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ABSTRACT 

 

Pulmonary tuberculosis (PTB) is internationally one of the leading causes of death from a 

single infectious agent, and South Africa remains in the top 8 countries globally with the 

highest number of new infections. A chest x-ray (CXR) is still the most common radiological 

imaging procedure for PTB screening, diagnosis and monitoring, but it cannot be used as a 

standalone diagnostic tool due to the subjectivity associated with reporting. This can be 

addressed by quantifying digital CXR with tools such as radiomic feature extraction. Despite 

radiomics’ increasing popularity, little evidence exists as to its application in non-neoplastic 

diseases such as PTB. A major limitation in the quantification of non-neoplastic diseases, 

especially from CXR, is the variability in disease segmentation which is the biggest cause of 

irreproducible radiomics outcomes. 

Due to a lack of guidelines on interpolation and other post-acquisition pre-processing 

methods to use in radiomic studies carried out on planar projection x-ray images, a short 

comparative study was conducted in this thesis to determine its influence. It showed that 

image cropping was the only pre-processing step that significantly influenced the constructed 

radiomic signatures. Cropping was therefore carefully applied throughout this study. 

In this thesis a unique sliding window segmentation method was developed to eliminate the 

difficult and time-consuming task of accurate PTB disease segmentation from planar images. 

It was applied as a secondary segmentation, superimposed on a primary automatic lung 

segmentation, that divided the entire lung region into uniform windows that overlapped while 

sliding over the CXR in both image dimensions. When radiomic features were extracted from 

each sliding window, it allowed the distribution of the features across the lung region to be 

evaluated.  

The introduction of the secondary segmentation caused a significant increase to the 

dimensionality of the data which has not yet been encountered in any previous radiomic 

study. This necessitated thorough investigation of various statistical methods and 

dimensionality reduction and model construction algorithms. Correlation analysis (with a 0.8 

cut-off value) proved to be the most robust method for dimensionality reduction in this study 

and it allowed the development of a reproducible PTB signature consisting of 11 texture 

features. This signature was used for the construction of a Random Forest radiomic model 
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which achieved good classification accuracy (AUC=0.9444 (95% CI, 0.8762; 0.9814)) for 

normal chest x-rays and PTB cavities. 

To evaluate the change in the radiomic features over time, using serial images of the same 

patient, radiomic signature parameter maps were constructed using a unique approach of 

spatial mapping. For this the radiomic features extracted from each sliding window were re-

distributed into the x- and y-coordinates in a two-dimensional matrix corresponding to the 

sliding window coordinates. These signature parameter maps accurately mimicked and 

highlighted the disease pathology on the radiological images when some image formatting 

methods were applied.   

Further dimensionality reduction methods were applied to consolidate the signature 

parameter maps to radiomics scores. The change (baseline to first follow-up CXR) in these 

scores was compared to the change in its corresponding radiology- and clinical scores 

calculated using existing algorithms. A strong correlation (0.22 (p-value = 0.02)) was found 

between the radiological and the radiomic scores that were statistically significant. This 

showed that the developed radiomic scores were able to quantify the change in the disease 

characteristics as seen from digital CXR of patients diagnosed with PTB.  

In this thesis three different outcomes were therefore achieved when radiomic feature 

extraction was applied to chest x-rays. Firstly a model was developed that can automatically 

differentiate normal CXR from CXR with PTB cavities, which could improve the accuracy of 

CXR reporting currently regaining prominence as a high-volume screening tool. Secondly, 

signature parameter maps that showed a strong correlation to the lung pathology were 

constructed. This might be valuable as a quantitative supplementary indicator in the 

management of PTB disease and further increase the acceptance of CXR as a tool for 

assessing the TB response in medical research and clinical practice. Finally, a radiomics 

score was constructed that was able to quantify the change in the disease characteristics as 

seen from digital CXR of patients diagnosed with PTB. This radiomic score analysis of serial 

x-rays taken while patients receive TB therapy has the potential to be a quantitative 

monitoring tool of response to therapy. Radiomics was therefore successfully applied in this 

study to quantify the characteristics of PTB from chest x-rays.  
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CHAPTER 1 

 

Introduction 

 

Images are more than pictures, they are data. Digital images are two- or three-dimensional 

matrixes consisting of hundreds, to thousands, of discrete spatial elements called pixels or 

voxels. In planar images each pixel contains quantitative information regarding the visual 

intensities present during acquisition of the image. When the inter-pixel relationships of the 

quantitative pixel data are studied an entire new dimension of information is uncovered. This 

exposes image information invisible to the human eye which is extremely advantageous in 

medical image interpretation and processing. Digital imaging and the current developments in 

computer science allow radiological image interpretation to evolve from subjective reporting 

to an objective science, and from being primarily a diagnostic tool to being a significant role 

player in personalized precision medicine.  

This study utilized these developments and combined them with a unique segmentation 

method in radiomic feature extraction to quantify the characteristics of pulmonary 

tuberculosis as imaged using digital planar chest x-rays. 

 

1.1 Tuberculosis is an epidemic  

According to the World Health Organization (WHO) tuberculosis (TB) is one of the top ten 

causes of death worldwide, and the second leading cause of death, after COVID-19, from a 

single infectious agent.1 Early and accurate diagnosis and proper disease management is key 

to fighting this global epidemic.   

The World Health Organization launched an initiative called “The End TB Strategy” by 

2035.2 One pillar identified to achieve this strategy, is to intensify research and innovation for 

the rapid development of new high-impact tools that can dramatically change TB prevention 

and care.2 Unfortunately TB is not usually classified as an international focus area for 

medical research as this disease is not common in the world’s most powerful countries (e.g. 

In 2021 only 2.9% of all global TB incidences were reported in the America’s and 2.9% in 

Europe).1  
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1.1.1 Tuberculosis diagnosis 

Diagnosis of TB disease is usually done when a person presents with symptoms suggestive of 

TB using a combination or biological and radiological methods.3 Biological methods, 

polymerase chain reaction (PCR) technologies and culture conversions, are considered the 

gold standard for diagnosing pulmonary TB (PTB).3-4 Digital radiography is a radiological 

tool used for PTB diagnosis,3 with a posteroanterior (PA) chest x-ray (CXR) as standard 

orientation.4 Although CXR has long been accepted as a definite indicator of TB disease,5 it 

must still be used in combination with other diagnostic tools as the radiological abnormalities 

in PTB is not definitive. Many other diseases may mimic radiological PTB findings and this 

makes diagnosis from CXR alone impossible.6  

 

1.1.2 Tuberculosis prognosis and monitoring 

Patients on PTB treatment are monitored clinically, bacteriologically, and often 

radiologically. Biological methods are currently used as the gold standard biomarker for PTB, 

with sputum culture-confirmed smear conversion (positive to negative) the most widely 

accepted biomarker used to predict a relapse-free cure of PTB.7 Negative smear results allow 

patients to change onto the continuation phase of treatment, else another 2 months of the 

intensive treatment phase is followed.3 The only other biomarker endorsed by the WHO is the 

detection of DNA in sputum, but this is only for limited use.8 TB biomarker research remains 

a high priority and an active research field.8  

The search for trusted radiological biomarkers is also yet to be achieved. CXR are currently 

used as a subjective and qualitative tool to assist in the management of PTB. CXR are 

typically reported on as either “better” or “worst” than the previous CXR. Literature suggests 

that a scheduled follow up CXR be taken after the 2 month intensive phase of treatment and 

visually compared to the initial CXR taken at diagnosis.4 With an improved CXR and a 

negative culture at 2 months into treatment, patients may be allowed to start with the 

continuation phase of treatment.4 It is also recommended that a CXR be taken at completion 

of treatment to establish a new baseline.4  
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1.1.3 Imaging of pulmonary tuberculosis 

CXR remain the most common radiological imaging modality, even though more 

sophisticated 3-dimensional (3D) imaging modalities are available.9-11 CT and PET/CT do 

provide superior clinical information to digital radiography (DR) because CT produces 3D 

images with no superimposed anatomy and PET images provide additional metabolic 

information. CT has a sensitivity of almost double that of CXR in detecting cavities, and is 

often used as complimentary imaging where resources are available.4 The radiological 

manifestation of typical TB disease is however somewhat different on CT than on CXR.12 

Unfortunately 3D imaging resources are not widely available in developing countries and are 

therefore not considered as standard of care for TB diagnosis in these countries. Research has 

however proven that CXR are a very effective diagnostic modality as it yields high sensitivity 

and moderate to high specificity.9 But since the abnormalities noted in TB imaging are not 

definitive, it reduces the specificity in all imaging modalities.2 

Fixed bucky x-ray units should be the modality of choice when acquiring a CXR for PTB 

diagnosis. Some instances where this is not possible, e.g., in remote areas where bucky units 

are not available, or when a patient is confined to the ICU, mobile x-ray units with somewhat 

inferior image quality, are used.  

 

1.1.4 Radiological manifestations of PTB 

Pulmonary TB causes a wide variety of pathological changes in the lungs which lead to 

protean radiological manifestations. Primary PTB generally demonstrates radiologically as 

cavitary lesions (or cavitation) (figure 1a), pleural effusion (figure 1b), pericardial effusion, 

Miliary opacities (figure 1c), Ghon’s complex (figure 1d), consolidation or Hilar and 

mediastinal lymphadenopathy (figure 1f).4,6 The last being the most common radiological 

manifestation as seen in 83%-96% of paediatric and 10%-43% of adult primary PTB cases.4 

Various other radiological findings on CXR, such as infiltrate, may also indicate active PTB 

in patients who are not immunosuppressed (with high CD4 counts).4,6 The radiological 

manifestations are however more complex in patients who are HIV-positive because the 

normal immunological response to TB is not present in these patients who are 

immunosuppressed.13 The initial radiological features of postprimary PTB are broadly 

categorized as parenchymal disease with cavitation, consolidation, airway involvement, 
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pleural extension and other complications.13-14 Inactive TB again may have some other 

radiological presentations.  

  
(a) (b) 

 

 

 

 
(c) (d) 

 

 

 

 
(e) (f) 

Figure 1: Chest x-rays showing various radiological manifestations of pulmonary TB (a) Cavitary 

lesion on the upper left lung post-primary pulmonary TB (b) Dense opacity pleural effusion in the 

lower left lung of primary pulmonary TB (c) Bilateral diffuse miliary opacities of primary pulmonary 

TB (d) Ghon's complex of active TB (e) Dense homogenous opacity in right, middle and lower lobe 

(f) Bilateral hilar adenopathy of primary pulmonary TB.14 
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1.2 Physics of x-ray imaging 

Radiological imaging is a non-invasive technique used to obtain anatomical information from 

inside the human body. Projection imaging is a two-dimensional (2D) superimposed 

representation of the 3-dimensional (3D) tissues lying between the x-ray source and the 

detector.15 This leads to significant loss of image contrast, loss of all depth information and 

leads to ambiguity of relevant sizes of objects at different depths in the image.15 There is 

therefore some uncertainty as to the exact spatial position of the anatomical information 

captured in each pixel, but this can be minimized by using large SIDs (source-image-

distances) which reduces the relative magnification artifacts, and by using standard 

orientation and patient positioning procedures for all chest imaging of all patients. Another 

disadvantage is that objects of different depths are directly overlayed and it can be 

challenging to distinguish one from the other.15 Some of the advantages of x-rays are that it is 

relatively inexpensive, fast and a good indicator of severity.5 Digital x-rays also allow the 

radiologist to interpret the disease while the patient is onsite and can immediately refer the 

patient for further consultation and disease management as necessary.5 

 

1.2.1 Quantification of images 

In digital projection imaging, images are acquired by passing low energy ionizing radiation 

(x-rays) through a patient and detecting the transmitted energy on a solid-state detector after 

it exits the patient.15 The intensity of the energy that exists the patient is stored to a 2D image 

matrix of pixels as grayscale values,16 and is an indication of how much was differentially 

absorbed in the patient. It thus carries information about the attenuation of the original x-ray 

beam, and this can be related to the anatomical structures and pathologies within the patient. 

Pixels are therefore the discrete spatial elements (usually square elements) that are displayed 

as an image and stored as an image matrix. The size of the matrix is defined by the number of 

columns (M) and rows (N) of pixels and can mathematically be expressed by Equation 1 

where the matrix is a function of f(i,j) where i and j indicates the spatial position of the 

elements.  

𝑓𝑖,𝑗 = [

𝑓0,0 ⋯ 𝑓0,𝑀−1

⋮ ⋱ ⋮
𝑓𝑁−1,0 ⋯ 𝑓𝑁−1,𝑀−1

]                                                       [Eq. 1] 
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The spatial resolution of an image depends on the size of the pixels and is defined by the 

number of line pairs per millimetre (lp/mm).17 An approximate resolution for digital 

radiography is 4 lp/mm with 2.5 lp/mm the limiting spatial resolution.17  

The value of the grayscale level (e.g., shades of gray) is calculated using Equation 2 where n 

is the bit depth. For example if an image has a pixel bit depth of 8, the grayscale values will 

range between 0 and 255 since each pixel is represented by a one 8-bit byte (28 = 256) in the 

computer’s memory.16 In this case pixels with values close to 0 represents structures with less 

attenuation to the beam (e.g. lung) and pixels with values close to 255 represents structures 

with more attenuation to the beam (e.g. calcifications).16 These numerical grayscale values 

are being used to quantify images and form the basis of all quantitative image processing 

studies. Planar DR images are typically produced with bit-depths of 10 or 12.15 

𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 𝑙𝑒𝑣𝑒𝑙 =  2𝑛    [Eq. 2] 

To enhance certain features on images and to assist humans with interpretation, many image 

post-processing algorithms have been developed.15 Some of these processing algorithms 

include image filtering, noise reduction, and edge/feature enhancement within an image.15 It 

is important to note that image processing cannot increase the amount, or quality, of data 

available in the image, but it can only use mathematical algorithms to remove information.15 

Post-processing is therefore always at the cost of loss of information, but is considered 

advantageous as the enhanced features are more easily visible and contrast is improved, 

allowing certain objects of interest to be more easily identified.  

 

1.2.2 Image formats 

The data stored within the image matrix of medical images can be stored in various image 

formats, e.g., jpeg, png, nrrt, tiff and DICOM (Digital Imaging and Communications in 

Medicine), but DICOM is the medical imaging standard.   

