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There is no literature on outlier-robust parametric
mixed-effects quantile regression models for continu-
ous proportion data as an alternative to systematically
identifying and eliminating outliers. To fill this gap, we
formulate a robust method by extending the recently
proposed fixed-effects quantile regression model based
on the heavy-tailed Johnson-t distribution for continu-
ous proportion data to the mixed-effects modeling con-
text, using a Bayesian approach. Our proposed method
is motivated by and used to model the extreme quantiles
of the vitality of cushion plants to provide insights into
the ecology of the system in which the plants are dom-
inant. We conducted a simulation study to assess the
new method’s performance and robustness to outliers.
We show that the new model has good accuracy and con-
fidence interval coverage properties and is remarkably
robust to outliers. In contrast, our study demonstrates
that the current approach in the literature for mod-
eling hierarchically structured bounded data’s quan-
tiles is susceptible to outliers, especially when modeling
the extreme quantiles. We conclude that the proposed
model is an appropriate robust alternative to the cur-
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rent approach for modeling the quantiles of correlated
continuous proportions when outliers are present in the
data.

K E Y W O R D S

Bayesian, continuous proportions, cushion plants, mixed-effects,
outliers, quantile regression, sub-Antarctic

1 MODELING CONTINUOUS PROPORTIONS

1.1 Need for robust quantile regression models

Traditional regression approaches focus on modeling the relationship between the average
response and a set of covariates. As an alternative to modeling the mean response, regression
curves can be fitted to selected parts of the response variable’s distribution through quantile
regression (Cade & Noon, 2003; Koenker & Bassett Jr, 1978), thereby modeling the relationship
between the outcome variable and covariates for any portion (e.g., extreme quantiles) of the prob-
ability distribution. For example, Wei, Kehm, Goldberg, and Terry (2019)’s study showed that
certain risk factors have a limited impact on adult BMI’s lower quantiles but are significantly
associated with the mean BMI. Thus, quantile regression allows quantifying the strength of the
association between the response and the set of covariates that may go unnoticed when only
the mean response is considered, as conventional techniques do. Quantile regression can be per-
formed using either parametric or nonparametric methods (Min & Kim, 2004; Yirga, Melesse,
Mwambi, & Ayele, 2021).

This paper focuses on modeling the quantiles of correlated data bound to the unit interval
using random effects. The proposed model is applied to an exemplar dataset from an ecological
study. Ideally, one would consider using nonparametric quantile regression methods that do not
make any distributional assumptions about the response variable or random effects. However,
no nonparametric methods for implementing random-effects models for bounded outcomes are
available in the literature. We choose a fully parametric Bayesian approach for the current paper
by implementing the models inJAGS (Plummer, 2003). Unlike nonparametric quantile regression
models, a significant disadvantage of parametric quantile regression models is that the inference
about their parameters can be sensitive to outliers. Our application dataset contains significant
outliers; therefore, we particularly focus on models that are robust to outliers. As software, we
choose JAGS because it is convenient, user-friendly, relatively fast, and can handle complex mod-
els with many parameters (such as random-effects models). Finally, the choice of the Bayesian
approach is motivated by the fact that Bayesian inference does not rely on asymptotic theory as
frequentist methods generally do, and therefore Bayesian confidence intervals often show better
coverage than their frequentist counterparts.

1.2 Models for mean and quantiles in the literature

Bounded responses can be modeled using beta regression when the mean response
is of interest (Ferrari & Cribari-Neto, 2004) and the Kumaraswamy, unit-Weibull, and
unit-Birnbaum–Saunders models (Mazucheli, Leiva, Alves, & Menezes, 2021; Mazucheli,
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446 BURGER et al.

Menezes, Fernandes, de Oliveira, & Ghitany, 2020; Mitnik & Baek, 2013) when the responses’
quantiles are of interest.

Ecological and clinical research commonly encounters extreme or unusual observations in
the data, that is, “outliers” (Benhadi-Marín, 2018). An outlier is a data point that differs consider-
ably from other data points. Such an outlier is called influential if the important features of typical
analyses would be altered if they were to be retained or deleted from the dataset (Begashaw &
Yohannes, 2020). Several different mechanisms can result in outliers in the data, such as sam-
pling errors (Begashaw & Yohannes, 2020). In contrast, natural outliers that are not due to a
sampling error may also emerge. There has been considerable discussion about handling outliers
in a variety of research fields (Benhadi-Marín, 2018; Kwak & Kim, 2017; Leys, Klein, Dominicy,
& Ley, 2018). One commonly implemented technique is the systematic identification and elim-
ination of outliers. However, deleting outliers may fail to compensate for the uncertainty in the
exclusion process and, consequently, may result in underestimated SEs of estimates (Lange, Little,
& Taylor, 1989). An alternative to excluding outliers from the data is to employ robust regression
techniques that downweigh the influence of outliers on statistical inference.

In the context of parametric regression modeling, one way to achieve robustness to outliers is
by assuming heavy-tailed distributions for response variables. For example, replacing the conven-
tional normal distribution for the response with the t-distribution yields inference about the mean
outcome robust to outliers (Lange et al., 1989). Alternatively, the modeling of the mean response
can be substituted by that of the median, which is considered a more robust measure of central
tendency when the data exhibit skewness and contain outliers (Burger & Lesaffre, 2021). How-
ever, in parametric quantile regression (Burger & Lesaffre, 2021; Cancho, Bazán, & Dey, 2020), the
estimates of the regression coefficients, even for the median, can be prone to outliers if the under-
lying distribution does not accommodate skewness or heavy tails. Therefore, in the presence of
outliers, heavy-tailed distributions can be considered for robust parametric quantile regression
modeling, similar to robustly regressing the mean.

For the robust modeling of the average of continuous proportion data, the rectangular beta and
flexible beta regression models were proposed by Bayes, Bazán, and García (2012) and Migliorati,
di Brisco, & Ongaro, 2018, respectively, to replace the conventional beta model (when outliers are
present). di Brisco and Migliorati (2020), for example, modeled EQ-VAS scores, a patient-reported
outcome ranging from 0% to 100%, in a Parkinson’s disease (PD) longitudinal study. Since the PD
dataset of di Brisco and Migliorati (2020) contains outliers (e.g., due to a small group of outliers
in EQ-VAS scores near 0), they used the mixed-effects augmented flexible beta model to model
the mean EQ-VAS scores over time robustly.

For robust modeling of the quantiles of bounded data, the recently proposed heavy-tailed
unit-interval distributions, namely the power normal-logistic distribution (Cancho et al., 2020)
and the Johnson-t distribution (Lemonte & Moreno-Arenas, 2020), can serve as alternatives to
the Kumaraswamy distribution. The robust logistic quantile regression model of Galarza, Zhang,
and Lachos (2020) can also model the quantiles of bounded data in the presence of outliers.

1.3 Objectives and outline

To the best of our knowledge, the Kumaraswamy mixed model of Bayes, Bazán, and de Cas-
tro (2017) is the only parametric mixed-effects quantile regression approach available in the
literature for bounded data. The Kumaraswamy distribution is available in R-INLA (Lindgren
& Rue, 2015) and can be implemented as a random-effects model; Flores, Prates, Bazán, and
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BURGER et al. 447

Bolfarine (2021) applied it in a spatial modeling context. However, the Kumaraswamy distribution
consists of two parameters and lacks flexibility regarding its tails (mainly, it cannot accommodate
heavy tails). Hence, estimates of the regression coefficients from the Kumaraswamy model may
be prone to outliers in the data. We note that there is no literature on parametric mixed-effects
quantile regression models for bounded data that can accommodate outliers.

This paper proposes a parametric mixed-effects quantile regression model for bounded out-
comes that is robust to outliers in the data. We extend the recently proposed fixed-effects quantile
regression model based on the Johnson-t distribution of Lemonte and Moreno-Arenas (2020)
for bounded (continuous proportion) outcomes to the mixed-effects modeling context. Hence,
we provide a robust quantile regression method for hierarchically structured data using a
mixed-effects approach. We compare the mixed-effects Johnson-t and Kumaraswamy models
to assess the suitability of our model. That is, we contrast the current model, namely, the
Kumaraswamy model, for hierarchically structured bounded data, with our proposed robust
method, namely, the Johnson-t model. We also consider robust and nonrobust models for the
mean outcome, respectively, based on the conventional and rectangular beta distributions. We
limit our study to the rectangular beta model for robustly modeling the mean (alternatives include
the model of Migliorati et al., 2018 (mentioned earlier)).

