Phytoconstituents from *Turraea obtusifolia* and their antiplasmodial activity

Sephora Mutombo Mianda^a, Phanankosi Moyo^{a,b}, Nthabiseng S. Maboane^b, Lyn-Marié

Birkholtz^b, Vinesh J. Maharaj^{a,*}

^a Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa

^b Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa

^c Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Gezina, Pretoria 0031, South Africa

Sephora Mutombo Mianda (sephoramianda@gmail.com)

Phanankosi Moyo (phanankosimoyo@gmail.com)

Nthabiseng Maboane (<u>u13243099@tuks.co.za</u>)

Lyn-Marié Birkholtz (lbirkholtz@up.ac.za)

Vinesh J. Maharaj (vinesh.maharaj@up.ac.za)

*Corresponding author (Chemistry): Vinesh J. Maharaj Tel: +27 (0824665466) Email address: <u>vinesh.maharaj@up.ac.za</u> Department of Chemistry University of Pretoria Private Bag x 20 Hatfield, 0028

List of Figure

Figure S.I. 1: ¹H NMR spectrum of turranin M (1) in CDCl₃. Figure S.I. 2: ¹³C NMR spectrum of turranin M (1) in CDCl₃. Figure S.I. 3: DEPT-135 spectrum of turranin M (1) in CDCl₃. Figure S.I. 4: ¹H-¹H COSY spectrum of turranin M (1) in CDCl₃. Figure S.I. 5: ¹H-¹³C HSQC spectrum of turranin M (1) in CDCl₃. Figure S.I. 6: ¹H-¹³C HMBC spectrum of turranin M (1) in CDCl₃. Figure S.I. 7: NOESY spectrum of turranin M (1) in CDCl₃. Figure S.I. 8: ¹H NMR spectrum of turranin N (2) in CDCl₃. Figure S.I. 9: ¹³C NMR spectrum of turranin N (2) in CDCl₃. Figure S.I. 10: DEPT-135 spectrum of turranin N (2) in CDCl₃. Figure S.I. 11: ¹H-¹³C HSQC spectrum of turranin N (2) in CDCl₃. Figure S.I. 12: ¹H-¹³C HMBC spectrum of turranin N (2) in CDCl₃. Figure S.I. 13: ¹H-¹H COSY spectrum of turranin N (2) in CDCl₃. Figure S.I. 14: NOESY spectrum of turranin N (2) in CDCl₃. Figure S.I. 15: ¹H NMR spectrum of turranin O (**3**) in CDCl₃. Figure S.I. 16: ¹³C NMR spectrum of turranin O (3) in CDCl₃. Figure S.I. 17: DEPT-135 spectrum of turranin O (3) in CDCl₃. Figure S.I. 18: ¹H-¹³C HSQC spectrum of turranin O (**3**) in CDCl₃. Figure S.I. 19: ¹H-¹³C HMBC spectrum of turranin O (**3**) in CDCl₃. Figure S.I. 20: ¹H-¹H COSY spectrum of turranin O (**3**) in CDCl₃. Figure S.I. 21: NOESY spectrum of turranin O (3) in CDCl₃.

List of Table

Supplementary table 1: Comparison of ¹H (500 MHz) and ¹³C (125 MHz) NMR data of isolated nymania 1 (4) in CDCl₃ to the published data [1].

Supplementary table 2: Comparison of ¹H (500 MHz) and ¹³C (125 MHz) NMR data of isolated rubralin B (**5**) in CDCl₃ to the published data [2].

Supplementary table 3: Comparison of ¹H (500 MHz) and ¹³C (125 MHz) NMR data of isolated aphapolynin C (6) in CDCl₃ to the published data [3].

Supplementary table 4: Comparison of ¹H (500 MHz) and ¹³C (125 MHz) NMR data of isolated Trichillia substance Tr B (7) in CDCl₃ to the published data [4].

Figure S.I. 1: ¹H NMR spectrum of turranin M (1) in CDCl₃.

Figure S.I. 2: ¹³C NMR spectrum of turranin M (1) in CDCl₃.

Figure S.I. 3: DEPT-135 spectrum of turranin M (1) in CDCl₃.

Figure S.I. 4: ¹H-¹H COSY spectrum of turranin M (1) in CDCl₃.

Figure S.I. 5: ¹H-¹³C HSQC spectrum of turranin M (1) in CDCl₃.

Figure S.I. 6: ¹H-¹³C HMBC spectrum of turranin M (1) in CDCl₃.

Figure S.I. 7: NOESY spectrum of turranin M (1) in CDCl₃.

Figure S.I. 8: ¹H NMR spectrum of turranin N (2) in CDCl₃.