Most image formats, e.g., png, store data in an RGB-mode.  RGB-mode has 3 channels per 

pixel, one for red, one for green and one for blue, and thus each pixel takes 3 bytes of storage. 

Images can also be palletised (have a P-mode), where only the index into the fixed colour 

palette is saved. For example, an 8-bit image therefore have only 256 different colours and 

each pixel only requires 1 byte of storage. The advantage is that these pictures only require 

1/3rd of memory space, compared to RGB-mode, but the limited number of unique colours 

can cause artefacts or banding. An L-mode image (or scalar image) is a single channel image 
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where only the luminance is stored and is normally interpreted as a grayscale. DICOM 

medical images are scalar images. 

The biggest difference between DICOM and most other image formats is that a single 

DICOM file contains both a header as well as all the image data in various dimensions.18 

Other image formats save the header and the data in separate files. When DICOM images are 

used for data processing or image quantification it is essential to change the corresponding 

header group element with the image data. This dual processing makes DICOM images an 

unpopular format for image processing. Currently png or jpeg formats are the most popular 

image formats for image processing and for developing machine or deep learning models.  

 

1.3 Radiomics Overview 

The term ‘radiomics’ was first introduced in medicine in 2012.19 Radiomics (as applied to 

radiology) is a field of medical study that has the potential to extract large amounts of 

quantitative features from medical images.20 This multi-step process makes use of statistically 

based imaging analysis algorithms to identify image features which can be used to quantify 

disease characteristics.20 This feature extraction tool therefore allows medical images to be 

converted into minable high-dimensional data.21 Radiomics had its origin in the medical field 

of oncology,21 and numerous articles have been published on the use of radiomics in tumours, 

but very few on the application in non-neoplastic diseases such as TB.22 Chapter 2 is a 

thorough literature review on the literature currently available on the application of radiomics 

explicitly for the purpose of diagnosis, differentiation from other pulmonary diseases and 

disease management of PTB.  

Radiomic features can be categorized into subgroups namely; shape-based features, first 

order statistical features, second order statistical features and higher order statistical 

features.23 Shape-based features (morphological 2D and 3D features) describes the 

geometrical properties and shape of the ROI.23 First order statistics describe the value and 

distribution of a group of pixels without concern for spatial relationships.23 Second order 

statistics describe the textural features and are calculated by the statistical inter-relationship 

between the pixels in the ROI.24 Second order statistics include five feature classes namely, 

Gray Level Cooccurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray 

Level Size Zone Matrix (GLSZM), Neighbouring Gray Tone Difference Matrix (NGTDM) 

and Gray Level Dependence Matrix (GLDM).24 These second order features are derived by 
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first applying one of the aforementioned algorithms to the original image matrix before 

applying first order statistics to the modified image matrix. These features provide a measure 

of the spatial arrangements of the pixel intensities and are influenced by various variables 

such as the pixel size and image orientation.23  

For example, GLCM features quantify the incidence of pixels with same intensities at a 

predetermined distance along a fixed direction. GLRLM features quantify consecutive pixels 

with the same intensity along fixed directions.23 GLSZM features quantify gray levels zones, 

which is the number of connected pixels that share the same gray level intensity, in an 

image.25 NGTDM features quantify the difference between a gray value and the average gray 

value of its neighbours within a specified distance.25 GLDM features quantifies the number of 

connected pixels within a specified distance that are dependent on the centre pixel.25 Figure 2 

is a graphical representation of the how the second order image matrixes are derived. 

  

    
(a) (b) (c) (d) 

Figure 2: Graphical representation of an original 4 x 4-pixel image with four grayscale intensities (0, 

1, 2 and 3) indicating the relationship of pixels that will be considered to calculate each of the second 

order gray level matrixes. a) GLCM with co-occurrence in 1 direction, b) GLSZM with size zone of 4 

pixels, c) GLRLM with run length of 3 pixels and d) NGTDM at 1 pixel distance with 8 neighbouring 

pixels. 

 

Higher order statistics are obtained by applying filters or mathematical transforms to the 

image first before applying statistical algorithms. The purpose of these mathematical 

transforms is to identify repetitive- or non-repetitive patterns, to suppress noise or to highlight 

features.23 Details on the specific features and the mathematical and statistical equations of 

these different feature classes can be found in literature.24 

Figure 3 is the recommended radiomics workflow and image processing scheme as suggested 

by the Imaging Biomarker Standardization Initiative (IBSI).26 Depending on the specific 

imaging modality and purpose, some steps may be omitted, e.g. data conversion is not 

required for planar images. The region of interest (ROI) is explicitly split into two masks, 

namely an intensity and morphological mask.26 Feature calculation is expanded to show the 

different feature groups with specific pre-processing required.  

1 1 1 3

1 2 3 0
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1 0 2 3
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Figure 3: Radiomics workflow and image processing scheme as suggested by the IBSI.  

(IH: intensity histogram; IVH: intensity-volume histogram; GLCM: grey level cooccurrence matrix; 

GLRLM: grey level run length matrix; GLSZM: grey level size zone matrix; NGTDM: 

neighbourhood grey tone difference matrix; NGLDM: Neighbouring grey level dependence matrix; 

GLDZM: grey level distance zone matrix.) 

 

Every step in a the multi-step workflow of radiomics can influence the results and 

reproducibility.27 To address this, the IBSI aims to standardize image biomarker 

nomenclature and definitions to standardize image biomarkers extraction.26 The IBSI 

guidelines were adhered to where possible during this study.  

 

1.3.1 Radiomic libraries 

Many open source and commercial radiomic libraries are available for feature extraction for 

example; Matlab, MaZda, LIFEx, PyRadiomics, and IBEX.28 PyRadiomics is one of the most 

popular libraries,29 and will also be used for feature extraction in this study. It is an open 
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source radiomics library/toolbox developed by a team from Harvard Medical School. It is 

written in Python which is a common language in scientific computing. PyRadiomics is 

divided into two sections; Engineered features and Deep learning methods.24 In this study 

only the engineered features will be used for the quantification of PTB features from x-rays. 

Pyradiomics can extract up to 1500 features per images. These consists of shape-based 

descriptors and other features extracted from original and derived images. Derived images 

can be obtained by applying various Laplacian of Gaussian filters with 5 sigma levels with 1 

level of Wavelet decompositions yielding 8 derived images.24 Images can be derived using 

Square, Square Root, Logarithm and Exponential filters or Gradient and Local Binary Pattern 

(2D or 3D).24 When no filters are used, the number of available features are reduced by 

approximately 1/15th.   

Since naming standardization is still lacking in radiomics, the feature descriptions in this 

study all correspond to the features available for extraction in Pyradiomics, as suggested by 

the IBSI.26 

 

1.3.2 Limitations of radiomic feature extraction 

Quantitative radiomics feature extraction poses many challenges and limitations. Many of 

these challenges will be discussed in the chapters to follow, but possibly the biggest 

challenge is that the number of possible features available to extract are often more than the 

number of patient images. This requires careful feature selection and dimensionality 

reduction to avoid overfitting.30 Another challenge is standardization in radiomic studies as 

there are many different open source radiomic libraries available, all with slightly different 

functionalities.30 The IBSI addresses many of these issues and compliance to these standards 

are of utmost importance to develop reproducible and robust radiomic signatures and 

models.26 Lately research also focuses on the standardization of radiomic features not only on 

developing radiomics nomograms and models.31  

In theory radiomics can be applied to any field of medicine that can be imaged, but planar 

images, with its own set of limitations, are still an uncommon imaging modality for radiomics 

studies. A few research groups for example do focus on the quantitative assessment of breast 

cancer from Mammograms using radiomics.32 Mammograms are also 2D medical images and 

are subjected to the same superimposed limitations as CXR, with the exception that breast 

cancer presents as masses, while PTB is a non-neoplastic disease. Planar radiomic feature 
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extraction was also applied in a few recent studies published on the use of radiomic feature 

extraction from CXR in COVID-19 diagnosis.33-34 This proved that, even though still 

uncommon, radiomic feature extraction can be successfully applied to study non-neoplastic 

diseases from CXR.  

Many of these limitations and challenges still need to be addressed before radiomic feature 

extraction can be considered as standalone tool in the clinical environment. Regardless of 

this, image-derived information is expected to soon have a significant contribution as an 

integrated component in personalized medical treatment.30  

 

1.4 Description of study 

 

1.4.1 Patient selection 

This is a retrospective study and used images, with their corresponding clinical data and 

radiological data, collected by researchers at the Perinatal HIV Research Unit (PHRU) based 

at the Chris Hani Baragwanath Academic Hospital, Soweto, South Africa, for other clinical 

TB research studies. 

 

1.4.2 Hypothesis 

First order and textural radiomics features can be used to develop a radiomics signature from 

digital chest x-rays to quantitatively determine the textural changes and locality of the 

radiological manifestations of PTB. These features can then be used, in combination with the 

clinical data and radiological reports, in longitudinal studies to quantitatively measure disease 

status over time.  

 

1.4.3 Assumptions 

For this study, the following assumptions were made: 

i. All radiological CXR reports were accurate 

ii. All CXR received were in the original DICOM format without any post-

processing applied 

iii. All CXR were acquired with standard imaging protocols using an SID of 180 cm 

with the patient positioned close to the detector 
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1.4.4 Aims and Objectives 

The aim of this study was to quantify clinical image characteristics of PTB from digital chest 

x-rays and to evaluate the time-course changes of these quantified features.  

This study comprised of 4 objectives: 

i. Describe and perform quantitative feature extraction of clinical TB characteristics 

from chest x-rays using a novel secondary segmentation process and radiomic 

algorithms.  

ii. Perform dimensionality reduction processes of the extracted radiomics features to 

develop a radiomics signature that describes PTB characteristics from digital 

CXR. 

iii. Build a radiomics model that can automatically differentiate CXR with PTB 

disease expressions from normal CXR. 

iv. Do time-course analysis, from baseline and follow-up CXR, to test the signature’s 

relevance and application in the monitoring of TB disease response and to 

evaluate the probability of using the developed radiomics signature as an imaging 

biomarker. 

 

1.5 Study overview 

An apparent need has been identified in the literature for a tool that can quantitively monitor 

TB treatment response. Many studies focus on the development of biological biomarkers to 

evaluate this treatment response,35-36 but robust and reliable radiological biomarkers will be 

equally valuable. Chest x-rays are routinely acquired as part of TB diagnosis and in follow-up 

visits, and these large x-ray databases are therefore available at no extra cost. To utilize the 

wealth of information available in these databases the x-rays must be quantified. One such 

tool to quantify medical images is radiomic feature extraction. From these statistically based 

imaging analysis algorithms signatures and models can be developed that may address unmet 

clinical needs or compare it’s performance to that of radiologists.37 Figure 4 is a schematic 

overview of the study and the detailed workflow charts can be found in Annexure 3.  
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Figure 4: Schematic overview of the workflow followed in this study.  

 

In chapter 2 of this thesis a review study, that followed a formal systematic review strategy, 

was performed to identify the research that has been done to date on the use of radiomic 

feature extraction on PTB diagnosis and disease management. It revealed a large gap that 

exists in current research studies to apply radiomic feature extraction to quantify TB 

characteristics. It also provided evidence that feature extraction is primarily applied to 3D 

images, and mostly to segmented tumours. This explained why all available image post-

acquisition processing guidelines were only applicable to 3D images. Chapter 3 was therefore 

dedicated to determining the influence of image pre-processing and interpolation on the 

radiomic features and signatures extracted from 2D images, such as x-rays. The optimal pre-

processing methods for x-rays that was confirmed in chapter 3 was then applied to all images 

in this study going forward.  

Chapters 4 and 5 are original research that focus on the development of radiomic signatures, 

models and scores that reveal meaningful quantitative TB characteristics from digital planar 

medical images. A novel secondary segmentation method was developed in chapter 4 that 
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eliminates the need for precise disease segmentation and that allowed evaluation of the 

spread of radiomic features across the entire lung. Following this segmentation and 

dimensionality reduction, two radiomic models were constructed that performed very well to 

identify PTB cavities from CXR. This secondary segmentation however caused an immense 

increase in the dimensionality of the data. Chapter 4 briefly describes the mathematical and 

statistical processes followed during dimensionality reduction and model construction to deal 

with this increased dimensionality of the data.  

A radiomics score was developed in chapter 5 to address the need identified for a quantitative 

tool that can assist in the management of PTB. In this chapter radiomic signature parameter 

maps were also created that showed excellent qualitative correlations to the images. These 

parameter maps can be used, not only as a visual tool enhancing radiological features, but 

also as a quantitative tool to assist in CXR reporting and especially in disease management. 

This can further increase the acceptance of chest x-rays as a tool for assessing the TB 

response in medical research and clinical practice.  

In this thesis various endpoints, signatures, models, scores, and signature parameter maps, 

were successfully achieved by quantifying PTB characteristics from digital CXR using 

radiomics.  
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TITLE: 

Pulmonary tuberculosis diagnosis, differentiation and disease management: A review of 

radiomics applications 

 

SHORT TITLE: 

A review of radiomics in pulmonary TB 

 

ABSTRACT:  

Pulmonary tuberculosis is a worldwide epidemic that can only be fought effectively with 

early and accurate diagnosis and proper disease management. The means of diagnosis and 

disease management should be easily accessible, cost effective and be readily available in the 

high tuberculosis burdened countries where it is most needed. Fortunately, the fast 

development of computer science in recent years has ensured that medical images can 

accurately be quantified. Radiomics is one such tool that can be used to quantify medical 

images. This review article focuses on the literature currently available on the application of 

radiomics explicitly for the purpose of diagnosis, differentiation from other pulmonary 

diseases and disease management of pulmonary tuberculosis. Despite using a formal search 

strategy, only five articles could be found on the application of radiomics to pulmonary 

tuberculosis. In all five articles reviewed, radiomic feature extraction was successfully used 

to quantify digital medical images for the purpose of comparing, or differentiating, 

pulmonary tuberculosis from other pulmonary diseases. This demonstrates that the use of 

radiomics for the purpose of tuberculosis disease management and diagnosis remains a 

valuable data mining opportunity not yet realized.  