The paper is organized as follows: Section 2 describes the ecological dataset that motivates
our proposed methodology. Section 3 introduces the nonrobust and robust Bayesian mixed-effects
models for bounded outcome data, namely the beta, rectangular beta, Kumaraswamy, and
Johnson-t models. Section 4 applies the mixed-effects models to the ecological dataset. Section 5
presents simulation studies to investigate the robustness of the Kumaraswamy and Johnson-t
models to outliers (data contamination), as well as assess the performance of the Johnson-t model.
Finally, Section 6 presents a discussion of the results and findings of the paper.

2 ECOLOGY STUDY

2.1 Cushion plant vitality

Raath-Krüger et al. (2022) compiled a long-term dataset of repeated measures to examine the
impact of the grass species Agrostis magellanica on the cushion-forming plant, Azorella selago,
using sub-Antarctic Marion Island as a model system. These two species are the dominant vas-
cular plants in the sub-Antarctic, and A. magellanica is the most common vascular plant species
growing on A. selago (Huntley, 1972). Because of its cushion growth form, A. selago can modify
the local microenvironment (e.g., ameliorate temperature conditions (McGeoch, le Roux, Hugo,
& Nyakatya, 2008; Nyakatya & McGeoch, 2008)) and therefore has the potential to positively
impact species associated with it, particularly in cold, wind-exposed areas where the cushion
plant is commonly found. Specifically, A. selago is known to have a strong positive impact on
the cover, reproductive output, and abundance of A. magellanica, compared to surrounding areas
where A. selago is absent (Raath-Krüger, Schöb, McGeoch, & le Roux, 2021). However, little is
known about the reciprocal impact of A. magellanica on A. selago. Therefore, in their study,
Raath-Krüger et al. (2022) documented the long-term outcome of the Azorella-Agrostis interac-
tion by assessing changes in A. selago vitality (i.e., dead stem cover) in relation to A. magellanica
cover over a 13-year time period. In the present study, we analyze a subset of the data compiled
by Raath-Krüger et al. (2022), specifically examining the effect of A. magellanica cover, the cover
of other vascular plants and mosses, altitude (high vs. mid), and aspect (west vs. east) on A. selago

 14679574, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12293 by South A

frican M
edical R

esearch, W
iley O

nline L
ibrary on [17/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



448 BURGER et al.

vitality between 2003 (initial year of the survey) and 2016 (final year of the survey). We consider
A. selago dead stem cover as a proxy for cushion plant vitality (see le Roux, McGeoch, Nyakatya,
& Chown, 2005).

2.2 Objectives

Our proposed statistical method is motivated by modeling the extreme quantiles of the vitality
(i.e., dead stem cover) of A. selago, which may provide several key insights into the ecology of the
system in which A. selago cushion plants are dominant. The ecological research questions we aim
to address are as follows:

1. Given that A. selago vitality could be negatively affected by the cover of A. magellanica
and other vascular and nonvascular plant species (see le Roux et al., 2005; Owen, 1995;
Raath-Krüger et al., 2022), we ask: Is the limit to A. selago vitality constrained by the cover of
vascular and nonvascular plant species growing on A. selago? We model the 0.95th quantile
of dead stem cover to address this research question. Here, the 0.95th quantile quantifies the
upper extreme quantile of cushion plant vitality, representing the unhealthiest cushion plants.

2. Second, given that (i) the western and eastern aspects of Marion island are abiotically differ-
ent (see, e.g., Goddard, Craig, Schoombie, & le Roux, 2022), resulting in plant populations
across the two aspects experiencing different abiotic stressors and (ii) plant species on Marion
Island are exposed to increasingly stressful abiotic conditions with increasing altitude (see le
Roux, 2008), we ask: Is the limit to A. selago vitality imposed by altitude and aspect? Similar
to the above, we model the 0.95th quantile of dead stem cover to address this research question.

3. Given that environmental conditions may have different effects on the upper or lower lim-
its of an organism’s health (broadly in line with, for example, Wei et al., 2019), we ask: Does
the effect of vascular and nonvascular plant species, altitude, and aspect on A. selago vary
across plants of different vitality? As a result, we model a broad range of quantiles of dead stem
cover, particularly the 0.1th, 0.25th, 0.5th, 0.75th, and 0.95th quantiles, to address this research
question. Here, the 0.1th quantile quantifies the vitality of the cushion plants’ lower extreme
quantile, representing the healthiest cushion plants.

We also model the mean dead stem cover to compare the median and mean fits for complete-
ness sake. Since bounded data tends to be skewed, the median may be a better measure of central
tendency than the mean.

2.3 Model covariates

We test the long-term constraints on cushion plant vitality by modeling the mean and the quan-
tiles of the final A. selago dead stem cover in response to (i) initial A. selago size, (ii) initial A.
magellanica cover on A. selago, (iii) initial combined cover of other vascular plants and mosses
on A. selago, (iv) altitude, and (v) aspect. Note that the dead stem cover on A. selago denotes the
proportion of black and grey parts on the cushion plant and is therefore considered a continu-
ous proportion outcome. We also include the initial A. selago dead stem cover in the model as
a predictor variable because we expect A. selago individuals with greater dead stem cover in the
initial year of the survey to have increasingly more dead stem cover in the final year. In order
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BURGER et al. 449

to account for the data’s spatial structure, we include a random effect for “plot” in the model.
The plots represent specific sampling sites situated on the eastern and western aspects of Mar-
ion Island at mid and high altitudes, from which A. selago individuals were surveyed. The data
from the low-altitude sites of Raath-Krüger et al. (2022) have been excluded since the low and
mid altitudes sites exhibited similar patterns.

We specify the covariates for modeling the continuous proportion of dead stem cover on
Azorella individual j of plot i measured in 2016 as follows:

• DSij, Azoij, Agrij, and COij denote the covariates corresponding to Azorella individual j of plot i
taken in 2003 (i.e., initial measurements): DSij is the Azorella dead stem cover (%), Azoij the
Azorella size (cm2; log-transformed), Agrij the Agrostis cover on Azorella (%), and COij is the
combined cover of other vascular plants and mosses on Azorella (%).

• The indicator variables Midi and Westi are assigned as follows: Midi = 1 if plot i is situated at a
mid-altitude, and Midi = 0 otherwise (i.e., high altitudes); Westi = 1 if plot i is situated on the
western side of the island, and Westi = 0 otherwise (i.e., eastern side).

The linear predictor corresponding to the final dead stem cover on Azorella individual j of
plot i is written as:

𝛽0 + 𝛽1DSij + 𝛽2Azoij + 𝛽3Agrij + 𝛽4COij + 𝛽5Midi + 𝛽6Westi + ui, (1)

where 𝛽0, 𝛽1, … , 𝛽6 are the corresponding regression coefficients (fixed effects), and ui is the
random intercept of plot i.

2.4 The dataset and outliers

In their original analysis, Raath-Krüger et al. (2022) addressed one of their particular research
questions by modeling the mean final dead stem cover in response to the covariates above. The
data analysis considered the fit of a beta regression model to the final dead stem cover based on
the logit link function (i.e., modeling the mean outcome) using the R package glmmTMB (Brooks
et al., 2017). Raath-Krüger et al. (2022) excluded A. selago individuals that died (i.e., data points
considered as significant outliers due to catastrophic loss of biomass) over the 13-year observation
period from their analysis. In contrast, in the present paper, we opt for drawing inferences about
the quantiles of dead stem cover for this dataset while accommodating and safeguarding against
outliers by employing robust techniques without excluding specific data points (outliers) from
the analysis.

Figure 1 shows the final versus initial A. selago dead stem cover by plot, altitude, and aspect,
distinguishing between the data included and excluded from the original analysis. For certain
plots, it is evident that outliers (relative to the relationship between the final vs. initial dead
stem cover) are primarily associated with the previously excluded data. Aside from the pre-
viously excluded data due to catastrophic loss, we note that dead stem cover on a few plants
(included in the previous analysis of Raath-Krüger et al., 2022) changed considerably during
the monitoring period, thus also resulting in data outliers. Figure S1a,b in Section A of Data S1
gives a photograph example of the dead stem cover that remained similar on the vast majority
of individual plants over the 13-year monitoring period, not resulting in an outlier. In contrast,
Figures S1c,d is an example of an individual plant that yielded an outlier; in this case, the
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Plot 7: High/East Plot 8: Mid/East

Plot 4: Mid/West Plot 5: High/East Plot 6: Mid/East

Plot 1: High/West Plot 2: Mid/West Plot 3: High/West
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F I G U R E 1 Cushion plant dataset: final versus initial Azorella selago dead stem cover by plot, altitude, and
aspect. aPlots are situated either at a mid or high altitude on the western or eastern side of the island. bThe red
triangles represent the data originally excluded from Raath-Krüger et al. (2022)’s analysis; in contrast, the blue
dots represent the data originally included in the study of Raath-Krüger et al. (2022)

dead stem cover on the individual plant increased from about 1% to 50% during the monitoring
period.

