
Lower quantile estimation within an arti�cially censored

framework

by

Jarod Smith

14016665

Submitted in partial ful�llment of the requirements for the degree

Magister Scientiae

Mathematical Statistics

In the Faculty of Natural & Agricultural Sciences

Department of Statistics

University of Pretoria

Pretoria

10th February 2020

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Lower quantile estimation within an arti�cially censored framework

by

Jarod Mark Smith
E-mail: jarodsmith706@gmail.com

Abstract

Quantile estimation is a vital aspect of statistical analyses in a variety of �elds. For example, lower quantile
estimation is crucial to ensure the safety and reliability of wood-built structures. Various statistical tech-
niques, which include parametric, non-parametric and mixture modelling are available for estimation of lower
quantiles. An intuitive approach would be to consider models that �t the tail of the sample instead of the
entire range. Quantiles of interest can be estimated by arti�cially censoring observations beyond a chosen
threshold. The choice of threshold is crucial to ensure e�cient and unbiased quantile estimates, and usually
the 10th empirical percentile is chosen as the threshold. [16] proposes a bootstrap approach in order to ob-
tain a better threshold for the censored Weibull MLE, however, this approach is computationally expensive.
A new threshold selection technique is proposed that makes use of a standardised-weighted adjusted trun-
cated Kolmogorov-Smirnov test (SWAKS-MLE). The SWAKS-MLE outperforms in the bootstrap threshold
censored Weibull MLE method, in addition to being vastly less computationally intensive.

Keywords: Adjusted Kolmogorov-Smirnov threshold selection technique, Arti�cial censoring, Bootstrap,
Lower quantile, Semi-parametric.

i

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

mailto:jarodsmith706@gmail.com

Declaration

I, Jarod Mark Smith, declare that this mini-dissertation (100 credits), which I hereby submit for the degree
Magister Scientiae in Mathematical Statistics at the University of Pretoria, is my own work and has not
previously been submitted by me for a degree at this or any other tertiary institution.

Jarod Mark Smith

Dr. J.T. Ferreira

Prof. A. Bekker

Date

ii

2 0 2 0 / 0 2 / 1 0

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Acknowledgements

Without the support of the following list of contributors, this work wouldn't have been possible at all:

• To Micaela, thank you for your unwavering support and encouragement. Without your love and pa-
tience, this work may not have been a possibility.

• Dr. Jaco Visagie, thank you for your friendship.

• Prof. A. Bekker, thank you for the inspiration, guidance and encouragement over the past two years.
Thank you for believing in me and granting me the opportunities that will forever be invaluable. You
are more than just a supervisor, it is truly a privilege working with you.

• Dr J.T. Ferreira, I would like to extend my appreciation and gratitude for your tireless contributions,
remarks and suggestions.

• Prof. M. Arashi, thank you for your valuable input, especially concerning the Kolmogorov-Smirnov
adjustments.

• To my parents, thank you for believing me in every step of this journey.

• Yang Liu, kudos on the brilliant, well structured and insightful dissertation: �Lower Quantile Estimation
of Wood Strength Data�.

• The �nancial assistance of the National Research Foundation (NRF) towards this research is hereby
acknowledged.

iii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Contents

Contents iv

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Motivation . 1
1.2 Objectives . 2
1.3 Contributions . 2
1.4 Dissertation outline . 3
1.5 Simulation settings . 3
1.6 List of acronyms and notation . 3

2 Classical Quantile Estimation 6

2.1 Introduction . 7
2.2 Performance measures for lower quantile estimates . 7
2.3 Classic approaches to lower quantile estimation . 7

2.3.1 A parametric approach . 7
2.3.2 A non-parametric approach . 10

2.4 Chapter summary . 14

3 Censored and Mixture Models for Lower Quantile Estimation 15

3.1 Introduction . 15
3.2 A censoring approach to lower quantile estimation . 17

3.2.1 Introduction to censoring . 17
3.2.2 A censored-adjusted semi-parametric approach to lower quantile estimation 18
3.2.3 Selecting a parametric lower tail . 18
3.2.4 Computation of the censored MLE . 20

3.3 A mixture model approach to lower quantile estimation . 22
3.3.1 The Weibull mixture model . 23
3.3.2 The EM algorithm and estimation of the Weibull mixture 23
3.3.3 Weibull model selection . 28
3.3.4 The censored Weibull mixture model . 29
3.3.5 Goodness-of-�t for the censored and uncensored Weibull mixture models 32

3.4 Simulation comparison . 33
3.4.1 Model settings used to imitate MOR1 and MOR2 . 33
3.4.2 Simulation comparison of the censored, parametric, non-parametric and empirical quan-

tiles . 34
3.4.3 Simulation comparison of the mixture and censored mixture model 36

3.5 Chapter summary . 38

iv

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4 Threshold Selection Techniques in the Censored Weibull Model 39

4.1 Introduction . 39
4.2 Bootstrap threshold selection . 40

4.2.1 Relationship between the censoring threshold and the MSE 40
4.2.2 Bootstrap estimate of MSE . 41
4.2.3 A note on computation expense . 45

4.3 Adjusted Kolmogorov-Smirnov threshold . 46
4.3.1 Relationship between the KS distance and the proportion of censoring 47
4.3.2 Adjusted KS test statistic . 47
4.3.3 Relationship between the variance of the KS statistic and the proportion of censoring 51
4.3.4 A standardised weighting function for the adjusted KS statistic 55
4.3.5 The e�ciency of the SWAKS-MLE algorithm . 58

4.4 Simulation comparison . 58
4.4.1 Comparison of the RMSE of the quantile estimates . 59
4.4.2 Comparison of the bias and standard error of the B-MLE, CW-MLE and SWAKS-MLE 60

4.5 Chapter summary . 60

5 Future Work and Conclusions 61

Bibliography 64

List of Figures

1.0.1 Histogram of MOR1 and MOR2 dataset. 2

2.3.1 Various �tted parametric models for MOR1 and MOR2 datasets. 10
2.3.2 Boxplots of 5th quantile estimate for the nine empirical quantile de�nitions for various models. 12
2.3.3 Fitted kernel density estimation curves for MOR1 and MOR2. 14

3.2.1 Subjectively censored parametric models for MOR1 and MOR2 datasets. 19
3.3.1 Weibull mixture models for MOR1 and MOR2. 27
3.4.1 Mixture models for MOR1 and MOR2. 34

4.2.1 Relationship between the censoring threshold and MSE for MOR2 given that the underlying
model is known. 41

4.2.2 Distribution of M̂ i
n −Mn for di�erent sample sizes. 45

4.3.1 Censored Weibull CDF against the ECDF for a Gamma model (a) and Kolmogorov-Smirnov

(KS) test statistic DTRUNC
(...
F
i
(r) − F̂(r)

)
for all models imitating MOR2 for various threshold

candidates (b). 47

4.3.2 Boxplot of selected threshold using the truncated KS test statistic DTRUNC
(...
F
i
(r) − F̂(r)

)
. . 48

4.3.3 Comparison of
...
F (r), F̂(r), log

(...
F (r)

)
and log

(
F̂(r)

)
for a gamma(16.168, 0.440) model imitat-

ing MOR2 and various thresholds. 49

4.3.4 Comparison of
∣∣∣...F (r) − F̂(r)

∣∣∣ and ∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ for a gamma(16.168, 0.440) model

imitating MOR2 and various thresholds. 50

v

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3.5 Boxplot of selected threshold using the log-adjusted truncated KS test statistic

DAKS
(...
F (r) − F̂(r)

)
. 51

4.3.6 Weighting function for the adjusted KS method. 52
4.3.7 Boxplot of selected threshold using the weight-adjusted truncated KS test statistic∣∣∣log (

...
F n)− log

(
F̂n

)∣∣∣ ∗√...
F n × (1−

...
F n). 53

4.3.8 Weight-adjusted log
(...
F (r)

)
and log

(
F̂(r)

)
and

∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ ∗√...
F (r) ×

(
1−

...
F (r)

)
for gamma(16.168, 0.440) model imitating MOR2 for various thresholds. 54

4.3.9 Boxplot of selected threshold using the standardised weight-adjusted truncated KS test statistic∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ ∗√ ...
F (r)×(1−

...
F (r))

r . 56

4.3.10 Standardised weight-adjusted log
(...
F (r)

)
and log

(
F̂(r)

)
and∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ ∗√ ...
F (r)×(1−

...
F (r))

r for gamma(16.168, 0.440) model imitating MOR2

for various thresholds. 57

List of Tables

2.3.1 Goodness-of-�t and quantile estimates for parametric models for MOR1. 9
2.3.2 Goodness-of-�t and quantile estimates for parametric models for MOR2. 9
2.3.3 Distributions used in quantile estimation study. 11
2.3.4 RMSE for the 5th quantile per empirical quantile de�nition for various models and where

n = 300 and N = 10000. 13

3.2.1 Left tail goodness-of-�t of the parametric models and corresponding 5th quantile estimates for
MOR1 and MOR2 datasets. 19

3.3.1 Censored Weibull mixture models for MOR1 and MOR2 using the 70th empirical percentile
as the censoring threshold. 32

3.3.2 Truncated goodness-of-�t DTRUNC
(
F̃n − F̂ (x)

)
up to the 10th empirical percentile for the

CW-MLE, censored Weibull mixture and uncensored Weibull mixture for the MOR1 and
MOR2 datasets. 32

3.4.1 Parameter estimates for censored parametric models. 33
3.4.2 Mixture models' parameter estimates. 34
3.4.3 RMSE of the 5th quantile estimates for the O-MLE, CW-MLE, KDE and EMP estimation

techniques for various models imitating MOR1. 35
3.4.4 RMSE of the 5th quantile estimates for the O-MLE, CW-MLE, KDE and EMP estimation

techniques for various models imitating MOR2. 36
3.4.5 Bias and [standard error] (x100) of the O-MLE, CW-MLE, KDE and EMP quantile estimates

for the models imitating the MOR2 data set. 36
3.4.6 RMSE of the 5th qauntile estimates of the Weibull CW-MLE, MIX and MIX7 for various

models imitating MOR2. 37
3.4.7 Bias and [standard error] (x100) of the Weibull CW-MLE, MIX and MIX7 quantile estimates

for the models imitating the MOR2 dataset. 37

vi

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

LIST OF TABLES LIST OF TABLES

4.2.1
√
n times the standard error and mean of M̂ i

n −Mn for di�erent sample sizes. 45
4.3.1 KS distances for various threshold selection techniques for a sample generated from

a Gamma(16.168, 0.440). 55
4.3.2 KS distances for various threshold selection techniques for a sample generated from

a Weibull(7.378, 6.738). 56
4.4.1 RMSE of the 5th quantile estimates from a Weibull CW-MLE, MIX, MIX7, B-MLE and

SAWKS-MLE for various models imitating MOR1. 59
4.4.2 RMSE of the 5th quantile estimates from a Weibull CW-MLE, MIX, MIX7, B-MLE and

SAWKS-MLE for various models imitating MOR2. 59
4.4.3 Bias and standard error (SE) (x100) of the CW-MLE, B-MLE and SWAKS-MLE quantile

estimates for the models imitating the MOR2 data set. 60

vii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1

Introduction

Extreme tail quantile estimation is very important in material strength studies (for example, lumber strength
studies [16]). Wood or lumber products are widely used in the building and construction of roofs, walls and
�oors. To ensure the safety and reliability (duration) of wood built structures it is necessary to study the
strength properties of the wood products that are used to build these structures. A more in depth description
of wood strength measures can be found in [4], among those is the Modulus of Rupture strength (MOR) or
the bending strength of wood. The MOR strength measure is particularly important because it measures the
amount of force that can be applied vertically to the grain of the wood before any structural failure occurs.
The pressure that a wooden board can handle is the most common found on wooden rooftops, �oors and even
wooden bridges and walkways [16]. In order to measure the MOR of a wooden board implies a destructive
process, therefore the amount of data available for such a study will naturally be limited.

Due to the plethora of tree types - within and between species - the MORs will di�er. In other words,
two pieces of wood from the same tree may have di�erent MORs and the MOR of a wooden board may
therefore be treated as random [16]. This random behavior allows the use of statistical methods, such as
extreme tail quantile estimation, to estimate extreme lower tail quantiles. Due to the stochastic behaviour of
strength properties of wood, the probability of failure can only be gauged to be within a very small interval
or percentage. For example, if the probability of failure should be less than 5%, then the pressure load on the
wooden boards should not exceed the 5th percentile [16]. This dissertation will focus primarily on estimating
the 5th percentile.

The main contribution of this study is to introduce a novel, data-driven, threshold selection technique for
lower quantile estimation. That being said, a large proportion of the work presented in [16] will be revisited.
In particular, Chapters 2, 3, 4 and 5 of [16]will be thoroughly re-worked in this study. The key ideas and
concepts presented in these chapters are necessary for the insight and intuition required for new threshold
selection approach presented in Chapter 4 of this study.

To estimate quantiles of interest, engineers will typically randomly sample wooden boards (for example,
300) from a wood mill and proceed to test the MOR strength of each board through a destructive process.
Two datasets for this study, namely MOR1 and MOR2 contain 98 and 282 observations respectively are
re-used from [16]. The MOR datasets will be used in this dissertation to illustrate statistical principles
concerned with lower quantile estimation. The histograms of each dataset are provided in Figure 1.0.1.

1.1 Motivation

Although quantile estimation is not a particularly new concept in statistical theory and application, very little
literature exists on the computation of extreme lower quantile estimation within a setting of limited sample
data (small sample sizes). The study of statistical extremes is usually dealt within extreme value theory

1

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.2. OBJECTIVES 2

Figure 1.0.1: Histogram of MOR1 and MOR2 dataset.

(EVT) [7], for example, the peaks-over-threshold (POT) approach models the excess over a suitably high
threshold using a generalised Pareto distribution (GPD). The work presented (novel and revisited concepts)
in this dissertation focuses on the left tail of the distribution, i.e. estimating a lower quantile. The approach,
originally presented in [16], investigates models that �t the left tail of the data, rather than the entire
range. Thus if there is a desire to estimate the lower quantile, all observations to the right of a suitably
chosen threshold are arti�cially censored. This allows the investigator to focus on the �t of the left tail and
arti�cially censor the rest of the observations. This is not a new concept and has been presented and studied
rigorously in [16]. What remains is to investigate a more computationally viable threshold selection technique
for the estimation of the extreme lower quantiles.

1.2 Objectives

• revisit the work on lower quantile estimation presented in [16] to introduce and re-work the following
fundamental concepts:

� The statistical process of lower quantile estimation, including the notion of the quality pertaining
to the estimated lower quantile.

� Classical statistical techniques used for lower quantile estimation. In particular, parametric and
non-parametric approaches to lower quantile estimation.

� Explore the idea of a censored-adjusted semi-parametric approach to lower quantile estimation
using methods focused on censored data.

� Thoroughly study the mixture model approach to lower quantile estimation.

� revisit the novel data-driven statistical techniques for optimum threshold selection for lower quan-
tile estimation by making use of bootstrapping.

• Introduce a novel, data-driven, threshold selection technique for lower quantile estimation using an
adjusted Kolmogorov-Smirnov statistic.

1.3 Contributions

• This dissertation is based largely on the superb 'Lower Quantile Estimation of Wood Strength Data'
presented in [16]. That being said, a new threshold selection technique is proposed that is based on

Chapter 1. Introduction

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.4. DISSERTATION OUTLINE 3

a standardised-weighted adjusted Kolmogorov-Smirnov test. The new test outperforms in the bootstrap
threshold selection technique presented in [16], in addition to being vastly less computationally intensive.

1.4 Dissertation outline

• In Chapter 2 the criteria used to measure the performance of a quantile estimate are introduced. More
so, the use of typical non-parametric and parametric quantile estimating techniques are investigated.
Thereafter, limitations and potential drawbacks of non-parametric and parametric quantile estimating
techniques are discussed.

• Chapter 3 introduces the notion of a �exible censored-adjusted semi-parametric model for lower quan-
tile estimation. Furthermore, the concept of arti�cial censoring is discussed. Thereafter, the semi-
parametric model is �tted to the tail of a dataset using censored maximum likelihood estimation. More-
over, a comparison of various parametric, non-parametric and semi-parametric quantile estimation
techniques is explored. An introduction of the censored and uncensored Weibull mixture distribution is
presented. The expectation-maximisation (EM) algorithm for parameter estimation for the censored and
uncensored Weibull mixture models is presented. Thereafter, a simulation comparison of the censored
and uncensored Weibull mixture distribution's quantile estimates is given.

• Chapter 4 is devoted to the data-driven threshold selection techniques for lower quantile estimation.
That is, an introduction to the bootstrap threshold censored Weibull MLE (B-MLE) is presented. Fol-
lowed by the estimation of MSE using a bootstrap approach. Thereafter, the standardised-weighted
adjusted Kolmogorov-Smirnov test statistic (SWAKS) is proposed and studied. Finally, a simulation
comparative study of the data-driven threshold selection techniques is presented.

• Chapter 5 presents conclusive remarks and a summary on the material covered in this dissertation.

1.5 Simulation settings

There are several simulation studies in [16] that are re-worked and presented in this dissertation. The
simulation settings remain constant throughout the study and are presented here for ease of readability later.
Given that a large portion of the work covered in [16] is presented and compared to, it is prudent to use the
same simulation settings present in that study. That is:

• The number of Monte-Carlo repetitions is �xed at N = 10000 (unless speci�ed otherwise).

• The number of bootstrap repetitions is set to B = 5000 (unless speci�ed otherwise).

• The parametric distributions used to imitate the real MOR datasets are the Weibull, Log-normal,
Gamma, Minimum Gumbel, two-component normal mixture, two-component log-normal mixture and
two-component Weibull mixture.

• The sample size of the simulated data is �xed at n = 300.

• The quantile estimate of interest is the 5th quantile.

1.6 List of acronyms and notation

The acronyms and notation provided below are used frequently throughout this dissertation and are included
here for ease of reference.

• EVT: Extreme value theory.

• MOR: Modulus of Rupture.

Chapter 1. Introduction

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.6. LIST OF ACRONYMS AND NOTATION 4

• GDP: Generalised Pareto distribution.

• MLE: Maximum likelihood estimation/estimates.

• CW-MLE: Censored Weibull MLE.

• MIX: Uncensored Weibull mixture.

• MIX7: Censored Weibull mixture using the 70th percentile as the censoring threshold.

• B-MLE: Bootstrap threshold censored Weibull MLE.

• KS: Kolmogorov-Smirnov test.

• SWAKS: Standardised-weighted adjusted Kolmogorov-Smirnov test or Standardised-weighted log-
adjusted Kolmogorov-Smirnov test (used interchangeably).

• SWAKS-MLE: SWAKS threshold censored Weibull MLE.

• EMP: Empirical quantile estimate using the Type 9 de�nition.

• PDF: Probability density function.

• CDF: Cumulative distribution function.

• ECDF: Empirical cumulative distribution function.

• KDE: Kernel density estimation.

• KDe: Kernel density estimate.

• MSE: Mean square error.

• RMSE: Root mean square error.

• AIC: Akaike information criterion.

• BIC: Bayesian information criterion.

• D (·) : Kolmogorov-Smirnov statistic.

• DTRUNC (·) : Truncated Kolmogorov-Smirnov statistic.

• DAKS (·) : Adjusted truncated Kolmogorov-Smirnov statistic.

• DWAKS (·) : Weight adjusted truncated Kolmogorov-Smirnov statistic.

• DSWAKS (·) : Standardised-weighted adjusted truncated Kolmogorov-Smirnov statistic.

• L (·) : Likelihood function.

• LI (·) : Type I censoring likelihood.

• LII (·) : Type II censoring likelihood.

• l (·) : Log likelihood function.

• lc (·) : Complete log-likelihood.

• lI (·) : Incomplete log-likelihood.

• L (·) : Lagrangian multiplier.

Chapter 1. Introduction

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.6. LIST OF ACRONYMS AND NOTATION 5

• −2log (λ) : Log likelihood ratio statistic.

• →: Converges

• asymptotically→ : Converges asymptotically.

• d→: Converges in distribution.

• θ : Vector of true population parameters.

• θ̂, θ̃ : Vector of parameter estimates.

• θ(r) : Parameter estimates after the rth EM algorithm iteration.

• πi : Mixture probabilities.

• q : True population quantile.

• q̃ : Sample quantile estimate.

• q̄ : KDe quantile estimate.

• I(·) : Indicator function.

• C : Censoring threshold.

• F (·) , G (·) , H (·) : General population cumulative distribution function.

• F̂ (·) : Empirical cumulative distribution function.

• F̃ (·) : Parametric cumulative distribution function.

• Q (·) : Expected value of the complete log-likelihood function of θ.

• b : Bandwidth parameter.

• k (·) : Kernel function.

• k̃b (·) : Kernel density estimate.

• K̃b (·) : Kernel density cumulative distribution function.

Chapter 1. Introduction

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2

Classical Quantile Estimation

Chapter highlights

The highlights for Chapter 2 include:

• Introducing criteria that are used to measure the performance of a quantile estimate.

• The use of typical non-parametric and parametric quantile estimation techniques.

• Limitations and potential drawbacks of non-parametric and parametric quantile estimation techniques.

Chapter outline

6

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.1. INTRODUCTION 7

2.1 Introduction

This chapter revisits a few core concepts and methodologies presented in Chapters 1 and 2 in [16]. It is
crucial to make use of a statistically sound approach to measure the performance of lower quantile estimates.
The mean square error (MSE) and root mean square error (RMSE) are introduced in Section 2.2 to study
this qualitative behaviour of the lower quantile estimates. Furthermore, this chapter revisits and discusses
some advantages and limitations for both parametric (Subsection 2.3.1) and non-parametric (Subsection
2.3.2) techniques that can be used for quantile estimation. In the parametric approach, four distributions
are initially used in an attempt to approximate the true distribution of the MOR datasets seen in Chapter
1, namely the Weibull, log-normal, minimum Gumbel and gamma distribution, from which the parametric
quantile estimates can be obtained. For the non-parametric case, the focus is mainly on empirical quantile
estimates, as well as quantile estimates obtainable from a kernel density estimate.

2.2 Performance measures for lower quantile estimates

Before introducing the various techniques and methodologies used to obtain quantile estimates, it is necessary
to discuss how to evaluate the performance and quality of a quantile estimate. The mean square error (MSE)
will be used to evaluate the quality of the quantile estimate, since the statistical measure encompasses both
the bias and variance [2]:

EH (q̃n − q)2 = V ar (q̃n) + [EH (q̃n)− q]2 , (2.2.1)

where q̃n is the quantile estimate from a sample of size n and q is the true quantile under the model H of the
population. In order to thoroughly revisit the work presented in [16], the root mean square error (RMSE)
will also be considered in the simulation results presented in Chapters 3 and 4. The MSE and RMSE of the
quantile estimate q̃n under the population model will be estimated as follows:

M̂SE = d̄ =
1

N

N∑
i=1

di (2.2.2)

R̂MSE =

√
M̂SE =

√
d̄, (2.2.3)

where di =
(
q̃in − q

)2
and the superscript indicates the index of the quantile and the subscript the sample

size. The bias (referred to as the accuracy hereafter) and the standard error of the quantile estimator
(also referred to as the e�ciency hereafter) will be included in this dissertation to study the accuracy and
e�ciency of the quantile estimates.

Furthermore, the e�ciency of the M̂SE and R̂MSE can be evaluated by studying the Monte Carlo error
of these estimates and the interested reader is referred to Chapter 1 in [16] for a detailed explanation.

2.3 Classic approaches to lower quantile estimation

In this section, the work covered in Chapter 2 in [16] is revisited. In particular a parametric and non-
parametric approach to lower quantile estimation is discussed.

2.3.1 A parametric approach

A parametric approach to lower quantile estimation is initially explored to accommodate the natural �ow
that most readers are typically accustomed to.

Following from Section 2.2, the performance of quantile estimates can be gauged by utilising various
probability density functions (PDF) in an attempt to imitate the MOR datasets presented in Chapter 1. It

Chapter 2. Classical Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.3. CLASSIC APPROACHES TO LOWER QUANTILE ESTIMATION 8

is therefore natural to explore parametric approximations of the true distribution of the data in hope of
obtaining more e�cient quantile estimates [22].

According to [16] the Weibull, Gamma, Log-Normal and Minimum Gumbel distribution are frequently
used in modeling the strength of materials and are presented below.

2.3.1.1 Weibull distribution

The two-parameter Weibull distribution, [24] with PDF is given by

f (x, β, η) =
β

η

(
x

η

)β−1
exp

(
−
(
x

η

)β)
, x ≥ 0, β ≥ 0, η ≥ 0 (2.3.1)

and the cumulative distribution function (CDF) is

F (x, β, η) = 1− exp

(
−
(
x

η

)β)
, x ≥ 0, β ≥ 0, η ≥ 0. (2.3.2)

The history and introduction of the Weibull distribution can be found in [14] and [19]. The Weibull distri-
bution is a popular choice for survival analysis [19] and the American Society for Testing and Materials [1],
make use of the Weibull distribution for testing strength properties of materials.

2.3.1.2 Gamma distribution

The Gamma distribution is a fundamental distribution in statistics [12] and is closely related to many other
distributions including the exponential, Erlang, chi-square, Nakagami-m and generalised gamma [23], to name
a few. The gamma distribution is also a popular distribution in survival analysis and the PDF is given by

f (x, θ, κ) =
xθ−1

Γ (θ)κθ
exp

(x
κ

)
, x ≥ 0, θ > 0, κ > 0, (2.3.3)

and the CDF is

F (x, θ, κ) =
γ
(
θ, xκ

)
Γ (θ)

, x ≥ 0, θ > 0, κ > 0. (2.3.4)

where Γ (θ) =
∞∫
0

tθ−1e−tdt and γ
(
θ, xκ

)
denote the gamma and lower incomplete gamma function respectively.

2.3.1.3 Log-normal distribution

The log-normal distribution is the exponential transformation of a random variable that is normally dis-
tributed [12], if X ∼ Lognormal (µ, σ) then log(X) ∼ Normal (µ, σ). The log-normal distribution is used
in survival analysis as well as in EVT [5]. The PDF of the log-normal distribution is given by

f (x, µ, σ) =
1

xσ
√

2π
exp

(
− (log (x)− µ)

2

2σ2

)
, x ≥ 0, µ ∈ (−∞, ∞) , σ > 0, (2.3.5)

and the CDF is

F (x, µ, σ) = Φ

(
log (x)− µ

σ

)
, x ≥ 0, µ ∈ (−∞, ∞) , σ > 0, (2.3.6)

where Φ (.) is the CDF of a standard normal distribution.

Chapter 2. Classical Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.3. CLASSIC APPROACHES TO LOWER QUANTILE ESTIMATION 9

2.3.1.4 Minimum Gumbel distribution

The Gumbel distribution was introduced by [9] and [8] and is well rooted in EVT, since it corresponds
to the Type I extreme value distribution (ξ = 0) . In the simulations for this study the Minimum Gumbel
distribution will be considered since the focus is on lower quantile estimation. The PDF of the Minimum
Gumbel distribution is given by

f (x; a, b) =
1

b
exp

(
x− a
b
− exp

(
x− a
b

))
, x ∈ <, a ∈ (−∞, ∞) , b > 0 (2.3.7)

and the CDF is

F (x; a, b) = 1− exp
(
−exp

(
x− a
b

))
, x ∈ <, a ∈ (−∞, ∞) , b > 0.

The simplistic and pleasant notation for the minimum Gumbel distribution is adopted from [16] to en-
hance the quality of the reading experience.

These four distributions are �tted to the real MOR datasets to identify which models �t the data most
accurately, more importantly the left tail, given that the interest here is lower quantile estimation. The
parameters for the aforementioned distributions are �tted via maximum likelihood estimation (MLE) and
have been conveniently summarised in Tables 2.3.1 and 2.3.2.

Model Parameters D
(
F̃n − F̂n

)
AIC q̂0.05

Weibull β̂ = 5.19 η̂ = 7.26 0.082 350.18 4.10
Log-normal µ̂ = 1.881 σ̂ = 0.212 0.060 347.29 4.62

Gamma θ̂ = 22.99 κ̂ = 0.291 0.053 344.98 4.58

Minimum Gumbel α̂ = 7.412 b̂ = 1.422 0.106 366.41 3.19

Table 2.3.1: Goodness-of-�t and quantile estimates for parametric models for MOR1.

Model Parameters D
(
F̃n − F̂n

)
AIC q̂0.05

Weibull β̂ = 5.23 η̂ = 7.39 0.071 1014.71 4.19
Log-normal µ̂ = 1.89 σ̂ = 0.22 0.049 1021.15 4.63

Gamma θ̂ = 21.46 κ̂ = 0.22 0.046 1012.95 4.59

Minimum Gumbel α̂ = 7.53 b̂ = 1.41 0.1 1050.36 3.36

Table 2.3.2: Goodness-of-�t and quantile estimates for parametric models for MOR2.

Figure 2.3.1 illustrates the MLE �tted curves for both MOR1 and MOR2 datasets. It is clear that the �t
of these models are di�erent, however visually it is di�cult to justify which performs the best. In order
to compare the models, the goodness-of-�t achieved by each is compared by making use of the Akaike
information criterion (AIC) and the Kolmogorov-Smirnov statistic (KS):

D
(
F̃n − F̂n

)
= sup

x

{∣∣∣F̃n (x)− F̂n (x)
∣∣∣} .

F̂n (x) is the ECDF and F̃n (x) is the parametric CDF. The KS statistic measures the absolute distance
between the ECDF and the parametric CDF of interest. A similar notation to [16] is adopted here due to
its simplistic reading style. From a goodness-of-�t point of view summarised in Tables 2.3.1 and 2.3.2, it is
quite challenging to select a clear 'winner' for either MOR1 and MOR2. Goodness-of-�t is not of much use

Chapter 2. Classical Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.3. CLASSIC APPROACHES TO LOWER QUANTILE ESTIMATION 10

MOR1

D
e
n
s
it
y

4 6 8 10

0
.0

0
.1

0
.2

0
.3

Weibull

lognormal

gamma

Gumbel

MOR2

D
e
n
s
it
y

4 6 8 10

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5 Weibull

lognormal

gamma

Gumbel

Figure 2.3.1: Various �tted parametric models for MOR1 and MOR2 datasets.

in this case and the quantile estimates for both datasets vary considerably. Choosing a parametric PDF can
be challenging and may have adverse e�ects in practice. For example, an increased bias for estimators from
miss-speci�ed models [16, 17].

2.3.2 A non-parametric approach

As mentioned in Subsection 2.3.1, the work covered in this section is revisits Chapter 2 in [16]. More so, a
few concepts are studied and elaborated in more depth.

2.3.2.1 An empirical approach to lower quantile estimation

The empirical cumulative distribution function (ECDF), F̂n, for an independent and identically distributed
(i.i.d.) sample X1, · · · , Xn is given by [2]:

F̂n (x) =
1

n

n∑
i=1

I {Xi ≤ x} , (2.3.8)

where I(·) is an indicator function. The value of the indicator function is 1 when Xi ≤ x and 0 otherwise.
The quantile of a distribution is de�ned as [10]:

Q (p) = F−1 (p) = inf {x : F (x) ≥ p} , 0 < p < 1, (2.3.9)

where F is the true CDF approximated by F̂n (x) . It follows that the empirical quantile estimate of interest
is given by:

Q̂ (p) = F̂n (p) = inf
{
x : F̂n (x) ≥ p

}
, 0 < p < 1.

There are various de�nitions of the empirical quantiles that are obtainable from di�erent functions of the
inverse of the ECDF. Statistical software packages usually contain nine common de�nitions of sample quantile
estimates. For example, the �quantile� function in the R software package provides the nine variations on
how to calculate the empirical quantile. Three of these de�nitions are based on rounding and six on linear
interpolation. In R, all sample quantiles are de�ned as weighted averages of consecutive order statistics. The
sample quantile for de�nition i (Type i) is given by:

Chapter 2. Classical Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.3. CLASSIC APPROACHES TO LOWER QUANTILE ESTIMATION 11

Q̂Type i (p) = (1− γ)xj + γxj+1, (2.3.10)

where j−m
n ≤ p < j−m+1

n , x(j) is the j
th order statistic, n is the sample size, γ is a function of j = bpn+mc

and g = np + m − j and m ∈ < is a constant determined by the sample quantile de�nition. Note that, bgc
is a �oor function which denotes the largest integer no greater than g. These de�nitions are provided and
studied in detail in [10]. This study will focus mainly on Type 3 and Type 9. The Type 3 de�nition is given
by:

Q̂Type 3 (p) =

{
xj γ = 0

xj+1 γ > 0
, (2.3.11)

where m = −1/2, γ = 0 if g = 0 and j is even, and 1 otherwise. In other words, Type 3 provides the nearest
even order statistic.

The Type 9 sample quantile is obtained by linear interpolation between the points (pk, xk) and its

de�nition is given by (2.3.10), with γ = g, m = p/4 + 3/8, pk = k−3/8
n+1/4 . The Type 3 de�nition only uses one

order statistic to compute the sample quantile, which has been questioned due to the ine�cient use sample
information and may lead to biased estimates. As a result of this drawback, alternative de�nitions involving
a linear interpolation between two order statistics are preferred, for example the Type 9 de�nition.

Simulation study to determine the most suitable empirical quantile estimate

The choice of the above quantile de�nitions were not chosen at random. Several simulations, under various
distributional models, were performed in order to choose the most suitable de�nition for this study. The
simulation results for the 5th quantile are provided in Figure 2.3.2 and Table 2.3.4. The PDFs that were
used in the simulation study are provided in Table 2.3.3. The choice of parameters for these PDFs will be
explored in Chapter 3. The simulation procedure is summarised in Algorithm 2.1.

Distribution Parameters

Weibull (α, η) = (7, 7)
Gamma (θ, κ) = (14, 0.6)

Log-Normal (u, σ) =(2, 0.3)
Minimum Gumbel (a, b) =(7, 0.5)

Table 2.3.3: Distributions used in quantile estimation study.

Algorithm 2.1 Simulation study to determine the most suitable empirical quantile estimate.

1. A sample of size n = 300 observations is randomly generated from each of the models in Table 2.3.3.

2. The 5th quantile estimates are computed as q̃n for the nine empirical quantile de�nitions available in
R and for each model in Step 1.

3. Calculate di =
(
q̃in − q

)2
where q is the true quantile under each respective model.

4. This process is repeated for N = 10000 repetitions in order to obtain the R̂MSE estimate for each
empirical quantile de�nition and model for 5th quantile.

Figure 2.3.2 displays the boxplot of the distribution of the 5th empirical percentile from the simulations for
the models in Table 2.3.3. The horizontal coloured lines indicate the true 5th empirical percentile under each
model. The Type 9 de�nition (based on linear interpolation) produces quantile estimates that are almost

Chapter 2. Classical Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.3. CLASSIC APPROACHES TO LOWER QUANTILE ESTIMATION 12

1
2

3
4

5
6

7
8

9

4.04.24.44.64.85.05.2

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

 d
e
fi
n
it
io

n

Quantile value

(a
)
W
e
ib
u
ll

(
7
,
7
)

1
2

3
4

5
6

7
8

9

4.55.05.5

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

 d
e
fi
n
it
io

n

Quantile value

(b
)
G
a
m
m
a

(
1
4
,
0
.6

)

1
2

3
4

5
6

7
8

9

4.04.24.44.64.85.0

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

 d
e
fi
n
it
io

n

Quantile value

(c
)
lo
g
-
n
o
r
m
a
l
(
2
,
0
.3

)

1
2

3
4

5
6

7
8

9

5.05.25.45.65.8

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

 d
e
fi
n
it
io

n

Quantile value

(d
)
M
in
im
u
m

G
u
m
b
e
l
(
7
,
0
.5

)

F
ig
u
re

2
.3
.2
:
B
ox
p
lo
ts

o
f

5
th

q
u
a
n
ti
le
es
ti
m
a
te

fo
r
th
e
n
in
e
em

p
ir
ic
a
l
q
u
a
n
ti
le
d
e�
n
it
io
n
s
fo
r
va
ri
o
u
s
m
o
d
el
s.

