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Abstract

The k — p distribution is a popular model for the fading observed due to clusters of
obstacles between a transmitter and a receiver in wireless communication channels. This
model includes various classical fading distributions as special cases. The basic Kk — u
distribution is used to model the signal strength in communication channels under the
assumption that the contribution to the signal strength arising from each cluster follows
a normal distribution. This study extends the model by relaxing the assumption of
normality, instead these contributions are assumed to follow an elliptical law. The t-
distribution plays an important role in this dissertation in that it is presented as an

alternative to the normal distribution.

Three extended k — p models are presented in this study, in each case the model is
extended by generalizing the underlying distributional assumption to that of an elliptical
distribution. The models include a univariate model, a bivariate model (which is useful
when one wants model the joint behaviour of communication channels) and a composite
model (which is used to model shadowing as well). As a performance measure for the
degradation in communication channels resulting from fading and shadowing, the outage

probability is investigated for special cases of the extended models.

The proposed extensions to the x — p model result in more flexible distributions that
can be used to model wireless communication channels.

Keywords: « — u model, elliptical class, fading, outage probability, shadowing, t-
distribution.
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Chapter 1

Introduction

1.1 Background and motivation

With the increasing popularity of wireless technologies, wireless communication systems
are abundant. The vast networks of wireless channels are important tools for a fast and
efficient means of data transmission. Hence, a careful study of the characteristics of these
channels is required in an attempt to ensure that communication can be maintained with
reliability. The signal transmission and the degradation of the signal as they pass through

these channels are of interest to practitioners.

Consider the case where a channel is transmitted from a single transmitter to a single
receiver. For engineering purposes, it is very important to be able to accurately model
the strength of the channel. A transmission of this kind is typically subject to various
disturbances. For example, there might be several large buildings, or even several clusters
of buildings, between the transmitter and the receiver. On the one hand, these obstacles
will impede the channels transmission by partially blocking the most direct route between
the transmitter and the receiver. On the other hand, some of the obstacles might enhance
the magnitude by reflecting the channel in the direction of the receiver. However, the
resulting channels will have a reduced strength compared to the original channel because
of the imperfections introduced by the reflection. These interferences are jointly referred

to as fading and shadowing.

There is a wide variety of models available in literature to describe the statistical
fluctuations in channels in fading or shadowing, fading models. The reader is referred
to Simon and Alouini, (2005) [29], Shankar (2011) [28, page 247], Paris (2014) [23] and
Moreno-Pozas et al (2016) [22].

Various models, with varying degrees of complexity, have been proposed in order to

model the strength in a wireless channel. An appropriate model for this should be able to
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allow for fading and shadowing. The basic model considered in this dissertation is known
as the K — p model. In this model and its extensions, fading and shadowing are taken
into account by considering the contribution of each cluster of obstacles to the received
channel strength separately. It is assumed that a large number of reflections occur within
each cluster and that each of these reflections add a random element to the resulting
contribution of this cluster. The contributions of the various clusters are then aggregated

in order to arrive at the strength of the channel received.

Under the standard x — g model the contribution associated with each cluster of
obstacles is assumed to have an underlying model. A question that arises naturally is
how sensitive the results of analyses on wireless channel models are to various departures
from normality. This study will generalize the x —  model used in the communication
system field by replacing the assumption of normality in the individual contributions by
the assumption that these contributions follow an elliptical law. Ollila et al (2011)[21]
pointed out that a more general assumption than the normal may not be far from reality.
The main contribution of this study lies in relaxing the assumption of normality to that
of an elliptical distribution. Different members of the elliptical class may be explored as
possible candidates. Yacoub (2007) [35] and Stein (1987) [32] raised the inadequacy of
the tails of some distributions. Therefore, the introduction of the t-distribution as an
alternative to normality will play a central role in this study. Against this backdrop the
study of various distributions within the elliptical class is of practical as well as theoretical

interest.

The x — u model originated due to the fundamental differences in the underlying as-
sumptions of this model when compared to classical fading models. The classical models
assume that the received channel can be represented as a vector sum of scattered compo-
nents coming from individual obstacles, while under the x — p model the assumption is
that the received channel power arrives from obstacles that are scattering clusters. The
underlying assumption of this model remains the normality of the individual contribu-
tions. In this study the new univariate k — p type model (that arise from the elliptical
assumption) is proposed as an alternative in the communications environment to model

and study the performance of the channel transmission through wireless channels.

In communication engineering fading distributions that are associated with multi-
antenna wireless communication systems operating over correlated branches are also of
interest. If the antennas are sufficiently separated, it is reasonable to assume that channels
received by different antennas are independent. However, this assumption is unsuitable for
systems with closely spaced antennas, such as mobile phones. Thus, in practical scenarios,

the channels may present some sort of dependence. This is the motivation why bivariate

© University of Pretoria
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distributions have been extensively explored in the context of wireless systems; see for
example Lopez-Martinez et al (2013) [15]. Ermolova and Tirkkonen (2015) [10], Reig et
al (2014) [25], Mendes and Yacoub (2007) [18], de Souza et al (2012) [9] and de Souza
and Yacoub (2008) [8]. For that reason, the bivariate k — 1 model will be investigated

and extended to the elliptical case.

Another model of interest is the shadowed fading model (composite model) which
simultaneously accounts for fading and shadowing in wireless systems. Shadowing can be
incorporated in multipath fading models in various ways. Different approaches and models
have been explored in the context of wireless systems to model random fluctuations in
the received channel caused by short term fading and shadowing; see Cotton (2015) [7],
Lopez-Fernandez et al (2017) [14], Lopez-Martinez et al (2016) [16], Moreno-Pozas et al
(2016) [22], Paris (2014) [23], Reig et al (2014) [25], Shankar (2005) [27], Sofotasios and
Freear (2013) [31], Sofotasios and Freear (2015) [30], Vural et al (2015) [34] and Yoo and
Cotton (2015) [36]. In this study the focus will also be on the k — u shadowed fading

model.

Each model is characterized in terms of quantitative measures such as the amount
of fading, and the outage probability. Therefore these metrics will recieve attention for
special cases of the extended models. The new results in this study give a more general
approach with additional flexibility since the assumption of normality is relaxed. The
author trusts that the extensions obtained by assuming elliptical distributions will enrich

the models within the communication systems and stimulate research.

1.2 Elements for study

Below we consider various important concepts that will be used throughout this disserta-

tion.

1.2.1 Elliptical Class

A random variable is said to belong to the elliptical class if its probability density function
(pdf) is a function of a quadratic form. This class includes the normal, Student’s t,
Cauchy, Pearson VII, Bessel and many other distributions. The elliptical class is useful

as it includes distributions with heavier tails than the normal.
Description 1 [2]

A random variable X has an elliptical distribution with parameters y and o2, E(u, 0%),

© University of Pretoria
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if its pdf is of the form

fx(x)="h [M]

202

for some non-negative function A [-], say density generator. The expected value is E (X) =
p and the var (X) = ko?, where k is a constant given by k = —2 [d%@b (y)] o —2¢'(0),
where 1 (-) is defined as some characteristic generator function. Chu (1973) [6] showed
that the pdf of the elliptical distribution can be expressed as integrals of a set of normal
pdfs. There is a scalar fucntion, W (t), defined on 0 < ¢ < oo such that

M@I/W@Mwwﬂﬂﬁ

where N (u,t 10?) is the normal pdf with mean p and variance t~'o?. This analytical
framework provides a computationally convenient form and will be demonstrated in the

subsequent chapters.

1.2.2 Composite model

Description 2
A random variable X with pdf f () is said to have a compound or composite pdf if

it has the general form
Fa) = [ ialp)hio)a0

where f (z]0) is a conditional pdf depending on the parameter 6, itself subject to vari-
ation described by the pdf h(6), the compounding pdf. In literature relevant to the

communication systems the compound model is referred to as a composite model.

1.2.3 Concepts in communication systems
1.2.3.1 Fading and Shadowing

As mentioned before, in wireless communications, signals transmitted do not often reach
the receiver directly. The signal reaches the receiver after undergoing scattering, diffrac-
tion, reflection, etc. from the buildings, trees, and other structures in the channel between
the transmitter and the receiver. As a result, there are multiple paths available for the
signal to reach the receiver and the received signals have in-phase added (see Figure 1.1).
The envelope (or amplitude/magnitude) of the signals from these paths are considered to
be random variables, thus, the received power (square of the magnitude) is also considered

random.

© University of Pretoria
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path # 4
(LOS)

Transmitter

path # 3 Receiver

Figure 1.1: Multipath transmission of signals [2§]

The random variation of the power is classified as “fading” in wireless systems. If the
variation has a short period, it is known as short-term fading. Signals encountering multi-

ple scattering or variation for long periods is known as long-term fading or “shadowing”.

attenuation
fading
shadowing

> Power

» Distance

Figure 1.2: Fading and shadowing in wireless channels [28]
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Signal degradation results from both the individual and/or simultaneous presence of
fading and shadowing (see Figure 1.2). Several models have been used to describe fading
in wireless systems, these include the simple models such as Rayleigh, Rician, Nakagami,
gamma and Weibull (Simon and Alouini (2005) [29] and Shankar (2011) [28]), and complex
models such as the k — p and n— p (Yacoub (2007) [35] ) and v —n — p models (Badarneh
and Aloglah (2016)[5]). The lognormal and normal models are most commonly used to
describe shadowing. Composite models are used to account for the simultaneous presence

of fading and shadowing.

1.2.3.2 Metrics

Comparison of these models is based on the quantitative metrics of the statistical char-
acteristics of the models which include amongst others the amount of fading and outage
probability.

Amount of fading

The amount of fading (AF) is a metric used to measure the severity of the fading in
the wireless system. The AF is defined in terms of the first and second moments of the
power of the fading signal, say 2. The AF is expressed as (Simon and Alouini, 2005.[29,
equation (2.5), page 18])

var (@) E(Q*) - [E@Q)" _ E(©?)

AF = 2 = Raismp -1 (1.1)
E(Q) [E ()] [E ()]

where F (-) denotes the expected value and var (-) the variance. The AF for some fading
models is given by Shankar (2011) [28, page 247].

Outage

The outage probability is a metric used to quantify the performance of the wireless
communication systems in different channels. It is defined as the probability that the
received signal falls below a certain threshold or equivalently, the probability that the
signal-to-noise ratio (SNR) or power falls below a certain specified threshold. Whenever
the signal power goes below the set threshold the channel goes into outage. The outage

probability can be expressed as (Simon and Alouini, 2005.[29, equation (2.5), page 18])

Zr

Pt — / f (@) dw = F, (Zr) (1.2)

0

where Zr is the threshold SNR and W can denote either the instantaneous SNR, W =

R2E;
No

per symbol and Ny is the noise power, see Simon and Alouini, 2005.[29, equation (2.5),

, or the normalized power, 2 = R?, where R denotes the envelope (E; is the energy

© University of Pretoria
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page 18]). The pdf of the SNR is f (w) and F, (Z7) is the cdf of the SNR evaluated at

w:ZT.

1.3 Outline

In Chapter 2, a collection of some fundamental mathematical results are given for

use in later sections. Notation and abbreviations are also defined.

In Chapter 3, firstly, the univariate x—pu distribution with underlying normal model
is reviewed, and thereafter, the univariate x — p type distribution with underlying
elliptical model is derived. Closed form expressions for the envelope pdf, power pdfs,

power cdfs and moments are derived.

Chapter 4 expands the univariate cases in chapter 3 to the bivariate environment
specifically to the elliptical case. Closed form expressions for the envelope pdf,

envelope cdf, joint moments and outage probability are derived.

Chapter 5, considers the composite model where the univariate x—p fading channel
is subject to shadowing. An extended model is developed emanating from the
elliptical assumption. Closed form expressions for the power pdf, power cdf and

moments are derived.

These models originated from a underlying physical model. The focus of this study

is to revisit the existing models and extend it from an elliptical viewpoint. Note that

in the case of the elliptical assumption, the distributions are referred to as type. Some

performance analysis is illustrated to justify the elliptical extension and the value added

is specifically demonstrated by assuming the t-distribution

© University of Pretoria
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Chapter 2
Special functions and notation

A collection of some fundamental mathematical results are given in this chapter. These

results will be used in later chapters.

2.1 Abbreviations and notation

AF Amount of fading

cdf Cumulative distribution function

jedf Joint cumulative distribution function
jpdf Joint probability density function

pdf Probability density function

SNR Signal-to-Noise Ratio

A>0 A is a positive definite matrix

Az Unique positive definite square root of A
det (A) Determinant of the square matrix A

|Al Norm of vector A

A1 Inverse of a square matrix A

AT Transpose of matrix A

tr(A) Trace of the square matrix A

J(X — f(X)) The Jacobian of the matrix transformation f
Rt Set of positive real numbers

N Set of natural numbers

Re Real part of a number

RP Set of real vectors of size p

C(t) Gegenbauer function

© University of Pretoria
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2. SPECIAL FUNCTIONS AND NOTATION
2.2. Special functions and theory

I'(v) Gamma function

v (+) Incomplete gamma function

B(") Beta function

(@), Pochhammer coefficient

+Fs () Hypergeometric series with r upper parameters and s lower parameters
I, (") Modified Bessel function of the first kind and order v

K, (") Modified Bessel function of the second kind and order v

N (p,0%) Normal distribution with mean u and variance o2

2 (v) Chi-squared distribution with v degrees of freedom
X3 (v) Non-central chi-squared distribution with v degrees of freedom
and noncentrality parameter A

E (u,0?) Elliptical distribution with parameters p and o2

2.2 Special functions and theory

Result 1 [1, Abramowitz, M. and Stequn, 1.A.,1964, equation 6.1.1]

The gamma function, denoted I («), is defined as

I'(a) = / 1L excp (—t) dt, 2.1)

where Re (a)) > 0.
Let v € RT then
F'a+1)=oal (o) (2.2)

and if o € N, then
I'(a)=(a—1)! (2.3)

Result 2 [1, Abramowitz, M. and Stequn, 1.A.,1964, equation 6.2.1]
The beta function, denoted B (a, 3), is defined as

L) T(P)

F'(a+06)’ (24)

1
B(a,B8) = /tal (1—t)" " dt =
0

where Re (a)) > 0 and Re (8) > 0.
Result 3 [1, Abramowitz, M. and Stequn, 1.A.,1964, equation 6.5.2]

The incomplete gamma function, denoted v(«, ), is defined as

T

Y(a, ) = /tal exp(—t)dt, (2.5)

0

© University of Pretoria
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where Re () > 0.
Result 4 [13, Gradshteyn, 1. S. and Ryzhik, 1. M., 2007, equation 8.354.1]

An infinite series approximation for the incomplete gamma function is expressed as
k a+k

v (o, x) = Z% (2.6)

Result 5 [1, Abramowitz, M. and Stequn, 1.A.,1964, equation 4.2.1]

The series expansion for the exponential function is defined as

0 \k
exp (z Z @ (2.7)

k=0
Result 6 [1, Abramowitz, M. and Stequn, I.A.,1964, equation 6.1.22]

The Pochhammer coefficient is defined as
I'(a+k)
['(a) ’

where £ =1,2,..., (o) =1, a # 0, Re(a) > 0, Re(av+j) > 0 and I' (+) is the gamma
function.

(o), =a(a+1)...(a+k—-1)= (2.8)

Result 7 [13, Gradshteyn, 1. S. and Ryzhik, 1. M., 2007, equation 9.14.1]

The hypergeometric series with r upper parameters and s lower parameters is defined for
|z] <1 as

) - )k a*
TFS<o{17"’7a{7‘7/617"' 57 :Z . S)k k" (2.9)
k:O
where (a), is the Pochhammer symbol (2.8).
Result 8 [13, Gradshteyn, I. S. and Ryzhik, I. M., 2007]
The confluent hypergeometric function is defined for |z| < 1 as
= (a), z
VFy (o B 2) = Z(—’f—. (2.10)
k=0 (B), !

Result 9 [13, Gradshteyn, 1. S. and Ryzhik, 1. M., 2007]

© University of Pretoria
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The Gaussian hypergeometric function is defined as

o0 k
o1 (a1, g 85 7) :me_p (2.11)
k=0 (B M
where |z| < 1.
Note that
—a x
2oF1 (a1, 00, B52) = (1 —2) ™ oF) (041,5 —ay, 3 m) . (2.12)

Result 10 [1, Abramowitz, M. and Stegun, 1.A.,196/, equation 9.6.10]

The modified Bessel function of the first kind and order v can be expressed as an infinite
series

0o k
T\ (32?)
I, = Z 4 ) 2.13
(z) Z(2) KT (v+k+1) (2.13)
Result 11 [1, Abramowitz, M. and Stegun, 1.A.,1964, equation 9.6.7]

The modified Bessel function of the first kind and order v can be approximated as

(5)°
S (2.14)

Result 12 [13, Gradshteyn, I. S. and Ryzhik, 1. M., 2007, equation 8.8351.2]

I, (x) ~

The incomplete gamma function can be expressed as follows

(67

1,8 = S en(-8) 1A 151+ a5) (2.15)
where 1F) (+) is defined in (2.10).
Result 13 [19, Miller, K., 1964, equation 2.2.23]
The generalized Neumann addition formula

laZ — bQ| " I,(|aZ — b9|)

Lysi(a|Z]) Loy (0]€Y)

= 2T(0) Yo (-D)H o+ R

k=0

C(cos @) (2.16)

where ¢ is the angle between = and 2 and a and b are real, I, (-) is the Bessel function of
the first kind (2.13) and C}(t) is the Gegenbauer function. The Gegenbauer function is
defined by [13, Gradshteyn, 1. S. and Ryzhik, I. M., 2007, equation 8.930] as follows: The
polynomials C?(t) of degree k are the coefficients of the a* in the power-series expansion
of the function

(1-2ta+a®) " =) Cit)a*

o0

k=0
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Result 14 [19, Miller, K., 196/, equation 2.2.25]

The Gegenbauer’s generalization of the Poisson formula

™

/ exp (wy cos @) C¥(cos ¢) sin® pde

0

2T (v+3)T(3) T (2v+2)
(2v

Iv+n (b) (2.17)

where b is real and I, (-) is the modified Bessel function of the first kind (2.13).
Result 15 [19, Miller, K., 1964, equation 1.5.19]
Evaluation of the expression in terms of generalized spherical co-ordinates results in

27 ou—2 T

2“ 1/d«9H/sm2“ 1=k 6, do,
k=2
o l(ZM 1) g2t
_ R (2.18)
L(3(2p — 1))
Result 16 [1, Abramowitz, M. and Stegun, 1.A.,1964, equation 6.1.1]
The following integral can be evaluated as
r r
/xal exp (—fz) dx = ﬁ(f), (2.19)
0
where Re (a)) > 0 and Re (8) > 0.
Result 17 [13, Gradshteyn, I. S. and Ryzhik, I. M., 2007, equation 3.381.8]
The integral can be evaluated as
[ v (v, fu™) m+ 1
m —px™) dr = = 2.2
[Jame (-gamdo = L, o L, (2:20)

0
where Re (v) > 0, Re () > 0, Re(n) > 0 and u > 0.
Result 18 [13, Gradshteyn, I. S. and Ryzhik, I. M. , 2007, equation 6.455.2]

The following integral can be evaluated as

o0

/x“_l exp (—fzx) v (v, ax)dr =

0

a’T (p+v) «
— T R (Lptroo+ 1l —— ), (221
Um+ﬁwﬂ21( pory a+ﬁ) (221)

where Re (a+ ) >0, Re(5) >0, Re(v+ ) >0 and oF] (+) is defined in (2.11).
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Result 19 [2/, Prudnikov, A.P., Brychkov, Y.A, et. al, 1988, equation 2.15.5.4]

The following integral can be evaluated as

o0

/xal exp (—B2%) I, (vz) dx
0
_ —v—1_wv _ (o) QTJFU Oz-'-U‘ . lZ
= 2 ”)/6 2 F|:’U+1:| 1F1<—2 ,U+1,4B 5 (222)
a,b o
where Re (5) > 0, Re(a+v) >0, |arg(v)] <=, I' [ atb | = % = B(a,b) and
1F7 (+) is defined in (2.10). (Note that T’ { a j_ b } = F{éib))

Result 20 [13, Gradshteyn, I. S. and Ryzhik, 1. M. , 2007, equation 7.621.4]

The following integral can be evaluated as

/935_1 exp (—sz) 1F1 (s Aka)de =T (8) s oFy (o, B3 Aks™!), (2.23)

0

where [s| > |k|, Re (8) > 0 and 1F; (+) is defined in (2.10).
Result 21 [13, Gradshteyn, I. S. and Ryzhik, I. M. , 2007, equation 3.194.2]

The following integral can be evaluated as

0 xa—l u®
/mdl’ = E 2F1 (U, Qf 1+ Q; —6U) s (224)
0

where Re (a)) > 0 and |arg (1 + fu)| < 7.
Result 22 [1, Abramowitz, M. and Stequn,l.A.,1964, equation 29.1.1]

The Laplace transform is defined as

oo

f(s)=L{F(t)} = / exp (—st) F (¢) dt, (2.25)

0

where F'(t) is a real valued function and s a complex random variable. The function F ()
is called the orginial function and f (s) the image function.

