

(
E(Y )mn

)
|mB⟩ ⟨nB|

= E(Y ),

(5.9)

with E(Y )mn being them,n entry of E(Y ) and TrA denoting the partial trace
over the system A. Based on what we have covered so far, it is straightforward

to show that TrA

(
rκTA

E

)
= 1B. With the above in mind we can consider

the set K(A,B) of channels E : A→ B, and the set

C(BA) = {δ ∈ B ⊗ SA : δ ≥ 0 and TrAδ = 1B},
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5.3 The W1 norm

we have a one-to-one correspondence between K(A,B) and C(BA) given by

E(a) = TrA[δ(1B ⊗ a)], (5.10)

for any a ∈ A. Denoting the dual of E by E : SB → SA, (5.9) implies that

δ = rκTA
E

in this one-to-one correspondence. Because of the usual interpretation of the
Choi-Jamio lkowski duality, one might be tempted to rather view the elements
of C(BA) as δ ∈ SB ⊗ SA such that δ/r is a density matrix of the composite
system BA reducing to the maximally mixed state of B, but strictly speaking
E(Y ) as given by (5.10) would then be in SB instead of B. When r > 1,
it is therefore in fact conceptually better if we do not view δ/r as a density
matrix representing some state. On the other hand, in the special case where
B is a trivial system, i.e., r = 1 and B = C, the set C(BA) is precisely all
the density matrices of A, and we simply recover the usual representation of
expectation values of a state, E(Y ) = Tr(δY ), in terms of the density matrix
δ or a state of an algebra as given in Definition 3.1.20.

5.3 The W1 norm

Using this representation of channels as elements of C(BA), we can formulate
an extension of the Wasserstein distance of order 1 between states in the
DMTL approach, to channels. This is a distance between channels acting
from one composite system, A, to another, B. Here we assume that

A = A1 ⊗ ...⊗ An and B = B1 ⊗ ...⊗Bn

with Aj = Mqj and Bj = Mrj . The latter are simply the observable algebras
of systems Aj and Bj respectively. One then defines the real vector space

O = {X ∈ spanRC(BA) : TrAX = 0}, (5.11)

where spanR again refers to finite linear combinations with real coefficients.

The goal is to define a certain norm ∥·∥W1
on O, which when applied to dif-

ferences δ − ε of elements of C(BA), will in turn define a metric on C(BA).
This metric will be the Wasserstein distance of order 1 on C(BA), or equiva-
lently on K(A,B) via the one-to-one correspondence from before, extending
the construction in the DMTL approach to channels.
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5.3 The W1 norm

The definition of the norm ∥·∥W1
entails extending the idea of neighbour-

ing states in the DMTL approach to channels. We write

Aĵ = A1 ⊗ ...Âj...⊗ An and Bĵ = B1 ⊗ ...B̂j...⊗Bn,

i.e., these are A and B with Aj and Bj respectively left out of the tensor
products. Similarly we set

A≤j = A1 ⊗ ...⊗ Aj and A≥j = Aj ⊗ ...⊗ An,

and likewise for B≤j and B≥j. In terms of the following notation (which is
chosen to fit in with that of later chapters and sections),

νj =
1

rj
Tr

where this Tr is the usual trace on Bj = Mrj , we can then reduce a channel
E : A→ B to the channel

Eĵ = (idB≤j−1
⊗νj ⊗ idB≥j+1

) ◦ E|Aĵ

from Aĵ to Bĵ, where id denotes the identity map on the indicated algebra,
and with E|Aĵ

defined via

E|Aĵ
(a1 ⊗ ...âj...⊗ an) = E(a1 ⊗ ...⊗ aj−1 ⊗ 1Aj

⊗ aj+1 ⊗ ...⊗ an).

I.e., we restrict E to Aĵ, and evaluate the “partial expectation” of the result
over Bj. Note that via the one-to-one correspondence given by (5.10), this
reduction of E is equivalent to the reduction

δĵ = (idB≤j−1
⊗νj ⊗ idB≥j+1

) ⊗ TrAj

of the corresponding δ ∈ C(BA), where TrAj
denotes the partial trace on

SA = Mq1 ⊗ ...⊗Mqn over SAj
= Mqj with δ corresponding to E via (5.10).

In terms of this notation, we view δ, ε ∈ C(BA) as representing neighbouring
channels when δĵ = εĵ for some j. We define

Nj = {δ − ε : δ, ε ∈ C(BA) with δĵ = εĵ} (5.12)

and

N =
n⋃
j=1

Nj.
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5.4 W1 between channels

We then define ∥·∥W1
as the norm on O which has the convex hull

C = convN
of N as its unit ball. I.e.,

∥X∥W1
= inf{t ≥ 0 : X ∈ tC} (5.13)

where tC = {tX : X ∈ C} for any real number t. The norm ∥·∥W1
will be

referred to as the W1 norm. To prove that this is a norm on O of course
requires some work, which will be done in a more general context in the
sequel.

5.4 W1 between channels

Given this norm, we can define a metric W1 on K(A,B) via

W1(Eδ, Eε) =∥δ − ε∥W1

with Eδ denoting the channel E corresponding to δ ∈ C(BA) in (5.10). This
metric W1 is the generalization of the Wasserstein distance of order 1 between
states to the case of channels. We consequently refer to it as the Wasserstein
distance of order 1 on K(A,B).

The rough intuition behind this metric follows from δ and ε in the defini-
tion of Nj above being neighbouring channels. This condition tells us that ε
and δ coincide when reduced to Aĵ → Bĵ for some j, i.e., with one system,
Aj and Bj respectively, removed from each of the composite systems A and
B. In this way the “local differences” between two channels Eδ and Eε are
picked up by W1, where “local” here is simply in relation to the systems
A1, ...,An and B1, ...,Bn composing A and B. A typical case is the dynam-
ics of an open composite system A, where we take Bj = Aj for all j. We
then expect W1 to naturally take into account the differences between two
dynamical processes in the individual systems Aj.

A basic property of W1 is additivity (see Chapter 8 for a general discus-
sion) with respect to tensor products. If we partition the set [n] = {1, ..., n}
into m non-empty and sequential parts, i.e.,

P (1) = {1, ..., n1}
P (2) = {n1 + 1, ..., n2}

...

P (m) = {nm−1 + 1, ..., n},
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5.4 W1 between channels

then we can consider the subsystems of A and B with observable algebras

AP (k) =
⊗
j∈P (k)

Aj and BP (k) =
⊗
j∈P (k)

Bj

respectively. For any channels Dk, Ek : AP (k) → BP (k) we then have

W1(D1 ⊗ ...⊗Dm, E1 ⊗ ...⊗ Em) =
m∑
k=1

W1(Dk, Ek),

with a resulting stability property when Dj = Ej for some of the j’s. This can
be refined by dropping the assumption that the partition is sequential, but
the form above is for the moment notationally clearer. Keep in mind that W1

on K(AP (k), BP (k)) is of course defined by the same procedure as for K(A,B).

When Bj = C, we recover the case of states on A, and indeed our W1

above then specialises to the Wasserstein distance of order 1 in the DMTL
approach, with δ, ε ∈ C(BA) becoming density matrices ρ and σ of the com-
posite system A. They specifically considered the case q1 = ... = qn = d.

In the subsequent general theory, the formulation will be in the Heisenberg
picture E : A → B from the outset. The Choi-Jamio lkowski duality will
also be side-stepped, with the formulation expressed directly in terms of the
channels themselves. In connection to this, note that the basic condition
TrAX = 0 in (5.11) can equivalently be expressed as λ(1A) = 0, with λ :
A→ B defined by

λ(a) = TrA[X(1B ⊗ a)]

in terms of the given X. The latter extends the formula in (5.10). The con-
dition λ(1A) = 0 relates to the unitality of channels, namely E(1A) = 1B, as
will be seen in abstract form in Chapters 6 and 7.

The reader may now turn directly to Section 7.3 and 8.4 to see the general
C*-algebraic version of this section. However, the proofs that the Wasserstein
distance of order 1 treated there is indeed a metric and satisfies additivity,
rely on Chapter 6 and 7 as well as the rest of Chapter 8.
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Chapter 6

Pointed spaces and a composite
setup

This chapter is motivated by the fact that channels are unital maps, i.e., we
have that channels map the identity element of one algebra to the identity
element of another algebra. This chapter is aimed at showing the role that
this property of channels plays when introduced in a more abstract form
between vector spaces, when setting up W1 seminorms. In the next chapter,
these in turn lead to W1 norms and ultimately to W1 distances between
channels.