Chapter 2. Classical Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.3. CLASSIC APPROACHES TO LOWER QUANTILE ESTIMATION 13

Type Weibull (7, 7) gamma (14, 0.6) log-normal (2, 0.3) Min Gumbel (7, 0.5)
1 0.173 0.195 0.165 0.131
2 0.169 0.192 0.162 0.127
3 0.173 0.195 0.165 0.131
4 0.173 0.195 0.165 0.131
5 0.169 0.192 0.162 0.127
6 0.172 0.195 0.164 0.131
7 0.169 0.194 0.164 0.127
8 0.169 0.192 0.162 0.128
9 0.168 0.192 0.162 0.127

Table 2.3.4: RMSE for the 5th quantile per empirical quantile de�nition for various models and where n = 300
and N = 10000.

unbiased (the coloured horizontal lines overlap the median almost perfectly) under each model in Table 2.3.3.
Table 2.3.4 provides the RMSE for the 5th quantile estimates per empirical quantile de�nition for each model
in Table 2.3.3. From the simulations it is clear that Type 9 performs the best (has the smallest RMSE
values for each model) and is, therefore, the best all round performer in terms of accuracy and e�ciency.
Furthermore, according to [20],

√
n (q̃n − q)

d→ N

(
0,
p(1− p)
f2(q)

)
(2.3.12)

where f(·) is the true PDF for the data under consideration. For this study, however, there are very few
observations in the tail, as seen in Figure 1.0.1, and as a result f(q) is likely to be very small. This implies
that the variance of the quantile estimates may become very large and ultimately unreliable. For a detailed
explanation readers are referred to [16].

2.3.2.2 Kernel density estimates of quantiles

Kernel density estimation (KDE) is a non-parametric approach of estimating the PDF of a random variable
and is a useful statistical tool for creating smooth curves for a given dataset, in addition to visualizing the
shape of the data. Moreover, KDE is the continuous analog for a discrete histogram of the data. Intuitively
speaking, a kernel density estimate (KDe) is the summation of �bumps�, where a �bump� is assigned to each
observation. The size of the �bump� represents the probability assigned in the neighborhood of values around
each observation. The more data points at each observation, the higher the amplitude of the �bump�. Each
�bump� is centered at the observation and symmetrically covers the observation's neighboring values. The
�bump� is referred to as a kernel, a symmetric function that integrates to one. Each kernel has a bandwidth,
which determines the width of the �bump� (the width of the neighborhood of values to which probability is
assigned). A larger bandwidth leads to a shorter and wider �bump�, in other words the kernel spreads out
farther from the center and assigns more probability to the neighboring values.

The KDe can be written as [21]:

k̃b (x) =
1

nb

n∑
i=1

κ

(
x−Xi

b

)
. (2.3.13)

where k (·) is the kernel function. The concept of weighting the distances of the observations from a particular
point, x, is given by (2.3.13).

The focus of this study is on lower quantile estimation, therefore, only the Gaussian kernel is considered.
The smoothing parameter is denoted by b. The smoothing parameter is selected by making use of the
�Solve-the-Equation� approach recommended by [13] and is readily available in R.

Chapter 2. Classical Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.4. CHAPTER SUMMARY 14

The KDe is a consistent estimator of the true PDF, that is, k̃b (x)
asymptotically→ f (x) ∀ x if the bandwidth

b → 0 and nb → ∞ when n → ∞, see [11, 22]. The quantile estimate from the KDe, q, is obtained by
numerically solving the inverse of the estimated KDe CDF:

K̃b (x) =

x∫
−∞

k̃b (u) du. (2.3.14)

Simulation study to determine kernel density and quantile estimates

According to the �Solve-the-Equation� approach, the bandwidth for MOR1 is 0.51648 while the bandwidth
for MOR2 is 0.07232. The KDe curves are provided in Figure 2.3.3. The performance of the KDe quantile
estimates for the MOR datasets will be studied in Chapter 3.

MOR1

D
e
n
s
it
y

4 6 8 10

0
.0

0
.1

0
.2

0
.3

MOR2

D
e
n
s
it
y

4 6 8 10

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

Figure 2.3.3: Fitted kernel density estimation curves for MOR1 and MOR2.

2.4 Chapter summary

Chapter 2 revisits key concepts presented in Chapters 1 and 2 of [16]. That is, this chapter introduces
criteria that is used to measure the performance of a quantile estimate, as well as typical parametric and
non-parametric approaches to quantile estimation. The non-parametric approach includes empirical quantile
estimation which is commonly used and employed by major statistical software packages such as R. The idea
behind the empirical quantile estimation procedure is to make use of functions that use at most two sample
order statistics to estimate the quantiles of interest. Furthermore, quantile estimation using KDE is also a
popular non-parametric quantile estimation technique. The quantile estimates can be made more e�cient,
compared to the empirical estimates, by smoothing over the entire dataset when using KDE. Alternatively, a
parametric distribution can be �tted to the sample data in order to obtain quantile estimates from the �tted
PDF.

Moreover, this chapter discusses a few advantages and limitations for both said techniques. Due to the
nature of extreme lower quantile estimation, that is there is typically a scarcity of data available in the
tail, the variance (and standard errors) of the KDe and empirical quantile estimates may become large and
ultimately unreliable. In Chapter 3 it will be shown that the parametric quantile estimate, even though
e�cient, can be signi�cantly biased if the incorrect model is chosen. These issues provide the motivation for
a technique that addresses these limitations present in the parametric and non-parametric quantile estimates.
This technique will also be discussed in detail in the next chapter.

Chapter 2. Classical Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3

Censored and Mixture Models for Lower

Quantile Estimation

Chapter highlights

The highlights for Chapter 3 include:

• Introduction to arti�cial censoring and a �exible ensored-adjusted semi-parametric model for lower
quantile estimation..

• Fitting a parametric distribution to the tail of a dataset using censored maximum likelihood estimation.

• A comparison of various parametric, non-parametric and censored-adjusted semi-parametric quantile
estimation techniques.

• Introduction of the censored and uncensored Weibull mixture models.

• The Expectation Maximisation (EM) algorithm for parameter estimation for the censored and uncen-
sored Weibull mixture models.

• A simulation comparison of the censored and uncensored Weibull mixture models' quantile estimates.

3.1 Introduction

Chapter 2 discussed a few shortcomings of parametric and non-parametric approaches to lower quantile
estimation. One particular solution would be to consider models that only �t the left tail of the data
suitably well instead of the entire distribution thereof. This alternative suggests that lower quantiles can be
determined su�ciently by the PDF below the true quantile of interest [16]. Section 3.2 introduces the concept
of arti�cial censoring that is used in order to focus on the estimation of the parametric tail. In Subsection
3.2.3, the motivation behind the choice of the Weibull distribution as the parametric left tail is motivated
from a statistical and empirical perspective. The computation and formulation of the censored Weibull MLE
is discussed in Subsection 3.2.4. The censored Weibull MLE approach does not make use of all the sample
information due to the large proportion of censoring, and may therefore not be fully e�cient. One particular
approach to making use of the entire data set, whilst being mindful of the accuracy of the quantile estimate,
is to consider a mixture model. The uncensored Weibull mixture model is introduced in Subsection 3.3.1.
The EM algorithm that is used for parameter estimation is introduced in Subsection 3.3.2. The censored
Weibull mixture model and its parameter estimates are discussed in Subsection 3.3.4. A simulation study
to initially compare four (non-mixture) quantile estimation techniques is provided in Section 3.4. Finally, a
simulation study to compare the censored Weibull MLE, censored and uncensored Weibull mixture quantile
estimation techniques is provided in Subsection 3.4.2.

15

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.1. INTRODUCTION 16

Chapter outline

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.2. A CENSORING APPROACH TO LOWER QUANTILE ESTIMATION 17

3.2 A censoring approach to lower quantile estimation

A short introduction to censoring is discussed below, followed by the concept of subjective censoring. Further-
more, the censored-adjusted semi-parametric model used by [16] as a solution to the potential drawbacks of
classical parametric and non-parametric lower quantile estimation is thoroughly re-worked and investigated.

3.2.1 Introduction to censoring

In statistics, data is censored if the exact values of each observation are not known, however, some information
with respect to every observation in relation to certain bounds is available. In other words, partially observed
observations will still be used in the statistical analysis. Censoring plays a vital role in statistical inference
see [14]. For example, a wooden board that does not break under progressive levels of stress will not be
stressed until breakage, but instead the information that it has survived up to a certain level of stress will be
used in the statistical analysis.

Censoring can be considered as informative or non-informative [14]. Generally speaking, informative
censoring occurs if the censored observations give additional information about the remaining uncensored
observations which are to be analysed. Censoring is considered to be non-informative if the censored obser-
vations give no additional information about remaining uncensored observations. For example, during the
modulus of rupture strength tests, if the darker hue wooden boards are thrown away this does not imply
the lighter hue boards have a higher or lower stress load strength. Furthermore, non-informative censoring
can be classi�ed into Type I and II censoring: Type 1 censoring occurs when the censoring mechanism is
known in advance. For example, a wooden board's strength is only known when it is smaller than a speci-
�ed/predetermined strength value [16]. Type II censoring occurs if the observational study is continued until
a predetermined number of subjects have experienced the event of interest. For example, in an experiment
consisting of n wooden boards; if the stress applied to the wooden boards increase from 0 consistently (on all
boards simultaneously) then the experiment will stop once r out of n boards break. The partially observed
observations in this case would consist of the strength measures of the remaining n− r boards. It is impor-
tant to note that the strengths of the remaining n − r boards are known only to be larger than X(r) where
X(1), X(2), . . . , X(r) are the smallest r order statistics [16].

The censoring mechanism used throughout the rest of this study and in Chapter 3 of [16] cannot be
directly assigned to one of the categories mentioned above. Reason being, the strength of every wooden
board in the MOR datasets are known, that is there is no censoring present. The methodology behind
the subjective censoring mechanism is to focus on the behaviour of the left tail of the sample. This can
be achieved by 'arti�cially' (subjectively) censoring observations larger than some threshold C. The 10th

empirical percentile (Type 3 de�nition in R) is used as the censoring threshold to estimate the 5th percentile
[16]. The choice of this censoring threshold is not random and as mentioned in [16], it is a requirement by
the industrial standards document [1].

To incorporate the subjective censoring, where 90% of the observations are arti�cially censored, Type I
censoring can be used. Again the 10th empirical percentile (Type 3 de�nition in R) is used as the censoring
threshold. The Type I and II censoring likelihoods are given by [14]:

LI (X, θ) =
n∏
i=1

[f (Xi; θ)]
δi [1− F (C, θ)]

1−δi (3.2.1)

LII (X, θ) =
n!

(n− r)!

r∏
i=1

f
(
X(i); θ

) {
1− F

(
X(r)

)
; θ
}n−r

, (3.2.2)

where δi = I (Xi ≤ C) is an indicator function, X = (X1, . . . , Xn), f(·; θ) and F (·; θ) are the PDF and CDF
respectively and X(i), i = 1, 2, . . . , r, are the order statistics. The censoring can equivalently be viewed as
Type II, where the experiment will be concluded once 10% of the n wooden boards break. Here, it should
be noted that if C = X(r), then (3.2.1) and (3.2.2) only di�er by the constant n!

(n−r)! , since δi = 1 only r

times out of n. Interested readers are referred to Chapter 3 of [16] for a detailed explanation. The Type I
censoring will be used throughout this study except for Chapter 4 where Type II will be used.

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.2. A CENSORING APPROACH TO LOWER QUANTILE ESTIMATION 18

3.2.2 A censored-adjusted semi-parametric approach to lower quantile estima-

tion

It is well known that non-parametric estimators have a tendency to su�er from larger varainces compared
to their parametric counterparts, however, parametric estimators may su�er from larger biases under miss-
speci�ed models [16]. An interesting solution to these shortcomings would be to consider the censored-
adjusted semi-parametric model used in [16]. That is, to consider models that only �t the left tail of the
data suitably well instead of the entire distribution thereof. This alternative suggests that lower quantiles
can be determined su�ciently by the PDF below the true quantile of interest [16]. Therefore, a parametric
distribution only has to be speci�ed for the lower tail, which results in a censored-adjusted semi-parametric
model [16]:

g (x; θ, C) =

{
f (x; θ) x ≤ C
h (x) x > C

. (3.2.3)

Here f (x; θ) is the parametric PDF for the lower tail. C is referred to as the censoring threshold, where
the non-parametric part, h (x), starts and the parametric PDF ends (h (x) can be an unspeci�ed PDF). The
following two requirements ensure that g (x) is a well de�ned PDF [16]:

1. h (x) ≥ 0, x > C

2.
∞∫
C

h (x) dx = 1−G (C) = 1− F (C, θ) .

The elegance of this censored-adjusted semi-parametric approach allows a quantile estimate to be obtained
using only the parametric PDF �tted to the lower tail of a dataset. When estimating the lower quantile of
interest, it is not necessary to estimate h (x) nor C for this semi-parametric model [16]. Subjective/arti�cial
censoring methods will be used for parameter estimation of the parametric PDF in (3.2.3).

A note going forward

In order to distinguish the subjective censoring approach from ordinary Type 1 censoring, the above approach
of maximising the subjective censored likelihood will be referred to as the censored MLE where the threshold
is the pth empirical percentile. It should be noted that the empirical quantile that will be used as the threshold
is the Type 3 de�nition discussed in Chapter 2, as speci�ed in the industrial standard document [1] and [16].
The empirical quantile that is treated as a quantile estimate is the Type 9 de�nition, which performed better
than Type 3 according to Chapter 2.

For ease of readability, the censored Weibull MLE (the motivation behind this choice of parametric model
is discussed below) with the threshold set at the 10th empirical percentile will be denoted by CW-MLE. The
MLE without censoring will be referred as the ordinary MLE (O-MLE).

3.2.3 Selecting a parametric lower tail

The two fundamental components of (3.2.3) are the subjective censoring and the choice of the parametric
tail. The four distributions considered were presented in Chapter 2 Subsection 2.3.1. These distributions are
considered to align with the work presented in [16].

All models discussed in Chapter 2 Subsection 2.3.1 are well rooted in literature, in particular for modeling
extreme lower tail behaviour. Each model is �tted to the lower tail of the MOR1 and MOR2 datasets, whilst
making use of arti�cial censoring. The 10th empirical percentile is used as the censoring threshold. The plots
of the censored MLE for the four models can be seen in Figure 3.2.1, which provide a further (empirical)
justi�cation for the choice of parametric model.

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.2. A CENSORING APPROACH TO LOWER QUANTILE ESTIMATION 19

DTRUNC
(
F̃n − F̂n (x)

)
Quantile Estimate

Model MOR1 MOR2 MOR1 MOR2
Weibull 0.014 0.011 4.50 4.64

Log-normal 0.013 0.009 4.48 4.59
Gamma 0.013 0.009 4.51 4.57

Minimum Gumbel 0.015 0.013 4.53 4.71

Table 3.2.1: Left tail goodness-of-�t of the parametric models and corresponding 5th quantile estimates for
MOR1 and MOR2 datasets.

MOR1

D
e
n
s
it
y

4 6 8 10

0
.0

0
.1

0
.2

0
.3

Weibull

lognormal

gamma

Gumbel

Threshold

MOR2

D
e
n
s
it
y

4 6 8 10

0
.0

0
.1

0
.2

0
.3

Weibull

lognormal

gamma

Gumbel

Threshold

Figure 3.2.1: Subjectively censored parametric models for MOR1 and MOR2 datasets.

In Figure 3.2.1 the curves of the models for both datasets di�er signi�cantly on the right of the censoring
threshold (indicated by the vertical line) or the right tail. In the left tail, the curves are indistinguishable.
The y axis has been limited to 0.3 to ensure as little distortion as possible. In order to study how well these
models approximate the left tail of the dataset, a truncated Kolmogorov-Smirnov statistic is used [16]. This
statistic measures the maximum absolute distance between the ECDF F̂n (x) and the �tted parametric CDF,

F̃n (x) , up to the censoring threshold C :

DTRUNC
(
F̃n − F̂n

)
= sup
x≤C

{∣∣∣F̂n − F̃n∣∣∣} . (3.2.4)

The DTRUNC
(
F̃n − F̂n

)
statistic for each of the four models considered is presented in Table 3.2.1.

Here, the DTRUNC (·) notation is used to indicate that a truncated KS is used. It should be clear that the

DTRUNC
(
F̃n − F̂n

)
for the di�erent models are quite similar for each dataset. For both the MOR1 and

MOR2 dataset the values are around 0.01, which is an indication that these models �t the left tail of the
datasets reasonably well. Similarly, it should not be surprising that the 5th quantile estimates for the di�erent
models do not di�er signi�cantly from one another for each dataset. Ultimately, the choice of the parametric
lower tail will not have a major impact on the quantile estimate. Given that the �t of the models is quite
indistinguishable, the recommendation by the [1] and [16] will be followed and the Weibull distribution will
be used to model the lower tail in the CW-MLE (discussed below). The censored likelihood and quantile
functions (where applicable) for the gamma, log-normal and minimum Gumbel distribution have also been
provided for completeness.

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.2. A CENSORING APPROACH TO LOWER QUANTILE ESTIMATION 20

3.2.4 Computation of the censored MLE

The approach followed in this section is to re-work and supplement Section 3.5 in [16]. That is, to maximise
the Type I censored likelihood (3.2.1) in order to obtain the parameter estimates for the lower tail of the
four distributions discussed in Chapter 2 Subsection 2.3.1. These parameter estimates can in turn be used
to obtain quantile estimates. In particular the logarithm of (3.2.1) will be maximised.

3.2.4.1 The censored Weibull MLE

l (X; β, ζ, C) = log

(
n∏
i=1

[f (Xi; θ)]
δi [1− F (C, θ)]

1−δi

)

=
r∑
i=1

log (f (Xi; θ)) +
n−r∑
i=1

log (1− F (C; θ))

=
r∑
i=1

log

(
β

η

(
xi
η

)β−1
exp

(
−
(
xi
η

)β))
+
n−r∑
i=1

log

(
1−

(
1− exp

(
−
(
C

η

)β)))

= rlog (β) + rlog (ζ) + (β − 1)

r∑
i=1

log (xi)− ζ
r∑
i=1

xβi − (n− r) ζCβ . (3.2.5)

It is assumed thatX1, X2, . . . , Xn are i.i.d. from a population model F (the choice of F will be discussed later)
and X1, X2, . . . , Xr ≤ C and Xr+1, Xr+2, . . . , Xn ≥ C four all four models discussed here. Furthermore,
ζ = η−β is used for computational convenience. Lastly, if C > max {Xi} for all i then it follows that r = n
and (3.2.5) is the likelihood of the ordinary Weibull MLE.

Taking the derivative of (3.2.5) with respect to β and ζ,


∂l
∂β = r

β+
r∑
i=1

log (xi)− (n− r) ζCβlog (C)− ζ
r∑
i=1

log (xi)x
β
i

∂l
∂ζ = r

ζ−
r∑
i=1

xβi − (n− r)Cβ .
(3.2.6)

The solution to β̃ and ζ̃ in the above system of equations are the maximum likelihood estimates according
to [19]. Algebraic substitution yields the following,

1

β
=
ζ

r

[
r∑
i=1

log (xi)x
β
i + (n− r)Cβlog (C)

]
−

r∑
i=1

log (xi)

r
(3.2.7)

1

ζ
=

r∑
i=1

xβi − (n− r)Cβ

r
. (3.2.8)

The Newton-Raphson method can be used to solve (3.2.7) and (3.2.8) simultaneously.
According to [19] the value of β is guaranteed to converge under mild conditions. The original scale parameter

can then be obtained (using the property of invariance [2]) as η̃ = ζ̃−1/β̃ . Finally, the quantile estimate q̃ for
the censored Weibull can be calculated as

q̃ = η̃ [−log (1− p)]1/β̃ . (3.2.9)

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.2. A CENSORING APPROACH TO LOWER QUANTILE ESTIMATION 21

3.2.4.2 The censored Gamma MLE

l (X; β, ζ, C) = log

(
n∏
i=1

[f (Xi; θ)]
δi [1− F (C, θ)]

1−δi

)

=
r∑
i=1

log (f (Xi; θ)) +
n−r∑
i=1

log (1− F (C; θ))

=
r∑
i=1

log

(
xθ−1i

Γ (θ)κθ
exp

(xi
κ

))
+
n−r∑
i=1

log

(
1−

γ
(
θ, Cκ

)
Γ (θ)

)

= (θ − 1)
r∑
i=1

log (xi)−
r∑
i=1

xi
κ
− rlog (Γ (θ))− rθlog (κ) + (n− r) log

[
1−

γ
(
θ, Cκ

)
Γ (θ)

]
.

(3.2.10)

Numerical methods (such as 'optim' in R) can be used to to obtain parameter estimates that maximise
(3.2.10). Furthermore, the quantile function for the gamma distribution does not have a closed form expression
and has to be estimated numerically, for example using the 'quantile' function in R.

3.2.4.3 The censored log-normal MLE

l (X; β, ζ, C) = log

(
n∏
i=1

[f (Xi; θ)]
δi [1− F (C, θ)]

1−δi

)

=
r∑
i=1

log (f (Xi; θ)) +
n−r∑
i=1

log (1− F (C; θ))

=
r∑
i=1

log

(
1

xiσ
√

2π
exp

(
− (log (xi)− µ)

2

2σ2

))
+
n−r∑
i=1

log

(
1− Φ

(
log (C)− µ

σ

))

=
r∑
i=1

log

(
1

xiσ
√

2π
exp

(
− (log (xi)− µ)

2

2σ2

))
+
n−r∑
i=1

log

(
1− Φ

(
log (C)− µ

σ

))

= −r
2
log
(
2πσ2

)
−

r∑
i=1

log (xi)−
r∑
i=1

log (xi)

2σ2
+

r∑
i=1

µlog (xi)

σ2
− rµ2

2σ2

+ (n− r) log
[
1− Φ

(
log (C)− µ

σ

)]
. (3.2.11)

Taking the derivative of (3.2.11) with respect to µ and σ,


∂l
∂µ =

r∑
i=1

log(xi)

σ2 − rµ
σ2 − (n− r)

[
1− Φ

(
log(C)−µ

σ

)]−1(exp(− 1
2 (log(C)−µ

σ)
2
)

√
2πσ

)
∂l
∂σ = − r

σ+
r∑
i=1

log(xi)
σ3 − 2

r∑
i=1

log(xi)µ
σ3 + rµ2

σ3 + (n− r)
[
1− Φ

(
log(C)−µ

σ

)]−1
(µ− log (C)) .

(3.2.12)

Numerical methods (such as 'optim' in R) can be used to to obtain parameter estimates for µ and σ in
(3.2.12) simultaneously. Finally, the quantile estimate q̃ for the censored log-normal can be calculated as

q̃ = exp
(
µ̃+ σ̃Φ−1 (p)

)
. (3.2.13)

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3. A MIXTURE MODEL APPROACH TO LOWER QUANTILE ESTIMATION 22

3.2.4.4 The censored minimum Gumbel MLE

l (X; β, ζ, C) = log

(
n∏
i=1

[f (Xi; θ)]
δi [1− F (C, θ)]

1−δi

)

=
r∑
i=1

log (f (Xi; θ)) +
n−r∑
i=1

log (1− F (C; θ))

=
r∑
i=1

log

(
1

b
exp

(
xi − a
b
− exp

(
xi − a
b

)))
+
n−r∑
i=1

log

(
1−

(
1− exp

(
−exp

(
C − a
b

))))

= −rlog (b) +
r∑
i=1

xi − a
b
−

r∑
i=1

exp

(
xi − a
b

)
− (n− r) exp

(
C − a
b

)
. (3.2.14)

Taking the derivative of (3.2.11) with respect to a and b,
∂l
∂b = − rb−

r∑
i=1

xi−a
b2 +

r∑
i=1

exp
(
xi−a
b

) (
xi−a
b2

)
+ (n− r) exp

(
C−a
b

) (
C−a
b2

)
∂l
∂a = r

b+
r∑
i=1

exp(xi−ab)
b +

(n−r)exp(C−a
b)

b .
(3.2.15)

Numerical methods (such as 'optim' in R) can be used to to obtain parameter estimates for a and b in (3.2.15)
simultaneously. Finally, the quantile estimate q̃ for the censored minimum Gumbel can be calculated as

q̃ = ã+ b̃log (−log (1− p)) . (3.2.16)

A note going forward

As mentioned in Subsection 3.2.3, the Weibull distribution will be used to model the lower tail in the CW-
MLE. The simulation study will be provided at the end of this chapter, speci�cally Section 3.4 and Sunsection
3.4.2, once all prospective models have been introduced.

3.3 A mixture model approach to lower quantile estimation

The CW-MLE approach does not make use of all the sample information due to the large proportion of
censoring, and may therefore not be fully e�cient. One particular approach to making use of the entire
data set, whilst being mindful of the accuracy of the quantile estimate, is to consider a mixture model.
Both the MOR1 and MOR2 datasets display bi-modality, therefore, it is reasonable to assume that the data
is generated from a mixture of two uni-modal distributions. For the sake of this dissertation, the mixing
distributions are assumed to come from the same family of distributions, with PDF given by

f (x) = π1f1 (x) + π2f2 (x) , (3.3.1)

where f1 (·) and f2 (·) are the PDFs of the two contributing populations and π1 and π2 = (1− π1) represent
the proportion contributed by the �rst and second population respectively. The above formation implies that
the random variable X has a probability π1 of belonging to the �rst population and π2 = (1 − π1) to the
second population. For the sake of this dissertation, the mixing distributions are assumed to come from the
same family of distributions. This is the same approach followed by [16].

The CW-MLE approach censors 90% of the information available in data and is therefore not completely
e�cient in terms of information usage. Introducing a more complex model, such as a mixture model, to make
use of more sample information (less censoring) and provide additional �exibility to improve the desired
quantile estimate qualities may prove to be bene�cial. Mixture models bene�t from this desired �exibility

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3. A MIXTURE MODEL APPROACH TO LOWER QUANTILE ESTIMATION 23

due the additional parameters which can be used to improve the approximation of the lower tail of the given
dataset.

It is worth mentioning that only a mixture of two univariate Weibull distributions are considered for
estimating the 5th quantile. The reason being, this section primarily focuses on revisiting and supplementing
the content of Chapter 4 in [16].

3.3.1 The Weibull mixture model

Consider the following mixture of two univariate, two-parameter Weibull distributions with PDF given by:

f (x; p, β1, η1, β2, η2) = πf (x; β1, η1) + (1− π) f (x; β2, η2) (3.3.2)

= π

(
β1
η1

)(
x

η1

)β1−1

exp

(
−
(
x

η1

)β1
)

+ (1− π)

(
β2
η2

)(
x

η2

)β2−1

exp

(
−
(
x

η2

)β2
)

x > 0.

The random variable X from this mixture distribution has a probability of π of belonging to a Weibull(β1, η1)
and a probability of (1− π) to a Weibull(β2, η2). It should be noted that the labels indicating to which
distribution the random variable X belongs, are not observable, and is referred to as a latent variable. This
sets the stage for the EM algorithm.

3.3.2 The EM algorithm and estimation of the Weibull mixture

To estimate the parameters θ = (π, β1, η1, β2, η2) in (3.3.2) requires a direct maximisation of the following
incomplete log-likelihood :

lI (X, θ) =
n∑
i=1

log (πf (xi; β1, η1) + (1− π) f (xi; β2, η2)) , (3.3.3)

which may prove to be numerically cumbersome. The mathematics would be more tractable if the membership
distribution of each Xi were known. In other words, if the sub-population to which each Xi belonged were
known. A common practice to circumvent this issue is to de�ne an indicator variable, Zi = I{Xi ∼ Weibull
(β1, η1)}, so that the PDF in (3.3.2) can be re-written as:

f (x, z, θ) = {πf (x; β1, η1)}Z {(1− π) f (x; β2, η2)}1−Z .

Furthermore, θ can be estimated by using the following complete log-likelihood:

lC (X, Z; θ) =
n∑
i=1

log
(
{πf (xi; β1, η1)}Zi {(1− π) f (xi; β2, η2)}1−Zi

)
=

n∑
i=1

Zi {log (πf (xi; β1, η1))}+ (1− Zi) {log ((1− π) f (xi; β2, η2))} . (3.3.4)

To distinguish between the complete log-likelihood in (3.3.4), it is denoted with the super-script �C�, while
the incomplete log-likelihood in (3.3.3) is denoted by the super-script �I�. This notation is adopted from [16]
for its simplistic readability.

The Expectation-Maximisation (EM) algorithm was �rst introduced by [6] and was designed to perform
the maximum likelihood estimation of parameters, where the form of the likelihood is given by (3.3.4).
The EM algorithm is an iterative process that is used to obtain maximum likelihood estimators in the
presence of incomplete data. The EM algorithm starts by selecting a set of initial parameters θ(r), that is

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3. A MIXTURE MODEL APPROACH TO LOWER QUANTILE ESTIMATION 24

π(r), β
(r)
1 , β

(r)
2 , η

(r)
1 , η

(r)
2 . Here r denotes the rth iteration of the algorithm. In the expectation step (E-step),

the expected value of the complete log-likelihood function of θ, with respect to the conditional distribution
of the latent variables Z, given the observed sample X and the current estimates of the parameters θ(r) is
calculated as:

Q
(
θ, θ(r)

)
= EZ|X, θ(r)

(
lC (X, Z; θ)

)
= EZ|X, θ(r)

(
n∑
i=1

log

({
π(r)f

(
xi; β

(r)
1 , η

(r)
1

)}Zi {(
1− π(r)

)
f
(
xi; β

(r)
2 , η

(r)
2

)}1−Zi
))

= EZ|X, θ(r)

(
n∑
i=1

log

(
2∏
k=1

{
π
(r)
k f

(
xi; β

(r)
k , η

(r)
k

)}Zik))

= EZ|X, θ(r)

(
n∑
i=1

2∑
k=1

Ziklog
({
π
(r)
k f

(
xi; β

(r)
k , η

(r)
k

)}))

=
n∑
i=1

2∑
k=1

EZi|X, θ(r)

(
Ziklog

({
π
(r)
k f

(
xi; β

(r)
k , η

(r)
k

)}))
.

Here, X is an (n× 1) column vector and Z is an (n×K = 2) matrix, where the kth column of each row
represents the unobserved probability of belonging to mixing component k. Also, π1 = π and π2 = (1− π) .

Given the current estimates of the parameters, θ(r), the conditional distribution of each row vector Zi (also
known as the membership weights) is determined using Bayes theorem [6]:

EZi|X, θ(r)

(
Ziklog

({
π
(r)
k f

(
xi; β

(r)
k , η

(r)
k

)}))
= 1× P

(
Zik = 1|x, θ(r)

)
+ 0× P

(
Zik = 0|x, θ(r)

)
= P

(
Zik = 1|x, θ(r)

)
=

π
(r)
k f

(
x; β

(r)
k , η

(r)
k

)
2∑
j=1

π
(r)
j f

(
x; β

(r)
j , η

(r)
j

)
= γ

(r)
ik .

Therefore it follows that:

Q
(
θ, θ(r)

)
=

n∑
i=1

2∑
k=1

γ
(r)
ik log

({
π
(r)
k f

(
xi; β

(r)
k , η

(r)
k

)})
.

The maximisation step (M-step) computes the parameters which maximise the expected log-likelihood in

the E-step. That is, the parameters θ(r) are updated to θ(r+1) such that θ(r+1) maximises Q
(
θ, θ(r)

)
. Finally,

this procedure is repeated until the di�erence between successive log-likelihoods becomes signi�cantly small.
The EM algorithm is summarised in Algorithm 3.1. From the M-step, the updated membership weights,
conditioned on θ(r), can be calculated as

γ
(r+1)
ik = E

(
zik|X, θ(r)

)
.

=
π
(r)
k f

(
x; β

(r)
k , η

(r)
k

)
2∑
j=1

π
(r)
j f

(
x; β

(r)
j , η

(r)
j

) . (3.3.5)

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3. A MIXTURE MODEL APPROACH TO LOWER QUANTILE ESTIMATION 25

Substituting γ
(r+1)
ik into (3.3.4), leads to

lC
(
X, Γ(r+1); θ

)
= Q

(
θ, θ∗(r)

)
=

n∑
i=1

2∑
k=1

γ
(r+1)
ik log

({
π
(r)
k f

(
xi; β

(r)
k , η

(r)
k

)})
. (3.3.6)

Where Γ(r+1) is an (n×K = 2) matrix, where the kth column of each row represents the updated membership

weighs of belonging to mixing component k. Maximising lC
(
X, Γ(r+1); θ

)
with respect to π(r), taking into

consideration that
2∑
k=1

π
(r)
k = 1, requires a Lagrangian multiplier (denoted by L (·)). That is

L
(
θ(r), λ

)
= Q∗

(
θ, θ∗(r)

)
=

n∑
i=1

2∑
k=1

γ
(r+1)
ik log

({
π
(r)
k f

(
xi; β

(r)
k , η

(r)
k

)})
+ λ

(
2∑
k=1

π
(r)
k = 1

)
.

It follows that

∂Q∗
(
θ, θ∗(r)

)
∂π

(r)
k

=

n∑
i=1

γ
(r+1)
ik

π
(r)
k

+ λ, (3.3.7)

summing over k and multiplying by π
(r)
k gives

2∑
k=1

n∑
i=1

γ
(r+1)
ik + λ

2∑
k=1

π
(r)
k = n+ λ

∴ λ = −n.

Finally

∂Q∗
(
θ, θ∗(r)

)
∂π

(r)
k

=
n∑
i=1

γ
(r+1)
ik

π
(r+1)
k

− n

∴ π
(r+1)
k =

1

n

n∑
i=1

γ
(r+1)
ik .