Result 23 [1, Abramowitz, M. and Stegun,l.A.,1964, equation 29.3.81]
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Given the image function

the inverse Laplace transform of the original function is

F(t) = (%) = Iy (NE) , (2.26)

where I, (+) is the modified Bessel function of the first kind (2.13).
Result 24 [19, Miller, K., 196/, equation 2.1.1]

Let XeRP follow the multivariate normal distribution with mean parameter u€RP and
covariance matrix >0, then the pdf is given as

1
(27r)% det

1

Fx () = o {—5 (=)' S (o - m} | (2.27)

Result 25 [6, Chu, K, 1973]

If X is an elliptical random variable with parameters y and 0% and pdf f (X), then there
is a scalar function W (¢) defined on 0 < ¢ < oo such that

fx (@) = / W (1) furrom () dt, (2.28)

where fy(,i-102) () is the normal pdf with mean £ and variance ¢t~
Result 26 [6, Chu, K, 1973/

Let XeRP follow the multivariate elliptical distribution with mean parameter p€ RP and
covariance matrix ¥>0. Then for a scalar function W (t) defined on 0 < ¢ < oo it follows
that

T 1 1 T -1 —1
fx (@) = / ; (tlz)%exp{—aos—u) (%) - W O (229)

W)g det

where fy(.+1x) () is the multivariate normal pdf with expected value yu€RP and covari-
ance matrix t~13.

Result 27 [28, Shankar, P.M., 2011, equation 2.83]

A random variable X is said to have a non-central chi-squared distribution with £ degrees
of freedom and non-centrality parameter A, denoted as X ~ x2 (k), if X has pdf

fx(x):%exp{—x;)\}(g)%l¥ (@), x>0, (2.30)
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where k£ > 0 and I, (+) is the modified Bessel function of the first kind (2.13). The expected
value is given by
E(X)=k+ A\ (2.31)

Result 28 /28, Shankar, P.M., 2011, equation 2.72]

A random variable X is said to have the Nakagami-m distribution if X has pdf

2mmg?mt ma?

where m > % with m the Nakagami-parameter and 2 > 0.
Result 29 /28, Shankar, P.M., 2011, equation 2.94]

A random variable X is said to have the Rayleigh distribution if X has pdf

fx (z) = = exp {—x—z} ) (2.33)

where 5 > 0.
Result 30 /28, Shankar, P.M., 2011, equation 4.185]

A random variable X is said to have the Rice distribution if X has pdf

2
fX(x):%exp{_:C—i-d }[0 <d0#), x>0, (2.34)

202
where [ (-) is the modified Bessel function of the first kind and order zero.
Result 31 /6, Chu, K, 1973/

With reference to (2.28): The weight function for the normal distribution is defined as
the dirac delta function,
W(t)=0(t—-1). (2.35)

Result 32 [6, Chu, K, 1973]

With reference to (2.28): The weight function for the t-distribution with v degrees of
freedom is defined oy
) e (-3)

W (t) = - (7 o (2)

Result 33 [2, Arashi, M. and Nadarajah, S., 2016]

(2.36)

Based on the assumption that the weighting function admits the expansion, a weight
approximation function is given as

W (t) = i at®. (2.37)
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Theorem 2.1 [19, Miller, K., 1964] Let X,, be normally distributed with mean vector A,
and positive covariance matriz M,.Then |X,| has a one-dimensional density function. If
M, = oI, where 1y is a positive constant, then r = |X,,| is called the Rayleigh variate.
Then the density function of r = | X,,| is

1
a r\ 2" r24a2 ra
g(r) = o (5> o~ (14 )/zwo]%(n_z) (1/)_0) r>0 (2.38)

where a = |A,| and I, is the modified Bessel function of the first kind and order v.
Proof. The density function of X,, is

Fro(oa) = mexp{—(}%(x ~A) (- 4
_ (27”1%)% exp {_2—;0 XX — XA — AXo + A,{An]}
= o { g P P -2
_ (%;O)% exp{ %%Um +|A\]}exp{—2—wo[ 2XA]}
b

where r = | X,,| and a = |A,|.

Introduce a complete orthonormal set of vectors Efll), E7(Z2), - E,(L"), with E,(LI) in the direc-
tion A,. Then A, is the polar axis. If we make the generalized spherical coordinate change
of variable

Ty =1 Hsingbk oS ¢;, 1<7<n—-2,

n—
Tp1 = T Hsimbk cos b,

T, = T Hsimbk sin 0,
where 0 < ¢, <, 1<k<n-—2 0<0<21 and 0 <r < oo, we obtain

/ fn(X5) r>0 (2.40)
| Xn|=r
as the density function of r. Substituting (2.39) in (2.40) yields

g(r) = m exp {—2—;0 (7% + d?] } / exp {XZ?” } do. (2.41)

| Xn|=r
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The Jacobian of the transformation is

n—2
Jn<T7 (97 (bl? ¢27 ooy ¢n—2) = rrnfl H Sinnflfk: ¢k
k=1

and since A, is the polar axis, X, /A, = |X,||An|cos¢, = racos¢,. Thus, from (2.41),
we may write the integral as an iterated integral:

/ exp { XoAn } do = / exp{im C0S 1 to

Yo Yo
| Xn|=r | Xpl=r
2m ™ ¢ no T
_ ra cos e .
= " 1/d9/exp{ ——Llgin 2¢1d¢1n/8m 1=k g, dy..
0 0 k=179
(2.42)
We recall the identity
I,(z) = 1 <}z>v/7rexp{iz cos &} sin” £d¢ (2.43)
° LT (v+3) \2 / ’ '

for Re(v) > —%, where I, is the modified Bessel function of the first kind and order v.
Using (2.43), the second integral in (2.42) becomes

[ Ln—2)
[0, i) (22) "y (2)

0 ra
0

The product of integrals in (2.42) is as follows, since

[ 5,00, 5 ORI

2 2

where B (u,w) is the Beta function and I'(u) is the Gamma function. Therefore, we
conclude that

n—2 7 an()

1
H!Sln Q. = ( )

Hence, (2.42) reduces to

/ exp {XZZ‘H } do = 7“"_1(27T)F(%)F(%(n ~ 1)) (2_1/;0> 3(n—2)

| X |=r
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271y \ 2"
_ 1/)%( - 0) I o) <;—‘;> (2.44)

Substituting (2.44) in (2.41) we obtain the density function,

IS N (NS U XXn'An}O-
o = <2mpo)%ep{ 20, [T”]} / ep{ o S

n|=T

IS SR GRS S SRR 27”“%)”1 (m)
(270)? exp{ 30, ”]}%( o ) ey,

1
a 7\ 32" 2, 2 ra
R —(r*+a®)/2¢o 1 — ).
Yy <a) ‘ 32 (@%)

N|=

Result 34 Let X,, follow an elliptical distribution with mean vector A, and positive co-
variance matriz M,.Then |X,| has a one-dimensional density function. If M, = yI,
where 1, is a positive constant, then r = |X,| is called the Rayleigh variate. Then using
(2.28) and (2.38) the density function of r = |X,| is

g(r) = W (t) gn(a, t—1up) (T]D)dt, 7 >0

ta (T\Z" 2.2 tra
%74 (t) 1/)—0 (a) ’ € it )/21/)01%(”72) <¢—0> dt, T Z 0 (245)

where a = |A,| and I, is the modified Bessel function of the first kind and order v. (Proof
similar to theorem 2.1).
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Chapter 3

Univariate Models

3.1 Introduction

Yacoub (2007) [35] pointed out that the well-known fading distributions have been derived
assuming a homogenous, diffuse scattering field, that emanated from randomly distributed
point scatters (see Figure 1.1). But this assumption is an approximation and a cluster
based scattering model (see Figure 3.1) may be more relevant. The x — 1 model proposed
by Yacoub (2007) [35] is a general physical fading model where the signal is characterised
in terms of measurable physical parameters as described below in Section 3.2. The pdf
of the power at the receiver and statistical properties of the x — pu model will receive
attention in Sections 3.2 and 3.3. The x — p type model that emanates from the elliptical
assumption will be derived in Section 3.3; followed by section 3.4 where the performance
measures under different members of the elliptical model will be illustrated.

Transmitter Receiver

Figure 3.1: Clusters of multipath scattering [2§]
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3.2 The x — i distribution

3.2.1 Description

Let X; and Y; be mutually independent normal processes with F (X;) = E (Y;) = 0 and
var (X;) = var (Y;) = o®. Then the envelope, R, of the physical model for the k — p
distribution can be written in terms of the in-phase and quadrature components of the

fading signal as

W= R? :Z(Xi+pi)2+2(yi+%)2v (3.1)

i=1 i=1
where p; and ¢; are the mean values of the in-phase and quadrature components of the
multipath waves of cluster ¢ and n is the number of clusters of the multipath. Since
X; ~ N(0,0%) and Y; ~ N (0,0?), we can write (X; +p;) ~ N (p;,0?) and X} =
(£2) ~ N (2,1). Thus (X7)? follows a Xzﬁ (1) with non-centrality parameter g—z

(e
o2

(see (2.30)) and similarly we can express Y;* = (X24) where (Y;*)? follows a X% (1) with

e
2
non-centrality parameter % (see (2.30)).
Let ?jl =0 = (X; )> + (Y*)? then %ZL follows a x3 (2) with non-centrality parameter
2 2 2
N= 4 pita

o2
For R? =" | R?, the power of the fading signal is W = Y | I;, and we are interested
in the pdf of the envelope R and the power W respectively.
The following is a schematic outline of the mathematical algorithm that will be followed
to obtain the necessary distributions.

Power pdf at receiver: W
Equation (3.5)

&=

Power pdf in terms
of kand p

Equation (3.7)

Envelope pdf: R
Equation (3.11)

Normalized power Envelope pdf in terms
pdf of Kk and p

Equation (3.10) Equation (3.12)

]

Normalized envelope

Equation (3.15)

Figure 3.2
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3.2.2 Derivation

Since the distribution of (%) is a x2, (2) distribution with non-centrality parameter %,

2

by using (2.30) the pdf of W; is then expressed as

i ) = g e (-0 ) 1 (7)), (32

20 202 o

where [ (-) is the modified Bessel function of the first kind and order zero (2.13).
Remark 3.1 Note that equation (3.2) is the pdf of the Rice distribution (see (2.34))

By using (2.13) to express the Bessel function in (3.2) as an infinite series we obtain the
pdf as

1 4)\ < (d?w)k
f (w) = 55 exp <_M)ZM‘4"7

2 202 ) £ KIT (k +1)
(&)
1 P\ = \w7) w
= 3%t p(‘z 2)2 e (-553) (33)
k=0

The Laplace transform (2.25) of (3.3) is given by

f(s) = Li{fw (w)} = 7 fw, (w) exp (—sw) dw
_ f;p (-
- (VST [l

=0

PR (d_)’“
; pr
2022) g : w” exp (—%) exp (—sw) dw

p (k!)2 20

Using (2.19), we obtain that

and from (2.3), follows that

© Universidy} of Pretoria



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(e

3. UNIVARIATE MODELS
3.2. The k — p distribution

1 d? } > d2* k!
§) = ——Sexpy —
) = 50 p{ 2 o O (e

o k
1 d? Z 1 d?
g —_— X _—— —_— _—
202 (525 + 5) P 202 k! \ 40* (5% + )
1 21 &2 g
(14 202%s) P {_202 } z_; k! (202 - 4a4$> '
Using the series expansion formula (2.7), we have that

(14 202%s) P\ 7252 ) P\ 252 1 4045

1 : d;
(14 202%s) P (_202 N 202 4+ 404s>

1 sd?
= —————exXp{—————— .
(14 202s) P (14 202s)

Since the W;, i = 1,2, ...,n are independent random variables it follows that the Laplace
transformation, L { fyr (w)}, of fy (w) is found to be

L{fw (@)} = T]L{w 0}

n

S | (RN o sdp
B L1 (1+20%s) P (14 202s)

1 _ sd?
(14 202)" { Z (14 202s }

i } , (3.4)

1
- P T 20%)

(14 202s)

where d*> = > d?. Hence, using (2.26) the pdf of the power is obtained from equation

(3.4) as 1
Jw (w) = L (%)HT exp {—M} I <da—2ﬂ) , w >0, (3.5)

202 202
where I, (-) is the modified Bessel function of the first kind and order v (2.13). Since %

follows a de_g (n) distribution with non-centrality parameter g—z, the expected value of W

is given bya(2.31) as
E (W) = 2no? + d*. (3.6)
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Remark 3.2 Let U = ¥ then W = 0*U and $¥ = 0. The pdf of U is given by

i =n
o =g (55 () s <d7ﬁ>-

This is the pdf of Xd2 (2n) with non-centrality pammeter . Then the E(U) = 2n + g—z
thus, E (W) = 2no? + d?.

Re-parameterization of the pdf of the power (3.5) in terms of x and p. Let u = n and
2
define k = ﬁ, then \/% = /ku, and the pdf of the power becomes

fur () 1 w 7 (w + 202k ) / 202K/ w
w) = —s exp —————> o [, | V—77—
W 202 \ 202K P 202 pt o?
1 = 207
2
- (Y exp {22 — ) I V2RO .
202 \ 202k 202 o?

(3.7)
From (3.7) the k—p pdf of the power can be written as, with w given by (see equation (3.6))

w=E(W)=20u(1+k), (3.8)

gile

202 o

@i 0) = o (gme) exp{_w_%_ﬁu}[ul<@¢zu—>

20% (1+ k) ((20%0(1+£)) 2\ T (20%u (1 + k)%
= ex — — K
202 202Kk P 202 a
202K 202 (1+ k)
. (\/ M\/ )

= -
K 2

- (QM [k (1 + k) %) . (3.9)

For the normalized power 0 = £ (see Simon and Alouini, 2005 [29]), the pdf of © can be
obtained from (3.9) as

_ p+nT (w)%_leXp{—W _"W}

falw) = M 0 e cu (140w -

xL (2u/R(T+ R)w). (3.10)
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The pdf of the envelope can be obtained from (3.5). Since W = R? we can express the
pdf of the envelope as

o (r2\'T (r? + d?) dr
fr(r) = 202 <$> exp{—T‘Q}In—l <§)
" (r? + d?) d
= WGXP{—T}In_l (;T) . (311)

Using (3.7), the pdf of the envelope can be expressed in terms of x and p as

frlr) = ﬁ(r—z)}%exp{—r—z—w}fw (—@f>

202 \ 202k 202
Ll
1 1 2 r? /202K
= ?<2a2fw> T“e}‘p{‘zﬁ‘“"}f“—l ( o ) (3:12)
Let
F=+/E(R?) =+\E(W)=+202u(1+ k), (3.13)

then from (3.12) it follows that

p=l 2
A Pl NT e e (57) (7) v/20%ru
el = o (202KM> (;T> o {_ 202 KM} e ( o2

( 202,U(1+/i))#+1< 1 )’B—1<T)#6Xp _( 202;;(1—1-%;))2(%)2

202k 7

) (PR Vo

XIM—l o2
utl
— 2M(1E i 7 p{ 1—!—/{ 7)2—/-6,“}
K 2
S (2u~/ 1+ r) )) (3.14)

_R

For the normalized envelope P = % the pdf can be obtained from (3.14) and is given as

fr(p) = %%)2'0 exp{—pr —p(1+r)p*} Iy (2,u k(1+ /ﬁ)p) . (3.15)

where p > 0.

Remark 3.3 k = % 1s defined as the ratio between the total power of the dominant

components and the total power of the scattered waves (see Yacoub (2007) [35]).
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Remark 3.4 Let = #(p??) (iii’)z with p being the real extension of n. Thus, p can take

on non-integer values which may account for (a) non-zero correlation among the clusters
of multipath components, (b) non-zero correlation between in-phase and quadrature com-
ponents within each cluster, (c) the non-normal nature of the in-phase and quadrature
components of each cluster of the fading signal. (See Yacoub (2007) [35]).

Remark 3.5 Equations (3.7), (3.9), (3.10), (3.14) and (3.15) correspond to equations
(7), (10), (2), (11) and (1) of Yacoub (2007) [35].

Remark 3.6 Note that equation (3.10) can be approximated using the mizture gamma
model which facilitates complicated or intractable performance analysis functions (see At-

apattu (2011) [4]).

3.2.3 Characteristics

Statistical characteristics for the x — p fading model is now discussed in this Section.

3.2.3.1 Cumulative distribution function

Consider the £ — p pdf for the normalized power (3.10), Q. Using (2.13), the pdf can be
written as

folw) = MLERT (s <1+m>w—w}§(2ﬂ R(zlm)w)

p—1
= ——=— (W) * exp{—p
K 2

N
(i (2;14//6 (1+ k) w) )
IT (1 + 1) ‘
The cdf of 2 with Zr the specified threshold (see (1.2)), is

X

F(Zr) = 7f9(w)dw

@) exp {1
K 2

:/Mlmﬁ 1 )W_KM@(wW)“*
( (rvrams)’)
dw

8 IT (1 + 1)
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ptl -1

© u(l4+rk)>2 (u /{(1+/-€)>M

= KT exp (uk) UT (1 + 1)
Z

X /w“l exp{—p(1+r)w} (s (1+ k) w)l dw

p(l+ /<¢)H§_1 ( k(1+ /-@))M_l/ﬂ/d (1+ )

=0 KT exp (k) T (1 + 1)
Z
X /w"+l_1 exp{—p(1+r)w}dw. (3.16)

0

Using (2.20), the cdf can be written as

= (14 1) T m(1+n>)ﬂlﬂ2%l (1+r)
F(Zr) = ; R%exp(w’v)l!r(ﬂjq)
[ (L4 1)) Ty (L= 1+ 1, (1 + k) Zr)
o pu(1+K)F (N /{(1+/€))#1N2l’4 (1+)
KT exp (k) T (. + 1)
p(L+ Ry (L (14 5) Zr)

() v (L (1 + ) Zr)
IT (u+1)exp (uk) (3.17)

(]

~
[e=]

X

[M]8

=

[en]

for p > 0, index [ where 7 (-) is the incomplete gamma function (2.5) .

Remark 3.7 The outage probability can be calculated from (3.17) for a specificied thresh-
old Zr.