The dataset we consider consists of eight plots and 308 cushion plants for the current publi-
cation, including the previously excluded data points of the original analysis. Hence, we model
the outliers in the current paper instead of excluding them.

2.5 Descriptive analysis

Summary statistics of the final dead stem cover are presented in Table 1. The quantiles of the final
dead stem cover of the island’s western side are higher than those of the eastern side, and the
quantiles at mid-altitudes are higher than those at high altitudes. The preliminary investigation
of the data, particularly the 0.75th and 0.95th quantiles, suggests that the limit to the cushion
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BURGER et al. 451

T A B L E 1 Cushion plant dataset: descriptive statistics of final Azorella selago dead stem cover by
variable.

Quantile

Variable a Mean SD 10% 25% 50% 75% 95%

Altitude Mid 28.8 13.44 13.8 19.2 27.8 36.0 53.5

High 21.3 16.34 5.7 10.1 18.3 28.1 49.9

Aspect West 27.8 15.07 10.2 18.7 26.5 34.7 54.5

East 22.6 15.06 5.6 12.2 19.4 30.7 51.7

Abbreviations: SD, standard deviation.
aA. selago individuals were surveyed at sampling sites situated on the eastern and western aspects of Marion Island at mid
and high altitudes.

plants’ vitality may be imposed by altitude and aspect. However, a regression analysis considering
the covariates, as mentioned earlier, needs to be performed to make formal conclusions about the
constraints to the vitality of cushion plants in this system.

3 MIXED-EFFECTS MODELS FOR CONTINUOUS
PROPORTIONS

This section formulates the robust mixed-effects regression model for the quantiles of bounded
responses, namely the Johnson-t model and its nonrobust competitor, the Kumaraswamy model
of Bayes et al. (2017). In addition, we consider the rectangular beta model of Bayes et al. (2012) and
its nonrobust competitor, namely the conventional beta model of Ferrari and Cribari-Neto (2004).
The latter two models fit the mean as a function of the covariates, and we are interested in
comparing the results of these models with the results of the two quantile regression models.

For the four models under consideration in this paper (namely beta, rectangular beta,
Kumaraswamy, and Johnson-t; see Sections 3.1–3.4), we use the logit link function to model the
mean and quantiles as a function of covariates.

Suppose that yij is the bounded outcome for cluster i = 1, … , I and observation j = 1, … , Ji.
Let 𝜷 and ui denote fixed and cluster-specific random effects vectors, and xij and zij the covariate
vectors, respectively. Assume the ui follow a multivariate normal distribution with mean 0 and
d-dimensional unstructured covariance matrix 𝚺, such that ui |𝚺 ∼ Nd (0,𝚺).

Details on the Bayesian specification of the candidate models are presented in Section 3.5.

3.1 Beta regression model

The probability density function of the reparameterized beta regression model of Ferrari and
Cribari-Neto (2004) for a given bounded outcome 0 < yij < 1 is:

f
(

yij |𝜷,ui, 𝜌
)
= Γ (𝜌)
Γ
(
𝜅ij𝜌

)
Γ
(
𝜌
(
1 − 𝜅ij

))y𝜅ij𝜌−1
ij

(
1 − yij

)𝜌(1−𝜅ij)−1
,

where 𝜅ij =
exp

(

x′ij𝜷+z′ijui

)

1+exp
(

x′ij𝜷+z′ijui

) is the conditional mean of yij given the ith random effect under the beta

model, and 𝜌 > 0 is the precision parameter of the beta distribution.
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452 BURGER et al.

It is noted that the beta distribution does not accommodate heavy-tailed data (Bayes
et al., 2012), and therefore, the estimation of the mean parameter is prone to data outliers. More-
over, the beta distribution’s quantile function is not available in closed form, making the beta
distribution not appropriate for parametric quantile regression modeling.

3.2 Rectangular beta regression model

The probability density function of the rectangular beta regression model of Bayes et al. (2012)
for a given bounded outcome 0 < yij < 1 is:

f
(

yij |𝜷,ui, 𝜌, 𝜙
)
= 𝜙

(
1 − |

|2𝜅ij − 1||
)
+
[
1 − 𝜙

(
1 − |

|2𝜅ij − 1||
)]

fb

×

(

yij

|
|
|
|
|

𝜅ij − 0.5𝜙
(
1 − |

|2𝜅ij − 1||
)

1 − 𝜙
(
1 − |

|2𝜅ij − 1||
) , 𝜌

)

,

where 𝜅ij =
exp

(

x′ij𝜷+z′ijui

)

1+exp
(

x′ij𝜷+z′ijui

) is the conditional mean of yij given the ith random effect under the

rectangular beta model, fb (x |a1, a2 ) =
Γ(a2)

Γ(a1a2)Γ(a2(1−a1))x
a1a2−1(1 − x)a2(1−a1)−1, and 𝜌 > 0 and 0 ≤

𝜙 ≤ 1 are, respectively, the precision and shape parameters of the rectangular beta distribution.
The parameter 𝜙 governs the tail of the rectangular beta distribution: larger values of 𝜙 yield

heavier tails, making the distribution more robust to outliers than the conventional beta distribu-
tion (Bayes et al., 2012). The probability density function of the rectangular beta model reduces
to that of the conventional beta model when 𝜙 = 0.

Even though the rectangular beta model accommodates heavy-tailed data and gross outliers,
its quantile function cannot be expressed analytically. Therefore, this model is not suitable for
quantile regression modeling.

3.3 Kumaraswamy regression model

The probability density function of the Kumaraswamy regression model of Bayes et al. (2017) for
a given bounded outcome 0 < yij < 1 is:

f
(

yij |𝜷,ui, 𝜌
)
= −

log (1 − q) 𝜌
log (1 − e−𝜌) log

(
𝜅ij
)y

− 𝜌

log(𝜅ij)−1

ij

(

1 − y
− 𝜌

log(𝜅ij)
ij

) log(1−q)
log(1−e−𝜌) −1

,

where 𝜅ij =
exp

(

x′ij𝜷+z′ijui

)

1+exp
(

x′ij𝜷+z′ijui

) is the qth conditional quantile of yij given the ith random effect under

the Kumaraswamy model, and 𝜌 > 0 is the precision parameter of the Kumaraswamy distribution.
The Kumaraswamy model is suitable for quantile regression because the quantile function of

the Kumaraswamy distribution can be expressed analytically. However, similar to the beta distri-
bution, the Kumaraswamy distribution has only a location and precision parameter but no shape
parameter, as the rectangular beta distribution does. Hence, the Kumaraswamy model may be
prone to outliers in the data.
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BURGER et al. 453

3.4 Johnson-t regression model

The probability density function of the Johnson-t regression model of Lemonte and
Moreno-Arenas (2020) for a given bounded outcome 0 < yij < 1 is:

f
(

yij |𝜷,ui, 𝜌, 𝜈
)
= 𝜌𝜈

1
2
𝜈

yij
(
1 − yij

)

Γ
(

1
2
+ 1

2
𝜈

)

Γ
(

1
2

)

Γ
(

1
2
𝜈

)

×

[

𝜈 +
{

t𝜈 (q) + 𝜌
[

log
( yij

1 − yij

)

− log
(

𝜅ij

1 − 𝜅ij

)]}2
]− 𝜈+1

2

,

where 𝜅ij =
exp

(

x′ij𝜷+z′ijui

)

1+exp
(

x′ij𝜷+z′ijui

) is the qth conditional quantile of yij given the ith random effect under

the Johnson-t model, 𝜌 > 0 and 𝜈 > 0 are respectively the dispersion parameter and degrees
of freedom of the Johnson-t distribution, and t𝜈 (q) is the qth quantile of the conventional
t-distribution with degrees of freedom 𝜈.