Similarly, by di�erentiating the complete log-likelihood in (3.3.4) with respect to the remaining parameters

estimates, β
(r)
1 , β

(r)
2 , η

(r)
1 and η

(r)
2 , the updated parameter estimates can be obtained as follows:

∂Q
(
θ, θ∗(r)

)
∂β

(r)
k

=

∂
n∑
i=1

2∑
k=1

γ
(r+1)
ik log

π(r)
k

(
β
(r)
k

η
(r)
k

)(
Xi
η
(r)
k

)β(r)
k −1

exp

−(xi
η
(r)
k

)β(r)
k




∂β
(r)
k

=

∂
n∑
i=1

2∑
k=1

γ
(r+1)
ik log

({
π
(r)
k β

(r)
k x

β
(r)
k −1
i

(
η
(r)
k

)−β(r)
k

exp

(
−

(
x
β
(r)
k
i

(
η
(r)
k

)−β(r)
k

))})
∂β

(r)
k

=

∂
n∑
i=1

2∑
k=1

γ
(r+1)
ik log

({
π
(r)
k β

(r)
k x

β
(r)
k −1
i ζ

(r)
k exp

(
−
(
x
β
(r)
k
i ζ(r)

))})
∂β

(r)
k

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3. A MIXTURE MODEL APPROACH TO LOWER QUANTILE ESTIMATION 26

=

∂
n∑
i=1

2∑
k=1

γ
(r+1)
ik

{
log
(
π
(r)
k

)
+ log

(
β
(r)
k

)
+ log

(
x
β
(r)
k −1
i

)
+ log

(
ζ
(r)
k

)
−
(
x
β
(r)
k
i ζ

(r)
k

)}
∂β

(r)
k

=
n∑
i=1

γ
(r+1)
ik

{(
1

β
(r)
k

)
+ log (xi)− ζ(r)k x

β
(r)
k
i log (xi)

}
set
= 0

∴
1

β
(r+1)
k

=

n∑
i=1

γ
(r+1)
ik x

β
(r)
k
i log (xi)

n∑
i=1

γ
(r+1)
ik

(
η
(r)
k

)β(r)
k

−

n∑
i=1

γ
(r+1)
ik log (xi)

n∑
i=1

γ
(r+1)
ik

(3.3.8)

=

n∑
i=1

γ
(r+1)
ik x

β
(r)
k
i log (Xi)

n∑
i=1

γ
(r+1)
ik x

β
(r)
k
i

−

n∑
i=1

γ
(r+1)
ik log (xi)

n∑
i=1

γ
(r+1)
ik

. (3.3.9)

Then, η
(r+1)
k is obtained as follows

∂Q
(
θ, θ∗(r)

)
∂ζ

(r)
k

=

∂
n∑
i=1

2∑
k=1

γ
(r+1)
ik

{
log
(
π
(r)
k

)
+ log

(
β
(r+1)
k

)
+ log

(
X
β
(r+1)
k −1

i

)
+ log

(
ζ
(r)
k

)
−
(
X
β
(r+1)
k

i ζ
(r)
k

)}
∂ζ

(r)
k

=
n∑
i=1

γ
(r+1)
ik

(
1

ζ
(r)
k

−Xβ
(r+1)
k

i

)
set
= 0

∴
1

ζ
(r+1)
k

=

n∑
i=1

γ
(r+1)
ik X

β
(r+1)
k

i

n∑
i=1

γ
(r+1)
ik

∴ η
(r+1)
k =


n∑
i=1

γ
(r+1)
ik X

β
(r+1)
k

i

n∑
i=1

γ
(r+1)
ik


1

β
(r+1)
k

. (3.3.10)

Here, θ∗(r) denotes the vector of parameter estimates where at least one parameter has been updated and
ζk is used for computational convenience. These �E� and �M� steps will be repeated until convergence of the
parameter estimates.

After the �nal parameter estimates
(
π̃, β̃1, β̃2, η̃1, η̃2

)
are obtained from the EM algorithm, the quantile

estimates can be computed by equating the CDF of the Weibull mixture to the desired percentage of the
quantile of interest:

F
(
x; π̃, β̃1, β̃2, η̃1, η̃2

)
=

2∑
k=1

π̃kF
(
x; β̃k, η̃k

)
= π̃F

(
x; β̃1, η̃1

)
− (1− π̃)F

(
x; β̃2, η̃2

)
= 1− π̃e−

(
x
η̃1

)β̃1
− (1− π̃) e

−
(
x
η̃2

)β̃2
.

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3. A MIXTURE MODEL APPROACH TO LOWER QUANTILE ESTIMATION 27

This equation can be solved numerically using the bi-section method [3]. It should be noted that the above
EM algorithm attempts to �nd the parameter estimates that will maximise (3.3.3), however, the log-likelihood
diverges to in�nity when X1 = η1 and β1 → ∞. That is, the maximum of (3.3.3) is not well de�ned. This
issue will cause the failure of convergence of the EM algorithm and is also mention in [16]. In order to deal
with this problem, the parameter space of β1 and β2 will be restricted to [0, 30] as used by [16].

Figure 3.3.1 illustrates the curves of the mixture PDFs, as well as the PDFs for each sub-population.
The mixture distributions for both datasets exhibit similar behaviour: the major populations contributes
approximately 80%, whereas the minor population is nested in the centre of the data. The minor population
�ts the left mode while the major population accounts for the right mode. These results agree with the
�ndings of [16].

MOR1

D
e
n
s
it
y

4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

Mixture

Majority

Minority

MOR2

D
e
n
s
it
y

4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

Mixture

Majority

Minority

Figure 3.3.1: Weibull mixture models for MOR1 and MOR2.

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3. A MIXTURE MODEL APPROACH TO LOWER QUANTILE ESTIMATION 28

Algorithm 3.1 EM algorithm for Weibull mixtures.

1. Choose a set of initial parameters θ(r), that is π
(r)
1 , . . . , π

(r)
K , α

(r)
1 , . . . , α

(r)
K , . . . , η

(r)
1 , . . . , η

(r)
K , for the

K mixing components or sub-populations.

2. E-step:

(a) Determine the membership weights

γ
(r+1)
ik = E

(
zik|X, θ(r)

)
.

=
π
(r)
k f

(
x; α

(r)
k , η

(r)
k

)
2∑
j=1

π
(r)
j f

(
x; α

(r)
j , η

(r)
j

) .
(b) Determine the expected log-likelihood

Q
(
θ, θ∗(r)

)
=

n∑
i=1

2∑
k=1

γ
(r+1)
ik log

({
π
(r)
k f

(
xi; α

(r)
k , η

(r)
k

)})
.

3. M-step:

(a) Find θ(r+1) that maximises Q
(
θ, θ(r)

)
.

(b) Update the parameters θ(r) ← θ(r+1).

4. Repeat steps 2 and 3 until the di�erence between successive log-likelihoods or parameter estimates
becomes signi�cantly small.

3.3.3 Weibull model selection

An important question to ask is whether the Weibull mixture �ts the data better (signi�cantly) compared
to a single Weibull distribution. The statistical inference required here is whether the observed dataset
comes from a homogeneous or heterogeneous population. Figure 3.3.1 motivates the presence of a Weibull
distribution contained or nested within the mixture model. This section summarises the various statistical
techniques one can make use of to justify the choice of considering a weibull mixture model. In particular,
a summary of Section 4.2 in [16] is provided. Readers who are interested in a thorough investigation are
referred to [16].

3.3.3.1 The bootstrap homogeneity test

To formulate the question asked above into a statistical nature the hypothesis of interest is given by:

H0 : X = {X1, X2, . . . , Xn} is from a single Weibull distribution

H1 : X is from a mixture of two Weibull distributions.

The most natural choice of test to evaluate the goodness-of-�t for the competing models would be the
likelihood ratio test. Unfortunately, the Weibull mixture model violates certain regularity conditions nec-
essary for the asymptotic properties of the likelihood ratio test [16, 15]. In order to circumvent this issue,
[16] applies the bootstrap homogeneity test (in the context of Weibull mixtures and not Gaussian mixtures)
by [18]. This test procedure involves bootstrapping the likelihood ratio test statistic. The purpose of the

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3. A MIXTURE MODEL APPROACH TO LOWER QUANTILE ESTIMATION 29

Algorithm 3.2 Parametric bootstrap homogeneity test for estimating the correct number of sub populations
K.

1. Obtain the MLE estimates
(
β̂, η̂

)
and θ̂ =

(
p̂, β̂1, η̂1, β̂2, η̂2

)
for the single and mixture Weibull

models on the given data set.

2. Calculate the log-likelihood ratio statistic −2log (λ) .

3. Simulate a 'bootstrap' data set of size n = 300 from a single Weibull
(
β̂, η̂

)
.

4. Fit the the single and mixture Weibull models on the bootstrapped data set and calculate the corre-
sponding bootstrap log-likelihood ratio statistic, −2log (λ∗).

5. Repeat steps 3 and 4, B = 500 times to generate the bootstrap sampling distribution of the likelihood
ratio statistic.

6. Calculate the bootstrap p− value :

1

B

B∑
i=1

I {−2log (λ∗) > −2log (λ)} .

bootstrap homogeneity test is to estimate the distribution of the log-likelihood ratio test statistic, from which
a p − value can be used to motivate the choice of using a Weibull mixture model over a single univariate
Weibull model. The bootstrap procedure is summarised in Algorithm 3.2.

Applying the same procedure, the p− value for the homogeneity test on the MOR1 dataset is 0.034 and
0.015 for MOR2. Both the p − values are smaller than 0.05, which indicate that it is highly unlikely that
neither MOR1 nor MOR2 datasets belong to a single Weibull distribution, in comparison to a two component
Weibull mixture. Although it is true that the data does not appear to come from a single Weibull distribution,
it cannot be said with statistical certainty that the datasets belong to a Weibull mixture. The test does,
however, partially support the choice of using a Weibull mixture over a single Weibull distribution.

3.3.3.2 A note on measures based on information criteria

The number of sub-populations or components in a mixture model can also be determined by using penalised
likelihood criteria such as the Bayesian information criterion (BIC) or the Akaike information criterion (AIC),
where,

AIC = 2p− 2l (θ)

BIC = log (n) p− 2l (θ) .

The number of parameters in the model is denoted by p and the sample size by n. In general BIC is preferred
over AIC given that it penalises the model complexity heavier than AIC. Lower values of BIC or AIC indicates
a better model �t.

3.3.4 The censored Weibull mixture model

This subsection aims to provide a thorough revisit of Section 4.3 in [16]. The simulation studies presented in
Section 3.4 show that the Weibull mixture is not �exible enough to accommodate data that is typically non-
Weibull in nature. In order to improve on this potential �aw and ensure the accuracy of quantile estimates,
the idea of subjective or arti�cial censoring can be applied to the Weibull mixture models. The approach

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3. A MIXTURE MODEL APPROACH TO LOWER QUANTILE ESTIMATION 30

seems justi�able since the Weibull mixture is more �exible in comparison to the single Weibull distribution.
The idea is to achieve the same (if not better) level of accuracy (smaller RMSEs) as the CW-MLE from
Subsection 3.2.2. Furthermore, the amount of censoring can be reduced and the quantile estimate should be
more e�cient due to the increase in sample information usage. Following a similar approach as the CW-MLE
in Subsection 3.2.2, the censoring threshold is denoted by C. The censored likelihood of the Weibull mixture
with parameters θ = (π, β1, η1, β2, η2) is:

L (X, θ) =
n∏
i=1

[πf (Xi; β1, η1) + (1− π) f (Xi; β2, η2)]
δi

× [π {1− F (C, β1, η1)}+ (1− π) {1− F (C, β2, η2)}]1−δi , (3.3.11)

As in the uncensored Weibull mixture, the maximum likelihood estimate of θ for the censored Weibull
mixture can be computed using the EM algorithm. The calculations of the parameter estimates for the
censored Weibull mixture using the EM algorithm are provided below:

1. E-step:

(a) The membership weights, γik, are given as in (3.3.5):

γ
(r+1)
ik = E

(
zik|X, θ(r)

)
=



π
(r)
k f

(
x; β

(r)
k , η

(r)
k

)
2∑
j=1

π
(r)
j f

(
x; β

(r)
j , η

(r)
j

) Xi ≤ C

π
(r)
k

(
1−F

(
C; β

(r)
k , η

(r)
k

))
2∑
j=1

π
(r)
j

(
1−F

(
C; β

(r)
j , η

(r)
j

)) Xi > C.

(3.3.12)

(b) The expected log-likelihood, QC

(
θ, θ∗(r)

)
, is given as in (3.3.6)

QC

(
θ, θ∗(r)

)
=

m∑
i=1

2∑
k=1

γ
(r+1)
ik log

({
π
(r)
k f

(
xi; β

(r)
k , η

(r)
k

)})
+

n∑
i=m

2∑
k=1

γ
(r+1)
ik log

({
π
(r)
k

(
1− F

(
C; β

(r)
k , η

(r)
k

))})
,

where the lower script C is used to di�erentiate between the uncensored case.

2. M-step: The parameter estimates that maximise QC

(
θ, θ(r)

)
are given by:

(a)

π
(r+1)
k =

1

n

n∑
i=1

γ
(r+1)
ik .

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3. A MIXTURE MODEL APPROACH TO LOWER QUANTILE ESTIMATION 31

(b)

QC

(
θ, θ(r)

)
∂β

(r)
k

=

∂
m∑
i=1

2∑
k=1

γ
(r+1)
ik log

π(r)
k

(
β
(r+1)
k

η
(r)
k

)(
Xi
η
(r)
k

)β(r)
k −1

exp

−(Xi
η
(r)
k

)β(r)
k




∂β
(r)
k

+

∂
n∑

i=m

2∑
k=1

γ
(r+1)
ik log

π(r)
k

exp
−(C

η
(r)
k

)β(r)
k




∂α
(r)
k

=

∂
m∑
i=1

2∑
k=1

γ
(r+1)
ik log

({
π
(r)
k β

(r)
k X

β
(r)
k −1

i ζ
(r)
k exp

(
−
(
X
β
(r)
k

i ζ
(r)
k

))})
∂β

(r)
k

+

∂ (n−m)
2∑
k=1

γ
(r+1)
nk log

({
π
(r)
k

(
exp

(
−
(
Cβ

(r)
k ζ

(r)
k

)))})
∂β

(r)
k

=
m∑
i=1

γ
(r+1)
ik

[
1

β
(r)
k

+ log (xi)− ζ(r)k x
β
(r)
k
i log (xi)

]
− (n−m) γ

(r+1)
nk ζ

(r)
k Cβ

(r)
k log (C)

∴
1

β
(r+1)
k

=
ζ
(r)
k

m∑
i=1

γ
(r+1)
ik

[
(n−m) γ

(r+1)
nk Cβ

(r)
k log (C) +

m∑
i=1

x
β
(r)
k
i log (xi)

]
−

m∑
i=1

γ
(r+1)
ik log (xi)

m∑
i=1

γ
(r+1)
ik

,

(3.3.13)

where the sample size is n and it is assumed thatX1, X2, . . . , Xm ≤ C andXm+1, Xm+2, . . . , Xn ≥
C. It should also be clear that γ

(r+1)
m+1 = γ

(r+1)
m+2 = . . . = γ

(r+1)
n based on the de�nition of the mem-

bership weights given by (3.3.12).

∂Q
(
θ, θ(r)

)
∂ζ

(r)
k

=

∂
m∑
i=1

2∑
k=1

γ
(r+1)
ik log

({
π
(r)
k β

(r)
k X

β
(r)
k −1

i ζ
(r)
k exp

(
−
(
X
β
(r)
k

i ζ
(r)
k

))})
∂ζ

(r)
k

+

∂ (n−m)
2∑
k=1

γ
(r+1)
nk log

({
π
(r)
k

(
exp

(
−
(
Cβ

(r)
k ζ

(r)
k

)))})
∂ζ

(r)
k

(c)

∴
1

ζ
(r+1)
k

=

m∑
i=1

γ
(r+1)
ik X

β
(r+1)
k

i + (n−m) γ
(r+1)
nk Cβ

(r+1)
k

n∑
i=1

γ
(r+1)
ik

(3.3.14)

∴ η
(r+1)
k =


m∑
i=1

γ
(r+1)
ik X

β
(r+1)
k

i + (n−m) γ
(r+1)
nk Cβ

(r+1)
k

m∑
i=1

γ
(r+1)
ik


1

β
(r+1)
k

. (3.3.15)

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3. A MIXTURE MODEL APPROACH TO LOWER QUANTILE ESTIMATION 32

Substituting (3.3.14) into (3.3.13),

1

β
(r+1)
k

=

(n−m) γ
(r+1)
nk Cβ

(r)
k log (C) +

m∑
i=1

x
β
(r)
k
i log (xi)

m∑
i=1

γ
(r+1)
ik x

β
(r)
k
i + (n−m) γ

(r+1)
nk Cβ

(r)
k

−

m∑
i=1

γ
(r+1)
ik log (Xi)

m∑
i=1

γ
(r+1)
ik

. (3.3.16)

3.3.4.1 A note on selecting the correct censoring threshold

The choice of the correct censoring threshold in the mixture setting is slightly more complex. This approach
has not been studied in literature and as mentioned in [16], there is no industry standard that can be used
as a viable guideline. A signi�cant issue with the threshold in the mixture model is that it cannot be chosen
such that it excludes the majority of a potential modality point in the data. In other words, if the censoring
threshold is too low (too far left) that it only includes data from one of the two sub-populations (mixing
components) in the estimation procedure. In this case, the EM algorithm will struggle with convergence.

In order to be consistent with [16], the censoring threshold is only considered for C =70th empirical
percentile of the data. The censoring threshold cannot be smaller than this because the EM algorithm fails
to converge. The failure of convergence results in questionable reliability of quantile estimates and would not
be suitable for practice. However, if C is too large (larger than the third quartile), the parameter estimates
of the censored Weibull mixture are very close to the uncensored Weibull mixture. It is clear that there is
no statistical justi�cation or recommendation of a suitable threshold which paves the way for future work.

From Table 3.3.1, it is true that the parameters of the censored Weibull mixtures are quite similar to the
uncensored Weibull mixture models, moreover the censored Weibull mixture approximates and �ts the left
tail of the real data sets better than the uncensored mixture, see Table 3.3.2 for the truncated Kolmogorov-
Smirnov statistics.

3.3.5 Goodness-of-�t for the censored and uncensored Weibull mixture models

In Table 3.3.2, the de�nition of DTRUNC
(
F̃n − F̂ (x)

)
remains unchanged, where the goodness-of-�t is still

measured up to the 10th empirical percentile. Here, F̃n is the CDF estimate obtained by the uncensored and

censored Weibull mixture and F̂ the ECDF. Additionally, the DTRUNC
(
F̃n − F̂ (x)

)
for the CW-MLE from

Subsection 3.2.3 is included for reference.

Model π Majority Population Minority Population
MOR1 Weibull 0.7674 α1 = 5.962 η1 = 7.476 α2 = 16.495 η2 = 5.949
MOR2 Weibull 0.7754 α1 = 5.327 η1 = 7.696 α2 = 11.673 η2 = 6.193

Table 3.3.1: Censored Weibull mixture models for MOR1 and MOR2 using the 70th empirical percentile as
the censoring threshold.

From Table 3.3.2, it is clear that the censored Weibull mixture approximates the left tail of the datasets
better than the uncensored Weibull mixture and the CW-MLE. The censored Weibull mixture censors much
fewer data (30%) compared to the CW-MLE.

Censored Weibull MLE Censored Weibull mixture Uncensored Weibull mixture
MOR1 0.05039 0.0229 0.0778
MOR2 0.0175 0.0124 0.0262

Table 3.3.2: Truncated goodness-of-�t DTRUNC
(
F̃n − F̂ (x)

)
up to the 10th empirical percentile for the

CW-MLE, censored Weibull mixture and uncensored Weibull mixture for the MOR1 and MOR2 datasets.

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.4. SIMULATION COMPARISON 33

3.4 Simulation comparison

This section provides a thorough re-work of the simulation results presented in [16]. Furthermore, the section
will be divided into two parts; namely a simulation comparison between the proposed univariate models,
followed by the comparison of the mixture models. The top performing univariate model will be included in
the mixture model simulation study. This design layout is simply to aid the readability and not overwhelm
the reader with the large volume of notation in one single sitting.

3.4.1 Model settings used to imitate MOR1 and MOR2

The RMSE is used to compare the performance of the quantile estimates obtained by the CW-MLE, O-MLE,
KDE, EMP, the uncensored Weibull mixture (MIX) and the censored Weibull mixture with the threshold
chosen to be the 70th empirical percentile (CMIX7). In order to make use of the RMSE measure, the value of
the 'true' quantile has to be known. This is attainable if the true underlying distribution of the real dataset
is known. Therefore, for each model (true known parametric PDF) used to imitate the MOR1 and MOR2
datasets, N = 10000 replicates of sample size n = 300 are simulated in order to evaluate the performance of
the four quantile estimates using the RMSE. The analysis of the variance and bias of the four estimates is
studied in Subsection 3.4.2. The choice of models used to imitate the real MOR datsets is discussed below.

Model settings

The models from which data will be simulated to imitate the MOR1 and MOR2 datasets are classi�ed into
three categories, namely parametric, mixture of parametric and non-parametric models.

Parametric models

The parametric models used to simulate the imitating datasets are the models obtained from the censored
MLE in Figure 3.2.1. The parameter estimates for the censored models are summarised in Table 3.4.1 below.

Model MOR1 MOR2
Weibull α̂ = 6.823 η̂ = 7.172 α̂ = 7.378 η̂ = 6.739

Log-normal µ̂ = 2.074 σ̂ = 0.329 µ̂ = 1.971 σ̂ = 0.296

Gamma θ̂ = 12.96 κ̂ = 0.599 θ̂ = 16.168 κ̂ = 0.440

Minimum Gumbel â = 6.623 b̂ = 0.651 â = 6.319 b̂ = 0.601

Table 3.4.1: Parameter estimates for censored parametric models.

Mixture models

In the simulations provided below, mixture models with only two sub-populations are considered, namely a
two-component normal, log-normal and Weibull mixture model. Given that the minimum Gumbel is used
to model the distribution of the minimum of a number of samples, a mixture of minimum Gumbels did not
provide su�cient �exibility to capture non-tail behaviour and therefore is not considered.

The parameters of the mixture models are summarised in Table 3.4.2 and can be estimated using the EM
algorithm.

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.4. SIMULATION COMPARISON 34

Model π Majority Population Minority Population

MOR1
Normal 0.5631 µ̂1 = 5.956 σ̂1 = 0.963 µ̂2 = 7.652 σ̂2 = 1.285

Log-normal 0.9758 µ̂2 = 1.897 σ̂2 = 0.189 µ̂1 = 1.246 σ̂1 = 0.103

Weibull 0.7446 β̂1 = 5.495 η̂1 = 7.599 β̂2 = 15.805 η̂2 = 5.983

MOR2
Normal 0.5408 µ̂1 = 5.934 σ̂1 = 1.059 µ̂2 = 7.834 σ̂2 = 1.098

Log-normal 0.6651 µ̂1 = 1.980 σ̂1 = 0.166 µ̂2 = 1.741 σ̂2 = 0.226

Weibull 0.7943 β̂1 = 5.425 η̂1 = 7.646 β̂2 = 11.992 η̂2 = 6.173

Table 3.4.2: Mixture models' parameter estimates.

MOR1

D
e
n
s
it
y

4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

Weibull Mixture

Normal Mixture

Log−normal Mixture

MOR2

D
e
n
s
it
y

4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

Weibull Mixture

Normal Mixture

Log−normal Mixture

Figure 3.4.1: Mixture models for MOR1 and MOR2.

Non-parametric models

As discussed in Section 2.3, the investigator can never be certain about the validity of the model assumptions
implemented on the real datasets. In other the words, the chosen model may not be representative of the of
the real data, even if only the lower tail is considered.

To circumvent these issues, the non-parametric KDe can be used to approximate the real dataset (�t a
KDe to the dataset) from which the quantile estimates can be obtained. The �tted KDe curves are shown in
Figure 2.3.3.

3.4.2 Simulation comparison of the censored, parametric, non-parametric and

empirical quantiles

In this subsection, the simulation study is presented to compare the 5th percentile estimates obtained by the
censored Weibull (CW-MLE), ordinary Weibull MLE (O-MLE), KDE and the empirical quantile estimate
(EMP, Type 9 de�nition) under a variety of models. In other words, a dataset of size n = 300 (size of the
MOR2 dataset) is generated from several parametric PDFs (discussed above) in the attempt to imitate the
MOR datasets. The CW-MLE, O-MLE, KDE and EMP are �tted to these generated datasets in order to
compute and compare the performance of the 5th percentile estimates. The methodology is discussed in
detail below. Furthermore, using the industrial standard [1], the censoring threshold C in the CW-MLE is
chosen to be the 10th empirical percentile. The procedure is summarised in Algorithm 3.3.

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.4. SIMULATION COMPARISON 35

3.4.2.1 RMSE of quantile estimates

The calculation and results of the RMSE for the four quantile estimating techniques (CW-MLE, O-MLE,
KDE, EMP) are summarised in Algorithm 3.3 and Tables 3.4.3 and 3.4.4, for the models imitating MOR1
and MOR2 respectively. For ease of readability, the RMSE values are super-imposed with typical heatmap
colours, that is, the greener the cell the smaller the RMSE value.

It should be clear that the CW-MLE has the smallest RMSE among the four estimates. The exceptions
being the Weibull O-MLE and Minimum Gumbel KDE. However, the performance of the CW-MLE is overall
much better in every other model considered. For example, the di�erence between the RMSE of the Weibull
O-MLE and CW-MLE is dwarfed by the di�erence between the Log-normal and Gamma O-MLE and CW-
MLE respectively. In particular, the RMSE of the O-MLE is about 6 times larger than the CW-MLE for data
generated from a log-normal distribution and 4 times larger for data generated from a gamma distribution,
for MOR1 and MOR2.

Algorithm 3.3 Simulation comparison procedure.

1. Generate a sample of size n = 300 from the following models (parameterised by Tables 3.4.1 and 3.4.2)
used to imitate the real MOR1 and MOR2 datasets:

• Weibull

• Log-normal

• Gamma

• Minimum Gumbel

• two-component normal mixture

• two-component log-normal mixture

• two-component Weibull mixture

2. For each model generated sample, �t the CW-MLE, O-MLE, KDE and EMP to the data.

3. Obtain the 5th percentile estimates for the four estimation techniques in Step 2.

4. Repeat Steps 1 - 3 for N = 10000 iterations in order to compute the RMSEs for each estimation
technique.

Model O-MLE CW-MLE KDE EMP
Weibull 0.111 0.150 0.171 0.173

Log-normal 1.094 0.166 0.307 0.185
Gamma 0.678 0.163 0.237 0.181

Minimum Gumbel 0.166 0.155 0.146 0.155
Normal Mixture 0.531 0.112 0.164 0.131

Log-normal Mixture 0.571 0.161 0.219 0.195
Weibull Mixture 0.506 0.164 0.198 0.188

Table 3.4.3: RMSE of the 5th quantile estimates for the O-MLE, CW-MLE, KDE and EMP estimation
techniques for various models imitating MOR1.

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.4. SIMULATION COMPARISON 36

Model O-MLE CW-MLE KDE EMP
Weibull 0.100 0.135 0.152 0.156

Log-normal 0.944 0.142 0.239 0.157
Gamma 0.626 0.139 0.196 0.157

Minimum Gumbel 0.165 0.154 0.147 0.154
Normal Mixture 0.369 0.126 0.169 0.143

Log-normal Mixture 0.385 0.137 0.158 0.153
Weibull Mixture 0.349 0.166 0.199 0.189

Table 3.4.4: RMSE of the 5th quantile estimates for the O-MLE, CW-MLE, KDE and EMP estimation
techniques for various models imitating MOR2.

Model O-MLE CW-MLE KDE EMP
Weibull 0.49 [10.06] 0.36 [13.52] 5.93 [13.96] 0.12 [15.61]

Log-normal 92.92 [16.69] 4.59 [13.47] 19.72 [13.53] 0.11 [15.71]
Gamma 61.02 [13.84] 3.46 [13.41] 14.25 [13.54] 0.17 [15.65]

Minimum Gumbel 13.99 [8.85] 4.32 [14.79] 3.89 [14.19] 0.35 [15.39]
Normal Mixture 35.12 [11.32] 1.75 [12.48] 11.37 [12.51] 0.12 [14.31]

Log-normal Mixture 36.29 [12.85] 4.82 [12.90] 8.82 [13.21] 0.19 [15.37]
Weibull Mixture 33.04 [11.29] 2.34 [16.48] 11.05 [16.66] 0.35 [18.98]

Table 3.4.5: Bias and [standard error] (x100) of the O-MLE, CW-MLE, KDE and EMP quantile estimates
for the models imitating the MOR2 data set. .

Bias and standard error of the quantile estimates

In order to get a better understanding of the advantages and limitations of the CW-MLE, as well as the
bias and standard error of the quantile estimates (summarised in Table 3.4.5) are are revisited studied [16].
The biases and variances for both datasets are very similar so only the models imitating MOR2 have been
provided.

From Table 3.4.5 it is clear that the bias of the CW-MLE estimation technique is considerably smaller than
the O-MLE for non-Weibull models. Additionally, the standard errors of the CW-MLE estimates are smaller
than the EMP estimates. In summary, if the performance of the quantile estimates is ranked according to
bias then it follows that EMP < CW-MLE < KDE < O-MLE. [16] achieved the same results. The rank
according to standard error is O-MLE < CW-MLE < KDE < EMP, again as documented in [16] as well.
The KDE does not approximate the left tail of the data as well as the CW-MLE, in other words, the bias of
the KDE is, in general worse than that of the CW-MLE. The KDE does, however, perform rather well on
approximating the Minimum Gumbel. The censored Weibull is therefore neither the most accurate nor the
most e�cient, however, it is the best overall performer.

Upon further investigation, the O-MLE and CW-MLE for data generated from a Weibull distribution, are
nearly unbiased, however, the O-MLE is more e�cient (smaller standard errors). This should not be surprising
since the O-MLE makes use of more information (no censoring). This warrants further investigation.

In order to fully investigate the comparative performance between the CW-MLE and O-MLE for Weibull
generated samples, statistical and mathematical reasoning is required to understand the behaviour of the
subjective (arti�cial) censoring methodology. A comparison of the score function and asymptotic behavior
of the CW-MLE and O-MLE is thoroughly presented in Section 3.5 of [16].

3.4.3 Simulation comparison of the mixture and censored mixture model

In Subsection 3.4.2, the CW-MLE produced the best quantile estimates under most models considered in the
simulations. In this subsection, the quantile estimates obtained from the CW-MLE, with the threshold chosen

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.4. SIMULATION COMPARISON 37

to be the 10th empirical percentile, are compared to the quantile estimates obtained from the uncensored
Weibull mixture (MIX) and the censored Weibull mixture with the threshold chosen to be the 70th empirical
percentile (CMIX7). The 5th percentile is still the quantile of interest. The results and conclusions from the
models imitating the MOR1 and MOR2 datasets are comparable and therefore only the results for MOR2 are
provided. The simulation procedure settings remain the same as in Subsection 3.4.1. That is, the performance
of the quantile estimates are obtained using N = 10000 replicates from the seven parametric models (with a
sample size of n = 300) used to imitate the MOR2 dataset, from which the RMSEs are calculated.

3.4.3.1 RMSE, bias and standard error of the quantile estimates

The RMSE of the three quantile estimate techniques for the seven parametric models are summarised in Table
3.4.6. From the background colour of the results provided, the CMIX7 is the best performer. The MIX has
the smallest RMSE value when the data is generated from a Weibull distribution and Weibull mixture model.
The CMIX7 is the best performer under the Log-normal, Gamma, Minimum Gumbel and Normal mixture
model. Taking into consideration the joint performance of the mixture models (MIX and CMIX7), they
perform better than the CW-MLE in terms of RMSE, however, neither mixture model performs uniformly
better than the CW-MLE.

Furthermore, from Table 3.4.7, the MIX has a large bias under the log-normal and gamma models, which
is indicative of its failure to approximate the left tail for those models.

Interestingly, the CMIX7 is generally less biased compared to the other two quantile estimates. The
quantile estimates from the CW-MLE and CMIX7 have similar standard errors. In other words, in the
presence of similar RMSEs, the CMIX7 provides better quantile estimates compared to the CW-MLE.

Model CW-MLE MIX CMIX7
Weibull 0.138 0.128 0.131

Log-normal 0.139 0.261 0.128
Gamma 0.138 0.191 0.132

Minimum Gumbel 0.155 0.140 0.138
Normal Mixture 0.127 0.133 0.122

Log-normal Mixture 0.137 0.146 0.139
Weibull Mixture 0.163 0.158 0.161

Table 3.4.6: RMSE of the 5th qauntile estimates of the Weibull CW-MLE, MIX and MIX7 for various models
imitating MOR2.

Model CW-MLE MIX CMIX7
Weibull 0.36 [13.52] 1.01 [12.67] 1.33 [13.36]

Log-normal 4.59 [13.47] 13.11 [13.74] 2.29 [13.11]
Gamma 3.46 [13.41] 22.28 [14.08] 1.41 [12.82]

Minimum Gumbel 4.32 [14.79] 0.40 [14.27] 0.18 [13.82]
Normal Mixture 1.75 [12.48] 2.47 [12.95] 1.03 [12.73]

Log-normal Mixture 4.82 [12.90] 3.60 [12.97] 5.6 [12.98]
Weibull Mixture 2.34 [16.48] 0.54 [15.79] 0.27 [15.59]

Table 3.4.7: Bias and [standard error] (x100) of the Weibull CW-MLE, MIX and MIX7 quantile estimates
for the models imitating the MOR2 dataset. .

Interestingly, Table 3.4.7 displays patterns which contradict the intuition mentioned earlier, namely, the
more data the estimation procedure uses the more e�cient the quantile estimate should be. The standard
errors of the quantile estimates for the MIX are generally larger than the standard errors of the CW-MLE
and CMIX7 under the log-normal, gamma and the normal mixture. A possible rationale could be that the

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.5. CHAPTER SUMMARY 38

MIX does not approximate the true underlying model well enough, i.e. it is not �exible enough. The next
chapter will focus on selecting an optimal threshold for the censored CW-MLE.

3.5 Chapter summary

Chapter 3 addresses the challenges of parametric and non-parametric quantile estimation presented in Chap-
ter 2. In particular, the idea of arti�cial censoring in conjunction with a censored-adjusted semi-parametric
modeling approach is used (via censored MLE) to focus on the estimation of the lower tail of a dataset. The
Weibull distribution is used as the parametric lower tail. The CW-MLE approach proves to perform the
best among the O-MLE, EMP and KDE quantile estimation techniques. A simulation study is conducted
where it is shown that for all parametric PDFs used to imitate the MOR datasets, the CW-MLE provides
almost unbiased estimates for lower quantiles and has the same (if not better) performance compared to
non-parametric estimates. The CW-MLE approach censors 90% of the information available in data and
is therefore not completely e�cient in terms of information usage. Section 3.3 addresses the issue of in-
e�cient data usage of the CW-MLE quantile estimation technique by proposing censored and uncensored
Weibull mixture models. The mathematical derivation of both mixture models, as well as the expressions
required for parameter estimation in the EM algorithm, are derived. Finally, a simulation comparison is
provided to evaluate the performance of the quantile estimates obtained from the censored and uncensored
Weibull mixture models. The uncensored Weibull mixture, MIX, performs adequately, however it struggles
to approximate the left tails of several of the parametric models considered. The censored Weibull mixture
model, CMIX7, performs the best and outperforms the CW-MLE. The choice of threshold in the CMIX7 is
extremely experimental and requires further investigation. Moreover, a thorough threshold selection study
is required to select the optimal threshold for the CW-MLE for a fair comparison of the CMIX7 technique.
This threshold selection study for the CW-MLE is proposed in Chapter 4.

Chapter 3. Censored and Mixture Models for Lower Quantile Estimation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4

Threshold Selection Techniques in the

Censored Weibull Model

Chapter highlights

The highlights for Chapter 4 are:

• Introduction to the bootstrap threshold censored Weibull MLE (B-MLE).