3.2.3.2 Moments
From (3.15) the j'* moment of the normalized envelope, P, is

[e.o]

B(P) = [seedp

2u(l1+ k) 2 ;
— /’U(Tp“ﬂexp{—;m—u(lem)pQ} I, (2/~L 5(1"‘“)/)) dp.
K2
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Using (2.22), the j* moment is

(ptjt+14p—1) |: +‘+;+ = :|
2

E(P) = 2&”’{) )2 p= 1(2m/ 1+/@) p(l+rk))"

Kz exp (uk p—1+1
2
p+ji+l4+p—1 (QN\/"@(lﬂL/’f))
X1F1 y M 1_'_17
2 4p (14 k)
20(1+R)F 1 . UES)
= — 27 @2u)" k(14 k) T (w1 +r) "2 :
Kz exp (uk) ' (1)
J o Ak (1+ k)
F <. .
X1 1(M+ 27,“7 411/(1+H)
U'(p+1 '
= (l ) B (;H %;N; W) , (3.18)
[ (1 + K)]2 T () exp (pr)

where T' () is the gamma function (see (2.1)) and | F} (-) is the confluent hypergeometric
series (see (2.10)).

From (3.10) the j'* moment of the normalized power, 2, is

E(Y) = /wjfg(w)dw

o0

1 2 _ .
N /N A T () exp {1+ ) w — )

X1, 1 (2,u\/m) dw

[e=]

Let a = y/w, then

[ou(l+r)T

i l’l’ K 2 .

E() = /HT(Q)“HHJ Yexp {—p (1 + k) a? — K}
0

X1, (2,u\/WOz) do

Using (2.22), we obtain the j* moment as

- 2 (1+ )T Gttiapipey [ EELE2ie
B(Q) = ’i*“) 27 (2 1+/@) p(l4r) 1r{ 2 }
K7 exp (k) poltl
2
pA14+2j+p—1 (2Nvff(1+f€))

X 1 F

5 s
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i 2#(1“"‘?)”2i1 —p nel( T K _“_j—F(Mij)
E (9Y) —K%exp(wf Cw)" (k1 + k)7 (n(1+k)) )
pA1+2j+p—1 Ak (14 k)
X1F1< 9 L (1+H))
- L)) P (g k). (3.19)

T () exp (ur) [ (1 + &)Y

3.2.3.3 Amount of fading

The amount of fading for the x — p model is given as (see (1.1))

AF = E(QQ)—l
E()

[\

I'(p+2) ) )
| T(1) exp{pr}u(1+5)] 1Fi(p+25 p ,u%)}

_wexpéﬁiff a1t 1 ;““)]
L (p+2) Q2 (wexp fur} [p(L+R)])° 1 F(u+2; pipm) ) .
T () exp{ur} w1+ 1) (C(u+1))° (1F (p+ 15 p; k)
_ <F(u+2) (p)exp{ur} 1F(n+2; p;ps) )_1
(T (u+1))° (1A (+15 s pk)
((MH)eXp{W} VB (25 s ) ) L (3.20)
H (1Fy(u+ 15 )

3.2.4 Special cases
3.2.4.1 The k — p distribution for x — 0 (Nakagami - m)
From (3.15) and (2.14) it follows

_ wen)T exp { — o) 2 (“ “(1+%)p>u_1
T L L A
- P2&l;il><;{f2&}p2“_lexp{—ﬂ<l+ff>p2}- (3.21)

As k — 0, the pdf (3.21) tends to

fr(p) = 2HT ot e {—wp’}, p>0,
I' ()

which has the form of a Nakagami-m distribution (see (2.32) with g =m and Q = 1).
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Table 1 gives other special cases of the xk — 1 model

Distribution Parameters
Rice u=1
Rayleigh p=1 k=0
One-sided Gaussian | p = 0.5, Kk — 0

Table 1: Special cases

3.3 The k — i type distribution

3.3.1 Description

Let X; and Y; be mutually independent elliptical distributed with F (X;) = E(Y;) =0
and var (X;) = var (Y;) = —20?¥ (0). Then the envelope, R, of the physical model for
the k — p distribution can be written in terms of the in-phase and quadrature components
of the fading signal as

n n

W=R?= Z (X, +pi)* + Z Y +a)°, (3.22)

1=1 i=1

where p; and ¢; are the mean values of the in-phase and quadrature components of the
multipath waves of cluster ¢ and n is the number of clusters of multipath.

Since X; ~ E(0,0%) and Y; ~ E(0,0?), therefore from (2.28), X;|t ~ N (0,a;)
and Y;|t ~ N (0,a;) where a; = t~'o? Hence, (X;+p;)|[t ~ N (pi,a;) and X} |t =

(X% t) ~ N ( b, 1). Thus (X*)*|t follows a X2£2L (1) with non-centrality parameter

at
Z—i and similarly we can express Y;*|t = (%ﬁ) ~ N ( e 1) and (Y;")” |t follows a

at’

X222L (1) with non-centrality parameter <.

at

Let Dl — Wilt _ (X5)? |t + (Y7)? |t then Et follows a X2 (2) with non-centrality para-

at at at

meter Z—z = %ﬁqg. t
For R?|t = Y " | R?|t, the power of the fading signal is Wt = >, W;|t, and we are
interested in the pdf of the envelope R and the power W respectively.

The following is a schematic outline of the mathematical algorithm that will be fol-

lowed to obtain the necessary distributions.
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Conditional power pdf at receiver: Wit
Equation (3.23)

Conditional Power pdfin * Conditional envelope pdf. Rit
terms of k and p Equation (3.30)
Equation (3.25)
p
Conditional normalized Conditional envelope pdf in
power pdf terms of k and p
Equation (3.28) Equation (3 31)
) " Conditional normalized
Unconditional
nomalized power pdf euwelopepdf :
Equation (3.29) [Equation (3.34)
" Unconditional
normalized envelope pdf
Figure 3.3

3.3.2 Derivation
The pdf of (WTF> is a x2%, (2) distribution with non-centrality parameter %j’&. (Note for

the elliptical case for simptlicity, Jwije (wilt) = f (ws]t)). The conditional pdf of W; is then

= o 581} (445)

Q¢ Zat Q¢

Using the Laplace transform method as in Section 3.2, the conditional pdf of the power,

W, is
1 fw\*5 (w+ d?) dy/w
t) = — (—) ——— 1, , 0. 3.23
Pl = 5 () T oo {-SE L (B wso. e
Since I/Z—y follows a de_;) (n) distribution with non-centrality parameter Z_j’ the expected

value of Wt is given bty (2.31) as

E(W|t) = 2na, + d*. (3.24)
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Re-parameterization of the conditional pdf of the power in terms of x and p and let

i =mn with Kk = #2102, then \/ﬁ = /ku. The conditional pdf of the power becomes

p—1
flwlt) = L ad 2 exp (w2 oty I V2 g0
2t=1o2 \ 2t~ 10?2k p 2t—102 a t—1o?
B 1 w = w V2t o kpn/w
2t o2 \ 2t to2kp P {_2#102 B K/L} Tt t=lo2 (3.25)

From (3.24) and (3.25) the conditional pdf of the power can be written as follows, with
(see equation (3.24))

w,=E (W) =2a,u(1+ k) =2t 0 u(1+ k) =t 'w, (3.26)

) = -
@ f (wlt) 2t~ 102 \ 2t~ 102k 2t~ 102 t—to?

Ll
I Wy 2 Wy = 2t 102k 0=
() o (L

—1

21021 (1 + k) ((2t102,u (1+k)) wﬂ) kS { (2t o2 (14 k) 2 }
exp{ — — Kl

2t~ 1o 2t~ Y02k 2t~1o2

V2t 0%k \/2t Lo (1+ k) &

t—102

XI!L,I

| e

p—1
p=1

0% () [ elrs )

w1, 1 <2m [k (1+ k) %) . (3.27)

For the pdf of the normalized power €, = Q[t = %t = 2t, the pdf can be obtained from
(3.27) as

_ u(lm)‘%l(

pt+1

1+k) 2
for ) = 2O ) e {14 )= )
K
X1, (2,u\//<a (14 k) wt) . (3.28)
Hence the unconditional pdf of the normalized power, Q = = = tw (see (3.26)), is given

S

by

/W th wt dt
0
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falw) = [wo % (1) exp {—pu (1 + K)o — g}

S (2u~/% 1+ k) tw) dt. (3.29)

The conditional pdf of the envelope can be obtained from (3.23). Since W = R?, we can
express the conditional pdf of the envelope as

Pt = o () 7 e { LY () (3.0

Using (3.25), the conditional pdf of the envelope can be expressed in terms of x and u, as
follows

rel) = o (e )%exp{— - _#}[<¢mf>

2t 102 \ 2t~ 102k p 2t~ 102 t~1o2
1 1\T 2
= rfexpq ————— — K
t=to? \ 2t~ 1o%kp P\ 72102 a
V2t
I, 1 <T ““) . (3.31)
o

The conditional k—p pdf of the envelope is then obtained from (3.31), with (see (3.13) and (3.26))

i, = \/E (R2|t) = VE (W) = (\/2#102”(1 + m)) , (3.32)

from equation (3.26), as follows

2
R Tt 1 = r O\ (%ft)
nfrlt) = t=lo2 \ 2t 102k p TTtTt HPY Ty T

(%ﬂ) NI

g
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(A" o ey

t=to? 2t~ 102k

- (\/2t_102u (1+ /{))2 (7:)2

2t~ 102

(2) (VarTou T+ ) V2rs

o

- B () e () o]
- (MW (%)) . (3.33)

From (3.33) the pdf for the normalized envelope P, = P|t = ==, is

(

X exp — Rl

\

XI!L,I

fr (p) = Mpt exp { pk — p(1+ k) pf} Ty <2N k(14 “)Pt) . (3.34)

K 2

As before the unconditional pdf of the normalized envelope is given by

S ALCE ”T) = (1) exp {—un — p (14 8) (1))
I,y (2,,“/& 1+r tp) dt, (3.35)

where p > 0.

Remark 3.8 For the normal distribution the weight function is (2.35). The unconditional
pdf of the normalized envelope follows from (3.35) as

pt1

/5t—1 12) — (tp)" exp { i — (1 + ) (tp)°}

2

0
xI,1 (2/“/ (1+k tp)

+
2p(1+ k) 2
= —— " exp{—pr — n(1+ ) p°}
K 2

I,y (Q,u R(L+ K)p) . (3.36)
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The unconditional pdf of the normalized power follows from (3.29)

folw) — /6@—1)%@@2 exp {—p(1+ ) tw — wp}

K 2

0

X1 (2;@\/% (14 k) tw) dt.
utl

p(l+k)=

v 5 exp{ p(l+Kr)w—kp}
K

X1, <2u\//{ (1+ k) w) (3.37)

= (3.10)

Remark 3.9 For the t-distribution the weight function is (2.36). The unconditional pdf
of the normalized envelope follows from (3.35) as

() e () maanT
oo = [ SR (1)

0

xexp{—;m—,u(l—ir/ﬁ) (tp)*} I (2u\/m(1+m)tp) dt
1 00

B 2”(14‘/’6) 2 / pti—1
T eoen” 3 T

l\)ld

><exp{—,u(1+1@t22 %} 2m/ 1+/-€tp)
%

ptl I 00
— N(1+“)2 P“Z 1> /tu+ SR
0

K 21F(2 ) exp (uk) =5

xexp{—pu(1+ k) t*p*} 1,1 (Q,u\//-@(l + k) tp> dt

Using (2.22), we get

d w (1 B (2)EE -1
Z )7 (3)7 e g HHl-l [2,u k(1+ /ﬁ)p} g
po z'/{ z F( ) exp (pr)

1
27— 3 (nt%+z+u—1) 5 (M+ —l—z—i—u—l
X [p(1+ k) p?] F[ ot

1 41k (1 +
XlFl(g(M—l—g—i-Z—i-u—l);ﬂ—l—l—l;'UKJ( ) )

Ap (1 + k) p?
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1

© (—1)7 kB (14 )2 iy
frlp) = Z Trat | (2
252D (%) exp (1K)

2
ptiti—s vz 1
xT’ I 1F1 pt T mes ),

(3.38)

where p > 0.
The unconditional pdf of the normalized power follows from (3.29) as
00 g1 v ptl
v(3) e (cF)plin) ¥ e

falw) = / 21“(%) =S

0
xexp{—p(l+r)tw—ru}tl, 1 (Q,u k(1+ k) tw) dt

0 p=1
2

Nl=

w(l+ /<L)H2il V2w

B 0/ 22T (%) K T exp (ur)

X exp {—u(l + K) tw — %t} I, <2u\/m> dt.

Let ¢ = \/t then dt = 2qdq. The pdf can be written as

2

F ; 1;
i 2 4pl+r)w—4
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_ (14 k) vzwrt [u(1+/ﬁ)w—2]_<g+u_l)r { st+p—1 }

22T (3) exp (ur) 2 p
2
v wr(1+rK)w
xi By [ =+ p—1; - , w>0. (3.39)
(2 [,u(1+/-c)w—§}>

In Table 2 below, particular cases of the pdf’s are focused on, since they form part of
the investigation in section 3.4.

Weight function W (t) normalized pdf
: Envelope equation (3.36)
normal weight (2.3) Power equation (3.37)
s : Envelope equation (3.38)
t-distribution weight (2.36) Power equation (3.39)
Table 2: Particular cases of (3.29) and (3.35)

3.3.3 Characteristics

Subsequently the statistical characteristics for the k — u type fading model is derived.

3.3.3.1 Cumulative distribution function

Consider the k — p type pdf for normalized power, 2 (3.29), and using (2.13) it follows
that

/W 1+KJ) i (tw) T exp{ u(1+/€)tw—m¢}z<2'u” /{(;—I—/{)tw>
0 1=0

N
(i (2;“/%; (1+ k) tw) >
T (p+1)
The cdf of €, is given by

X dt.

F(Zr) = 7fQ(W)dW

Zr oo

= //W 1+R) : (tw)%_lexp{—u(l—l—ff)tw—liu}z(2/&”R%jLH)tw)

( (ovriTam)’)
X NEY) dt dw
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Zr o0 ptl pl

// p(1+r) )7 (u m(1+m))

K“T exp (ur) T (p+1)

xwh exp{—u (14 k) tw} (pPk (1 + k) tw)l dt dw

% 1 + /<L) ;r (,U/ K (1 + /Q)) M2l/il (1 + /i)l (t)u—‘rl—l
- // KT exp (pr) T (p + 1)
Xw#H Yexp {—p (1 + k) tw} dt dw, (3.40)

where Zr is the specified threshold (see 1.2).
Subsequently special cases (normal distribution and t-distribution) for the outage prob-
ability will be derived.

Remark 3.10 For the normal distribution the weight function is (2.35). The outage
probability follows from (3.40) as

/75035 G-Dud+n™ <“ K(1+'<)) (1 4 R) (1)

K*T exp (k) UT (1 + 1)
Texp{—p(l+ k) tw}dt dw.

Consider the result,

F(Zr,t) = 6(t)F (Zp,t+1)dt

= F(Zr,1).
Let q=1—1 thent =q+ 1, the outage probability is
F(Zp,t) = F(ZT,q—i- 1)
7T p R F (/) et (4 ) (g 1)
// K*T exp (ur) T (1 + 1)

xw“*l Vexp {—p (14 k) tw} dt dw
— P (Zp1).

thus,

o ,u(le,‘f)H;_1 (u /<a(1+/i))u 125 (1 + )
F(Zr) = / Ty

) 120 k2 exp (uk) 1T (1 +1)

xwh ™ exp {—p (1 + k) tw} dw.
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Using (2.20) the outage is

o (14 r) T (u T R)" e (1)
F(Zr) = =
) Z k7 exp () UT (1 + 1)
<L+ /)] Ty (= 1+ 1,0 (1+ K) Zr)
(1+r)% (u %(HK))W P! (1 k)

=0 KT exp (k) T (1 + 1)
X U+ m)] "y (1 p (1+ K) Zr)
_ i(uﬂ)l’v(uﬂ,u(Hﬁ)ZT) (3.41)

UL (1 + 1) exp (puk)

Remark 3.11 For the t-distribution the weight function is (2.36). The outage probability
follows from (3.40) as

P = |

]oi w1+ ,L;)#zi (M k(1 + H)) - W2k (1 + R)l (t)“H_l
) KT exp () T (1 + 1)

exp {_7}wu+l Yexp {—pu (14 k) tw} dt dw

]Eu(lm‘% (/wTr ) st (14 ) o (5)
) =0 2F(§)mli§_lexp(u/<a)l!1“(,u+l)

. t
x (£ exp {—%} W exp {—p (1 4 k) tw} dt dw

v_q Zr

B lz_; 2T (%) exp (k) IT (1 + 1) O/M+ R

X 7(1&)‘””%2 exp {—t [u (14+kK)w+ %] } dt dw.
0

Using (2.19),
20 2l (14 H)M+ZU (%)%
~ 2T () exp (uk) UL (u+1) J

D(p+l4+2-1)
[,U (1 —l—/{) + }/H—H———l

F(Zr) =
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B i P2 (14 /)3T (18— 1)
B 2207 (4 1) T (%) exp (k)

2

Z
/‘ W;H—l—l J
X w
pHHAZ—1
/ (1 +k)w+ 2]
i pht2l gl (1+ H)er v3

— 22]1B (L, p4+10) (p+1+%—1)exp (pr)

Z

w/ﬁ-l 1
/ v 2 ,u+l+§fldw
[2{14+ 241+ k)w}]
Mgl (1+ H)“H v3

B 1225 IB(Z,n+1)(p+1+2—1)exp(ux)
Zr

v u+z+L1 / k=1 P
()" e
2 (1420 (14 r)w]" T2

X

Using (2.24) and (2.12), follows that

(1 + k)P S (%)*(#+l+;fl)
G (5 e ()

0
( A+l

T U 2
F ——1 : [+1;:— -1 (1 7
(u+l) 5 1(u+l+2 NTE T u(v>( + k) T)

00 ,uu+2l l (1 + /{)u-l—l PRl (ZT)M-H
B 22 WH=DUNB (%, p4+1) (n+ 1+ % —1) (n+ 1) exp (ur)

2u (1 + k) ZT)

F(Zr) =
1=

X o} <u+l+§—1,,u+l;,u+l+1;—

> p2ll (1 4 )y —n—l41 I pt
jz

B 22 WH=DUNB (%, p4+1) (n+ 1+ % = 1) (n+ 1) exp (ur)
X (1 2p(1+K) ZT>(#+H§1)

v

2u(l+ k) Zp ) (3.42)

v
X oFy (p414+=—1Lu+1+1;—
2 1<M a 2u(l4+kK) Zr+v

2

where (u+1) > 0 and oF) (+) is the Gaussian hypergeometric function (2.11).
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3.3.3.2 Moments

From (3.35) the j* moment of the normalized envelope, P, is

B(P) - / o fr (p) dp

1+/~€ 2
- //pJW ) (tp)" exp {—pr — (14 ) (tp)*}
g <2u\//£ (1+ k) tp) dt dp
utl
2 M .
_ //W 2,u 1+/<L) L p“+]exp{—u/£—u(1+/€)t2p2}

I, <2umtp) dt dp.

Using (2.22) the j** moment is

00 pt1
. 21 (1 2 {H -1 _lpbitlbps)
E(PY) = /W(t) ’”‘Lf £) 2 i (275#\//{(1%—/{))# (p(1+m) )
) Kz exp ()
2
X {u—lJrl} 1 2 L AV S v !
= /W (t) (,u ) 1F1 (u—i—l;u;um) dt. (3.43)
" 4 [ (1 + #)]2 T (1) exp (k) 2

From (3.29) the j'* moment of the normalized power, (2, is

[e.o]

E() = /wjfg(w)dw

= //WJW 1+KJ) i (tu))yg_1 exp{—pu(l+ k) tw — ku}
(mW) dt dw
N //W 1+E)#2i(t)#2;1 (@) T exp {—p (1 + k) tw — rp}

X1 | 2pv/ K (1 + K) tw) dt dw.
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Let o = y/w, then

ptl p—1
2

//W(t) 2,“/ (1 + /‘iz;l (t)T (a)#+1+2j71 exp{—u (1 + /{) tOZ2 . "{ﬂ’}

X1, (2u\//£ (1+ k) ta) da dt.