  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



20 

 

INTRODUCTION: 

Pulmonary tuberculosis (PTB) is an ongoing global epidemic and has been identified as a 

research priority by the World Health Organization (WHO) and various countries’ national 

health departments.1 Early and accurate diagnosis and proper disease management is key to 

fighting this epidemic. To diagnose and manage PTB clinicians generally use a combination 

of biological methods (such as the Mantoux tuberculin skin test, the tuberculosis (TB) blood 

test or sputum smear tests),2 demographic data and radiological methods.3-4 Biological 

methods are used as PTB biomarkers, with a sputum smear culture conversion (smear-

positive to smear-negative status) currently the most widely accepted biomarker to predict a 

relapse-free cure of PTB.5 A meta-analysis study showed that this is not a reliable biomarker 

with a sensitivity of only 40% (95% CI 25–56) and specificity of 85% (95% CI 77–91) for 

predicting relapse.5 Researchers therefore still face the challenge of identifying more 

sensitive and specific biomarkers that can be used to quantitively evaluate TB disease 

progression and response to treatment.5-7 Another challenge in fighting this global epidemic 

is the burden of multi-drug resistant TB, where India (27%), China (14%) and The Russian 

Federation (8%) carry the highest number of cases globally.1 To ensure a reduction in 

incidences and deaths, this epidemic needs to be addressed universally. 

The top 8 highest TB burdened countries, who accounts for two thirds of the global TB 

incidence, are all developing countries, with 44% of all global cases in the South-East Asian 

region.1 In these countries chest x-ray (CXR) remains the most common radiological imaging 

modality for PTB screening, as access to more sophisticated three-dimensional (3D) imaging 

modalities are limited.8-9 Even in countries where patients have easier access to 3D 

modalities, it was shown that CXR remains the foundation for imaging certain radiological 

expressions of PTB, e.g. parenchymal disease.10 But CT is more sensitive in detecting many 

other radiological expressions, e.g. lymphadenopathy and early bronchogenic spread in post-

primary TB.10 Not only is CXR the most widely accessible imaging modality,11 but by using 

projection imaging, radiation doses to the patients are kept to a minimum.12 Radiation dose 

and long term radiation effects become a considering factor when screening large cohorts or 

when multiple follow-up images are acquired. Research has showed that CXR is a very 

effective diagnostic modality as it yields high sensitivity (ĸ 0.78, 95%, CI 0.73-0.82) and 

moderate to high specificity (75.7%).8,13 But to utilize these properties expert readers are 

needed to interpret these images, and these experts are often scarce in resource-limited 

countries.3  
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With the fast development of computer science in recent years various research studies have 

been conducted on the use of artificial intelligence (AI) applications (Machine Learning (ML) 

and Deep Learning (DL)) to assist with, among other things, medical image processing and 

interpretation.11 ML is a subset of AI that makes use of statistical algorithms that enable 

machines to improve with experience, while DL is a subset of ML and is based on artificial 

neutral networks that enable algorithms to train themselves. Lately ML and DL have allowed 

radiological image interpretation to evolve from subjective reporting to an objective 

science,11 and from being a primarily diagnostic tool, to being a central role player in 

personalized precision medicine.14 

PTB causes a wide variety of pathological changes in the lungs which lead to many different 

radiological manifestations, and AI systems that are developed must have the ability to adapt 

to and manage these distinct morphological patterns.15 Pathological changes visible on CXR 

include changes in the lung shape, size and context (texture) which in turn influence the lung-

field symmetry.9 When radiologists perform bi-lateral comparisons on CXR, the differences 

in corresponding regions between the left and the right lung assist greatly in the detection of 

these abnormalities.16 This same principle is mimicked when automatic TB detection systems 

use feature vectors of various sizes and combinations,9,17-18 with different classification 

algorithms to extract information from radiological images.9,19   

To date AI applications are mainly used for the diagnosis of TB, but a few other studies have 

been done, for example on the automatic differentiation of drug-sensitive TB from drug-

resistant TB from CXR.19 This study tested various classifiers by using them in combination 

with a set of shape and texture features. It achieved the best performance, with an area under 

the receiver operating characteristic curve (AUC) of 66%, when using a traditional artificial 

network (ANN).19 Many studies have also been done on differentiating PTB from other 

pulmonary diseases, often lung cancer, using both CXR and CT scans. The reason for this 

being that PTB mimics various other pulmonary diseases, and diagnostic imaging of PTB 

remains challenging.10  

Automatic PTB screening systems are extremely useful, efficient and can be a low cost mass 

screening tool which can be well utilized in resource-constrained countries.20 DL methods for 

some diseases do not yet perform to the same accuracy as radiologists, but it has been 

demonstrated that automatic PTB detection from CXR have reached radiologist level 

performance.21 However research into automated radiological image analysis for the purpose 
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of disease management and prognosis remains limited.21 For quantitative disease 

management, the automatic algorithms need to produce measurable outputs. One such 

method to quantify medical images is by using radiomic feature extraction. Although recently 

developed DL networks have led to more robust models for radiomics, and this has allowed 

the high-throughput extraction of quantitative features from radiological images, this has not 

been widely utilised as quantitative outputs need to be extracted from the networks and are 

generally hidden within the layers of the DL network or within the last layer of the 

algorithm.22  

Radiomics is based on the hypothesis that the correct combination of these features, together 

with the clinical data, can identify significant tissue properties useful in the management of a 

disease.23 Radiomics differs from traditional Computer-aided-detection (CAD) systems in the 

sense that CAD systems were designed to only diagnose or detect a disease.24 Radiomic 

feature extraction can also be used to quantify disease characteristics and progression from 

medical images, as it makes use of statistically based imaging analysis algorithms to act as 

quantitative biomarkers for the identification of radiological features.24-25 These can be used 

to quantify change and categorisation and not only identify and categorise predicted 

outcomes or disease states. This feature extraction tool allows medical images to be 

converted into minable multi-dimensional statistical data sets which characterise the 

relationship between the high dimensional data of the images.24  

Radiomics is a complex, multi-step field of study that includes the following identifiable 

steps: image acquisition, image segmentation, feature extraction and qualification, analysis 

and database development.25 Database development includes developing a radiomics 

signature or nomogram. A radiomics signature is a computational model built to meet 

specific clinical needs,26 whereas a radiomics nomogram integrates a radiomics signature 

with the clinical data to evaluate parameters such as prognosis or disease management.27 To 

development accurate, robust and reproducible radiomics signatures, the knowledge and 

skills of qualified and experienced researchers are crucial. They need to understand the 

influence of exposure parameters, image pre- and post-processing, image segmentation and 

mask modelling. Experienced researchers also play a vital role in optimisation and 

standardisation of image acquisition protocols, modelling, developing algorithms and the 

statistical analysis of high dimensional data. 
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Extracted features can be sub-categorized into first order statistical features, shape-based 

features (morphological 2D and 3D), textural features (or second order statistical features) 

and higher-order statistical features.28 Higher order statistics are obtained by applying filters 

or mathematical transforms to the image before applying statistical algorithms.28 Each one of 

the steps in radiomics poses its own set of challenges. Rizzo et al. explained it well in a 

narrative review article; “Radiomics: the facts and the challenges of image analysis”.23 

Radiomics had its origin in the medical field of oncology,24 and numerous articles have been 

published on the use of radiomics in tumours, but very few on the application in non-

neoplastic diseases such as TB.29 The purpose of this review article is to determine what 

research has already been done on the application of radiomics explicitly for the diagnosis 

and management of PTB, or on the differentiation of PTB from other pulmonary diseases. 

This will also reveal areas not yet addressed in the available literature and the potential 

opportunities for future research. Even though this is a narrative review, a formal systematic 

research strategy was followed to ensure that all published journal articles on this topic were 

included.  

 

METHODS: 

Review search strategy 

A comprehensive search for relevant literature was done by two independent information 

specialists at two separate universities. The following data bases were included in the search: 

PubMed (US National Library of Medicine), OVID Medline, Scopus, OVID Embase, 

CINAHL and IEEE Xplore.  

The search strategy that was applied to text-words can be summarized as follows: ((radiomics 

OR radiomic*) OR (‘imaging biomarker*’ OR ‘radiological biomarker*’ OR ‘texture 

feature*’ OR ‘texture analysis’)) AND (tuberculosis OR TB). The year limit that was used 

was 2000 to May 2021 (week 2) when the search was concluded. The term ‘radiomics’ was 

first introduced in medicine in 2012,30 and the year 2000 was an arbitrarily selected date prior 

to 2012.  

Study selection criteria 

All journal articles were considered, but only studies that met the following inclusion criteria 

were included: 1) Original studies with full-text articles published in English. 2) Studies with 
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a human study population who were diagnosed with pulmonary tuberculosis. 3) Articles that 

included medical images (from any imaging modality: CT, MRI, PET/CT and x-rays) as 

datasets. 4) Studies that used radiomics or texture feature extraction methods. 5) Articles with 

the aim to develop imaging- or radiological biomarkers for PTB. 

Exclusion criteria: 1) Articles that did not extract quantitative information from medical 

images. 2) Non-peer reviewed academic journal articles, including conference proceedings. 

Search results and data extraction 

The search strategies returned a total of 66 journal articles (n = 18 in the PubMed database, n 

= 16 in the OVID Medline database, n = 5 in Scopus database, n = 6 in OVID Embase, n = 5 

in CINAHL and n = 16 IEEE Xplore database). After duplicates were removed, n = 49 

remained. Since a systematic review search strategy was followed, the search results were 

recorded and summarized accordingly in the PRISMA (Preferred Reporting Items for 

Systematic Reviews and Meta-Analysis) flow diagram (figure 1).31 

 

RESULTS: 

Despite the thorough search strategy that was followed to ensure complete inclusion of all 

available published data, only 5 articles could be found that met all the inclusion criteria on 

the application of radiomics to PTB. The relevant detail for each of the studies, such as 

radiomics libraries, models, algorithms, dimensionality reduction methods, clinical features, 

etc. used, is summarized in Table 1. 

Study A: In the first article by Bei et al. [2019] radiomic features extracted from CT images 

were used to create a radiomics signature capable of distinguishing primary progressive PTB 

from community-acquired pneumonia in children.29 Manual segmentation was performed by 

a radiologist with more than 10 years of experience and verified by a second radiologist.29 

The radiologist delineated the margins of pulmonary consolidation as the first region-of-

interest (ROI) and the mediastinal lymph nodes as the second ROI.29 In this study they 

developed two radiomics signatures, one from each ROI, and constructed a radiomics model 

by combining these two signatures.29 Finally they used the least shrinkage and selection 

operator (LASSO) algorithm to build a predictive nomogram by combining the radiomics 

model with the clinical data.29 The predictive nomogram’s classification outperformed the 
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senior radiologist’s clinical judgement (AUC=0.971, 95% CI:0.912-1 vs. AUC=0.832, 95% 

CI:0.677-0.987).29 

Study B: In the second article Shi et al. [2019], used radiomic features to assist with the 

identification of opportunistic pulmonary infections (OPIs) misdiagnosed as lung cancers in 

patients with human immunodeficiency virus (HIV).32 In this study 76.2% of the OPI cohort 

had PTB and 23.8% other pulmonary infections.32 Semi-automatic segmentation of the lesion 

was done using inhouse software.32 The ROI borders were then manually adjusted by a 

radiologist to ensure that the lesion boundary was entirely included and that the bronchi and 

vessels were excluded.32 The morphological CT features, clinical data and radiomic features 

were statistically compared between the two disease groups. They concluded that radiomics 

might assist with the identification of OPIs mimicking lung cancers for central-type lesions. 

Four radiomic features in these lesions were significantly different (large dependence high 

gray level emphasis (LDHGLE) (P=0.008), skewness (P=0.017), inverse difference 

normalized (IDN) (P=0.017) and kurtosis (P=0.017).32 But they found that radiomics features 

of the peripheral-type lesions might not be useful for differentiating the diseases.32  

Study C: In the third article Feng et al. [2020] used radiomic features to differentiate between 

lung tuberculoma and adenocarcinoma presenting as solitary pulmonary solid nodules.33 

They used a U-net based volume-of-interest (VOI) segmentation method to automatically 

delineate the boundary of the lesions.33 A radiomics signature consisting of 6 features was 

identified and combined with clinical data to build a predictive radiomics nomogram using 

LASSO logistic regression.33 The signature showed improved diagnostic accuracy compared 

to any single model (AUC=0.9064, 95% CI:0.9390-0.9931).33 

Study D: In this article Cui et al. [2020] developed a radiomics nomogram model, using 

LASSO algorithms, to differentiate TB from lung cancer from pre-operative lung CT data.34 

They have also evaluated different radial dilation distances outside the lesion to determine the 

best performance.34 The nomogram showed good discriminative performance in 

distinguishing TB from lung cancer (AUC=0.914, sensitivity=0.788, specificity=0.907).34 

This quantitative study again shows improved detection and discrimination performance of 

medical images when using the radiomics nomogram compared to decisions made by 

radiologists alone.34 

Study E: In the final article Du et al. [2021] developed CT, PET and PET/CT radiomics 

signatures. These signatures were combined with semantic features to develop radiomics 
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nomograms to differentiate between active pulmonary TB and lung cancer.35 Nine CT-based 

semantic features (maximal tumor diameter, tumor location , cavitation, vacuole, spiculation, 

vessel convergence, lobulation, pleural indentation and air bronchogram) and two PET-based 

semantic features (radionecrosis and metabolic activity greater that the adjacent mediastinal 

blood pool) were included.35 They showed that the performance of the CT signature was 

superior to that of the PET signature (AUC=0.86 vs. 0.79, p=0.1585), and that the PET/CT 

signature improved diagnostic performance even further compared to CT alone (AUC=0.91 

vs. 0.86, p=0.0247).35 They concluded that PET and CT radiomic features can offer 

complementary diagnostic value when used in combination with the semantic features 

defined by radiologists.35 

 

DISCUSSION:  

In this review study only five articles could be identified that met the inclusion criteria. In all 

5 articles radiomic feature extraction was successfully used to quantify images for the 

purpose of comparing or differentiating pulmonary tuberculosis from other pulmonary 

diseases (pneumonia29, lung cancers32,34-35 and adenocarcinomas33). All imaging modalities 

(CT, MRI, Molecular imaging and Planar imaging) were included in the search, but only CT 

and PET/CT (study E only) scans were used for feature extraction. It is also interesting to 

note that all five studies were carried out in China. This might be because China is the third 

highest TB burdened country (accounting for 8.4% of all global instances),1 they are 

technologically very advanced and most patients have access to 3D imaging resources. 