Figure S2 in Section A of Data S1 shows examples of the Johnson-t distribution’s proba-
bility density function for various values of q and 𝜈. The parameter 𝜈 governs the tail of the
Johnson-t distribution: smaller values of 𝜈 yield heavier tails (Lemonte & Moreno-Arenas, 2020).
The Johnson-t distribution reduces to the Johnson-normal distribution (Johnson, 1949) for infi-
nite degrees of freedom (𝜈 → ∞). Hence, the Johnson-t distribution accommodates heavy-tailed
data (i.e., outliers).

The Johnson-t distribution accommodates heavy-tailed data (i.e., outliers) and is suitable for
quantile regression given its closed-form quantile function.

3.5 Bayesian specification

The prior distributions are specified in such a way as to assure vagueness about prior belief on
the model parameters (i.e., weakly informative priors).

A normal prior distribution, namely Normal (0, 10,000), is specified for each component of
the vector of fixed effects (i.e., 𝜷) for each regression model.

The precision parameter of the beta, rectangular beta, and Kumaraswamy models (i.e., 𝜌) and
the dispersion parameter of the Johnson-t model (i.e., 𝜌) are assigned a gamma prior distribution,
namely Gamma (0.0001, 0.0001).

The exponential distribution is often used as a prior distribution for the degrees of freedom
of the t-distribution. However, the exponential distribution has a relatively light tail, and there-
fore, the degrees of freedom’s posterior distribution may be unduly influenced by the exponential
prior distribution, in some cases, yielding confidence interval coverage very far below the nominal
value (Simpson, Rue, Riebler, Martins, & Sørbye, 2017). Therefore, as an alternative to the widely
used exponential prior distribution, the Johnson-t distribution’s degrees of freedom (i.e., 𝜈) are
assigned the hierarchical prior distribution of Juárez and Steel (2010), which is more heavy-tailed
relative to the exponential and gamma distributions. In particular, the hierarchical prior distri-
bution of 𝜈 is expressed as a mixture of an exponential distribution with rate parameter 1 for 𝜖,
namely Exp (1), and a gamma distribution with shape parameter 2 and rate parameter 𝜖, namely
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454 BURGER et al.

Gamma (2, 𝜖). From the law of total probability (integrating out 𝜖), the resulting probability
density function of 𝜈 is written as P (𝜈) = 2𝜈

(1+𝜈)3
.

The shape parameter of the rectangular beta distribution (i.e., 𝜙) is assigned a uniform prior
distribution, namely Uniform (0, 1).

We specify the matrix-generalized half-t (MGH-t) prior distribution of Huang and
Wand (2013) for the variance-covariance matrix (i.e., 𝚺) for each model as a more appropriate
alternative to the conventional inverse Wishart distribution. The MGH-t prior distribution of 𝚺
is expressed as a mixture representation of Gamma (0.5, 0.25) for the diagonal entries of diago-
nal matrix𝛀 = diag (𝜔1, … , 𝜔z, … , 𝜔d), and a Wishart distribution with inverse scale matrix 4𝛀
and degrees of freedom d + 1, namely Wishart (4𝛀, d + 1) (Burger, Schall, Ferreira, & Chen, 2020).
This mixture representation results in the specification of the half-t prior distribution with loca-
tion parameter 0, scale parameter 4, and two degrees of freedom, namely t (0, 4, 2)T (0,∞), for
the SD terms in 𝚺, and the uniform prior distribution, namely Uniform (−1, 1), for the correla-
tion terms in 𝚺. From the law of total probability, the set of nuisance parameters𝛀 integrated out
results in the MGH-t prior distribution, namely:

P (𝚺) ∝ |𝚺|−d−1
d∏

z=1

[

2
(
𝚺−1)

zz + 0.25
]− d+2

2
,

where 𝚺 > 0, and
(
𝚺−1)

zz is the zth diagonal entry of 𝚺−1.
The MCMC Gibbs sampling algorithm can draw samples from the joint posterior distribution

of the model parameters obtained by forming the product of all likelihoods and prior distributions
(Gelfand & Smith, 1990). Software such as JAGS (Plummer, 2003) can be employed to carry out
the Gibbs sampling procedure.

For each model, 150,000 samples were simulated from the joint posterior distribution for
15 parallel chains. Among those 150,000 samples (per chain), the initial 10,000 samples were
discarded (burn-in). The convergence of posterior samples was checked using trace plots and
Brooks-Gelman-Rubin statistics (Brooks & Gelman, 1998). We used a thinning factor of 25 to
reduce autocorrelation among the samples. Ultimately, we obtained 84,000 posterior samples in
total for each model parameter (hence, K = 84,000).

We reported the posterior distributions’ mean and highest posterior density (HPD) intervals
as point and interval estimates of the model parameters. The 95% HPD intervals are constructed
by finding the shortest interval covering 95% of posterior samples and thus are more informative
than the classic symmetric interval.

4 DATA ANALYSIS

This section examines the fit of the four regression models to the cushion plant data. Compar-
ing the fit of the Kumaraswamy model with that of the Johnson-t model illustrates the impact
of outliers on the two model fits. Furthermore, a comparison of the parameter estimates of the
beta and rectangular beta distribution, on the one hand, and the Kumaraswamy and Johnson-t
distribution, on the other hand, illustrates the difference in modeling the mean compared to the
quantiles of the bounded data. We then discriminate between models formally, assess model ade-
quacy, and address the ecological research questions based on the results from the preferred mean
and quantile models.
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BURGER et al. 455

4.1 Model implementation

We report regression fits of the mean and the q ∈ {0.1, 0.25, 0.5, 0.75, 0.95} quantiles of dead stem
cover to answer the ecological research questions outlined in Section 2. The extreme quantiles of
the cushion plant vitality quantified by the 0.1th and 0.95th quantiles of dead stem cover are of
primary interest.

We fitted the mixed-effects beta, rectangular beta, Kumaraswamy, and Johnson-t regression
models in Section 3 to the proportion of dead stem cover in 2016 (see Section 2). We are primarily
interested in evaluating the robustness of the Johnson-t and Kumaraswamy models to the outliers
present in our dataset.

As per Equation (1), the terms in the linear predictor x′ij𝜷 + z′ijui (Section 3) are defined as
follows: xij =

(
1,DSij,Azoij,Agrij,COij,Midi,Westi

)′ and zij = 1 are the covariate vectors, and 𝜷 =
(𝛽0, 𝛽1, … , 𝛽6)′ and ui = ui are respectively the vectors of fixed and random effects. Furthermore,
𝚺 is the unstructured covariance matrix of ui. Since the model contains a single random effect,
its variance component is expressed in scalar rather than vector form (i.e., 𝚺 = 𝜎2).

The models were fitted using JAGS (Plummer, 2003) via the R package jagsUI (Kell-
ner, 2021). We ran our models on a desktop computer with a 3.00 GHz Intel® CoreTM i9-10980XE
processor and 64 GB installed memory (RAM).

4.2 Regression fits and model comparison

This section presents the mean and quantile regression fits derived from the candidate regression
models. In addition, we calculated the deviance information criterion (DIC) statistic marginal-
ized over the models’ random effects to compare the candidate models, that is, the marginal DIC
(mDIC) of Quintero and Lesaffre (2018). The mDIC statistic is a more appropriate model compari-
son tool than the conventional DIC statistic of Spiegelhalter, Best, Carlin, and van der Linde (2002)
(i.e., conditional on the random effects) when population-average inferences are of interest,
which is the case for our application. Details on the calculation of the mDIC are presented in
Appendix A.

We first compare the fits of the nonrobust and robust quantile models (i.e., the Kumaraswamy
and Johnson-t models). We do this by studying the posterior estimates (PEs) and 95% highest pos-
terior density (HPD) intervals for the regression coefficients. The quantile regression coefficients’
PEs and 95% HPD intervals calculated from the Kumaraswamy and Johnson-t models are pre-
sented in Figures 2 and S3 in Section A of Data S1. In addition, the complete set of quantile model
parameters, including the model comparison statistic, are presented in Table S1 in Section B of
Data S1. From Figures 2 and S3, and Table S1, we observe the following:

• The mDIC strongly favors the robust quantile model over the nonrobust model.
• The degrees of freedom estimate under the Johnson-t model confirms our finding that the data

are heavy-tailed (𝜈̂ ≈ 3), implying that the robust model better fits the data than the nonrobust
model.