Using (2.22), we obtain the j* moment as

il
K) 2

T 2 (1+ t T -1 (et 142j+p—1)
/W A = (t= PR (2,u\/t/<;(1+/£))u (n(1+r)t)" T
) T exp (k)

1t (2,u\/t/<:(1+/-z))2

2 dp(l+ k)t

dt

T bl p+1+2j+p—1
p—1+1 | M1

i I (1 +j) ,
W ( - 1 F D k) dt. 44
0/ T () exp (ues) [ (1+ )] T g i (344

Remark 3.12 Substituting the weight functions (2.35) and (2.36) into (3.43) and (3.44)
respectively. The following expressions are derived:

(i) For the normal distribution, the j*™" moment of the normalized envelope, P, is

/6t—1 (u+2) 1F1<u+l;,u;,u/~i)dt.
/ 4 [ (14 1)) T (1) exp (k) 2

Consider the result,

o0

F(Zr,t) = /5(t)F(ZT,t—|— 1)dt
= ;(ZT, 1). (3.45)

Let g=t—1 thent = q+ 1, the j" moment is

E(PY = [ , 1 Z; sk )| d
) / U@t ) (0 T () exp () (s g
o (1+ T () exp (o) (14 0]

(3.18)
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3.3. The k — p type distribution

Using (3.44) , the j™ moment of the normalized power, 2, is

o0

4 U (u+J) :
E (Y = ) -1 - 1F1 ) y UK d
) / Y T (e () [a @ sy BT )

—~ L (p+) _—
T () exp (uk) [n(1+ K U (p g5 pps).

(3.19)

(ii) For the t-distribution, the j*" moment of the normalized envelope, P, is

L T e () L(nt3)
E(P) = »
(F) 0/ 2T (%) t+1 (10 (1 + k)] T (1) exp (k)

x 1F (u+%;u;w€> dt
0 (9T (u+d) B (et g pn)

20 (£) [ (1 + &)]2 T () exp (ur)

Using (2.19), the j" moment simplifies to

v (g)%*lp (M+ %) 1F1 (u-i— ‘%;Mélm) r (% _j'_ 1)
20 (3) n(L+ w20 (wexp (ue)  (3)* 7
) 2791 T (4 4) T (4 —lj — 1) 1 Fy (p+ 45 5 k) , (3.46)
T (%) (1 + k)2 T (1) exp (ur)

The " moment of the normalized power, Q, is

E(P)

Ve e () NUES)
E(Q) = ‘
() / 2 (5) T () exp () [u (1 + WP

X 1F1v(u+j ;o k) dt
0(8)* T (utd) Fi(utispsps)
20 (5) T () exp {pusst [t (1 + )}’

v t
X /t5]2 exp (—%) dt.

0
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3.4. Performance measures

Using (2.19) , the j™ moment simplifies to

v T () Fi(ptg; pps)T (35— 1)

2r (%) [ (p)exp {ur}[p(l+ /g)]j (%)5—1—1
P (4 DT (5 =5 = 1) 1 Fi(ptj s pipm)
T (%) T (1) exp (ps) [ (1+ 5)) ‘

E ()

3.3.3.3 Amount of fading

The amount of fading for the x — p type model for the weight function (2.36) is given as
(see (1.1))
E (Q?
ap = 28
E(Q)
2337 ( ,u+2)1"(%73) 1F1(p+2 5 posuk)
T(%)T () exp(us) [u(1+x))?
22027 ( )F(%f2) 1P (p+1 5 posuk)
()T () exp(ps)[u(1++)]

-1

2

(2 -2 Flu+2; p;
_ )G =2 exp(pn) 1Fa(nt ’”‘“E)—L (3.47)

vp (3 —1) (3 1Fy (p B pk
20 (4 (3) [ 1A (p+1; )|

3.4 Performance measures

In this chapter the x —  model is revisited and the k — p type model is derived. This
section has graphical displays of the x — p type model and corresponding performance
metrics. The plots of the x — p type model for the envelope (3.35) and power (3.29) will
be illustrated for the weight functions (2.35) and (2.36) respectively. Similarly the outage
probability as well as the amount of fading are plotted.

— p=05 - — p=05
— y=2 F — py=2
=4 gl p=4

Figure 3.4.1 shows the pdf of the envelope if x = 5 for the normal case (left) and
t-distribution, where v = 3 degrees of freedom was considered, (right).

© Universify of Pretoria
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— k=05
—_ k=1

k=3

— k=05
—_ k=1

k=3

Figure 3.4.2 shows the pdf of the envelope if y = 2 for the normal case (left) and
t-distribution, where v = 3 degrees of freedom was considered, (right) .

—_ =1 —_ p=1

— p=2 — p=2

p=4 p=4

b

Figure 3.4.3 shows the pdf of the power if x = 3 for the normal case (left) and
t-distribution, where v = 3 degrees of freedom was considered, (right) .

— k=05
— k=1

k=3

— k=05
— k=1

K=3

Figure 3.4.4 shows the pdf of the power if ;1 = 2 for the normal case (left) and
t-distribution, where v = 3 degrees of freedom was considered, (right) .

The outage probability (3.40) is plotted for the weight function (2.35) and (2.36) in

© Universif§t of Pretoria

Figure 3.4.5 for k = 5 and in Figure 3.4.6 for © = 2. (Note that for the t-distribution,
v = 3 degrees of freedom was considered.). The assumption of the t-distribution as the
underlying model is more appropriate for larger specified threshold values since the t-
distribution outperrforms the normal distribution only after a certain threshold.
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normal distribution

t distribution

Figure 3.4.5

= normal distribution

|
®x x X

n
- W -

= tdistribution

I
x X X
n
~N W =

—

Figure 3.4.6

The amount of fading in the x — p channel is shown in Figure 3.4.7 for the normal
((3.20), on left) and t-distribution, where v = 3 degrees of freedom was considered, ((3.47),
on right) cases respectively. The amount of fading for the t-distribution is lower than the
normal distribution which indicates that t-distribution more suitable.

~— 0.025

Shms—— 050 0 — p=05

—_ =2 —_—py=2

025}
¥ -
K
r 2 3 4 5 6

Figure 3.4.7
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Chapter 4

Bivariate Models

4.1 Introduction

Villavicencio, et al.,(2016) [33] presented the bivariate x — p fading model used to assess
the performance of a dual-branch selection combining (SC) scheme by using the framework
developed by [19] for a general multidimensional normal distribution. According to Miller
(1964) [19] each random process is considered to be normally distributed in n = u (integer)
dimensions. The approach of Miller (1964) [19] is followed by Villavicencio, et al.,(2016)
[33] and generalized to accommodate a real extension of p and outline in Section 4.2.
In Section 4.2 the statistical properties of the bivariate x — p model will be given. The
bivariate Kk — p type model that emanates from the elliptical assumption will then be
derived in Section 4.3; followed by Section 4.5 where the performance measures under the
different members of the elliptical model will be illustrated.

4.2 The bivariate v — y distribution
The aim of this section is to study a bivariate x — p distribution with as the underlying
model, the normal distribution. Exact formulae for the jpdf, jedf and joint arbitrary

moments will be given. The outage probability is the primary metric for the analysis of
diversity schemes in wireless communications systems and will also receive attention.

4.2.1 Description

Let Ry and Ry be two k — p envelopes then,
2p
R} =Y X7
i=1

2p
2 2
R2_ E ,Y;v
=1

where X; and Y; are mutually independent normal processes with mean equal to a and
variances o7 and o2 respectively. [Note: 2/ = number of clusters of multipath].

© Universi# of Pretoria
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4.2. The bivariate x — p distribution

If {X,Y,A} be 2u- dimensional vectors where X = [X; Xp .. Xy )0, YV =
Vi Yo . Yy, [Tand A=1a a ... a |'. Let V; = [X; Y] where X; and Y;
are correlated if and only if i = j, i = 1,2, ..., 2u. Note that A is the vector of the domi-
nant component of the cluster. The interest is the jpdf of the envelope R; and Ry, as well
as, the normalized envelopes, P; and P, with P, = f/%;— and 7; as defined in (3.13).

4.2.2 Derivation

The covariance matrix, > > 0, is then

E:[EH 212}:[ U% 50102}’

2
221 222 (50'10'2 0'2

where 0 is the correlation coefficient of the normal component,

Y12 _ Y12
V211229 \/Jfag

212:5 0'%0'3250'10'2.

5 —

The inverse of the covariance matrix is:

9 -1
o1 o 00102
= 2
do109 03

B 1 o2 —00109

0202 — §%0202 { —do10y  0f }

B 1 o2 —00109

0202 (1- 52) [ —00102 o} ]

B 1 o2 —boytoyt

T (1-48) [ —doyloyt 0y ]

-1yl
. { o o } | (4.1)

The pdf of the multivariate normal distribution is given in (2.27). Thus, the jpdf of X
and Y is as follows

20 1

Fry (X,Y) = gmexp (—% [(X; —a) (Yi—a)]TE‘l{ Y, — a) D

2 1 1 Ts—111, _ .
- o (- arsvi-a)

= Hfi (Vi)

(1

=

© Universi#yf of Pretoria
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4.2. The bivariate x — p distribution

1 1 2 T -1
XY X,Y = 5. €X —= V;—CZ b V;—CZ y 4.2
fxy (X,Y) o a0 p( 2;[ ] [ ]) (4.2)

where V; = [X; Y] and C; = [a a]”.

Expanding the quadratic form and replacing the V; by X; and Y; it follows that

fﬁw—@FEWW—m (4.3)

1=1

Then from above and (4.1) it follows that

2 1 -1
)IPDY (X; —a)
X;—a) (Y —a)] | £1 w}[ ; }
S -woi-al| g 58 || 520
2p
= Y [(Xi—a) S+ (Yi—a) 53] (Xi —a) + [(Xi —a) 55 + (Vi —a) S5 ] (Vi — a)
=1
2p
= Y (Xi—a) S (Xi—a)+ (Vi —a) S5 (Xi —a) + (Xi —a) 55 (Vi —a)
=1
+(Y; —a) 33, (Vi — a)
2p
= Y XEHX - Xi¥ila — aXh X + aSila + ViS5 X — ViSyla — a5 X, +
=1
a¥yta + XYY — Xo¥ota — a¥ot X, + aXyta + YiX, Y; — YVi¥ota — a¥s, Y; + aXsya
2p
= Y a(SH +253 +55) a—a (S5 +350) Xi — X (55 + 55 a —
=1

a (22_11 + E2_21) Yi—Y (22_11 + Z‘2_21) a + Xizl_llXi + Xizz_llyi + Y;Ez_llXi + Yz‘zz_zlyz‘-

Since the inverse of the covariance matrix are constant, the above expression simplifies
to

2p
D a(Sh +255 +55) a—a (S5 + 550) Xi - X (S + 55 a -
=1

a3 +35) Y - Y (55 + 55) a+ X, 50X, + X551 + ViSy' X, + V55, Y,

© Universify of Pretoria
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4.2. The bivariate x — p distribution

= (B0 +255 +25) [AP + DX P + 25 Y] +
2p
Z[Xizilyi +Yi¥ X —a (21_11 + E2_11) Xi = X; (21_11 + Z‘2_11) a
i=1
—a (33 +25) Yi - Vi (33 + 33) df
= (Si +2550 + 55 [AP + S X + oy [V 4 255/ XY - 2(5 + 35,) AX
-2 (25 + 555) AY (4.4)

with [A| =a = \/a% + a3 + ... + a3,. Substituting (4.4) into (4.2), it follows that

(2m)™ dlet oF (% 2 Wi-al v - Cz])

i=1
1 1 _ _ _ _ _ _
= 2 2z CXP (‘5 [(2111 + 22211 + E221) |A|2 + Z‘111|X|2 + Z221|Y|2 + 22211XY}>
(2m)™ det (X0)2
1 _ _ _ _
exp (—5 [2 (S0 +25)) AX —2(25] + 5357) AY})
1

2

(2m)* | det ()
exp [(Z7 + 357) AX + (35] + X35 ) AY — 55 XY
= 1 1 -1 -1 -1 2 -1 2 —11v (2
— (2@2“ ™ (2)% exp <—§ [(211 + 2357 + 222) |A]* + X771 X)* 4+ 255 Y })
exp [(Zi +55) AX 4V (85 + 2) A - 55/ 0)].

1 _ _ _ _ _
= €xXp <—§ [(2111 + 22211 + 2221) |A‘2 + 2111‘X|2 + 2221|Y|2}>

Hence, the jpdf can be written as follows

1 1 _ _ _ _ _
fX,Y (X> Y) - (271')2“ det (Z)M exp <_§ [(2111 + 22211 + E221) |A|2 + E111|*XV|2 + E221|YV|2}>

xexp [(S + 551 ) AX +Y (B3 + 52 ) A — 25/ X)].
In order to obtain the jpdf of the envelopes, an integration with respect to X and Y
subject to the constraint |X| = Ry, and |Y| = Ry is required (see Miller (1964) [19, page
33]). That is
exp (—3 [(31 + 255 +25)) [AP + X0 [ X + 25, [Y?])
(27)2+ det (X)"

X / exp (317 + 251) XTA] dsy
|X|=FR1

fxy(X)Y) =
X / exp [YT ((22_11 + 22_21) A— Z‘z_llX)] dss, (4.5)
[Y|=R2

© Universi#y of Pretoria
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4.2. The bivariate x — p distribution

where ds; and ds, are the elements of the integration surface area (see theorem 2.1). The
second integral in the (4.5) can be expressed as

/ exp [Y7 (St + 531) A — 551 X)] ds,
Y]

= (27Ry)% | (S} + ) A - TR, |
X Iy 00 (Ra | (Za1! + 235 ) A = T/ Ra), (4.6)

Using (2.16), the expression (4.6) can be written as

(27Ry) ¥ |(Sof + T ) A — Sp Ry| " I3 02y (R [ (S5 +235) A — 53/ Ri )
27 Ry ) e B B e B
- ((R:)f)“ (B | (Bt + %) A = Bl ) "3 o) (12 (521 +20) A= 3 Ri)
(2mRa)" 4 = % Liow((Zo + 55, |A] R)
= 2 (- 1 ~DF(p—1+k
e T

> Iu71+k(22711R1R2)
(22*11)“71 (Rle)“fl
22“71(7TR2)“ >
- — ——T(u—1) ) (—D)"p—1+k)
(B3 +55) (33) Ra)" AP RE ;

L 1k((Za) + 503 ) [A| Ro) 10 (Ea R Ro) G} (cos 6y),

05_1((303 1)

where ¢, is the angle between X and A.
Thus, the jpdf of the envelopes is given as

22 Y (wRy)'T (n — 1) exp (—3 [(2 + 2855 + 255) |A]? + 'R + £3,) R
(2m)2e det (B)* [(Z51 + 25) (321) Rz}u_l AP R

XY (=D (= 1+ k) Luaw (S + 555) |A] Ro) L 114(85, Ra Ro)
k=0
X / exp [(S1] +357) XTA] C*Y(cos ¢, )ds;. (4.7)
X

To evaluate the remaining integral in equation (4.7), express it in generalized spherical
coordinates

/ exp [(Zﬁl + 2511) XTA} C,‘:fl(cos ®1)dsy
|X]

— / exp [(S11 + 551') RiAcos ¢,] Cf(cos ¢y )ds:
1X|
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4.2. The bivariate x — p distribution

27 T

= R /d@/exp (S0 + 551) RiAcos ¢ ] C cos p,) sin? 2 dp,

0 0
2u—2 T
< 11 / sin? 1 F ¢, de,. (4.8)
k=2 {

Applying (2.17) then it follows that

Ky

/exp [(Z1! + 35) RiAcos¢y] Cf ' (cos ) sin® 2 dgp,

0

2 (=1 + HT(HT (0 = 1) + k)

(25 +Z3)) RA)PEIT(2(pn — 1))

X1k ((B1 + 357 RiA), (49)

and using (2.18),

2 ou—2 T

R3#1 / do I / sin?* 1% ¢, do,.
k=2 0

0
oz (u-1) g2
P(3(2n—1))

Therefore from (4.8), (4.9) and (4.10) follows that

(4.10)

/ exp [(S] +257) XTA] C cos ¢, )dsy
| X

23 G- DRI 2D (= 14 HIN(HT2(n — 1) + k)
— I, YN0 RA
P(2n—=1) (S5 +By') RiAP K02 —1)) " el (5 2ar) )
2M7TM_%F(%)R?WI I'2p—2+k) —1 -1
_ LS+ 551 RiA
(50 o) oAyt ki —2) (B3] )
_ onqrh R ( 2u+k—3 )
(Zh +23)) Ayt 21— 3

Lie((31 + 357) RiA), (4.11)

where ( 2 2; ﬁ; 3 ) is the binomial coefficient for k£ > 0. Substituting (4.11) into (4.7)
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the jpdf of the envelopes is

22 R (p— 1) exp (—5 (31 + 255 + %55 ) |A]? + X1 R} + 55 R3))
fR17R2 (Rla RZ) - |:

widet (2)" [(Sof + o) (S50)]" 7 A R

XY (=D =1+ k) Lo ((5 + 52') [Al Re) Tu-11(S5)' Ry Ry)
k=0

ot i 21 Y+ k-3 i )
(&f+2ﬁ53ﬁ@u1( 2% — 3 )LLH“Q%E+E£»&A)

247 IR Rl (p — 1) exp (—% [(21_11 + 255 + E2_21> A + 35 RE + 22_21R%])
det ()" [(Z! + Sa) (Sa + 53 (Sarh) 14"
> 2u+k—3 ~ ~
S0t 1) () (s 2 14l )
k=0

X1k (S5 RaRo) L (B + 23)) RiA). (4.12)

T

This expression (4.12) can be written in terms of the coefficients of the inverse of the
covariance matrix by using (4.1). Thus, the jpdf is

2Ry Rol'(pn — 1) exp (—5 [(S17 + 255 + 535) |A]? + X1 R? + 55, R3])
— — _ _ _ -1
det (3)" [(2111 + 2211) (2211 + 2221) (2211) ‘A‘z]#

- 2u+k—3 _ _
010 (Yo T ) (5l s 4
XLk (S RaRo) L (57 + 251) RiA)

o PRy RT (1 — 1)(=1)F(u — 1+ k) ( 2@;2 3 )

—1
— A5 (1-522)(1-52L) | *
= [U%O—%(l - 52)}# [ 7(17621)30130'% : :|

1 1 R% R% 0%4—0%—250102 2
e A2 A
p{ 2(<1—52> laﬁa%*( )' 'D}

<1 (‘A|R2(1_6%§)> I (|A|R1(1_6%)> I ( R1R26 )
PR (1= 0002 PR (1= 0%)02 PR (1 = %) o104

B i": Ry RoT' (1 — 1) i
— (0703)" (1= 8% | |AP6(1 = 62)(1 - 62)

1 1 R?  RZ 02 + 0% — 200,09 )
<o 3 (o ot o+ (P e ) 1))}
Ui+ —3 RiRs0
x(—l)k(u—l—l—k)( “2:_3 )IMW <%>

le,Rz (R17 RQ) -

ol

1—(52)0'10'2
Al Ro(1 - 522) A Ry(1 - 622)
I, g1 I, 72 . 4.13
< ( =) ) z ( 1—) ) (4.13)
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Define k; = 2‘;‘; = Z—;,z’ = 1,2. Then by normalizing the two x — u envelopes, R; and
Ry (see equation (3.13)), where P, = \}/%;_ The Jacobian of the transformation from

(Rl,RQ) — (Pl,Pg) iS

|J ((Ri, Re) — (P, )| = 01”2“(()1%1) 02\/%?17+,€2)

= 010920/ (1 4 k1) (1 + Ka).

