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Several studies have shown that twin birth contributes
substantially to infant and child mortality mainly in
resource-poor countries. The excess rales among twins call
for research in statistical modeling to identify the main
causes behind it. In studies involving multiple individuals
from the same family, the fundamental independence as-
sumption in the classical statistical modeling is not plau-
sible. In addition, previous studies indicated that ignoring
sampling weight while dealing with a datasct collected with
complex survey design can introduce serious bias. This study
iz then aimed to fill these methodological gaps to integrate
the dependence from twin birth with an advanced statis
tical pamma frailty model to correctly identify the deter-
minants of infant mortality among twins in Ethiopia. We
compiled all available data from the 2016 Ethiopia Demo-
graphic and Health Survey with a total of 908 children (454
pairs of twins) with survey sampling weight incorporated in
the analysis. To identify predictors and to assess the pres-
ence and significance of frailty, semiparametric univariate,
bivariate shared, and correlated gamma [railly models were
fitted. The likelihood ratio test was employed to fest the
significance of frailty term in the model. We found that sex
of the child, among twins birth order, preceding birth in-
terval, and succeeding birth interval are significantly asso-
ciated with twin infant mortality. The results of this study
further confirmed the significance of the shared frailty term

accounting for the unobserved heterogeneity.

Kevywonns aND PHRASES: Frailty, Twin, Infant mortality,
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1. INTRODUCTION

In Ethiopia, the rate of infant mortality shows an en-
couraging decline pattern in the past decade. The 2016
Ethiopia Demographic and Health Survey (EDHS) results
showed that infant mortality declined from 97 deaths per
1,000 live births in 2000 to 48 deaths per 1,000 live births
in 2016, which is about a 50% reduction in about 16 years.
The 2016 figure further indicates that 1 in every 21 children
in Ethiopia dics hefore eclebrating their first birthday [5].
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Sub-Saharan Alrica, not only has the highest rate of twin
births in the world [21] bul also the world’s highest rate of
infant and child mortality [24]. Despite the sipnificant im-
provements, the fate of twins’ survival in sub-Saharan Alrica
is lagging behind that of singletons with an alarming one-
fifth of twins in the region die before the age of five years,
which is three times the mortality rate among singletons
[18]. In Ethiopia, the 2016 EDHS results showed that out
of the 914 children of multiple births recorded in the survey
(2 triple births and 454 twin births), 285 (31.2%) of them
died before they reach their first birthday, indicating that
1 in every 4 children of multiple births in Ethiopia dies be-
fore their first birthday [5]. There are a number of biological
and environmental contributing factors for this high mortal-
ity rate among children of multiple births in Sub-Saharan
African conntries [8, 12, 21, 18]. For instanee, close contact
hetween twin habies increases the chance of cross-infection
[12]. Hence, in studies involving multiple individuals from
the same family (eg twins), it is obvious to expect some
sort of association among these twins and the assumption
of independence is not plausible unless all-important famil
ial factors were measured and controlled for in the model.
Children belonging to the same family share certain unob.
served characteristics (heterogeneity ), which may not be suf
ficiently described by the covariates included in the models.
Henee, failure to consider such unobserved association may
lead to biased paramelers estimates [4].

Apart from taking into account the unohserved associa-
tion among twins, one has to consider also those major cl-
ements of the survey design that may have an effect on the
model estimates based on survey data, including sampling
weights, which is the inverse probability of being included in
the sample adjusted for non-response (15, 20]. These weights
act to correct sample data for the unequal selection proba-
bilities and failure to include these in the modeling process
can lead to estimates that are serionsly biased for their cor-
responding population gquantities [17].

The persistence of high levels of infant mortalily rates
among twins calls for a need to identify the potential de-
terminants of twins’ mortality, specifically in resource-poor
sub-Saharan countries like Ethiopia. Identifying potential
significant determinants of twin birth infant mortality is es
sential to form policies and strategies to accelerate the re-



duction of infant mortality and also to meet the United Na-
tions Sustainable Development Goals (SDGs). This study,
therefore, aims to identify the determinants of infant martal-
ity among twins in Ethiopia, using an advanced frailty mod-
eling approach to incorporate the dependence/correlation
from twin mortality so that correct analysis can be per-

formed and appropriate public health recommendations can
e made,

2. MATERIALS AND METHODS

2.1 Data source

This study used data from the 2016 EDHS, where in-
formation about the twin’s mortalily is exiracted [rom the
birth history of women included in the survey, All twin
hirths recorded in the survey are included in this study.
The 2016 EDDHS sample was stratified and selected in two
stages. Each region was stratified into urban and rural areas,
yielding 21 sampling strata. Samples of EAs were selected
independently in each siralum in two stages, lmplicil strat-
ification and proportional allocation were achieved at each
of the lower administrative levels by sorting the sampling
frame within each sampling stratum before sample selec-
tion, according to administrative units in different levels,
and by using a probability proportional to size selection at
the first stage of sampling [5].