Four of the reviewed studies29,33-35 built radiomics nomograms, while one study32 only 

developed a radiomics signature. Table 2 is a summary of the significant radiomic features 

organized according to the feature groups. There was minimal correlation between the 

features selected as significant in the five studies. The only two features that were identified 

by more than one study to be significant, were Kurtosis32-33 and 10th Percentile34-35. Kurtosis 

is a measure of the sharpness of the peak of the distribution of the values in the region of 

interest,28 and 10th percentile of the Nth voxel in the ROI is a first order statistical feature.28 

Not one study identified any higher-order statistical features as significant.  

There were some weaknesses noticed in the articles reviewed. The training and validation 

cohorts of most studies (all except for study C which had both an internal and external 

validation cohort) were from the same centers. It is however preferable to have external 
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validation cohorts when DL methods are used to reveal possible overfitting of the training 

data sets. All studies were also retrospective studies, which is the only way to obtain a 

reasonable sample size in a new field of study. But the downside to this is that the researchers 

had no control on the acquisition parameters and the management of the data sets. 

Unfortunately acquisition and post processing play a vital role in high throughput quantitative 

image analysis.  

The studies identified between 4 and 11 (mean 7.6 ± 2.4) radiomics features as significant 

from 99 to 3556 (mean 1415.8 ± 1239.3) features extracted.29,32-33 Small data sets are 

generally a limitation of radiomic studies. Thousands of radiomic features are available for 

extraction, but datasets are often smaller than the number of possible features to mine. This 

was also the case in the reviewed articles where the primary cohort sample sizes ranged from 

24 to 319 (mean 134.8 ± 98.9) patients, while the number of features extracted ranged from 

99 to 3556 (mean 1415.8 ± 1239.3).32-34,36 The number of features extracted are almost 10 

times more than the number of patients. A prospective multicenter study with larger cohorts 

is necessary to confirm the results and improve reliability of all studies. This suggestion was 

also acknowledged by most authors from the reviewed studies. From the limited number of 

studies available no preliminary conclusions can be made regarding which features or feature 

groups are likely to produce robust and reliable quantitative image information from PTB 

radiological images. 

Radiomics is intrinsically a complex multi-step process, but to further complicate this is a 

lack of standardized guidelines and definitions. A lack of consensus on general definitions 

makes study intercomparison difficult. Since reproducibility and robustness are vital in 

radiomics studies, all details regarding the image processing and feature extraction should be 

clearly recorded and disclosed. The Image Biomarker Standardization Initiative (IBSI) was  

published in 2019 and hope to address various issues that will improve the validation and 

reproducibility of radiomics studies.37 All five of the reviewed articles did well to comply 

with these guidelines, with the most recent35 conforming the best.  

The low number of studies included in this review article might seem like unconvincing 

evidence to address the purpose of this study, but this does indicate two things. Firstly, that 

high-throughput quantitative image analysis, especially in non-neoplastic deceases, is a new, 

but rapidly growing, field of study.37 This is evident from the publication dates of the 5 

articles that qualified to be included in this review study (2019 to 2021). Secondly, it shows 
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that the possibility of using radiomics for quantitative image analysis for the purpose of PTB 

disease management and differentiation from other pulmonary diseases is still an under 

investigated field of study. 

 

CONCLUSIONS: 

Six data bases were searched and only five articles could be found detailing the application of 

radiomics to pulmonary tuberculosis. In all five articles reviewed, radiomic feature 

extractions from CT or PET/CT images were used effectively to quantify digital medical 

images for the purpose of comparing or differentiating tuberculosis from another pulmonary 

disease.  

The outcome of this study evidently raises two questions.  

1. Firstly, why has no attempt yet been made to use radiomics for the quantitative 

management and prognosis of pulmonary tuberculosis? Particularly while researchers 

still have a major challenge to identify more sensitive and specific biomarkers that 

can be used to identify the different stages of tuberculosis and to quantitively evaluate 

disease progression or response to treatment.  

2. Secondly, why are all current radiomics studies on pulmonary tuberculosis performed 

from three-dimensional imaging modalities (CT or PET/CT scans) when patients in 

countries where pulmonary tuberculosis is most prevalent have very limited access to 

these modalities? 

It can be concluded from this review that the application of radiomics feature extraction and 

analysis of pulmonary tuberculosis, for the purpose of quantitative decease management and 

prognostication from chest x-rays, is a valuable data mining opportunity yet to be realized. 

This might seem challenging at this point in time, but with the fast development of computer 

science, and creative application of established mathematical solutions, this might be realized 

in the near future.  
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TABLES: 

Table 1: Summary table that includes comparative, relevant information for the three studies 

reviewed in this article 

Study A B C D E 

Author Bei et al. Shi et al. Feng et al. Cui et al. Du et al. 

Year of 

publication 

2019 2019 2020 2020 2021 

Imaging 

modality 

CT CT CT CT PET & CT & 

PET/CT 

Institution 

where data sets 

were acquired 

Beijing Childrens 

Hospital, Beijing, 

China 

Shanghai Public 

Health Clinical 

Center, Shanghai, 

China 

2 Unknown 

Centres in China 

Liaoning Cancer 

Hospital in China 

1 Unknown 

Hospital in China 

Date data sets 

were obtained 

Jan 2011 - Jan 

2018 

Jun 2013 - Feb 

2018 

Jan 2014 - Dec 

2018 

Jan 2012 - Oct 

2018 

Jan 2013 - March 

2019 

Sample size 115 (53 TB, 62 

CAP) 

73 (24 OPI &       

49 LungCA) 

426 478 (244 TB &   

234 LungCA) 

174 (77 TB &         

97 LungCA) 

Primary cohort 86 24 (19 TB, 5 other 

OPI) 

123 319 122 

Validation 

cohort 

29 49 303                                        

(121 - Internal & 

182 - External) 

159 52 

Significant 

clinical features 

used 

Duration of fever Age, Smoking, 

HAART duration, 

CD4+ T cell count, 

CD4+/CD8+ ratio 

Gender, Age, 

Lesion size, 

Location, Lesion 

margin, Lobulated 

sharp, Spiculation 

sign 

No clinical 

features included 

9 CT based & 2 

PET based 

semantic features 

Segmentation 

method 

Manual 

segmentation by 

radiologist (>10yrs 

experience).  

Second radiologist 

verification. 

Semi-automatic 

inhouse software. 

(Manual 

adjustment by 2 

radiologists) 

U-net based Deep 

Learning model 

(Python) 

Manual 

segmentation by 2 

radiologist (12yrs 

& 14yrs 

experience) 

Manual 

segmentation by 

nuclear physician 

(>3yrs 

experience). 

Second physician 

verification. 

Feature 

extraction 

software 

Matlab PyRadiomcs Matlab PyRadiomics Matlab (SERA 

software) 

Number of 

features 

extracted 

970 99 3556 1967 487 

Type/Category 

of features 

extracted 

Gray intensity 

(First order 

statistics), Shape 

& Size, Texture, 

Wavelet 

First order 

statistics, Shape, 

Texture 

First order 

statistics, Shape & 

Size, Texture, 

Wavelet 

First order 

statistics, Shape 

and Texture 

First order, 

Morphological, 

Intensity based, 

Higher order 

statistics 

Dimensionality 

reduction 

method 

LASSO n/a LASSO LASSO Pearson 

correlation 

analysis & 

LASSO 
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Study A B C D E 

Classifier used 

to build 

predictive 

nanogram 

Linear SVM n/a Not specified Multivariable 

Logistic 

Regression 

analysis ('rms' 

package in R) 

Multivariable 

Logistic 

Regression 

analysis 

Number of 

radiomic 

features 

11 4 6 8 PET: 3, CT: 5,      

PET/CT: 9 

Features 

selected to build 

radiomics 

nomogram or 

signature 

X7_fos_maximum LDHGLE ZSV_GLSZM_0.5

_0.67_Equal_8 

lbp_2D_firstorder

_Entropy 

P
E

T
 S

ig
n

at
u

re
 

stat_p10 

X0_GLCM_maxi

mum_probability 

Inverse difference 

normalized (IDN) 

Kurtosis_Global_1

_1.5_Equal_8 

lbp_3D_k_firstord

er_10Percentile 

morph_asphe

ricity 

X6_GLCM_IMC1 Skewness complexity_NGT

DM_1_1.2_Lloyd

_16 

log_sigma_3_0_m

m_3D_glcm_ldn 

cm_info_corr

1_2D_avg 

X1_GLRLM_LRL

GLE 

Kurtosis HGZE_GLSZM_1

_0.67_Lloyd_8 

log_sigma_5_0_m

m_3D_RunLength

-NonUniformity 

C
T

 S
ig

n
at

u
re

 

szm_sze_3D 

X1_GLRLM_LRE --- SZHGE_GLSZM_

1_0.67_Lloyd_8 

squareroot_gldm_

Dependence-

NonUniformity 

ngl_lde_3D 

Max3D SRHGE_GLRLM

_1.5_0.67_Lloyd_

64 

wavelet_HLH_glc

m_ldn 

dzm_zdnu_3

D 

Sph_dis --- wavelet_HLL_glc

m_ldn 

morph_a_de

ns_mvee 

Compactness1 wavelet_LLL_glc

m_ldmn 

cm_clust_sha

de_2D_mrg 

Surface_to_volum

e_ratio 

--- 

P
E

T
/C

T
 S

ig
n

at
u

re
 

PET_cm_inf

o_corr1_2D_

mrg 

X2_fos_minimum PET_cm_inf

o_corr2_2D_

mrg 

X0_GLRLM_LR

HGLE 

PET_stat_p1

0 

--- PET_morhp_

asphericity 

CT_szm_sze

_3D 

CT_ngl_lde_

3D 

CT_morph_a

_dens_mvee 

CT_cm_clust

_shade_2D_

mrg 

CT_dzm_zdn

u_3D 

 (Abbreviations: TB = Tuberculosis, CAP = Community Acquired Pneumonia, OPI = Opportunistic Pulmonary 

Infections, LungCA = Lung Cancer, HAART = Highly Active Antiretroviral Therapy, LASSO = Least absolute 

shrinkage and selection operator, SVM = Support Vector Machine, GLCM = Gray Level Cooccurrence Matrix, 

GLSZM = Gray Level Size Zone Matrix, GLRLM = Gray Level Run Length Matrix, GLDM = Gray Level 

Dependence Matrix, NGTDM = Neighboring Gray Tone Difference Matrix LDHGLE = Large dependence high 

gray level emphasis) 
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Table 2: Summary of radiomic features used in each reviewed study 
Study A B C D E* 

  Bei et al. Shi et al. Feng et al. Cui et al. Du et al. 

1st order features X7_fos_maxim

um 

Skewness Kurtosis_Global

_1_1.5_Equal_8 

lbp_2D_firstord

er_Entropy 

PET_stat_p10 

X2_fos_minimu

m 

Kurtosis lbp_3D_k_firsto

rder_10Percentil

e 

Shape Max3D --- --- log_sigma_3_0_

mm_3D_glcm_l

dn 

PET_morhp_as

phericity 

Sph_dis 

Compactness1 log_sigma_5_0_

mm_3D_RunLe

ngth-

NonUniformity 

CT_morph_a_d

ens_mvee 

Surface_to_volu

me_ratio 

T
ex

tu
re

 

GLCM X0_GLCM_ma

ximum_probabil

ity 

Inverse 

difference 

normalized 

(IDN) 

--- wavelet_HLH_g

lcm_ldn 

CT_cm_clust_s

hade_2D_mrg 

wavelet_HLL_g

lcm_ldn 

PET_cm_info_c

orr1_2D_mrg 

X6_GLCM_IM

C1 

wavelet_LLL_g

lcm_ldmn 

PET_cm_info_c

orr2_2D_mrg 

GLRLM X1_GLRLM_L

RE 

--- SRHGE_GLRL

M_1.5_0.67_Ll

oyd_64 

--- --- 

X0_GLRLM_L

RHGLE 

X1_GLRLM_L

RLGLE 

GLDM --- LDHGLE --- squareroot_gld

m_Dependence-

NonUniformity 

--- 

GLSZM --- --- HGZE_GLSZM

_1_0.67_Lloyd_

8 

--- CT_szm_sze_3

D 

SZHGE_GLSZ

M_1_0.67_Lloy

d_8 

ZSV_GLSZM_

0.5_0.67_Equal

_8 

GLDZM --- --- --- --- CT_dzm_zdnu_

3D 

NGTDM --- --- complexity_NG

TDM_1_1.2_Ll

oyd_16 

--- --- 

NGLDM --- --- --- --- CT_ngl_lde_3D 

(Abbreviations: GLCM = Gray Level Cooccurrence Matrix, GLRLM = Gray Level Run Length Matrix, GLDM 

= Gray Level Dependence Matrix, GLSZM = Gray Level Size Zone Matrix, GLDZM = Gray Level Distance 

Zone Matrix, NGTDM = Neighboring Gray Tone Difference Matrix, NGLDM = Neighboring Grey Level 

Dependence Matrix) 

*Since the PET/CT signature is simply a combination of the CT and PET signatures, only the PET/CT features 

are listed to avoid duplication.  
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FIGURES:  

Figure 1: Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow 

diagram for journal article screening and selection 
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Abstract 

For radiomics to be accepted as a definite tool in medicine, the outputs must be robust, 

repeatable and reliable. Image processing alters the quality of the input data which might 

have an impact on the values of the extracted features and ultimately the signatures 

developed. This study evaluated the magnitude of the influence of various interpolation and 

post-acquisition processing methods on the radiomic feature values extracted from planar 

images and radiomic signatures. Three different interpolation methods were applied to a chest 

x-ray dataset before 2-dimesional (2D) radiomic features were extracted using Pyradiomics. 

The influence of image size, cropping and re-segmentation were also evaluated by changing 

the respective variable before applying bilinear interpolation and extracting 2D features. 

ANOVA and post-hoc Bonferroni corrections were used to assess the differences in the 

radiomic feature values. Of the 93 first order- and texture- features extracted, 42 texture 

features (56.8%) proved to be significantly influenced (p ≤ 0.05) by the interpolation method. 