Figure S.I. 9: ¹³C NMR spectrum of turranin N (2) in CDCl₃.

Figure S.I. 10: DEPT-135 spectrum of turranin N (2) in CDCl₃.

Figure S.I. 11: ¹H-¹³C HSQC spectrum of turranin N (**2**) in CDCl₃.

Figure S.I. 12: ¹H-¹³C HMBC spectrum of turranin N (2) in CDCl₃.

Figure S.I. 13: ¹H-¹H COSY spectrum of turranin N (2) in CDCl₃.

Figure S.I. 14: NOESY spectrum of turranin N (2) in CDCl₃.

Figure S.I. 15: ¹H NMR spectrum of turranin O (**3**) in CDCl₃.

Figure S.I. 16: ¹³C NMR spectrum of turranin O (**3**) in CDCl₃.

Figure S.I. 17: DEPT-135 spectrum of turranin O (3) in CDCl₃.

Figure S.I. 18: ¹H-¹³C HSQC spectrum of turranin O (**3**) in CDCl₃.

Figure S.I. 19: ¹H-¹³C HMBC spectrum of turranin O (**3**) in CDCl₃.

Figure S.I. 20: ¹H-¹H COSY spectrum of turranin O (**3**) in CDCl₃.

Figure S.I. 21: NOESY spectrum of turranin O (3) in CDCl₃.

Supplementary table 1: Comparison of ¹H (500 MHz) and ¹³C (125 MHz) NMR data of isolated nymania 1 (4) in CDCl₃ to the published data (L. Musza et al. 1994).

Position	Isolated nymania 1 (CDCl ₃)		Data published for nymania 1 in CDCl ₃ (L. Musza et al. 1994)	
	$\delta_{\rm H}$ (m, J in Hz)	δ _C	$\delta_{\rm H}$ (m, J in Hz)	δ _C
1	5.25 (dd, 12.3, 2.8, 1H)	70.7	5.25 (dd, 3.2.12.4, 1H)	70.6
2α	2.03 (dd, 12.3, 3.4, 1H)	39.9	2.03 (dd, 3.2,13.9, 1H)	39.8
2β	2.58 (t, 13.0, 1H)		2.57 (t, 13.2, 1H)	
3		119.6		119.4
4		82.8		82.7
5	2.94 (m, 1H)	48.9	2.95 (d, 10.7, 1H)	48.8
6α	1.72 (m, 1H)	33.8	1.71 (d, 17.8, 1H)	33.6
6β	2.74 (dd, 10.0, 17.6, 1H)		2.73 (dd, 10.0, 17.9, 1H)	
7		175.7		175.6

8		138.8		142.8
9	4.197 (d, 7.1, 1H)	50.7	4.19 (d, 8.2, 1H)	48.6
10		48.8		49.4
11	5.38 (t, 8.7, 1H)	71.4	5.37 (dd, 8.5.10.7, 1H)	71.2
12	6.03 (d, 12.0, 1H)	74.3	6.05 (m, 1H)	74.6
13		49.6		50.6
14		80.9		80.8
15		207.0		207.3
16α	2.94 (m, 1H)	41.8	2.97 (dd, 8.5, 18.8, 1H)	41.6
16β	2.32 (m, 1H)		2.30 (dd, 9.4, 19.2, 1H)	
17	3.98 (t, 9.1, 1H)	35.2	3.97 (dd. 7.4, 9.3, 1H)	35.1
18-CH ₃	1.00 (s, 3H)	13.2	1.00 (s, 3H)	13.1
19-CH ₃	1.297 (s, 3H)	16.7	1.29 (s, 3H)	16.6
20		123.3		126.3
21	7.20 (s, 3H)	140.7	7.20 (s, 3H)	140.6
22	6.25 (d, 12.0, 1H)	110.7	6.25 (s, 1H)	110.6
23	7.37 (d, 11.8, 1H)	143.1	7.37 (s, 1H)	143.0
28	1.42 (s, 3H)	29.0	1.42 (s, 3H)	28.8
29α	3.65 (d, 8.4, 1H)	73.8	3.64 (d, 8.6, 1H)	73.7
29β	4.12 (d, 8.4, 1H)		4.11 (d, 8.6, 1H)	
30a (E to H-9	6.06 (brs, 1H)	126.4	6.06 (d, 1.4, 1H)	123.2
30b (Z to H-9)	5.98 (s, 1H)		5.98 (d, 1.2, 1H)	
1'		175.1		174.9
2'	3.20 (d, 1.2, 1H)	74.7	3.20 (m, 1H)	74.1
3'	1.5 (m, 1H)	38.3	1.52 (m, 1H)	38.2
4'a	1.16 (m, 1H)	23.3	1.16 (m, 1H)	23.2