• Estimating the MSE using a bootstrap approach.

• Introduction to the standardised-weighted adjusted Kolmogorov-Smirnov test statistic (SWAKS).

• Simulation comparative study of the threshold selection techniques.

4.1 Introduction

In Chapter 3 the censoring threshold C in the CW-MLE is �xed at the 10th empirical percentile based on
industrial standards [16, 1]. The �rst half of this chapter provides a rigorous re-work of Chapter 5 in [16].
That is, the relationship between the censoring threshold and MSE of the quantile estimate obtained from
the CW-MLE is initially studied. To obtain an optimal threshold, the MSE is estimated using a bootstrap
approach in Section 4.2 and the best threshold is chosen such that the estimated MSE is a minimum.
According to simulations completed in [16], the bootstrap threshold censored Weibull MLE (B-MLE) performs
better than the original CW-MLE. In the remainder of the chapter, namely Section 4.3, a new threshold
selection technique is proposed that makes use of an adjusted truncated Kolmogorov-Smirnov test. Simulation
studies clearly indicate that the adjusted truncated Kolmogorov-Smirnov censored Weibull MLE (SWAKS-
MLE) outperforms the B-MLE. Finally, a simulation study to compare the bootstrap and SWAKS quantile
estimation techniques is provided in Section 4.4.

39

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.2. BOOTSTRAP THRESHOLD SELECTION 40

Chapter outline

4.2 Bootstrap threshold selection

This section introduces the methodology and motivation behind the B-MLE proposed by [16].

4.2.1 Relationship between the censoring threshold and the MSE

As discussed in Chapter 3, the censoring threshold in the CW-MLE is �xed at the 10th empirical percentile.
If the censoring threshold C is increased, more data will be used in the estimation procedure, so in terms of
information usage the quantile estimates should be more e�cient. However, an increase in C might impact
the goodness-of-�t of the Weibull distribution on the left tail, if the data is non-Weibull in nature, leading to

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.2. BOOTSTRAP THRESHOLD SELECTION 41

a biased quantile estimate. Recall that the MSE is a function of the bias and the variance and the relationship
of these components can be studied using Monte Carlo methods, given that the underlying distribution is
known (this is why the seven parametric models used to imitate the MOR datasets were introduces in Chapter
2).

Figure 4.2.1, summarises the relationship between the MSE and censoring the threshold (chosen as the
empirical percentiles). The theoretical MSE values are evaluated as follows: a sample size of n = 300
is generated from the seven parametric models (model settings in Chapter 3) imitating the real MOR2
dataset, from which the MSEs are obtained by �tting the CW-MLE to each sample. This process is repeated
N = 10000 times for a range of censoring threshold candidates. The threshold candidates range from the
10th to the 100th (no censoring present) empirical percentile in steps of 5%. The curves for MOR1 are very
similar and have therefore been omitted.

Figure 4.2.1: Relationship between the censoring threshold and MSE for MOR2 given that the underlying
model is known.

Upon closer inspection it is evident that under the Weibull model, the MSE decreases as the threshold
increases. In other words, it is true that the CW-MLE is almost unbiased (see Chapter 3) under all thresholds.
More importantly, the variance of the quantile estimate decreases as the threshold increases. This should not
be surprising since the CW-MLE approaches the O-MLE as the amount of censoring decreases (i.e. the correct
model is �tted). For the remainder of the parametric models, the MSE initially decreases and then increases
quite drastically for larger thresholds. Clearly, for smaller thresholds, the bias increases very little compared
to the decrease in variance, leading to a decrease in MSE values. However, when the threshold becomes
su�ciently large, for example, larger than the median, then the increase in bias completely overshadows
the continuous marginal decrease in variance, leading to an increase in MSE. This is indicative that as the
censoring threshold increases, the CW-MLE does not �t the data adequately. The optimal censoring threshold
(the threshold associated with the smallest MSE) for most of the parametric models considered is arguably
between the 30th and 50th percentile. These results, unsurprisingly, agree with those of [16].

4.2.2 Bootstrap estimate of MSE

In the simulations above, the relationship between the MSE and the censoring threshold is easy to identify
and study since the true parametric PDF is known. However, in practice, this will hardly (if ever) be the
case. The ECDF of the real dataset is ,however, a consistent estimator of the true underlying distribution

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.2. BOOTSTRAP THRESHOLD SELECTION 42

[20]. The MSE can be estimated by making use of the bootstrapping technique. Recall that the MSE under
the true model G is given by (2.2.1)

EG (q̃n (C)− q)2

which can be estimated by the bootstrap MSE

EGn (q̃∗n (C)− q̂n)
2
.

Where Gn is the ECDF of a sample from the true model G and q̂n the empirical quantile estimate (Type 9
de�nition in R). q̃n (C) is the quantile estimate obtained from the CW-MLE with threshold C and q̃∗n (C) is
the CW-MLE quantile estimate of the bootstrap sample. Take note that G can be completely unspeci�ed.

For EGn (q̃∗n (C)− q̂n)
2
to be a consistent estimator of EG (q̃n (C)− q)2 , several regularity conditions

need to hold. These conditions along with a work-in-progress proof can be found in Chapter 5 of [16]. For
completeness the conditions are provided below,

EGn (q̃∗n (C)− q̂n)
2 p→ EG (q̃n (C)− q)2 , n→∞. (4.2.1)

Furthermore,

lim
n→∞

Pr
{
EGn (q̃∗n (C1)− q̂n)

2
> EGn (q̃∗n (C2)− q̂n)

2
}

= 1,

when

EG (q̃n (C1)− q)2 > EG (q̃n (C2)− q)2 ,

for any C1 and C2. This result implies that the best threshold should be chosen asymptotically from a �nite
set of thresholds, such that the chosen threshold is associated with the smallest MSE of the desired quantile
estimate. The approach here would be that the probability of choosing the best threshold from a �nite sample
with a relatively large sample size, should be greater than the probability of choosing the incorrect threshold.

The next section will discuss the computation of the bootstrap estimate of the MSE, followed by simula-
tions on the consistency of the bootstrap MSE. This work is not novel and is simply a re-work of the concepts
presented in [16].

Computing the bootstrap MSE

In order to compute EGn (q̃∗n (C1)− q̂n)
2
for an i.i.d. sample X = {X1,X2, . . . , Xn}, it is �rst necessary to

obtain the Type 9 empirical quantile (see Chapter 3) as q̂n fromX. Next, re-sampling with replacement from
X is performed in order to obtain the bootstrap sample X∗ =

{
X∗1,X

∗
2 , . . . , X

∗
n

}
. Next, Type II subjective

censoring (see Chapter 2) is applied to the bootstrapped sample, i.e., calculate the CW-MLE on the smallest
r observations. Where r is the number of observations smaller than or equal to the censoring threshold C
obtained using the original sample X. The quantile estimate of the bootstrap sample is obtained as q̃∗X∗ ,
due to the parameters being estimated from the CW-MLE. The calculation of q̃∗X∗

i
will be repeated for B

(e.g. 5000) times, where the sub-script i indicates the i-th bootstrap sample. Finally EGn (q̃∗n (C1)− q̂n)
2
is

calculated as follows

EGn (q̃∗n (C1)− q̂n)
2

=
1

B

B∑
i=1

(
q̃∗X∗

i
− q̂n

)
.

For ease of readability, the procedure described above is summarised in Algorithm 4.1. This procedure is
repeated for a range of thresholds C. The best threshold is chosen such that it is associated with the smallest
bootstrap MSE.

In the study proposed by [16], only thresholds between the 10th empirical percentile and the median are
considered (in steps of 10%) when calculating the lower quantile estimates. This is purely for computational
simplicity as the above procedure is rather computationally intensive (discussed in Subsection 4.2.3).

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.2. BOOTSTRAP THRESHOLD SELECTION 43

Algorithm 4.1 Bootstrap MSE estimation.

1. Calculate the Type 9 empirical quantile q̂n from the original sample X.

2. Re-sample from X with replacement to obtain the bootstrap sample X∗.

3. Apply Type II subjective censoring to X∗ and calculate the CW-MLE on the smallest r observations.

4. Obtain the quantile estimate of the bootstrap sample q̃∗X∗ .

5. Repeat Steps 2− 4, for B = 5000 repetitions.

6. Calculate EGn (q̃∗n (C)− q̂n)
2

= 1
B

B∑
i=1

(
q̃∗X∗

i
− q̂n

)2
.

7. Repeat Steps 5− 6 for a range of threshold candidates C for X.

8. Select the threshold with the smallest bootstrap MSE.

Discussion on the type of censoring and number of bootstrap replicates

Type of censoring

The censoring threshold for the CW-MLE in Chapter 3 is �xed at the 10th empirical percentile. In other
words, 90% of the available data is censored in order to focus on the �t of the left tail. In this way, the
censoring could be treated as either Type I censoring, where the threshold is chosen to be the sample 10th

empirical percentile, or Type II censoring where only 10% of the smallest observations are considered.
The choice of Type I or Type II censoring will a�ect the quantile estimate in the bootstrap approach and

therefore the MSE estimate in the bootstrap sample. The reason for this is that the censoring threshold is
selected from the original sample X and the smallest r observations from the bootstrap sample X∗.

According to [16], the performance of the RMSE of the B-MLE quantile estimates for the Type II censoring
is marginally better. Therefore, the Type II censoring will be reported for this study. The results for Type I
should be requested from the original author.

Number of bootstrap replicates

The number of replicates B will have an impact on the precision of the MSE estimate. In other words, the
larger the value of B, the better the precision of the MSE estimate will be, at the expense of computation
time. The rationale for this value is explained in detail in [16].

Evaluating the consistency of the bootstrap MSE estimate using simulation

To ensure that the B-MLE performs as desired (asymptotically), is equivalent to showing that (4.2.1) is
satis�ed. This task is rather involved and time-consuming. For the sake of brevity, interested readers are
referred to [16] for a work-in-progress solution.

The approach provided below evaluates the consistency of the bootstrap MSE by means of a simulation
study, re-worked from Chapter 5 in [16]. The bootstrap MSE is a consistent estimator of the true MSE
if the distribution of the di�erence between the true MSE and bootstrap MSE becomes degenerate as the
sample size increases inde�nitely (convergence in probability [2]). The simulation procedure settings remain
the same as in Chapter 3. That is, using N = 10000 replicates from the seven parametric models used to
imitate the MOR datasets, from which the MSEs are calculated. The only di�erence here, is that the sample
sizes are varied (n = 300, 500, 1000, 2000, 3000, 5000).

For each repetition of each sample size, the quantile estimate q̃in is calculated from the CW-MLE, using
the 10th empirical percentile as the threshold. The superscript indicates the ith replicate and the subscript

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.2. BOOTSTRAP THRESHOLD SELECTION 44

the sample size n. The population MSE is estimated using these quantile estimates, for sample size n, as Mn

(see Chapter 2):

Mn =
1

N

N∑
i=1

(
q̃in − q

)2
. (4.2.2)

Where q is the true population quantile from the model used to imitate the real MOR data. Additionally, for
each repetition, the bootstrap procedure introduced earlier is also applied to obtain the MSE estimate M̂ i

n,
with B = 5000 repetitions. Finally, the Monte Carlo estimate of the distribution of the di�erence between
the population MSE and bootstrap MSE, M̂ i

n−Mn, is obtained. For convenience, the procedure is provided
in Algorithm 4.2.

Algorithm 4.2 Obtaining the Monte Carlo estimate of the distribution of the di�erence between the popu-
lation MSE and bootstrap MSE.

1. Simulate data from a model that replicates the MOR dataset.

• Population MSE estimate components:

(a) Fit the censored Weibull MLE to data obtained in (1), using the 10th empirical percentile as the
threshold C.

(b) Estimate the desired quantile using the MLE estimates obtained in (a).

• Bootstrap MSE estimate components:

(a) Obtain the Type IX empirical quantile estimate from the data obtained in (1) as q̂n.

(b) Re-sample from the data obtained in (1) (with replacement), to obtain X∗.

(c) Fit the censored Weibull MLE to X∗, using the 10th empirical percentile as the threshold C. Note
C is obtained from X∗ (Type II likelihood).

(d) Estimate the desired quantile using the MLE estimates obtained in (c).

(e) Repeat steps (b) - (d) B times to obtain

M̂ i
n =

1

B

B∑
i=1

(
q̃∗X∗

i
− q̂n

)2
.

2. Repeat step(s) 1, N times in order to obtain the population Monte Carlo MSE estimate as in (4.2.2).

3. Obtain the Monte Carlo distribution of the di�erence between the population MSE and bootstrap MSE,
M̂ i
n −Mn.

4. Repeat Steps 1− 3 for sample sizes, n, given by (300, 500, 1000, 2000, 3000).

The simulation study outlined above is repeated for all seven parametric models introduced in Chapters
2 and 3, in particular, see Step 1 of Algorithm 3.3. The distribution of M̂ i

n−Mn, for all values of n, exhibits
the same behaviour for all seven parametric models considered. For simplicity, only the results for datasets
generated from a Weibull and Weibull mixture distribution, imitating the MOR2 dataset, are presented. The
box-plot of the Monte Carlo distribution of M̂ i

n −Mn for various sample sizes is provided in Figure 4.2.2.

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.2. BOOTSTRAP THRESHOLD SELECTION 45

(a) Weibull (b) Weibull mixture

Figure 4.2.2: Distribution of M̂ i
n −Mn for di�erent sample sizes.

From Figure 4.2.2, it is clear that the distribution of M̂ i
n−Mn is concentrated around zero. Furthermore,

the right tail of said distribution becomes shorter as the sample size n increases. That is, the di�erence
between the true MSE and bootstrap MSE becomes degenerate as the sample size increases.

Model Statistic 300 500 1000 2000 3000 5000

Weibull
mean 0.0909 0.0807 0.0477 0.0419 0.0358 0.0306

standard error 0.2539 0.1479 0.1285 0.0862 0.0739 0.0655

Weibull mixture
mean 0.1175 0.0993 0.0868 0.0320 0.0237 0.0065

standard error 0.3983 0.2154 0.1882 0.1538 0.1245 0.1071

Table 4.2.1:
√
n times the standard error and mean of M̂ i

n −Mn for di�erent sample sizes.

To further study the convergence of M̂ i
n −Mn, the

√
n times the standard error and the mean are provided

in Table 4.2.1. Notice that the mean and standard error decrease as the sample sizes increases. These trends
further support the idea of the consistency of the bootstrap MSE. These results are not novel and agree with
those presented in [16]. For ease of readability, the performance of the B-MLE is presented in Section 4.4 in
order to keep the comparisons of all techniques studied together.

4.2.3 A note on computation expense

The B-MLE method proposed by [16] is computationally expensive. Algorithm 4.3 summarises the quantile
estimation procedure for the B-MLE technique. If the range of threshold candidates is selected to be C ∈
[0.1, 1] in steps of 0.01, the total number of quantiles that need to be estimated for a single model that
imitates the MOR dataset is

Total number of 5th quantiles estimated = 10 000× 5000× 91

= 4 550 000 000.

The total number of iterations and quantile estimates is extremely large and computationally expensive.
The number of quantile estimates could be lowered, at the expense of the precision of the MSE. [16] only
consider the 10th, 20th, 30th, 40th and 50th percentiles as threshold candidates. Unfortunately, the limited
selection of threshold candidates may not be su�cient to obtain the best performing threshold for each model
that imitates the MOR datasets. Furthermore, applying the B-MLE in a more computationally demanding

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3. ADJUSTED KOLMOGOROV-SMIRNOV THRESHOLD 46

Algorithm 4.3 Simulation procedure to evaluate the performance of the B-MLE quantile estimation tech-
nique.

1. Generate a sample X of size n = 300 from the following models (parameterised by Tables 3.4.1 and
3.4.2) used to imitate the real MOR1 and MOR2 datasets:

• Weibull

• Log-normal

• Gamma

• Minimum Gumbel

• two-component normal mixture

• two-component log-normal mixture

• two-component Weibull mixture

2. Calculate the Type 9 empirical quantile q̂n from the original sample X.

�Bootstrap procedure

(a) Re-sample from X with replacement to obtain the bootstrap sample X∗.

(b) Apply Type II subjective censoring to X∗ and calculate the CW-MLE on the smallest r observa-
tions.

(c) Obtain the quantile estimate of the bootstrap sample q̃∗X∗ .

(d) Repeat Steps (a)-(b), for B = 5000 times.

(e) Calculate EGn (q̃∗n (C)− q̂n)
2

= 1
B

B∑
i=1

(
q̃∗X∗

i
− q̂n

)2
.

(f) Repeat Steps (d)-(e) for a range of threshold candidates Ci for X.

(g) Select the threshold C∗i with the smallest bootstrap MSE.

3. Apply the CW-MLE technique to X to obtain the 5th quantile estimate using C∗i as the censoring
threshold.

4. Repeat Steps 1 - 3 for N = 10000 iterations in order to compute the RMSEs for the B-MLE quantile
estimation technique.

setting, such as the censored mixture model where the EM algorithm is required for parameter estimation,
may become completely infeasible. Clearly, a new threshold selection technique is required that performs at
least as well as the B-MLE, in addition to being vastly less computationally intensive.

4.3 Adjusted Kolmogorov-Smirnov threshold

This section introduces the methodology and motivation behind the adjusted KS threshold selection technique
for the CW-MLE. The objective here is still to �nd the optimal threshold for a given dataset, however, the
computational intensity and methodology complexity should be vastly reduced. The idea is quite simple;
select the threshold that minimises an adjusted KS (discussed later) distance between the ECDF and the
�tted model CDF, in this case, the censored Weibull.

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3. ADJUSTED KOLMOGOROV-SMIRNOV THRESHOLD 47

4.3.1 Relationship between the KS distance and the proportion of censoring

The nature of the KS statistic is such that the distances between the ECDF and the CDF of interest are
usually smallest in the left and right tail of the curves. In other words, any indication of a lacklustre
performance in goodness-of-�t will usually only be detected between the extended interquartile range1. Here
the extended interquartile range refers to the support of the CDFs between the 10th and 95th percentile.
This implies that the truncated KS test statistic (3.2.4), tends to be a minimum for smaller thresholds. Here

F̃n (x) is given by
...
F
i
(r), the CDF of the censored Weibull �tted to the data from model i (one of the seven

parametric models) imitating the MOR dataset and F̂(r) the ECDF. The subscript (r) indicates that the

distances are only considered up to the rth order statistic, i.e. the smallest r observations below the cut-o�
threshold C.

The truncated KS test statistic is an increasing function of the threshold. This should not be surprising
because as mentioned earlier, an increase in the censoring threshold might impact the goodness-of-�t of the
Weibull distribution on the left tail if the data is non-Weibull in nature. From Figure 4.3.1 it is clear that
the distance between the �tted censored Weibull CDF and ECDF is smaller in left tails of the CDF curves.
Moreover, according to Figure 4.2.1, the curve in Figure 4.3.1 for data generated from a Weibull distribution
(pink line) should not have a positive slope. Clearly the standard truncated KS test statistic cannot be used
as a threshold selection technique.

(a) CW-MLE CDF against ECDF for Gamma. (b) DTRUNC
(...
F

i
(r) − F̂(r)

)
for various thresholds.

Figure 4.3.1: Censored Weibull CDF against the ECDF for a Gamma model (a) and Kolmogorov-Smirnov

(KS) test statistic DTRUNC
(...
F
i
(r) − F̂(r)

)
for all models imitating MOR2 for various threshold candidates

(b).

4.3.2 Adjusted KS test statistic

The distance between the ECDF and censored Weibull CDF �tted to the data from a model imitating the
MOR dataset is extremely small between the left tails of the curves. If a threshold were to be chosen such
that the KS distance is minimised, then the smallest available threshold (in this case the 10th empirical
percentile) would be almost surely selected. The boxplot in Figure 4.3.2 summarises the distribution of the
selected threshold, for each parametric model imitating MOR2, using the truncated KS test statistic based
on N = 10000 iterations. Clearly, all boxplots are concentrated at the 10th empirical percentile. This is not
ideal, after all, Figure 4.2.1 suggests that the ideal threshold for most of the models considered is arguably
between the 30th and 50th percentile. The boxplot for MOR1 is very similar and is therefore not included
here.

1The interquartile range here does not refer to the descriptive statistic, but instead to the support of the distribution.

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3. ADJUSTED KOLMOGOROV-SMIRNOV THRESHOLD 48

Figure 4.3.2: Boxplot of selected threshold using the truncated KS test statistic DTRUNC
(...
F
i
(r) − F̂(r)

)
.

In order to circumvent this issue, the truncated KS test statistic can be adjusted to

DAKS
(...
F (r) − F̂(r)

)
= max

{∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣} . (4.3.1)

The natural logarithm maps the di�erences between the �tted censored CDF and ECDF from the space [0, 1]
to (−∞, 0]. The mapping exaggerates di�erences in the left tail between the CDF curves.

To illustrate this concept, a sample of n = 300 is generated from a gamma(16.168, 0.440) distribution

(used to imitate the MOR2 dataset) and the corresponding
...
F (r), F̂(r), log

(...
F (r)

)
and log

(
F̂(r)

)
are plotted

in Figure 4.3.3 for various thresholds. Figure 4.3.3 illustrates how the log transform exaggerates the distance

in the left tails from
∣∣∣...F (r) − F̂(r)

∣∣∣ to ∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ . Figure 4.3.4 plots the distances between ...
F (r)

and F̂(r), as well as log
(...
F (r)

)
and log

(
F̂(r)

)
respectively. From Figure 4.3.4, it should be clear, by looking

at the scale on the y−axes, how the natural logarithmic transformation impacts the distances in the left tails
between the curves. Furthermore, as the number of data points included in the estimation process increases
(i.e. a larger censoring threshold), the log distances in the left tail increase substantially. That is, as the
censoring threshold increases, the ECDF smooths out and the �tted censored Weibull CDF re-adjusts

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3. ADJUSTED KOLMOGOROV-SMIRNOV THRESHOLD 49

(a)
...
F (r) and F̂(r) for p = 0.1

(b) log
(...
F (r)

)
and log

(
F̂(r)

)
for p = 0.1

(c)
...
F (r) and F̂(r) for p = 0.5

(d) log
(...
F (r)

)
and log

(
F̂(r)

)
for p = 0.5

(e)
...
F (r) and F̂(r) for p = 1

(f) log
(...
F (r)

)
and log

(
F̂(r)

)
for p = 1

Figure 4.3.3: Comparison of
...
F (r), F̂(r), log

(...
F (r)

)
and log

(
F̂(r)

)
for a gamma(16.168, 0.440) model imitating

MOR2 and various thresholds.

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3. ADJUSTED KOLMOGOROV-SMIRNOV THRESHOLD 50

(a)
∣∣∣...F n − F̂n

∣∣∣ for p = 0.1 (b)
∣∣∣log (...F n)− log

(
F̂n

)∣∣∣ for p = 0.1

(c)
∣∣∣...F n − F̂n

∣∣∣ for p = 0.3 (d)
∣∣∣log (...F n)− log

(
F̂n

)∣∣∣ for p = 0.3

(e)
∣∣∣...F n − F̂n

∣∣∣ for p = 1 (f)
∣∣∣log (...F n)− log

(
F̂n

)∣∣∣ for p = 1

Figure 4.3.4: Comparison of
∣∣∣...F (r) − F̂(r)

∣∣∣ and ∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ for a gamma(16.168, 0.440) model

imitating MOR2 and various thresholds.

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3. ADJUSTED KOLMOGOROV-SMIRNOV THRESHOLD 51

according to the updated parameters, such that the di�erence between the �tted CDF curves becomes
extremely small in the left tail.

There is, however, a problem here; Figure 4.3.4 demonstrates that the maximum of the absolute di�erence
between the �tted log censored Weibull CDF and log ECDF is an increasing function of the threshold. In
other words, the smallest available threshold would still be selected in the majority of cases. The boxplot
in Figure 4.3.5 summarises the distribution of the selected threshold, for each parametric model imitating
MOR2, using the log-adjusted truncated KS test statistic based on N = 10000 iterations. Again, all boxplots
are concentrated close to the 10th empirical percentile so further adjustments to the test statistic are needed.

Figure 4.3.5: Boxplot of selected threshold using the log-adjusted truncated KS test statistic

DAKS
(...
F (r) − F̂(r)

)
.

In order to fully utilise the potential of the adjusted KS test statistic, a weighting mechanism is re-
quired such that the distance between the CDF curves in the left tail is not overly in�ated and the extended
interquartile range of the curves not under-provisioned. That is, the di�erence of logs run the risk of over-
shadowing the importance of any di�erences that may be present in the extended interquartile range of the
CDF curves.

4.3.3 Relationship between the variance of the KS statistic and the proportion

of censoring

Selecting the correct censoring threshold based on either the truncated KS test statistic or adjusted KS test
statistic is not su�cient. In order to use the adjusted truncated KS test statistic, a weighting mechanism is
required.

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3. ADJUSTED KOLMOGOROV-SMIRNOV THRESHOLD 52

The adjusted KS method in�ates the distances between the CDF curves substantially more in the left tail
compared to the remainder of the support. An appropriate weighting function should penalize distances in
the left tail quite heavily to compensate for this. More importantly, the degree of penalisation of weighting
function should decrease between the extended interquartile range of the curves, where the majority of the
discrepancies between the curves would naturally occur given the �t is incorrect. The weighting function
is therefore crucial to ensure that no arti�cial bias is introduced whilst compensating for the exaggeration
introduced by the logarithmic transformation. The standard error of the �tted censored Weibull CDF at
each observation meets the required criteria and is given by

Weight function =
√...
F (r) ×

(
1−

...
F (r)

)
. (4.3.2)

The right tail shrinkage is not of much concern because a poor model �t would be detected more towards
the left or centre of the curves (based on the nature of the KS test and the behaviour of CDF curves).
Furthermore, the logarithmic transform has very little e�ect on the right tail, i.e. shrinking distances already
close to 0 would not have a signi�cant e�ect on the threshold selection.

For data generated from a gamma(16.168, 0.440) distribution, the mechanics of the weighting function
for various thresholds for the censored Weibull CDF is given by Figure 4.3.6. The weighting function for the
other seven parametric models are similar and are therefore not included here.

(a) p = 0.1 (b) p = 0.5

(c) p = 0.75 (d) p = 1

Figure 4.3.6: Weighting function for the adjusted KS method.

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3. ADJUSTED KOLMOGOROV-SMIRNOV THRESHOLD 53

The weight-adjusted truncated KS threshold selection measure is given by

DWAKS
(...
F (r) − F̂(r)

)
= max

{∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ ∗√...
F (r) ×

(
1−

...
F (r)

)}
. (4.3.3)

Observing the plots in Figure 4.3.8, the weight function seems to be performing as desired. Particu-

larly, comparing the weighted distances
∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ ∗ √...
F (r) ×

(
1−

...
F (r)

)
in Figure 4.3.8 to∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ in Figure 4.3.4, the scale of weighted distances have been adjusted as desired. Fur-

thermore, Figure 4.3.8 illustrates that the smallest weight adjusted KS test statistic occurs at the 30th

empirical percentile threshold (as recommended by Figure 4.2.1), compared to the 10th empirical percentile
threshold obtained without the weight penalisation. From the weight-adjusted log CDF curves in Figure
4.3.8, the weight-adjustment penalises the distances in the left tail and extended interquartile range ade-
quately for smaller thresholds. For larger thresholds (less censoring) the logarithmic transformation appears
to overpower the weight penalisation. From the boxplot in Figure 4.3.7, the performance of the new weight-
adjusted KS statistic is noticeably better, however, the distribution of the thresholds selected is still too
skewed towards the 10th empirical percentile.

Figure 4.3.7: Boxplot of selected threshold using the weight-adjusted truncated KS test statistic∣∣∣log (
...
F n)− log

(
F̂n

)∣∣∣ ∗√...
F n × (1−

...
F n).

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3. ADJUSTED KOLMOGOROV-SMIRNOV THRESHOLD 54

(a) Weight adjusted log
(...
F (r)

)
and log

(
F̂(r)

)
for p = 0.1 (b)

∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ ∗√...
F (r) ×

(
1−

...
F (r)

)
for p = 0.1

(c) Weight adjusted log
(...
F (r)

)
and log

(
F̂(r)

)
for p = 0.3 (d)

∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ ∗√...
F (r) ×

(
1−

...
F (r)

)
for p = 0.3

(e) Weight adjusted log
(...
F (r)

)
and log

(
F̂(r)

)
for p = 1 (f)

∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ ∗√...
F (r) ×

(
1−

...
F (r)

)
for p = 1

Figure 4.3.8: Weight-adjusted log
(...
F (r)

)
and log

(
F̂(r)

)
and

∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ ∗√...
F (r) ×

(
1−

...
F (r)

)
for gamma(16.168, 0.440) model imitating MOR2 for various thresholds.

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3. ADJUSTED KOLMOGOROV-SMIRNOV THRESHOLD 55

4.3.4 A standardised weighting function for the adjusted KS statistic

Recall that as the proportion of censoring decreases, the ECDF smooths out and the �tted censored Weibull
CDF re-adjusts according to the updated parameters obtained in the censored maximum likelihood estimation
process. This means that the distances between the �tted CDF and ECDF curves re-adjust accordingly (due
to smoothing). Moreover, the distances become closer in the left tail and as a result, the log distances
increase substantially. The scale of shrinkage induced by the weight function introduced above is not enough
to compensate for the resulting exponential exaggeration of distances in the left tail. In other words, the
more observations included in the censoring process the closer the CDF curves become in the left tail (not
necessarily true for the rest of the support) and the larger the resulting log di�erence distances. The weight
function, therefore, needs to penalise the log distances based on the number of observations used in the
estimation process as well. The weight function needs to dynamically shrink the log distances in the same
way the original weight function does, however, here the sample size needs to be taken into consideration
so that the log-transformed distances are dealt with scalably, i.e. a standardised weight function. The ideal
weight function is adjusted to

Standardised weight function =

√
...
F (r) ×

(
1−

...
F (r)

)
r

, (4.3.4)

Figure 4.3.10 shows how the standardised weight function penalises the adjusted KS distances in propor-
tion to the size r. Namely, the larger the value of r, the smaller the shrinkage multiplier becomes.

The �nal standardised-weighted adjusted KS (SWAKS) threshold selection measure is given by

DSWAKS
(...
F (r) − F̂(r)

)
= max

∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ ∗
√

...
F (r) ×

(
1−

...
F (r)

)
r

 . (4.3.5)

From Tables 4.3.1 and 4.3.2, the SWAKS values are smallest when the threshold is chosen to be the 40th

empirical percentiles for a sample generated from a gamma(16.168, 0.440) and the 100th percentile (no cen-
soring) for a sample from a Weibull(7.378, 6.738). The smallest values for each threshold selection technique
are bolded for ease of readability. This chosen threshold may change depending on the simulated sample.
Only the SWAKS method selects the correct threshold for both the Gamma and Weibull models. Further-
more, from the boxplot in Figure 4.3.9, the performance of SWAKS threshold selection is outstanding. The
median of each simulated model falls in the desired interval recommended by Figure 4.2.1.

Threshold p
Threshold selection technique for data generated from Gamma(16.168, 0.440)

D?
(...
F (r) − F̂(r)

)
DAKS

(...
F (r) − F̂(r)

)
DWAKS

(...
F (r) − F̂(r)

)
DSWAKS

(...
F (r) − F̂(r)

)
0.1 0.013 0.627 0.109 0.023
0.2 0.018 0.676 0.137 0.014
0.3 0.026 0.976 0.175 0.013
0.4 0.027 0.885 0.193 0.009
0.5 0.026 0.913 0.155 0.011
0.6 0.027 1.064 0.152 0.012
0.7 0.042 1.222 0.169 0.016
0.8 0.050 1.327 0.194 0.017
0.9 0.062 1.588 0.224 0.022
1 0.073 1.834 0.266 0.028

Table 4.3.1: KS distances for various threshold selection techniques for a sample generated from
a Gamma(16.168, 0.440).

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3. ADJUSTED KOLMOGOROV-SMIRNOV THRESHOLD 56

Threshold p
Threshold selection technique for data generated from Weibull(7.378, 6.738)

D?
(...
F (r) − F̂(r)

)
DAKS

(...
F (r) − F̂(r)

)
DWAKS

(...
F (r) − F̂(r)

)
DSWAKS

(...
F (r) − F̂(r)

)
0.1 0.006 1.557 0.054 0.010
0.2 0.024 2.575 0.065 0.008
0.3 0.030 3.010 0.076 0.008
0.4 0.031 2.673 0.076 0.006
0.5 0.030 2.532 0.073 0.005
0.6 0.033 2.314 0.076 0.005
0.7 0.033 2.413 0.073 0.005
0.8 0.032 2.528 0.071 0.004
0.9 0.034 2.432 0.074 0.004
1 0.034 2.571 0.065 0.003

Table 4.3.2: KS distances for various threshold selection techniques for a sample generated from
a Weibull(7.378, 6.738).

The plots in Figure 4.3.10 are very similar to those in Figure 4.3.9. Here the di�erence in log distances is
scaled in proportion to the size r in order to highlight any discrepancies that may be present between the
extended interquartile range of the CDF curves. Only the plots for data generated from a Gamma distribution
for MOR2 are given, however, the plots for the remainder of the parametric models for both MOR datasets
are very similar and have therefore been omitted.

Figure 4.3.9: Boxplot of selected threshold using the standardised weight-adjusted truncated KS test statistic∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ ∗√ ...
F (r)×(1−

...
F (r))

r .

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3. ADJUSTED KOLMOGOROV-SMIRNOV THRESHOLD 57

(a) Standardised weight adjusted log
(...
F (r)

)
and

log
(
F̂(r)

)
for p = 0.1

(b)
∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣∗√ ...
F (r)×(1−

...
F (r))

r
for p =

0.1

(c) Standardised weight adjusted log
(...
F (r)

)
and

log
(
F̂(r)

)
for p = 0.3

(d)
∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣∗√ ...
F (r)×(1−

...
F (r))

r
for p =

0.3

(e) Standardised weight adjusted log
(...
F (r)

)
and

log
(
F̂(r)

)
for p = 1

(f)
∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣∗√ ...
F (r)×(1−

...
F (r))

r
for p =

1

Figure 4.3.10: Standardised weight-adjusted log
(...
F (r)

)
and log

(
F̂(r)

)
and∣∣∣log (...F (r)

)
− log

(
F̂(r)

)∣∣∣ ∗ √ ...
F (r)×(1−

...
F (r))

r for gamma(16.168, 0.440) model imitating MOR2 for various

thresholds.

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.4. SIMULATION COMPARISON 58

4.3.5 The e�ciency of the SWAKS-MLE algorithm

For ease of readability, the algorithm for the SWAKS-MLE is provided in Algorithm 4.4. If the range of
threshold candidates is selected to be C ∈ [0.1, 1] in steps of 0.01, the total number of quantiles that need to
be estimated for a single model that imitates the MOR dataset is

Total number of 5th quantiles estimated = 10 000× 91

= 910 000.

The SWAKS-MLE requires 0.0002 the number of quantile estimates required by the B-MLE approach. How-
ever, since [16] only consider the 10th, 20th, 30th, 40th and 50th percentiles as threshold candidates, this study
will only consider threshold candidates for C ∈ [0.1, 0.5] in steps of 0.01 for the SWAKS MLE to ensure the
results are directly comparable.