6.1 Pointed spaces and maps

The absorbing property as defined in Definition 2.2.1 is needed for the gauge
function∥·∥C on X in Proposition 2.3.7 to be well defined and finite at every
point of X , and it is in that sense the most basic property of a unit ball.
In this section we show how it arises under general assumptions for the set
to be used as a unit ball for the W1 norm. We are ultimately interested in
the situation where X is a space of maps between two composite systems.
In this section X is more generally taken as a vector space O of linear maps
between two vector spaces, each with a distinguished point. The maps will
be required to map the one distinguished point to the other, as an abstrac-
tion of unitality (this refers to unital maps). Actual unitality, in the case of
unital algebras and C*-algebras as the pointed spaces, will be treated in the
next chapter.

The following definition is motivated by [25, p. 118], but in this case we
present this definition for vector spaces.
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6.1 Pointed spaces and maps

Definition 6.1.1 (Pointed space). A pointed space is a pair (A, uA) con-
sisting of a vector space A over some field F and a distinguished point uA ∈ A
such that uA ̸= 0. For simplicity of notation and unless stated otherwise, a
pointed space (A, uA) will be denoted as A, with uA assumed as the notation
for the distinguished point.

One should keep in mind that eventually (Section 7.3) the pointed spaces
will be taken to be unital C*-algebras with F = C, and the units serving as
the distinguished points. These C*-algebras will generalise the matrix alge-
bras from Chapter 4 and 5.

In the remainder, all pointed spaces involved are assumed to be over the
same field of scalars F (which is either real or complex). However, in either
case certain constructions will involve the span of a subset over real scalars,
leading to a real vector space, and such spans will again be indicated by
spanR.

We want to use a special case of Definition 3.1.12, where a specified point
of some vector space is mapped to a specific point of another space. Hence
we give the following definition.

Definition 6.1.2 (Pointed maps). If A and B are pointed spaces, we define
a pointed map as η ∈ L(A,B) such that η(uA) = uB for uA ∈ A and uB ∈ B
the distinguised points of A and B respectively. We also define

Lu(A,B) = {η ∈ L(A,B) : η(uA) = uB},

as the set of pointed maps from A to B.

Definition 6.1.2 is of course an abstract version of unital maps in the case
where A and B are unital algebras.

The following result will shortly be used in tandem with Lemma 4.2.3 to
prove the absorbing property of certain sets.

Lemma 6.1.3. Let A and B be pointed spaces and consider any subset L of
Lu(A,B). Set

O := {λ ∈ spanR L : λ(uA) = 0} and V := {η − θ : η, θ ∈ L}.

Then it follows that O = spanR V.
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6.2 The composite setup

Proof. Clearly spanR V ⊂ O. Conversely, take any non-zero λ ∈ O and write
λ1 := λ. Since λ1(uA) = 0 and uB ̸= 0, the coefficients in λ1’s expansion
as a linear combination of L’s elements, can not all be strictly positive or
all strictly negative. Without loss of generality we can therefore rewrite the
expansion in the form

λ = r
(1)
1 η

(1)
1 + ...+ r

(1)

k(1)
η
(1)

k(1)
− s

(1)
1 θ

(1)
1 − ...− s

(1)

k(1)
θ
(1)

k(1)

where η
(1)
j , θ

(1)
j ∈ L and r

(1)
j , s

(1)
j > 0 for some (finite) k(1), where the super-

script (1) is merely an index, and with the proviso that λ(uA) = 0. Note
that k(1) is simply the biggest of the number of positive coefficients and the
number of negative coefficients in λ1’s initial expansion, while the coeffi-
cients in smaller number are split to increase their number to k(1). Writ-
ing λ′1 = r

(1)
1 (η

(1)
1 − θ

(1)
1 ) + ... + r

(1)

k(1)
(η

(1)

k(1)
− θ

(1)

k(1)
) ∈ spanR V and λ2 =

(r
(1)
1 − s

(1)
1 )θ

(1)
1 + ... + (r

(1)

k(1)
− s

(1)

k(1)
)θ

(1)

k(1)
, we have λ1 = λ′1 + λ2, implying

that λ2 ∈ O. If λ2 ̸= 0, then repeat this procedure for λ2 instead of λ1,
noting that we can now analogously write

λ2 = r
(2)
1 η

(2)
1 + ...+ r

(2)

k(2)
η
(2)

k(2)
− s

(2)
1 θ

(2)
1 − ...− s

(2)

k(2)
θ
(2)

k(2)
,

but with k(2) < k(1). This delivers λ′2 ∈ spanR V and λ3 ∈ O. If λ3 ̸= 0,
then repeat for λ3, etc. Since k(j+1) < k(j), this process must stop to deliver
λ = λ′1 + ...+ λ′m ∈ spanR V .

6.2 The composite setup

In this section we set up a framework which will serve as an abstraction of
composite systems in terms of pointed spaces. We also define the set for
which the absorbing property will be proven in the next section, leading to
it being a semi unit ball giving us a W1 seminorm.

Consider pointed spaces A1, ..., An and B1, ..., Bn. Let

A = A1 ⊙ ...⊙ An

be the algebraic tensor product of the vector spaces A1, ..., An, which is itself
a pointed space with distinguished point

uA := uA1 ⊗ ...⊗ uAn .

However, as we want to allow for completions of A, in particular in the
C*-algebraic framework of Section 7.3 (where A1, ..., An will be unital C*-
algebras), we need to allow for completions of the tensor product of B1, ..., Bn
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6.2 The composite setup

from the outset. To emphasise this, we write

B = B1 ⊗ ...⊗Bn,

which may be the algebraic tensor product, or some completion of it with
respect to a specified norm. In all cases B is a pointed space with uB =
uB1 ⊗ ... ⊗ uBn . The particular tensor product B remains fixed throughout
this section, however. The point of this is that in the theory developed here,
linear maps A → B are then not constrained to have their image contained
in an uncompleted tensor product.

Along the lines of Chapter 4 and 5, we define

Aĵ = A1 ⊙ ...Âj...⊙ An and Bĵ = B1 ⊗ ...B̂j...⊗Bn,

A≤j = A1 ⊙ ...⊙ Aj and A≥j = Aj ⊙ ...⊙ An,

and
B≤j = B1 ⊗ ...⊗Bj and B≥j = Bj ⊗ ...⊗Bn,

for j = 1, ..., n, using the same completion (if relevant) for tensor products
of the Bj’s as for B.

Let νj be a linear functional on Bj such that

νj(uBj
) = 1

for j = 1, ..., n. These functionals will act as reference functionals relative to
which linear maps A → B will be reduced to Aĵ → Bĵ. Later on (Section
7.3), in the case of unital C*-algebras, the νj’s will be taken as states, gen-
eralizing the normalised traces used in Section 5.1.

If B is indeed a completion with respect to some norm, rather than just
an algebraic tensor product, we also assume that algebraic tensor products of
the νj’s with themselves as well as with the identity maps idB≤j−1

and idB≥j+1

are continuous with respect to this norm and therefore uniquely extendible
to the completed tensor products. The relevant reductions of a linear map
η ∈ L(A,B) from A to B can then be defined as

ηĵ = (idB≤j−1
⊗νj ⊗ idB≥j+1

) ◦ η|Aĵ
: Aĵ → Bĵ (6.1)

η≤j = (idB≤j
⊗ν>j) ◦ η|A≤j

: A≤j → B≤j (6.2)

η≥j = (ν<j ⊗ idB≥j
) ◦ η|A≥j

: A≥j → B≥j (6.3)

55

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



6.2 The composite setup

for j = 1, ..., n, with ν<j = ν1 ⊗ ... ⊗ νj−1 (empty when j = 1) and ν>j =

νj+1 ⊗ ... ⊗ νn (empty when j = n), where all the indicated tensor product
maps are algebraic when the tensor product B is, or (uniquely) continuously
extended to B as assumed possible above, when B is completed. Here the
restriction η|Aĵ

: Aĵ → B is defined via

η|Aĵ
(a1 ⊗ ...âj...⊗ an) = η(a1 ⊗ ...⊗ aj−1 ⊗ uAj

⊗ aj+1 ⊗ ...⊗ an)

for a1 ∈ A1, ..., an ∈ An (using the universal property), replacing aj by uAj
,

and analogously for η|A≤j
: A≤j → B and η|A≥j

: A≥j → B, where the nota-
tion âj indicates the absence of aj in the elementary tensor.

Note in particular that when η ∈ Lu(A,B), it follows directly from these
definitions that

ηĵ ∈ Lu(Aĵ, Bĵ), η≤j ∈ Lu(A≤j, B≤j) and η≥j ∈ Lu(A≥j, B≥j),

where the property νj(uBj
) = 1 has been used. Note that for η, θ ∈ Lu(A,B)

this implies that

θ≤j ⊙ η≥j+1 ∈ Lu(A,B) (6.4)

for j = 1, ..., n− 1, which will implicitly play a role in Lemma 6.3.1 below.