Only 2 first order features (10.5%) were significantly influenced (p ≤ 0.05) by the image size 

and 62 texture features (83.8%) by the other pre-processing methods evaluated. Pearson’s 

Correlation Analysis was then applied to develop a separate radiomics signature from each of 

the six image processing datasets under consideration. Five identical signatures were 

developed, with only the uncropped dataset that resulted in a unique signature. This study 

showed that the interpolation algorithms and other processing applied to planar images do 

have a noticeable influence on most radiomic feature values extracted. But regardless of the 

differences seen in the feature values, the radiomic signatures were reproducible for most 

datasets using different image processing methods. 

 

Keywords 

Radiomics, Image Processing, Interpolation, Chest X-rays, Radiomic Signatures 
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1. Introduction 

Radiomics is a field of study that has the potential to extract large amounts of quantitative 

features from medical images [1]. It makes use of statistically based imaging analysis 

algorithms to identify image features which can be used to quantify disease characteristics 

[2]. Radiomic feature extraction has the hypothesis that the correct combination of these 

algorithms, together with the clinical data, can express meaningful tissue properties useful in 

the management of a disease [3]. Numerous articles have been published on the use of 

radiomics in tumours [4-7], and a few on the application in non-neoplastic diseases such as 

pulmonary tuberculosis and Covid-19 [8-10]. In recent years this data mining tool advanced 

to the point where it incorporates machine learning and deep learning approaches to build 

state of the art radiomic signatures and models [11]. However, radiomic studies can only be 

used as a definite tool in medicine once the outcomes are reliable, repeatable, robust and 

validated. 

The complex multi-step process of radiomics includes; Image acquisition, image post-

acquisition processing, image segmentation, feature extraction, dimensionality reduction, 

association analysis, model construction and database development [2].  

The foundation of this multi-step process however remains the input image, either two- (2D) 

or three dimensional (3D). But with the fast development of quantitative imaging methods the 

focus on this foundational step has been lost. It was shown that the quality of the input data 

has a considerable impact on the value of the extracted features [3]. And that variables such 

as a variety of acquisition, reconstruction and post processing parameters influence the image 

texture and noise and consequently the value of the extracted features [3]. The robustness of 

radiomic features therefor depend significantly on the image post-processing applied [12]. 

The Imaging Biomarker Standardization Initiative (IBSI) was published in 2019 with the aim 

to standardize image biomarker nomenclature and definitions, to suggest tools for verifying 

radiomics software implementations and to standardize reporting guidelines [13]. The IBSI 

gives useful suggestions on the radiomics workflow with detailed technical instructions 

regarding the image post-acquisition processing workflow required [13]. It recommends that 

the following steps should be followed before feature extraction algorithms are applied; 

dataset classification, data conversion, post-acquisition processing, segmentation, 

interpolation and re-segmentation [13]. 
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Data classification refers to sorting the images in the dataset to only include images of the 

same modality, patient orientation and photometric interpretation. Data conversion of raw 

image data into more meaningful data is only required for certain image modalities without 

definite grayscale values, e.g. PET [11]. To homogenize datasets further various post-

acquisition processing steps are required; image format conversion, normalization and 

discretization of the grayscale intensities and image interpolation [13].  

Interpolation algorithms translate image intensities from the original image grid to an 

interpolation grid. Pixels are spatially represented by their centres in such grids [11, 13]. 

Isotropic pixel spacing is required for texture features to be rotationally invariant, and to 

allow comparison between different datasets [13]. There are currently no clear 

recommendations on whether up-sampling or down-sampling should be the preferred 

interpolation method for radiomic studies [12]. Only a recommendation that a calculated 

decision should be made regarding this, as up-sampling to the smallest pixel dimension can 

introduce artificial information, while down-sampling to the largest pixel dimension can 

result in information loss [13]. 

Various interpolation algorithms are commonly used for volumetric image pre-processing in 

medicine, e.g. nearest neighbour, trilinear, tricubic convolution and tricubic spline 

interpolation [13]. The 2D equivalents of these popular interpolation methods are 2D-nearest 

neighbour-, bilinear- and bicubic interpolation, but no literature could be found on the 

optimal choice for interpolation of planar medical images. Nearest neighbour interpolation 

adapts the intensity of the nearest neighbouring pixel without regard to the intensities of other 

neighbouring pixels [14]. This is the simplest interpolation method but may result in blocky 

images. Bilinear interpolation takes the intensity of 4 neighbouring pixels into account and 

applies two linear interpolations to obtain a new pixel intensity [14]. Bicubic interpolation 

results in the smoothest interpolation as it uses 16 pixels and applies a third order polynomial 

function to interpolate the new pixel intensity [14]. 

In the recommended workflow discussed above only 3D images were mentioned, which 

leaves the question as to whether the same labour intensive steps are required for planar 

images. Also no literature could be found that quantitatively shows the influence that each of 

these post-acquisition processing steps have on the feature values extracted or on the 

radiomic signatures being developed. 
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This study was performed with the aim to evaluate the scale of influence that different 

interpolation methods and other common post-acquisition processing applied to planar 

images will have on the extracted radiomic features. It also evaluated which radiomic features 

are most sensitive to these post-acquisition processing methods and how these feature values 

influence radiomics signatures. A chest x-ray (CXR) dataset was selected for this study since 

these planar images are still clinically used in many countries for diagnosis and disease 

management [15]. 

 

2. Methods 

 

2.1. Dataset 

This is a retrospective study consisting of 103 posteroanterior (PA) CXR of patients 

diagnosed with active pulmonary tuberculosis. Ethical clearance was granted by the 

researchers’ tertiary institution to use these images for this study. 

 

2.2. Image pre-processing 

The original dataset consisted of DICOM images of various sizes and width-to-height ratios. 

To remove as many variables as possible that might have an underlying influence on the 

interpolation, all images were cropped to a square (equal width-to-heigh ratio). Only one 

dimension of the images was cropped to preserve the maximum dimensions of the CXR.  

Unfortunately automatic batch cropping was unsuccessful as most CXR were acquired at 

asymmetrical patient positions and automatic cropping of these images removed lung pixels. 

An expensive added layer of manual cropping of all images was therefore performed using 

commercial image processing software, Total Image Converter (by CoolUtils.com file 

converters) version 8.2.0.237. To eliminate the dual processing required in DICOM images, 

where the corresponding header group element must be changed with the image data, images 

were converted to another format. The same software was used to convert all images to PNG 

format and to correct the unconventional photometric interpretation of Monochrome1. During 

the conversion from DICOM to PNG-format, the bit depth was changed from 14 or 12 bits to 

8 bits to obtain a uniform dataset and the scalar DICOM type was converted to conventional 

RGB type for PNG formatted images. Image size, pixel size and image resolution were 
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preserved. Since the radiomics library used can only apply the feature algorithms to scalar 

images, the images were finally converted to L-mode with the ITU-R 601-2 luma transform. 

 

2.3. Image interpolation 

All images in the original DICOM dataset had dimensions equal to or larger than 1024x1024 

pixels after being cropped. These large images ensured that no image had to be extrapolated. 

All cropped images were therefore down sampled to 1024x1024 pixels using 3 basic 

interpolation algorithms commonly used in image processing; bilinear interpolation, bicubic 

interpolation and 2D nearest neighbour interpolation. This was done using the cv2.resize() 

function (cv2.INTER_LINEAR, cv2.INTER_CUBIC and cv2.INTER_NEAREST) in Python 

version 3.7.6.  

 

2.4. Segmentation and feature extraction 

A fully automatic in-house U-net based segmentation model was used to segment the lung 

region-of-interest (ROI) [16]. The segmentation model resizes images to 256x256 pixels 

(using bilinear interpolation) before segmenting the lungs as a 256x256 pixel mask. All 

masks therefore had to be extrapolated to 1024x1024 pixels to have similar dimensions to its 

corresponding image. Extrapolation of the masks were done using nearest neighbour 

interpolation. The extrapolation method will have no influence on the segmentation, or the 

results of this study, as a mask is simply a binary matrix. Each image therefore had 3 versions 

(one version for each interpolation method) associated to a single mask.  

The Pyradiomics library has 103 2D features available for extraction (10 2D shape features, 

19 first order- and 74 texture features). Pyradiomics (version 3.0) in Python (version 3.7.6) 

was used to extract a total of 93 2D features (first order- and texture features only) from each 

image version. No shape-based features were evaluated as these are calculated using the 

shape of the ROI defined by the mask. Since the same mask is used for all 3 image versions 

this will naturally result in identical features. Pyradiomics have five different texture feature 

groups namely; GLCM = Gray Level Co-occurrence Matrix, GLDM = Gray Level 

Dependence Matrix, GLRLM = Gray Level Run Length Matrix, GLSZM = Gray Level Size 

Zone Matrix and NGTDM = Neighbouring Gray Tone Difference Matrix [1]. All variables in 

the Pyradiomics library were left at default and no filters were applied. 
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2.5. Evaluating the influence of image size, cropping and re-segmentation 

The influence of 3 other common post-acquisition image processing techniques was also 

evaluated. To do this the bilinearly interpolated dataset that was discussed in the above 

methodology (section 2.3), was used as baseline. Mask segmentation and feature extraction 

was then repeated three times while only 1 post-acquisition processing variable was changed 

at a time to obtain a second, third and fourth feature set for comparison. 

Firstly, the influence of image dimension was studied by interpolating the baseline dataset to 

256x256 pixels instead of 1024x1024 pixels with bilinear interpolation. This dataset was 

again segmented and radiomic features extracted to obtain the second set of features called 

Size. Secondly, the influence of image cropping before applying the segmentation model and 

radiomic algorithms was evaluated. This dataset was left uncropped before all other image 

pre-processing steps were performed. The masks were segmented and radiomic features 

extracted to obtain the third set of features called Uncropped. Lastly, the influence of re-

segmenting the images after image interpolation was evaluated. The fourth set of features 

called Re-segmented was therefore obtained by using masks that were re-segmented after 

image interpolation.  

 

2.6. Statistical analysis 

Statistical analysis for both image processing sections of this study was performed using 

SPSS 28.0. ANOVA and post-hoc Bonferroni corrections were used to assess the differences 

between features obtained for the different variables using the different image post-

processing methodologies under study.  

 

2.7. Dimensionality reduction 

A Shapiro-Wilk test was used to ensure no normality assumption violations in the features. 

This dataset does not fully adhere to the assumption of normality, but since this sample size is 

sufficiently large (larger than 100), Pearson Correlations can still be applied as it is robust 

against such violations [17]. Pearson Correlation Analysis was therefore applied to obtain a 

radiomics signature for each of the six above-mentioned datasets. Feature pairs with absolute 

correlations greater than 0.8 were removed.  
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3. Results 

 

3.1. Section 1: Influence of the interpolation algorithm 

When comparing bilinear, bicubic and nearest neighbour interpolation, significant results (F-

test) between these three methodologies were found for 42 of the 93 features extracted. The 

features with significant p-values (p ≤ 0.05) are summarized in table 1. To evaluate which 

interpolation method contributed to the significantly lower or higher feature values, 

individual group comparisons were performed by comparing the mean values of each feature 

to the feature group mean. The results are also summarized in table 1 as either < or > to 

indicate a significantly lower mean (<) or a significantly higher mean (>) respectively. 

Table 1: Summary of features that displayed significant differences (p ≤ 0.05) when comparing the 

different interpolation methods with their respective individual group comparison results 

F
E

A
T

U
R

E
 N

O
 

FEATURE NAME 

S
IG

N
IF

IC
A

N
T

 

(F
-T

E
S

T
) 

B
IL

IN
E

A
R

 

B
IC

U
B

IC
 

N
E

A
R

E
S

T
 

N
E

IG
H

B
O

U
R

 

23 glcm_Contrast 0.0001 < > > 

24 glcm_Correlation 0.0001 >     

25 glcm_DifferenceAverage 0.0001 <   > 

26 glcm_DifferenceEntropy 0.0001 <   > 

27 glcm_DifferenceVariance 0.0001 < > > 

28 glcm_Id 0.0001 >   < 

29 glcm_Idm 0.0001 >   < 

30 glcm_Idmn 0.0001 >     

31 glcm_Idn 0.0001 >     

32 glcm_Imc1 0.0001 <   > 

33 glcm_Imc2 0.0001 >     

34 glcm_InverseVariance 0.0001 < > > 

37 glcm_JointEntropy 0.0320 <   > 

38 glcm_MCC 0.0001 >     

43 gldm_DependenceEntropy 0.0290 <   > 

44 gldm_DependenceNonUniformity 0.0050 > < < 

45 gldm_DependenceNonUniformityNormalized 0.0080 >   < 

46 gldm_DependenceVariance 0.0001 < > > 

50 gldm_LargeDependenceEmphasis 0.0001 >   < 

51 gldm_LargeDependenceHighGrayLevelEmphasis 0.0130 > < < 

54 gldm_SmallDependenceEmphasis 0.0001 <   > 

55 gldm_SmallDependenceHighGrayLevelEmphasis 0.0001 <   > 

56 gldm_SmallDependenceLowGrayLevelEmphasis 0.0010 <     
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57 glrlm_GrayLevelNonUniformity 0.0001 < > > 

65 glrlm_RunEntropy 0.0001 >     

66 glrlm_RunLengthNonUniformity 0.0001 <   > 

67 glrlm_RunLengthNonUniformityNormalized 0.0001 <     

68 glrlm_RunPercentage 0.0001 < > > 

70 glrlm_ShortRunEmphasis 0.0001 < > > 

71 glrlm_ShortRunHighGrayLevelEmphasis 0.0020 < > > 

73 glszm_GrayLevelNonUniformity 0.0001 <   > 

78 glszm_LargeAreaHighGrayLevelEmphasis 0.0290 >   < 

81 glszm_SizeZoneNonUniformity 0.0001 < > > 

82 glszm_SizeZoneNonUniformityNormalized 0.0001 < >   

83 glszm_SmallAreaEmphasis 0.0001 < >   

84 glszm_SmallAreaHighGrayLevelEmphasis 0.0500 <     

86 glszm_ZoneEntropy 0.0001 >     

87 glszm_ZonePercentage 0.0001 <   > 

89 ngtdm_Busyness 0.0001 <   > 

91 ngtdm_Complexity 0.0001 < > > 

92 ngtdm_Contrast 0.0001 < > > 

93 ngtdm_Strength 0.0001 >   < 

 

The significant differences can be appreciated by observing Figure 1 where the normalized 

means of the 93 features extracted using the different interpolation methods were plotted. 