The final expression for the normalized jpdf of the envelopes is

AT = 1) (1=8)" " 2ppipp /(T + 1) (L + 1)
R e W Y S NN

-2
X exp {2(7/“ (7 (1+ K1) + p3 (1 + K2) + K1 + Ko — 20\/K1k2) }

o0

1—6%)
C TR E) (e P (2‘5’”"””2“((11_2’;”;) e ’”))
o (%/&M (v — 5\/f€_1)> ; (2uplm (VAT — W@))
p—1+k (1— 52) p—1+k (1- 52)

x2u0109\/ (1 + k1) (14 K2)
42019, 0 (1 — 1) (1= 6%)™" 7" (14 k1) (1 + in)
[0 (VA2 = d/mr) (Vi = by/m)]"

Xexp{(_—’u)[pf(l—l—/@l)jtp%(l—l—/@g)—l—lil—l—/@g—25\/%]}

1 — 62

(k=1 @2u=2),, 2611p1p3\/ (1 + 1) (1 + ko)
k! poih 1)

X

k=0

o (%/&M (VR — (WE))
p—1+k (1 _ 52)

o <2uplm (V/F1 — W@))
p—1+k (1 _ 52) .

(4.14)

4.2.3 Characteristics
4.2.3.1 Joint cumulative distribution function

The jpdf in (4.14) is represented as follows in order to get an expression for the jedf, that
will be used to obtain the outage probability. Expand the Bessel functions as infinite
series by using (2.13) and then integrate term-wise, the jpdf (4.14) can be written as
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4.2. The bivariate x — p distribution

fPLPz (pla p2) =

4prpipaT (i = 1) (1= 8°)" 7 (1 + k1) (1 + )

[Sp (VA2 = 0y/mr) (T —8y/m)]"
xexp{ﬁ[,of(ljtm)+p§(1+m2)+m1+m2—26\/ﬁ}}

S E -1 u—2),

prd k!
2 z
. ( mmpz <1+m><1+nz>> )
00 H— 2
y Z 20p1p1pay/ (1 + 1) (1 + ko) e
g 2(1 — 6%) 20 (p+k+ 2)
p—1+k 1 2/‘P2 Vitha(y/Ra— 5\/_)) ‘
S (2 T (= o ——
—~ 2(1 — 6%) wll (e + &k +w)
l
p—itk 1 2up1 VItr(yEi— 5\/_))
o (e - agm (L
= 2(1 - 6% IT (u+k+1)
0o O o0 o 21—3
ZZZZ4H 2p1poT (1 — ( ) " (1"‘“1) (1 + ko)
1
2=0 k=0 =0 w=0 [5/~L ( ( )]#

0
X exp { (1 :’uaz) (k1 + Ko — 20+/K1k2) }

(u+k—1)(2u—2),
T (u+k+)C(p+k+w)T

—up3 (1 + K1) pin (14 K1)
xexp{ (11_52) }(11_52

(H+k+2)
1—6°

I+k+2z4+p—1 I+k+z+p—1
> (plu (1+ m))

—ppd (L4 ma) | (P (L4 mo) \ g2\
xeXP{ (1_52) } ( 1-6° > (/02/u (1"‘“2))
(VT R (VL= 0Rs) (120 (Lt ) (VAL - bym)’

(1-07) (1 52)
(VT2 (Vi = 5vE) N 1208 (L ) ( —6ym)”
(1—6% (1— 52)
dpup1pa/ (L + k1) (1 + ko 01 pipy (1+ k1) (1 + k2)
X 1= ) < 1= )2 > . (4.15)
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Thus from (4.15), the jedf
p1 p2
FPl,Pz <p17p2) = //fpl,Pz <p17p2) dpydp,
00
q1 g2

S A2 (1 = 1) (1= 0% (14 #0) (1 + ko)
| ] 22 2 Tl ovm) (v o
xexp{( A (/~€1+/€2—25\/F&1H2)}

(L+k—1)(2p—2),
kaWFw+k+D (p+k+w)T(p+k+2)

X exp —ppi (14 kK1) pin (1 + k) Pl — 4 P
(1-0%) 1—6° pl,u(l—l—/ﬁ)

X exp —11p3 (14 ka) || [ php (1+ k) \ 57 1— 62 wktzpu—l
(1-0%) 1-4° P31 (1 + ra)

oI+ k1 (Vg — 0y/k2 R (1+ ) (VA1 — 6y/m)°
(1- ) 1-?)

oI+ Rz (Viz = 0y/mn) " (1203 (1 + ko) (V2 — 6y/m1)”
(1—6%) (1 —6%)2

X

p—1+k
upipay/ (1 + kr) (1 + H2)> ( 12pips (1+ k) (1+ ffz))
X dp,dp,

(1-07) (107

= o e Aol (e — 1) (1_52)2M_3(1+"f1)(1+“2)
//ZZZZ [0 (V2 = 0y/m) (Vix = 0y/m)]"™

X exp (1 _M52) (/-il + Ko — 2(5\//%1/{2)}

(k+k—1)(2p—2),
kumwrm+k+mrm+k+wﬂwu+k+@

1 (52 I+k+z4p—1 1 (52 w+k+z+p—1
X —_— —_—
<ﬁuﬂ+ﬁﬁ> <£uﬂ+ﬁﬁ>

» (Mm (V7 - W@)“Hk (/ﬂp% (1 4+ ) (Vi - wﬁ?)g)l

(1-02) (1-0%)
(oY TR (Vi = 0ym) " (i3 (0t ) (VA — 0v/A)"
(1-07) (162
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Spprpa/ 1 P 20 (1 1 :
y ( RV CET Y m)) ( 120303 (1+ 1) ( m))

(1-06% L
X ex _WJ% (14 K1) ,upf (1+ 1) Ikt p—1
P (1 _ 52) (1 — (52)
(k) | (4w
X exp {_ (1-46% } ( (1-0%) ) dp,dp,.

After simplifying it follows,

P1 p2

/ D i 42T (0= 1) (1= 8™ (14 w1) (1 + )

0 0 #=0 k=0 1=0 w=0 [5M (\/’%72 - 5\/’%_1) (\/'KL_1 o 5\/'%_2)]“_1
—H

X exp { 1= (K1 + K2 — 25\%1”12)}

" (k+k—1)(2p—2),
RlzZlwollll (p+k+ DT (p+k+w) T (p+k+2)

1— 52 I+k+2z4+p—1 1 52 wtk+z+p—1
>< —_— —_—
(M(1+/‘€1)> (M(1+/‘€2)>

i/ TH i (/R = w@)"‘” (m (1+ k) (/AT — 5@2>l

FP1,P2 (pl,p2) =

. (1— ) (1%
(VIR (VR = oym) N (2 (L me) (VA — 8y/R) T
(1-07) (1-0%)72
(/T ) (L) “‘1+k(52u2<1+m1><1+m2>>z

(1— 6% (1—6%)2
) i (1 n /{1) I+k+2z4+p—1 i (1 n /{2) wtk+z+p—1
(1-6%) (1-6%)
2t 2k+22420—1 2u+2k+22+42w—1 pip (1 + k1)
X P P2 € {_ (1 — 52) }

2u(l+ kK
X exp {—%} dpldp2
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Using (2.20), the jedf is

[c e o]

2 (i — 1) (1= 627 (1 + 1) (1 + #0)
Frloo) = 200270 f—éf)(m—éﬁz)]“‘l
(u+k‘—1)(2u—2)k
kummFm+k+DPm+k+wﬂxu+k+@

.y NG
X exp {m (/‘il + Ko — 2(5\/:%1/'?2)} (,u—)

X( 1 - §2 >w+k+z+u1 (Mm(\/adm))ul%
1"—:‘12) (1—52)

p (1 ) (Vi = 8y/m)"\ (/T T (Vi — ovA)
(1—6%)2 (1—6%

(u (1+ m2) (V2 = 6/a) >”<6M1+m><l+@>>“”k

(1—6%)2 (1—6%

2 I+-k+z4p—1
o 5%21+m11+m@> (uﬂ+%ﬁ>

1 — 6%)2

w+k+z+p—1
(1 + ko)
(1-0%)

=ry

—(ptk+2z+1) —(ptk+z+w)

p(l+ K1) (1 + ko)
(1-6% (1—6%)

1 2 1
Xy <u+k+z+l,m>7<u+k+z+w,m> dt.

(1-0%) (1-0%)

Further simplification results in

oo 0 0

D(p—D(p+k=1)(2p—2), (1= §)rst*
— KNIl (p+kE+ DT (p+k+w) T (p+k+ 2)

FPLPz (pla Pg) =

N
Il
=)
il
=)
—
Il
=)
=)

(1 — 52) (K1 + Ko — 26\//11%;2)}

2 2
ppi (1 + K1) pp3 (1 + k2
l+k k
X’y<+ + 2+ U, (1 52) )*y(w—i- + 2+ u, (1 52)

) (MM—W@))”'; (Mw—z—am))“

=ry =ry

(4.16)
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4.2.3.2 Moments

Using the jpdf (4.14), the joint arbitrary moments can be found as

E[PPP;Q] = ///71 szfppo (P15 pa)dpydpy

B 77/)"1 1o 42 ppoF( - 1) (1 _ 52)2“73 (1+ k1) (1+ Ka)
. o (V2 — /) (VT —dy/ma)]"

—2
X exp {(7“ [,0% (14 k1) + p2 (14 Ka) + Ky + Ky — 25\//{1/{2} }

2(1—6%)
Ntk (@2p—2), 2011p1p3\/ (1 + k1) (1 + ko)
K (1- )
" 2p1po/T + K2 (VVR2 — 0y/F1)
p—1+k (1 _ 52)
XLy1+k (2’“/)1 1 +(/11_(\§27 5\/_)> p1dps

ST u(Vm-eym) (Vi —oym)]"

(+k—1) (2 —2),

_ //prlzlp;zzzzzz4ﬂ/)1/02F(M—1)(1—5) - (1+/<;1)(1_+/@2)

T (p— 1+ k+ DT (14 ktwt Dl (u—1+ktz2+1)

—p —ppi (1 + k1) —pp5 (1 + )
X exp {m [K1+ K2 — 25\/%]} exp {W} exp {W

(TR (i = oym) " () (V- 0y@)
(10 (1-0%)7?

(1o T (VRs = avm) \ (3 () (R 0vR)")
(107 (1-0%)7?

(0o /O + R (L m)”w <62u2p§p§ (1+51)(1+ m))z dpydp,.

(1-07) (1—0%)2

Following a method similar to the derivation of the jcdf the joint arbitrary moments are
obtained. Using (2.13) and interchange the summation and integral it follows that

© Universi®p of Pretoria



’ UNIVERSITY OF PRETORIA
Qe YUNIBE SITHI YA PRET ORIA

4. BIVARIATE MODELS
4.2. The bivariate x — p distribution

4P (= 1) (k= 1) (20— 2), (1= 63"
Rl (p+k+ DT (p+k+w) T (p+k+2)

BpEe) = 3335 [

0\8

[0 (V2 = 8y/mr) (A = dy/m)]"
s gL et oy —ppt (1 + k1) ox —pp3 (1 + ko)
P P2 p (1- 52) p (- 52)

5#/)1/72\/(1 + k1) (14 /{2)>M1+k (Mmm (\//{—1 _ 5\//?2)>u1+k

. (1-207) (1- )
(10T R (VR = oym) " (2 (0 ) (Vi — v\
(1-6%) (1—0%)2
23 (Lt ) (Vs = 6y)\ (828 (4 k) (14 k2)
- (- ) (FE )

Further simplification results in
Pl = 330505
0

(1 + :‘il) (1 + /<62) exXp {(1__6%) [:‘il + Ko — 25@} }
o (Vi — oy (Vo) {
ni4+l natl —pp3 (1 + ko) pp3 (14 k1)
XpP1 P2 eXp{ (1 _ 52) } ( 1— (52

z ol w z 2 —
. < 1— g2 Itk+ztpt+—5—1 up% (1 4 H2) +hktztptE—1
)

4P (p = 1) (k= 1) (20— 2), (1= 63

EwlT (p+k+ )T (p+k+w) T (n+k+ 2)

0\8

—pp7 (14 k1)
(147

) I+k+ztpt gt —1

ppt (1+ Fa 1- 4
X < 1— 62 )w+k+z+u+%2_l 5“/)102\/(1 + k1) (1 + ko) o
w3 (14 ko) (1-4%
(o T rr (Vi — 0y/a) T oo T s (VR — b)Y
(1-4% (1-46%
(230 k) (Vi = oym) " (2 (k) (VR - 5ym)
(1—62)2 (1-46%)?
1 pips (L + k1) (1 + o)\~
" ( 1) ) Aordpz
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Therefore,
[o¢] o0

E[P[" Py?] i
k=0 =0 w

1— 52 I+k+z+p+5h—1 1— 82 wk+z+pt+ 2 —1
X _—
<MP?(1+/€1)) <NP§(1+/€2))

1tk —14k
Spp1par/ (14 K1) (1—|—/<52)>M (,uplx/1+/£1 (\//f_l_(s\//f_Q))M

o

IS
[en]
[e=]

//‘ —Dp+k-1)2p—-2)
—~ Elzlwl!T ( u+k+l) (u+k+w) T (p+k+2)
0 O

: (1—0% 1- )
(o TR (R )\ (A ) (R o)\
(1 - 62 (1 _ 52)2
% w2 (1+ kK1) ( ) ) <52M2p1p2(1+m1)(1+ﬁ2)>
( ( _52)
_:U“p% (]- + K,l) MP% (]_ + K,l) l+k+z+u+"_21_
xexp{ (1_52> }( 1—52 )
102 (14 o) | [ pR (1 + rp) \ et st
e { (1-0%) } ( 1_ 52 ) dp,dps.

Simplifying the above expression and using (2.1) the joint arbitrary moments are,

— KW (u+ k+ )T +k+w)(u+k+@

- m
L @)2 I+
X exp { 1= o) (k1 + Ko — 20+/K1K2)] } ( = 52) )

() () ()

xFG+k+z+u+%%F(w+k+z+u+%q. (4.17)

EP" R =

N
Il

=)

<)

4.2.4 QOutage Probability

The parameter of interest is the power, §2;, at each diversity branch i. For the dual branch
selection combinig (SC) scheme the outage probability is the jedf of the power evaluated
at ¥; = ¥, with ¥ = Q; and ¥; = %E [R?] being the average power (see Section 4.2.1) .
By expressing P; in terms of R;,

=B T ERIE 0
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Thus, from equation (4.16) the outage probability is defined as

oo D= D(p+k—1) (2u—2), (1 — o™+
Fsc (0) = Zzzz}ok!z!l!w!F(,u+k+l)1“(,u+k‘+kw)r(,u+k+z)

X exp { A (K1 + ko — 25@} ('u (f_—;{@)) ’

w+%
)> 7<l+k‘+z+,u,i7“(l+m)>

U1 (1-67)
U p(1+ k)
Uy (1-6%) )7

Iy
o
S

X
VR
=
—
5
[N}
|
[«
SN—
3

Xy <w+k‘+z+,u, (4.18)

Remark 4.1 This equation (4.18) corresponds to equation (21) of Villavicencio, et al.,(2016)

[33].

4.3 The bivariate xk — u type distribution

The aim of this section is to derive a bivariate xk—u type distribution with as the underlying
model, the elliptical class. Exact formulae for the jpdf, jedf and joint arbitrary moments
will be explored. Special cases of the elliptical model will receive attention. A weight
approximation as outlined by Arashi and Nadarajah (2016) [2] will also receive attention.

4.3.1 Description

Let R; and R be 2 k — p envelopes then,

2p
w3 X
i=1

2p
2 2
RQ_ E ,Y;v
=1

where X; and Y; are mutually independent elliptical random variables with mean equal
to a and variances o2 and o3 respectively. [Note: 2y = number of clusters of multipath].
From (2.28) X;|t ~ N (0,a;) and Y;|t ~ N (0,a;) where a; = t~ 0. If {X|t,Y]t, A} be
24~ dimensional vectors then X |t = [Xi]t Xo|t ... Xo,ult |7, Y[t = [Vt Yalt ... Ya,lt |*
and A=1] a a .. a |T. Let Vi|t = [X;|t Y;|t]T where X;|t and Y|t are correlated if
and only if 1 = j, 1 = 1,2, ..., 2u. Note that A is the vector of the dominant component of
the cluster. The interest is the jpdf of the envelope R; and Rs, as well as, the normalized

envelopes, P, and P, with P, = \/R;— and 7; as defined in (3.13).
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4.3.2 Derivation

The positive definite covariance matrix is

v — t*1211 t*1212 _ tila% 5t710'10'2
t_1221 t_1222 5t_10-10-2 t_lO'g ’

where 0 is the correlation coefficient of the elliptical component,

t7 1%, Rt
\/(t—lle) (t_1222) 0102

212 = (50'10'2.

The inverse of the covariance matrix is

(t—lz)’1 _ {(t_lzll)_l (71210

! B t7to? St loyoy |
(t_lzgl)il (t_1222 -1 5t710-10-2 flU%

~— —

. 1 t’lag —5t710'10'2 :|
120202 — t-26%0202 | =0t 010y t'o}

B 1 t~1o2 —5t o0y
t=2020% (1 — 62) | —0t 'o102 ol

o1 1 t01_12 1 —(5t01_1202_1
(1—6%) [ —0toy oy toy

IR IO Y Ve
(') = { ) | (4.19)

The pdf of the multivariate elliptical distribution is given by (2.29). Thus, the jpdf of X
and Y is given by

- 0
far (X.¥) = HO/ (2) det (£-1%))

- ﬁ/ (27) det )
H

[SIEY
¢
o]
ko)
/l\
N | —
=
L<
=
S
o
~
N
™
SN—
—
| — |
|
=
_
~~
QL
~

SIS

- fi (Vi)
_ [ W (t) o 1 24 e
- 0/ (2m)% det (171%) % p( 2;[‘/’ cl (£7E) Vi CJ) dt,  (4.20)

where V; = [X; Y]T and C; = [a a] .
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Expanding the quadratic form and replacing the V; by X; and Y; it follows that

2

=

vV, — " (t7%) 7 Vi - ¢

1

(2

|

- w-a )| G

=1

Then from the above and (4.19) it follows

550 135

) { o] 2y ] { (X; —a) ]

[(X a) 157 + (Yi — a) t55]'] (Xi — @) + [(Xi — @) t55]" + (Vi — a) t55,] (Vi — a)

> e

2u
= Z — ) 155 (X — a) + (Vi — a) 155 (X — a) + (X; — ) 155 (Vi — a)
=1
+(Yi - )t222 (Yi —a)
2p
= ) XS X — XitShla — atS' X + atSla + YitSy X, — YitSy'a — atSy)' X,
=1

+atyta + XS5V — XitSota — atS5 X + atSylta + Vit S5, Y — YitSo,a
—at¥y,Y; + at¥ya
2p
— Z a(tS + 20550 +1555 ) a — a (157 +135]) Xi — X; (157 + 125 ) a
=1
—a (155 +155,) Vi = Y; (t55] + 155 a + XS X + XitS5,'V; + Yt £5' X, + Yit 55, Vi

Since the inverse of the covariance matrix are constant the above simplifies to
2p
D a(tSy! + 255 + 155 ) a — a (155 + 155)) X; = X; (155 + 55 a
=1
—a (t55 +155,) Vi = Y; (155 4+ 1555 a + XS X + XitX5, Y + Yit 55 X, + YitS5, Y,
= (tz11 + 255 +155)) |AP + 157 | X P + S5 [V P

+ZXtE Y+ VitSo Xy — a (127 + t5570) X — X (157 + 1551 a

—a (t221 +155,) Y, = Y; (155 +155,) af
= (B0 + 255 + 155 |AP + 57 [ X P+ 125 |V + 2055 XY
-2 (18 +1355]') AX — 2 (155 + 155, ) AY. (4.21)
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Substituting (4.21) into (4.20) gives

00 W(t) _1 24 P B o
0/ (2m)* det (t-1%) % eXP( 2 ;[VZ Gl (t7x) v 04) dt

W (t 1
i /(2 )*d t<(z %) ¥ eXp( 5 (0 4 20550+ 155) JAP + 020 [ X + 155 [V° + 2055, XY ]
m e -

coxp (1 (-2 (e 4 10 AX 2 (e 4 103)) m) it

r Wt 1
— / - ®) o exp( 3 [(t27 + 2655 +55)) |[A]? + 57 [ X|* + t55, Y] })
s (2m) ™ det (171%) 2
xexp [(t57 +t55) AX + (155 + 155,) AY — 55/ XY dt
W (t 1o, o _ _ _ _
— / 5 ®) 5 €XPp <—§ [(t2 + 2655 +t55)) |A]P + 57 [ X|° + tzgg\yﬁ])
(2m)* det (t71%) >

xexp [((2] + t551) AX +V ((#25] + 1555) A — 55 X)] dt.