2.2 Variables of the study

The outeome (response) variable for this study is the sur-
vival time of a pair of infant twins measured in days. Among
the potential covariates that might have an effect on the
survival of twin infants, the following time-invariant factors
are included in the study: categorized mothers age at child-
birth (below 18 years, belween 18-35 years and above 35
years), sex of the ehild, preceding bivth snterval (1st born or
no preeeding child, below 18 months, between 18 24 months
and above 24 months), sueceeding bivth interval (below 18
months, between 18-24 months, above 24 months and last
born) and among twins birth erder (firstborn and second-
born). In addition, the less likely-to-be time-variant factor
such as place of residence (urban, rural) is also included in
this study.

2.3 Methods of data analysis

With the aim of identifying potential predictors of infant
mortality and further assessing the presence and significance
of unobserved [railty a semiparametric univariate, shared,
and correlated gamma [railly models are Gtted to the 2016
EDHS twins survival data, The following discussion is re-
stricted only to bivariate survival data.

2.3.1 Shared gamma frailty model

Let the bivariate random variables (T;q, Tia) be the first

and second survival times of the two children in the it*

cluster (twin) (i — 1,...,n). Assuming that the frailtics

Zi (i = 1,...,n) are acting multiplicatively on the base-
line hazard function ho(t,;) and both the survival times
of children Ty and Tig are conditionally independent given
frailty Z; — z;. The conditional hazard model for 7% child
(j = 1,2) in the i** twin given frailty #; = z; has the form
[13]:

(1) bt X5, Z5) = zho(ts;) exp (X3,8), 7=0(1,2)
where the vectors X = (X0, Xojo, .o X)) and B =

(81, fa, . . ., Bp) are covariales and regression paramelers, re-
spectively, These children who possess z; = 1 are more frail
for reasons left unexplained hy the covariates and will have
an increased risk of death. The frailties, Z;, are assumed to
be independently and identically distributed random wari-
ables. In this study, #; are assumed to follow gamma distri-
bution given by:

2t 'oxp (— 3)
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Under the assumption of independence, the condilional
survival function in the bivariate ease for given frailty 2, —
2z at time &y > 0 and £ > 0 is,

(@) g9(z) =

S(tar, ta| X, Xao, Z3) = S(ta| Xia, Z3)S(tia| Xz, Zi)
(3) gl H k)]
where H(t;;) = Hu{tij)cxp(mlﬂ} for 7 = (1,2) and Hy(t)
denote the cumulative baseline hazard [unction, Consider
ithe marginal likelihood funetion:
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where g(z) is the probability density function given in
equation-2. If a parametric form is not assumed for the base-
line hazard, hg(.), estimates of the model parameters can
easily be obtained using either the method of Expectation-
Maximization (EM) or penalized partial likelihood (PPL).

Let’s consider parameter estimation technigque following
the modified EM approach for the semiparametrie bivariate
shared gamma frailty model with incorporating sampling
weight. The word ‘modified’ refers to the modification of the
M-step so that the frailty parameter can be estimated from
the profile log-likelihood as discussed below. ln the univari-
ale gamma [railty model, random eflect term is introduced
to each infant instead of the twins together, Since, univari-
ate frailty model refers to a shared frailty model when the
cluster size is one, estimation of the univariate (individual)
frailty approach can be straightforward from the estima-
tion of bivariate shared gamma frailty approach. Consider
the [ull likelihood as il the [railties were observed. The log-
likelihood is given by |7]:

(5) L(B,°|Z) = La(BIZ) La(o®| Z)



where
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The complete likelihood representation given in equation-
5 is obtained by taking partial derivatives of equation- 7 with
respect Lo ([, ts) In accordance with censoring information
for the twin of children and multiplying the result by the eor-
responding probability density function given in equation-2.
Since the data used in this study is [rom EDIS which uses a
sample survey design with weights, accordingly these sam-
pling weights are incorporated in the analysis. Now with
sampling weight denoted by w and sampling weight of the
individual mother w1 — wia — wy, equation-fi become:
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Denote the weighted version of Nelson-Aalen estimator
of Ho(t) [1] by:
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where dy,, = 3 duuwy is the number of events at time

=ty
tij or nu.luln.r Uf cluldru1 died at time t,; (weighted). Let's
further substitute the Nelson—Aalen estimator of Hy(t) given
in equation-9 into Lthe logarithm of equation-8 Lo gel:

T [; —ln( 3 w,,uw)]
i=1 j=1 it
where ny; = xi;3 + In(z). Now one can easily see that

equation- 111 coincides with Cox’s partial likelihood with
sampling weight w and In(z) as an additional Cox-like co-
variate with a known regression coefficient equal to one, Fur-
ther, instead of Z; one has to use its expected value, E(Z;).
Suppose ﬁw HU?{t},éE denote estimates of 8, Hy(t) and o2
at g™ iteration. Estimates of the conditional expectations of
Z; at g th 3t eration dcnobud by Z, Hni=1....n evaluated at
parameter estimates of g* h iteration can be obtained using:
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Following profile likelihood approach due to Therneau
and Gramhsch [22], first cxpress the hazard terms in terms
of the expected frailty and the unweighted event. That is
for the unweighted gamma frailty, the conditional expec-
tations of the frailty term is 3, — m{:—r&n@, implies
[H{t1) + H(t2)] — e~ =& (@4 o) — 0, where 0 — &5 and the
unweighted event is given as d; = (81 + d2). Then substi-
tute this term into the log of the marginal likelihood given
in ﬂquat:'(m—.{ and then, subtracting and adding a penality
Lerm Z L(lniz) — =) resulls:

Pm,r(ﬂF )= lox +Z[oﬂ (log(z) — =)

i=1

g + (1~ log( g + L)
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where .. can be obtained using equation-10 and here d;
is the sum of events [unweighted) in pair i. Note that
for gamma frailty, both PPL and EM approaches produce
the same result |7, 22]. The main feature of equalion-12
is the expression of hazard term in t.orms of the expected

frailty and the unweighted events. ie., E i Hp (15 NeXiP —

exp(— In(z))(1/e? + d;) — 1/a?, whu"h is mot equal to
expl— In(z))(1/a? + dy,) — ll."t‘.l2 where d,,, is the sum of
events (weighted) in the i** twin pair. Now, the algorithm of
parameters estimation consists of an inner and outer loops.
Let’s denote the onter loop iteration by ! and the inner loop
by q.

Inner loop

Given a conventional values of léf,m f-ﬂfu,ﬂ(t} and &7,

(12)

® Step 1: Obtain 2, using equation-11.

s Step 20 Maximize equation-10 to obtain Jﬂi,q-{—l and
ohtain ﬁn,m ((f) using equation-9. Maximization of
equation-10 given Z;_ can be carried oul using standard
Cox PH fit procedure with ln{ﬁi‘) as an “offset™ term
and w; as weight.

® Step 3: Iterate step 1 and 2 until the maximum absolute
differences between suceessive estimates reach tolerance
e, max(|By 1 — Bigl) < 1071

Outer loop
Given réf.q-l-l’ n“:.ﬂ 1 ’s‘.ql'l

o Maximize equation-12 to obtain 67, ;.

e lierate inner and outer loop until convergence, Conver-
genee can be checked using absolute difference of es-
timated frailty parameters estimated at previous and
current outer iterations. i.e., |67, — 67| < 1075



2.3.2 Bivariate correlated gamma frailty model

The bivariate correlated gamma frailty model introdueed
by [26] included univariate and shared frailty models as spe-
cial cases. If the frailty variances of the two subjects in pairs
are zero, then it implies absence of frailty. With non-zero
frailty variances, if the correlation between the frailties is
#ero, then correlated frailty model reduced to univariate
[railiy model. In addition, il the correlation between the
frailtics is 1, then correlated frailty model reduced to shared
frailty model [10, 11].

Let the survival times of the two subjects (children) be
conditionally independent given their frailties 2, and Zs
and, let kg, ki, ks be some nonnegative real-valued numbers
[26]. Then Z; and Z3 can be decomposed as Z; = Yo + 75,
i — (1,2), where ¥y, ¥; and ¥5 are independent gamma-
distributed same seale A random variables with density:

Ak yf" “le—Aws
(k5)
Obviously, Z; and Zy are correlated in view of the shared
part of frailty ¥5 in both 74 and Za. Further assuming equal
shape parameters (k) = ks = k) lor the distributions of
Yy and Ya, forces the frailties Z; and Zo to follow pamma-
distributed correlated random variables [26] given by:

(14) Ly Dllen + k,A)y 3 —(1,2)

For the standard assumption that the mean frailty of in-
dividuals is one (al the beginning of the follow-up), the [ol-
lowing holds:

(13) -G(Y-?) - !'k_f = ﬂ‘s‘k == ("l 112}

(15) AR

thus, the frailty variances are equal and given by:

E[7] —

. ; : 1

(16) V(Z) =V(Z) = V() =y =0’

This leads to the correlation coefficient of Zy and Za given
by:

1) oo cov( £y, Ao} B ko

VV(Z)V(Z) kotk
Let
(18) A=$;ku=a—pg;k=%
then
1 1 .
(19) Zi~Tg, ) =12

Now it is possible to derive the marginal likelihood function
s
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where g(y;),7 = 0,1.2 are the pdf given in equation-
17 with parameters given in equation-18. EM algorithm-
based parameter estimation for the above bivariate corre-
lated gamma-frailty model with equal sampling weights has
already been developed by Tachine |16] and here we pre-
sented short summary of the approach. lachine [16] derived
the complete log-likelihood as if the frailties are observed,
Then, showed that the complete log-likelihood structure al-
lows Lo combine Cox’s regression and maximum likelihood
techniques to obtain parameter estimates.