4'b	1.08 (m, 1H)		1.08 (m, 1H)	
5'-CH ₃	0.86 (dd, 6.7, 12.3, 3H)	15.3	0.86 (d, 4.7, 3H)	15.2
6'-CH3	0.79 (d, 7.3, 3H)	11.8	0.78 (t, 7.4, 3H)	11.6
1"		170.0		169.7
1"-CH3	2.02 (s, 3H)	21.3	2.02 (s, 3H)	21.1
HCOO	7.94 (s, 1H)	161.1	7.93 (s, 1H)	160.9
7-OCH ₃	3.73 (s, 3H)	53.2	3.72 (s, 3H)	53.0
14-OH	4.43 (s, 1H)			

Supplementary table 2: Comparison of ¹H (500 MHz) and ¹³C (125 MHz) NMR data of isolated rubralin B (**5**) in CDCl₃ to the published data (Musza et al. 1995).

Position	Isolated rubralin B (CDCl ₃)		Data published for rubralin B (¹ H, 360 MHz ¹³ C, 90 MHz) (Musza et al. 1995)	
	$\delta_{\rm H}$ (m, J in Hz)	δc	$\delta_{\rm H}$ (m, J in Hz)	δc
1	4.74 (dd, 3.1, 5.2, 1H)	70.5	4.75 (dd, 3.5, 4.5, 1H)	70.4
2	3.22 (m, 1H)	35.1	3.20 (m, 1H)	35.0
3		168.9		168.5
4		85.3		85.0
5	2.55 (dd, 2.2, 13.2, 1H)	44.5	2.56 (d, 10.9, 1H)	44.4
6α	1.95 (m, 1H)	26.5	1.95 (m, 1H)	26.4
6β	2.04 (m, 1H)		2.10 (m, 1H)	
7	5.29 (br q, 1.7, 1H)	75.2	5.29 (m, 1H)	75.2
8		41.5		41.4
9	2.72 (dd, 8.1, 11.7, 1H)	37.3	2.73 (dd, 8.1, 11.7, 1H)	37.2
10		44.2		44.2
11α	1.16 (m, 1H)	25.5	1.30 (m, 1H)	25.4
11β	2.04 (m, 1H)		2.07 (m, 1H)	

12	5.05 (t, 8.4, 1H)	76.6	5.06 (t, 8.3, 1H)	76.5
13		51.3		51.2
14		155.1		155.1
15	5.50 (dd, 1.7, 3.6, 1H)	122.5	5.51 (brs, 1H)	122.4
16	2.41 (m, 1H)	36.8	2.41 (m, 1H)	36.7
17	3.02 (dd, 8.0, 10.5, 1H)	49.9	3.03 (dd, 7.9, 10.6, 1H)	49.9
18-CH ₃	1.19 (s, 3H)	15.5	1.20 (s, 3H)	15.3
19-CH ₃	0.93 (s, 3H)	14.8	0.95 (s, 3H)	14.7
20		124.5		124.1
21	7.18 (brs, 1H)	140.4	7.18 (s, 1H)	140.3
22	6.22 (dd, 0.8, 2.0, 1H)	111.6	6.22 (s, 1H)	111.5
23	7.34 (t, 1.9, 1H)	142.4	7.34 (s, 1H)	142.2
28-CH ₃	1.43 (s, 3H)	29.2	1.43 (s, 3H)	29.1
29α	4.04 (d, 12.3, 1H)	65.6	4.05 (d, 12.3, 1H)	65.6
29β	4.95 (d, 12.3, 1H)		4.93 (d, 12.3, 1H)	
30	1.25 (s, 3H)	28.3	1.25 (s, 3H)	28.1
1'		174.9		174.7
2'	4.14 (d, 3.8, 1H)	75.1	4.14 (d, 3.8, 1H)	75.5
3'	1.82 (m, 1H)	39.1	1.83 (m, 1H)	39.0
4'	1.29 (m, 1H)	23.8	1.28 (m, 1H)	23.7
5'	0.89 (t, 7.4, 3H)	11.9	0.90 (t, 7.4, 3H)	11.7
6'	1.00 (d, 6.9, 3H)	15.5	1.00 (d, 7.6, 3H)	15.4
1"		174.1		173.9
2"	4.04 (m, 1H)	75.5	4.03 (m, 1H)	75.0
3"	2.09 (m, 1H)	31.9	2.06 (m, 1H)	31.8
4"	1.09 (d, 7.0, 3H)	19.5	1.09 (d, 7.0, 3H)	19.3
5"	0.85 (d, 6.8, 3H)	15.8	0.87 (d, 6.9, 3H)	15.7

1'''		169.6		169.4
1'''-CH3	2.07 (s, 3H)	20.8	2.07 (s, 3H)	20.6
1''''		171.0		170.8
1''''-CH ₃	1.93 (s, 3H)	21.5	1.93 (s, 3H)	21.3

Supplementary table 3: Comparison of ¹H (500 MHz) and ¹³C (125 MHz) NMR data of isolated aphapolynin C (6) in CDCl₃ to the published data (Zhang et al. 2013).