Hence, the jpdf can be written as follows

r W (t) 1
fxy (X,Y) 0/ 27 det (CTT) exp( 3 [(¢5 + 2655 +t555) |A]? + 157 | X |* + t25, Y] ])
xexp [(t157] +t55) AX +V ((135] + 1555 ) A — ¢ X)] dt.

As before in order to obtain the jpdf of the envelopes, an integration with respect to X
and Y subject to the constraint | X| = Ry, and |Y| = Ry, is required (see (2.45)). That is

exp (—3 [(120 + 2655 +1555) [AP + 57 [ X]? + 155, |V [*])

fxy(X)Y) = (2m)2m det (¢-15)"

W (t)

0\8

X / exp [(157] +t53) XTA} dsy
X|=Ry
/ exp [Y7 (15 +155) A — £557X)] dsydt. (4.22)
[Y'|=R2

where ds; and dsq are the elements of the integration surface area (see (2.45). The second
integral in equation (4.22) can be expressed as

/ exp [Y7 (1550 + 1550) A — £55,X)] dsy
1Y

= (27Ry) 7 |(155] +1553) A — 155/ Ry | "
X1 000 (Ra | (1851 +15557) A — 155/ Ri ). (4.23)
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Using (2.16), the expression (4.23) can be written as

(27R,)% (550 + 1550) A — 125 Ry | " Iy gy (Ra | (151 +1555) A — 55 Ry )

2R B B - B ) i )
- ((32) = (B2 | (25 + 15 ) A~ 55 R )’ I 192y (Re (125 + 355 ) A — 135 Ry |)
B e 2 i —1+k) L1k (155 +155) |A| Ry)

(R2)1* — (RQ)“il (tzgll + tz;;)ﬂ—l |A‘M_1

L1k (155 R R _
(e ;LC:
21 1512

22“_1(7TR2)“ > N
X — I'p—1 - (p—1+k
(125 +125) (t25]) Ro]” LA R ( );_0( A )

X L1 (55 +155)) |A| Ro) Lim154 (1551 RiRo) Cp (cos ).

where ¢, is the angle between X and A.
Thus, the jpdf of the envelopes is

/0‘022M—1<7TR2)NF( —1)exp (__ [(211 + 2551 + 35 ) |A]2 + 3 R? + 2221R2])

1
J 2m)2e LS (155! + 155 ) (t257) Ro]* ™ |A[" ™ Ry
O3 (08— 1+ R La (155 + 1952 |A] Ro) a5 B R2)
k=0
X / exp [(t37 + 135;) XA] 1 (cos ¢y )ds dt. (4.24)
X

To evaluate the remaining integral in equation (4.24) express the integral in generalized
spherical coordinates

/ exp (1551 + 1551) X'A] CF (cos dy)dsy

|X]

= / exp [(tS7] + t551') RiAcos ¢,] CL ™ (cos ¢y )ds:
|X]

27 ™
= R /d@/exp [(t27) + t25;") RiAcos ¢, ] Cl cos ¢y) sin? 2 dep,
0

2M2’T

X H /81n2“ 1=k g, doy.. (4.25)

k=2 {)
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Applying (2.17)

/exp [(tZ5 +25]) RiAcos ¢y CL ' (cos ¢) sin® 2 dgp,

0
20710 (p — 1+ HP(HT(2(pe — 1) + k) 1 et
it =750 FA Ty (5 453 1) 420
and using (2.18),
2 2u—2 T
R [ g sin?* 1% ¢, do
1L/ :

2u—1
2 2u— l)Rlﬂ

3(
I(32u—1))

it follows from (4.25), (4.26) and (4.27) that

(4.27)

/ exp [(t57 + t351) XA] CF(cos ¢, )ds:
| X

o3V R2=1 on=1p (1 — 1+ D2 — 1) + k
= 1 . fl(lu 1 2) (2)5 C ) )qul+k((t21711 + t22—11) R A)
P(3(2p—1) (12 +155) RiA—RID(2(n — 1))

i sD(HRY T(2u—2+k)

_ L
T (S 155)) Ry kID(2u — 2) L((tS0 +155") R1A)

Q#W#RQM—l 2%+ k —3 ) i
T (e tzmi) Ry A1 ( 2% — 3 ) L (857 +135) RiA). (4.28)

Substituting (4.28) into (4.24) the jpdf of the envelopes is

227 Ryl (1 — 1) exp (=5 [(31) + 255 + %) |AP + 23 R + 25, R3] )

f 1,R2 R aR -
.y (R, B o det (110)" (1557 + 1551) (£950)]" AP RE

0\8

XY (=DM =1+ k)L ((855" + £355) | Al Ro) o141 (655, Ry Ry)
k=0

Lk (157 +1557) RiA) W (t) dt

ohqrh R (2u+k—3>
((tZH +155) Ry A)p—1 21 —3

_ / 2 Ry Ryl (i — 1) exp (=5 [(Z1) + 2551 + X5 ) |A]> + 21 R} + 55 R3))
; det (t-1)" (55 + 155 (855 + 15)) (#57) 14P7)"

= 2u+k—3 _ _
X Z(_l)k(ﬂ —1+k) ( M2,u _3 ) L (155 + 535 [Al Ry)

XLy 141 (6857 RiRe) 11 (E55 +t557) RiA) W (t) dt. (4.29)
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Expression (4.29) can be written in terms of the coefficients of the inverse of the covariance
matrix by using (4.19). Thus, the jpdf is

[ 27 R Ryl (i — 1) exp (=4 [(S0t + 2557 + S57) |A2 + SrhR2 + %57 R2))
fri Ry (R, R2) = / =
) det (1715)" [(t27 +15571) (1551 + t255) (¢35 |A[7]

2 Ry RyD (1 — 1)(— 1) — 1+ k) (

— 2u+k—3 _ _
X Z(‘l)k(ﬂ —1+k) ( M2,u _3 ) L (155 + 1535 [Al Ry)
XLy 141 (655 RiRo) Lok (5 +t557) RiA) W (¢) di
2u—3
Aa(l—aﬂ)(l—aﬂ)] pnl
1 1 tR?  tR2 to? +tos — 26toy09 9
— A
<ol =3 (o [+ (T2 ) )}
A Ra(1 —022) tIA[Ri(1 —02L)
XLy 14k ( > L1tk ( )
tR1R26 )
I, — | dt
x w1tk ((1 — (52)0'10'2
J 7 (o%0d)" (1 - ) | A 613 (1 — 62) (1 — 62
1 1 tR? tR3 to} + tos — 26toq09 9
= A
XeXp{ 2((1—6%[0%*03*( o1} )' 'D}

o 2u+k—3 >
- [>wo
0 k=0 [t20%03(1 — (52)}M { _(1_55)1%30;;,0?
(1-46%)03 (1 - 4607
o] -1
W (t) RiRoT(ju — 1) —2(1 — 6230303 8
PER
- 2u+k—3 tR1Ro6 )
)R — 1+ k Iovn [ —2220
sz_;( A " )< 2p—3 ) podE ((1_52)0'10’2

YL, P L w0
X1, _ : :
u—1+k (1 — 62)0'% p—1+k (1 — 62)0'%

Define x; = 2‘;‘(‘:2 = Z—z 1 = 1,2. Then by normalizing the two x — p envelopes, R; and

Ry (see equation (3.13)) where P, = % . The Jacobian of the transformation from

(R, R2) — (P, ) is

2u(1 + K1) 0 '
0 oo/ 21(1 + Kao)

= 0'10'22[11\/(1 + :‘il)(l + :‘ig).

|J ((R1, R2) — (P, P2))| =

© Universify of Pretoria



&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

@ YUNIBESITHI YA PRETORIA

4. BIVARIATE MODELS
4.3. The bivariate k — p type distribution

The final expression for the normalized jpdf of the envelope is

(i —1) (1= 63" 2up1pp /(T + k1) (LT 1)
143 (010) [ (VA2 = 6/m1) (VAT — 6y/m)]"

—2ut
X exp {2(7/“ (07 (1+ K1) + p3 (1 + K2) + K1 + Ko — 20y/K1k2) }

fP17P2(p1ap2) = W(t)
/

1—6%)
xS (=1 (p+k—1) ( R ) Livx <2t5“”1f’2¢(1(1_+55)1) i+ @))
o] <2tﬂp2m (\/"{_2_(5\//{_1)> 7 <2t,up1\/m (\/,{_1_5\/,{_2)>
p—1+k (1- 6% p—1+k -

x2uc 109/ (1+ k1) (1 + ko) dt
_ ]°W o 4ol (= 1) (1= 8)" (14 ) (1 + 52)
: =3 [ (Viz — /) (v/i1 — dy/ma)]"™

— it
X exp { T _“52) [T (L4 K1) + p3 (14 K2) + K1 + Ko — 20\/R1ka) }

y i (k=D @u=2,, (%cmplw(l ) (L+ faz))

£ k! (1- 62
<1 2tppay/1+ Ko (VR — 64/F1)
p—1+k (1 — (52)
S (2“‘ pvi +<';1 ((\5/2? - 5\/“_2)> dt. (4.31)
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4.3.3 Characteristics

4.3.3.1 Joint cumulative distribution function

To find the jedf of P, and P,, we expand the Bessel functions as infinite series using (2.13)
and then integrate term-wise. Hence, the jpdf can be written as

[ oo o 420000 (0 = 1) (1= )™ 7" (14 1) (1 + 1)
P ,R\P1yP2) — Wt 1 4.32
tnee / s o (Vs = o) (s — o)) 42
X €Xp (1__,“;2) [P% (]- + Kfl) + P% (]- + K,Q) + K1 + Ro — 25\/:‘{,1/{2] } (433)

= k=D en=2), S e T
Xy Z ( 1) ) (4.34)

1 (2t5up1p2 (1451) 1+I<L2 >

2 o0 w— .

4 (1-6%) Z 2tMP2 T T (\/FL_Q— (5\/H71> 1+k(4 35)
A (p—14+k+2+4+1) '

k=
2
—~ 2(1— 0°)
1 (2tup2\/1+—ﬁ(\{_ 5\/_ ’ - p—1+k
) 1 15 Z 2tppy /1 + k1 (VE1 — 04/ka2) (4:36)
w!T (u —1+k+w+1 = 2(1 — 6%) :
!
<; (zwplmwa—é«@) )
4 (1-6%)
x d (4.37)

IT(i—1+k+1+1)

(& & & & 4Pprpal(p—1) (1= 8% (14 k1) (1 + )
_ W) 20 (438)
R A G v s

k
t
X exp { (1 _M52> (l‘fl + Ko — 25\/&1/‘4}2)}

) (it h—1)(@u-2),
Bl (p—14+k+14+)T(p—1+k+w+ 1) (p—14+k+2+1)

X exp —tup? (L4 m) | (Pt (L m) T gt T
(1-07) 1-¢° piut (1+ K1)

{—tup§(1+mz)} <p2ut 1+ )\ e < 1— 62 )“’*’”Z*“l
X exp

(1-6%) 1— 62 ) paut (1 + Ky)
(e T (R (P2 (1t ) (V- 8ym)
(1—6%) (1—462)2
y tupo T+ ka (Viz — 0ym) " (1203 (1 + k) (\fRz — (5\//{_1)2 v
(1—6% (1—6%)2
o [ 1rorpsy/ (11 +;1) (1 +H2P) ( /fp%p% 1 +52f-€1) (1+ 52)>2dt.(4.39)
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Thus from (4.39), jedf of P, and P, is

pP1 p2

Fp p, <p17p2) = //fp1 0o (01702) dpydpy

pP1 p2 o0

> & > 4pPpypal(p = 1) (1= 0™ (14 k1) (1 + 5a)
= W (t )
///;;l: 1;) t1=3 [y (/2 — 0y/m1) (v/Fr — 0y/z) "

—ut
X exp { 1= (K1 + Ko — 25\/}@1@)}

(n+k—1)(2u—2),
kaWFw+k+D (p+k+w)T(p+k+2)

—tupt (1+ 1) | (2p3p(L+m)\ "7
X exp (1 — 52) -

) < 1_ 82 )l+k+z+u1 - b (14 1)
tp?u (14 k1) (1-6%)

y (p%ﬂt(l + K2))w+k‘+z+u—l ( 1 62 >w+k+z+u1
tp%ﬂ (1 + Ka2)

[e.e]

(tenTER (VE = sym) T (e () (Vi - 5ym)”
(1—06%) (1—06%)2
[ treay T R (Ve = 5ym) " (2e2a (Lt ) (VA — b))
(1—0%) (1—§%)2
10popo/TF i) (Lt ra) \ (B8 u2p03 (14 1) (L4 Ra)\
- (-7 ) () e
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which simplifies to

[ E 4pPpupal(p = 1) (1= 0™ 7 (14 k1) (1 + 5a)
Fp p, (p1,p2) = E E E E W (1) T
m o/o/o/ 2=0 k=0 =0 w=0 t0=3 [op (2 = 0v/A) (VAT — 0y/ka) ]

" (k+tk—1)(2p—2),
RlzZlwolll (p+k+ DT (p+k+w)D(p+k+2)

—ut 1— 62 I+k+2z4+p—1
Xexp{m(fﬂl—‘—/{Q—Qa\/ﬁlﬁg)} (t )

pin (1 + k1)

y ( 1— 52 >w+k+z+u—1 (W,Ol TT (\/?1_5\/?2)>u1+k
)

to2u (1 + Ky -
y 2p2p3 (14 m1) (V1 — 0y/ma)” l tupo/T¥ iz (Vra — 0 /m)
S 1- )
o [ Erea(Lt ) (Vi 5vm)*\" (tppp/ T i) Ot r)
(1-6%)? =)
22303 (1 + k1) (14 2)\
g ( (1-— 52)2 )
% ex _t/l/)% (1 + /<a1) t,up% (1 + /?1) +hktz+p—1
g (1) | (e 0+ m)\"
X exp {_ (1 _ 52) } ( (1 — 52) ) dtdp,dps,
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and

T oo o 2 o 4T (p—1) (1= 6" (14 k1) (1 + 52)
FP1,P2( 1, 2) = W(t) el
PP ///ZZZZ 115 [0 (/A2 = 0y/Ra) (VT = 0y/r)]

) (k= 1) 2u—2),
BT (u+kE+ DT (p+k+w) T (p+k+2)

it 1 &2 It+k+ztpu—1
X exp m (/‘61 + Ko — 25\//‘61%2) (F)

(1 + /<61)

162 N\ T i (i — 0\/) p itk
. <tu )) ( )

(14 ko (1—6%)
(20 m) (VR =R/ T (s — o) |
(1-0%)7? (1-07)
(P () (VR = aym)*\ (/T ) |
(1-0%)7? (1-07)
I+k+z4u—1
26%u2 (L4 k1) (1 + k2)\ ™ [t (1 + K1)
( (107 ) <(1_52)>
b (14 ) wk+z4p—1
K2 2p+2k+224+21—1 2u+2k+2z-+2w—1
(W) P1 P2
pitp (1 + ki) pati (1 + ko)
X exp {—W} exp {—W} dtdp,dp,.
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If we interchange the integrals then using (2.20), the jedf is

Moo o0 o0 oo —1) (1=8)"7 (1 + #1) (1 + o)
FP1P2 1 M2 !
e /;;ng =3 | 5M(\/§_5¢n_1) (VAL = 8y/kz)]"

(k+k—1)(2p—2),
k'z'w'l'F(quk+l)P(u+k+w)P(u+k+z)

—ut 1_ 82 I+k+2z4p—1
X exp { (1 — 52) (/<L1 + Ko — 25\/%&152)} (th (1 + /{1)>

1= N\l T 5 potEh
. ( - VT rr (/1 = 6y/a)
)

(1-07)

(1-4%

<t2u2 (1+ ko) (/72 — 6y/F1) )“’ (um\/u )+ @)“”’“
)

242 ( 1+m NG ) (wmw@—am)““’“
)

(1-07)

5 I+-k+z4p—1
26212 (1 + K1) (1—}—/{2)> (tu(1+,§1)> p

" ()

(1 —6%)2

wk+z+pu—1 —(pk+z+1)
t (]_ —|— K,Q
(1- 52

—(pt+k+z4w)
b (1+ K1) b (1+ ko)

(1-6%) (1—6%)

tu(1+ K1) pi tp (1 + ko) p3
k l, k TR ) gt
”y(;u—l— +z+ (1_52) Y H+r+2F+w, (1—62)
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Further simplification results in

TR X 2@ tk+l+wﬂk+z+l+w74r u—l 5k+2z i
Fron (o) = [ 33w (1= )8 (/Fz = 8/
0

2z+k

(1 . 62> 2k+22+1+w—1

VA= 0m) " (nt k= 1) (20 - 2),
Rl (p+k+ DT (p+k+w) T (p+k+2)

—ut
X exp {m (/‘il + Ro — 2(5«/%1/‘?2)}

tu (1 i tu (1 3
“ (HHM%)W(MHW,%> p

= 7§: f: ii W) RO (= 1) (4 k — 1) (20 — 2), (1 — 8o+

ENWT (u+kE+ DT (p+k+w) T (p+k+2)

< exp B <m+@—26m>} (“(““_1_5“@) 2

(- -7
p (v —aym) )" tup? (1 + k)
><< (1—62) ) 7<l+k+z+u, (1_52) >
Xy <w+k+z+u,wﬁ(_l—;;2)> dt. (4.40)
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4.3.3.2 Moments

The joint arbitrary moments can be found using the jpdf (4.31) as

E[P" By

/ / P1 052 forp, (P15 P2)dp1dpy

777 sy (o e = 1) (L= )Y (1 + k) (L4 k)
3 b 3 =3 [ (Vi — /) (vt — 0y/ma)]"
X exp { 52

- p1 1—|—/-€1)—I—p2(1+/~€2)+/€1+/-€2—2(5\//{1/12}}
u+k‘— 1) (2p —2), <2t5um/)2\/(1 + K1) (1+H2)>
X Iu—l-i—k

k=0 (1-06%)
o 2tppy/1+ g (/R — /1)

p—1+k (1 _ 52)
ST (2“‘ p1V1 = ((@ - ‘W*‘_?)) dtdprdp,

[T T e o A2l (= 1) (1= 697 (1 4 50) (1 + )
11 22 Wt —1
s e o v (o

y +k—1)(2u—2),
EZlwlllT (p+kE+ DT (p+k+w) T (n+k+ 2)

—put —tupi (1 + k1) —tpps (1 + )
xexp{m[m—l—@—%M]}exp{ (1_52) }exp{ (1_52) }

y tupr /I + k1 (VE1 — 64/k2) po 21203 (1 + k1) (VR1 — (5\//{72)2 :
(1-— 62) (1-— 62)2
(VTR (Vi = 5ym) \ " (2203 (Lt k) (Vi = 5vm)” )
(1-6% (1—6%)?2
Stupupa/ T i) (L ra) (2033 (L4 k1) (L4 k) )
- (=) ) ()

Following a method similar to the derivation of the jcdf the joint arbitrary moments are
obtained. Using (2.13), and interchange the summation and integral, it follows that
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n1 pnsl  __ Y OoOOOOW(t)4,u2F(,u—1)(Iu—|—]{;_1)(2M_2)k(1_52)2u—3
E[P"Py?] = ZZZZ///W3k!z!w!l!1“(,u+/<:+l)1”(g+k+w)1“(u+k+z)

n1+1 no+1
XPr P2

X exp { —tup (1) } exp { 113 (1 + k) } (&uplwa TR (Lt >>

(1-6% (1-6%) (1—6%
(T (=) |
1)
(VTR (Vi = 5ym) " (21203 (Lt k) (Vi = 5vm)T )
(1—6%) (1—6%)2
2203 (14 ) (VAT = 0ym)°\| (28203 (1+ k1) (L+ ka)\°
- (- ) ()

CEEEE [ TWOMT (- 1) (it k1) (2u—2), (18"
B ZZZ /// tr3EIWIIT (u+ k+ DT (u+k+w) T (p+k + 2)
(1+/€1)(1+/12)exp{(ngT) (k1 + Ko — 25\/%}} {—t,up%(l-l-/ﬂ)}
X 1 X e D)
o (VA= — 3y/m) (var — 0y/m)]" U=
ni41 na+1 —tpps (1 + kK2) tppi (14 k1) Hhtetut =l
XP1 P2 exp{ (1 — 52) } ( [ — 5 )

( 1— 52 )l+k+z+u+ (tﬂp% 1 T kg >w+k+z+u+"2 -1
tupi (14 k1) 1—6°

w z L2 _ —1+k
X ( L0 T Stppipy (T ) (L 1) |
)

tup3 (1 + ko (1—6%
(o T (R = 5ym) N (e T (v = ay) |
(1- ) (1- )
(P 0+ ) (i = 5 m)*\ " (et (0t k) (R - oy)t
(1—06°)2 (1— 62)2
2% p3ps (1+ k) (1 + o)\
X < (1- 092 ) dp,dpsydt.