E-step: Compule the conditional expected values of y;
and In(y;) for j = 0,1,2 denoted by B; = F(y;|data) and
A; = E(ln(y;)|data) for 7 = 0,1,2 evaluated at the current
iteration estimates.

M-step: Obtained new estimates [or the next ileration.
The derived working log-likelihood function after substitut-
ing the nnohserved frailty variables by their conditional ex-
pected values such as substitute y; and Infy;) by B; and A;
respectively and = = By | By, for j = 1,2 is given hy:
p)+ i (A)

(21) e = Uy (a?

where
(22)
Ui(o?, p) = n(

(5

2e?) ~ r(5) - 2 (150 )
i+ Aim) — = ZQ:JJ‘-,-)
=0

(23) Ure(B) = zz%(g a- 1,,( 3 ex;ﬂﬂn{%n)))

=1 3= Lpt ey

where 2,; — (B +B=_-,}. Az equation-24 coineides with Cox’s
partial likelihood when In(z;;) is considered as an additional
Cox-like covariate with a known regression coellicient equal
to one, standard procedures for the Cox regression can be
used to obtain 3 and Hp(t) and equation-22 is maximized
to obtain the new frailty parameters. These two steps are
iterated until convergence.

In this paper, we have modified the above bivariate cor-
related gamma-frailty model estimation procedure in a way
that enable us to incorporate the sampling weight. Thus,
we have incorporated the sampling weight and developed
the parameter estimation procedures. Integrating out the
[railty variables in eguation-20 considering the four censor-
ing possibilities e, (& = L, da = 1), (8§ = 1,82 = 0},
(8 = 0,83 = 1) and (& = 0,82 = 0) and taking the natu-
ral logarithm, the mariginal log-likelihood function can he



given hy:
(24)
n 2

bivarg = 3 Z EN (lx.(pm(t,, ¥ x;.j.,s)

ilg
T

=3 (00 + 8-+ 8) 1) + Gk + ) n(AM)
i 1

+ (k + dia) |n(M:,}) + 3 aidan(Ly)
+3 a1 da)In(Ly) + Y (1~ d)daIn(Lyn)

where: H(t) — Ho(£)e%%, My — 1+ 62(H(ty) + H(ta)),

My = (11 0%H(ty)), My = (1 1 0®H(ta)),
plp+a®) pll—p)f 1 1 (1—p)?
L*‘[ M My (E*E)* MIMQ]
B (I-p)
Ly A T }
e U=p)
L= [A_ﬁ,+ W ]

Denote the equal weight version of the Nelson-Aalen esti-
mator of Hy(t) hy:

3 dpi
=, E F i In(zpr}

R Y

(25) Hy(t) =

where dp = 3 5,.; is the number of events at time #;;.
i —I

The following m:,‘imt:rm 2fi, which is the first line of equation-
24 can easily be obtained assuming frailty variables (Z; and
Zg) are observed and further by substituting Ho(t) with its
Nelson-Aalen estimator, which is given in equalion-25.

ZE«M CTRTGSRI)

i=1 4= b i

(26)

Now one can easily see thal equation-26 coincides with Cox’s
partial likelihood with In(z;;) as an additional Cox-like co-
variate with a known regression cocfficient equals to one.
This shows that given z; it is possible to estimate #; and
Hy(t) ean be obtained using equation-25, However, z;; is not
observed and thus needs Lo be substituted by ils expected
value, Similar to the mariginal log-likelihood expression, Lo
derive the expression of the conditional expected values of
the frailties, the four censoring possibilities needs to be con-
sidered. Here, we presented derivation of the expressions of
the conditional expected values for the case where both sur-
vival Limes (£, b)) are uncensored e, (8) = 1,8y = 1). The
expressions for the remaining three censoring possibilities
can be derived in a similar manner.

The culu]itluual distribution of yg, yi, yo denoted by
Jluo, 11, y2l(iz, 8i5, Xig)) can be given by:
(27)
I'?z g
g g St talvo, v, w2, 21, 2 )a (o, v1, v2)
e
? 1 a b ' " - T
Flyo, un,420(.)) SR
C(uﬁﬂom +yoya+yrya)glyo)g(yi)gla)

[—

where Czhoﬂil]ﬁﬂ"“ho(tz]ﬂﬂr“ﬁ (o tan)H{en) (oo )l (1)
gly;), 7 — 0,1,2 are the pdf given in equation- 13 with pa-
ramelers given in equation-18 and Lyueq, s given by:

(28)
Lonarg; = ho(t1)e? ® ho(t)e 2 My %0 My 5 My * x Ly
where M,,r = 0,1,2 and L; are expressions given in
equation-24. Suppose gla,b) denotes gamma distribution
with shape and scale parameters are a and b, respectively

and let’s introduce the following notations:

P{P+JJ  kplko +1)
=g Y3
p—¢ _ kak
B WMy T doh
_r=pt kk
BT UM hoha
_(=p(—p)  kk
(20) MMy AAg

Sy=qtgtqta
@,

= S,,’! 1,2,3,4

gy () = glko + 2, Ao)glk, M)g(k, Aa)

g () = glko + 1, Mo)glk + 1, M)g(k, Aa)

gas () = glko + 1, Ao)glk, M)g(k + 1, ha)

gual-) = glko, Aodg(k + 1, A )g(k + L, Ag)

where hg — & + H(t) + H(ta), At = 5 + H(t), o =
X + Hita) and H(t) = Hy(1)eP™® . Using theses notations
it is possible to re-write the conditional distribution of yy,
Y1, Y2 given in equation-26 as the sum of mixture of gamma
distributed variates given below:

(30)

S0, 31,301()) = i 0190, () + 0000

| qnyag(-) | qam.l[-)}

= p1gdy () 1 pagaa () 1 paga () 1 paga, ()

4
= gl
I=l



thus, the expeeted values of Ey;) denoted by 4, j —0,1,2
can be given as follows:

B0 = ZPI-“-‘- (g4, ()

fm+ ko +1 ko + 1 ko
@y Py mey ey
I{p+20} {p } P
My + (p2 +pa) Py
_m(ﬂ+2er°1+(m+m](p+a)+p..p
My
4
= mby, (94,(.))
=1
(32) ok ki kookad
RO ke AL Ipa)u e A
(pr4pe)(l—p) +i{pa+p)(1—pto?)
_ s
4
o =3 by (94 ())
=1
(33) k+1 k+1
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Henee, the expected values of Z;; and Zyn denoted by 2,
and 2,5 respectively ean be given by:

{3"-1) E’ij=ﬁiu+§ij, i=1‘...,71; _‘i=1,2

By substituting the expected values Z; instead of z; in
equation-26 new estimates of 3 can be obtained. Thus,
parameter estimation by maximizing the marginal log-
likelihood expression can be carried ont by the inner and
outer loop. Let’s denote the outer loop iteration by [ and
the inner loop hy 4.

Inner loop

Civen a conventional values of ﬂlﬂ, Hg,,?{t} and &, fi,

« Step 1: Obtain 2; using equation-34.

e Step 2: Maximize egquation-26 to obtain 3!,.,1 1; and
obtain Fp, u_“(t} Il‘-IiIIg equation-25. Maximization of

cquation-26 given 2;,3 can be carried ont using stan-

dard Cox PH fit pmﬁ'duro with In(z,JI )} as an “offset”
term.

e Step 3: Iterate step 1 and 2 until the maximum absolute
differences between suecessive estimates reach tolerance

i, max(|By 1 — Byl < 10710,

Outer loop
Given 'éfwu I!Hul.ﬂ 1 :Eij.,u

» Maximize equation-24 to obtain ﬂ'?”,_ﬁ”l. Here, the
first. line expression should be substituted by (26).

» [terate inner and onter loop until convergence. Conver-
gence can be checked using absolute maximum  differ-
ence of estimated [railty parameters estimated at pre-
vious and current outer iterations.

When sampling weights denoted by wy = wy = wyp are
incorporated, the expressions of the expected walue of the
frailties are changed. Mp — (1 +r;r?m{H{t|}+ Hita))), My —
l[l + a?wH(t;)), My = (1 + c®wH(ta)) accordingly, Ay —
;_u"rw(ff{h]-‘rff{ig]lj A= L twl(t), de = S+wll(la).
the expected values §;, 7 — 0,1,2 are given as follows:

- ku-i—?w fq;-l—w
- + +
=M Ao P2 Ao Pa
~ (pt2we?) (p+wa?) P
B TP (p2+pa }7‘” Py

~ pilp+ 2wa®) + (pa + pa)(p + wo?) + pap
Mo

A +Pl'J‘_U

(35)

ki w k kw
Im/\ +m)‘—llm i

(et pa)(1—p) + (p2 4 pa)(1 — p + wo?)
M,

ij P k
=M<
(36) .

k k kE+w k+w
fia = m(.‘ +Pz;\ +tpa—— \a +pa N
e ) (=0 1 (pa b pad(1 - p | wae®)
- on

Hence, ;1 and 29 can be given by:

(37)

(38) = fo + igot — 1,2, m5 5 — 1,2

With sampling weight, equation-26 is changed in to:

n 2
(39) ZZE,JW, [ﬂ,, — ].Il( Z urp,{:"'p!)]
i ljil bl = hig
where 7; — xi;8 + In(Z;). In order to obtain new esti-

mates of the frailty parameters, using the profile likelihood
approach due to [22], the hazard terms are expressed in
terms of the expected frailties and the unweighted events
and then substitute all to eguation-24. Thus, similar to the
equal weight correlated gammea [railly estimalion procedure,
the algorithm consists of an inner and outer loops.