We also fix any subset
L ⊂ Lu(A,B)

and let

O := {λ ∈ spanR L : λ(uA) = 0} (6.5)

as in Lemma 6.1.3. Our ultimate goal, given sufficient additional structure

and assumptions, is to define a metric, namely the Wasserstein distance of
order 1, on L. This will be done by first obtaining a seminorm, and in the
next section under further assumptions a norm, on O.

Let

Nj := {η − θ : η, θ ∈ L such that ηĵ = θĵ}, (6.6)

generalizing (5.12), though now in the Heisenberg picture, and set

N :=
n⋃
j=1

Nj and C := convN , (6.7)

where C is an abstract version of the set we ultimately want to use as a unit

ball defining the W1 norm. In this chapter we settle for a seminorm.
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6.3 Absorption in the composite setup and W1 seminorms

6.3 Absorption in the composite setup and

W1 seminorms

In terms of the setup of the previous section, we now show that C is absorbing
for O. The abstract assumption (6.8) below, is made in lieu of complete
positivity. Keep in mind that because of (6.4), θ≤j⊙η≥j+1 in (6.8) is already
a pointed map (which is an abstraction of a unital map). The main technical
step is the following lemma.

Lemma 6.3.1. Assume that

θ≤j ⊙ η≥j+1 ∈ L (6.8)

for all η, θ ∈ L and j = 1, ..., n − 1. For any η, θ ∈ L it then follows that

η − θ = λ1 + ...+ λn for some λj ∈ Nj. In particular,

O = spanR N .

Proof. In line with Lemma 6.1.3, we set V := {η − θ : η, θ ∈ L}. The
case n = 1 indeed follows immediately from Lemma 6.1.3, as we then have
N = V . We can therefore assume n > 1. For any η, θ ∈ L, set

λ1 = η − θ≤1 ⊙ η≥2

λ2 = θ≤1 ⊙ η≥2 − θ≤2 ⊙ η≥3

...

λn−1 = θ≤n−2 ⊙ η≥n−1 − θ≤n−1 ⊙ η≥n

λn = θ≤n−1 ⊙ η≥n − θ.

Then η−θ = λ1 + ...+λn. If indeed λj ∈ Nj, it follows that η−θ ∈ spanR N ,
hence V ⊂ spanRN . From N ⊂ V and Lemma 6.1.3 we can conclude that
O = spanR N .

It remains to show that λj ∈ Nj. Because of (6.8), we simply have to
check the equality of the reductions as required in (6.6), i.e., that (λj)ĵ = 0
for j = 1, ..., n. To handle all cases at once, set A≤0 = C, A≥n+1 = C,
θ≤0 = idC and η≥n+1 = idC, making η = θ≤0 ⊙ η≥1 and θ = θ≤n ⊙ η≥n+1. For
j = 1, ..., n, and any a<j ∈ A≤j−1 and a>j ∈ A≥j+1, one has the following
direct calculation:(

θ≤j−1 ⊙ η≥j
)
ĵ
(a<j ⊗ a>j)

= (idB≤j−1
⊗νj ⊗ idB≥j+1

) ◦
(
θ≤j−1 ⊙ η≥j

)
(a<j ⊗ uAj

⊗ a>j)

= θ≤j−1(a<j) ⊗
(

(νj ⊗ idB≥j+1
) ◦ η≥j(uAj

⊗ a>j)
)
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6.3 Absorption in the composite setup and W1 seminorms

and

(νj ⊗ idB≥j+1
) ◦ η≥j(uAj

⊗ (·))
= (νj ⊗ idB≥j+1

) ◦ (ν<j ⊗ idB≥j
) ◦ η|A≥j

(uAj
⊗ (·))

= (ν<j+1 ⊗ idB≥j+1
) ◦ η|A≥j+1

= η≥j+1,

hence
(
θ≤j−1 ⊙ η≥j

)
ĵ

= θ≤j−1 ⊙ η≥j+1.

Similarly
(
θ≤j ⊙ η≥j+1

)
ĵ

= θ≤j−1⊙η≥j+1, thus
(
θ≤j−1 ⊙ η≥j

)
ĵ

=
(
θ≤j ⊙ η≥j+1

)
ĵ
,

as required.

Using this lemma we can now show that C is indeed absorbing.

Proposition 6.3.2. Assuming (6.8), the set C in (6.7) is a semi unit ball
(Definition 2.2.5) for O given by (6.5).

Proof. From (6.6) and (6.7) it is clear that −N = N , i.e., N is symmetric,
hence so is C, which is also convex by definition. In addition, because of N ’s
symmetry, Lemmas 6.3.1 and 4.2.3 imply that C is absorbing for O.

Because of Proposition 2.3.7, this is sufficient to deliver a seminorm. We
summarise this as follows.

Definition 6.3.3. The structure set up in Section 6.2, with L assumed to
satisfy (6.8), is called a pointed (W1, n) structure or pointed W1 structure (if
n is clear from context), and is denoted by the shorthand (A,B, ν,L), where
ν := (ν1, ...νn). The rest of the notation in Section 6.2 is then implied. For
clarity the space O and set C in (6.5) and (6.7) can respectively be denoted
by

OL and CL
in this context.

Corollary 6.3.4. Given a pointed (W1, n) structure (A,B, ν,L), the function
∥·∥W1

on OL defined by

∥λ∥W1
= inf{t ≥ 0 : λ ∈ tCL},

for every λ ∈ OL, is a seminorm referred to as the W1 seminorm associated
to (A,B, ν,L). Consequently, the function W1 : L × L → R defined by

W1(η, θ) = ∥η − θ∥W1
,

is a pseudometric on L.
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6.3 Absorption in the composite setup and W1 seminorms

Although W1 is at this stage only a pseudometric, which means we may
have W1(η, θ) = 0 for η ̸= θ, it will nevertheless be called the Wasserstein
distance of order 1 associated to (A,B, ν,L). We still need ray-wise bound-
edness to achieve a norm and make W1 a metric, which is what we turn to
next.
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Chapter 7

The W1 norm and unital
algebras

In this chapter we achieve a norm and consequently obtain a metric serving
as the Wasserstein metric order 1 on the set of unital maps between any two
specific unital algebras.

7.1 Ray-wise boundedness

To obtain a norm from the W1 seminorm in Corollary 6.3.4, we need ray-wise
boundedness. In order to achieve this, we make use of a more specialised al-
gebraic framework as well as assumptions complementary to those made in
the previous chapter. We are going to work in the context of unital algebras.
As in the previous chapter, positivity plays no role here or in Section 7.2,
though we again make the abstract assumption (6.8) which will be implied by
the complete positivity of channels in the next section. On the other hand,
the unitality of maps will be used. For the moment we step away from the
tensor product setup of the previous section, and consider a simple algebraic
setting. The core structure (6.5) will remain in place, however. This allows
us to obtain the remaining building block required by Proposition 2.3.7 in
the next result. We return to the tensor product setup in the next section.

Note that in the proposition below, all elements of L are unital maps.

Proposition 7.1.1. Let A and B be any unital algebras (both of them real,
or both of them complex), with their units 1A and 1B respectively serving as
the distinguished points making A and B pointed spaces. Fix any subset L of
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7.1 Ray-wise boundedness

Lu(A,B) and set

O := {λ ∈ spanR L : λ(1A) = 0} and V := {η − θ : η, θ ∈ L}.

Consider any subset N of V and set C := convN . Then C is ray-wise bounded
in O.

Proof. In order to decide whether an element of O lies outside C, it is going
to be convenient to attach a quantitative measure to the element, which
when too large, will imply that the element is not in O. To attain this, we
follow a construction inspired by the representation theory of C*-algebras
(see Chapter 3).

For every η ∈ L, define a bilinear map ⟨·, ·⟩η : A× A→ B by

⟨x, y⟩η = η(xy)

for all x, y ∈ A. We write Gη for A equipped with this bilinear map (Gη can
be referred to as a “bilinear space”, which is not a standard term). Define
πη : A → L(Gη), with L(Gη) the space of linear maps from Gη to itself,
through

πη(a)x = ax

for all a ∈ A and x ∈ Gη, with ax simply being the product in A (It’s clear
that πη is a homomorphism). Then

η(a) =
〈
1A, πη(a)1A

〉
η

in analogy to a cyclic representation obtained from the GNS construction,
where 1A serves as the “cyclic vector” (indeed, πη(A)1A = Gη). We proceed
to consider the direct sum (similar to the difinition of a universal represen-
tation)

(G, ⟨·, ·⟩ , π) =
⊕
η∈L

(Gη, ⟨·, ·⟩η , πη).