Position	Isolated Aphapolynin C (CDCl ₃)		Data published for Aphapolynin C in DMSO-d ₆ (¹ H, 500 MHz ¹³ C, 125 MHz) (Zhang et al. 2013)	
	$\delta_{\rm H}$ (m, J in Hz)	δ _C	$\delta_{\rm H}$ (m, J in Hz)	$\delta_{\rm C}$
1	7.46 (d, 10.4, 1H)	152.3	7.43 (d, 12.0, 1H)	152.9
2	6.07 (d, 12.4, 1H)	120.9	5.96 (d, 12.0, 1H)	119.2
3		171.9		166.9
4		79.1		79.7
5	2.12 (brs, 1H)	50.8	2.37 (brs, 1H)	49.9
6α	2.48 (dd, 15.1, 4.1, 1H)	29.7	2.56 (dd, 15.5, 10.0, 1H)	29.8
6β	2.71 (m, 1H)		2.70 (dd, 15.5, 7.5, 1H)	
7		169.3		172.7
8		136.8		138.8
9	3.72 (brs, 1H)	52.4	3.00 (d, 7.5, 1H)	51.9
10				43.4
11	5.66 (brs, 1H)	71.1	5.42 (dd, 10.5, 7.5, 1H)	71.6
12	6.19 (d, 10.2, 1H)	75.6	6.04 (d, 10.5, 1H)	74.7
13		49.5		49.1
14		80.6		79.2
15		207.2		207.5
16α	2.39 (dd, 9.9, 19.4, 1H)	41.8	2.47 (dd, 19.5, 9.5, 1H)	41.2

16β	2.93 (dd, 8.8, 19.4, 1H)		2.76 (dd, 19.5, 9.0, 1H)	
17	3.99 (t, 9.4, 1H)	35.4	3.79 (t, 9.5, 1H)	34.9
18-CH3	0.96 (s, 3H)	13.5	0.86 (s, 3H)	12.4
19-CH ₃	1.02 (s, 3H)	23.0	1.02 (s, 3H)	23.1
20		122.2		123.0
21	7.23 (d, 6.2, 1H)	140.9	7.39 (s, 1H)	140.5
22	6.25 (d,10.6, 1H)	110.3	6.49 (s, 1H)	111.1
23	7.40 (d, 12.0, 1H)	143.5	7.55 (s, 1H)	142.8
28-CH ₃	1.68 (s, 3H)	27.3	1.53 (s, 3H)	25.3
29α	4.29 (d, 11.2, 1H)	74.4	4.23 (d, 11.5, 1H)	73.6
29β	4.10 (d, 11.4, 1H)		4.16 (d, 11.5, 1H)	
30a	5.99 (s, 1H)	123.6	5.78 (s, 1H)	120.6
30b	5.35 (s, 1H)		5.35 (s, 1H)	
1'		175.0		173.3
2'	3.12 (d, 2.6, 1H)	74.9	3.07 (dd, 5.5, 3.5, 1H)	74.2
3'	1.50 (m, 1H)	37.7	1.40 (m, 1H)	37.2
4'	1.16 (m, 1H)	22.8	a = 1.08 (m, 1H)	22.8
	0.96 (m, 1H)		b = 0.96 (m, 1H)	
5'	0.80 (t, 7.0, 3H)	11.5	0.71 (t, 7.5, 5H)	11.3
6'	0.87 (d, 6.8, 3H)	15.4	0.72 (d, 7.0, 3H)	15.4
НСОО	7.92 (s, 1H)	159.7	8.22 (s, 1H)	160.7
14-OH			6.64 (s, 1H)	
2'-ОН			4.96 (d, 5.5, 1H)	

Supplementary table 4: Comparison of ¹H (500 MHz) and ¹³C (125 MHz) NMR data of isolated Trichillia substance Tr B (7) in CDCl₃ to the published data (Gunatilaka et al. 1998).