Before plotting the graphs, the means were normalized with min-max normalization to 

compensate for the scale variety of the radiomic features. 

 
Figure 1: Plot of the normalized means of the 93 features extracted using three different interpolation 

methods (Bilinear, Bicubic and Nearest Neighbour interpolation) to indicate the significant 

differences obtained in some of the radiomic features 
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3.2. Section 2: Influence of image size, image cropping and re-segmentation 

When comparing the baseline, Size, Uncropped and Re-segmented datasets, significant 

differences (F-test) were found for 63 of the 93 features extracted. The features with 

significant p-values (p ≤ 0.05) are summarized in table 2. Individual group comparisons were 

performed to evaluate which pre-processing methods contributed to the significantly lower or 

higher feature values by comparing the means of each feature to the feature group mean. The 

results are also indicated in table 2 as either < or > to indicate a significantly lower mean (<) 

or a significantly higher mean (>) respectively. 

Table 2: Summary of features that displayed significant differences (p ≤ 0.05) when comparing the 

various pre-processing methods with their respective individual group comparison results 

F
E

A
T

U
R

E
 N

O
 

FEATURE NAME 

S
IG

N
IF

IC
A

N
T

 

(F
-T

E
S

T
) 

B
A

S
E

L
IN

E
 

S
IZ

E
 

U
N

C
R

O
P

P
E

D
 

R
E

-

S
E

G
M

E
N

T
E

D
 

3 firstorder_Energy 0.0001   <     

16 firstorder_TotalEnergy 0.0001   <     

19 glcm_Autocorrelation 0.0250   <     

23 glcm_Contrast 0.0001   >     

24 glcm_Correlation 0.0001   >     

25 glcm_DifferenceAverage 0.0001   >     

26 glcm_DifferenceEntropy 0.0001   >     

27 glcm_DifferenceVariance 0.0001   >     

28 glcm_Id 0.0001   <     

29 glcm_Idm 0.0001   <     

30 glcm_Idmn 0.0001   <     

31 glcm_Idn 0.0001   <     

32 glcm_Imc1 0.0001   >     

33 glcm_Imc2 0.0001   <     

34 glcm_InverseVariance 0.0001   >     

35 glcm_JointAverage 0.0390   <     

36 glcm_JointEnergy 0.0001   <     

37 glcm_JointEntropy 0.0001   >     

38 glcm_MCC 0.0001   <     

39 glcm_MaximumProbability 0.0001   <     

40 glcm_SumAverage 0.0390   <     

41 glcm_SumEntropy 0.0050   >     

43 gldm_DependenceEntropy 0.0001   >     

44 gldm_DependenceNonUniformity 0.0001   < <   

45 gldm_DependenceNonUniformityNormalized 0.0001   <     

46 gldm_DependenceVariance 0.0001   >     
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47 gldm_GrayLevelNonUniformity 0.0001   <     

50 gldm_LargeDependenceEmphasis 0.0001   <     

51 gldm_LargeDependenceHighGrayLevelEmphasis 0.0001   <     

54 gldm_SmallDependenceEmphasis 0.0001   >     

55 gldm_SmallDependenceHighGrayLevelEmphasis 0.0001   >     

56 gldm_SmallDependenceLowGrayLevelEmphasis 0.0001   >     

57 glrlm_GrayLevelNonUniformity 0.0001   <     

60 glrlm_HighGrayLevelRunEmphasis 0.0310   <     

61 glrlm_LongRunEmphasis 0.0001   < <   

62 glrlm_LongRunHighGrayLevelEmphasis 0.0001   <     

63 glrlm_LongRunLowGrayLevelEmphasis 0.0030   <     

65 glrlm_RunEntropy 0.0001   <     

66 glrlm_RunLengthNonUniformity 0.0001   <     

67 glrlm_RunLengthNonUniformityNormalized 0.0001   >     

68 glrlm_RunPercentage 0.0001   <     

69 glrlm_RunVariance 0.0010   <     

70 glrlm_ShortRunEmphasis 0.0001   <     

71 glrlm_ShortRunHighGrayLevelEmphasis 0.0001   >     

72 glrlm_ShortRunLowGrayLevelEmphasis 0.0001   >     

73 glszm_GrayLevelNonUniformity 0.0001   <     

74 glszm_GrayLevelNonUniformityNormalized 0.0010   <     

75 glszm_GrayLevelVariance 0.0001   >     

77 glszm_LargeAreaEmphasis 0.0001   < <   

78 glszm_LargeAreaHighGrayLevelEmphasis 0.0001   > <   

79 glszm_LargeAreaLowGrayLevelEmphasis 0.0001   < <   

80 glszm_LowGrayLevelZoneEmphasis 0.0410   >     

81 glszm_SizeZoneNonUniformity 0.0001   <     

82 glszm_SizeZoneNonUniformityNormalized 0.0001   <     

83 glszm_SmallAreaEmphasis 0.0001   <     

86 glszm_ZoneEntropy 0.0170   >     

87 glszm_ZonePercentage 0.0001   >     

88 glszm_ZoneVariance 0.0001   < <   

89 ngtdm_Busyness 0.0001   <     

90 ngtdm_Coarseness 0.0001   >     

91 ngtdm_Complexity 0.0001   >     

92 ngtdm_Contrast 0.0001   >     

93 ngtdm_Strength 0.0001   >     

 

The individual group comparisons are graphically presented in Figures 2, 3 and 4. The 

normalized mean values of the baseline feature set were plotted against the Size features 

(Figure 2), Uncropped features (Figure 3) and the Re-segmented features (Figure 4) 

respectively.  
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Figure 2: Plot of the normalized means of the 93 features extracted using different image sizes 

(1024x1024 pixels and 256x256 pixels) to indicate the significant differences obtained in some of the 

radiomic features 

 

 
Figure 3: Plot of the normalized means of the 93 features extracted using cropped and uncropped 

images to indicate the significant differences obtained in some of the radiomic features 

 

 
Figure 4: Plot of the normalized means of the 93 features extracted using images segmented prior to 

interpolation and re-segmented images to indicate that no significant differences are seen in the 

extracted radiomic features 
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3.3. Section 3: Influence of Radiomics signatures 

Six datasets were under consideration in this study, three evaluating the influence of the 

interpolation algorithm (Bilinear, Bicubic and Nearest Neighbour) and three evaluating the 

influence of other image post processing methods (Size, Uncropped and Re-segmented). 

Table 3 summarizes the signatures obtained for each of these datasets.  

Table 3: Summary of the signature features retained for each of the six datasets under consideration 

DATASET 
# FEATURES 

REMOVED 

SIGNATURE FEATURES 

RETAINED 

BI-LINEAR 90 

glcm_Idmn, 

ngtdm_Busyness, 

ngtdm_Strength 

BI-CUBIC 90 

glcm_Idmn, 

ngtdm_Busyness, 

ngtdm_Strength 

NEAREST 

NEIGHBOUR 
90 

glcm_Idmn, 

ngtdm_Busyness, 

ngtdm_Strength 

SIZE 90 

glcm_Idmn, 

ngtdm_Busyness, 

ngtdm_Strength 

UNCROPPED 89 

glcm_Idmn, 

gldm_GrayLevelNonUniformity, 

ngtdm_Busyness, 

ngtdm_Strength 

RE-SEGMENTED 90 

glcm_Idmn, 

ngtdm_Busyness, 

ngtdm_Strength 

 

4. Discussions 

In radiomics first order statistics uses basic statistical algorithms to describe the value and 

distribution of a group of pixels without concern for spatial relationships [3]. Second order 

statistics describe the textural features and are calculated by the statistical inter-relationship 

between the pixels in the ROI [1]. This was confirmed by the results of this study where 42 

(56.8%) and 62 (83.8%) out of the 74 texture features extracted were significantly influenced 

by the interpolation method and other post-acquisition image processing respectively. The 

only 2 first order feature values influenced by any image processing were Energy (p=0.001) 

and Total Energy (p=0.001). 
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4.1. Section 1: Interpolation 

Since no ground truth exists regarding the correct interpolation algorithm to apply in 

radiomic studies, the group mean for each feature was considered as the baseline for 

individual comparisons. When individual group comparisons were performed, no significant 

differences were seen in any first order feature values. However significant differences in 

56.8% of the texture features amongst all three interpolation methods were observed. The 

differences were random without an obvious trend or pattern that can be identified. The mean 

feature values for bicubic interpolation, which is the smoothest interpolation, do however 

have outputs closest to the group mean with only 15 features that differ considerably from the 

group mean. Another observation is that bilinear and nearest neighbour interpolation were 

always distributed to opposite sides of the group mean in the 42 features that differed 

significantly. When selecting an interpolation algorithm all factors, such as the quality of the 

images, available computational power and study outcomes, should be considered. By 

definition bilinear interpolation is considered as the conservative choice in image 

interpolation as it takes the intensity of 4 neighbouring pixels into account, compared to 16 in 

bicubic interpolation and only 1 in nearest neighbour interpolation [13]. Without a ground 

truth, the above results highlight the importance of consistency in radiomics studies. 

Regardless of the method selected only a single interpolation algorithm must be applied 

across an entire study and in comparative studies. 

 

4.2. Section 2: Size, cropping and re-segmentation 

In this part of the study all four feature sets (Baseline, Size, Uncropped and Re-segment) were 

interpolated with bilinear interpolation. When the Size CXR dataset was down sampled to a 

quarter (256x256 pixels) of the baseline images’ dimensions, 83.8% of the texture feature 

values extracted were significantly influenced. This can be accounted for by the statistical 

inter-relationship of the pixels in the secondary matrixes that would have changed by down 

sampling the images. Some 3D radiomic studies also mentioned the influence of image size 

on the outcome of their studies [18, 19]. 

Only 6 out of 74 (8.1%) texture features extracted were significantly influenced by not 

cropping the images into a square before applying the interpolation algorithm. This can also 

be accounted for by the image matrix that would have changed when the interpolation 

algorithm had unevenly down sampled the pixels of the uncropped images in the two 
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dimensions. It is possible that the influence of uncropped images will increase as the width-

to-height ratios of the uncropped images increase. 

By re-segmenting the masks after image interpolation were applied, no significant influences 

were observed in any features. This might hold true for this study only as the segmentation 

model used also applied bilinear interpolation to the images before segmenting the masks. In 

essence the masks were always re-segmented without doing it intentionally. Even being study 

specific, these results are valuable as it proves good repeatability of the interpolation 

algorithm, the segmentation model and the radiomics library used. 

 

4.3. Section 3: Radiomics signature 

Five out of the six radiomic signatures that were constructed from each dataset were identical 

consisting of 3 texture features; glcm_Idmn, ngtdm_Busyness and ngtdm_Strength. Only the 

Uncropped dataset signature had an additional feature, gldm_GrayLevelNonUniformity. This 

reproducible result is seen regardless of the significant differences found in the extracted 

feature values caused by the different interpolation methods, sizes and re-segmentations 

applied. Also the unique signature obtained when the images were left uncropped indicates 

the labour intensive process of cropping images to squares (or equal width-to-height ratios for 

the entire dataset) is imperative.  

 

5. Conclusions  

This study showed that first order feature values are not significantly impacted by the 

interpolation algorithms and other image processing methods applied, but that it does 

significantly influence most texture feature values extracted from planar images. It also 

showed that regardless of the significant differences seen in the extracted feature values, 

caused by most post-acquisition image processing methods, the outcome of the radiomics 

signatures remains reproducible. The only image post-acquisition processing step that 

resulted in a different signature was image cropping and it must therefore strongly be 

considered in all planar image studies. 

Larger sample sizes are required to verify this study, but it preliminarily shows that image 

post-processing, except cropping, does not considerably influence the outcome of radiomic 

signatures. Focus should rather be placed on applying the correct dimensionality algorithms 
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that are robust against any instabilities caused by image post-processing. It is however 

imperative to be consistent with all image processing steps applied across an entire radiomics 

study. Thorough reporting of all image processing applied in radiomic studies is also crucial 

to increase the reproducibility and validity of this field of study.  
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CHAPTER 4 

 

Introducing a secondary segmentation to construct a radiomics 

model for pulmonary tuberculosis cavities 
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Abstract  

Purpose: Accurate segmentation (separating diseased portions of the lung from normal 

appearing lung) is a challenge in radiomic studies of non-neoplastic diseases, such as 

pulmonary tuberculosis (PTB). In this study we developed a segmentation method, applicable 

to chest X-rays (CXR), that can eliminate the need for precise disease delineation, and that is 

effective for constructing radiomic models for automatic PTB cavity classification. 

Methods: This retrospective study used a dataset of 266 posteroanterior CXR of patients 

diagnosed with laboratory confirmed PTB. The lungs were segmented using a U-net based in-

house automatic segmentation model. A secondary segmentation was developed using a 

sliding window, superimposed on the primary lung segmentation. Pyradiomics was used for 

feature extraction from every window which increased the dimensionality of the data, but this 

allowed us to accurately capture the spread of the features across the lung. Two separate 

measures (standard-deviation and variance) were used to consolidate the features. Pearson’s 

correlation analysis (with a 0.8 cut-off value) was then applied for dimensionality reduction 

followed by the construction of Random Forest radiomic models. 

Results: Two almost identical radiomic signatures consisting of 10 texture features each (9 

were the same plus 1 other feature), were identified using the two separate consolidation 

measures. Two well performing random forest models were constructed from these 

signatures. The standard-deviation model (AUC=0.9444 (95% CI, 0.8762; 0.9814)) 

performed marginally better than the variance model (AUC=0.9288 (95% CI, 0.9046; 

0.9843)).  

Conclusion: The introduction of the secondary sliding window segmentation on CXR could 

eliminate the need for disease delineation in pulmonary radiomic studies, and it could 

improve the accuracy of CXR reporting currently regaining prominence as a high-volume 

screening tool as the developed radiomic models correctly classifies cavities from normal 

CXR. 