I.e., every x ∈ G is of the form x = (xη)η∈L with xη ∈ Gη and {η ∈ L :
xη ̸= 0} a finite set. Furthermore, π : A → L(G) is defined by π(a)x =
(πη(a)xη)η∈L for all such x and every a ∈ A. Lastly, ⟨x, y⟩ :=

∑
η∈L

〈
xη, yη

〉
η

for all x = (xη)η∈L, y = (yη)η∈L ∈ G defines a bilinear map (additional details
of the above are given in Subsection 3.2.1).

For any η ∈ L, define η̂ ∈ G by

η̂θ =

{
1A for θ = η
0 for θ ̸= η
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7.1 Ray-wise boundedness

for all θ ∈ L. Note that
〈
η̂, π(a)η̂

〉
= η(a) for all η ∈ L and a ∈ A.

Consider any λ ∈ O, which using Lemma 6.1.3, we can write as

λ =
l∑

j=1

rj(ηj − θj)

where rj ≥ 0 and ηj, θj ∈ L. Then

λ =
l∑

j=1

rj

(〈
η̂j, π(·)η̂j

〉
−
〈
θ̂j, π(·)θ̂j

〉)
.

We can use this to lift λ : A → B to a linear map λ̄ : L(G) → B defined
by

λ̄(T ) =
l∑

j=1

rj

(〈
η̂j, T η̂j

〉
−
〈
θ̂j, T θ̂j

〉)
for all T ∈ L(G). This lifting may not be unique (it may depend on the
choice of ηj’s and θj’s), but for our purposes any such lifting will do. In
particular, any γ ∈ C can be lifted to γ̄ : L(G) → B in the form

γ̄(T ) =
m∑
j=1

pj

(〈
α̂j, T α̂j

〉
−
〈
β̂j, T β̂j

〉)
for some αj, βj ∈ L, with pj ≥ 0 and p1 + ...+ pm = 1.

According to the Hahn-Banach theorem there is a linear functional f on
B such that f(1B) ̸= 0 (in the case where 1B = 0 and therefore B = {0},
Proposition 7.1.1 is trivial). Normalise it to obtain

ν =
1

f(1B)
f.

For any x, y ∈ Gζ we use this to define x ⋊⋉ y : Gζ → Gζ by (x ⋊⋉ y)z =
xν(⟨y, z⟩ζ) for all z ∈ Gζ , where the notation x ⋊⋉ y is inspired by the Dirac
notation |x⟩ ⟨y|. For x, y ∈ G this in turn allows us to define

x ⋊⋉⊕ y =
⊕
ζ∈L

xζ ⋊⋉ yζ ∈ L(G),

i.e., (x ⋊⋉⊕ y)z = (xζν(
〈
yζ , zζ

〉
ζ
))ζ∈L for z ∈ G. For all η, θ ∈ L we then have
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7.1 Ray-wise boundedness

〈
θ̂, (η̂ ⋊⋉⊕ η̂)θ̂

〉
=
∑
ζ∈L

〈
θ̂ζ , η̂ζν

(〈
η̂ζ , θ̂ζ

〉
ζ

)〉
ζ

=

{
1B for θ = η
0 for θ ̸= η.

Thus, in terms of γ̄ above,

γ̄(η̂ ⋊⋉⊕ η̂) =
m∑
j=1

pjbj

where bj ∈ {−1B, 0, 1B} for all j, and consequently∣∣∣ν (γ̄(η̂ ⋊⋉⊕ η̂)
)∣∣∣ ≤ 1 (7.1)

for all η ∈ L. This is therefore a condition satisfied by all γ ∈ C, for any

lifting γ̄ of the form above.

On the other hand, for any non-zero λ ∈ O and a lifting λ̄ as above, we
see that sλ := sλ̄ correspondingly lifts sλ for any s > 0, using srj instead of
rj. To simplify the notation in the remainder of the proof, rewrite λ̄ above
as

λ̄(T ) =
k∑
i=1

qi

〈
ζ̂i, T ζ̂i

〉
,

where k = 2l, ζj = ηj, ζj+k = θj, qj = rj and qj+k = −rj for j = 1, ..., k. In
this form we may as well assume that ζi ̸= ζi′ when i ̸= i′ by collecting terms
with ζi = ζi′ if needed. As λ ̸= 0, we have qi ̸= 0 for some i. In terms of this
we have

sλ(ζ̂i ⋊⋉⊕ ζ̂i) = sqi1B,

hence ∣∣∣∣ν (sλ(ζ̂i ⋊⋉⊕ ζ̂i)
)∣∣∣∣ = s|qi|,

for all s > 0. It follows that there is an s0 > 0 such that∣∣∣∣ν (sλ(ζ̂i ⋊⋉⊕ ζ̂i)
)∣∣∣∣ > 1

i.e., sλ /∈ C because of (7.1), for all s > s0, proving that C is ray-wise bounded
according to Definition 2.2.4.

With this proposition we have all the elements of the abstract theory in
place, which will now allow us to formulate an abstract version of Wasserstein
distance of order 1 as a metric, rather than just a pseudometric.
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7.2 The composite algebraic setup and W1

norms

We return to the setup in Section 6.2, but specialise it as follows.

Definition 7.2.1. An algebraic (W1, n) structure (A,B, ν,L) is a pointed
(W1, n) structure as in Definition 6.3.3, where the pointed spaces A1, ..., An
and B1, ..., Bn are unital algebras (all of them real, or all of them complex),
with their units serving as their distinguished points,

uAj
= 1Aj

and uBj
= 1Bj

for j = 1, ..., n.

From the preceding development we immediately conclude the following.

Theorem 7.2.2. Consider an algebraic (W1, n) structure (A,B, ν,L). Then
∥·∥W1

defined by
∥λ∥W1

= inf{t ≥ 0 : λ ∈ tCL}

for all λ ∈ OL, is a norm on OL, called the W1 norm associated to (A,B, ν,L).

Proof. From Propositions 6.3.2 and 7.1.1 we know that CL is a unit ball for
OL, as defined in Definition 2.2.5. By Proposition 2.3.7 we are done.

Corollary 7.2.3. In terms of Theorem 7.2.2, the function W1 : L× L → R
defined by

W1(η, θ) = ∥η − θ∥W1

is a metric on L, called the Wasserstein distance of order 1 on L associated
to the algebraic (W1, n) structure (A,B, ν,L).

Proof. The above follows from Theorem 2.1.4.

This theorem and its corollary are the main results up to this point and
completes the development without the presence of any form of positivity
assumed of the A→ B maps in L. So far the maps in L were only assumed
to be linear and unital. In the next section we add complete positivity in a
C*-algebraic framework.
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7.3 C*-algebras and complete positivity

7.3 C*-algebras and complete positivity

For unital C*-algebras A and B, let

K(A,B)

be the set of all channels E : A → B from A to B, where a channel is a
unital completely positive linear (u.c.p.) map (Definition 3.1.22). The goal
of this section is to define a Wasserstein distance of order 1 on K(A,B).
Conventionally the term Wasserstein distance applies to states, including
(integrals with respect to) probability measures in the classical case, i.e., the
case B = C. However, here we use the same terminology for channels as
well, as already indicated in Chapter 5.

It is a fairly straightforward matter to apply Theorem 7.2.2 in a C*-
algebraic framework, essentially taking L in the previous two sections to be
K(A,B), though there are some technical points regarding this which will
be made clear in the proof of Theorem 7.3.2 below. In order to make this
section as directly accessible as possible, however, we formulate the defini-
tions and results without reference to Chapter 6 and 7. References to these
two chapters will only appear in the proof of Theorem 7.3.2. We start with
some notation and conventions (which follow from Chapter 3).

The tensor products of C*-algebras are not merely algebraic, but are
completed in some norm. Specifically, the tensor products in this section are
either all minimal tensor products or all maximal tensor products. These
tensor products will simply be indicated by the symbol ⊗. Accordingly for
tensor products of maps on C*-algebras. Some standard background regard-
ing complete positivity and tensor products of C*-algebras can be reviewed
in Chapter 3. In particular we note that tensor products of channels are
again channels, for both the minimal and maximal tensor products.

For easy reference, we highlight the main structure which will be used:

Definition 7.3.1. Consider unital C*-algebras A1, ..., An and B1, ..., Bn, as
well as a state νj on Bj for j = 1, ..., n. This will be referred to as an
n-composite C*-system, denoted (Aj, Bj, νj : j = 1, ..., n), with the notation

A = A1 ⊗ ...⊗ An and B = B1 ⊗ ...⊗Bn

being implied.
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7.3 C*-algebras and complete positivity

Given such an n-composite C*-system, the following notation, along the
lines of Section 5.1, will be used to set up the Wasserstein norm and subse-
quent Wasserstein distance of order 1:

Aĵ := A1 ⊗ ...Âj...⊗ An and Bĵ := B1 ⊗ ...B̂j...⊗Bn,

and
B≤j := B1 ⊗ ...⊗Bj and B≥j := Bj ⊗ ...⊗Bn,

for j = 1, ..., n. Keep in mind that as mentioned above, either all of these
tensor products are minimal, or all are maximal. A channel E : A → B can
be reduced to a channel Eĵ : Aĵ → Bĵ by

Eĵ := (idB≤j−1
⊗νj ⊗ idB≥j+1

) ◦ E|Aĵ

for j = 1, ..., n. Here the restriction E|Aĵ
: Aĵ → B is defined via

E|Aĵ
(a1 ⊗ ...âj...⊗ an) = E(a1 ⊗ ...⊗ aj−1 ⊗ 1Aj

⊗ aj+1 ⊗ ...⊗ an)

for a1 ∈ A1, ..., an ∈ An, where 1Aj
denotes the unit of Aj.