Algorithm 4.4 SWAKS-MLE algorithm

1. Generate a sample X of size n = 300 from the following models (parameterised by Tables 3.4.1 and
3.4.2) used to imitate the real MOR1 and MOR2 datasets:

2. Select a censoring threshold C ∈ [0.1, 0.5] .

3. Fit the CW-MLE to the smallest r observations.

4. Calculate DSWAKS
(...
F (r) − F̂(r)

)
.

5. Repeat Steps 2 - 4 for a variety of threshold candidates.

6. Select the threshold with the smallest (SWAKS) test statistic value.

7. Obtain the 5th quantile using the threshold obtained in Step 6.

8. Repeat Steps 1 - 7 for N = 10000 iterations.

9. Obtain the MSE and RMSE using the estimates obtained in Step 8.

4.4 Simulation comparison

In the following simulations, the 5th percentile estimate achieved by the SWAKS-MLE is compared to the
B-MLE, the CW-MLE from Chapter 3, as well as the MIX and MIX7. These quantile estimate techniques
were the best performing in the aforementioned chapter.

The models from which the data are simulated are the same models introduced in Chapter 4: seven
models imitating the MOR1 and MOR2 datasets. The sample size for each model is set to n = 300.
The RMSE for the quantile estimates are summarised in Tables 4.4.1 and 4.4.2. As in previous chapters,
darker backgrounds indicate larger values of RMSE. The simulation process of the B-MLE is exceptionally
computationally expensive, therefore the results obtained by the B-MLE in [16] are quoted here.

In the remainder of this section, the simulation results in Tables 4.4.1 and 4.4.2 are analysed to compare
the �ve quantile estimates. Furthermore, in order to understand the advantages and limitations of the
SWAKS-MLE, the bias and standard error of the B-MLE, CW-MLE and SWAKS-MLE are compared.

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.4. SIMULATION COMPARISON 59

Model CW-MLE MIX CMIX7 B-MLE SAWKS-MLE
Weibull 0.150 0.148 0.152 0.147 0.141

Log-normal 0.163 0.257 0.159 0.174 0.158
Gamma 0.163 0.217 0.159 0.166 0.168

Minimum Gumbel 0.175 0.153 0.147 0.143 0.139
Normal Mixture 0.112 0.141 0.110 0.120 0.141

Log-normal Mixture 0.169 0.197 0.155 0.156 0.140
Weibull Mixture 0.163 0.156 0.163 0.149 0.146

Table 4.4.1: RMSE of the 5th quantile estimates from a Weibull CW-MLE, MIX, MIX7, B-MLE and SAWKS-
MLE for various models imitating MOR1.

Model CW-MLE MIX CMIX7 B-MLE SAWKS-MLE
Weibull 0.138 0.128 0.131 0.131 0.127

Log-normal 0.139 0.261 0.128 0.148 0.137
Gamma 0.138 0.191 0.132 0.142 0.138

Minimum Gumbel 0.155 0.140 0.138 0.134 0.129
Normal Mixture 0.127 0.133 0.122 0.132 0.127

Log-normal Mixture 0.137 0.146 0.139 0.134 0.126
Weibull Mixture 0.163 0.158 0.161 0.156 0.151

Table 4.4.2: RMSE of the 5th quantile estimates from a Weibull CW-MLE, MIX, MIX7, B-MLE and SAWKS-
MLE for various models imitating MOR2.

4.4.1 Comparison of the RMSE of the quantile estimates

From the background shades in Tables 4.4.1 and 4.4.2, it is easy to see that either the CMIX7 or the
SWAKS-MLE is the best quantile estimate in all seven parametric models considered. For the models
imitating MOR1, MIX7 has the smallest RMSE in 2 models while SWAKS-MLE has the smallest in 5
models. Among the models imitating MOR2, the SWAKS-MLE is the best in 4 models while CMIX7 is the
best in 3 models. Clearly, the SWAKS-MLE achieves the largest number of pole positions in all the parametric
models considered. The SWAKS-MLE outperforms the B-MLE in all models except for the Normal mixture
and Gamma models imitating the MOR1 dataset.

To summarise the performance of these �ve quantiles estimates, their average ranks for each parametric
model simulated from is compared. For example, in the Log-normal model imitating the MOR1 dataset, the
ranks are: CW-MLE (4) ,MIX (5), CMIX7 (2), B-MLE (3) and SWAKS-MLE (1) . The ranks of each quantile
are averaged across all seven parametric models for both the MOR1 and MOR2 datasets. The results are
given by:

CW-MLE MIX MIX7 B-MLE SWAKS-MLE

Averaged rank 3.428 4.071 2.5 2.857 1.785

The SWAKS-MLE has the smallest averaged rank among all quantile estimates and the CMIX7 is in the
second place. Moreover, since the lumber strength data is commonly modelled by the Weibull distribution,
the models that are closely related to said distribution, such as the Weibull mixture and Minimum Gumbel,
should be assigned slightly more weight in the averaged rank calculation, [16]. The SWAKS-MLE performs
better with those models compared to the B-MLE and CMIX7.
The SWAKS-MLE is better than the �xed threshold CW-MLE except for the Gamma and Log-normal
mixture model. It may, therefore, be worthwhile to compare the bias and standard errors of the B-MLE,
CW-MLE and SWAKS-MLE.

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.5. CHAPTER SUMMARY 60

4.4.2 Comparison of the bias and standard error of the B-MLE, CW-MLE and

SWAKS-MLE

The bias and standard error (SE) of the quantile estimates from the B-MLE, CW-MLE and SWAKS-MLE for
the models imitating MOR2 are summarised in Table 4.4.3. The results for the models imitating the MOR1
dataset are similar and are thus excluded. As in previous tables, the greener background shade corresponds
to a smaller bias and standard error. The B-MLE reduces the bias the most followed by the SWAKS-MLE.
The SWAKS-MLE has the smallest standard error across all parametric models considered, followed by the
CW-MLE.

Parametric Bias SE
Model CW-MLE B-MLE SWAKS-MLE CW-MLE B-MLE SWAKS-MLE
Weibull 0.36 0.95 0.71 13.5 13.1 12.7

Log-normal 4.59 0.43 2.27 13.5 14.8 13.4
Gamma 3.46 0.5 3.75 13.4 14.2 13.4

Minimum Gumbel 4.32 0.24 0.54 14.8 13.4 12.9
Normal Mixture 1.75 1.94 1.04 12.5 13.2 12.6

Log-normal Mixture 4.82 0.97 1.93 12.9 13.3 12.4
Weibull Mixture 2.34 2.12 1.35 16.5 15.6 15.1

Table 4.4.3: Bias and standard error (SE) (x100) of the CW-MLE, B-MLE and SWAKS-MLE quantile
estimates for the models imitating the MOR2 data set. .

This is rather impressive, considering the SWAKS-MLE is a data-driven procedure. Clearly from the results
discussed, the SWAKS-MLE outperforms the B-MLE in terms of accuracy (reduces the RMSE and standard
errors of the quantile estimates) and computational intensity in all models considered.

4.5 Chapter summary

Chapter 4 revisits the B-MLE proposed by [16] and proposes a new threshold selection technique, namely
the SWAKS-MLE. These two methodologies can be used to select an optimal threshold for the CW-MLE
quantile estimation technique. The B-MLE performs better than the �xed threshold CW-MLE from Chapter
3, however, it is computationally intensive. The newly proposed SWAKS-MLE makes use of a standardised-
weighted log-adjusted truncated Kolmogorov-Smirnov test to select the optimal threshold. The SWAKS-MLE
outperforms all the quantile estimation techniques used in this study and should be the preferred choice for
lower quantile estimation.

Chapter 4. Threshold Selection Techniques in the Censored Weibull Model

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5

Future Work and Conclusions

This dissertation focuses on statistical methods for lower quantile estimation of modulus of rupture wood
datasets, initially studied in [16]. In particular, Chapters 2, 3, 4 and 5 of [16] were thoroughly re-worked.
More so, the main contribution here was the data-driven threshold selection technique (SWAKS-MLE). The
study of lower quantile estimation of wood strength data is a crucial problem for the safety and reliability of
wood built structures. Several non-parametric quantile estimation techniques are available and intuitive to
use, such as the empirical quantile and KDE quantile estimates. These estimates may be unbiased but su�er
from large standard errors. Fully parametric quantile estimates do not have this problem, however, they may
be extremely bias under misspeci�ed distributions. To circumvent the �aws of both the non-parametric and
parametric quantile estimates, the wood engineering industrial standard [1] apply a semi-parametric censored
Weibull MLE approach.

The fundamental idea of the censored Weibull MLE approach is to �t the left tail of the data, rather
than the entire range in order to su�ciently obtain lower quantile estimates. Thus if there is a desire to
estimate the lower quantile, all observations to the right of the threshold are arti�cially censored. This allows
the investigator to focus on the �t of a parametric PDF to the left tail and arti�cially censor the rest of the
observations. From the simulation and theoretical studies presented, the censored Weibull MLE approach
addresses the issues of parametric and non-parametric quantile estimation, that is, a smaller MSE of the
quantile estimates is generally achieved.

The censored Weibull MLE is slightly more biased compared to the empirical quantile estimate, however,
it is noticeably more e�cient in terms of the standard error of the quantile estimates. The censored Weibull
MLE is less e�cient than the fully parametric approach under the correct model (i.e. Weibull model),
however, remarkably less biased under misspeci�ed models.

The censored Weibull MLE approach does have its own shortcomings that are addressed in this disser-
tation. The �rst potential successor to the censored Weibull MLE is to consider a more complex model, to
make use of more sample data in the estimation procedure. This being said, the two-component Weibull and
censored Weibull mixture are investigated. The uncensored Weibull mixture performs adequately, however,
it struggles to approximate the left tail of several of the parametric models considered to imitate the real
dataset. The censored Weibull mixture model performs the best and reduces the bias of the censored Weibull
MLE, however, the choice of threshold remains to be investigated.

Another approach to improving the censored Weibull MLE is to select the optimum threshold for the
dataset. This idea leads to the bootstrap censored Weibull MLE proposed by [16]. The approach makes use
of the bootstrap to obtain an MSE estimate based on the bootstrap samples. Furthermore, the threshold
with the smallest bootstrap MSE is then used in the censored Weibull MLE to obtain the quantiles estimates
of interest. The B-MLE approach increases the standard errors of the quantile estimates, however, this is not
uncommon of a data-driven process and the bias is signi�cantly reduced. The B-MLE o�ers improvements
over the �xed threshold censored Weibull MLE, however, the computational intensity of this approach is
rather staggering.

An alternative improvement to the censored Weibull MLE is to select the threshold that minimises a

61

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

62

standardised-weighted log-adjusted Kolmogorov-Smirnov test statistic between the ECDF of the dataset and
the censored Weibull CDF. The idea here is to select the threshold for the dataset that o�ers the best �t.
The SWAKS censored Weibull MLE (SWAKS-MLE) performs better than all other methods presented in
this dissertation and is vastly less computationally intensive compared to the B-MLE. Furthermore, the
SWAKS-MLE does not enjoy the bene�ts of reduced bias compared to the B-MLE approach, however, it
is very much on par and comparable to the censored Weibull MLE approach. Moreover, the SWAKS-MLE
o�ers vast improvements over all other methods in terms of the standard errors of the quantile estimates,
which is rather impressive considering this is a data-driven approach.

As for future research, the asymptotic behaviour and consistency of the SWAKS-MLE threshold selection
from a mathematical point of view needs to be completed. This will provide insight as to whether the
performance of the SWAKS-MLE will be a�ected by larger sample sizes (how the log transformation behaves
asymptotically). Moreover, an adjustment to the SWAKS-MLE in order to estimate upper quantile estimates
remains to be investigated. This will allow a direct comparison with the B-MLE and peaks-over-threshold
threshold comparison in [17]. Finally, the SWAKS technique could potentially be applied in the censored
Weibull mixture setting to obtain the optimum threshold and further improvements on the lower quantile
estimates.

Chapter 5. Future Work and Conclusions

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

63

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography

[1] ASTM. Standard speci�cation for computing reference resistance of wood-based materials and
structural connections for load and resistance factor design D5457. American Society for Testing
Materials. Philadephia Pa, (2004).

[2] L. J. Bain and M. Engelhardt. Introduction to Probability and Mathematical Statistics. The Duxbury
advanced series in statistics and decision sciences. Brooks/Cole, 2nd edition, (1987).

[3] L. R. Burden and J. D. Faires. Numerical Analysis. CENCAGE Learning, 9th edition, (2010).

[4] Y. Cheng. Wood property relationships and survival models in reliability. PhD thesis, University of
British Columbia, (2010).

[5] S. Coles, J. Bawa, L. Trenner, and P. Dorazio. An Introduction to Statistical Modeling of Extreme
Values, volume 208. Springer, (2001).

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1�22, (1977).

[7] Beirlant et al. Statistics of Extremes: Theory and Applications. John Wiley & Sons, (2004).

[8] R. A. Fisher and L. H. C. Tippett. Limiting forms of the frequency distribution of the largest or
smallest member of a sample. In Mathematical Proceedings of the Cambridge Philosophical Society,
volume 24 of number 2, pages 180�190. Cambridge University Press, (1928).

[9] M. Fréchet. Sur la loi de probabilité de l'écart maximum. Ann. Soc. Math. Polon., 6:93�116, (1927).

[10] R. J. Hyndman and Y. Fan. Sample quantiles in statistical packages. The American Statistician,
50(4):361�365, (1996).

[11] A. J. Izenman. Recent developments in nonparametric density estimation. Journal of the American
Statistical Association, 86(413):205�224, (1991).

[12] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous univariate distributions, volume 1. John
Wiley\& Sons, (1994).

[13] M. C. Jones and S. J. Sheather. A brief survey of bandwidth selection for density estimation. Journal
of the American Statistical Association, 91(433):401�407, (1996).

[14] J. F. Lawless. Statistical Models and Methods for Lifetime Data. John Wiley & Sons, (2011).

[15] E. L. Lehmann and G. Casella. Theory of Point Estimation. Springer Science & Business Media,
(2006).

[16] Y. Liu. Lower quantile estimation of wood strength data. PhD thesis, University of British Columbia,
(2012).

[17] Y. Liu, M. Salibián-Barrera, R. H. Zamar, and J. V. Zidek. Using arti�cial censoring to improve
extreme tail quantile estimates. Journal of the Royal Statistical Society: Series C (Applied Statistics),
67(4):791�812, (2018).

[18] G. J. McLachlan. On bootstrapping the likelihood ratio test statistic for the number of components in
a normal mixture. Journal of the Royal Statistical Society: Series C (Applied Statistics),
36(3):318�324, (1987).

64

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

BIBLIOGRAPHY 65

[19] H. Rinne. The Weibull Distribution: A Handbook Crc Press. (2009).

[20] R. Ser�ing. Approximation Theorems of Mathematical Statistics, volume 162. John Wiley & Sons,
(2009).

[21] S. J. Sheather and M. C. Jones. A reliable data-based bandwidth selection method for kernel density
estimation. Journal of the Royal Statistical Society: Series B (Methodological), 53(3):683�690, (1991).

[22] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Routledge, (2018).

[23] E. W. Stacy. A generalization of the gamma distribution. The Annals of Mathematical Statistics,
33(3):1187�1192, (1962).

[24] W. Weibull. A statistical distribution function of wide applicability. Journal of Applied Mechanics,
18(3):293�297, (1951).

Chapter 5. Future Work and Conclusions

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix

All code �les used in this dissertation are available on a GitHub repository at: https://github.com/

Jarod-Smithy/MSc-code-files/. It should be noted that for copyright purposes, the repository is private.
In order to access the code �les I request that the interested reader and or user email their GitHub username
to jarodsmith706@gmail.com in order to collaborate with me and access the �les. That being said, a large
portion of the code is provided below, however, to save space due to the copious amount of code not everything
is included.

66

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://github.com/Jarod-Smithy/MSc-code-files/
https://github.com/Jarod-Smithy/MSc-code-files/
jarodsmith706@gmail.com

###############################

Chapter 1 code ####

###############################

Exploring the MOR dataset

#read in the data and split into MOR1 and MOR2 datasets

setwd("C:/Users/Jarod/Google Drive/Jarod M- 2018 and 2019/Data

set/AC/Data")

MOR <- read.csv('MOR_Data.csv',sep = ',')

MOR1 <- MOR[MOR$Sample == 'MOR1',2]

MOR2 <- MOR[MOR$Sample == 'MOR2',2]

hist(MOR2,xlab="MOR2", breaks=15, main="")

###############################

Chapter 2 code ####

###############################

kde quantile estimate

setwd("C:\\Users\\Jarod\\Google Drive\\Jarod M- 2018 and 2019\\Data

set\\AC\\Data")

Read CSV into R

MyData <- read.csv(file="MOR_Data.csv", header=TRUE, sep=",")

MOR1 <- MyData[MyData$Sample == 'MOR1',2]

MOR2 <- MyData[MyData$Sample == 'MOR2',2]

DS <- MOR2

#bandwidth selection

MOR_bw <- bw.SJ(DS, nb=15,

 method ="ste")

b_MOR = sample(DS, size = length(DS), replace = TRUE) + rnorm(length(DS),

0, MOR_bw)

hist(DS, breaks= 15, prob =TRUE, main="", xlab = "MOR2")

lines(density(b_MOR, bw = "SJ-ste"), lwd = 3, lty = 'dashed', col

="dodgerblue4")

dens = density(MOR1)

x = dens$x

F = cumsum(dens$y)/sum(dens$y)

approx(F,x,0.5)

quant_func <- function(data,q){

 dens = density(data)

 x = dens$x

 F = cumsum(dens$y)/sum(dens$y)

 out = approx(F,x,q)$y

 return(out)

}

quant_func(b_MOR1,0.05)

##Chapter 2 - choice of empirical quantile definition

library(data.table)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

library(future)

library(ordinal)

n <- 300

MC <- 10000

EQ.choice <- function(MC,sample_size, rdens, q, param,gum.ind) {

 library(ordinal)

 quant.all <- c()

 quant.9 <- matrix(nrow = 9, ncol = length(q))

 for (j in 1:MC){

 #generate the data

 if(gum.ind==TRUE){

 dat <- rdens(sample_size,param[1], param[2],max = FALSE)

 }

 if(gum.ind==FALSE){

 dat <- rdens(sample_size, param[1], param[2])

 }

 #Obtain quantile estimates for each definition

 for (i in 1:9) {

 quant.9[i,1:length(q)] <- quantile(dat, q, type = i)

 }

 quant.all <- cbind(quant.all, quant.9)

 }

 return(quant.all)

}

plan(multisession)

tempjob1 %<-% EQ.choice(MC,n,rweibull,c(0.01,0.05), c(7,7), FALSE)

tempjob2 %<-% EQ.choice(MC,n,rgamma,c(0.01,0.05), c(14,1/0.6), FALSE)

tempjob3 %<-% EQ.choice(MC,n,rlnorm,c(0.01,0.05), c(2,0.3), FALSE)

tempjob4 %<-% EQ.choice(MC,n,rgumbel,c(0.01,0.05), c(7,0.5), TRUE)

start <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

df <- cbind(temp.list)

rm(list=ls(pattern="temp"))

end <- Sys.time()

end - start

type = 1

first <- df[[type]][,seq(1,2*MC,2)]

fifth <- df[[type]][,seq(2,2*MC,2)]

df_1 <- c()

df_5 <- c()

for (i in 1:MC) {

 df_1 <- cbind(df_1, first[,i])

 df_5 <- cbind(df_5, fifth[,i])

}

df_1 <- data.frame(df_1)

df_5 <- data.frame(df_5)

RMSE

RMSE_1_gum <- sqrt(apply((t(df_1) - qgumbel(0.01,7,0.5,

max=FALSE))^2,2,sum)/MC)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

RMSE_5_gum <- sqrt(apply((t(df_5) - qgumbel(0.05,7,0.5,

max=FALSE))^2,2,sum)/MC)

RMSE_1_w <- sqrt(apply((t(df_1) - qweibull(0.01,7,7))^2,2,sum)/MC)

RMSE_5_w <- sqrt(apply((t(df_5) - qweibull(0.05,7,7))^2,2,sum)/MC)

RMSE_1_gam <- sqrt(apply((t(df_1) - qgamma(0.01,14,1/0.6))^2,2,sum)/MC)

RMSE_5_gam <- sqrt(apply((t(df_5) - qgamma(0.05,14,1/0.6))^2,2,sum)/MC)

RMSE_1_ln <- sqrt(apply((t(df_1) - qlnorm(0.01,2,0.3))^2,2,sum)/MC)

RMSE_5_ln <- sqrt(apply((t(df_5) - qlnorm(0.05,2,0.3))^2,2,sum)/MC)

Basic boxplot ####

Type = 1

boxplot(t(df_5), xlab = "Empirical quantile definition", ylab = "Quantile

value")

abline(h=qweibull(0.05,7,7),col="firebrick1", lwd=4, lty=2)

Type = 2

boxplot(t(df_5), xlab = "Empirical quantile definition", ylab = "Quantile

value")

abline(h=qgamma(0.05,14,1/0.6),col="darkgoldenrod3", lwd=4, lty=2)

Type = 3

boxplot(t(df_5), xlab = "Empirical quantile definition", ylab = "Quantile

value")

abline(h=qlnorm(0.05,2,0.3),col="blueviolet", lwd=4, lty=2)

Type = 4

boxplot(t(df_5), xlab = "Empirical quantile definition", ylab = "Quantile

value")

abline(h=qgumbel(0.05,7,0.5, max=FALSE),col="dodgerblue4", lwd=3, lty=2)

#Parametric quantile estimation

#read in the data and split into MOR1 and MOR2 datasets

setwd("C:/Users/Jarod/Google Drive/Jarod M- 2018 and 2019/Data

set/AC/Data")

MOR <- read.csv('MOR_Data.csv',sep = ',')

MOR1 <- MOR[MOR$Sample == 'MOR1',2]

MOR2 <- MOR[MOR$Sample == 'MOR2',2]

DS <- MOR1

#Fit of distributions by maximum likelihood estimation

library("fitdistrplus")

fw <- fitdist(DS, "weibull")

fg <- fitdist(DS, "gamma")

fln <- fitdist(DS, "lnorm")

dgumbel <- function(x, a, b) 1/b * exp((x-a)/b) * exp(-exp((x-a)/b))

pgumbel <- function(q, a, b) 1-exp(-exp((q-a)/b))

qgumbel <- function(p, a, b) a + b * log(-log(1-p))

fgu <- fitdist(DS, "gumbel", start = list(a = 7.5, b = 1.5))

summary(fw)

summary(fg)

summary(fln)

summary(fgu)

#Plotting different distributions

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

plot.legend <- c("Weibull", "lognormal", "gamma", "Gumbel")

cdfcomp(list(fw, fln, fg, fgu), legendtext = plot.legend, xlegend =

"bottomright", main ="",lwd=2, xlim = c(1,15))

qqcomp(list(fw, fln, fg, fgu), legendtext = plot.legend, xlegend =

"topleft", main = "")

x=seq(0, max(DS), length = 1000)

hist(DS, breaks=25, prob=TRUE, main="", xlab = "MOR1")

curve(dweibull(x, fw$estimate[1], fw$estimate[2]), col="red", lwd=3, add=T,

lty = 'dashed')

curve(dgamma(x, fg$estimate[1], fg$estimate[2]), col="blue", lwd=3, add=T)

curve(dlnorm(x, fln$estimate[1], fln$estimate[2]), col="green", lwd=3,

add=T, lty = 'dotdash')

curve(dgumbel(x, fgu$estimate[1], fgu$estimate[2]), col="purple", lwd=3,

add=T, lty = 'twodash')

legend(x = c(6.6,9), y = c(0.415, 0.415), legend=c("Weibull", "lognormal",

"gamma", "Gumbel"),

 col=c("red", "blue", "green", "purple"), lty=1:4, cex=1.2,

box.lty=0, y.intersp=0.3)

#Fit statistics

gofstat(list(fw, fln, fg, fgu),

 fitnames = c("weibull", "lognormal", "gamma", "Gumbel"))

#Quantile estimates

wq5 <- quantile(fw, probs = 0.01)

lnq5 <- quantile(fln, probs = 0.01)

gq5 <- quantile(fg, probs = 0.01)

guq5 <- quantile(fgu, probs = 0.01)

quantile(fw, probs = 0.01)

quantile(fln, probs = 0.01)

quantile(fg, probs = 0.01)

quantile(fgu, probs = 0.01)

###############################

Chapter 3 code ####

###############################

censored parameter estimation

setwd("C:\\Users\\Jarod\\Google Drive\\Jarod M- 2018 and 2019\\Data

set\\AC\\Data")

Read CSV into R

MyData <- read.csv(file="MOR_Data.csv", header=TRUE, sep=",")

MOR1 <- MyData[MyData$Sample == 'MOR1',2]

MOR2 <- MyData[MyData$Sample == 'MOR2',2]

DS <- MOR1

C <- quantile(DS, probs = 0.1, type = 3)

MOR1_ordered <- DS[order(DS)]

x <- MOR1_ordered[(MOR1_ordered<=C)]

m <- length(x)

n <- length(DS)

fr <- function(param) { ## Censored Weibull

 beta <- param[1]

 psi <- param[2]

 (m*log(beta) + m*log(psi) + (beta-1)*sum(log(x)) - psi*sum(x^beta) - (n-

m)*psi*C^beta)*(-1)

}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

optim(c(0.5,0.5), fr)

fr <- function(param) { ## Censored Gumbel

 mu <- param[1]

 beta <- param[2]

 (-m*log(beta)+sum(x-mu)/beta - sum(exp((x-mu)/beta))-(n-m)*exp((C-

mu)/beta))*(-1)

}

optim(c(1,1), fr)

fr <- function(param) { ## Censored logNormal

 mu <- param[1]

 sigma <- param[2]

 (-(m/2)*log(2*pi*sigma^2) - sum(log(x)) - sum(log(x)^2)/(2*sigma^2) +

sum(log(x)*mu)/sigma^2 -

 m*(mu^2)/(2*sigma^2) + (n-m)*(1-pnorm((log(C)-mu)/sigma)))*(-1)

}

optim(c(1,1), fr)

library(astro)

fr <- function(param) { ## Censored Gamma

 theta <- param[1]

 kappa <- param[2]

 (-m*log(gamma(theta)) - m*theta*log(kappa) +(theta-1)*sum(log(x)) -

sum(x)/kappa

 +(n-m)*log(1-pgamma(C,theta,1/kappa)))*(-1)

}

optim(c(0.2,5), fr)

dgumbel <- function(x, a, b) 1/b * exp((x-a)/b) * exp(-exp((x-a)/b))

pgumbel <- function(q, a, b) 1-exp(-exp((q-a)/b))

qgumbel <- function(p, a, b) a + b * log(-log(1-p))

library(shape)

x=seq(0, max(DS), length = 1000)

hist(DS, breaks=25, prob=TRUE, main="", ylim = c(0,0.38), xlab = "MOR1")

curve(dweibull(x, 7.378, 6.739), col="red", lwd=3, add=T, lty = 1)

curve(dgamma(x, 16.168 , 1/0.440), col="blue", lwd=3, add=T, lty = 2)

curve(dlnorm(x, 1.951, 0.286), col="green", lwd=3, add=T, lty = 3)

curve(dgumbel(x, 6.319, 0.601), col="purple", lwd=3, add=T, lty = 4)

Arrows(C,0,C,0.0001, arr.type = "triangle",col="gray29", lwd =0.1)

abline(v=C, col="gray29", lwd =2)

legend(7, 0.4, legend=c("Weibull", "lognormal", "gamma", "Gumbel",

"Threshold"),

 col=c("red", "blue", "green", "purple", "gray29"),

 cex=1, box.lty=0, y.intersp=0.35, bg="transparent", lty = 1:4,

x.intersp = 0.3)

#Truncated Kolmogoriv-Smirnov test weibull

index_C <- which(MOR1_ordered == C)

ecdf <- ecdf(DS)

wdf <- pweibull(DS, 6.823, 7.172, lower.tail = TRUE, log.p = FALSE)

max(abs(ecdf[1:index_C]-wdf[1:index_C]))

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

plot(MOR2,ecdf, xlab = 'Sample Quantiles of MOR2', ylab = '', main = '',

ylim = c(0,1))

mtext(bquote(tilde(F)[n](x) ~ ~vs~ ~ hat(F)[n](x)),side = 2, line = 2.5)

abline(h = 1, col = "red", lty=2)

lines(MOR2,wdf,col='blue', lwd = 2)

Arrows(C,0,C,0.0001, arr.type = "triangle",col="gray29", lwd =0.1)

abline(v=C, col="gray29", lwd =2)

#Truncated Kolmogoriv-Smirnov test gamma

gdf <- pgamma(DS, 12.96, 1/0.599, lower.tail = TRUE, log.p = FALSE)

max(abs(ecdf[1:index_C]-gdf[1:index_C]))

plot(MOR2,ecdf, xlab = 'Sample Quantiles of MOR2', ylab = '', main = '',

ylim = c(0,1))

mtext(bquote(tilde(F)[n](x) ~ ~vs~ ~ hat(F)[n](x)),side = 2, line = 2.5)

abline(h = 1, col = "red", lty=2)

lines(MOR2,gdf,col='blue', lwd = 2)

Arrows(C,0,C,0.0001, arr.type = "triangle",col="gray29", lwd =0.1)

abline(v=C, col="gray29", lwd =2)

#Truncated Kolmogoriv-Smirnov test log-normal

lndf <- plnorm(DS, 2.072, 0.336, lower.tail = TRUE, log.p = FALSE)

max(abs(ecdf[1:index_C]-lndf[1:index_C]))

plot(MOR2,ecdf, xlab = 'Sample Quantiles of MOR2', ylab = '', main = '',

ylim = c(0,1))

mtext(bquote(tilde(F)[n](x) ~ ~vs~ ~ hat(F)[n](x)),side = 2, line = 2.5)

abline(h = 1, col = "red", lty=2)

lines(MOR2,lndf,col='blue', lwd = 2)

Arrows(C,0,C,0.0001, arr.type = "triangle",col="gray29", lwd =0.1)

abline(v=C, col="gray29", lwd =2)

#Truncated Kolmogoriv-Smirnov test Gumbel

gudf <- pgumbel(DS, 6.623, 0.651)

max(abs(ecdf[1:index_C]-gudf[1:index_C]))

plot(MOR2,ecdf, xlab = 'Sample Quantiles of MOR2', ylab = '', main = '',

ylim = c(0,1))

mtext(bquote(tilde(F)[n](x) ~ ~vs~ ~ hat(F)[n](x)),side = 2, line = 2.5)

abline(h = 1, col = "red", lty=2)

lines(MOR2,gudf,col='blue', lwd = 2)

Arrows(C,0,C,0.0001, arr.type = "triangle",col="gray29", lwd =0.1)

abline(v=C, col="gray29", lwd =2)

#Quantile estimates for censored distributions

qgumbel <- function(p, a, b) a + b * log(-log(1-p))

qweibull(0.05, 6.823130, 7.173, lower.tail = TRUE, log.p = FALSE)

qlnorm(0.05, 2.0442105, 0.3296024, lower.tail = TRUE, log.p = FALSE)

qgamma(0.05, 12.959570, 1/0.599397, lower.tail = TRUE,

 log.p = FALSE)

qgumbel(0.05, 6.6232032, 0.6505291)

qgumbel <- function(p, a, b) a + b * log(-log(1-p))

qweibull(0.05, 7.377541, 6.738, lower.tail = TRUE, log.p = FALSE)

qlnorm(0.05, 1.9514936, 0.2855398, lower.tail = TRUE, log.p = FALSE)

qgamma(0.05, 16.1675782, 1/0.4403953, lower.tail = TRUE,

 log.p = FALSE)

qgumbel(0.05, 6.3192829, 0.6011575)

#Standard error

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

library(ordinal)

MC <- 10000

set.seed(1234)

fr_w <- function(param) { ## Censored Weibull

 beta <- param[1]

 psi <- param[2]

 (m*log(beta) + m*log(psi) + (beta-1)*sum(log(x)) - psi*sum(x^beta) - (n-

m)*psi*C^beta)*(-1)

}

library(astro)

fr_g <- function(param) { ## Censored Gamma

 theta <- param[1]

 kappa <- param[2]

 (-m*log(gamma(theta)) - m*theta*log(kappa) +(theta-1)*sum(log(x)) -

sum(x)/kappa

 +(n-m)*log(1-pgamma(C,theta,1/kappa)))*(-1)

}

results <- matrix(nrow = MC, ncol = 8)

for (j in 1:nrow(results)){

 w = rweibull(300, shape = 6.823130, scale = 7.173)

 C = quantile(w, probs = 0.1, type = 3)

 MOR1_ordered = w[order(w)]

 x = MOR1_ordered[(MOR1_ordered<=C)]

 m = length(x)

 n = length(w)

 par = optim(c(0.5,0.5), fr_w)

 results[j,1] = qweibull(0.05, par$par[1], (1/par$par[2])^(1/par$par[1]))

 w = rweibull(300, shape = 7.377541, scale = 6.738)

 C = quantile(w, probs = 0.1, type = 3)

 MOR1_ordered = w[order(w)]

 x = MOR1_ordered[(MOR1_ordered<=C)]

 m = length(x)

 n = length(w)

 par = optim(c(0.5,0.5), fr_w)

 results[j,5] = qweibull(0.05, par$par[1], (1/par$par[2])^(1/par$par[1]))

 g = rgamma(300, shape = 12.959570, scale = 0.599397)

 C = quantile(g, probs = 0.1, type = 3)

 MOR1_ordered = g[order(g)]

 x = MOR1_ordered[(MOR1_ordered<=C)]

 m = length(x)

 n = length(g)

 par = optim(c(0.2,0.5), fr_g)

 results[j,2] = qgamma(0.05, par$par[1], (1/par$par[2]))

 g = rgamma(300, shape = 16.1675782, scale = 0.4403953)

 C = quantile(g, probs = 0.1, type = 3)

 MOR1_ordered = g[order(g)]

 x = MOR1_ordered[(MOR1_ordered<=C)]

 m = length(x)

 n = length(g)

 par = optim(c(0.2,0.5), fr_g)

 results[j,6] = qgamma(0.05, par$par[1], (1/par$par[2]))

 ln = rlnorm(300, 2.0442105, 0.3296024)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 C = quantile(ln, probs = 0.1, type = 3)

 MOR1_ordered = ln[order(ln)]

 x = MOR1_ordered[(MOR1_ordered<=C)]

 m = length(x)

 n = length(ln)

 par = optim(c(1,1), fr_ln)

 results[j,3] = qlnorm(0.05, par$par[1], par$par[2])

 ln = rlnorm(300, 1.9514936, 0.2855398)

 C = quantile(ln, probs = 0.1, type = 3)

 MOR1_ordered = ln[order(ln)]

 x = MOR1_ordered[(MOR1_ordered<=C)]

 m = length(x)

 n = length(ln)

 par = optim(c(1,1), fr_ln)

 results[j,7] = qlnorm(0.05, par$par[1], par$par[2])

 gu = rgumbel(300, location = 6.6232032, scale =0.6505291 , max

= FALSE)

 C = quantile(gu, probs = 0.1, type = 3)