Further simplification results in
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s s [ [ ] W (BT~ 1) (u+k— 1) (2u - 2)
B[P P?] = ZZOZZ///W3k!z!w!l!F(u+k+l)F(u+/{:—i—w)F(uI:Lk—i—z)
4422 (1= 0% 7 (1 1) (1+ ko) p ! { —pt }
X =i X eXp § v [k1 + k2 — 20y/K1Kg)]
51 (2 — 3 /) (VT — 6/a)] la-7)

) ( 1— 62 )z+k+z+u+%l—1 ( 1_ &2 >w+k+z+u+%2—1
tpt (1 + ki) tpps (1 + r2)

—1+k —1+k
(/T R) T )\ (o T (Vi — /) \"
(1-067) (1-07)
(/TR (Vi = 5ym) " (2203 (Lt k) (Vi = 5vm)T )
(1-467) (1—0)2
t2 2.2 1 5 2\ ! 2¢2 2 92 9 z
(Pt (L m) (VR = 6y (twplpz(lﬂtm)(l%@z))
(1—06°)2 (10
—tupd (14 k1) | ((tupd (14 my) \ Tt
X exp (1 — 52) 11— 52
—tup2(1+ K o2 (14 Kk wtktztptSE —1
X eXp{ ng_( 52) 2)} ( ,upi(_ 5 2)> dp,dpsydt.

Simplifying the above expression and using (2.1) the following expression is obtained

ot A SR W (T — 1) (k= 1) (20— 2), (1 %) 6+
E[P"P?] = O/ZZZ k!Z!w”!F(,U‘|‘k‘+l)r(,u—|-/€—|—wl;r(,u—l—k‘—|—z)

—pt 2+ 21+ 22+ 2w+3k—1
X exp (1_52> [/ﬁ1+/€2—25\/%]}t
» (u(ﬁ5¢@)2>l+g (Mmam)z)“g
Ty 05
p(l+r)\ 7 (p(d+r)\F
X((l—éZ)) (<1_52>)
><F<l+k:+z+,u+%)F(w+k+z+,u+%)dt. (4.41)
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4.3.4 QOwutage Probability
As before (see Section (4.2.4)), the outage probability is defined, using (4.40), as

°°°° SN gy (o) LT D k1) (20— 2), (1 )t
Fsc(’ﬁ) = W
l{:!z!l!w!F(u+k:+l)F(,u+k:+w)F(u+k:+z)

0 = k:() =0 =0

X exp d — (mlmg—zam)} (’”‘W“_l_(s\/“_?)) ’

(1-6%) (1-0%)
(v — v\ 9 (1t )
x( (1_52) ) <l+k+z+,u191 (1_52)>

v tn(l+ “2)> dt (4.42)

Xy (’LU—I—]{?—I—Z—F,U,I—%W

4.3.4.1 Special cases

Normal case:
Assume the normal distribution weight function (2.35) is substituted in the outage prob-
ability function (4.42), then the outage probability (4.42) becomes,

PR I = ek = 1) (2= 2), (1 o
Foo (¥) = S(t—1 k
s (V) /Z;ZZ k:!z!l!w!F(,u+k+l)F(u+k+w)F(,u—l—k‘+z)
0

—tp p (v/F1 — 0y/ka) a
X exp 1= (K1 + K2 —25\//‘€1/‘€2)} ( (1— ) )
(i —oyr) ) i 9 tp(1+ k)
x( (1—62) ) <l+k+z+u 191—(1_52) )

1
X7y <w+k‘+z+u ﬁM) dt

Uy (1-106?)

Consider the result,

Fsc(f},l‘) = /5($)F50(19,?L‘+1)d1‘

0
= Fsc (9,1).
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Let g=1t — 1 then t = g+ 1, we get that the outage probability is

FSC (19,25) = FSC (19,(]+ 1)

NN ) @ DD = D k1) (21— 2), (1 870t
- O/ZZZZ‘S(Q) KW (i + k+ DT (nt k+w) T (+k + 2)

-9

y (u(%5ﬁ)>w+gv<l+k+z+ Y (Q+1)u(1+m)>

X exp M(mmg—zam)} (’”‘ W“_I_W“_”) ’

vy (1-46%)

9 D p(l
Xy w+k+z+uT<Q+ )i +K2)>dq

Wy (1-6%)

e D =D+ k=1) 2u = 2), (1= 8%)rs" >
R20wl (p+k+ D) (p+k+w) T (p+k+ 2)

=0 w=0

xexp{ ! <m+@—2am>} (“(f__(s‘i)ﬁ))

—~
—_
|
(&%)
[NV
~

V(1 + k)
l k —_
7( MR >

U p (14 ko)

Xy (w—i—k’—i—z—i—ﬂ,@m) . (443)

Note that (4.43) is obtained by substituting the normal distribution weight function in

the elliptical model yields the same result as the case when the underlying distribution is
assumed to be normal (4.18).
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t-distribution case:
Assume the t- distribution (with v degrees of freedom), therefore the weight function (2.36)
is substituted in the outage probability function (4.42). Then the outage probability (4.42)
becomes,

tk+l+wr(u 52)M6k+2z

O EEEE —Dp+k=-1)@p=2),01-
Fso (9) = /ZZZZ R0 (p+k+ DT (p+k+w) T (p+k+ 2)

(_%) exp { ( —t (K1 + Ko — 25\/%)}

1— 6%

» (u%—é%))”g (u(%—éﬁ))w“
(1-07)

U tp (1 + k) Ut (1 + ko)
I+ k —_—— k ——— | dt
”(* T M“ )

52)u6k+22

RS T D E— 1) (20— 2), (1
B O/ZZZZ2§k‘!z!l!w!f‘(,u+k+l)F(u+k+w§T(,u+k+z)F(%)

y (wa‘l—w—z))”é (mﬁ—m))“’“

(1-6%) (1-46%)
x htitwts— exp{ [ ———~ (k1 + Ko — 2(5\/@]}
<l+k+z+ gﬁzl+gl)>v<w+k+z+ g‘EH’?))dt.
(4.44)

Evaluating the integral in equation (4.44) using (2.6) and (2.21), we obtain

/tk+l+w+%—1 exp § —t | 5 = Tt (k1 + iy — 20/rRa)
2 (1-¢%
0

¥ (1 ¥ u(l
Xy <l+k+z+u, M>7<w+k+z+u, m) dt

Uy (1-6%) Uy (167

) w+k+p+z+n

o twt -1

s G

nl(w+k+p+n)

v i V(14 k)
Xexp{—t [5 — (1_52> <H1+H2—2(5\/:‘11/€2)] }’Y <l+k+2+ﬂ,t7—’#1(1_—52;> dt
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[e.e]

/ t2w+2k+l+u+z+n+§ -1

U p (14 k)
[+k t=———= | dt
} ( + K+ 2+ U, ,191 (1_52> >

w+k+p+z+n
—1)" O p(l+r2)
U2 (1 62

oo |
nz:; nl(w+k+p+z2+n)

0

X exp {—t [% — ﬁ (K1 + Ko — 20+\/K1K2)

) w+k+p+z+n

_ 1\ [ 2 p(tss)
1) (m (1-22) I'(n+4+20+ 2w+ 3k+3pu+ 3z2)

s (
B ; nl(w+k+ p+z+n) (I+k+p+2)
I+k+ptz
9 p(+r1)
(191 (162))
9 p(l+k1) v
(19_1!‘(1—521) T3~ (1-62) 5y (K1t k2 — 20 /kiks)

x o F) (1,n+g+2l+2w+3k+3,u+3z;l+k:+,u+z+1;7),

) n+§+21+2w4-3k+3u+-32

9 p(+rky)
91 (1-62)

. Thus, the outage probability is

where 7 = —
("91 p&l 621) +121 (1 52)(H1+H2726\/H152)

[ o INe ol e S BNe o]

vED(— D)+ k — 1) (2 — 2), (1 — §)rg™+>
Fsc (9) = 7
sc (V) > Zw_ 22D (u+k+ DT (u+k+w)T (u+k+2)T (%)

y (u(mfsm—z))l*g (u(ﬁ—5m)>w+2
1-7) -7

w+k z4+n
(_1)n iﬂ(l-ﬁ-nz) I F v _ 12 (FG + Koy — 25 k1R )
92 (1-6?) 27 e M 2 VKE1K2
X

X
Z n(w+k+p+z+n) (l+k+p+=2)

I+k+p+z
29 p(tr1)
<191 (1762) >

Mlte) g s (kg + kg — 20\/RiR)
X o F) (1,n+g+2z+2w+3k+3u+3z;z+k+u+z+1;7),

Zle

(1) T2

) n+5+21+2w+3k+3u+4-32

(4.45)

26 /F1R7)
where ¥ > plr o —20/rika)

(1-0%)
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4.4 Weight approximation function

An expansion for the jedf (4.40) is given, based on the assumption that the weighting
function admits the expansion. For the weight function (2.37), the outage probability
(4.42) becomes,

IS () B = D k= 1) (2= 2), (1 07
Foe (9) = /ZZZZ<ZW> W (p+k+ DT (p+k+w) D (u+k+ 2)

—tu H (\/”f_l - 5\/’?2) -
X exp (1 _ 52) ["‘fl + Ko — 25\/ "‘3152]} ( (1 — 52) >
(i — sy " 9 tp(1+ k)
x( 1—(52) ) <l+k+z+u§1—(1_52) )

1
X7y <w+k+z+u ) M) dt

T (1— %)

OO (= (ot k1) (2 — 2), (1 82)rah
; (M%—W))”’ﬁ (mm—am)”“

(1-07)
th+l+w+j exp {(1__752 (/{1 + K9 — 25\/,‘{1%2)}
+ 1

)
7<l+k‘+z glzfl+/31)>7<w+k+z+ i%)dt(é%)

Evaluating the integral in equation (4.46) using (2.6) and (2.21), we obtain

[e.o]

/tk+l+w+j exp {_ﬁ (K1 + Ko — 25\/%)}

0
I p(l+ k) , 9 p(L+ ko)
I+ k _ k ——— | dt
<+ + 2+ u,t 191 (1_52)>’y<w+ +z+u,t 192 (1_52)

1y (e

_ /Z A+
—~ nl(w+k+p+n)
0o "=

t 91+
xeXp{—(l _#62) (/{1—#/{2—25\/,‘{1/{2)}7<l+k;_|_z_|_,u ﬁllu(g_(;;;))dt

) w+k+p+z+n
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o0

> w+k+p+z4+n
/ t2k+2w+u+l+z+j+n

9 p(l+rk2)
_]-) <192 LEI 622

o
; nl(w+k+p+z+n)

0

xexp{—ﬁ(mjt@—%wml@)} (l‘i‘k—l-z—i—u,tﬁM) "

Uy (1-6%)
o (—1)" 9 p(itr2)

B Z V2 (1-6%) L Bk+2w+2u+20+2z+j+n+1)
= al(wrk+ptzan) (I+k—+pu+z)

I+k+ptz
O p(l+r1)
V1 (1752)

) 3kt 2wt 2t 20+ 22ttt 1
9 u(l+
(ﬁ_lzl 521) o (1_%2) ("il + Ry — 20y “1"{2))

(

X oFy (1,3k+2w+2u+2+2z+j+n+114+k+p+z+1;m7),

) w+k+up+z+n

(£45) o
where ™ = ( Thus, the outage probability is

1+k
1;91%1)_ = 52)(”1+“2 %me)

Fsc (V) = ZZZ - al'(p—1)(p+k—=1)2n—2), (1_52)% 192,

=0 k=0 (=0 w=0 j « KNIl (p+ k+ DT (p+k+w) D (p+k+2)

() ()

™

) w+k+p+z4+n

X

(_1)” B p(ltka)
XZ 2 (1-62) FBk+2w+2u+20+2z+j7+n+1)
—~ nl(wt+k+p+z+n) (l+k+p+2)

I+k-+putz
9 pd4r1)
U1 (1—62)

( ) 3kt 2w+2pt+2l+22+j+n+1
9 p(l+
<19_1M(1;1) _ (1f62) (/{1 + K9 — 25«//431/432))

X oFy (1,3k +2w+2u+ 20+ 22+ j+n+Ll+k+p+2z4+1;m),

X

(4.47)

where |7| < 1.

4.5 Performance Measures

Following a similar approach as Villavicencio, et al.,(2016) [33], the bivariate k — u type
model is introduced. Graphical displays of (4.31) for special cases ((2.35) and (2.36)) are
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shown below for ;1 = 0.5 and k1 = k3 = 5, on left and = 2 and k; = k3 = 1, on right.

Figure 4.5.2 shows the t-distribution case, where v = 3 degrees of freedom were
considered.
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The following figures illustrate the impact of the bivariate k — p -type distribution
in the context of outage probability where the two cases of the elliptical model, namely
normal distribution (2.35) and t-distribution (2.36) is considered. The effect of assuming
the t-distribution as the underlying model is visible in Figure 4.5.3 and Figure 4.5.4 where
the t-distribution outperforms the normal distribution. In the study of [11] it was shown
that superior performance in terms of increased capacity of the communication system is
observed when considering other distributions than the usual normal assumption.

outage

—— u:2_‘

—— H=4 =— normal distribution
— u:2 =
— p=4 L tdistribution
c— u:s .

Normalized power

Figure 4.5.3 shows the outage probability for k; = ko = 2 and d = 0.5 for the normal
case and t-distribution with v = 3 degrees of freedom.

outage

— K1=Kk2=2

— K1=Kk2=3 normal distribution
—_— K1=K2=5

— K1=k2=2

— Kk1=k2=3 t distribution

— K1=Kk2=5

. L . . L Normalized power
77 1 2 3 4 5 ‘

Figure 4.5.4 shows the outage probability for 4 = 2 and § = 0.5 for the normal case and
t-distribution with v = 3 degrees of freedom.
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Chapter 5

Composite models

5.1 Introduction

Composite models are used to account for the simultaneous presence of fading and shad-
owing (see Section 1.2.2). Shadowing can be incorporated in multipath fading models
in various ways. The x — pu shadowed fading model proposed by Paris (2014) [23] as-
sumes the xk — p distribution for the multipath fading and the Nakagami-m distribution
for the shadowing. Right after Paris (2014) [23] in an independent work Cotton (2015)
[7] proposed the same model. Figure 5.1 illustrates the physical model that motivates the
development by Cotton (2015) [7] where shadowing events are caused not only by local
environment but also by the user’s body. The x — pu shadowed fading distribution relies
on a generalization of the physical model for the x — p distribution presented by Yacoub
(2007) [35]. The xk — u shadowed fading distribution has been derived assuming that the
signals are structured in clusters of waves propagating in a nonhomogeneous environment.
The k — ;1 model Yacoub (2007) [35] assumes a fixed dominant component within each
cluster whereas, the x — p shadowed model assumes that the dominant components of all
the clusters can vary randomly as a result of shadowing.

- —

Reflected and
Scattered
Waves \ ~

Surface

Wave
Diffracted .
User —— et Cellular

Equipment e Network

Base Station / @
Evolved Node B o S

Shadowed

/ Region

LOS Signal
Path

Figure 5.1: Illustration of structures associated with shadowing [7]
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This chapter is organized as follows. In Section 5.2 the x — p shadowed fading model
is characterised in terms of measurable physical parameters. The pdf of the SNR and the
statistical properties of the k — u shadowed fading model will receive attention in Sections
5.2 and 5.3, respectively. The x — p type shadowed fading model that emanates from
the elliptical assumption will be derived in Section 5.3; followed by Section 5.4 where the
outage probability under the different members of the elliptical model will be compared.

5.2 The k — i composite distribution

5.2.1 Description

Let X; and Y; be mutually independent normal processes with F (X;) = E (Y;) = 0 and
var (X;) = var (Y;) = o2 Then the envelope, R, of the physical model for the k — p
distribution can be written in terms of the in-phase and quadrature components of the

fading signal as

W=R*= Z(Xi+§pi)2+2(yi+f%)2, (5.1)
i=1 i=1
where &p; and £q; are the mean values of the in-phase and quadrature components of the
multipath waves of cluster ¢+ and n is the number of clusters of multipath, i.e.

Define £26% = > (SQp? + §2qi2) to represent the mean power of the dominant compo-
i=1

nent where we assume ¢ to be a Nakagami-m random variable with shaping parame-

ter m and E (¢?) = £ For given € let X; ~ N (0,0%) and ¥; ~ N (0,0%), thus

(Xi+&pi)) ~ N (&piyo?) and XF = (%ﬂ) ~ N (%2,1). Therefore (X7)? follows

2
a Xiﬁﬁ (1) with non-centrality parameter 50222. Similarly, for given £ let Y;* = (%i)

2
2.2
gqi
2

and (Y;*)* follows a X%ﬁi (1) with non-centrality parameter =—+. As a result for a given

o2

242 2,24 242 )
£ gpla#. The focus is to

2
£, % follows a X%ﬁi (2) with non-centrality parameter - =

-2
derive the pdf of the power of the fading signal.