• The regression coefficients’ 95% HPD intervals under the nonrobust quantile model are gen-
erally wider than those under the robust model. Therefore, the robust model produces shorter
95% HPD intervals for the regression coefficients.
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456 BURGER et al.
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F I G U R E 2 Cushion plant dataset: quantile regression coefficients’ PEs and 95% HPD intervals computed
from the Kumaraswamy and Johnson-t models by parameter, model, and quantile. HPD, highest posterior
density. PE, posterior estimate. aPredictor: 𝛽1 = Initial dead stem cover (%), 𝛽2 = Initial Azorella selago size (cm2),
𝛽3 = Initial Agrostis cover (%), 𝛽4 = Initial cover of other (%), 𝛽5 = Mid versus high, 𝛽6 = West versus east. bThe
red dots and solid lines/shaded bands represent the quantile regression coefficients’ PEs and 95% HPD intervals
under the Kumaraswamy model, whereas the blue triangles and dash lines/shaded bands represent those under
the Johnson-t model; the black dotted line denotes the reference line at zero. cThe logit link function was used to
model the final A. selago dead stem cover’s quantiles as a function of covariates.

• The effect of the covariates on the quantiles generally differs considerably between the robust
and nonrobust models. Under the robust model, the effect of the covariates on the range
of quantiles is similar. In contrast, the covariate effects under the nonrobust model differ
considerably among the range of quantiles.

Secondly, we compare the fits of the mean and quantile models; we restrict the comparison to
the robust models (i.e., the rectangular beta and Johnson-t models). Figure S4 presents the mean
and quantile regression coefficients’ PEs and 95% HPD intervals calculated from the rectangular
beta and Johnson-t models. From Figure S4, we observe that the effect of some covariates on the
mean differs somewhat from that of the quantiles.

Thirdly, we compare the fits of the nonrobust and robust mean and median models (i.e., the
beta and rectangular beta models for the mean and the Kumaraswamy and Johnson-t models
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BURGER et al. 457

for the median). The PEs and 95% HPD intervals for the regression coefficients of the mean and
median computed from the beta, rectangular beta, Kumaraswamy, and Johnson-t models are
presented in Figure S5. In addition, the complete set of mean and median model parameters,
including the model comparison statistic, are presented in Table S2. From Figure S5 and Table S2,
we observe that the robust mean and median models are favored over the nonrobust models and
that the PEs and 95% HPD intervals under the nonrobust and robust models differ somewhat. The
estimates and confidence intervals of the two central tendency measures’ regression coefficients
(i.e., the mean and the median) are somewhat different, probably due to skewness in the data.

4.3 Model adequacy

We determine the influence of observations on model fits using leave-one-out cross-validation
to assess model adequacy (Wang & Luo, 2016): in particular, we evaluate the effect of a data
point when absent and present in the dataset using the Kullback–Leibler (K-L) divergence (see
Section B.1 of Appendix B). We also assess the model residuals and empirical predictive coverage
as the goodness of fit measures based on the posterior predictive distribution (see Sections B.2
and B.3 of Appendix B).

Figure S6 in Section A of Data S1 presents the K–L divergence estimates calculated from the
beta and rectangular beta models, whereas Figure 3 presents those from the Kumaraswamy and
Johnson-t models. Many observations considerably affect the estimates of the regression coeffi-
cients of mean and quantiles under the nonrobust models (influential outliers), whereas fewer
observations significantly affect these estimates under the robust models.

Figures S7 and S8 show the residual diagnostics calculated from the Kumaraswamy and
Johnson-t models. Under the Kumaraswamy model, the scaled residuals do not vary uniformly
between 0 and 1 for all quantiles, implying that the model does not fit the data well. Furthermore,
the quantile regression fits of the scaled residuals against the corresponding fitted values deviate
considerably from the expected quantiles. In contrast, the residual diagnostics suggest that the
Johnson-t model fits the data well.

Figure S9 presents the candidate models’ empirical predictive coverage and the average length
of predictive intervals. The coverage of the predictive intervals from the robust mean and quantile
models is close to the nominal value, whereas the predictive coverage under the nonrobust models
is too high. The robust mean and quantile models yield narrower predictive intervals than the
nonrobust models.

Per the current statistical software implementing the Kumaraswamy model, R-INLA (Lind-
gren & Rue, 2015), we checked the model fits using predictive integral transforms (PITs). The PITs
presented in Figure S10 suggest that the Kumaraswamy model fits the data poorly for all investi-
gated quantiles (potentially due to outliers). Therefore, the Kumaraswamy model is not adequate
for our dataset.

4.4 Ecological findings

Since the Johnson-t model clearly performs better than the Kumaraswamy model, as shown
in the previous section, we quantify the constraints to vitality in cushion plants according to
the Johnson-t model. We exponentiate the regression coefficients and interpret them as odds
ratios, analogous to logistic regression modeling of binomial data. Table 2 summarizes the mean
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458 BURGER et al.

Kumaraswamy Johnson−t
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F I G U R E 3 Cushion plant dataset: Kullback–Leibler divergence estimates computed from the
Kumaraswamy and Johnson-t regression models by quantile, observation, and model. a The blue lines represent
data points that are not considered outliers, whereas the red lines represent influential observations that
significantly affect the quantile regression coefficients’ estimates (i.e., outliers).
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BURGER et al. 459

T A B L E 2 Cushion plant dataset: mean and quantile regression models’ odds ratio estimates computed
from the rectangular beta and Johnson-t regression model.

Quantileb

Parameter / Predictora Meanc 10% 25% 50% 75% 95%

𝛽3 / Initial Agrostis cover (%) 1.021 1.018 1.019 1.018 1.019 1.018

𝛽4 / Initial cover of other (%) 0.897 0.949 0.949 0.949 0.949 0.949

𝛽5 / Mid versus high 1.502 1.642 1.636 1.634 1.636 1.629

𝛽6 / West versus east 1.489 1.572 1.573 1.572 1.577 1.571

aPredictor: The mean’ odds ratios are derived from the rectangular beta distribution.
bThe odds ratios are calculated according to a 5% increase in the initial cover of vascular and nonvascular plant species
growing on the cushion plants (i.e., 𝛽3 and 𝛽4).
cThe quantiles’ odds ratios are derived from the Johnson-t distribution.

and quantile models’ odds ratio estimates, that is, exp
(
𝛽3
)
, … , exp

(
𝛽6
)
, calculated from the

rectangular beta and Johnson-t models. The estimates of the odds ratios suggest the following:

1. A 5% increase in the initial Agrostis magellanica cover results in a 2% increase in the odds of
all quantiles of final dead stem cover (see 𝛽3). Similarly, a 5% increase in the initial cover of
other vascular plants and mosses results in an approximately 5% decrease in the odds of all
quantiles of final dead stem cover (see 𝛽4). Therefore, despite evidence for A. selago altering the
population structure, biomass, reproductive output, cover, and abundance of A. magellanica
and other vascular and nonvascular plants compared to surrounding areas where A. selago is
absent (le Roux, Shaw, & Chown, 2013; Raath-Krüger et al., 2021), the extreme quantiles of
vitality in A. selago are not constrained by the cover of vascular plants and mosses.

2. The odds of all quantiles of final dead stem cover are about 64% higher for mid-altitude than
high-altitude sites (see 𝛽5). Similarly, the odds of all quantiles of final dead stem cover are about
57% higher for the western aspect of Marion Island than the eastern aspect (see 𝛽6). Therefore,
the limit to A. selago vitality is constrained by altitude and aspect: the odds ratios reveal that,
across all quantiles, dead stem cover is higher at the mid-altitude than at high-altitude sites
and on the western aspect of the island than the eastern aspect. However, the difference in the
extreme quantiles of dead stem cover between mid versus high-altitude sites may depend on
A. magellanica cover, and therefore, additional covariates may be necessary for the model to
account for such interactions.

3. The effect of vascular and nonvascular plant species, altitude, and aspect on A. selago does not
vary across plants of different vitality. Therefore, it suggests that neither upper nor lower A.
selago vitality is constrained by environmental conditions (altitude, aspect, and plant cover)
differently from the median vitality, a robust central tendency measure.

5 SIMULATION STUDIES

5.1 Model performance

We assessed the performance of the Johnson-t regression model in Section 3 in a simulation study
under two distributional assumptions, namely data generated from the Johnson-t distribution
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460 BURGER et al.

with heavy and light tails, each under three quantile levels, namely the first decile, the median,
and the 0.95th quantile (i.e., q ∈ {0.1, 0.5, 0.95}; hence a total of six parameter scenarios). The
parameter values were chosen to partly reflect the ecology study’s typical data in Section 2.