3. RESULTS

A lotal of 908 (454 pairs) twin child deliveries were
recorded in the 2016 Ethiopia Demographic and Health Sur-
vey (EDHS). The overall information on censoring and co-
variates included in this study are presented in Table 1.

The descriptive summaries in Table 1 shows that
mother’s age at childbirth, in the first category helow 18



Table 1. Descriptive summaries of variables

Table 2. Results of the log-rank test of covariates

Child status Covariates i Test statistic DI p -value
s T D Admat 13 4
Freq (%)  Freq (%)  Sex 8.58 1 0.003*
Mother's ACE < 18 years 22 (50.0%) 22 (50.0%) Among twins’ birth order  10.04 1 ooor
at child birth 18 35 years 544 (T0.1%) 232 (20.9%) Preceding birth interval — 12.9 3o oom®
= 35 years 60 (68.2%) 28 (3L.8%) Suceceding birth interval 18.9 3 <0.001
Resid Urban 117 (T6.0%) 37 (24.0%)
WENCE Rural 509 (67.5%) 245 (32.5%)  Table 3. Parameter estimates of UNIVARIATE gamma frailty
Male 311 (63.6%) 178 (36.4% model with and without sampling weight
Gender  pupale 315 E75.2%= 104 Ez‘z.s%g pine vels
. Unweighted Woeighted
Among twin's  First horn 335 (TA8%) 119 (26.2%) Covariates Coef (SE) Coef (SE)
birth order  Second born 201 (64.1%) 163 (35.9%) 3
er
) No precede sibling 94 (64.4%) 52 (35.6%) Male 0.4660 (0.1248)* 0.7947 (0.1767)*
Preceding < 18 months 53 (51.0%) 51 (49.0%)  Female (Tef)
birth interval 18 - 24 months 72 (621%) 44 (37.9%)  — Ammong twins’
> 24 months A07 (T5.1%) 135 (24.9%)  pirth order
Last born 252 (T9.2%) 66 (20.8%) Second born 0.347h (0.1206)* 0.5285 (0.1686)*
Succeeding < 18 months 53 (15.3%) 64 (51.7%)  First born (Ttef)
birth interval 18 — 24 months 66 (71.0%) 27 (20.0%) Preceding
= 24 months 255 (67.1%) 125 (32.9%) barth interval
No precd sibling 0.3341 (0.1647)* 0.7054 (0.2276)*
< 18 months 0.6886 (0.1706)* 0.8162 (0.2546)*
years, there were 4.8% of the study population, (of whem 18-24 months 0.3155 (0.1761) 0.1385 (0.2635)
50% died), 9.7% of the children were born from mothers >24 months (Ref)
whose age exceeds 35 years, (of whom 31.8% died); and the S"mxﬁl
maining 85.5% children bel t thers whose age at  0iTth
JOTATINE -7 CAlAren BEOng 10 MOers WOse 18 ALy ast born —0.4370 (0.1539)F  —0.7201 (0.2037)*
birth was between 18 — 35 years (of whom 29.9% of them .
died). 17.0% of children are in urban areas of which T6% are < 18 months 05417 (0. 1586) 0.4226 (0.2407)
red). 11 ‘ 18-24 months —DDBTL (0.2135) 00771 (0.3082)
alive. 53.9% of the total birth are male of whom 36.4% are  _pg g (Ref)
dead. Among the second-born twin children, 35.9% are dead, ;2 [T 144%
while: only 26.2% are dead among first-harn ones. Regarding  Coglik 18360 18482

preceding child’s birth interval, 16.1% of the children were
first born of whom 64.4% are alive and 35.6% are dead;
11.4% were born before their older sibling reaches the age
of 18 months of whom 49% are dead. Regarding Lhe suceeed-
ing birth interval, 35.0% were last born or no child after of
whom 79.2% are alive and 20.8% are dead; and 12.9% were
having a succeeding hirth interval below 18 months of which
54.7% are dead.

The results of the log rank test given in Table 2 indicate
thal the covariates sex, among twins' birth order, preceding
birth interval and succeeding birth interval were found out
to be highly significant. However, residence and mother’s
age at birth were not significant at 5% level of significance.

According to Childs et al. [6], each child in a family has a
proper susceptibility to infection, independently of his fam-
ily members. In addition, inside the common global family
behavioral [actor, parents may adopt a slightly dillerent pre-
natal and neonatal attitude from one child to the next in the
family. Moreover, it is apparent that twins share a common
environmental effect. This is because they are usnally grow-
ing up in the same honschold environment and their parents

are more likely to adopt similar child care behavior, Thus,
it. is appropriate to assess and test for the presence of unob-
served heterogeneity at individual and pair (twin) levels us-
ing statistical models that can take into the presence of cor-
relation and unohserved heterogeneity into account. Hence,
in this study, we have used appropriate gamma [railty mod-
els sequentially, starting [rom univariate then shared and
finally correlated frailty models, The results are given in
Tables 3 5.