 MOR1_ordered = gu[order(gu)]

 x = MOR1_ordered[(MOR1_ordered<=C)]

 m = length(x)

 n = length(gu)

 par = optim(c(1,1), fr_gu)

 results[j,4] = qgumbel(0.05, location = par$par[1], scale = par$par[2],

max = FALSE)

 gu = rgumbel(300, location = 6.3192829, scale = 0.6011575 , max

= FALSE)

 C = quantile(gu, probs = 0.1, type = 3)

 MOR1_ordered = gu[order(gu)]

 x = MOR1_ordered[(MOR1_ordered<=C)]

 m = length(x)

 n = length(gu)

 par = optim(c(1,1), fr_gu)

 results[j,8] = qgumbel(0.05, location = par$par[1], scale = par$par[2],

max = FALSE)

}

for(i in 1:ncol(results)){

 results[is.na(results[,i]), i] <- mean(results[,i], na.rm = TRUE)

}

SE <- matrix(nrow = 8, ncol = 1)

SE <- apply(results,2,sd)

ANOVA test difference in quantiles

dat <- data.frame(

 y = c(results[,5],results[,6],results[,7],results[,8]),

 groups = sort(rep(LETTERS[1:4], length(results[,1])))

)

boxplot(y ~ groups, dat, names=c("Weibull","Gamma","Log-normal", "Gumbel"),

medcol="red")

par(cex.axis=0.5)

summary(aov(y ~ groups, dat))

EM mixtures

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

setwd("C:\\Users\\Jarod\\Google Drive\\Jarod M- 2018 and 2019\\Data

set\\AC\\Data")

Read CSV into R

MyData <- read.csv(file="MOR_Data.csv", header=TRUE, sep=",")

MOR1 <- MyData[MyData$Sample == 'MOR1',2]

MOR2 <- MyData[MyData$Sample == 'MOR2',2]

DS <- MOR1

#EM algorithm for Weibull mixtures

em_w <- function(DS) {

 #initialise mixing probabilities to be equal

 probs <- 0.5

 #initialise parameters

 alpha <- c(6.823130, 6.823130 + rnorm(1,0,1))

 eta <- c(7.173, 7.173 + rnorm(1,0,1))

 diff = 1e+11

 while(diff > 0.001)

 {

 #likelihood function

 weibull <- cbind(dweibull(DS, alpha[1], eta[1], log = FALSE),

dweibull(DS, alpha[2], eta[2], log = FALSE))

 #responsibilities

 gam <- (probs*weibull[,1])/(probs*weibull[,1] + (1-probs)*weibull[,2])

 #estimate parameters

 alpha_new <- cbind(sum(gam*(DS^alpha[1])*log(DS))/sum(gam*DS^alpha[1])

- sum(gam*log(DS))/sum(gam),

 sum((1-gam)*(DS^alpha[2])*log(DS))/sum((1-

gam)*DS^alpha[2]) - sum((1-gam)*log(DS))/sum((1-gam)))

 eta_new <-

cbind((sum(gam*DS^(1/alpha_new[1]))/sum(gam))^(alpha_new[1]),

 (sum((1-gam)*DS^(1/alpha_new[2]))/sum((1-

gam)))^(alpha_new[2]))

 probs_new <- sum((1-gam))/length(DS)

 #update parameters

 diff <- sum(abs((alpha - 1/alpha_new)) + abs((eta - eta_new)) +

abs((probs - probs_new)))

 probs <- probs_new

 alpha <- 1/alpha_new

 eta <- eta_new

 diff <- ifelse(alpha[1]>=60, 10, ifelse(alpha[2]>=60, 10, diff))

 }

 return(list(probs,alpha, eta, gam))

}

#find quantiles for mixture distribution

f <- function (x){

 probs*(1-exp(-(x/eta[1])^alpha[1])) + (1-probs)*(1-exp(-

(x/eta[2])^alpha[2])) - 0.05

}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

param_w <- em_w(DS)

f <- function (x){

 param[[1]]*pweibull(x, param[[2]][1], param[[3]][1], lower.tail = TRUE,

log.p = FALSE) +

 (1- param[[1]])*pweibull(x, param[[2]][2], param[[3]][2], lower.tail =

TRUE, log.p = FALSE) - 0.05

}

q_05 <- uniroot(f, lower = 0, upper = 20)

###

#EM algorithm for Normal mixtures

em_n <- function(DS) {

 #initialise mixing probabilities to be equal

 probs <- 0.5

 #initialise parameters

 u <- c(mean(DS), mean(DS) + rnorm(1,0,1))

 sig <- c(var(DS), var(DS) + rnorm(1,0,1))

 diff = 1e+11

 probs <- 0.5

 #initialise parameters

 u <- c(mean(DS), mean(DS) + rnorm(1,0,1))

 sig <- c(var(DS), var(DS) + rnorm(1,0,1))

 while(diff > 0.001)

 {

 #likelihood function

 normal <- cbind(dnorm(DS, u[1], sqrt(sig[1]), log = FALSE), dnorm(DS,

u[2], sqrt(sig[2]), log = FALSE))

 #responsibilities

 gam <- cbind((probs*normal[,1])/(probs*normal[,1] + (1-

probs)*normal[,2]),

 ((1-probs)*normal[,2])/(probs*normal[,1] + (1-

probs)*normal[,2]))

 #estimate parameters

 u_new <- cbind(sum(gam[,1]*DS)/sum(gam[,1]),

sum(gam[,2]*DS)/sum(gam[,2]))

 sig_new <- cbind(sum(gam[,1]*(DS-u_new[,1])^2)/sum(gam[,1]),

 sum(gam[,2]*(DS-u_new[,2])^2)/sum(gam[,2]))

 probs_new <- sum(gam[,1])/length(DS)

 #update parameters

 diff <- sum(sum(abs(u - u_new)) + sum(abs(sig - sig_new)) +

sum(abs(probs - probs_new)))

 probs <- probs_new

 u <- u_new

 sig <- sig_new

 }

 return(list(probs,u,sqrt(sig)))

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

}

#find quantiles for mixture distribution

param_n <- em_n(DS)

f <- function (x){

 param[[1]]*pnorm(x, param[[2]][1], sqrt(param[[3]][1]), lower.tail =

TRUE, log.p = FALSE) +

 (1- param[[1]])*pnorm(x, param[[2]][2], sqrt(param[[3]][2]), lower.tail

= TRUE, log.p = FALSE) - 0.05

}

q_05 <- uniroot(f, lower = 0, upper = 20)

test <- normalmixEM(DS, lambda = .5, mu = c(1, 1), sigma = c(0.6,0.5))

summary(test)

###

#EM algorithm for log-Normal mixtures

em_ln <- function(DS) {

 #initialise mixing probabilities to be equal

 probs <- 0.5

 #initialise parameters

 u <- c(log(mean(DS)), log(mean(DS) + rnorm(1,0,1)))

 sig <- c(log(var(DS)), log(var(DS) + rnorm(1,0,1)))

 diff = 1e+11

 while(diff > 0.001)

 {

 #likelihood function

 log_normal <- cbind(dlnorm(DS, u[1], sqrt(sig[1]), log = FALSE),

dlnorm(DS, u[2], sqrt(sig[2]), log = FALSE))

 #responsibilities

 gam <- cbind((probs*log_normal[,1])/(probs*log_normal[,1] + (1-

probs)*log_normal[,2]),

 ((1-probs)*log_normal[,2])/(probs*log_normal[,1] + (1-

probs)*log_normal[,2]))

 #estimate parameters

 u_new <- cbind(sum(gam[,1]*log(DS))/sum(gam[,1]),

sum(gam[,2]*log(DS))/sum(gam[,2]))

 sig_new <- cbind(sum(gam[,1]*(log(DS)-u_new[,1])^2)/sum(gam[,1]),

 sum(gam[,2]*(log(DS)-u_new[,2])^2)/sum(gam[,2]))

 probs_new <- sum(gam[,1])/length(DS)

 #update parameters

 diff <- sum(sum(abs(u - u_new)) + sum(abs(sig - sig_new)) +

sum(abs(probs - probs_new)))

 probs <- probs_new

 u <- u_new

 sig <- sig_new

 }

 return(list(probs,u,sqrt(sig)))

}

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

#find quantiles for mixture distribution

param_ln <- em_ln(DS)

f <- function (x){

 param[[1]]*plnorm(x, param[[2]][1], sqrt(param[[3]][1]), lower.tail =

TRUE, log.p = FALSE) +

 (1- param[[1]])*plnorm(x, param[[2]][2], sqrt(param[[3]][2]),

lower.tail = TRUE, log.p = FALSE) - 0.05

}

q_05 <- uniroot(f, lower = 0, upper = 20)

###

#use for distributions

fr <- function(param) {

 alpha_1 <- param[1]

 eta_1 <- param[2]

 alpha_2 <- param[3]

 eta_2 <- param[4]

 (sum(gam[,1]*log(probs*(dweibull(DS, alpha_1, eta_1, log = FALSE))) +

gam[,2]*log((1-probs)*(dweibull(DS, alpha_2, eta_2, log = FALSE)))))*(-1)

}

nr <- optim(c(5, 5, 5, 5.), fr)

alpha_new <- cbind(nr$par[1], nr$par[3])

eta_new <- cbind(nr$par[2], nr$par[4])

#find quantiles for mixture distribution

f <- function (x){

 probs*(1-exp(-(x/eta[1])^alpha[1])) + (1-probs)*(1-exp(-

(x/eta[2])^alpha[2])) - 0.05

}

q_05 <- uniroot(f, lower = 0, upper = 20)

###

###################################

x=seq(0, max(DS), length = 1000)

hist(DS, breaks=15, prob=TRUE, main="", ylim = c(0,0.4), xlab="MOR1")

curve(param_w[[1]]*dweibull(x, param_w[[2]][1], param_w[[3]][1]) +

 (1-param_w[[1]])*dweibull(x, param_w[[2]][2], param_w[[3]][2]) ,

col="firebrick4", lwd=2, add=T, lty = 'dashed')

curve(param_n[[1]]*dnorm(x, param_n[[2]][1], param_n[[3]][1]) +

 (1-param_n[[1]])*dnorm(x, param_n[[2]][2], param_n[[3]][2]) ,

col="deepskyblue4", lwd=2, add=T, lty = 'solid')

curve(param_ln[[1]]*dlnorm(x, param_ln[[2]][1], param_ln[[3]][1]) +

 (1-param_ln[[1]])*dlnorm(x, param_ln[[2]][2], param_ln[[3]][2]) ,

col="forestgreen", lwd=2, add=T, lty = 'twodash')

legend(8.1, 0.43, legend=c("Weibull", "Normal", "Log-normal"),

 col=c("firebrick4", "deepskyblue4", "forestgreen"), lty=1:4,

cex=0.8, box.lty=0)

par <- param_w

x=seq(0, max(DS), length = 1000)

hist(DS, breaks=15, prob=TRUE, main="", ylim = c(0,0.4), xlab="MOR1")

curve(par[[1]]*dweibull(x, par[[2]][1], par[[3]][1]) + (1-

par[[1]])*dweibull(x, par[[2]][2], par[[3]][2]) , col="firebrick4", lwd=3,

add=T, lty = 1)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

curve(dweibull(x, par[[2]][1], par[[3]][1]) , col="deepskyblue4", lwd=3,

add=T, lty = 2)

curve(dweibull(x, par[[2]][2], par[[3]][2]) , col="forestgreen", lwd=3,

add=T, lty = 3)

legend(8.1, 0.43, legend=c("Mixture", "Majority", "Minority"),

 col=c("firebrick4", "deepskyblue4", "forestgreen"), lty=1:3,

cex=0.8, box.lty=0)

x=seq(0, max(MOR1), length = 1000)

hist(DS, breaks=15, prob=TRUE, main="", ylim = c(0,0.4), xlab="MOR1")

curve(0.7448*dweibull(x, 5.494, 7.599) +

 (1-0.7448)*dweibull(x, 15.81, 5.983) , col="firebrick4", lwd=3,

add=T, lty = 4)

curve(0.5629*dnorm(x, 5.953, 0.970) +

 (1-0.5629)*dnorm(x, 7.676, 1.215) , col="deepskyblue4", lwd=3,

add=T, lty = 5)

curve(0.9758*dlnorm(x, 1.897, 0.189) +

 (1-0.9758)*dlnorm(x, 1.245, 0.102) , col="forestgreen", lwd=3,

add=T, lty = 6)

legend(6,0.45, legend=c("Weibull Mixture", "Normal Mixture", "Log-normal

Mixture"),

 col=c("firebrick4", "deepskyblue4", "forestgreen"), lty=4:6,

cex=1.2, box.lty=0,

 x.intersp = 0.3,y.intersp=0.35, bg="transparent")

x=seq(0, max(MO2), length = 1000)

hist(DS, breaks=15, prob=TRUE, main="", ylim = c(0,0.4), xlab="MOR2")

curve(0.7932*dweibull(x, 5.427, 7.642) +

 (1-0.7932)*dweibull(x, 12.01, 6.186) , col="firebrick4", lwd=3,

add=T, lty = 4)

curve(0.5406*dnorm(x, 5.924, 1.042) +

 (1-0.5629)*dnorm(x, 7.859, 1.095) , col="deepskyblue4", lwd=3,

add=T, lty = 5)

curve(0.6649*dlnorm(x, 1.976, 0.167) +

 (1-0.6649)*dlnorm(x, 1.736, 0.226) , col="forestgreen", lwd=3,

add=T, lty = 6)

legend(6,0.45, legend=c("Weibull Mixture", "Normal Mixture", "Log-normal

Mixture"),

 col=c("firebrick4", "deepskyblue4", "forestgreen"), lty=4:6,

cex=1.2, box.lty=0,

 x.intersp = 0.3,y.intersp=0.35, bg="transparent")

library(shape)

x=seq(0, max(MOR1), length = 1000)

hist(MOR1, breaks=15, prob=TRUE, main="", ylim = c(0,0.4))

curve(0.7446*dweibull(x, 5.495, 7.599) + (1-0.7446)*dweibull(x, 15.805,

5.983) , col="firebrick4", lwd=3, add=T, lty = 1)

curve(dweibull(x, 5.495, 7.599) , col="deepskyblue4", lwd=3, add=T, lty =

2)

curve(dweibull(x, 15.805, 5.983) , col="forestgreen", lwd=3, add=T, lty =

3)

#Arrows(C,0,C,0.0001, arr.type = "triangle",col="gray29", lwd =2, lty = 1)

abline(v=C, col="gray29", lwd =2)

legend(6,0.45, legend=c("Mixture", "Majority", "Minority"),

 col=c("firebrick4", "deepskyblue4", "forestgreen", "gray29"),

lty=c(1,2,3), cex=1.2, box.lty=0,

 x.intersp = 0.3,y.intersp=0.35, bg="transparent")

library(shape)

x=seq(0, max(MOR1), length = 1000)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

hist(MOR2, breaks=15, prob=TRUE, main="", ylim = c(0,0.4))

curve(0.7943*dweibull(x, 5.425, 7.646) + (1-0.7943)*dweibull(x, 11.992,

6.173) , col="firebrick4", lwd=3, add=T, lty = 1)

curve(dweibull(x, 5.425, 7.646) , col="deepskyblue4", lwd=3, add=T, lty =

2)

curve(dweibull(x, 11.992, 6.173) , col="forestgreen", lwd=3, add=T, lty =

3)

#Arrows(C,0,C,0.0001, arr.type = "triangle",col="gray29", lwd =2, lty = 1)

abline(v=C, col="gray29", lwd =2)

legend(6,0.45, legend=c("Mixture", "Majority", "Minority"),

 col=c("firebrick4", "deepskyblue4", "forestgreen", "gray29"),

lty=c(1,2,3), cex=1.2, box.lty=0,

 x.intersp = 0.3,y.intersp=0.35, bg="transparent")

#Bootstrap homogeneity test

#Reliability of p-value study

library(fitdistrplus)

library(foreach)

library(doParallel)

em_w <- function(DS) {

 count <- 0

 #initialise mixing probabilities to be equal

 probs <- 0.5

 #initialise parameters

 alpha <- c(6.823130, 6.823130 + rnorm(1,0,1))

 eta <- c(7.173, 7.173 + rnorm(1,0,1))

 diff = 1e+11

 while(diff > 0.01)

 {

 #likelihood function

 weibull <- cbind(dweibull(DS, alpha[1], eta[1], log = FALSE),

dweibull(DS, alpha[2], eta[2], log = FALSE))

 #responsibilities

 gam <- (probs*weibull[,1])/(probs*weibull[,1] + (1-probs)*weibull[,2])

 #estimate parameters

 alpha_new <- cbind(sum(gam*(DS^alpha[1])*log(DS))/sum(gam*DS^alpha[1])

- sum(gam*log(DS))/sum(gam),

 sum((1-gam)*(DS^alpha[2])*log(DS))/sum((1-

gam)*DS^alpha[2]) - sum((1-gam)*log(DS))/sum((1-gam)))

 eta_new <-

cbind((sum(gam*DS^(1/alpha_new[1]))/sum(gam))^(alpha_new[1]),

 (sum((1-gam)*DS^(1/alpha_new[2]))/sum((1-

gam)))^(alpha_new[2]))

 probs_new <- sum((1-gam))/length(DS)

 #update parameters

 diff <- sum(abs((alpha - 1/alpha_new)) + abs((eta - eta_new)) +

abs((probs - probs_new)))

 probs <- probs_new

 alpha <- 1/alpha_new

 eta <- eta_new

 diff <- ifelse(alpha[1]>=40, 1, ifelse(alpha[2]>=40, 1, diff))

 count <- count+1

 diff <- ifelse(count>=70,0.001,diff)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 diff <- ifelse(is.na(diff), 0.001, diff)

 }

 return(list(probs,alpha, eta, gam, count))

}

out_fit <- function(n, shape, scale) {

 #Generate the data set

 dat <-rweibull(n, shape, scale)

 #Obtain MLE estimates for single and mixture Weibull

 ##Single

 fit_single <- fitdist(dat, "weibull")

 loglik_single <- fit_single$loglik

 MLE_single <- fit_single$estimate

 #Mixture

 fit_mix <- em_w(dat)

 loglik_mix <-

sum(fit_mix[[4]][1]*log(fit_mix[[1]]*dweibull(dat,fit_mix[[2]][1],

fit_mix[[3]][1]))

 + (1-fit_mix[[4]][1])*log((1-

fit_mix[[1]])*dweibull(dat,fit_mix[[2]][2], fit_mix[[3]][2])))

 #Likelihood ratio 1

 lamda <- loglik_single-loglik_mix

 L1 <- -2*lamda

 return(list(MLE_single, L1))

}

in_fit <- function(n,B) {

 L1 <- out_fit(n, shape, scale) [[2]][1]

 shape_2 <- out_fit(n, shape, scale) [[1]][1]

 scale_2 <- out_fit(n, shape, scale) [[1]][2]

 ind_sum <- 0

 for(j in 1:B) {

 dat2 <- rweibull(n, shape_2, scale_2)

 ##Single

 fit_single_2 <- fitdist(dat2, "weibull")

 loglik_single_2 <- fit_single_2$loglik

 #Mixture

 fit_mix_2 <- em_w(dat2)

 loglik_mix_2 <-

sum(fit_mix_2[[4]][1]*log(fit_mix_2[[1]]*dweibull(dat2,fit_mix_2[[2]][1],

fit_mix_2[[3]][1]))

 + (1-fit_mix_2[[4]][1])*log((1-

fit_mix_2[[1]])*dweibull(dat2,fit_mix_2[[2]][2], fit_mix_2[[3]][2])))

 #Likelihood ratio

 lamda_2 <- loglik_single_2-loglik_mix_2

 L2 <- -2*lamda_2

 test <- (L2 > L1)

 test <- ifelse(is.na(test),0,test)

 ind_sum <- ind_sum + test

 }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 return(ind_sum/B)

}

cores=detectCores()

cl <- makeCluster(cores[1]-1)

registerDoParallel(cl)

on.exit(stopCluster(cl))

B <- 500

N <- 500

n <- 300

shape <- 7

scale <- 7

system.time({

 p_value <- foreach(i = 1:N, .packages = 'fitdistrplus',.combine = rbind)

%dopar% {

 in_fit(n,B)

 }

 stopCluster(cl)

})

p_value <- p_value[order(p_value)]

x <-runif(10000,0,1)

##Plot empirical cdf of p values

##against cdf of uniform(0, 1)

t = ecdf(x[order(x)])

p_value.cdf <- ecdf(p_value[order(p_value)])

plot(p_value.cdf, xlab = 'p-value', ylab = '', main = '', lty=1, col =

'black')

lines(t, lty=1, col = 'red', lwd=2)

mtext(text = expression(hat(F)[n](x)), side = 2, line = 2.5)

legend(x = 'topleft', legend=c("Empirical CDF of p-values", "Uniform (0,

1)"),

 col=c("black", "red"), lty=1:2, cex=1.2, box.lty=0, x.intersp =

0.3,y.intersp=0.35, bg="transparent")

#KS test

ks_test <- ks.test(t,p_value.cdf)

ks_test$statistic

ks_test$p.value

score functions

#Fit of distributions by maximum likelihood estimation

library("fitdistrplus")

Data <- rweibull(500, 7,7)

#OMLE

fw <- fitdist(Data, "weibull")

param_o <- fw$estimate

#CMLE

C <- quantile(Data, probs = 0.1, type = 3)

Data_ordered <- Data[order(Data)]

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

x <- Data_ordered[(Data_ordered<=C)]

m <- length(x)

n <- length(Data)

fr <- function(param) { ## Censored Weibull

 beta <- param[1]

 psi <- param[2]

 (m*log(beta) + m*log(psi) + (beta-1)*sum(log(x)) - psi*sum(x^beta) - (n-

m)*psi*C^beta)*(-1)

}

p <- optim(c(0.5,0.5), fr)

param_c <- c(p$par[1],(1/p$par[2])^(1/p$par[1]))

#score functions OMLE

o_s_beta <- function(x) (-(x/param_o[2])^param_o[1]*log(x/param_o[1]) +

 log(x/param_o[2]) + 1/param_o[1])

o_s_eta <- function(x) (-param_o[1]/param_o[2] +

(param_o[1]*x^param_o[1])/param_o[2]^(param_o[1]+1))

#score functions CMLE

c_s_beta <- function(x) {

 y <- x[order(x)]

 (y<=C)*(-(y[(y<=C)]/param_o[2])^param_o[1]*log(y[(y<=C)]/param_o[1]) +

 log(y[(y<=C)]/param_o[2]) + 1/param_o[1]) +

 (y>C)*(-(C/param_o[2])^param_o[1]*log(C/param_o[2]))

}

c_s_eta <- function(x) {

 y <- x[order(x)]

 (y<=C)*(-param_o[1]/param_o[2] +

(param_o[1]*y[(y<=C)]^param_o[1])/param_o[2]^(param_o[1]+1)) +

 (y>C)*(param_o[1]*C^param_o[1])/param_o[2]^(param_o[1]+1)

}

#Plots

library(shape)

x=seq(min(Data),10,length = 100)

curve(-c_s_beta(x), col="deepskyblue4", lwd=3, lty = 1,xlim = c(min(x),

max(x)), ylim = c(-0.25,2), ylab = "")

curve(-o_s_beta(x), col="firebrick4", lwd=3, lty = 2,add=T, xlim = c(C,

max(x)), ylab = "")

Arrows(C,-0.3,C,-0.21, arr.type = "triangle",col="gray29", lwd =0.1)

mtext(bquote(-psi[beta](x)),side = 2, line = 2.5)

legend(4, 2, legend=c("Censored Weibull", "Ordinary Weibull","Threshold"),

 col=c("deepskyblue4", "firebrick4", "gray29"), lty=c(1,2,1),cex=1.2,

box.lty=0,

 x.intersp = 0.3,y.intersp=0.35, bg="transparent")

abline(v=C, col="gray29", lwd =3, lty = 1)

abline(h=0, lty = 3, lwd=3)

x=seq(min(Data),10,length = 100)

curve(c_s_eta(x), col="deepskyblue4", lwd=3, lty = 1,xlim = c(min(x),

max(x)), ylim = c(-1.2,10), ylab = "")

curve(o_s_eta(x), col="firebrick4", lwd=3, lty = 2,add=T, xlim = c(C,

max(x)), ylab = "")

Arrows(C,-2,C,-1.89, arr.type = "triangle",col="gray29", lwd =0.1)

mtext(bquote(psi[eta](x)),side = 2, line = 2.5)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

legend(4, 10, legend=c("Censored Weibull", "Ordinary Weibull","Threshold"),

 col=c("deepskyblue4", "firebrick4", "gray29"), lty=c(1,2,1),

cex=1.2, box.lty=0,

 x.intersp = 0.3,y.intersp=0.35, bg="transparent")

abline(v=C, col="gray29", lwd =3, lty = 1)

abline(h=0, lty = 3,lwd=3)

CMLE simulation

AKSMLE RMSE of quantiles for all models

#MOR1

library(data.table)

library(future)

library(ordinal)

library(NLRoot)

library(fitdistrplus)

CMLE <- function(N,q,rdens,qdens,pdens,param,mix.ind,gum.ind) {

 bisection <- function(f, a, b, n = 1000, tol = 1e-7) {

 # If the signs of the function at the evaluated points, a and b, stop

the function and return message.

 if (!(f(a) < 0) && (f(b) > 0)) {

 stop('signs of f(a) and f(b) differ')

 }

 else if ((f(a) > 0) && (f(b) < 0)) {

 stop('signs of f(a) and f(b) differ')

 }

 for (i in 1:n) {

 c <- (a + b) / 2 # Calculate midpoint

 # If the function equals 0 at the midpoint or the midpoint is below

the desired tolerance, stop the

 # function and return the root.

 if ((f(c) == 0) || ((b - a) / 2) < tol) {

 return(c)

 }

 # If another iteration is required,

 # check the signs of the function at the points c and a and reassign

 # a or b accordingly as the midpoint to be used in the next

iteration.

 ifelse(sign(f(c)) == sign(f(a)),

 a <- c,

 b <- c)

 }

 # If the max number of iterations is reached and no root has been

found,

 # return message and end function.

 print('Too many iterations')

 }

 f <- function(x) {param[1]*pdens(x,param[2],param[3]) +

 (1-param[1])*pdens(x,param[4],param[5]) - q}

 fr <- function(param2) { ## Censored Weibull Type II

 beta <- param2[1]

 psi <- param2[2]

 (m*log(beta) + m*log(psi) + (beta-1)*sum(log(x)) - psi*sum(x^beta) -

(n-m)*psi*C^beta)*(-1)

 }

 N <- N

 q <- q

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 q.estimate <- matrix(nrow=N, ncol = 1)

 for (j in (1:N)) {

 x <- tryCatch(

 {

 if(mix.ind == FALSE && gum.ind==FALSE){

 data <- rdens(300, param[1], param[2])

 }

 if(mix.ind == TRUE && gum.ind==FALSE){

 ind <- runif(300, 0, 1)

 data <- (ind <= param[1])*rdens(300, param[2], param[3]) +

 (ind > param[1])*rdens(300, param[4], param[5])

 }

 if(mix.ind == FALSE && gum.ind==TRUE){

 data <- rdens(300, param[1], param[2],max = FALSE)

 }

 C <- quantile(data, 0.1, type = 3)

 x.star_ordered <- data[order(data)]

 x <- x.star_ordered[(x.star_ordered<=C)]

 m <- length(x)

 n <- length(data)

 par <- optim(c(0.5,0.5), fr)

 test <- qweibull(q, par$par[1], (1/par$par[2])^(1/par$par[1]))

 },

 error = function(e){

 test <- NA

 }

)

 q.estimate[j] <- x

 }

 if (mix.ind == FALSE && gum.ind == FALSE){

 MSE <- ((1/N)*sum((q.estimate-qdens(0.05, param[1], param[2]))**2))

 }

 if (mix.ind == FALSE && gum.ind == TRUE){

 MSE <-

((1/length(q.estimate[!is.na(q.estimate)]))*sum((q.estimate[!is.na(q.estima

te)]-qgumbel(0.05, param[1], param[2], max = FALSE))**2))

 }

 if (mix.ind == TRUE && gum.ind == FALSE) {

 MSE <- (sum((q.estimate[!is.na(q.estimate)]-

bisection(f,0,10))**2)/length(q.estimate[!is.na(q.estimate)]))

 }

 #q.estimate <- NULL

 sd_2 <- 100*apply(na.omit(q.estimate),2,sd)

 bias <- 100*sqrt(abs(MSE - (sd_2/100)^2))

 return(list(sqrt(MSE),sd_2,bias))

}

OMLE <- function(N,q,rdens,qdens,pdens,param,mix.ind,gum.ind) {

 bisection <- function(f, a, b, n = 1000, tol = 1e-7) {

 # If the signs of the function at the evaluated points, a and b, stop

the function and return message.

 if (!(f(a) < 0) && (f(b) > 0)) {

 stop('signs of f(a) and f(b) differ')

 }

 else if ((f(a) > 0) && (f(b) < 0)) {

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 stop('signs of f(a) and f(b) differ')

 }

 for (i in 1:n) {

 c <- (a + b) / 2 # Calculate midpoint

 # If the function equals 0 at the midpoint or the midpoint is below

the desired tolerance, stop the

 # function and return the root.

 if ((f(c) == 0) || ((b - a) / 2) < tol) {

 return(c)

 }

 # If another iteration is required,

 # check the signs of the function at the points c and a and reassign

 # a or b accordingly as the midpoint to be used in the next

iteration.

 ifelse(sign(f(c)) == sign(f(a)),

 a <- c,

 b <- c)

 }

 # If the max number of iterations is reached and no root has been

found,

 # return message and end function.

 print('Too many iterations')

 }

 f <- function(x) {param[1]*pdens(x,param[2],param[3]) +

 (1-param[1])*pdens(x,param[4],param[5]) - q}

 N <- N

 q <- q

 q.estimate <- matrix(nrow=N, ncol = 1)

 for (j in (1:N)) {

 x <- tryCatch(

 {

 if(mix.ind == FALSE && gum.ind==FALSE){

 data <- rdens(300, param[1], param[2])

 }

 if(mix.ind == TRUE && gum.ind==FALSE){

 ind <- runif(300, 0, 1)

 data <- (ind <= param[1])*rdens(300, param[2], param[3]) +

 (ind > param[1])*rdens(300, param[4], param[5])

 }

 if(mix.ind == FALSE && gum.ind==TRUE){

 data <- rdens(300, param[1], param[2],max = FALSE)

 }

 fw = fitdist(data, "weibull")

 q.estimate[j] = quantile(fw, probs = q)$quantiles[[1]]

 },

 error = function(e){

 test <- NA

 }

)

 q.estimate[j] <- x

 }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 if (mix.ind == FALSE && gum.ind == FALSE){

 MSE <- ((1/N)*sum((q.estimate-qdens(0.05, param[1], param[2]))**2))

 }

 if (mix.ind == FALSE && gum.ind == TRUE){

 MSE <-

((1/length(q.estimate[!is.na(q.estimate)]))*sum((q.estimate[!is.na(q.estima

te)]-qgumbel(0.05, param[1], param[2], max = FALSE))**2))

 }

 if (mix.ind == TRUE && gum.ind == FALSE) {

 MSE <- (sum((q.estimate[!is.na(q.estimate)]-

bisection(f,0,10))**2)/length(q.estimate[!is.na(q.estimate)]))

 }

 #q.estimate <- NULL

 sd_2 <- 100*apply(na.omit(q.estimate),2,sd)

 bias <- 100*sqrt(abs(MSE - (sd_2/100)^2))

 return(list(sqrt(MSE),sd_2,bias))

}

KDE <- function(N,q,rdens,qdens,pdens,param,mix.ind,gum.ind, MOR.ind) {

 bisection <- function(f, a, b, n = 1000, tol = 1e-7) {

 # If the signs of the function at the evaluated points, a and b, stop

the function and return message.

 if (!(f(a) < 0) && (f(b) > 0)) {

 stop('signs of f(a) and f(b) differ')

 }

 else if ((f(a) > 0) && (f(b) < 0)) {

 stop('signs of f(a) and f(b) differ')

 }

 for (i in 1:n) {

 c <- (a + b) / 2 # Calculate midpoint

 # If the function equals 0 at the midpoint or the midpoint is below

the desired tolerance, stop the

 # function and return the root.

 if ((f(c) == 0) || ((b - a) / 2) < tol) {

 return(c)

 }

 # If another iteration is required,

 # check the signs of the function at the points c and a and reassign

 # a or b accordingly as the midpoint to be used in the next

iteration.

 ifelse(sign(f(c)) == sign(f(a)),

 a <- c,

 b <- c)

 }

 # If the max number of iterations is reached and no root has been

found,

 # return message and end function.

 print('Too many iterations')

 }

 f <- function(x) {param[1]*pdens(x,param[2],param[3]) +

 (1-param[1])*pdens(x,param[4],param[5]) - q}

 quant_func <- function(data,q){

 dens = density(data)

 x = dens$x

 F = cumsum(dens$y)/sum(dens$y)

 out = approx(F,x,q)$y

 return(out)

 }

 if(MOR.ind>1) { MOR1_bw <- bw.SJ(MOR2, nb=15,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 method ="ste")}

 if(MOR.ind==1) { MOR1_bw <- bw.SJ(MOR1, nb=15,

 method ="ste")}

 N <- N

 q <- q

 q.estimate <- matrix(nrow=N, ncol = 1)

 for (j in (1:N)) {

 x <- tryCatch(

 {

 if(mix.ind == FALSE && gum.ind==FALSE){

 data <- rdens(300, param[1], param[2])

 }

 if(mix.ind == TRUE && gum.ind==FALSE){

 ind <- runif(300, 0, 1)

 data <- (ind <= param[1])*rdens(300, param[2], param[3]) +

 (ind > param[1])*rdens(300, param[4], param[5])

 }

 if(mix.ind == FALSE && gum.ind==TRUE){

 data <- rdens(300, param[1], param[2],max = FALSE)

 }

 b_MOR1 = sample(data, size = length(data), replace = TRUE)

+ rnorm(length(data), 0, MOR1_bw)

 q.estimate[j] = quant_func(data,q)

 },

 error = function(e){

 test <- NA

 }

)

 q.estimate[j] <- x

 }

 if (mix.ind == FALSE && gum.ind == FALSE){

 MSE <- ((1/N)*sum((q.estimate-qdens(0.05, param[1], param[2]))**2))

 }

 if (mix.ind == FALSE && gum.ind == TRUE){

 MSE <-

((1/length(q.estimate[!is.na(q.estimate)]))*sum((q.estimate[!is.na(q.estima

te)]-qgumbel(0.05, param[1], param[2], max = FALSE))**2))

 }

 if (mix.ind == TRUE && gum.ind == FALSE) {

 MSE <- (sum((q.estimate[!is.na(q.estimate)]-

bisection(f,0,10))**2)/length(q.estimate[!is.na(q.estimate)]))

 }

 #q.estimate <- NULL

 sd_2 <- 100*apply(na.omit(q.estimate),2,sd)

 bias <- 100*sqrt(abs(MSE - (sd_2/100)^2))

 return(list(sqrt(MSE),sd_2,bias))

}

EMP <- function(N,q,rdens,qdens,pdens,param,mix.ind,gum.ind) {

 bisection <- function(f, a, b, n = 1000, tol = 1e-7) {

 # If the signs of the function at the evaluated points, a and b, stop

the function and return message.