For all scenarios, the sample size and the values of the fixed effects, covariance matrix, and
dispersion parameter were chosen as I = 10, J = 5, xij = zij =

(
1, tij

)′, 𝛽0 = −1.65, 𝛽1 = 0.05, 𝜷 =

(𝛽0, 𝛽1)′, 𝜎2
1 = 0.75, 𝜎2

2 = 0.7, 𝜎12 = 0.05, 𝚺 =
[
𝜎2

1 𝜎12
𝜎12 𝜎2

2

]

, and 𝜌 = 1.5. Note that the model is spec-

ified as a random intercept-slope mixed-effects model instead of a random intercepts model as in
our application. The degrees of freedom were chosen as (i) 𝜈 = 5 (i.e., the heavy-tailed scenario)
and (ii) 𝜈 = 30 (i.e., the light-tailed scenario). Hence, the following six scenarios were considered
in total: (i) q = 0.1 and 𝜈 = 5, (ii) q = 0.1 and 𝜈 = 30, (iii) q = 0.5 and 𝜈 = 5, (iv) q = 0.5 and 𝜈 = 30,
(v) q = 0.95 and 𝜈 = 5, (vi) q = 0.95 and 𝜈 = 30. We simulated the tij from a unit interval uniform
distribution, namely Uniform (0, 1). We fitted the Johnson-t model to 500 simulated datasets for
each of the six scenarios.

The bias of the PEs was calculated (see details in Appendix C), as was the coverage probabil-
ity of the associated 95% HPD intervals. We used the autorun.jags function of the runjags
package (Denwood, 2016) to guarantee convergence of the posterior samples for each fitted
dataset. The corresponding results are presented in Table 3. From Table 3, we observe the
following:

• Under each parameter scenario, the bias of the estimates of the fixed effects (i.e., 𝛽0, 𝛽1) and of
the dispersion parameter (i.e., 𝜌) is small. In contrast, the bias of the estimates of the variance
components (i.e., 𝜎2

1 , 𝜎2
2 , 𝜎12) is large.

• The estimates of the degrees of freedom (i.e., 𝜈) are relatively unbiased for low degrees of
freedom and considerably biased for high degrees of freedom.

• Under each parameter scenario, the coverage probability of the HPD interval of the fixed effects
(i.e., 𝛽0, 𝛽1) is close to or slightly higher than the nominal value. In contrast, the HPD inter-
vals of the dispersion parameter (i.e., 𝜌) and variance components (i.e., 𝜎2

1 , 𝜎2
2 , 𝜎12) are too

conservative.
• When the data are heavy-tailed, the coverage probability of the HPD interval of the degrees

of freedom (i.e., 𝜈) is slightly higher than the nominal value. In contrast, when the data are
light-tailed, the degrees of freedom’s HPD interval coverage probability is somewhat lower than
the nominal value.

In summary, the estimates and HPD interval coverage of the fixed effects, which are the main
parameters of interest, are acceptable under all parameter scenarios. However, the HPD inter-
vals of the variance components are generally too conservative, similar to the findings of Burger
et al. (2020) and Burger and Lesaffre (2021), in particular, under small variance components. The
HPD interval coverage of the degrees of freedom is slightly lenient when the data are light-tailed;
in contrast, it is acceptable when the data are heavy-tailed.

5.2 Data contamination

We performed a simulation study to investigate the robustness of the Kumaraswamy and
Johnson-t regression models to outliers. Datasets were simulated from the two models where we
chose the model parameter values for I, J, xij, zij, 𝛽0, 𝛽1, 𝜎2

1 , 𝜎2
2 , and 𝜎12 as per Section 5.1. We chose
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BURGER et al. 461

T A B L E 3 Simulation study: performance of the Johnson-t regression model.a

Quantile

10% 50% 95%

𝝂 Parameter Value Bias Coverageb Bias Coverageb Bias Coverageb

5 𝛽0 −1.65 −0.0091 95.0 0.0039 96.2 0.0718 96.0

𝛽1 0.05 0.0060 96.0 −0.0530 97.2 0.0008 97.8

𝜌 1.5 0.0524 98.0 0.0627 98.8 0.0541 99.2

𝜈 5 1.4533 97.4 1.3483 98.0 1.2336 97.2

𝜎2
1 0.75 0.1813 97.2 0.1546 98.2 0.1523 97.0

𝜎2
2 0.7 0.3158 99.8 0.3473 100.0 0.4039 99.6

𝜎12 0.05 −0.0818 100.0 −0.0712 100.0 −0.0761 100.0

30 𝛽0 −1.65 −0.0085 97.2 0.0005 95.0 0.0674 96.6

𝛽1 0.05 0.0090 97.2 −0.0192 96.6 −0.0283 97.0

𝜌 1.5 0.1929 98.4 0.2144 97.0 0.2251 98.2

𝜈 30 −21.6977 93.0 −21.6871 92.4 −21.6852 92.2

𝜎2
1 0.75 0.1702 95.6 0.1492 97.0 0.1641 98.6

𝜎2
2 0.7 0.2412 100.0 0.2066 100.0 0.2422 99.8

𝜎12 0.05 -0.0525 100.0 −0.0615 100.0 −0.0584 100.0

aThe logit link function was used to model the response variable’s quantiles as a function of covariates.
bCoverage of 95% highest posterior density intervals (%).

𝜈 = 30, and 𝜌 = 3 and 𝜌 = 1.5 for data simulated from the Kumaraswamy and Johnson-t models,
respectively. The selection of the degrees of freedom, precision, and dispersion parameter values
yields comparable datasets, ensuring a sensible comparison between the two candidate models.

The datasets were randomly contaminated by replacing yij with data simulated from the
Uniform (0.975, 1) distribution at a rate of 5%, thereby contaminating the data with outliers close
to the upper bound of the parameter space (i.e., 1). Hence, our contamination scheme is based on
a mixture of the Kumaraswamy/Johnson-t distribution and the uniform distribution. The candi-
date models were fitted to both the uncontaminated and contaminated versions of the simulated
datasets. Under each scenario, we considered two quantile levels: the median and the 0.95th quan-
tile (i.e., q ∈ {0.5, 0.95}; hence a total of four parameter scenarios for each model). We fitted the
models to 500 simulated datasets for each scenario.

The bias and root mean square error (RMSE) of the PEs were calculated (see details in
Appendix C), as were the average length and empirical coverage probability of the associated
95% HPD intervals. The corresponding results are presented in Table 4 (fixed effects only). From
Table 4, we observe the following:

• Both models perform well under no contamination, as judged by the accuracy character-
istic (i.e., bias) and HPD interval coverage.

• Under “contamination” relative to “no contamination”:
– The Kumaraswamy model’s median coefficient estimates are more biased and less

precise, most notably the fixed intercept term; in contrast, the bias under the
Johnson-t model is small.

 14679574, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12293 by South A

frican M
edical R

esearch, W
iley O

nline L
ibrary on [17/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



462 BURGER et al.

T
A

B
L

E
4

Si
m

ul
at

io
n

st
ud

y:
ro

bu
st

ne
ss

of
th

e
K

um
ar

as
w

am
y

an
d

Jo
hn

so
n-

tr
eg

re
ss

io
n

m
od

el
s.

K
um

ar
as

w
am

ya
Jo

hn
so

n-
ta

Q
ua

nt
ile

R
at

eb
Pa

ra
m

et
er

Va
lu

e
B

ia
s

R
M

SE
C

ov
er

ag
ec

Le
ng

th
d

Va
lu

e
B

ia
s

R
M

SE
C

ov
er

ag
ec

Le
ng

th
d

50
%

0%
𝛽

0
−

1.
65

0.
02

18
0.

36
67

97
.2

1.
68

03
−

1.
65

0.
00

05
0.

36
09

95
.0

1.
56

62

𝛽
1

0.
05

0.
00

66
0.

53
38

98
.0

2.
41

34
0.

05
−

0.
01

92
0.

47
26

96
.6

2.
10

89

𝜌
3

0.
04

93
0.

40
35

96
.4

1.
56

02
1.

5
0.

21
44

0.
34

16
97

.0
1.

35
29

𝜈
N

A
N

A
N

A
N

A
N

A
30

−
21

.6
87

1
21

.8
61

5
92

.4
69

.8
80

3

𝜎
2 1

0.
75

0.
15

05
0.

62
29

98
.4

2.
85

04
0.

75
0.

14
92

0.
57

45
97

.0
2.

64
62

𝜎
2 2

0.
7

0.
31

01
0.