Set
OA,B := {λ ∈ spanRK(A,B) : λ(1A) = 0},

Nj := {D − E : D,E ∈ K(A,B) such that Dĵ = Eĵ},

and

N :=
n⋃
j=1

Nj and C := convN .

Here of course two channels D,E ∈ K(A,B) are said to be neighbouring
if Dĵ = Eĵ for some j ∈ {1, ..., n}.

This allows us to state the main result of this chapter, which is one of the
main results of the dissertation.

Theorem 7.3.2. Let (Aj, Bj, νj : j = 1, ..., n) be an n-composite C*-system.
Then in both the minimal and maximal tensor product setup, ∥·∥W1

defined
by

∥λ∥W1
= inf{t ≥ 0 : λ ∈ tC}

for all λ ∈ OA,B, is a norm on OA,B, called the W1 norm associated to
(Aj, Bj, νj : j = 1, ..., n).
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7.3 C*-algebras and complete positivity

Proof. We are going to obtain this from the algebraic (rather than C*-
algebraic) setup of the previous section. Therefore we have to convert be-
tween algebraic and completed tensor products as needed. Write A⊙ =
A1 ⊙ ...⊙ An and define

K(A,B)|⊙ = {E|A⊙ : E ∈ K(A,B)}.

Since a channel E ∈ K(A,B) is necessarily continuous (by Remark

3.1.23), it is uniquely determined by its restriction E|A⊙ , the latter being
the usual restriction of the map E to the subset A⊙ of A. Hence K(A,B)|⊙
and K(A,B) are in one-to-one correspondence.

Also define

A⊙,≤j = A1 ⊙ ...⊙ Aj and A⊙,≥j = Aj ⊙ ...⊙ An,

and
A≤j = A1 ⊗ ...⊗ Aj and A≥j = Aj ⊗ ...⊗ An,

for j = 1, ..., n, as well as

E≤j = (idB≤j
⊗ν>j) ◦ E|A≤j

: A≤j → B≤j

E≥j = (ν<j ⊗ idB≥j
) ◦ E|A≥j

: A≥j → B≥j

for any E ∈ K(A,B).

Note that (Aj, Bj, νj : j = 1, ..., n) gives an algebraic (W1, n) structure
(A⊙, B, ν,K(A,B)|⊙) as in Definition 7.2.1. This follows from the automatic
continuity of tensor products of states and identity maps in the C*-algebraic
framework, along with the fact that condition (6.8) is satisfied. The latter,
in terms of (6.2) and (6.3), being(

E|A⊙

)
≤j ⊙

(
D|A⊙

)
≥j+1

= E≤j|A⊙,≤j
⊙D≥j+1|A⊙,≥j+1

∈ K(A,B)|⊙

for all D,E ∈ K(A,B), where |A⊙ , |A⊙,≤j
and |A⊙,≥j+1

are the usual restric-
tions to the indicated algebraic tensor products. This fact in turn is true,
since E≤j ⊙D≥j+1 uniquely extends to an element E≤j ⊗D≥j+1 of K(A,B),
as E≤j and D≥j+1 themselves are channels (being the composition of u.c.p.
maps), hence indeed

E≤j|A⊙,≤j
⊙D≥j+1|A⊙,≥j+1

= (E≤j ⊗D≥j+1)|A⊙ ∈ K(A,B)|⊙.

By Theorem 7.2.2 and the one-to-one correspondence between K(A,B)|⊙
and K(A,B) mentioned above, we are done.
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7.3 C*-algebras and complete positivity

This leads to the following key conclusion.

Corollary 7.3.3. Given an n-composite C*-system (Aj, Bj, νj : j = 1, ..., n),
then in both the minimal and the maximal tensor product setup we obtain a
metric W1 on K(A,B) defined by

W1(D,E) = ∥D − E∥W1

for all D,E ∈ K(A,B), called the Wasserstein distance of order 1 associated
to (Aj, Bj, νj : j = 1, ..., n).

Note that Section 5.1 emerges as a special case of this section, albeit
directly in the Heisenberg picture, by simply setting

Aj = Mqj and Bj = Mrj

and letting νj be the normalised trace on Bj.

Another special case is B1 = ... = Bn = C, with ν1, ..., νn becoming trivial
and irrelevant, but with general unital C*-algebras A1, ..., An. In this case
K(A,B) is the set of all states on A = A1 ⊗ ... ⊗ An, hence W1 is now the
Wasserstein distance of order 1 between states on A. For A1 = ... = An = Md

this reduces to the (quantum) Wasserstein distance of order 1 studied in [29],
as can be seen from Chapter 4, keeping in mind that a state on A is exactly a
normalised positive linear functional µ, which in this finite dimensional case
can be uniquely represented as µ(a) = Tr(ρa) for all a ∈ A in terms of some
density matrix ρ.

We have focussed on the composite system aspect of the framework. From
a single system point of view, note that in the finite dimensional setup for
states, and setting n = 1, for any states ψ and ω on A1 = Md, we have

W1(ψ, ω) =
1

2
Tr|ρψ − ρω|,

with ρψ and ρω being the density matrices representing ψ and ω respectively,
according to [29, Proposition 2]. In the general C*-algebraic case for states
(i.e., B = C) with n = 1, we can therefore view W1 as an abstract version of
the trace distance between states, despite the fact that no canonical trace is
specified on A1 in this setup. Refer to Chapter 9 for further remarks related
to this.

This ends our development of the Wasserstein distance of order 1. Next
we study its behaviour in relation to subsystems.
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Chapter 8

Subsystems and Additivity

A core idea behind W1 is that it is built to reflect the composite structure
of systems. It is therefore natural to study its basic properties in relation to
subsystems of the composite systems, i.e., smaller tensor products. This is
what is done in the current chapter, first in terms of the W1 seminorms ob-
tained for pointed (W1, n)-structures in Chapter 6, and subsequently for the
C*-algebraic framework of Section 7.3. We focus on the additivity of W1 with
respect to tensor products (see Theorems 8.3.1 and 8.4.2) and the resulting
stability of W1 (see Corollary 8.4.3). The additivity results of this chapter
generalise those of [29, Section IV.C], though the techniques to achieve them
are necessarily different, as [29] makes use of trace norms, which are not
available in our context. The reader who wants to see the main results in
the C*-algebraic context, can turn directly to Section 8.4, but the proofs and
some notation rely on Sections 8.1, 8.2 and 8.3.

8.1 Pointed W1 substructures and their W1

seminorms

Let (A,B, ν,L) be a pointed (W1, n) structure as defined in Definition 6.3.3,
again writing CL for the semi unit ball in OL, as given by Proposition 6.3.2.
For simplicity of notation, particularly in the following sections, however, we
continue to write Nj and N as in Chapter 6, rather than, say, NL,j and NL.
To describe the related subsystems, we need some further notation.

Write
[n] := {1, ..., n},

and Pn for the collection of non-empty proper subsets J of [n]; by “proper”
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8.1 Pointed W1 substructures and their W1 seminorms

we mean that J ̸= [n]. The complement of J ∈ Pn will be written as

J ′ := [n]\J = {j ∈ [n] : j /∈ J} ∈ Pn.

We define

AJ =
⊙
j∈J

Aj and BJ =
⊗
j∈J

Bj

for any J ∈ Pn, with the same tensor product conventions as in Section 6.2.
Here the order of the Aj’s in AJ is taken to be the same as in A = A1⊙...⊙An,
for example A{2,5} = A2 ⊙ A5 rather than A5 ⊙ A2. Similarly for BJ and
correspondingly for νJ := (νj)j∈J . Elementary tensors in AJ can be denoted
as

⊗j∈Jaj

for aj ∈ Aj, and similarly for BJ , for any J ∈ Pn. In particular AJ is a
pointed space with distinguished point

uAJ
:= ⊗j∈JuAj

.

Similarly for BJ .