Although there are minor differences in the parameter
estimates of coefficients, the results of all the fitted survival
models given in Tables 3, 4 and 5 showed gender, twin’s
birth order, preceding birth interval, and succeeding birth
interval were found Lo be significantly associated with twin
infant mortality at 5% level of significance. Table 3 revealed
that incorporation of sampling weight chanpes the estimate
of the individual heterogencity parameter o from zero (Se-
08) to 1.44. The likelihood ratio test of the frailty parameter
(Hy : o* — 0 wvs Hy @ a® = 0) is rejected with pvalue



Table 4. Parameter estimates of SHARED gamma frailty
madel with and without sampling weight

Table 6. Comparison of weighted Univariate versus Shared
gamma frailty model

. Unweighted Weighted
Covariates Coef (SE) Coef (SE)
Ser
Male 0.5930 (0.1659)* 06757 (0.1648)*
Female (Ref)
Armong twtns’
birth order
Second born 0.4209 (0.1251)* 0.4792 (0.1225)*
First barn (Ref)
Preceding
birth interval
No preed sibling 0.4262 (0.2781) 0.6112 (0.2680)*
<18 months 0.8872 (0.3082)* 0.8408 (0.2086)*
18-24 months 04188 (0.3004) 0.2413 (0.3006)
=24 months (Ref)
Succeeding
hirth interval
Last born —0.5748 (0.2393)* —0.6816 (0.2323)*
< 18 months 0.6608 (0.2941)* 0.4215 (0.2874)
1& 24 months —0.0420 (0.3360) —0.0742 (0.3491)
=24 months (Rel)
a 2 33* 1.38%
T-loglik —17T94.9 —18205

Table 5. Parameter estimates of CORRELATED gamma
frailty model with and without sampling weight

Clovariates

Unweighted

Weighted

Coef (SE)

Coef (SE)

Ser
Male
Female (Ref)

0.5930 (0.1655)*

0.6757 (0.1635)*

Among tuins’
birth order
Second born
First born (Ref)

0.4209 (0.1247)*

0.4792 (0.1225)*

Preceding
birth interval
No precd sibling
<18 months
18-24 months
=24 months (Rel)

0.4262 (0.2773)
0.3972 (0.3078)*
0.4188 (0.2095)

0.6112 (0.2598)*
0.3408 (0.2868)*
0.2413 (0.2910)

Succeeding
birth interval
Last born
< 18 months
18-24 months
=24 months (Ref)
T

—0.5748 (0.2380)*
DLGEO8 (0.2936)*
—0.0432 (0.3357)

—0.6816 (0.2268)*
0.4215 (0.2753)
—0.0742 (0.3304)

o

2.33*
1

1.38%
1

I
I-loglik

~1794.915

— 182938

Univariate Shared
I Log-likelihood —1848,227 —1829.451
AIC AGRT_BRA2 3506.843
BIC 4538 261 4195.533

less than 0,001, This indicates that we cannot ignore the
presence of unobserved individual heterogeneity in the study
population (at the individual level). However, the presence
of heterogeneily at the individual level does not indicate the
presence of correlation within groups. As Wienke [25] stated,
the estimate of the variance of the frailty from univariate
data may have nothing to do with association. Univariate
frailty wvariance is interpreted as a measure of unohserved
heterogeneity in the study population.

According to the results in Table 4, there is a reduc-
tion in the frailty parameter together with its standard er-
ror under the weighted frailty model. The weighted shared
frailty model has lower standard error in the frailty variable,
which shows that it is indeed a more appropriate choice of
maodel. A similar result has been reported recently hy Wang
[23]. Moreover, the inclusion of survey weights in the shared
frailty model has resulted in the reduction of standard er-
rors of many of the parameters estimates in the model, Due
Lo this, some of the non-signilicant variables, such as *Pre-
ceding birth interval”, have become signilicant under the
weighted shared [railly model (Table 4).