 if (!(f(a) < 0) && (f(b) > 0)) {

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 stop('signs of f(a) and f(b) differ')

 }

 else if ((f(a) > 0) && (f(b) < 0)) {

 stop('signs of f(a) and f(b) differ')

 }

 for (i in 1:n) {

 c <- (a + b) / 2 # Calculate midpoint

 # If the function equals 0 at the midpoint or the midpoint is below

the desired tolerance, stop the

 # function and return the root.

 if ((f(c) == 0) || ((b - a) / 2) < tol) {

 return(c)

 }

 # If another iteration is required,

 # check the signs of the function at the points c and a and reassign

 # a or b accordingly as the midpoint to be used in the next

iteration.

 ifelse(sign(f(c)) == sign(f(a)),

 a <- c,

 b <- c)

 }

 # If the max number of iterations is reached and no root has been

found,

 # return message and end function.

 print('Too many iterations')

 }

 f <- function(x) {param[1]*pdens(x,param[2],param[3]) +

 (1-param[1])*pdens(x,param[4],param[5]) - q}

 N <- N

 q <- q

 q.estimate <- matrix(nrow=N, ncol = 1)

 for (j in (1:N)) {

 x <- tryCatch(

 {

 if(mix.ind == FALSE && gum.ind==FALSE){

 data <- rdens(300, param[1], param[2])

 }

 if(mix.ind == TRUE && gum.ind==FALSE){

 ind <- runif(300, 0, 1)

 data <- (ind <= param[1])*rdens(300, param[2], param[3]) +

 (ind > param[1])*rdens(300, param[4], param[5])

 }

 if(mix.ind == FALSE && gum.ind==TRUE){

 data <- rdens(300, param[1], param[2],max = FALSE)

 }

 q.estimate[j] = quantile(data, probs = q, type = 9)

 },

 error = function(e){

 test <- NA

 }

)

 q.estimate[j] <- x

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 }

 if (mix.ind == FALSE && gum.ind == FALSE){

 MSE <- ((1/N)*sum((q.estimate-qdens(0.05, param[1], param[2]))**2))

 }

 if (mix.ind == FALSE && gum.ind == TRUE){

 MSE <-

((1/length(q.estimate[!is.na(q.estimate)]))*sum((q.estimate[!is.na(q.estima

te)]-qgumbel(0.05, param[1], param[2], max = FALSE))**2))

 }

 if (mix.ind == TRUE && gum.ind == FALSE) {

 MSE <- (sum((q.estimate[!is.na(q.estimate)]-

bisection(f,0,10))**2)/length(q.estimate[!is.na(q.estimate)]))

 }

 #q.estimate <- NULL

 sd_2 <- 100*apply(na.omit(q.estimate),2,sd)

 bias <- 100*sqrt(abs(MSE - (sd_2/100)^2))

 return(list(sqrt(MSE),sd_2,bias))

}

q=0.05

N=10000

plan(multisession)

tempjob1 %<-% CMLE(N,q,rweibull,qweibull,NULL,c(6.822, 7.173),FALSE,FALSE)

tempjob2 %<-% CMLE(N,q,rgamma,qgamma,NULL,c(12.93, 1/0.601),FALSE,FALSE)

tempjob3 %<-% CMLE(N,q,rlnorm,qlnorm,NULL,c(2.072, 0.336),FALSE,FALSE)

tempjob4 %<-% CMLE(N,q,rgumbel,qgumbel,NULL,c(6.319, 0.601),FALSE,TRUE)

tempjob5 %<-%

CMLE(N,q,rnorm,NULL,pnorm,c(0.5629,5.953,0.970,7.676,1.215),TRUE,FALSE)

tempjob6 %<-%

CMLE(N,q,rlnorm,NULL,plnorm,c(0.9758,1.897,0.189,1.245,0.102),TRUE,FALSE)

tempjob7 %<-%

CMLE(N,q,rweibull,NULL,pweibull,c(0.7448,5.494,7.599,15.81,5.983),TRUE,FALS

E)

s <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

results1 <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

#names(results) <- c("wei", "gam", "lnorm")

e <- Sys.time()

e-s

rm(temp.list)

#MOR2

plan(multisession)

tempjob1 %<-% CMLE(N,q,rweibull,qweibull,NULL,c(7.378, 6.738),FALSE,FALSE)

tempjob2 %<-% CMLE(N,q,rgamma,qgamma,NULL,c(16.16, 1/0.4407),FALSE,FALSE)

tempjob3 %<-% CMLE(N,q,rlnorm,qlnorm,NULL,c(1.976, 0.2916),FALSE,FALSE)

tempjob4 %<-% CMLE(N,q,rgumbel,qgumbel,NULL,c(6.319, 0.601),FALSE,TRUE)

tempjob5 %<-%

CMLE(N,q,rnorm,NULL,pnorm,c(0.5406,5.924,1.042,7.859,1.095),TRUE,FALSE)

tempjob6 %<-%

CMLE(N,q,rlnorm,NULL,plnorm,c(0.6649,1.976,0.167,1.736,0.226),TRUE,FALSE)

tempjob7 %<-%

CMLE(N,q,rweibull,NULL,pweibull,c(0.7932,5.427,7.642,12.01,6.186),TRUE,FALS

E)

s <- Sys.time()

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

temp.list <- lapply(ls(pattern = "temp"), get)

results2 <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

#names(results) <- c("wei", "gam", "lnorm")

e <- Sys.time()

e-s

names(results2) = c("Weibull", "Gamma", "Log-normal", "Minimum Gumbel",

"Normal Mixture", "Log-normal Mixture", "Weibull Mixture")

boxplot(results2, las =2, ylab ="Threshold")

mtext("Model imitating MOR2", side=1, line=8)

updated CMLE

setwd("C:\\Users\\Jarod\\Google Drive\\Jarod M- 2018 and 2019\\Data

set\\AC\\Data")

Read CSV into R

MyData <- read.csv(file="MOR_Data.csv", header=TRUE, sep=",")

MOR1 <- MyData[MyData$Sample == 'MOR1',2]

MOR2 <- MyData[MyData$Sample == 'MOR2',2]

library(data.table)

library(future)

library(ordinal)

library(NLRoot)

library(fitdistrplus)

q=0.05

N=10000

##CMLE#######

#MOR1####

plan(multisession)

tempjob1 %<-% CMLE(N,q,rweibull,qweibull,NULL,c(6.822, 7.173),FALSE,FALSE)

tempjob2 %<-% CMLE(N,q,rgamma,qgamma,NULL,c(12.93, 1/0.601),FALSE,FALSE)

tempjob3 %<-% CMLE(N,q,rlnorm,qlnorm,NULL,c(2.072, 0.336),FALSE,FALSE)

tempjob4 %<-% CMLE(N,q,rgumbel,qgumbel,NULL,c(6.319, 0.601),FALSE,TRUE)

tempjob5 %<-%

CMLE(N,q,rnorm,NULL,pnorm,c(0.5629,5.953,0.970,7.676,1.215),TRUE,FALSE)

tempjob6 %<-%

CMLE(N,q,rlnorm,NULL,plnorm,c(0.9758,1.897,0.189,1.245,0.102),TRUE,FALSE)

tempjob7 %<-%

CMLE(N,q,rweibull,NULL,pweibull,c(0.7448,5.494,7.599,15.81,5.983),TRUE,FALS

E)

s <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

results1 <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

#names(results) <- c("wei", "gam", "lnorm")

e <- Sys.time()

e-s

rm(temp.list)

#MOR2####

plan(multisession)

tempjob1 %<-% CMLE(N,q,rweibull,qweibull,NULL,c(7.378, 6.738),FALSE,FALSE)

tempjob2 %<-% CMLE(N,q,rgamma,qgamma,NULL,c(16.16, 1/0.4407),FALSE,FALSE)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

tempjob3 %<-% CMLE(N,q,rlnorm,qlnorm,NULL,c(1.976, 0.2916),FALSE,FALSE)

tempjob4 %<-% CMLE(N,q,rgumbel,qgumbel,NULL,c(6.319, 0.601),FALSE,TRUE)

tempjob5 %<-%

CMLE(N,q,rnorm,NULL,pnorm,c(0.5406,5.924,1.042,7.859,1.095),TRUE,FALSE)

tempjob6 %<-%

CMLE(N,q,rlnorm,NULL,plnorm,c(0.6649,1.976,0.167,1.736,0.226),TRUE,FALSE)

tempjob7 %<-%

CMLE(N,q,rweibull,NULL,pweibull,c(0.7932,5.427,7.642,12.01,6.186),TRUE,FALS

E)

s <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

results2 <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

#names(results) <- c("wei", "gam", "lnorm")

e <- Sys.time()

e-s

##OMLE#######

#MOR1####

plan(multisession)

tempjob1 %<-% OMLE(N,q,rweibull,qweibull,NULL,c(6.822, 7.173),FALSE,FALSE)

tempjob2 %<-% OMLE(N,q,rgamma,qgamma,NULL,c(12.93, 1/0.601),FALSE,FALSE)

tempjob3 %<-% OMLE(N,q,rlnorm,qlnorm,NULL,c(2.072, 0.336),FALSE,FALSE)

tempjob4 %<-% OMLE(N,q,rgumbel,qgumbel,NULL,c(6.319, 0.601),FALSE,TRUE)

tempjob5 %<-%

OMLE(N,q,rnorm,NULL,pnorm,c(0.5629,5.953,0.970,7.676,1.215),TRUE,FALSE)

tempjob6 %<-%

OMLE(N,q,rlnorm,NULL,plnorm,c(0.9758,1.897,0.189,1.245,0.102),TRUE,FALSE)

tempjob7 %<-%

OMLE(N,q,rweibull,NULL,pweibull,c(0.7448,5.494,7.599,15.81,5.983),TRUE,FALS

E)

s <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

results1 <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

#names(results) <- c("wei", "gam", "lnorm")

e <- Sys.time()

e-s

rm(temp.list)

#MOR2####

plan(multisession)

tempjob1 %<-% OMLE(N,q,rweibull,qweibull,NULL,c(7.378, 6.738),FALSE,FALSE)

tempjob2 %<-% OMLE(N,q,rgamma,qgamma,NULL,c(16.16, 1/0.4407),FALSE,FALSE)

tempjob3 %<-% OMLE(N,q,rlnorm,qlnorm,NULL,c(1.976, 0.2916),FALSE,FALSE)

tempjob4 %<-% OMLE(N,q,rgumbel,qgumbel,NULL,c(6.319, 0.601),FALSE,TRUE)

tempjob5 %<-%

OMLE(N,q,rnorm,NULL,pnorm,c(0.5406,5.924,1.042,7.859,1.095),TRUE,FALSE)

tempjob6 %<-%

OMLE(N,q,rlnorm,NULL,plnorm,c(0.6649,1.976,0.167,1.736,0.226),TRUE,FALSE)

tempjob7 %<-%

OMLE(N,q,rweibull,NULL,pweibull,c(0.7932,5.427,7.642,12.01,6.186),TRUE,FALS

E)

s <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

results2 <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

#names(results) <- c("wei", "gam", "lnorm")

e <- Sys.time()

e-s

##KDE#######

#MOR1####

plan(multisession)

tempjob1 %<-% KDE(N,q,rweibull,qweibull,NULL,c(6.822, 7.173),FALSE,FALSE,1)

tempjob2 %<-% KDE(N,q,rgamma,qgamma,NULL,c(12.93, 1/0.601),FALSE,FALSE,1)

tempjob3 %<-% KDE(N,q,rlnorm,qlnorm,NULL,c(2.072, 0.336),FALSE,FALSE,1)

tempjob4 %<-% KDE(N,q,rgumbel,qgumbel,NULL,c(6.319, 0.601),FALSE,TRUE,1)

tempjob5 %<-%

KDE(N,q,rnorm,NULL,pnorm,c(0.5629,5.953,0.970,7.676,1.215),TRUE,FALSE,1)

tempjob6 %<-%

KDE(N,q,rlnorm,NULL,plnorm,c(0.9758,1.897,0.189,1.245,0.102),TRUE,FALSE,1)

tempjob7 %<-%

KDE(N,q,rweibull,NULL,pweibull,c(0.7448,5.494,7.599,15.81,5.983),TRUE,FALSE

,1)

s <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

results1 <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

#names(results) <- c("wei", "gam", "lnorm")

e <- Sys.time()

e-s

rm(temp.list)

#MOR2####

plan(multisession)

tempjob1 %<-% KDE(N,q,rweibull,qweibull,NULL,c(7.378, 6.738),FALSE,FALSE,2)

tempjob2 %<-% KDE(N,q,rgamma,qgamma,NULL,c(16.16, 1/0.4407),FALSE,FALSE,2)

tempjob3 %<-% KDE(N,q,rlnorm,qlnorm,NULL,c(1.976, 0.2916),FALSE,FALSE,2)

tempjob4 %<-% KDE(N,q,rgumbel,qgumbel,NULL,c(6.319, 0.601),FALSE,TRUE,2)

tempjob5 %<-%

KDE(N,q,rnorm,NULL,pnorm,c(0.5406,5.924,1.042,7.859,1.095),TRUE,FALSE,2)

tempjob6 %<-%

KDE(N,q,rlnorm,NULL,plnorm,c(0.6649,1.976,0.167,1.736,0.226),TRUE,FALSE,2)

tempjob7 %<-%

KDE(N,q,rweibull,NULL,pweibull,c(0.7932,5.427,7.642,12.01,6.186),TRUE,FALSE

,2)

s <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

results2 <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

#names(results) <- c("wei", "gam", "lnorm")

e <- Sys.time()

e-s

##EMP#######

#MOR1####

plan(multisession)

tempjob1 %<-% EMP(N,q,rweibull,qweibull,NULL,c(6.822, 7.173),FALSE,FALSE)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

tempjob2 %<-% EMP(N,q,rgamma,qgamma,NULL,c(12.93, 1/0.601),FALSE,FALSE)

tempjob3 %<-% EMP(N,q,rlnorm,qlnorm,NULL,c(2.072, 0.336),FALSE,FALSE)

tempjob4 %<-% EMP(N,q,rgumbel,qgumbel,NULL,c(6.319, 0.601),FALSE,TRUE)

tempjob5 %<-%

EMP(N,q,rnorm,NULL,pnorm,c(0.5629,5.953,0.970,7.676,1.215),TRUE,FALSE)

tempjob6 %<-%

EMP(N,q,rlnorm,NULL,plnorm,c(0.9758,1.897,0.189,1.245,0.102),TRUE,FALSE)

tempjob7 %<-%

EMP(N,q,rweibull,NULL,pweibull,c(0.7448,5.494,7.599,15.81,5.983),TRUE,FALSE

)

s <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

results1 <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

#names(results) <- c("wei", "gam", "lnorm")

e <- Sys.time()

e-s

rm(temp.list)

#MOR2####

plan(multisession)

tempjob1 %<-% EMP(N,q,rweibull,qweibull,NULL,c(7.378, 6.738),FALSE,FALSE)

tempjob2 %<-% EMP(N,q,rgamma,qgamma,NULL,c(16.16, 1/0.4407),FALSE,FALSE)

tempjob3 %<-% EMP(N,q,rlnorm,qlnorm,NULL,c(1.976, 0.2916),FALSE,FALSE)

tempjob4 %<-% EMP(N,q,rgumbel,qgumbel,NULL,c(6.319, 0.601),FALSE,TRUE)

tempjob5 %<-%

EMP(N,q,rnorm,NULL,pnorm,c(0.5406,5.924,1.042,7.859,1.095),TRUE,FALSE)

tempjob6 %<-%

EMP(N,q,rlnorm,NULL,plnorm,c(0.6649,1.976,0.167,1.736,0.226),TRUE,FALSE)

tempjob7 %<-%

EMP(N,q,rweibull,NULL,pweibull,c(0.7932,5.427,7.642,12.01,6.186),TRUE,FALSE

)

s <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

results2 <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

#names(results) <- c("wei", "gam", "lnorm")

e <- Sys.time()

e-s

#Censored and uncensored mixture

#MOR1

library(data.table)

library(future)

library(ordinal)

library(NLRoot)

#Simulation study for mixture models

MOR1

mix <- function(N,name,rdens,qdens,pdens,par,q){

 bisection <- function(f, a, b, n = 1000, tol = 1e-7) {

 # If the signs of the function at the evaluated points, a and b, stop

the function and return message.

 if (!(f(a) < 0) && (f(b) > 0)) {

 stop('signs of f(a) and f(b) differ')

 } else if ((f(a) > 0) && (f(b) < 0)) {

 stop('signs of f(a) and f(b) differ')

 }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 for (i in 1:n) {

 c <- (a + b) / 2 # Calculate midpoint

 # If the function equals 0 at the midpoint or the midpoint is below

the desired tolerance, stop the

 # function and return the root.

 if ((f(c) == 0) || ((b - a) / 2) < tol) {

 return(c)

 }

 # If another iteration is required,

 # check the signs of the function at the points c and a and reassign

 # a or b accordingly as the midpoint to be used in the next

iteration.

 ifelse(sign(f(c)) == sign(f(a)),

 a <- c,

 b <- c)

 }

 # If the max number of iterations is reached and no root has been

found,

 # return message and end function.

 print('Too many iterations')

 }

 f <- function(x)

{param_w[[1]][1]*pweibull(x,param_w[[2]][1],param_w[[3]][1]) +

 (1-param_w[[1]][1])*pweibull(x,param_w[[2]][2],param_w[[3]][2]) - q}

 f1 <- function(x) {par[1]*pdens(x,par[2],par[3]) +

 (1-par[1])*pdens(x,par[4],par[5]) - q}

 em_w <- function(DS) {

 count <- 0

 #initialise mixing probabilities to be equal

 probs <- 0.5

 #initialise parameters

 alpha <- c(6.823130, 11 + rnorm(1,0,1))

 eta <- c(7.173, 7.173 + rnorm(1,0,1))

 C <- quantile(DS, probs = 0.9, type = 3)

 DS_ordered = DS[order(DS)]

 x = DS_ordered[(DS_ordered<=C)]

 m = length(x)

 n = length(DS)

 diff = 1e+11

 while(count < 1000)

 {

 #likelihood function

 weibull <- cbind(dweibull(x, alpha[1], eta[1], log = FALSE),

dweibull(x, alpha[2], eta[2], log = FALSE))

 #responsibilities

 gam <- rbind(cbind((probs*weibull[,1])/(probs*weibull[,1] + (1-

probs)*weibull[,2]),

 ((1-probs)*weibull[,2])/(probs*weibull[,1] + (1-

probs)*weibull[,2])),

 cbind((probs*(1-pweibull(C,alpha[1], eta[1],lower.tail =

TRUE, log.p = FALSE))/(probs*(1-pweibull(C,alpha[1], eta[1],lower.tail =

TRUE, log.p = FALSE))

+(1- probs)*(1-pweibull(C,alpha[2], eta[2],lower.tail = TRUE, log.p =

FALSE)))),

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 ((1-probs)*(1-pweibull(C,alpha[2],

eta[2],lower.tail = TRUE, log.p = FALSE))/(probs*(1-pweibull(C,alpha[1],

eta[1]))

+ (1- probs)*(1-pweibull(C,alpha[2], eta[2],lower.tail = TRUE, log.p =

FALSE))))))

 #estimate parameters

 alpha_new <- cbind((sum(head(gam[,1],m)*(x^alpha[1])*log(x))+(n-

m)*tail(gam[,1],1)*C^alpha[1]*log(C))/(sum(head(gam[,1],m)*x^alpha[1])+(n-

m)*tail(gam[,1],1)*C^alpha[1]) -

sum(head(gam[,1],m)*log(x))/sum(head(gam[,1],m)),

 (sum(head(gam[,2],m)*(x^alpha[2])*log(x))+(n-

m)*tail(gam[,2],1)*C^alpha[2]*log(C))/(sum(head(gam[,2],m)*x^alpha[2])+(n-

m)*tail(gam[,2],1)*C^alpha[2]) -

sum(head(gam[,2],m)*log(x))/sum(head(gam[,2],m)))

 eta_new <- cbind(((sum(head(gam[,1],m)*x^(1/alpha_new[1]))+(n-

m)*tail(gam[,1],1)*C^(1/alpha_new[1]))/sum(head(gam[,1],m)))^(alpha_new[1])

,

 ((sum(head(gam[,2],m)*x^(1/alpha_new[2]))+(n-

m)*tail(gam[,2],1)*C^(1/alpha_new[2]))/sum(head(gam[,2],m)))^(alpha_new[2])

)

 probs_new <- (sum(head(gam[,1],m)) + tail(gam[,1],1)*(n-

m))/length(DS)

 #update parameters

 a0 <- sum(abs((alpha - 1/alpha_new)) + abs((eta - eta_new)) +

abs((probs - probs_new)))

 probs <- probs_new

 alpha <- 1/alpha_new

 eta <- eta_new

 centres <- kmeans(DS,2)

 alpha[1] <- ifelse(alpha[1]>=30, centres$centers[1], alpha[1])

 alpha[2] <- ifelse(alpha[2]>=30, centres$centers[2], alpha[2])

 count <- count+1

 a2 <- ifelse(count>=500,0.0001,0)

 a3 <- ifelse(is.na(a0), 0.0001, 0)

 d <- a0+a2+a3

 diff <- d

 }

 return(list(probs,alpha, eta))

 }

 q.estimate <- matrix(nrow=N, ncol = 1)

 for (j in (1:N)) {

 x <- tryCatch(

 {

 if(name!="mix"){

 if(name=="gumbel"){dat <- rdens(300,par[1], par[2],max = FALSE)}

 if(name!="gumbel"){dat <- rdens(300,par[1], par[2])}

 }

 if(name=="mix"){

 ind <- runif(300, 0, 1)

 dat <- (ind <=par[1])*1*rdens(300, par[2], par[3]) +

 (ind > par[1])*1*rdens(300, par[4], par[5])

 }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 param_w <- em_w(dat)

 quant <- bisection(f, 0, 10)

 test <-quant

 },

 error = function(e){

 test <- NA

 }

)

 q.estimate[j] <- x

 }

 if (name!="mix" && name!="gumbel"){

 MSE <- ((1/length(q.estimate[!is.na(q.estimate)]))*sum((q.estimate-

qdens(0.05, par[1], par[2]))**2))

 }

 if (name=="gumbel"){

 MSE <- ((1/length(q.estimate))*sum((na.omit(q.estimate)-qgumbel(0.05,

par[1], par[2], max = FALSE))**2))

 }

 if (name=="mix") {

 MSE <- (sum((q.estimate[!is.na(q.estimate)]-

bisection(f1,0,10))**2)/length(q.estimate[!is.na(q.estimate)]))

 }

 #q.estimate <- NULL

 sd_2 <- 100*apply(na.omit(q.estimate),2,sd)

 bias <- 100*sqrt(abs(MSE - (sd_2/100)^2))

 return(list(sqrt(MSE),sd_2,bias))

}

q=0.05

N=10000

plan(multisession)

tempjob1 %<-% mix(N,"w",rweibull,qweibull,NULL,c(7.378,6.739),q)

tempjob2 %<-% mix(N,"g",rgamma,qgamma,NULL,c(16.16, 1/0.4407),q)

tempjob3 %<-% mix(N,"ln",rlnorm,qlnorm,NULL,c(1.976, 0.2916),q)

tempjob4 %<-% mix(N,"gumbel",rgumbel,qgumbel,NULL,c(6.319, 0.601),q)

tempjob5 %<-%

mix(N,"mix",rnorm,NULL,pnorm,c(0.5406,5.924,1.042,7.859,1.095),q)

tempjob6 %<-%

mix(N,"mix",rlnorm,NULL,plnorm,c(0.6649,1.976,0.167,1.736,0.226),q)

tempjob7 %<-%

mix(N,"mix",rweibull,NULL,pweibull,c(0.7932,5.427,7.642,12.01,6.186),q)

s <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

M2 <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

#names(results) <- c("wei", "gam", "lnorm")

e <- Sys.time()

e-s

rm(temp.list)

MOR1

plan(multisession)

tempjob1 %<-% mix(N,"w",rweibull,qweibull,NULLc(6.822, 7.173),q)

tempjob2 %<-% mix(N,"g",rgamma,qgamma,NULL,c(12.93, 1/0.601),q)

tempjob3 %<-% mix(N,"ln",rlnorm,qlnorm,NULL,c(2.072, 0.336),q)

tempjob4 %<-% mix(N,"gumbel",rgumbel,qgumbel,NULL,c(6.319, 0.601),q)

tempjob5 %<-%

mix(N,"mix",rnorm,NULL,pnorm,c(0.5629,5.953,0.970,7.676,1.215),q)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

tempjob6 %<-%

mix(N,"mix",rlnorm,NULL,plnorm,c(0.9758,1.897,0.189,1.245,0.102),q)

tempjob7 %<-%

mix(N,"mix",rweibull,NULL,pweibull,c(0.7448,5.494,7.599,15.81,5.983),q)

s <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

M1 <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

#names(results) <- c("wei", "gam", "lnorm")

e <- Sys.time()

e-s

rm(temp.list)

#Bootstrap homogeneity test

#Reliability of p-value study

library(fitdistrplus)

library(foreach)

library(doParallel)

em_w <- function(DS) {

 count <- 0

 #initialise mixing probabilities to be equal

 probs <- 0.5

 #initialise parameters

 alpha <- c(6.823130, 6.823130 + rnorm(1,0,1))

 eta <- c(7.173, 7.173 + rnorm(1,0,1))

 diff = 1e+11

 while(diff > 0.01)

 {

 #likelihood function

 weibull <- cbind(dweibull(DS, alpha[1], eta[1], log = FALSE),

dweibull(DS, alpha[2], eta[2], log = FALSE))

 #responsibilities

 gam <- (probs*weibull[,1])/(probs*weibull[,1] + (1-probs)*weibull[,2])

 #estimate parameters

 alpha_new <- cbind(sum(gam*(DS^alpha[1])*log(DS))/sum(gam*DS^alpha[1])

- sum(gam*log(DS))/sum(gam),

 sum((1-gam)*(DS^alpha[2])*log(DS))/sum((1-

gam)*DS^alpha[2]) - sum((1-gam)*log(DS))/sum((1-gam)))

 eta_new <-

cbind((sum(gam*DS^(1/alpha_new[1]))/sum(gam))^(alpha_new[1]),

 (sum((1-gam)*DS^(1/alpha_new[2]))/sum((1-

gam)))^(alpha_new[2]))

 probs_new <- sum((1-gam))/length(DS)

 #update parameters

 diff <- sum(abs((alpha - 1/alpha_new)) + abs((eta - eta_new)) +

abs((probs - probs_new)))

 probs <- probs_new

 alpha <- 1/alpha_new

 eta <- eta_new

 diff <- ifelse(alpha[1]>=40, 1, ifelse(alpha[2]>=40, 1, diff))

 count <- count+1

 diff <- ifelse(count>=70,0.001,diff)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 diff <- ifelse(is.na(diff), 0.001, diff)

 }

 return(list(probs,alpha, eta, gam, count))

}

out_fit <- function(n, shape, scale) {

 #Generate the data set

 dat <-rweibull(n, shape, scale)

 #Obtain MLE estimates for single and mixture Weibull

 ##Single

 fit_single <- fitdist(dat, "weibull")

 loglik_single <- fit_single$loglik

 MLE_single <- fit_single$estimate

 #Mixture

 fit_mix <- em_w(dat)

 loglik_mix <-

sum(fit_mix[[4]][1]*log(fit_mix[[1]]*dweibull(dat,fit_mix[[2]][1],

fit_mix[[3]][1]))

 + (1-fit_mix[[4]][1])*log((1-

fit_mix[[1]])*dweibull(dat,fit_mix[[2]][2], fit_mix[[3]][2])))

 #Likelihood ratio 1

 lamda <- loglik_single-loglik_mix

 L1 <- -2*lamda

 return(list(MLE_single, L1))

}

in_fit <- function(n,B) {

 L1 <- out_fit(n, shape, scale) [[2]][1]

 shape_2 <- out_fit(n, shape, scale) [[1]][1]

 scale_2 <- out_fit(n, shape, scale) [[1]][2]

 ind_sum <- 0

 for(j in 1:B) {

 dat2 <- rweibull(n, shape_2, scale_2)

 ##Single

 fit_single_2 <- fitdist(dat2, "weibull")

 loglik_single_2 <- fit_single_2$loglik

 #Mixture

 fit_mix_2 <- em_w(dat2)

 loglik_mix_2 <-

sum(fit_mix_2[[4]][1]*log(fit_mix_2[[1]]*dweibull(dat2,fit_mix_2[[2]][1],

fit_mix_2[[3]][1]))

 + (1-fit_mix_2[[4]][1])*log((1-

fit_mix_2[[1]])*dweibull(dat2,fit_mix_2[[2]][2], fit_mix_2[[3]][2])))

 #Likelihood ratio

 lamda_2 <- loglik_single_2-loglik_mix_2

 L2 <- -2*lamda_2

 test <- (L2 > L1)

 test <- ifelse(is.na(test),0,test)

 ind_sum <- ind_sum + test

 }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 return(ind_sum/B)

}

cores=detectCores()

cl <- makeCluster(cores[1]-1)

registerDoParallel(cl)

on.exit(stopCluster(cl))

B <- 500

N <- 1000

n <- 300

shape <- 7

scale <- 7

system.time({

 p_value <- foreach(i = 1:N, .packages = 'fitdistrplus',.combine = rbind)

%dopar% {

 in_fit(n,B)

 }

 stopCluster(cl)

})

p_value <- p_value[order(p_value)]

x <-runif(1000,0,1)

##Plot empirical cdf of p values

##against cdf of uniform(0, 1)

p_value.cdf <- ecdf(p_value)

plot(p_value.cdf, xlab = 'p-value', ylab = '', main = '', lty=1, col =

'black')

lines(ecdf(x), lty=1, col = 'grey')

mtext(text = expression(hat(F)[n](x)), side = 2, line = 2.5)

legend(x = c(-0.11, 0.7), y = c(0.95, 0.95),-0.11, 0.95,

legend=c("Empirical CDF of p-values", "Uniform (0, 1)"),

 col=c("black", "grey"), lty=1:2, cex=1.2, box.lty=0,x.intersp =

0.3,y.intersp=0.35, bg="transparent")

#KS test

ks_test <- ks.test(x,p_value)

ks_test$statistic

ks_test$p.value

###############################

Chapter 4 code ####

###############################

BMLE RMSE of quantiles for all models

library(data.table)

library(future)

library(ordinal)

library(NLRoot)

BMLE <- function(N,B,q,rdens,qdens,pdens,param,mix.ind,gum.ind) {

 N <- N

 B <- B

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 q <- q

 Candidate.C <- matrix(seq(0.05,1,0.05))

 bisection <- function(f, a, b, n = 1000, tol = 1e-7) {

 # If the signs of the function at the evaluated points, a and b, stop

the function and return message.

 if (!(f(a) < 0) && (f(b) > 0)) {

 stop('signs of f(a) and f(b) differ')

 } else if ((f(a) > 0) && (f(b) < 0)) {

 stop('signs of f(a) and f(b) differ')

 }

 for (i in 1:n) {

 c <- (a + b) / 2 # Calculate midpoint

 # If the function equals 0 at the midpoint or the midpoint is below

the desired tolerance, stop the

 # function and return the root.

 if ((f(c) == 0) || ((b - a) / 2) < tol) {

 return(c)

 }

 # If another iteration is required,

 # check the signs of the function at the points c and a and reassign

 # a or b accordingly as the midpoint to be used in the next

iteration.

 ifelse(sign(f(c)) == sign(f(a)),

 a <- c,

 b <- c)

 }

 # If the max number of iterations is reached and no root has been

found,

 # return message and end function.

 print('Too many iterations')

 }

 f <- function(x) {param[1]*pdens(x,param[2],param[3]) +

 (1-param[1])*pdens(x,param[4],param[5]) - q}

 fr <- function(param2) { ## Censored Weibull Type II

 beta <- param2[1]

 psi <- param2[2]

 (m*log(beta) + m*log(psi) + (beta-1)*sum(log(x)) - psi*sum(x^beta) -

(n-m)*psi*C^beta)*(-1)

 }

 small.boot <- function(p,B,data,q.IX,q) {

 q.boot.MSE <- matrix(nrow=B,ncol=1)

 C <- quantile(data, probs=p, type = 3)

 fr <- function(param2) { ## Censored Weibull Type II

 beta <- param2[1]

 psi <- param2[2]

 (m*log(beta) + m*log(psi) + (beta-1)*sum(log(x)) - psi*sum(x^beta) -

(n-m)*psi*C^beta)*(-1)

 }

 for (i in 1:B) {

 x.star <- sample(data,replace=TRUE)

 x.star_ordered <- x.star[order(x.star)]

 x <- x.star_ordered[(x.star_ordered<=C)]

 m <- length(x)

 n <- length(x.star)

 par <- optim(c(0.5,0.5), fr)

 q.boot.MSE[i] <- qweibull(q, par$par[1],

(1/par$par[2])^(1/par$par[1]))

 }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 MSE <- (1/B)*sum((q.boot.MSE-q.IX)^2)

 return(c(sqrt(MSE), p))

 q.boot.MSE <- NULL

 }

 q.estimate <- matrix(nrow=N, ncol = 1)

 for (j in (1:N)) {

 if(mix.ind == FALSE && gum.ind==FALSE){

 data <- rdens(300, param[1], param[2])

 }

 if(mix.ind == TRUE && gum.ind==FALSE){

 ind <- runif(300, 0, 1)

 data <- (ind <= param[1])*rdens(300, param[2], param[3]) +

 (ind > param[1])*rdens(300, param[4], param[5])

 }

 if(mix.ind == FALSE && gum.ind==TRUE){

 data <- rdens(300,param[1], param[2],max = FALSE)

 }

 #Bootstrapping component

 q.IX <- quantile(data, probs=q, type = 9)

 df <- data.frame(t(apply(Candidate.C,1,FUN = function(y)

small.boot(y,B,data,q.IX,q))))

 x.star <- sample(data, replace = TRUE)

 C <- quantile(data, df[which.min(df[,1]),2], type = 3)

 rm(df)

 x.star_ordered <- x.star[order(x.star)]

 x <- x.star_ordered[(x.star_ordered<=C)]

 m <- length(x)

 n <- length(x.star)

 par <- optim(c(0.5,0.5), fr)

 q.estimate[j] <- qweibull(q, par$par[1],

(1/par$par[2])^(1/par$par[1]))

 }

 if (mix.ind == FALSE && gum.ind == FALSE){

 MSE <- ((1/N)*sum((q.estimate-qdens(0.05, param[1], param[2]))**2))

 }

 if (mix.ind == FALSE && gum.ind == TRUE){

 MSE <- ((1/N)*sum((q.estimate-qgumbel(0.05, param[1], param[2], max =

FALSE))**2))

 }

 if (mix.ind == TRUE && gum.ind == FALSE) {

 MSE <- (sum((q.estimate[!is.na(q.estimate)]-

bisection(f,0,10))**2)/length(q.estimate[!is.na(q.estimate)]))

 }

 q.estimate <- NULL

 return(sqrt(MSE))