We need to define corresponding reductions of maps. Given η ∈ L(A,B),
its reduction

ηJ :=

 n⊗
j=1

φj

 ◦ η|AJ
∈ L(AJ , BJ)

to J ∈ Pn (or over J ′) is defined as an obvious generalization of the reductions
considered in Section 6.2, where

φj =

{
idBj

for j ∈ J
νj for j ∈ J ′

and with η|AJ
: AJ → B given via

η|AJ
(⊗j∈Jaj) = η(a1 ⊗ ...⊗ an)

for ⊗j∈Jaj an elementary tensor in AJ , by setting aj = uAj
for j ∈ J ′. For

any subset S of L(A,B), let

SJ := {ηJ : η ∈ S}. (8.1)

Note that one can of course reduce any θ ∈ SJ to θI for any non-empty

proper I ⊂ J , by the obvious adjustment of the method above to this case.

Then we have the next basic fact in terms of Definition 6.3.3, where |J |
denotes the cardinality of J .
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8.1 Pointed W1 substructures and their W1 seminorms

Proposition 8.1.1. Let (A,B, ν,L) be a pointed (W1, n) structure and con-
sider any J ∈ Pn. The pointed spaces Aj and Bj for j ∈ J , along with
νJ = (νj)j∈J and LJ (as in (8.1)), then form a pointed (W1, |J |) structure
(AJ , BJ , νJ ,LJ), called a pointed W1 substructure of (A,B, ν,L).

Proof. Clearly ηJ(uAJ
) = uBJ

for every η ∈ L by ηJ ’s definition, hence
LJ ⊂ L(AJ , BJ), the tensor products of νj’s and identity maps restrict those
of (A,B, ν,L) and are therefore still continuous, while the analogue of (6.8)
is easily seen to hold in this context by simply reducing it to L(AJ , BJ). The
latter is confirmed by a direct calculation similar to that in Lemma 6.3.1’s
proof.

By Corollary 6.3.4, the pointed (W1, |J |) structure (AJ , BJ , νJ ,LJ) pro-
vides us with a W1 seminorm on

OLJ := {λ ∈ spanR LJ : λ(uAJ
) = 0} (8.2)

for every J ∈ Pn, still denoted as

∥·∥W1
,

as well as the resulting pseudometric W1 on LJ . This is simply a case of
Section 6.2, but now of course using

NJ,j := {η − θ : η, θ ∈ LJ such that ηĵ = θĵ} for j ∈ J (8.3)

instead of N1, ...,Nn, where the latter led to the W1 seminorm on OL. Here

ηĵ := ηJ\{j}

for η ∈ LJ , which can equivalently be defined by (6.1), but using Ai, Bi and
νi only for i ∈ J when setting up Chapter 6, rather than for the entire range
i = 1, ..., n. The semi unit ball leading to this W1 seminorm is

CLJ := convNJ , (8.4)

where

NJ :=
⋃
j∈J

NJ,j. (8.5)
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8.2 Reducible pointed W1 structures

8.2 Reducible pointed W1 structures

A natural question is whether the semi unit ball CLJ above can be obtained
as the reduction CJL of the original semi unit ball CL. Similarly for OLJ and
the sets NJ,j. These questions will in fact become relevant in the next sec-
tion, when we reach the main goal of this chapter, namely to prove additivity
properties.

In order to answer these questions positively, assumptions beyond those
in Definition 6.3.3 need to be made. We note that these assumptions will
automatically be satisfied in the C*-algebraic framework.

As in the previous section we consider a pointed (W1, n) structure (A,B, ν,L)
and any J ∈ Pn.

To avoid any mismatches and ambiguities, we always need to preserve the
ordering of the Aj’s in any tensor product of them. Similarly for the Bj’s.
Therefore the notation

AI⊙⃗AJ := AI∪J and BI⊗⃗BJ := BI∪J

will be used for any I, J ∈ Pn with no points in common, i.e., I ∩ J = ∅.
But then the tensor product of maps η ∈ L(AI , BI) and θ ∈ L(AJ , BJ) for
I, J ∈ Pn with I ∩ J = ∅ need to be defined correspondingly. This is indeed
possible. Note that transpositions of adjacent Aj’s in any tensor product
of Aj’s are linear bijections, compositions of which in particular give us a
natural unique well defined ordering map

αIJ : AI ⊙ AJ → AI⊙⃗AJ ,

such that
αIJ((⊗i∈Iai) ⊗ (⊗j∈Jaj)) = ⊗j∈I∪Jaj

for arbitrary aj ∈ Aj. As a simple example to clarify the meaning of
this, suppose I = {1, 3, 5} and J = {2, 4}, then for aj ∈ Aj, we have
αIJ(a1⊗a3⊗a5⊗a2⊗a4) = a1⊗a2⊗a3⊗a4⊗a5. Note that αIJ can be viewed
as a pointed space isomorphism, i.e., a bijection αIJ ∈ Lu(AI ⊙AJ , AI⊙⃗AJ).

Similarly we have the ordering map

β0
IJ : BI ⊙BJ → BI⊙⃗BJ .

Clearly β0
IJ ∈ Lu(BI ⊙BJ , BI⊙⃗BJ).
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8.2 Reducible pointed W1 structures

However, if the tensor products BJ for J ⊂ [n] are indeed completed in
some norm, we need to assume that β0

IJ is continuous in this norm, and
therefore extends uniquely to a continuous bijection

βIJ ∈ Lu(BI ⊗BJ , BI⊗⃗BJ),

which is the uniquely defined pointed space isomorphism serving as the or-
dering map on BI ⊗BJ .

Given this, we can define

η⊙⃗θ : AI⊙⃗AJ → BI⊗⃗BJ

as
η⊙⃗θ := βIJ ◦ (η ⊙ θ) ◦ α−1

IJ .

It has the following expected property.

Proposition 8.2.1. In terms of the notation and assumptions so far in this
section,

η⊙⃗θ = θ⊙⃗η,
for all η ∈ L(AI , BI) and θ ∈ L(AJ , BJ), where I, J ∈ Pn with I ∩ J = ∅.

Proof. Note that by the definition of the ordering maps, we have βIJ(c⊗d) =
βJI(d ⊗ c) for elements in the algebraic tensor products, c ∈ ⊙i∈IBi and
d ∈ ⊙j∈JBj. Now, for arbitrary aj ∈ Aj,

(η ⊙ θ) ◦ α−1
IJ (⊗j∈I∪Jaj) = η(⊗i∈Iai) ⊗ θ(⊗j∈Jaj)

(θ ⊙ η) ◦ α−1
JI (⊗j∈I∪Jaj) = θ(⊗j∈Jaj) ⊗ η(⊗i∈Iai).

Approximate η(⊗i∈Iai) and θ(⊗j∈Jaj) by sequences (cl) and (dl) in the alge-

braic tensor products ⊙i∈IBi and ⊙j∈JBj respectively. Since βIJ(cl ⊗ dl) =
βJI(dl ⊗ cl) and βIJ and βJI are assumed to be continuous, it follows that

βIJ ◦ (η ⊙ θ) ◦ α−1
IJ (⊗j∈I∪Jaj) = βJI ◦ (θ ⊙ η) ◦ α−1

JI (⊗j∈I∪Jaj),

as required.

We also need to strengthen (6.8) in Lemma 6.3.1 to the following: Assume
that

ηJ⊙⃗θJ ′ ∈ L (8.6)

for all η, θ ∈ L and J ∈ Pn.
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8.2 Reducible pointed W1 structures

Definition 8.2.2. The pointed (W1, n) structure (A,B, ν,L) is called re-
ducible if both the above mentioned assumptions are indeed satisfied, namely
(8.6) and the existence of the continuous ordering maps βIJ in the case of
completed B.

Note that for a non-empty I ⊂ J ′, it follows from (8.6) and the definition
of reduction in the previous section, that

ηJ⊙⃗θI = (ηJ⊙⃗θJ ′
)J∪I ∈ LJ∪I . (8.7)

In particular, this gives the following simple result.

Proposition 8.2.3. If the pointed (W1, n) structure (A,B, ν,L) is reducible,
then so are its pointed W1 substructures.

The reason for the terminology “reducible” in Definition 8.2.2, is that the
semi unit ball of (AJ , BJ , νJ ,LJ) is then obtained from that of (A,B, ν,L)
by reduction. This and related facts are shown below.

In terms of the setup and notation of this chapter (specifically the notation
given Section 8.1), we have the following.

Lemma 8.2.4. Assume that (A,B, ν,L) is a reducible pointed (W1, n) struc-
ture and consider any J ∈ Pn. For all λ ∈ NJ,j with j ∈ J , and ζ ∈ LJ ′

, it
follows that λ⊙⃗ζ ∈ Nj.

Proof. Given that λ ∈ NJ,j, (8.3) implies that λ = η − θ for some η, θ ∈ LJ
such that ηĵ = θĵ. Hence λĵ = 0, which impiles that (λ⊙⃗ζ)ĵ = λĵ⊙⃗ζ = 0.