The likelihood ratio test of the frailty parameter (Hp :
a? — 0 wvs Iy : a® = 0) s rejected with pvalue less than
0,001, This indicates that there is sipnificant heterogene-
ily belween pairs and the clustering ellecl was important
in modeling the hazard [unetion. Since both univariate and
shared gamma frailty models are the special cases of corre-
lated gamma frailty model, it is possible to test hypotheses
about the appropriateness of the models and compare which
maodel fits the data better. Usnally correlated gamma frailty
model is fitted to assess the genetic effect. To this end, we
need the zygosity information that would enable us to com-
pare the correlation between M7 and DZ twins. However,
here the fit s used to test hypotheses about the appropri-
ateness of the shared frailty model,

As shown in Table 5, the estimated frailty correlation pa-
rameter is 1. As a result, the estimated covariate coeflicients
are almost equal to the estimated covariate coeflicients of
shared gamma fit given in Table 4. In addition, the likeli-
howod ratio test statistie for the hypothesis (Hg : p — 1 vs
Hy i p < 1) is insignificant. Thus, we have no evidence to re-
jeet that the model is a shared [railly model. Furthermore,
Table 6 showed that the shared gamma [railly model has
the highest log-likelihood and minimum AIC and BIC val-
ues, indicating that this model fits the data better than the
univariate gamma model.



The hazard ratio estimates of the shared model given in
Table 4 indicated that the estimaled hazard ratio of a male
twin infant {i.e. an infant of & twin birth) is 1,965 (95% CL:
1.418 2.728) unplying that the risk of dying lor a male twin
infant is 96.5% higher than a female iwin infant, controlling
for the other covariates in the model.

The estimated hazard ratio of a second-horn twin infant is
1.614 (95% CI: 1.271-2.055) implying that the risk of dying
for a second-born twin infant is 61.4% more likely than a
first-born twin infant (reference group), controlling for the
other covariates in the model.

The estimated hazard ratio of an infant of twin who born
before the older sibling reaches the age of 18 months is 2.318
(95% CL 1.112 4.869). Thus, the hazard rate of an infant
twin born before the older sibling reaches the age of 18
months s 2,318 times higher than an infant of twin born
when the older sibling’s age exceeds 24 months (reference
group), conlrolling for other covariales in the model.

The estimated hazard ratio of an infant twin who has
no suceeeding sibling is 0.506 (95% CI: 0.316-0.807). This
implies that an infant of twin who has no succeeding sibling
had a 49.5% lower hazard (risk) of death than an infant
of twin who has a younger sibling born after 24 months,
controlling for the other covariates in the model.

4. DISCUSSIONS

Since we aim to investigate the survival of twin infants
survey data, it is expected to employ a model that can take
the presence of correlation, unobserved helerogeneily and
survey weights into account. Thus, we selected the weighted
gamma [railty models as the most appropriate model to U
Lo this type of data. As shown in Table 4, the variance
of the random ellect estimated [rom the weighted shared
gamma [railly model is significant at 5% level ol signifi-
cance. This indicates that there is significant heterogeneity
between pairs and the correlation within pairs cannot be ig-
nored and clustering effect was important in modeling the
hazard function.

This study showed that the risk of dying for a male twin
infant is higher than for a female child. Tn agreement with
this result, a study on child mortality showed that the risk
of dying for a male child is higher than a female child [3].
This study also revealed the significant risk of a first horn
infant of twin birth. Similar to this result, a child mortality
study showed that first-horn children experience low sur-
vival compared to those children who have higher birth or-
der |1]. However, a study in Burkina Faso showed that the
variable is statistically insignificant |2]. Most importantly we
have found the signifieance of among twins’ birth order in
infant mortality, The risk of dying for a second-born infant
of iwin birth is statistically higher than a frsi-born infant
of twin birth.

Unlike a study that showed children residing in urban

areas have a better chance of survival than those residing

in rural areas [1], this study found out that the place of
residence is not significant, In addition, the result of this
stndy disagreed with studics that showed children born from
women at youngest and oldest age are subject to high risk
of death [16, 19], this study found out the variable is not
significantly associated with survival of infant twins.

The current study also showed that infants of twin birth
who were born before the older sibling reaches the age of 18
months experience low survival compared to those infants of
twin birth who have more than 24 months spacing. Several
studies condncted on determinants of child mortality found
similar results [2, 14, 16].

5. CONCLUSIONS

Integrating the dependence from twin birth with the ad-
vanced statistical weighted gamma frailty models, the re-
sults of this study showed that the main significant factors
associated with twin infant mortality in Ethiopia are gender,
twin’s birth order, preceding birth interval, and suceeed-
ing birth interval, The significant effeet of the birth spac-
ing of the previous and succeeding sibling on the survival
chance of infants of twin birth indicates that efforts have
to be exerted to edneate the public about family planning
and birth spacing, mainly in resource-poor countries like
Ethiopia. Further, male twins have a lower chance of sur-
vival compared Lo [emale twin children. Those twins who
were born before their sibling reaches 18 months experience
low survival compared to those twins who have more than
24 months spacing. The risk of infant mortality for a second-
born twin infant is higher than a first-born twin infant. This
study also showed the presence of significant heterogeneity
between pairs. Overall, the different modeling approaches in
this study revealed the signilicance of including a random el-
[eet in the model mainly Lo take into account the correlation
of event times among twins, The inclusion of survey weights
in the shared frailty model has improved the precision of
model parameter estimates.
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