}

q=0.05

B=500

N=1000

plan(multisession)

tempjob1 %<-% BMLE(N,B,q,rweibull,qweibull,NULL,c(7.378,

6.739),FALSE,FALSE)

tempjob2 %<-% BMLE(N,B,q,rgamma,qgamma,NULL,c(16.168, 1/0.440),FALSE,FALSE)

tempjob3 %<-% BMLE(N,B,q,rlnorm,qlnorm,NULL,c(1.951, 0.286),FALSE,FALSE)

tempjob4 %<-% BMLE(N,B,q,rgumbel,qgumbel,NULL,c(6.319, 0.601),FALSE,TRUE)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

tempjob5 %<-%

BMLE(N,B,q,rnorm,NULL,pnorm,c(0.7596791,6.283595,1.164798,8.432113,0.871932

8),TRUE,FALSE)

tempjob6 %<-%

BMLE(N,B,q,rlnorm,NULL,plnorm,c(0.6379,1.980,0.166,1.746,0.226),TRUE,FALSE)

tempjob7 %<-%

BMLE(N,B,q,rweibull,NULL,pweibull,c(0.7753,5.507,7.676,11.142,6.163),TRUE,F

ALSE)

temp.list <- lapply(ls(pattern = "temp"), get)

results <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

names(results) <- c("weibull", "gamma", "lnorm", "gumbel", "Mnorm",

"Mlnorm", "Mweibull")

s <- Sys.time()

BMLE(N,B,q,rweibull,qweibull,NULL,c(7.378, 6.739),FALSE,FALSE)

e <- Sys.time()

e-s

simulation study to evaluate

the consistency of the MSE estimate

library(ordinal)

library(data.table)

library(future)

MC.dist.diff.MSE <- function(N, B, n, q, param, rdens, qdens, pdens,

mix.ind,gum.ind){

 bisection <- function(f, a, b, n = 1000, tol = 1e-7) {

 # If the signs of the function at the evaluated points, a and b, stop

the function and return message.

 if (!(f(a) < 0) && (f(b) > 0)) {

 stop('signs of f(a) and f(b) differ')

 } else if ((f(a) > 0) && (f(b) < 0)) {

 stop('signs of f(a) and f(b) differ')

 }

 for (i in 1:n) {

 c <- (a + b) / 2 # Calculate midpoint

 # If the function equals 0 at the midpoint or the midpoint is below

the desired tolerance, stop the

 # function and return the root.

 if ((f(c) == 0) || ((b - a) / 2) < tol) {

 return(c)

 }

 # If another iteration is required,

 # check the signs of the function at the points c and a and reassign

 # a or b accordingly as the midpoint to be used in the next

iteration.

 ifelse(sign(f(c)) == sign(f(a)),

 a <- c,

 b <- c)

 }

 # If the max number of iterations is reached and no root has been

found,

 # return message and end function.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 print('Too many iterations')

 }

 f <- function(x) {param[1]*pdens(x,param[2],param[3]) +

 (1-param[1])*pdens(x,param[4],param[5]) - q}

 fr <- function(param2) { ## Censored Weibull Type II

 beta <- param2[1]

 psi <- param2[2]

 (m*log(beta) + m*log(psi) + (beta-1)*sum(log(x)) - psi*sum(x^beta) -

(n-m)*psi*C^beta)*(-1)

 }

 N=N

 #population

 q.pop.MSE = matrix(nrow=N,ncol=1)

 #bootstrap

 boot.MSE.j = matrix(nrow=N,ncol=1)

 for (j in 1:N) {

 #Simulate the data

 if(mix.ind == FALSE && gum.ind==FALSE){

 data <- rdens(n, param[1], param[2])

 }

 if(mix.ind == TRUE && gum.ind==FALSE){

 ind <- runif(n, 0, 1)

 data <- (ind <= param[1])*rdens(n, param[2], param[3]) +

 (ind > param[1])*rdens(n, param[4], param[5])

 }

 if(mix.ind == FALSE && gum.ind==TRUE){

 data <- rdens(n,param[1], param[2],max = FALSE)

 }

 ### population MSE estimate

 C <- quantile(data, probs = 0.1, type = 3)

 data_ordered <- data[order(data)]

 x <- data_ordered[(data_ordered<=C)]

 m <- length(x)

 n <- length(data)

 par <- optim(c(0.5,0.5), fr)

 q.pop.MSE[j] <- qweibull(q, par$par[1], (1/par$par[2])^(1/par$par[1]))

 ### bootstrap MSE estimate

 B = B

 q.boot.MSE <- matrix(nrow=B,ncol=1)

 q.IX <- quantile(data, probs = q, type = 9)

 for (i in 1:B) {

 x.star <- sample(data, replace = TRUE)

 C <- quantile(x.star, probs = 0.1, type = 3)

 x.star_ordered <- x.star[order(x.star)]

 x <- x.star_ordered[(x.star_ordered<=C)]

 m <- length(x)

 n <- length(x.star)

 par <- optim(c(0.5,0.5), fr)

 q.boot.MSE[i] <- qweibull(q, par$par[1],

(1/par$par[2])^(1/par$par[1]))

 }

 boot.MSE.j[j] = (1/B)*sum((q.boot.MSE-q.IX)^2)

 }

 if (mix.ind == FALSE && gum.ind == FALSE){

 MSE.pop <- (1/N)*sum(((q.pop.MSE-qdens(q, param[1], param[2]))^2))

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 }

 if (mix.ind == FALSE && gum.ind == TRUE){

 MSE.pop <- ((1/N)*sum((q.pop.MSE-qgumbel(q, param[1], param[2], max =

FALSE))**2))

 }

 if (mix.ind == TRUE && gum.ind == FALSE) {

 MSE.pop <- (sum((q.pop.MSE[!is.na(q.pop.MSE)]-

bisection(f,0,10))**2)/length(q.pop.MSE[!is.na(q.pop.MSE)]))

 }

 MC.diff = boot.MSE.j-MSE.pop

 return (MC.diff)

}

N=10000

B=1

q=0.05

plan(multisession)

tempjob1 %<-% MC.dist.diff.MSE(N,B,n=300,q,c(7.378,

6.739),rweibull,qweibull,NULL,FALSE,FALSE)

tempjob2 %<-% MC.dist.diff.MSE(N,B,n=500,q,c(7.378,

6.739),rweibull,qweibull,NULL,FALSE,FALSE)

tempjob3 %<-% MC.dist.diff.MSE(N,B,n=1000,q,c(7.378,

6.739),rweibull,qweibull,NULL,FALSE,FALSE)

tempjob4 %<-% MC.dist.diff.MSE(N,B,n=2000,q,c(7.378,

6.739),rweibull,qweibull,NULL,FALSE,FALSE)

tempjob5 %<-% MC.dist.diff.MSE(N,B,n=3000,q,c(7.378,

6.739),rweibull,qweibull,NULL,FALSE,FALSE)

tempjob6 %<-% MC.dist.diff.MSE(N,B,n=5000,q,c(7.378,

6.739),rweibull,qweibull,NULL,FALSE,FALSE)

tempjob2 %<-% MC.dist.diff.MSE(N,B,n,q,c(1.951,

0.286),rlnorm,qlnorm,NULL,FALSE,FALSE)

tempjob3 %<-% MC.dist.diff.MSE(N,B,n,q,c(6.319,

0.601),rgumbel,qgumbel,NULL,FALSE,TRUE)

tempjob4 %<-% MC.dist.diff.MSE(N,B,n,q,c(16.168,

1/0.440),rgamma,qgamma,NULL,FALSE,FALSE)

tempjob5 %<-%

MC.dist.diff.MSE(N,B,n,q,c(0.7596791,6.283595,1.164798,8.432113,0.8719328),

rnorm,NULL,pnorm,TRUE,FALSE)

tempjob6 %<-%

MC.dist.diff.MSE(N,B,n,q,c(0.6379,1.980,0.166,1.746,0.226),rlnorm,NULL,plno

rm,TRUE,FALSE)

tempjob7 %<-% MC.dist.diff.MSE(N,B,n,q,c(7.378,

6.739),rweibull,NULL,pweibull,TRUE,FALSE)

start_time <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

df <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

names(df) <- c('300','500','1000','2000','3000','5000')

rm(list=ls(pattern="temp"))

mar.default <- c(5,1,2,1) + 0.1

par(mar = mar.default + c(0, 4, 0, 0))

boxplot(df,ylab = expression(hat(M^i)[n] - M[n]),ylim = c(-0.05,0.2), xlab

= 'Sample size')

abline(h=0,col='red', lwd = 3)

end_time <- Sys.time()

end_time - start_time

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

MIX and MIX7 RMSE of quantiles for all models

#MOR1

library(data.table)

library(future)

library(ordinal)

library(NLRoot)

MIX7 <- function(N,q,rdens,qdens,pdens,param,mix.ind,gum.ind) {

 bisection <- function(f, a, b, n = 1000, tol = 1e-7) {

 # If the signs of the function at the evaluated points, a and b, stop

the function and return message.

 if (!(f(a) < 0) && (f(b) > 0)) {

 stop('signs of f(a) and f(b) differ')

 }

 else if ((f(a) > 0) && (f(b) < 0)) {

 stop('signs of f(a) and f(b) differ')

 }

 for (i in 1:n) {

 c <- (a + b) / 2 # Calculate midpoint

 # If the function equals 0 at the midpoint or the midpoint is below

the desired tolerance, stop the

 # function and return the root.

 if ((f(c) == 0) || ((b - a) / 2) < tol) {

 return(c)

 }

 # If another iteration is required,

 # check the signs of the function at the points c and a and reassign

 # a or b accordingly as the midpoint to be used in the next

iteration.

 ifelse(sign(f(c)) == sign(f(a)),

 a <- c,

 b <- c)

 }

 # If the max number of iterations is reached and no root has been

found,

 # return message and end function.

 print('Too many iterations')

 }

 f1 <- function(x) {par[[1]]*pweibull(x,par[[2]][1],par[[3]][1]) +

 (1-par[[1]])*pweibull(x,par[[2]][2],par[[3]][1]) - q}

 f <- function(x) {param[1]*pdens(x,param[2],param[3]) +

 (1-param[1])*pdens(x,param[4],param[5]) - q}

 em_wc <- function(DS) {

 count <- 0

 #initialise mixing probabilities to be equal

 probs <- 0.5

 #initialise parameters

 alpha <- c(6.823130, 11 + rnorm(1,0,1))

 eta <- c(7.173, 7.173 + rnorm(1,0,1))

 C <- quantile(DS, probs = 0.7, type = 3)

 DS_ordered = DS[order(DS)]

 x = DS_ordered[(DS_ordered<=C)]

 m = length(x)

 n = length(DS)

 diff = 1e+11

 while(count < 800)

 {

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 #likelihood function

 weibull <- cbind(dweibull(x, alpha[1], eta[1], log = FALSE),

dweibull(x, alpha[2], eta[2], log = FALSE))

 #responsibilities

 gam <- rbind(cbind((probs*weibull[,1])/(probs*weibull[,1] + (1-

probs)*weibull[,2]),

 ((1-probs)*weibull[,2])/(probs*weibull[,1] + (1-

probs)*weibull[,2])),

 cbind((probs*(1-pweibull(C,alpha[1], eta[1],lower.tail =

TRUE, log.p = FALSE))/(probs*(1-pweibull(C,alpha[1], eta[1],lower.tail =

TRUE, log.p = FALSE))

+(1- probs)*(1-pweibull(C,alpha[2], eta[2],lower.tail = TRUE, log.p =

FALSE)))),

 ((1-probs)*(1-pweibull(C,alpha[2],

eta[2],lower.tail = TRUE, log.p = FALSE))/(probs*(1-pweibull(C,alpha[1],

eta[1]))

+ (1- probs)*(1-pweibull(C,alpha[2], eta[2],lower.tail = TRUE, log.p =

FALSE))))))

 #estimate parameters

 alpha_new <- cbind((sum(head(gam[,1],m)*(x^alpha[1])*log(x))+(n-

m)*tail(gam[,1],1)*C^alpha[1]*log(C))/(sum(head(gam[,1],m)*x^alpha[1])+(n-

m)*tail(gam[,1],1)*C^alpha[1]) -

sum(head(gam[,1],m)*log(x))/sum(head(gam[,1],m)),

 (sum(head(gam[,2],m)*(x^alpha[2])*log(x))+(n-

m)*tail(gam[,2],1)*C^alpha[2]*log(C))/(sum(head(gam[,2],m)*x^alpha[2])+(n-

m)*tail(gam[,2],1)*C^alpha[2]) -

sum(head(gam[,2],m)*log(x))/sum(head(gam[,2],m)))

 eta_new <- cbind(((sum(head(gam[,1],m)*x^(1/alpha_new[1]))+(n-

m)*tail(gam[,1],1)*C^(1/alpha_new[1]))/sum(head(gam[,1],m)))^(alpha_new[1])

,

 ((sum(head(gam[,2],m)*x^(1/alpha_new[2]))+(n-

m)*tail(gam[,2],1)*C^(1/alpha_new[2]))/sum(head(gam[,2],m)))^(alpha_new[2])

)

 probs_new <- (sum(head(gam[,1],m)) + tail(gam[,1],1)*(n-

m))/length(DS)

 #update parameters

 a0 <- sum(abs((alpha - 1/alpha_new)) + abs((eta - eta_new)) +

abs((probs - probs_new)))

 probs <- probs_new

 alpha <- 1/alpha_new

 eta <- eta_new

 centres <- kmeans(DS,2)

 alpha[1] <- ifelse(alpha[1]>=25, centres$centers[1], alpha[1])

 alpha[2] <- ifelse(alpha[2]>=25, centres$centers[2], alpha[2])

 count <- count+1

 a2 <- ifelse(count>=500,0.0001,0)

 a3 <- ifelse(is.na(a0), 0.0001, 0)

 d <- a0+a2+a3

 diff <- d

 }

 return(list(probs,alpha, eta))

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 }

 N <- N

 q <- q

 q.estimate <- matrix(nrow=N, ncol = 1)

 for (j in (1:N)) {

 x <- tryCatch(

 {

 if(mix.ind == FALSE && gum.ind==FALSE){

 data <- rdens(300, param[1], param[2])

 }

 if(mix.ind == TRUE && gum.ind==FALSE){

 ind <- runif(300, 0, 1)

 data <- (ind <= param[1])*rdens(300, param[2], param[3]) +

 (ind > param[1])*rdens(300, param[4], param[5])

 }

 if(mix.ind == FALSE && gum.ind==TRUE){

 data <- rdens(300, param[1], param[2],max = FALSE)

 }

 par <- em_wc(data)

 test <- bisection(f1,0,10)

 },

 error = function(e){

 test <- NA

 }

)

 q.estimate[j] <- x

 }

 if (mix.ind == FALSE && gum.ind == FALSE){

 MSE <- ((1/length(q.estimate[!is.na(q.estimate)]))*sum((q.estimate-

qdens(0.05, param[1], param[2]))**2))

 }

 if (mix.ind == FALSE && gum.ind == TRUE){

 MSE <- ((1/length(q.estimate))*sum((na.omit(q.estimate)-qgumbel(0.05,

param[1], param[2], max = FALSE))**2))

 }

 if (mix.ind == TRUE && gum.ind == FALSE) {

 MSE <- (sum((q.estimate[!is.na(q.estimate)]-

bisection(f,0,10))**2)/length(q.estimate[!is.na(q.estimate)]))

 }

 #q.estimate <- NULL

 sd_2 <- 100*apply(na.omit(q.estimate),2,sd)

 bias <- 100*sqrt(abs(MSE - (sd_2/100)^2))

 return(list(sqrt(MSE),sd_2,bias))

}

q=0.05

N=500

plan(multisession)

##MOR1

tempjob1 %<-% MIX7(N,q,rweibull,qweibull,NULL,c(6.822, 7.173),FALSE,FALSE)

tempjob2 %<-% MIX7(N,q,rgamma,qgamma,NULL,c(12.93, 1/0.601),FALSE,FALSE)

tempjob3 %<-% MIX7(N,q,rlnorm,qlnorm,NULL,c(2.072, 0.336),FALSE,FALSE)

tempjob4 %<-% MIX7(N,q,rgumbel,qgumbel,NULL,c(6.319, 0.601),FALSE,TRUE)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

tempjob5 %<-%

MIX7(N,q,rnorm,NULL,pnorm,c(0.5629,5.953,0.970,7.676,1.215),TRUE,FALSE)

tempjob6 %<-%

MIX7(N,q,rlnorm,NULL,plnorm,c(0.9758,1.897,0.189,1.245,0.102),TRUE,FALSE)

tempjob7 %<-%

MIX7(N,q,rweibull,NULL,pweibull,c(0.7448,5.494,7.599,15.81,5.983),TRUE,FALS

E)

##MOR2

tempjob1 %<-% MIX7(N,q,rweibull,qweibull,NULL,c(7.378, 6.738),FALSE,FALSE)

tempjob2 %<-% MIX7(N,q,rgamma,qgamma,NULL,c(16.16, 1/0.4407),FALSE,FALSE)

tempjob3 %<-% MIX7(N,q,rlnorm,qlnorm,NULL,c(1.976, 0.2916),FALSE,FALSE)

tempjob4 %<-% MIX7(N,q,rgumbel,qgumbel,NULL,c(6.319, 0.601),FALSE,TRUE)

tempjob5 %<-%

MIX7(N,q,rnorm,NULL,pnorm,c(0.5406,5.924,1.042,7.859,1.095),TRUE,FALSE)

tempjob6 %<-%

MIX7(N,q,rlnorm,NULL,plnorm,c(0.6649,1.976,0.167,1.736,0.226),TRUE,FALSE)

tempjob7 %<-%

MIX7(N,q,rweibull,NULL,pweibull,c(0.7932,5.427,7.642,12.01,6.186),TRUE,FALS

E)

s <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

results2 <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

#names(results) <- c("wei", "gam", "lnorm")

e <- Sys.time()

e-s

MIX and MIX7 supplement

library(data.table)

library(future)

library(ordinal)

library(NLRoot)

library(ggplot2)

C.select <- function(MC,rdens,qdens,pdens,param,mix.ind,gum.ind) {

 bisection <- function(f, a, b, n = 1000, tol = 1e-7) {

 # If the signs of the function at the evaluated points, a and b, stop

the function and return message.

 if (!(f(a) < 0) && (f(b) > 0)) {

 stop('signs of f(a) and f(b) differ')

 } else if ((f(a) > 0) && (f(b) < 0)) {

 stop('signs of f(a) and f(b) differ')

 }

 for (i in 1:n) {

 c <- (a + b) / 2 # Calculate midpoint

 # If the function equals 0 at the midpoint or the midpoint is below

the desired tolerance, stop the

 # function and return the root.

 if ((f(c) == 0) || ((b - a) / 2) < tol) {

 return(c)

 }

 # If another iteration is required,

 # check the signs of the function at the points c and a and reassign

 # a or b accordingly as the midpoint to be used in the next

iteration.

 ifelse(sign(f(c)) == sign(f(a)),

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 a <- c,

 b <- c)

 }

 # If the max number of iterations is reached and no root has been

found,

 # return message and end function.

 print('Too many iterations')

 }

 f <- function(x) {param[1]*pdens(x,param[2],param[3]) +

 (1-param[1])*pdens(x,param[4],param[5]) - 0.05}

 ## censored weibull log-like

 fr_w <- function(initial) { ## Censored Weibull

 beta <- initial[1]

 psi <- initial[2]

 (m*log(beta) + m*log(psi) + (beta-1)*sum(log(x)) - psi*sum(x^beta) -

(n-m)*psi*C^beta)*(-1)

 }

 ## Monte Carlo simulations

 MC <- MC

 ## store threshold with MSE values

 model.thresh <- matrix(nrow = length(seq(0.05,1,0.05)), ncol = 1)

 k <- 1

 for (i in seq(0.05,1,0.05)) {

 ## store the quantile estimate values

 q.estimate <- matrix(nrow=MC, ncol = 1)

 for (j in (1:MC)) {

 if(mix.ind == FALSE && gum.ind==FALSE){

 dat <- rdens(500, param[1], param[2])

 }

 if(mix.ind == TRUE && gum.ind==FALSE){

 ind <- runif(500, 0, 1)

 dat <- (ind <= param[1])*rdens(500, param[2], param[3]) +

 (ind > param[1])*rdens(500, param[4], param[5])

 }

 if(mix.ind == FALSE && gum.ind==TRUE){

 dat <- rdens(500,param[1], param[2],max = FALSE)

 }

 C = quantile(dat, probs = i, type = 3)

 dat_ordered = dat[order(dat)]

 x = abs(dat_ordered[(dat_ordered<=C)])

 m = length(x)

 n = length(dat)

 par = optim(c(0.5,0.5), fr_w)

 q.estimate[j] = qweibull(0.05, par$par[1],

(1/par$par[2])^(1/par$par[1]))

 }

 if (mix.ind == FALSE && gum.ind == FALSE){

 MSE <- ((1/MC)*sum((q.estimate-qdens(0.05, param[1], param[2]))**2))

 }

 if (mix.ind == FALSE && gum.ind == TRUE){

 MSE <- ((1/MC)*sum((q.estimate-qgumbel(0.05, param[1], param[2], max

= FALSE))**2))

 }

 if (mix.ind == TRUE && gum.ind == FALSE) {

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 MSE <- (sum((q.estimate[!is.na(q.estimate)]-

bisection(f,0,10))**2)/length(q.estimate[!is.na(q.estimate)]))

 }

 model.thresh[k] <- MSE

 k=k+1

 }

 return(model.thresh)

}

plan(multisession)

MC = 500

tempjob1 %<-% C.select(MC,rweibull,qweibull,NULL,c(7.378,

6.739),FALSE,FALSE)

tempjob2 %<-% C.select(MC,rgamma,qgamma,NULL,c(16.168,

1/0.440),FALSE,FALSE)

tempjob3 %<-% C.select(MC,rlnorm,qlnorm,NULL,c(1.951, 0.286),FALSE,FALSE)

tempjob4 %<-% C.select(MC,rgumbel,qgumbel,NULL,c(6.319, 0.601),FALSE,TRUE)

tempjob5 %<-%

C.select(MC,rnorm,NULL,pnorm,c(0.7596791,6.283595,1.164798,8.432113,0.87193

28),TRUE,FALSE)

tempjob6 %<-%

C.select(MC,rlnorm,NULL,plnorm,c(0.6379,1.980,0.166,1.746,0.226),TRUE,FALSE

)

tempjob7 %<-%

C.select(MC,rweibull,NULL,pweibull,c(0.7753,5.507,7.676,11.142,6.163),TRUE,

FALSE)

s <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

results <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

rm(list=ls(pattern="temp"))

e <- Sys.time()

e-s

x <- seq(0.05,1,0.05)

spar = 0.6

plot(x,smooth.spline(x, results[,1], spar=spar)$y,

type='b',col="chartreuse4", lwd=3, pch=16, ylim = c(0,0.14),

 xlab = "Censoring Threshold (Empirical Percentile)", ylab = "MSE of

5th Percentile Estimate")

points(x, smooth.spline(x, results[,2], spar=spar)$y,type='b', pch=17,

lty=2, lwd=3, col = "coral2")

points(x, smooth.spline(x, results[,3], spar=spar)$y,type='b', pch=18,

lty=3, lwd=3, col = "cornflowerblue")

points(x, smooth.spline(x, results[,4], spar=spar)$y,type="b", pch=19,

lty=2, lwd=3, col = "dimgrey")

legend(0, 0.14, legend=c("Weibull", "Gamma", "Log Normal", "Minimum

Gumbel"),

 col=c("chartreuse4", "coral2", "cornflowerblue", "dimgrey"),

 pch=16:19, cex=1.2, box.lty=0,y.intersp=0.3, bg="transparent",

x.intersp = 0.3)

plot(x,smooth.spline(x, results[,5], spar=spar)$y,

type='b',col="darkorchid4", lwd=3, pch=20, ylim = c(0,0.14),

 xlab = "Censoring Threshold (Empirical Percentile)", ylab = "MSE of

5th Percentile Estimate")

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

points(x, smooth.spline(x, results[,6], spar=spar)$y,type='b', pch=21,

lty=2, lwd=3, col = "darkred")

points(x, smooth.spline(x, results[,7], spar=spar)$y,type='b', pch=22,

lty=3, lwd=3, col = "mediumseagreen")

legend(0, 0.14, legend=c("Normal Mixture", "Log-normal Mixture", "Weibull

Mixture"),

 col=c("darkorchid4", "darkred", "mediumseagreen"),

 pch=20:22, cex=1.2, box.lty=0,y.intersp=0.3, bg="transparent",

x.intersp = 0.3)

p <- ggplot(results, aes(x, V1)) +

 geom_point() +

 geom_smooth(method = "lm", formula = y ~ poly(x, 3), se = FALSE)

p

###############################

Chapter 4 code ####

###############################

SWAKS-MLE RMSE of quantiles for all models

#MOR1

library(data.table)

library(future)

library(ordinal)

library(NLRoot)

AKSMLE <- function(N,q,rdens,qdens,pdens,param,mix.ind,gum.ind) {

 bisection <- function(f, a, b, n = 1000, tol = 1e-7) {

 # If the signs of the function at the evaluated points, a and b, stop

the function and return message.

 if (!(f(a) < 0) && (f(b) > 0)) {

 stop('signs of f(a) and f(b) differ')

 }

 else if ((f(a) > 0) && (f(b) < 0)) {

 stop('signs of f(a) and f(b) differ')

 }

 for (i in 1:n) {

 c <- (a + b) / 2 # Calculate midpoint

 # If the function equals 0 at the midpoint or the midpoint is below

the desired tolerance, stop the

 # function and return the root.

 if ((f(c) == 0) || ((b - a) / 2) < tol) {

 return(c)

 }

 # If another iteration is required,

 # check the signs of the function at the points c and a and reassign

 # a or b accordingly as the midpoint to be used in the next

iteration.

 ifelse(sign(f(c)) == sign(f(a)),

 a <- c,

 b <- c)

 }

 # If the max number of iterations is reached and no root has been

found,

 # return message and end function.

 print('Too many iterations')

 }

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 f <- function(data) {param[1]*pdens(x,param[2],param[3]) +

 (1-param[1])*pdens(x,param[4],param[5]) - q}

 fr <- function(param2) { ## Censored Weibull Type II

 beta <- param2[1]

 psi <- param2[2]

 (m*log(beta) + m*log(psi) + (beta-1)*sum(log(x)) - psi*sum(x^beta) -

(n-m)*psi*C^beta)*(-1)

 }

 TKS <- function(p,data) {

 fr <- function(param2) { ## Censored Weibull Type II

 beta <- param2[1]

 psi <- param2[2]

 (m*log(beta) + m*log(psi) + (beta-1)*sum(log(x)) - psi*sum(x^beta) -

(n-m)*psi*C^beta)*(-1)

 }

 C <- quantile(data, probs = p, type = 3)

 Data_ordered <- data[order(data)]

 x <- Data_ordered[(Data_ordered<=C)]

 m <- length(x)

 n <- length(data)

 par <- optim(c(0.5,0.5), fr)

 emp <- ecdf(Data_ordered)

 true <- emp(x)

 fit <- pweibull(x, par$par[1], (1/par$par[2])^(1/par$par[1]))

 D1 <- max(abs(log(fit/true))*sqrt((fit)*(1-fit)/m))

 return (c(D1,p))

 }

 N <- N

 q <- q

 Candidate.C <- matrix(seq(0.1,0.5,0.01))

 q.estimate <- matrix(nrow=N, ncol = 1)

 for (j in (1:N)) {

 y <- tryCatch(

 {

 if(mix.ind == FALSE && gum.ind==FALSE){

 data <- rdens(3000, param[1], param[2])

 }

 if(mix.ind == TRUE && gum.ind==FALSE){

 ind <- runif(3000, 0, 1)

 data <- (ind <= param[1])*rdens(3000, param[2], param[3]) +

 (ind > param[1])*rdens(3000, param[4], param[5])

 }

 if(mix.ind == FALSE && gum.ind==TRUE){

 data <- rdens(3000, param[1], param[2],max = FALSE)

 }

 df<-data.frame(t(apply(Candidate.C,1,FUN = function(y)

TKS(y,data))))

 smoothingSpline = smooth.spline(df$X2, df$X1, all.knots = TRUE)

 df$X1 <- smoothingSpline$y

 C <- quantile(data, df[which.min(df[,1]),2], type = 3)

 x.star_ordered <- data[order(data)]

 x <- x.star_ordered[(x.star_ordered<=C)]

 m <- length(x)

 n <- length(data)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 par <- optim(c(0.5,0.5), fr)

 test <- qweibull(q, par$par[1], (1/par$par[2])^(1/par$par[1]))

 },

 error = function(e){

 test <- NA

 }

)

 q.estimate[j] <- y

 }

 # if (mix.ind == FALSE && gum.ind == FALSE){

 # MSE <- ((1/N)*sum((q.estimate-qdens(0.05, param[1], param[2]))**2))

 # }

 # if (mix.ind == FALSE && gum.ind == TRUE){

 # MSE <- ((1/N)*sum((q.estimate-qgumbel(0.05, param[1], param[2], max =

FALSE))**2))

 # }

 # if (mix.ind == TRUE && gum.ind == FALSE) {

 # MSE <- (sum((q.estimate[!is.na(q.estimate)]-

bisection(f,0,10))**2)/length(q.estimate[!is.na(q.estimate)]))

 # }

 # #q.estimate <- NULL

 # rm(x.star_ordered,x,m,par,C,data)

 return(q.estimate)

}

q=0.05

N=100

plan(multisession)

tempjob1 %<-% AKSMLE(N,q,rweibull,qweibull,NULL,c(6.822,

7.173),FALSE,FALSE)

tempjob2 %<-% AKSMLE(N,q,rgamma,qgamma,NULL,c(12.93, 1/0.601),FALSE,FALSE)

tempjob3 %<-% AKSMLE(N,q,rlnorm,qlnorm,NULL,c(2.072, 0.336),FALSE,FALSE)

tempjob4 %<-% AKSMLE(N,q,rgumbel,qgumbel,NULL,c(6.620, 0.650),FALSE,TRUE)

tempjob5 %<-%

AKSMLE(N,q,rnorm,NULL,pnorm,c(0.5629,5.953,0.970,7.676,1.215),TRUE,FALSE)

tempjob6 %<-%

AKSMLE(N,q,rlnorm,NULL,plnorm,c(0.9758,1.897,0.189,1.245,0.102),TRUE,FALSE)

tempjob7 %<-%

AKSMLE(N,q,rweibull,NULL,pweibull,c(0.7448,5.494,7.599,15.81,5.983),TRUE,FA

LSE)

s <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

results3 <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

#names(results) <- c("wei", "gam", "lnorm")

e <- Sys.time()

e-s

rm(temp.list)

#MOR2

plan(multisession)

tempjob1 %<-% AKSMLE(N,q,rweibull,qweibull,NULL,c(7.378,

6.738),FALSE,FALSE)

tempjob2 %<-% AKSMLE(N,q,rgamma,qgamma,NULL,c(16.16, 1/0.4407),FALSE,FALSE)

tempjob3 %<-% AKSMLE(N,q,rlnorm,qlnorm,NULL,c(1.976, 0.2916),FALSE,FALSE)

tempjob4 %<-% AKSMLE(N,q,rgumbel,qgumbel,NULL,c(6.319, 0.601),FALSE,TRUE)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

tempjob5 %<-%

AKSMLE(N,q,rnorm,NULL,pnorm,c(0.5406,5.924,1.042,7.859,1.095),TRUE,FALSE)

tempjob6 %<-%

AKSMLE(N,q,rlnorm,NULL,plnorm,c(0.6649,1.976,0.167,1.736,0.226),TRUE,FALSE)

tempjob7 %<-%

AKSMLE(N,q,rweibull,NULL,pweibull,c(0.7932,5.427,7.642,12.01,6.186),TRUE,FA

LSE)

s <- Sys.time()

temp.list <- lapply(ls(pattern = "temp"), get)

results21 <- as.data.frame(matrix(unlist(temp.list),

nrow=length(unlist(temp.list[1]))))

#names(results) <- c("wei", "gam", "lnorm")

e <- Sys.time()

e-s

w1 <- na.omit(results21$V1)

g1 <- na.omit(results21$V2)

ln1 <- na.omit(results21$V3)

gu1 <- na.omit(results21$V4)

nm1 <- na.omit(results21$V5)

lnm1 <- na.omit(results21$V6)

wm1 <- na.omit(results21$V7)

MSE_w <- (1/length(w1))*sum((w1 - qweibull(0.05, 7.378, 6.738))^2)

MSE_g <- (1/length(g1))*sum((g1 - qgamma(0.05, 16.16, 1/0.4407))^2)

MSE_ln <- (1/length(ln1))*sum((ln1 - qlnorm(0.05, 1.976, 0.2916))^2)

MSE_gu <- (1/length(gu1))*sum((gu1 - qgumbel(0.05, 6.319, 0.601, max =

FALSE))^2)

MSE_wm <- (sum((wm1[!is.na(wm1)]-

bisection(f,0,10))**2)/length(wm1[!is.na(wm1)]))

MSE_nm <- (sum((nm1[!is.na(nm1)]-

bisection(f,0,10))**2)/length(nm1[!is.na(nm1)]))

MSE_lnm<- (sum((lnm1[!is.na(lnm1)]-

bisection(f,0,10))**2)/length(lnm1[!is.na(lnm1)]))

mse <- c(MSE_w,MSE_g,MSE_ln,MSE_gu,MSE_nm,MSE_lnm,MSE_wm)

rmse_m2<- sapply(mse,sqrt)

sd_m2 <- 100*sapply(na.omit(results21),sd)

bias_m2<- 100*sqrt(abs(mse - (sd_m2/100)^2)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Contributions
	Dissertation outline
	Simulation settings
	List of acronyms and notation

	Classical Quantile Estimation
	Introduction
	Performance measures for lower quantile estimates
	Classic approaches to lower quantile estimation
	A parametric approach
	A non-parametric approach

	Chapter summary

	Censored and Mixture Models for Lower Quantile Estimation
	Introduction
	A censoring approach to lower quantile estimation
	Introduction to censoring
	A censored-adjusted semi-parametric approach to lower quantile estimation
	Selecting a parametric lower tail
	Computation of the censored MLE

	A mixture model approach to lower quantile estimation
	The Weibull mixture model
	The EM algorithm and estimation of the Weibull mixture
	Weibull model selection
	The censored Weibull mixture model
	Goodness-of-fit for the censored and uncensored Weibull mixture models

	Simulation comparison
	Model settings used to imitate MOR1 and MOR2
	Simulation comparison of the censored, parametric, non-parametric and empirical quantiles
	Simulation comparison of the mixture and censored mixture model

	Chapter summary

	Threshold Selection Techniques in the Censored Weibull Model
	Introduction
	Bootstrap threshold selection
	Relationship between the censoring threshold and the MSE
	Bootstrap estimate of MSE
	A note on computation expense

	Adjusted Kolmogorov-Smirnov threshold
	Relationship between the KS distance and the proportion of censoring
	Adjusted KS test statistic
	Relationship between the variance of the KS statistic and the proportion of censoring
	A standardised weighting function for the adjusted KS statistic
	The efficiency of the SWAKS-MLE algorithm

	Simulation comparison
	Comparison of the RMSE of the quantile estimates
	Comparison of the bias and standard error of the B-MLE, CW-MLE and SWAKS-MLE

	Chapter summary

	Future Work and Conclusions
	Bibliography