This means that λ⊙⃗ζ = η⊙⃗ζ − θ⊙⃗ζ, where η⊙⃗ζ, θ⊙⃗ζ ∈ L by (8.6) and
(η⊙⃗ζ)ĵ = (θ⊙⃗ζ)ĵ, as needed in (6.6).

Proposition 8.2.5. Assume that (A,B, ν,L) is a reducible pointed (W1, n)
structure and consider any J ∈ Pn. Then N J

j = {0} when j ∈ J ′, while

N J
j = NJ,j

for j ∈ J .

Proof. By (8.1), N J
j := {ηJ : η ∈ Nj}. For j ∈ J ′ the reduction over j

is included in the reduction over J ′, hence λĵ = 0 for λ ∈ L(A,B) implies

that λJ = 0, directly from the definitions of λĵ and λJ . Thus N J
j = {0}

when j ∈ J ′. Now assume that j ∈ J . Consider any λJ ∈ N J
j , i.e., we take
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8.2 Reducible pointed W1 structures

λ = η− θ with η, θ ∈ L and ηĵ = θĵ. Since j ∈ J , both sides of (ηJ)ĵ = (ηĵ)
J

are well defined, and indeed equal by the definitions of these reductions.
Similarly for θ, which means that (ηJ)ĵ = (θJ)ĵ, hence λJ ∈ NJ,j by (8.3).

This shows that N J
j ⊂ NJ,j, even if (A,B, ν,L) is not assumed reducible.

Conversely, consider any λ ∈ NJ,j. For any ζ ∈ LJ ′
it then follows from

Lemma 8.2.4 that λ⊙⃗ζ ∈ Nj. Consequently, λ = (λ⊙⃗ζ)J ∈ N J
j , proving that

NJ,j ⊂ N J
j .

In particular this tells us that the reductions N J
j of Nj for j ∈ J , play

the same role for (AJ , BJ , νJ ,LJ) as N1, ...,Nn play for the reducible pointed
W1 structure (A,B, ν,L).

Corollary 8.2.6. In Proposition 8.2.5 we have

OLJ = OJ
L, NJ = N J and CLJ = CJL

for (8.2), (8.5) and (8.4).

Proof. From Proposition 8.2.5, (6.7) and (8.5) one has NJ = N J , hence

CLJ = convN J = (convN )J = CJL

and
OLJ = spanR N J = (spanR N )J = OJ

L,

because of Lemma 6.3.1.

As one may expect, OLJ = OJ
L can alternatively be proved along the lines

of the proof of Proposition 8.2.5.

We can also use Lemma 8.2.4 along with Corollary 8.2.6 to obtain the
following property of ∥·∥W1

.

Proposition 8.2.7. Assume that (A,B, ν,L) is a reducible pointed (W1, n)
structure and consider any I, J ∈ Pn with I ∩ J = ∅. Then∥∥∥(η − θ)⊙⃗ζ

∥∥∥
W1

= ∥η − θ∥W1

for all η, θ ∈ LI and ζ ∈ LJ .

Proof. For any η, θ ∈ LI and ζ ∈ LJ , set λ := (η − θ)⊙⃗ζ ∈ LI∪J , according
to (8.7), then λI = η − θ.

For any γ ∈ CLI∪J and t ≥ 0 such that λ = tγ, one has that λI = tγI .
By Corollary 8.2.6, but applied to the reducible (Proposition 8.2.3) pointed
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8.3 Additivity

W1 structure (AI∪J , BI∪J , νI∪J ,LI∪J), we know that γI ∈ CLI , from which it
follows that

∥∥λI∥∥
W1

≤ t, hence
∥∥λI∥∥

W1
≤ ∥λ∥W1

by the definition of ∥·∥W1

in Corollary 6.3.4 (via Proposition 2.3.7).

Conversely, consider any γ ∈ CLI and t ≥ 0 such that λI = tγ. By (8.4)
we have

γ =
l∑

i=1

piγi

for some p1, ..., pl > 0 with p1 + ... + pl = 1, and γi ∈ NI,ji for some ji ∈ I.
Because of Lemma 8.2.4 applied to (AI∪J , BI∪J , νI∪J ,LI∪J), it follows that

γ⊙⃗ζ =
l∑

i=1

piγi⊙⃗ζ ∈ CLI∪J .

Since λ = tγ⊙⃗ζ, we conclude that ∥λ∥W1
≤ t, thus ∥λ∥W1

≤
∥∥λI∥∥

W1
.

These results will be applied in the next section to prove the additivity
of W1 with respect to tensor products.

8.3 Additivity

We now arrive at this chapter’s main results in the abstract pointed space
setup, which will be applied to the C*-algebras in the next section. Consider a
reducible pointed (W1, n) structure (A,B, ν,L) and any m-partition P of [n],
by which we mean a function P : [m] → Pn such that P (1)∪ ...∪P (m) = [n]
and P (k) ∩ P (l) = ∅ for k ̸= l. Our goal is to determine how ∥·∥W1

for

(A,B, ν,L) relates to ∥·∥W1
for the (AP (k), BP (k), νP (k),LP (k))’s via reduction.

Similarly for W1, but specifically for product maps. Using the results of the
previous section, these relationships can be stated as a form of “reductive
superadditivity” of ∥·∥W1

and an additivity property of W1.

Theorem 8.3.1. Let (A,B, ν,L) be a reducible pointed (W1, n) structure and
P any m-partition of [n]. Then

∥λ∥W1
≥

m∑
k=1

∥∥∥λP (k)
∥∥∥
W1

(8.8)

for all λ ∈ OL, while

W1(η1⊙⃗...⊙⃗ηm, θ1⊙⃗...⊙⃗θm) =
m∑
k=1

W1(ηk, θk) (8.9)
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8.3 Additivity

for all ηk, θk ∈ LP (k), for k = 1, ...,m.

Proof. Let λ ∈ OL. Consider any γ ∈ CL and t ≥ 0 such that λ = tγ. By
CL = convN ,

γ =
l∑

i=1

piαi

for some p1, ..., pl > 0 with p1 + ...+ pl = 1, and αi ∈ N = ∪j∈[n]Nj. Set

qk :=
∑
i∈Rk

pi and γk :=
∑
i∈Rk

pi
qk
αi ∈ CL,

where Rk := {i ∈ [l] : αi ∈ ∪j∈P (k)Nj}\(R1∪ ...∪Rk−1) for k = 1, ...,m, with
R1 ∪ ... ∪Rk−1 = ∅ for k = 1. Then by Proposition 8.2.5,

γ =
m∑
k=1

qkγk and γP (k) = qkγ
P (k)
k

with γ
P (k)
k ∈ CP (k)

L = CLP (k) by Corollary 8.2.6. This tells us that λP (k) =

tγP (k) = tqkγ
P (k)
k ∈ tqkCLP (k) , hence

∥∥∥λP (k)
∥∥∥
W1

≤ tqk, thus

m∑
k=1

∥∥∥λP (k)
∥∥∥
W1

≤ t,

implying (8.8), by ∥·∥W1
’s definition in Corollary 6.3.4.

In particular, for η, θ ∈ L we have

∥η − θ∥W1
≥

m∑
k=1

∥∥∥ηP (k) − θP (k)
∥∥∥
W1

.

On the other hand, given ηk, θk ∈ LP (k), by Proposition 8.2.7 we have∥∥∥η1⊙⃗...⊙⃗ηm − θ1⊙⃗...⊙⃗θm
∥∥∥
W1

≤
∥∥∥(η1 − θ1)⊙⃗η2⊙⃗...⊙⃗ηm

∥∥∥
W1

+
∥∥∥θ1⊙⃗(η2⊙⃗...⊙⃗ηm − θ2⊙⃗...⊙⃗θm)

∥∥∥
W1

= ∥η1 − θ1∥W1
+
∥∥∥η2⊙⃗...⊙⃗ηm − θ2⊙⃗...⊙⃗θm

∥∥∥
W1

...

≤
m∑
k=1

∥ηk − θk∥W1
.

These two inequalities prove (8.9).
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8.4 C*-algebras

With this result in hand, we can turn to the final aim of this chapter,
namely additivity in the C*-algebraic framework.

8.4 C*-algebras

The question being studied at the moment, is how W1 between product
channels from one compound system to another, relate to W1 between the
channels composing the product channels. This was answered in a more ab-
stract form in Theorem 8.3.1 of the previous section, namely they are related
in a simple additive way. Now we essentially just translate this additivity of
W1 to the C*-algebraic framework of Section 7.3.