96
35

99
.6

4.
63

87
0.

7
0.

20
66

0.
80

26
10

0.
0

3.
90

73

𝜎
12

0.
05

−
0.

06
28

0.
18

20
10

0.
0

2.
30

97
0.

05
−

0.
06

15
0.

18
76

10
0.

0
2.

03
35

5%
𝛽

0
−

1.
65

0.
33

76
0.

57
92

95
.6

2.
25

89
−

1.
65

0.
01

32
0.

37
49

95
.6

1.
62

35

𝛽
1

0.
05

0.
03

87
0.

69
27

10
0.

0
3.

83
10

0.
05

0.
00

21
0.

51
92

96
.2

2.
29

73

𝜌
3

−
1.

75
50

1.
86

00
8.

0
0.

74
90

1.
5

0.
59

91
0.

77
32

93
.2

2.
35

49

𝜈
N

A
N

A
N

A
N

A
N

A
30

−
27

.8
20

6
27

.8
84

4
6.

0
7.

21
47

𝜎
2 1

0.
75

−
0.

12
47

1.
48

20
97

.4
2.

97
27

0.
75

0.
14

11
0.

58
13

97
.4

2.
74

04

𝜎
2 2

0.
7

0.
65

53
5.

12
96

99
.2

7.
20

64
0.

7
0.

27
93

1.
02

27
10

0.
0

4.
42

66

𝜎
12

0.
05

−
0.

33
55

2.
35

01
99

.4
3.

20
42

0.
05

−
0.

06
69

0.
19

53
10

0.
0

2.
19

08

(C
on

tin
ue

s)

 14679574, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12293 by South A

frican M
edical R

esearch, W
iley O

nline L
ibrary on [17/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BURGER et al. 463

T
A

B
L

E
4

C
on

tin
ue

d

K
um

ar
as

w
am

ya
Jo

hn
so

n-
ta

Q
ua

nt
ile

R
at

eb
Pa

ra
m

et
er

Va
lu

e
B

ia
s

R
M

SE
C

ov
er

ag
ec

Le
ng

th
d

Va
lu

e
B

ia
s

R
M

SE
C

ov
er

ag
ec

Le
ng

th
d

95
%

0%
𝛽

0
−

1.
65

0.
00

40
0.

34
41

97
.0

1.
59

13
−

1.
65

0.
06

74
0.

38
30

96
.6

1.
74

89

𝛽
1

0.
05

0.
01

98
0.

42
91

95
.2

1.
94

43
0.

05
−

0.
02

83
0.

47
61

97
.0

2.
12

81

𝜌
3

0.
06

18
0.

57
13

95
.6

2.
20

42
1.

5
0.

22
51

0.
36

82
98

.2
1.

37
66

𝜈
N

A
N

A
N

A
N

A
N

A
30

−
21

.6
85

2
21

.8
66

9
92

.2
69

.7
85

2

𝜎
2 1

0.
75

0.
20

27
0.

56
49

97
.0

2.
70

25
0.

75
0.

16
41

0.
57

01
98

.6
2.

69
89

𝜎
2 2

0.
7

0.
28

48
0.

91
56

98
.8

3.
78

17
0.

7
0.

24
22

0.
81

83
99

.8
4.

00
36

𝜎
12

0.
05

−
0.

05
13

0.
24

40
10

0.
0

2.
07

93
0.

05
−

0.
05

84
0.

19
95

10
0.

0
2.

10
02

5%
𝛽

0
−

1.
65

2.
29

85
2.

53
72

10
.0

2.
04

52
−

1.
65

0.
76

63
0.

96
92

85
.4

2.
93

03

𝛽
1

0.
05

0.
00

80
0.

37
95

99
.4

2.
37

32
0.

05
−

0.
03

22
0.

52
21

96
.6

2.
29

80

𝜌
3

−
2.

51
88

2.
64

58
8.

2
0.

48
32

1.
5

0.
68

45
0.

87
12

90
.8

2.
49

50

𝜈
N

A
N

A
N

A
N

A
N

A
30

−
27

.8
94

0
27

.9
72

1
7.

2
7.

60
88

𝜎
2 1

0.
75

−
0.

43
78

0.
83

87
58

.2
1.

29
59

0.
75

0.
17

47
0.

59
10

98
.8

2.
81

62

𝜎
2 2

0.
7

−
0.

03
94

2.
19

86
98

.0
3.

11
44

0.
7

0.
27

16
0.

85
75

10
0.

0
4.

41
21

𝜎
12

0.
05

−
0.

15
19

0.
97

10
99

.2
1.

25
21

0.
05

−
0.

06
59

0.
19

32
10

0.
0

2.
26

35

A
bb

re
vi

at
io

ns
:H

PD
,H

ig
he

st
po

st
er

io
rd

en
si

ty
;N

A
,n

ot
ap

pl
ic

ab
le

.
a Th

e
lo

gi
tl

in
k

fu
nc

tio
n

w
as

us
ed

to
m

od
el

th
e

re
sp

on
se

va
ria

bl
e’

sq
ua

nt
ile

sa
sa

fu
nc

tio
n

of
co

va
ria

te
s.

b C
on

ta
m

in
at

io
n

ra
te

.
c 95

%
H

PD
in

te
rv

al
co

ve
ra

ge
(%

).
d 95

%
H

PD
in

te
rv

al
av

er
ag

e
le

ng
th

.

 14679574, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12293 by South A

frican M
edical R

esearch, W
iley O

nline L
ibrary on [17/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



464 BURGER et al.

– The 0.95th quantile’s coefficient estimates are considerably more biased and less
precise under both models. However, the lack of precision of the estimates of the
intercept term is more prominent for the Kumaraswamy model.

– The HPD interval of the median slope term is extremely conservative under the
Kumaraswamy model, whereas the coverage of the HPD interval of the median slope
term from the Johnson-t model is acceptable.

– The 0.95th quantile’s HPD interval of the intercept term is extremely lenient under
the Kumaraswamy model; in contrast, the HPD interval’s lack of coverage is consid-
erably less problematic under the Johnson-t model.

– The increase in the HPD intervals’ average length under the Johnson-t model is
generally considerably less than that of the Kumaraswamy model.

In summary, the data contamination simulation study suggests that the Johnson-t model is
considerably more robust to outliers than the Kumaraswamy model.

6 DISCUSSION

The currently available approach for modeling the quantiles of hierarchically structured con-
tinuous proportion data is the Kumaraswamy model of Bayes et al. (2017). However, our
application dataset contains significant outliers, and the Kumaraswamy model is not adequate
for modeling heavy-tailed data (i.e., containing outliers). We, therefore, considered a robust
model to accommodate outliers by extending the fixed effects Johnson-t model of Lemonte and
Moreno-Arenas (2020). According to the mDIC statistic, the robust models (i.e., the rectangular
beta and Johnson-t models) fit the cushion plant dataset better than the nonrobust models (i.e.,
the beta and Kumaraswamy models). Furthermore, the quantile model fits differ considerably
between the nonrobust and robust models. Under the robust models, the covariate effects on the
mean and median differ somewhat; therefore, one should carefully consider which measure of
central tendency to report (i.e., mean vs. median) for bounded data. Based on the model adequacy
checks, it is clear that the outliers in the data have a substantial effect on the quantile fits, and
thus, the ecological research questions were addressed using the Johnson-t model instead of the
Kumaraswamy model.

We used a Bayesian implementation of the models considered for this manuscript. We chose
the specification of the MGH-t prior for the variance components (Huang & Wand, 2013) over
the conventional Wishart prior since the latter may yield too lenient confidence intervals than
the former. Overly lenient confidence intervals for the variance components can be much more
problematic for inferences about fixed effects than extremely conservative confidence intervals
for the variance components (Burger et al., 2020).

The data contamination simulation study suggests that the Johnson-t model for modeling the
quantiles of continuous proportions is remarkably robust to outliers, whereas the Kumaraswamy
model is susceptible to outliers, especially when modeling the extreme quantiles.

The HPD intervals of the variance components are generally very conservative; however, the
coverage for the fixed effects is satisfactory. The degrees of freedom estimates are biased when
there are no outliers in the data. However, accurate estimation of the t-distribution’s degrees of
freedom is known to be challenging: see Fonseca, Ferreira, and Migon (2008) for a detailed expla-
nation; furthermore, in the current context, precise estimation of the degrees of freedom is not
required. Instead, we need to determine whether the degrees of freedom are (i) small, which leads
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BURGER et al. 465

to a model robust to outliers, or (ii) large, suggesting that outliers are not an issue. Overall, the sim-
ulation study suggests that the proposed robust model has good accuracy and confidence interval
coverage properties.