 

Keywords:  

Radiomics, Segmentation, Pulmonary Tuberculosis, Sliding window 
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Introduction 

Tuberculosis (TB) is one of the top ten causes of death worldwide according to the World 

Health Organization [1]. However an estimated 66 million lives were saved in the past two 

decades through TB diagnosis and treatment [1]. Early and accurate diagnosis is vital in 

fighting this global battle against TB spread and infections. Planar chest X-rays (CXR), in 

combination with biological methods, are commonly used to screen for or diagnose 

pulmonary TB (PTB) in patients at high risk of TB disease. CXR is the most widely 

accessible imaging modality in high TB burdened countries, and is regaining prominence as a 

high volume screening modality [2]. Advantages of CXR include that it is relatively 

inexpensive, fast, non-invasive and a good indicator of the extent of disease in the lungs [3]. 

Some dis-advantages are that expert x-ray interpreters are often scarce in resource-limited 

countries [4], and results are influenced by intra-observer subjectivity [5]. To lower the 

subjectivity associated with x-ray interpretation data science research has focussed on 

quantifying and analysing features on CXR [6,7].  

Radiomic feature extraction is one such tool that can be used to quantify disease 

characteristics, or features, and assess progression from serial medical images in the same 

patient, as it makes use of statistically based imaging analysis algorithms to convert medical 

images into mineable high-dimensional data [8,9]. Radiomics can extract relevant image 

information that can comprehensively assess the entire two dimensional landscape in the 

region-of-interest (ROI) [10]. Radiomic libraries can extract hundreds to thousands of 

features per image. As an image mining tool generating such big data, radiomics naturally 

lends itself to the application of machine learning or deep learning approaches for developing 

signatures or advanced model building [10,11].  

Radiomics is a trending research technique in oncology imaging, but it is less studied in non-

neoplastic pathologies such as PTB [12,13]. A recent systematic review showed that radiomic 

feature extraction, for the purpose of PTB diagnosis or differentiation from other pulmonary 

pathology, has only been applied in five studies [12]. In all five studies CT or PET/CT scans 

were used as the input imaging modality [12]. The review highlighted the need, and the 

challenges, of applying feature extraction to chest x-rays [12]. One challenge is that PTB has 

diverse radiological presentations: cavities, adenopathy, infiltrates and plural effusions, 

miliary pattern with the disease spreading across either a relatively small proportion of a 

single lung, or with extensive bilateral disease. Accurate segmentation of these diverse 
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disease presentations is difficult and time consuming and not always feasible with large data 

sets [14], and can result in significant observer-bias [6]. This is a major limitation in the 

quantification of non-neoplastic diseases, because variability in segmentation is the biggest 

cause of irreproducible radiomics outcomes [10].  

Several radiomic features are interpreted differently when subjected to inter- and intra-

observer assessments in delimiting ROIs [14]. Some articles use manual segmentation by 

expert readers as the ground truth for segmentation [15], but both manual and semi-automatic 

segmentation have limitations, while fully automatic segmentation models are fast and have 

good reproducibility. Many segmentation algorithms have already been trained with deep-

learning methods to perform automatic segmentation tasks for various imaging modalities, 

including CXR [14]. These models are used primarily for organ segmentation but cannot yet 

identify the pathology [16], especially in non-neoplastic pulmonary diseases. The principal 

aim of our study was to develop a segmentation method, applicable to chest x-rays, that could 

eliminate the need for precise disease delineation in the lungs. This segmentation method will 

be applicable to any CXR quantification study, but we developed it specifically for radiomic 

feature extractions.  

In recent years radiomics has gained increasing popularity due to its ability to quantify 

medical images and for the construction of radiomic signatures, nomograms, machine 

learning classifiers and models to assist in disease diagnosis, prediction of disease status, 

response to treatment and disease prognosis [17]. Radiomics improve discrimination 

performance and detection of medical images compared with those made by radiologists 

alone [9,17,18]. Our study used radiomics to develop a model to automatically differentiate 

normal CXR from CXR with cavities, to assist clinicians with improved and faster PTB 

diagnosis.  

PTB has many radiological presentations, but thick-walled cavities are generally an excellent 

radiological indicator of active PTB that with treatment and time resolve into thin-walled 

smooth cavities in treated TB [19]. These cavities cause textural changes in the lung that are 

visually apparent. Cavities were therefore selected as the radiological TB expression under 

investigation for this study. 
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Methods 

Every step in a the multi-step workflow of radiomics can influence the results and 

reproducibility [20]. To address this, the Imaging Biomarker Standardization Initiative 

(IBSI), published in 2019, aims to standardize image biomarker nomenclature and definitions 

to standardize image biomarkers extraction [21]. The IBSI guidelines were adhered to where 

possible during this study.  

 

Patient selection 

This is a retrospective study that used a dataset consisting of 266 posteroanterior (PA) CXR 

of patients diagnosed with laboratory-confirmed PTB between August 2013 and July 2018. 

The CXR were radiologically reported on by clinicians who were part of the initial study. 

Additionally for this study a single experienced TB clinician was asked to retrospectively 

review the X-rays individually, blinded to the previous reports. The second observer 

confirmed the CXR classifications as either normal (n=71) or with the presence of cavities 

(n=195). All CXR with discordant or indeterminate classifications were removed from this 

analysis. In this retrospective dataset the acquisition equipment was not recorded, but it can 

be assumed that various imaging units were used. 

 

X-ray pre-processing 

The original dataset included images in DICOM format which were acquired using non-

standardised patient positions, image sizes, orientations, photometric interpretations and bit 

depths using a range of different imaging units. Total Image Converter version 8.2.0.237 (by 

CoolUtils.com file converters) was used for initial pre-processing to ensure a uniform dataset. 

The following pre-processing steps were applied; Manually cropped all images to square 

dimensions, corrected unconventional photometric interpretations on some images and 

converted DICOM images to PNG format. Python version 3.7.6 was used to interpolate all 

images to 256 × 256 pixels with bilinear interpolation and to convert the conventional RGB 

type for PNG format to scalar type as required by the radiomics library. 

 

Primary Image segmentation 

A fully automatic in-house segmentation model was used to segment the lung fields [22]. 

This U-net based model was trained and validated on a publicly available Chest X-ray 14 

Dataset (CX14) [22]. It was then tested on an unseen publicly available dataset, the JSRT 
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dataset, and achieved a maximum Intersection over Union (IoU) of 0.8301, 0.9210, and 

0.7791 for the heart, lungs and clavicles, respectively [22]. The segmentation model resizes 

images to 256 × 256 pixels with bilinear interpolation before segmenting the lungs as a 256 × 

256 pixel mask output. Because all images had been previously interpolated to the same 

dimensions as the masks, they could simply be multiplied with the masks to visually evaluate 

the accuracy of the segmentation model on our unseen dataset (Figure 1). All CXR were 

correctly segmented, and no manual corrections were needed. 

   
Figure 1: Output of the segmentation model (from left to right): The original image, the mask output 

(multiplied by 255 to be visible) and the mask superimposed with the image that was used to evaluate 

the segmentation accuracy 

 

Secondary segmentation 

To create the secondary sliding window segmentation a square mask of n × n pixels was 

created and called the sampling window (w). This sampling window was selected to be large 

enough for the enclosed region to exhibit similar characteristics to those of the underlying 

region and at the same time to be as small as possible to enable the accurate detection of 

borders between adjacent textural regions. This window will slide over the image in both 

vertical and horizontal dimensions with a predetermined window step size (wstep). Wstep 

therefore determines the number of pixels that the sampling window slides across at each step 

and determines how well boundaries between features are resolved. There is a trade-off: if 

wstep is too large boundaries will be unresolved, while if wstep is too small then extended times 

are devoted to computation, and the window would place bounds on many of the features and 

increase their variability. 

The sliding window masks were created in Python (version 3.7.6) using Numpy.array() and 

PIL.Image() functions. A square window (w) of 16 × 16 pixels and a window step size (wstep) 

of 4 pixels was selected. The window will move, or slide, from one side of the CXR to the 

other in both x- and y-dimensions to create a window matrix of 61 × 61 windows. The 
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number of windows in the matrix can be calculated using equation 1 where [Px, Py] is the 

dimensions of the window matrix, [nx, ny] is the dimensions of the image in pixels, w is the 

window size and wstep is the window step size. 

𝑃𝑥 =
(𝑛𝑥−𝑤)

𝑤𝑠𝑡𝑒𝑝
+ 1        𝐴𝑁𝐷       𝑃𝑦 =

(𝑛𝑦−𝑤)

𝑤𝑠𝑡𝑒𝑝
+ 1                               [Eq.1] 

The sliding windows will therefore cause the effective dimensionality of each image’s 

features to increase by a factor 3721 (61 × 61). This resolution is adequate to resolve the 

change in the radiomic features across the lung, within an acceptable computational time.  

 

Radiomic feature extraction 

The sliding window masks were superimposed on the primary segmented lung mask of each 

CXR (see Figure 2). Radiomic features were extracted from each window in the window 

matrix if the window was not masked off by the lung segmentation.  

The Pyradiomics library (version 3.0) was used to extract 93 two dimensional (2D) first 

order- and texture-features from each sliding-window on each CXR. Shape-based features 

will be meaningless for the purpose of this study, as these features use the masked ROI for 

calculating the values and was omitted.  

     
 

     
Figure 2: Above: Example of 5 sliding windows, sliding horizontally in the y axis (window 

coordinates [Px, Py] = [30,9], [30,10], [30,11], [30,12] and [30,13]) superimposed on the lung mask 

and the CXR. Below: The same sliding windows, inverted to allow visualisation of the lung mask 

 

Dimensionality reduction 

Statistical analysis was performed using R Software (version 4.1.3; http://www.r-

project.org/). The secondary segmentation caused an approximately 3000 fold increase in the 

dimensionality of the features extracted. Before traditional dimensionality reduction methods 
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could be applied, additional measures were introduced, namely standard deviation (SD) and 

variance, to quantify and capture the change in features over the lung region [23]. 

These 2 measures were calculated for each of the 93 features in the cavity dataset (195 CXR) 

and the normal dataset (71 CXR) respectively. Using the resultant expressions of the features 

in these 2 measures formed the first step in the feature selection process to limit the 

complications of dimensionality which arise from the over-abundance of features. For 

dimensionality reduction, Pearson’s correlation coefficient 𝜌 was used to identify the 

uncorrelated features [24,25].  

The Pearson correlation coefficients between 0 and 1 indicate a positive correlation, 

correlations equal to zero indicate no correlation and correlations between -1 and 0 indicate a 

negative correlation. These correlation coefficients were calculated for each feature pair. 

Feature pairs with absolute correlations (|𝜌|) greater than a pre-determined cut-off value were 

removed. Three cut-off values were considered for this study, namely 0.7, 0.8 and 0.9, and 

later examined to decide which was the most appropriate for the purpose of dimensionality 

reduction. In addition to the removal of highly correlated features, only features common in 

both the cavity- and normal datasets were retained.  

 

Model development 

To apply this developed radiomic signature in a meaningful manner, a random forest model 

was constructed to differentiate cavities seen on CXR of people suffering from PTB and 

normal CXR [26]. This random forest model was used due to its attractive computational 

features and classification performance as it is robust to overfitting data by design [26]. Due 

to the imbalance between the cavity and normal samples, a random walk oversampling 

technique was applied to improve the model’s performance [27,28]. Four other sampling 

strategies were also considered and recorded in the results section. After adjustments to the 

data were made to ensure equal representation, the entire dataset was split into the training 

and testing sets with a 70/30% split respectively.  

Two separate random forest models were built, using the same CXR set on which the SD- 

and variance signatures were developed respectively [29]. For both random forest models, a 

grid search cross-validation method was employed to determine the ideal number of variables 

to try at each tree split with 15 folds and 5 repeats to further limit overfitting. Across both 

random forest models, the grid search cross-validation indicated that the ideal number of 
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variables to try at each tree split was 1. The performance of the models was validated using 

the testing set, AUC measure, accuracy, sensitivity, and specificity.  

 

Results  

Signature results 

The first step in finding the signature was to determine the optimal cut-off value for the 

Pearson’s correlation. To evaluate this, only the number of features common to both the 

cavity- and normal datasets were considered. Figure 3 indicates the number of features 

retained for the two different consolidation measures when different cut-off values were 

considered in the correlation analysis.  

 
Figure 3: The number of common features retained for the two different consolidation measures 

when different cut-off values were considered in the Pearson’s correlation analysis 

 

The results shown in Figure 3 will be conversed in the discussions section, but due to the 

number of features retained, 0.8 was considered as the optimal cut-off value for 

dimensionality reduction in this study. When the cavity and normal datasets were considered 

separately, the number of features retained with a 0.8 cut-off value in the two different 

consolidation measures were 11 and 12 in the SD measure and 12 and 12 in the variance 

measure, respectively. For both measures only 10 features were common to the normal and 

cavity dataset (as seen in Figure 3), with either 1 or 2 additional unique features retained. The 

features retained are recorded in Table 1 with the unique features emphasized in bold. 
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Table 1: Details of the features retained for the two different consolidation measures in the cavity and 

normal datasets respectively when a 0.8 cut-off value was used in the Pearson’s correlation analysis. 