Given an n-composite C*-system (Aj, Bj, νj : j = 1, ..., n) as in Definition
7.3.1, let [n] := {1, ..., n}, let Pn be the collection of non-empty proper subsets
of [n], and define an m-partition P of [n], as a function P : [m] → Pn such
that P (1) ∪ ... ∪ P (m) = [n] and P (k) ∩ P (l) = ∅ for k ̸= l. Furthermore,
we set

AJ :=
⊗
j∈J

Aj and BJ :=
⊗
j∈J

Bj

for any J ∈ Pn, both being minimal tensor products or both maximal tensor
products. As in Section 7.3, either all tensor products here are minimal, or
all are maximal. For any I, J ∈ Pn with no points in common, i.e., I∩J = ∅,
consider the ordered tensor products

AI⊗⃗AJ := AI∪J and BI⊗⃗BJ := BI∪J

and the corresponding ordered tensor product

η⊗⃗θ : AI⊗⃗AJ → BI⊗⃗BJ

of bounded linear maps η : AI → BI and θ : AJ → BJ , defined as in Sec-
tion 8.2, but via the minimal or maximal tensor product η ⊗ θ, instead of
the algebraic tensor product, and where the ordering map αIJ is of course
extended to the completed tensor product, like βIJ is. In the C*-algebraic
case, this extension of the ordering maps is automatically possible (see the
proof of Proposition 8.4.1 below). Note that the reduction ηJ of η ∈ L(A,B)
is defined analogously to Section 8.1, the only difference being that A and
AJ are now completed tensor products.

The next result is the key to convert Theorem 8.3.1 to the C*-algebraic
setup.
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8.4 C*-algebras

Proposition 8.4.1. Consider the setup of this section. For any J ∈ Pn, it
follows that

K(A,B)J = K(AJ , BJ).

In addition, for any D ∈ K(AI , BI) and E ∈ K(AJ , BJ) with I, J ∈ Pn
such that I ∩ J = ∅, one has

D⊗⃗E ∈ K(AI⊗⃗AJ , BI⊗⃗BJ).

Proof. Starting with the latter statement, note that in this C*-algebraic
setup the ordering maps from Section 8.2 are ∗-isomorphisms αIJ : AI⊗AJ →
AI⊗⃗AJ and βIJ : BI⊗BJ → BI⊗⃗BJ (and therefore extended to the comple-
tions and u.c.p.) from the outset, since they are compositions of the trans-
position maps mentioned in Section 8.2, which are indeed ∗-isomorphisms
(see for example [6, II.9.2.6]). Hence D⊗⃗E := βIJ ◦ (D ⊗ E) ◦ α−1

IJ is
a composition of u.c.p. maps, since D⊗⃗E is a channel. Consequently
D⊗⃗E ∈ K(AI⊗⃗AJ , BI⊗⃗BJ), as required.

In particular, for I = J ′, it follows that E = (D⊗⃗E)J ∈ K(A,B)J . Hence
K(AJ , BJ) ⊂ K(A,B)J . Conversely, since the reduction of a channel is again
a channel, we have K(A,B)J ⊂ K(AJ , BJ).

Now we can answer the above mentioned question as follows, along with
the “reductive superadditivity” of ∥·∥W1

.

Theorem 8.4.2. Let (Aj, Bj, νj : j = 1, ..., n) be an n-composite C*-system
and P any m-partition of [n]. Then in both the minimal and the maximal
tensor product setup,

W1(D1⊗⃗...⊗⃗Dm, E1⊗⃗...⊗⃗Em) =
m∑
k=1

W1(Dk, Ek)

for all Dk, Ek ∈ K(AP (k), BP (k)), for k = 1, ...,m. In addition,

∥λ∥W1
≥

m∑
k=1

∥∥∥λP (k)
∥∥∥
W1

for all λ ∈ OA,B as defined in Section 7.3.

Proof. If the algebraic (W1, n) structure (A⊙, B, ν,K(A,B)|⊙), obtained as
in the proof of Theorem 7.3.2 from (Aj, Bj, νj : j = 1, ..., n), is a reducible
pointed (W1, n) structure, and(

K(A,B)|⊙
)J

= K(AJ , BJ)|⊙, (8.10)
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8.4 C*-algebras

for J ∈ Pn, then the theorem follows directly from Theorem 8.3.1. This is

because of the continuity of all the maps involved and the resulting one-to-
one correspondence between K(A,B)|⊙ and K(A,B) explained in the proof
of Theorem 7.3.2, and similarly for K(AJ , BJ)|⊙ and K(AJ , BJ), which al-
lows us to translate directly between the algebraic and completed tensor
products. Condition (8.10) is needed to ensure that for L = K(A,B)|⊙ in
Theorem 8.3.1, we have LP (k) = K(AP (k), BP (k))|⊙. Note that (8.10) indeed

holds because of Proposition 8.4.1 and
(
K(A,B)|⊙

)J
= K(A,B)J |⊙, the lat-

ter being true since the only difference between the reductions on the two
sides is that they respectively involve restrictions to the algebraic and a com-
pleted tensor product of Aj’s. We are simply left to verify reducibility.

As mentioned in the proof of Proposition 8.4.1, the βIJ ’s are ∗-isomorphisms
and therefore continuous, verifying the one condition for reducibility in Defi-
nition 8.2.2. The other condition is guaranteed by the special case of Propo-
sition 8.4.1 with I ∪ J = [n].

Recall that the special case in finite dimensions of the first part of this
theorem was already mentioned in Section 5.1, in a special form where the
ordering of the tensor products was unnecessary.

As an immediate consequence of this theorem, we obtain the following
stability result for W1.

Corollary 8.4.3. In Theorem 8.4.2, let P a 2-partition of [n]. Then

W1(D1⊗⃗F2, E1⊗⃗F2) = W1(D1, E1)

for all D1, E1 ∈ K(AP (1), BP (1)) and any F2 ∈ K(AP (2), BP (2)). Similarly,

W1(F1⊗⃗D2, F1⊗⃗E2) = W1(D2, E2)

for all D2, E2 ∈ K(AP (2), BP (2)) and any F1 ∈ K(AP (1), BP (1)).

Proof. This is simply because W1(F2, F2) = 0 in the first case. Similarly for
the second.

Stability for other distances between channels have been presented and
discussed in for example [3] and [37]. The latter in particular emphasises the
utility of stability. These references only treated the case where the Fk’s in
the corollary above were identity maps.

Of course, stability for pointed W1 structures similarly follow from The-
orem 8.3.1.
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Chapter 9

Conclusion and outlook

In this dissertation our focus has been the mathematical development of a
Wasserstein distance of order 1 between channels from one composite system
to another, denoted by W1. We have not yet investigated any relations or
comparisons of W1 with the diamond norm (mentioned in the introduction)
or other distances between channels. See [37] and [11] for a critical assessment
of various such distances. A logical first step is to do this in finite dimensions
on matrix algebras Md, where one has a simple canonical trace which plays
an important role in the diamond (aka, completely bounded trace) norm.
Indeed, [29] extensively explored the relation between W1 for states and the
trace norm, including the characterization of W1 for the case of n = 1, i.e.,
for single systems rather than composed systems. This can analogously be
explored for the case of channels.

We have also not yet explored applications of this distance. Applications
of Wasserstein distance of order 1 between states in the finite dimensional
case developed in [29], have already been treated and proposed in [29] itself,
as well as in a number of papers [28, 31, 42, 47, 52, 61] in various contexts. We
expect that the approach of this dissertation to the case of channels should
be similarly applicable. In addition, our abstract approach has the potential
to allow for applications in other contexts than quantum channels and for
further mathematical development.

At the end of Section 8.4 we pointed out that W1 satisfies stability. How-
ever, there are other properties that one may also want a distance between
channels to satisfy, depending on the application. See for example [11, 37].
Since W1 is a metric, a number of basic properties are already satisfied. One
property that we have not discussed in this dissertation is chaining or bounds
on the overall difference between composed channels; see [37] and [3, Subsec-
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CHAPTER 9. CONCLUSION AND OUTLOOK

tion 5.4]. Whether or not this or similar and other properties hold for W1,
certainly warrants further investigation.
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[61] C. Rouzé, D. Stilck França, Learning quantum many-body systems from
a few copies, arXiv:2107.03333.

[62] W. Rudin, Functional analysis, 2nd ed., McGraw-Hill. Inc., New York,
1991.

[63] E. K. Ryu, Y. Chen, W. Li, S. Osher, Vector and matrix optimal mass
transport: theory, algorithm, and applications, SIAM J. Sci. Comput. 40
(2018), A3675–A3698.

[64] G. Simmons, Introduction to Topology and Modern Analysis, McGraw-
Hill. Inc., New York, 1963.

87

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



BIBLIOGRAPHY BIBLIOGRAPHY

[65] M. Takesaki, On the cross-norm of the direct product of C*-algebras,
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