The Jeffreys prior of Juárez and Steel (2010) for the degrees of freedom can be used as an
alternative to the hierarchical prior as a sensitivity analysis. However, the trigamma function is
not available in JAGS; the Stan software (Carpenter et al., 2017) can alternatively be used to
specify the Jeffreys prior as it contains the trigamma function.

It should be noted that, in some cases, excluding outliers because they deviate consid-
erably from the other observations may misrepresent vital ecological processes, ultimately
leading to misleading conclusions. From a statistical perspective, it seems preferable to carry
out an analysis that is robust to outliers rather than an analysis that is preceded by outlier
removal.

The robust regression models introduced can be extended to model the precision and disper-
sion parameters as a function of covariates.

Should inferences about the quantiles of the continuous proportions on the population level
be of interest (i.e., as opposed to conditional on the random effects), additional computationally
expensive steps to integrate (marginalize) over the distribution of the random effects are needed
for our proposed model.

In conclusion, our study demonstrated that the proposed Johnson-t model is an appropriate
robust alternative to the current approach, the Kumaraswamy model, for modeling the quantiles
of correlated continuous proportions when outliers are present in the data.
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APPENDIX A. MODEL DISCRIMINATION

Let 𝚿 =
(
𝜷′, 𝜌

)′ under the conventional beta and Kumaraswamy regression models, 𝚿 =
(
𝜷′, 𝜌, 𝜙

)′ under the rectangular beta model, and 𝚿 =
(
𝜷′, 𝜌, 𝜈

)′ under the Johnson-t model.
Furthermore, let 𝚿̂ and 𝚺̂, respectively, represent the posterior estimate of𝚿 and 𝚺.

The mDIC requires integrating over the likelihood function’s random effects. In order to do
so, Quintero and Lesaffre (2018) proposed generating replicate samples of the random effects that
need to be integrated out. Two sources of replicate samples of the random effects are drawn as fol-
lows: let𝚿(k) and 𝚺(k), respectively, represent the kth posterior sample drawn from𝚿 and 𝚺, u(k,l)repi

the lth replicate sample from p
(

ui
|
|
|
𝚺(k)

)

, and u(m)repi
the mth replicate sample from p

(

ui
|
|
|
𝚺̂
)

(k =
1, … ,K, l = 1, … ,L, and m = 1, … ,M). Accordingly, the mDIC statistic is calculated under
regression model R as follows:

mDIC (R) = − 4
K

K∑

k=1

I∑

i=1

Ji∑

j=1
log

{

1
L

L∑

l=1
f
(

yij
|
|
|
𝚿(k),u(k,l)repi

)
}

− 2
I∑

i=1

Ji∑

j=1
log

{

1
M

M∑

m=1
f
(

yij
|
|
|
𝚿̂,u(m)repi

)
}

.
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We refer the reader to Quintero and Lesaffre (2018) to appropriately choose the number of repli-
cations M and L. We drew M = 10,000 and L = 1000 replicate samples of the random effects to
calculate the mDIC statistic, which is efficient for relatively small datasets containing in the range
of 500 observations or less such as the dataset of Raath-Krüger et al. (2022). Note that the model
with the smallest mDIC is favored.

APPENDIX B. MODEL ADEQUACY

B.1 Kullback–Leibler divergence
In addition to Appendix A’s notation and definitions, let u(k)i represent the kth posterior sample
drawn from ui,𝚯 the full set of model parameters, and y the vector containing yij for all i = 1, … , I
and j = 1, … , Ji. Furthermore, let P (𝚯 |y ) represent the posterior distribution of𝚯 for all y (com-
plete dataset), and P

(

𝚯 |
|
|
y[ij]

)

the posterior distribution of 𝚯 with observation yij excluded. The

Monte Carlo estimate of the K-L divergence between P (𝚯 |y ) and P
(

𝚯 |
|
|
y[ij]

)

under regression
model R is given by:

KLR

[

P (𝚯 |y ) ,P
(

𝚯 |
|
|
y[ij]

)]

= log

{

1
K

K∑

k=1

[

f
(

yij
|
|
|
𝚿(k),u(k)i

)]−1
}

+ 1
K

K∑

k=1
log

[

f
(

yij
|
|
|
𝚿(k),u(k)i

)]

.

We calculate the K-L divergence estimates for each observation i and j to determine whether yij
under regression model R is influential, that is, identifying data points that significantly affect the
parameter estimates. Following the approach of Tomazella et al. (2021), we consider yij an outlier

if 0.5

(

1 +
√

1 − exp
(

−2KLR

[

P (𝚯 |y ) ,P
(

𝚯 |
|
|
y[ij]

)])
)

≥ 0.75.

B.2 Residual analysis
In applying hierarchical mixed-effects regression modeling, the use of standard residual plots as
diagnostic tools are limited in reliably identifying model misspecification and, in some cases, may
imply that the model fits the data poorly even if the model is correctly specified. Therefore, to
circumvent the limitations associated with the inspection of raw residuals for assessing model
adequacy, we use the simulation-based strategy that Hartig (2021a) proposes, scaling the residu-
als between zero and one. In particular, we base our assessment of the residuals on the posterior
predictive distribution corresponding to each observation in our dataset, conditional on the asso-
ciated random effects. For each observation and under each model, we simulate the posterior
predictive distribution corresponding to the observation, which allows us to compare an observed
value to what we expect it to be in a probabilistic sense. In other words, if the model appropri-
ately fits the data, the predicted values corresponding to the observed values will be close. For the
kth set of posterior samples drawn, we draw a random copy y(k)repij

of f
(

yij
|
|
|
𝚿(k),u(k)i

)

. The gen-

erated values yrepij
=
(

y(1)repij
, … , y(k)repij

, … , y(K)repij

)′
represent samples from the posterior predictive

distribution corresponding to yij.
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We calculate the scaled residuals rij as the value of the posterior predictive distribution’s empir-
ical density function evaluated at the observed value yij. Hence, the derived residuals are between
0 and 1. A residual equal to (i) 0 indicates that the observed value is below all expectations from
the model; (ii) 0.5 indicates that it fits in the middle of what was expected; and (iii) 1 indicates
that the value is above all expectations from the model. Should a model fit perfectly, we expect
the scaled residuals to vary approximately uniformly between 0 and 1. This work implements the
residual analysis similar to that available in the DHARMa package (Hartig, 2021b). The motivation
and workings of the package (extending the methods of Dunn and Smyth (1996) and Gelman and
Hill (2006)) are explained in detail by Hartig (2021a).

The residuals can be checked on a visual basis using (i) a QQ plot of the scaled residuals rij
compared to the theoretical uniform distribution and (ii) a plot of the scaled residuals against the

corresponding fitted values, namely, rij versus 𝜅̂ ij =
exp

(

x′ij𝜷̂+z′ijûi

)

1+exp
(

x′ij𝜷̂+z′ijûi

) . We superimposed the quantile

regression fits of rij against 𝜅̂ ij on the “residual versus prediction” plot to assess whether the rij
are uniformly spread over the 𝜅̂ ij; we used the R package quantreg (Koenker et al., 2021) to
calculate the quantile regression fits.

B.3 Empirical predictive coverage
We calculate posterior predictive intervals using the same principle of comparing observations
to their corresponding posterior predictive distributions in Section B.2. We compare the intervals
to the observed values by deriving the proportion of the observed values covered by the predic-
tive intervals: this represents an empirical estimate of predictive coverage. We expect a perfectly
fitted model to yield empirical predictive coverage close to the nominal coverage. We also calcu-
late the predictive intervals’ average length. The model that produces the shortest intervals while
maintaining accurate coverage is considered to make better predictions. We studied the interval
coverage and lengths for target coverages ranging from 0.01 to 0.99 using increments of 0.02.

APPENDIX C. BIAS AND PRECISION

The bias of a certain estimator E for parameter 𝜀 is calculated as follows:

BIAS =
∑S

s=1 (Es − 𝜀)
S

,

where Es is the PE calculated in the sth simulation, and the summation is over the S simulations
carried out. Similarly, the RMSE is calculated as follows:

RMSE =

√
∑S

s=1(Es − 𝜀)2

S
.

An estimator’s bias is used to assess its accuracy, while the RMSE serves as a combined measure
of accuracy and precision.
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