Position	Isolated Trichillia substance Tr B (CDCl ₃)		Data published for Trichillia substance Tr B in CDCl ₃ (¹ H, 500 MHz ¹³ C, 100.57 MHz) (Gunatilaka et al. 1998)	
	$\delta_{\rm H}$ (m, J in Hz)	δc	$\delta_{\rm H}$ (m, J in Hz)	δc
1	5.00 (brs, 1H)	75.4	5.44 (dd, 6.8, 5.9, 1H)	73.1
2	3.23 (brs, 2H)	37.5	2.05 (dd, 11.8, 9.0, 2H)	41.9
3		169.0		169.7
4		79.2		79.3
5	3.18 (brs, 1H)	42.5	3.18 (dd, 7.7, 3.8, 1H)	38.0
6α	2.57 (d, 4.9, 1H)	32.0	2.48 (dd, 9.0, 7.7, 1H)	42.2
6β	2.69 (dd, 4.9, 16.2, 1H)		2.63 (dd, 7.7, 3.8, 1H)	
7		173.2		173.7
8		138.5		138.2
9	3.79 (brs, 1H)	51.4	3.78 (d, 7.4, 1H)	51.3
10		46.0		45.8
11	5.49 (dd, 7.6, 10.2, 1H)	71.0	5.46 (dd, 7.4, 10.3, 1H)	78.1
12	6.12 (d, 10.2, 1H)	73.3	6.16 (d, 10.3, 1H)	71.2
13		49.7		49.6
14		80.9		80.8
15		206.7		206.3
16α	2.41 (dd, 8.7, 18.3, 1H)	41.8	2.34 (dd, 8.5, 9.0, 1H)	35.0
16β	2.88 (dd, 8.6, 18.3, 1H)		2.82 (dd, 8.8, 9.0, 1H)	
17	3.95 (t, 8.7, 1H)	35.7	3.95 (t, 8.5, 1H)	37.9
18-CH3	0.98 (s, 3H)	12.8	0.97 (s, 3H)	12.9
19-CH ₃	1.76 (s, 3H)	21.0	1.62 (s, 3H)	22.9

20		122.8		125.2
21	7.23 (brs, 1H)	140.8	7.20 (brs, 1H)	140.6
22	6.29 (brs, 1H)	110.5	6.23 (brs, 1H)	110.3
23	7.40 (brs, 1H)	143.3	7.38 (t, 1H)	143.3
28	1.81 (s, 3H)	23.0	1.81 (s, 3H)	28.5
29α	4.16 (d, 11.1, 1H)	78.0	4.22 (dd, 12.0, 2H)	75.5
29β	4.24 (d, 11.1, 1H)			
30a	5.89 (brs, 1H)	124.0	5.89 (brs, 1H)	122.5
30b	5.52 (brs, 1H)		5.49 (brs, 1H)	
1'		174.9		174.9
2'	3.08 (brs, 1H)	74.6	3.30 (br d, 1H)	74.6
3'	1.43 (m, 1H)	37.9	1.45 (m, 1H)	37.9
4'	1.11 (m, 1H)	22.8	1.15 (m, 2H)	22.7
	0.96 (m, 1H)			
5'	0.75 (t, 7.3, 3H)	11.3	0.84 (t, 7.6, 3H)	11.4
6'	0.81 (d, 6.6, 3H)	15.0	0.82 (d, 6.5, 3H)	15.1
HCOO	7.78 (s, 1H)	160.3	7.74 (s, 1H)	
CH ₃ CO	2.06 (s, 1H)	21.2	1.99 (s, 1H)	
		169.4		

References:

- Gunatilaka AAL, da S. Bolzani V, Dagne E, Hofmann GA, Johnson RK, McCabe FL, Mattern MR, Kingston DGI. 1998. Limonoids showing selective toxicity to DNA repair-deficient yeast and other constituents of *Trichilia emetica*. Journal of Natural Products. 61(2):179-184.
- L. Musza L, M. Killar L, Speight P, McElhiney S, J. Barrow C, M. Gillum A, Cooper R. 1994. Potent new cell adhesion inhibitory compounds from the root of *Trichilia rubra*. Tetrahedron. 50(39):11369-11378.
- Musza L, Killar LM, Speight P, Barrow CJ, Gillum AM, Cooper R. 1995. Minor limonoids from *Trichilia rubra*. Phytochemistry. 39(3):621-624.

Zhang Y, Wang J-S, Wang X-B, Gu Y-C, Wei D-D, Guo C, Yang M-H, Kong L-Y. 2013. Limonoids from the fruits of *Aphanamixis polystachya* (Meliaceae) and their biological activities. Journal of Agricultural and Food Chemistry. 61(9):2171-2182.