5.2.2 Derivation

For the given model (5.1), the pdf of the power, given the shadowing amplitude &, follows
a k — u distribution with pdf (see equation (3.5))

fwe wl9) = 57 (352 7 o {—M} e (SvE). 6

202 202
where w > 0.
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From (5.2) and (2.32) the unconditional pdf of the power is then obtained as follows

fr (w) = / Fue (wl€) fe (€) de

71 o w + €252 ¢
-/ T(%s) p{‘%}f (ﬁﬁ’)
0
2m™

m— mg”
T 16Xp{_7}d5
m™ w\ T w r m—n
T 22T (m) (?) e}q){_?}/52
0

52 4]
oofre (o3} ()

Using (2.22), the unconditional pdf of the power is

n—1

m" w\ 7 WY gy (S0
W = g (7)) ee{amr (%)

2m—n+14n—1
AN 2
X —_— R
(202 * 0 )

2m—-—n+14+n-1)
2 Y

(2m—n+14+n—1)
{ n—i+1 ]
()
4 (5 5)
o m™T (m) w1 Cw
E (202)" 0™ (m) T (n (5—22 + %)m exp{ 20 }

20

x 1Fy

n—14+1;

5w
4 (22
4o (W + %)
As before, define the parameter x = 2;5;“ to be the ratio between the total power of
the dominant components and the total power of the scattered waves (see remark 3.3).

Replace n with p and let €2 represent the normalized power for the fading channel then
Q= where w = E(W) = 6>+ 20%u = 20%u (1 + k) (see (3.8)). Thus, the pdf (5.3)

X 1F1 m; n, (53)
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can be written in terms of x and p as follows

o m™T (m) (wm)"~ oy | W0)
fo (w) (202)" 0T (m) T (1) (M_I_%)m p{ 202 }

202
2 —
« By [m (202uf)( w)
o2 Uk
404( 53 )
_ m™T (m) (w(20°p (1 + F&)))” ' (20%u (1 + K)) exp {_ (w(20%1 (1 + K))) }
(202) "L (m) T (1) (25 + ) 20*
w By [m o (20° W@)(@(?G p(1+k)))
o2 k) m
404 ( 553 )
m™ut (14 k)" wh? w2k (14 k) w
= — mexp{—pu(l+r)wh 1F[m;p; —F———2— .
0" (w) (pk + 2) (pr+2)
(5.4)

5.2.3 Characteristics
5.2.3.1 Cumulative distribution function
The cdf of Q is as follows

Zr

m™ut (14 k)" wh? W2r (14 k)w
Fo(Zr) = — mexp{—p(l+r)w} 1F{m; p; ————rt— | dw
0™ (p) (pk + 2) (ue + %)

Zr

m™ k(1 + k)" / 1 w2k (14 k) w

= — e [ W exp{—p (1t R)wh Py | ms S | dw.
07T () (e + )" (s + %)

Using (2.10) the confluent hypergeometric function can be expressed as an infinite series.
Thus, the cdf can be written as

— mm:u# (1 + K’)M ZTwﬂl ex — KR)W
Fo(7n) = e [ e (n ()

s )y (et mw)
Zl!(u);( (ur+ %) )d

i (14 k) (m), (u%(lm))l
=0T (1) (s + %)™ 1 (), \ (s + %)

Zr
X /w““l exp{—p (1 + r)w} dw.
0
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Using (2.20), the cdf becomes

l
_ m" (Lt w)" (m), (s (14 R)
Fq (ZT) = lz_ojemr (,u) (M5+%)ml! (:U’)l ( (M’%—i_%) >
X [ (1 )y (ot L (L ) Zr)

_\ m" s (m), (1 k) Zp) . 5.5
2 TG0 ot ) Gy A2 (59)

5.2.3.2 Moments

From (5.4) the j* moment of the normalized power, €, is
E(Qj) = /wjfg (w) dry
0

st (14 /)M o o
m v exp{—p (1 + k) w}
0T (1) (s + %)

2k (1
By (s AR @)
(e +7)

mmwa+@“‘7;m»
o O\ 1T w exp{—u (1 —F/{)W}
0T (1) (v + %) )

2k (1
w2k ( +/<a)w> .

X 11 (m;,u; (lmij)
0

Using (2.23), the j™ moment is

m™pt A+ k)" U(pt)

B = G () (i + )" (n(1+R))"
uznam))
Xofy |m, p+j; p (%)
) ) ) (M (1 _"_ H))
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5.2.3.3 Amount of fading

The amount of fading is given as (see equation (1.1))

E (92
E(©)
m™ I (p+2) . ) "
() w2 (m A2 M_Ln+%)] 1
= : 5 J—
m™(p+1) Lok
_emF(N)(M:‘i-‘r%)m(u(l—I—n)) 21 (’I’I’L s L ;m—&—%):|

0" (n+1) (us+2)" 25y (m, ft2; u;;f_f—%)

2
mmu[QFl(m, pt1; u;;@‘f—%)]

5.3 The k — i type composite model

5.3.1 Description

Let X; and Y; be mutually independent elliptical processes with E (X;) = F (Y;) = 0 and
var (X;) = var (Y;) = —2¥ (0) . Then the envelope, R, of the physical model for the x—
distribution can be written in terms of the in-phase and quadrature components of the

fading signal as

W =R =) (X;+&m)"+)_(Yi+&a), (5.8)
i=1 i=1
where £p; and £q; are the mean values of the in-phase and quadrature components of the
multipath waves of cluster ¢+ and n is the number of clusters of multipath, i.e.

Define £26% = > (SQp? + §2qi2) to represent the mean power of the dominant compo-
i=1

nent where we assume ¢ to be a Nakagami-m random variable with shaping parameter m

and E (£%) = ¢. Forgiven £ let X; ~ E(0,0%) andY; ~ E(0,0?), therefore from (2.28),

Xi|t ~ N (0,a;) and Y;|t ~ N (0, as) where a; = t 102, Hence, (X; + ép;) | (£,€) ~ N (Ep;, ap)

and X7|(t,€) = (%ﬁﬂ\@,g)) ~ N(éﬂ 1). Thus (X7)*| (£,€) follows a X%, (1)

Jaz’
with non-centrality parameter i—iﬁ Similarly Y;*| (¢,€) = (%| (t,f)) ~ N (%, 1)

£q2
et As a result

and (Y*)?|(t,€) follows a X%z, (1) with non-centrality parameter

at

2 2 2 2.2 2 2
<%| (t,f)) follows a X%, (2) with non-centrality parameter % = %. The fo-

t

cus is to derive the pdf of the power of the fading signal W = " W,.
i=1
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5.3.2 Derivation

For the given model (5.8), the conditional pdf of the power, given the shadowing amplitude
¢, follows a k — u distribution with pdf (see equation (3.23))

fwiwe (W[t &) = L ( - )Tl exp {—M} Iy (6—5\/@ , (59

2045 §252 2CLt a

where w > 0.
From (5.9) the conditional pdf of the power is obtained as follows

fu (wlt) = / fwie (wlt,€) fe (€) de
0

1 = + &6 5
- /2—% (%) exp {_ (w = )}In_l (%ﬁ)
0
2m™ me?
T 1eXp{_T}d5

n—1

m™ w 2 w I m—n
- e () e loat e
0
X exp {—62 (6—2 + ﬂ) } I, 1 (f—(s\/@> dg.
2a; 0 ag

Using (2.22) , the conditional pdf of the power is

n—1

B m™ w\ 7 W ony1a
fwe (wit) = a;0™T (m) (52> exp{ 2at}2

_(@Cm—nitlin—1
(VYT T
Qy 2at 0

2m—-—n+14+n-1)
2

2
n—1+1

[ (2m—n+14+n—1) :|

x 1Fy

n—1+1;

m™ (m) w™!

— (2a,)" 6™T (m) T (n) (5_2+%)mexp{—2—at

2 (82 m
Replace n with p and define the parameter kK = 2t+202u' Let €); represent the con-
ditional normalized power for the fading channel then {; = £t where w; = E(W|t) =

6 42t 0%y =2t 0% (1 + k) = '@ (see (3.26)). Thus, the pdf (5.10) can be written
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in terms of xk and u as

o) = m™T (m) (wtu_)t)”fl ox _(wtwt)
foufe (2a0)" 0"'T (1) T (1) (2522 + )" p{ 2a, }

2(1t

(2a,uk) (wyy) _
af (%4 + )
_ T ) o Qaup (L)) Qage (L4 8)) {_ (we 2ay (1+ ) }
(20,)" 0T (m) T () (Lo + ) 2a,

2a¢

X 1 Fylm;op; ¢

(2a:pk) (Wi 2ap (1 + K)))
o2k m
4af (7(220}; ) + 7)
m™ (14 k)" wf ™!

= PTG (a1 2y P LR e

2k (1
(n + )

X 1 Fy[m; o

w
t—1

Hence the unconditional pdf of the normalized power, 2 = = tw (see section 3.3) is

given by

g

faw) = [ W(2) fa, (wi)dt

m" (14 k)" (tw)

0\8 0\8

= W (t) T () (e )" exp{—p (1 + k) tw}
PR (T4 R)tw
x 1Fy (m T —(;m—l— my ) dt. (5.12)

Particular cases of W (t) in equation (5.12) are focused on since it forms part of the
investigation in section 5.4.

Normal case
Assume (2.35), then (5.12) simplifies to (5.4) .
t-distribution

Assume (2.36), then it follows from (5.4) that

[0 e (<) mr (14 ) (1)
fao(w) = / o (%) 0T () (/m + %)m

Wik (1 + :L) tw i@
(15 + %)

0

xexp{—p(l+r)tw} 1F (m; [
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5.3. The k — p type composite model

B 7 vrm™ut (1 + k)" wh
250"T () T (%) (ur +2)"

t
xt2the 2exp{—m(l +R)w — EU}

2k (1 t
< | F, m;ﬂ;w db
(nr+%)

Using (2.23), the pdf of the normalized power follows as

vam™pt (14 k)H wh v
fow) = ——b . mmr(—+u—1)
220" ()T (3) (e + )" \2
_ E+ -1
X[u(1+/€)w+g] (g+e1)
u(zn(l—&—ff))w
v pr+
X oF; ;= — 1 , 5.13
where w > 0.
5.3.3 Characteristics
5.3.3.1 Cumulative distribution function
The cdf of Q is
77 mMHK)tMM {—p(1+ k) tw}
—wh ™ ex k) tw
9’”1“ ) (ur+ ) P
0 0
1
SR it D LES (5.14)
(ues + %)

Subsequently special cases ( (2.35) and (2.36)) for the outage probability will be derived.

Remark 5.1 For the normal distribution case with weight function (2.35), the outage
probability is given by (5.5) .

Remark 5.2 For the t-distribution case with weight function (2.36), the outage probabil-
ity is obtained as follows:

R (Zg) = /7v(%)§‘1exp (=) mrp (L4 ) e
pr /) o (%) 0T () (ps+2)"

25 (1
xexp {—p (1 +r)tw} 15 m;u;w dtdw.
(s + %)
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5.3. The k — p type composite model

Using (2.10) the confluent hypergeometric function in equation can be expressed as an
infinite series. Thus, the cdf can be written as

Fo(Z7) =

exp{—u(1+/i)tw—2t}
ST (5 07T ) (= )" 2

D\MﬂN

m), [Pk (1+k)t l
XZZ(!M( )dw

71}5 ok ( 1—|—/~€ wh1ppts =2
0
P ,u/i+

:// vimm (1 + )’ (u%(lm)l
) 2T (E) 0T () (ue - 5)" \ (et )

W Pt g2 exp {—t [,u (1+Kr)w+ %} } dtdw.

Using (2.20) , it follows

_ vt (14 K)" p (1))
Fo(Zr) = /l 25T (2) 60™T (1) (s + 2)™ ( (nrs + %) )
—(wtg+1-1)

X T 1F<u—|— +l—1> [,u(l%—/@)wjtg} dw

l
T

()
22T (2) 0™T () (pe+2)" T (p+2+1-1)

241
X h =1 ,u(1+/<l)w+2} (v )dw
!
7§: vem™puk (1 + k)" <’E#'Z(+1;3)>
) 2T () 07T (1) (e + 5) T (p+ 5 +1-1)

—(p+g+1-1)
Xkt {E [—Q'U 1trw + 1] } dw

l
s U%m pﬂ (1 + H)M (%) (%)_(’H_?—H_l)

B /222 90T (w) (px+2)" T (p+2+1-1)

0

—(ptg+i-1
s oHtH1 [2,“(1 + k) w n 1} (b3 )dw.
v
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5.3. The k — p type composite model

Using (2.24) , the outage probability is

(g)—(/ﬁ—%—f—l—l)

I
o VIM™ Pt (14 k)" “”(H”>
r

FQ(ZT) = X v m mem v
;22P(§)‘9 P(N)(Nl‘i—l—g) (,u—|-§_|_l_1)
pt o1t
x =L 2F1(H+E+l—l,p+l;1+u+l;_MZT)
w1 2

(%)*#*Hl mmuu+2l (1+ /-@)“H leéﬁ-&-l
=0T ()T (T (42 +1—1) (s +2)"" (u+1)
2p (1 + k) ZT)

v

v
X oF} (u+§+l—1,,u+l;1+u+l;—

P |
(g)—u—l—&-l mm 2 (1 4 /-@)“H KlZ#fl (1 _ 2y(1+UH)ZT> p—g =i+l

= T ()T (et s +1—-1) (e + 2" (D)

v 2u(1+ k) Zr
F —+0l-1 [;1 l;
<2 l(ﬂ—i_2jL G +M+’2u(1+/<a)ZT—i—v)

(5.15)

5.3.3.2 Moments

From (5.12) the j'* moment of the normalized power, 2, is

E(Y) =
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5.3. The k — p type composite model

Using (2.23), the j* moment is

) 7 u p—1 i
B - /W m,u (1+ k)t I'(n+7)
0

0T (p (;m + %)m (tp (14 k)

PR(+R)
(;Lli+m)

X oFy m,LH'j;u;m dt

= 7W — WS CR)] ,
/ 70T () (e + )" (1 (14 5))’

) dt. (5.16)

XzFl(m,u+j;u; m
MK+
Remark 5.3 Substituting the weight functions (2.35) and (2.36) into (5.16), respectively,

the following expressions are derived.
(i) For the normal distribution from (5.16) the j™ moment is (see (5.6))

m™T (1 + j)y F1 (m, ptgsop ;#,.,ff%>
0T (1) (ks +5)" (n (14 %))

i1) For the t-distribution from (5.16) the j** moment is
(ii) J

E() =

N () e () m"T 1+ J)
#) 0/ 2r' (3) (60T () (s + %)™ (u (1 + 5))’

. K
><2F1(m,u+j;u; = m)dt
MK+

7v%mmf(u+j) 2 F1 <m7 HEJ;p a#_,.if_%)
25T (3) 0T (1) (pe + )" (n (1 + 5))’

0
v t
xt2 772 exp <—%> dt.

vEm™T (p+ j) oFy (m, s MQ@IT_%)I‘(%—j—l)
25T (3) 0™T () (us+ )" (n(L+w)) (2)277
vj“mmf(u—l—j)r(%—j—l) 2 I ("7?7 w7 MQE%)

- - , (517
2 (5) 67T o) s+ ) () 10

Using (2.19),

E() =

where Re (% -7 = 1) > 0.
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5.4 Performance Measures

In this section graphical displays of the composite x — u type model and some performance
metrics will be shown.

The pdf for the normalized power (5.12) is shown Figure 5.4.1 for kK = 2, m = 2 and
Q =1, Figure 5.4.2 for p = 0.5, m = 2 and 2 = 1, and Figure 5.4.3 for k = 2, y = 0.5 and
2 = 1 for both the special cases (normal (5.3), on left, and t-distribution, where v = 3
degrees of freedom was considered, (5.13), on right, respectively).

06
— k=05
0.4 —Kk=2
— K=4
02
1 4 >
Figure 5.4.1
p pow
08
— m=1 et — m=1
06
— m=2 —_m=2
— m=5 — m=5
04
02
2 4
Figure 5.4.2
powt
08
— p=05 0 — py=05
—_p=2 — p=2
— p=4 04 — p=4
0.2
4
Figure 5.4.3

The outage probability (5.14) is illustrated in Figure 5.4.4 for x = 2, m = 2 and
Q =1, Figure 5.4.5 for p =1, m = 2 and 2 = 1, and Figure 5.4.6 for k = 2, 4 = 2 and
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5.4. Performance Measures

) = 1, respectively. Both the special cases normal (5.5), and t-distribution, where v = 3
degrees of freedom is considered, (5.15). For a fixed p, the outage probability for the
t-distribution outperforms the normal distribution as shown in Figure 5.4.4. For a fixed
k, the outage probability for the t-distribution only outperforms the normal distribution
when g (the number of clusters) is large as shown in Figure 5.4.5. Thus, as the number
of clusters increase the assumption of the t-distribution as the underlying model is more
appropriate.

outage

— k=05
— K=2 normal distribution
— K=4

— k=05
— k=2 t distribution
— K=4
Zt
Figure 5.4.4
outage
1L
0.500 F — u=05
— u=2 normal distribution
0.100} — =4
0.050
— p=05
0.010 = — = 2 } t distribution
0.005 e il — pu=4
' - : =
0.001L -5 0 10
Figure 5.4.5
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outage
1k
— m=1
—_—m=2 normal distribution
0.5
— m=5
— m=1
02t —_m=2 t distribution
— m=5
0.1
Zt

Figure 5.4.6
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Chapter 6

Summary and future work

In this mini-dissertation the univariate and bivariate k — u type fading models as well as
the composite xk — u type fading model were developed; these distributions emanated from
the elliptical assumption as the point of departure for the description of the envelope of
the physical model. For each model the basic statistical characteristics and performance
metrics were derived. By assuming the elliptical model various different distributions are
included, but specific the t distribution is focused of this study, since Yacoub (2007) [35]
commented about the inadequacy of tail fitting of some distributions to experimental data
from the communications system domain.

Graphical illustrations accompanied these characteristics of the different models. The
analytical framework that was used (stemming from an integral representation) provides
computationally convenient forms of these distributions (Chu, 1973 [6]; Loots et al., 2013
[3]). By considering the t-distribution as a special member of the elliptical class, it was
noted that the outage probability was lower in most cases. This has a significant impact
on the assumption made by the researcher/practitioner in the communication systems
field.

There are many opportunities for future research based on this study, to name a few:

° In a statistical context the univariate x — p type fading model can be further
explored in terms of fitting this model to a real data case and investigating more char-
acteristics, amongst others the skewness. Similarly for the bivariate x — p type model
the correlation structure needs investigation. The physical contribution in the communi-
cations systems area needs to be investigated, the fit to field measurements in scenarios
in this area, together with the study of other metrics such as the ergodic capacity (see
Garcia-Corrales et al 2014 [12]).

° If the overall fading in a channel is the result of multiple scattering components,
further research can include the assumption that the received SNR of the cascaded channel
is expressed as the product of kK — p type random variables. (See for the gamma case
Shankar, 2011, p 232. [28])

° For the above scenario obtain derive, in a manageable form, asymptotic ap-
proximations for products and/or ratios of independent product of £ — p type random
variables which have pdf and cdf easily implementable and computationally appealing.
(See Marques and Longeville, 2016 [17]; Nicolas and Florence Tupin, 2016 [20].)

° Extension of other models, for example the o — k — p fading model with the
elliptical assumption.
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° For the dependent components (X, Y’) in the bivariate k — u type fading model
the pdf of ratio of the components is also of interest, if X represents the signal power and
Y the interference power.

° Exploring a gamma mixture approach (see Atapattu, et al 2011 [4]) for the
univariate k — p type fading and the composite x — i type fading models, as well as exact
and approximate moment generating functions (MGF') expression for these generalized
fading models (see Salahat, et al 2017 [26])

o The generalised elliptical assumption (see Arashi and Nadarajah, 2016 [2]) can
be assumed as the underlying model for the descriptions in this study.

° Investigate bivariate extensions such as the bivariate x — 1 —lognormal or the
bivariate composite x — i type model, since Reig et al (2014) [25] described the usefulness
of the bivariate Nakagami- lognormal in the assessment of performances in receivers with
highly dynamical environments.

In conclusion, with the elliptical model as the point of departure, this study con-
tributed to the distribution field by proposing new x — u type fading distributions that
may serve as alternatives to the existing models in the literature.
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