The features not common to both datasets are highlighted in bold. 
MEASURE CAVITY CXR DATASET NORMAL CXR DATASET 

SD 

glcm_Correlation glcm_Correlation 

gldm_DependenceEntropy glcm_DifferenceEntropy 

gldm_DependenceNonUniformityNormalized gldm_DependenceEntropy 

gldm_DependenceVariance gldm_DependenceNonUniformityNormalized 

gldm_SmallDependenceLowGrayLevelEmphasis gldm_DependenceVariance 

glrlm_RunEntropy gldm_LargeDependenceHighGrayLevelEmphasis 

glrlm_RunLengthNonUniformityNormalized gldm_SmallDependenceLowGrayLevelEmphasis 

glrlm_ShortRunLowGrayLevelEmphasis glrlm_RunEntropy 

glszm_ZoneEntropy glrlm_ShortRunLowGrayLevelEmphasis 

ngtdm_Busyness glszm_ZoneEntropy 

ngtdm_Contrast ngtdm_Busyness 

  ngtdm_Contrast 

VARIANCE 

glcm_Correlation glcm_Correlation 

gldm_DependenceEntropy glcm_DifferenceEntropy 

gldm_DependenceNonUniformityNormalized gldm_DependenceEntropy 

gldm_DependenceVariance gldm_DependenceNonUniformityNormalized 

gldm_SmallDependenceLowGrayLevelEmphasis gldm_DependenceVariance 

glrlm_RunEntropy gldm_LargeDependenceHighGrayLevelEmphasis 

glrlm_RunLengthNonUniformityNormalized gldm_SmallDependenceLowGrayLevelEmphasis 

glrlm_ShortRunLowGrayLevelEmphasis glrlm_ShortRunLowGrayLevelEmphasis 

glszm_GrayLevelNonUniformity glszm_GrayLevelNonUniformity 

glszm_ZoneEntropy glszm_ZoneEntropy 

ngtdm_Busyness ngtdm_Busyness 

ngtdm_Contrast ngtdm_Contrast 

glcm = gray level cooccurrence matrix, gldm = gray level dependance matrix, glrlm = gray level run length 

matrix, glszm = gray level size zone matrix, ngtdm = neighbouring gray tone difference matrix 

 

Model results 

The radiomic signatures obtained for both the SD and variance measures contained the same 

number of features (10), but the features included in their respective signatures differed (see 

Table 1). Two separate random forest models were therefore built, using a random walk 

oversampling technique, to model each of the two radiomic signatures, respectively. We note 

similar model performance for both models across all performance metrics (see Table 2).  
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Table 2: Performance comparison of the SD and variance radiomic signature-based models showing 

the AUC measures with the corresponding confidence intervals (95% CI), accuracy, sensitivity, 

specificity, and precision  
SD Variance 

AUC (95% CI) 0.9444 (0.8762; 0.9814) 0.9288 (0.9046; 0.9843) 

Accuracy 0.8333 0.8750 

Sensitivity 0.7708 0.8542 

Specificity 0.8958 0.8958 

Precision 0.8810 0.8913 

 

Discussion 

The prompt diagnosis of PTB is vital for providing timely and accurate treatment, as a delay 

in treatment can lead to poor outcomes [17]. Biological methods are the gold standard for TB 

diagnosis, but culture or smear analysis takes time [30]. CXR are immediately available but 

cannot be used as a standalone tool for diagnosis. It has been shown that radiomics can 

improve discrimination performance and detection of medical images compared with those 

made by radiologists alone [9,17,18]. In this study we developed a well performing radiomic 

model that could assist clinicians with the diagnosis of cavities due to TB on CXR. When 

added to the clinical signs and symptoms, this might reduce requirements for laboratory 

results and shorten time to treatment. It can also improve the accuracy of CXR reporting 

currently regaining prominence as a high-volume screening tool. The radiomic model that 

can detect cavities will also be useful in future PTB management studies when serial CXR, 

with their corresponding models, are studied. 

For model construction, we first had to address the challenge of PTB disease segmentation 

that is required when quantifying X-rays using radiomic feature extraction. We developed a 

sliding window segmentation that allowed the extracted radiomic features to mimic the 

textural changes across the lung region caused by the disease. Inspiration for this newly 

developed segmentation method was obtained from a previous study that used deep learning 

approaches to sub-divide the lung region on a CXR into multiple stationary blocks [31]. They 

then used multi-instance learning (MIL) to classify each block as either a normal or a TB-

manifestation class for TB diagnosis [31]. Instead of the stationary blocks, we introduced a 

sliding window approach to ensure that the boundaries between feature windows are well 

resolved. 

An advantage of the secondary segmentation is that it eliminates the need to accurately 

delineate the diseased ROI which is time consuming and difficult in non-neoplastic diseases. 
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It is also completely automated which eliminates observer-bias and increases reproducibility. 

The disadvantage of the secondary segmentation is that it increases the dimensionality of the 

data significantly, but this was addressed by introducing two different consolidation measures 

before performing traditional dimensionality reduction and model construction. 

In previous studies on radiomic signature or nomogram construction for PTB, feature 

extraction was used to quantify digital medical images for the purpose of comparing, or 

differentiating, PTB from other pulmonary diseases, mainly tumors [13,32-34,24]. To the 

best of our knowledge, radiomics has not yet been used for the purpose of PTB diagnosis or 

disease management. The previously mentioned radiomics studies were performed from CT 

or PET/CT images [13,32-34,24], which seems redundant when patients in countries where 

PTB is most prevalent have very limited access to three-dimensional imaging modalities 

[35,36]. For this reason, we used relevant 2D CXR for segmentation and feature extraction.  

Although planar images are an unpopular modality for radiomic studies, a previous study was 

found where they applied a unique segmentation using a deep learning approach to train a 

model to automatically identify the thoracic disease in the lung and to generate bounding 

boxes around it [37]. In this study radiomics features were used to create heat maps to assist 

the model in identifying the disease, rather than to quantify disease characteristics [37].  

 

Signature development 

To develop a radiomic signature for PTB from CXR, dimensionality reduction was required 

to highlight the most important features and to remove redundant features. Pearson 

correlations analysis used in this study assumes that the data is normally distributed. We 

noted that most of the variables being analysed are normally distributed and only a small 

proportion of the variables violate the normality assumption which was tested using the 

Shapiro Wilk test. The correlation coefficients should therefore be largely unbiased and 

unaffected. Furthermore, various studies have indicated that Pearson correlations are robust 

to violations in the underlying assumptions [38], particularly when the normality assumption 

is violated. This then eliminated the consideration to use non-parametric alternatives to 

calculate the correlations between each feature given the few violations of the underlying 

normality assumption. Other less successful dimensionality reduction models considered for 

this study were: Inter-class correlation (ICC), Lasso regression, Factor analysis, 

Standardizing and Mean-absolute-deviation (MAD). 
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No recommendation on an optimal cutoff value for Pearson Correlations dimensionality 

reduction could be found in the literature. One study did however mention using 0.8, without 

validation [24]. We therefore evaluated three different cut-off values, 0.7, 0.8 and 0.9, in this 

study. When a cut-off value of 0.7 was used in the correlation analysis it retained very few 

common features (3 and 5 features: 3.2% and 5.3%) in the different measures. This was 

found to be too conservative and eliminated some features that might be useful. A 0.9 cutoff 

value retained the most features (21 and 22 features; 22.5% and 23.6%), but this is too liberal 

and not useful in the context of dimension reduction. It was decided that 0.8 is therefore a 

balanced cut-off value to be applied.  

Two general statistical methods were considered to quantify and consolidate the 3721 

windows’ extracted features for each CXR. By statistical definition variance and standard 

deviation gives an indication of how much each data entry in a group differs from the mean 

of the group [23]. Average, median and IQR measures were also initially considered, but by 

definition they all average out the data and give no indication of the spread in the data [23]. 

From their statistical definition, these three related measures should produce results similar to 

when the secondary segmentation would have been disregarded. These three consolidation 

methods are therefore meaningless to achieve the study's aim to evaluate the spread in the 

radiomic features across the lung region and were ignored.  

Two separate signatures for the SD and variance measures were developed by only including 

the features that were common to both the normal and cavity dataset for each measure, 

respectively. Each signature consists of 10 features, 9 common and 1 different feature (see 

Table 1). No first order statistical features were included in this signature as these features 

use basic statistical algorithms to describe the value and distribution of the pixels in the ROI 

[15], and has no concern for spatial relationships [39]. Texture features are calculated by 

using the statistical inter-relationship between the pixels in the ROI [39]. 

 

Model construction 

The objective of model construction was to develop a noninvasive tool which can 

automatically differentiate cavities seen on CXR of people suffering from PTB and normal 

CXR to further assist with PTB diagnosis. As an additional benefit, a successful model will 

also prove the effectiveness and accuracy of the secondary segmentation introduced. The 

classification results (Table 2) of both models developed using the SD and variance radiomic 

signatures showed strong diagnostic power across most measures.  
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Theoretically, machine learning algorithms are most suitable for samples with uniform 

distributions in the model training process [40]. For this reason the data was adjusted using 

the random walk oversampling technique which is an algorithm that generates synthetic 

instances so that the mean and SD of the numerical attributes remain close to the original data 

[27,28]. This technique did correct the imbalance between the cavity and normal groups in 

the sampling distribution and therefore improved the classification performance of the model. 

Four other sampling strategies were also considered but performed less convincingly: 

oversampling, synthetic minority sampling technique (SMOTE), simulation and majority 

weighted oversampling technique (MWMOT).  

To construct the random forest models, a grid search cross-validation method was employed 

to determine the ideal number of variables to try at each tree split with 15 folds and 5 repeats 

to further limit overfitting. The grid search method is an exhaustive method commonly used 

to find the optimal parameter value by considering all possible combinations of these values 

for the model so that the classifier can more accurately predict the unlabelled or testing data 

[29]. Across both random forest models, the grid search cross-validation method indicated 

that the ideal number of variables to try at each tree split was 1. 

As a result, the SD model performed marginally better than the variance model having a 

higher AUC value of 0.9444 (95% CI, 0.8762; 0.9814), which is larger than the variance 

model’s AUC value of 0.9288 (95% CI, 0.9046; 0.9843), but the 95% CI for the variance 

model is narrower which means there is less range in this estimate. This is visually supported 

by Figure 4. The variance model had a better classification accuracy than the SD model with 

87.50% and 83.33% respectively, indicating that the variance model correctly predicted more 

cavities to the total observations in the data than the SD model. The variance model once 

again had a better model sensitivity than the SD model with a measure of 85.42% and 

77.08% respectively which indicates that the variance model correctly identifies 85.42% of 

all cavity CXR. Interestingly, both models have a specificity measure of 89.58% which 

indicates that both models will identify 89.58% of patients who do not have cavities, i.e., 

have normal CXR. The variance model once again had a higher precision value than the SD 

model with a precision of 89.13% and 88.1% respectively. This indicates that when the 

variance model predicts a cavity, it is correct 88.1% of the time.  
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Figure 4: Receiver-operating characteristic (ROC) curves for the SD and variance signature-based 

random forest model using a random walk oversampling technique 

 

Three other popular machine learning algorithms were also considered for model 

construction: Logistic regression and Lasso Regression (with a minimum error and one 

standard error away). All three performed poorly compared to the random forest model in 

correctly classifying the cavities due to the complex nature of the data and the ability of the 

random forest model to classify less distinctive groups with overlapping information for the 

classes.  

Although we were able to develop robust radiomics models, there are limitations to this 

study. One major restriction is caused by the intrinsically superimposed nature of CXR 

images. Ribs and other higher density overlying structures cause noise in the lungs that is 

detected in the radiomic features. Currently there are some attempts to develop bone 

suppression software that can retrospectively remove the ribs from CXR [41], but these 

models were not yet matured enough to apply to our unseen dataset. The successful removal 

of all superimposed high-density structures might further improve the performance of our 

model. Cavities are a single representation of PTB, but it is also a common challenge in 

image-based studies that multiple radiological TB expressions (e.g., adenopathy, infiltrates, 

and plural effusions) are present on a single x-ray. It is important to note that these other 

radiological expressions that might be present on the cavity CXR dataset can cause some 

subjectivity to the outcome of this study. Our sliding window segmentation method was only 

tested on a single representation of PTB. Future perspectives will extend this technique to 

other presentations and clinical models. 
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Conclusion 

In this study two separate radiomic models were constructed, both of which achieved good 

classification accuracy for normal chest X-rays and cavities on X-rays of people suffering 

from pulmonary TB. This was achieved by the introduction of a secondary sliding window 

segmentation that was superimposed on a conventional automatic lung segmentation. This 

reproducible automatic segmentation method eliminates the difficult and labor-intensive 

manual disease delineation task, and it alleviates the subjectivity introduced by human 

judgement on X-rays. The well performing radiomic model could assist clinicians with the 

prompt diagnosis of pulmonary TB using digital chest X-rays. Accompanied with clinical 

signs and symptoms, it might aid diagnosis and commencement of pulmonary TB treatment 

and improve the accuracy of high volume X-ray TB screening or surveillance programs. 
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Quantitative chest x-ray radiomics for therapy response 
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Abstract 

Tuberculosis (TB) remains the second leading cause of death globally from a single 

infectious agent, and there is a critical need to develop improved imaging biomarkers and aid 

rapid assessments of responses to therapy. We aimed to utilize radiomics, a rapidly 

developing image analysis tool, to develop a scoring system for this purpose. A chest X-ray 

radiomics score (RadScore) was developed by implementing a unique segmentation method, 

followed by feature extraction and parameter map construction. Signature parameter maps 

that showed a high correlation to lung pathology were consolidated into four frequency bins 

to obtain the RadScore. A clinical score (TBscore) and a radiological score (RLscore) were 

also developed based on existing scoring algorithms. The correlation between the change in 

the three scores, calculated from serial X-rays taken while patients received TB therapy, was 

evaluated using Spearman’s correlation. Poor correlations were observed between the 

changes in the TBscore and the RLscore (0.09 (p-value = 0.36)) and the TBscore and the 

RadScore (0.02 (p-value = 0.86)). The changes in the RLscore and the RadScore had a much 

stronger correlation of 0.22, which is statistically significant (p-value = 0.02). This shows 

that the developed RadScore has the potential to be a quantitative monitoring tool for 

responses to therapy. 

 

Keywords: 

radiomics; tuberculosis; segmentation; feature extraction; chest x-rays; radiomics score   
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1. Introduction 

Tuberculosis (TB) is a leading cause of death globally [1]. Planar chest X-rays (CXRs) are a 

method commonly used for early pulmonary TB (PTB) diagnosis in patients with clinical 

symptoms suggestive of TB. CXRs are used rather than more sophisticated three-dimensional 

modalities because they are the most widely accessible and inexpensive imaging modality in 

countries where TB is most prevalent [2-4]. Follow-up CXRs are also widely used in the 

management of PTB to evaluate clinical responses to treatment, though there are no objective 

tests for improvement. Intra- and interobserver discrepancies are common in X-ray reporting 

[5], and one study found an error rate of up to 23% when experienced radiologists reported 

on a collection of normal and abnormal X-rays [6].   

For an assessment of responses to PTB treatment, in some settings, a follow-up CXR taken at 

the completion of the 2-month intensive four-drug treatment phase is often visually compared 

to the CXRs taken at the initiation of TB treatment [7]. With a subjective improvement in 

CXRs and symptoms, patients proceed to the two-drug continuation phase of TB treatment 

[7]. Currently, CXRs are only used for qualitative visual assessments in PTB management 

and are typically reported as either “improved” or “worse” compared to previous CXRs. 

However, if PTB characteristics can be quantified from chest X-rays, these characteristics 

might be used to evaluate disease response and could assist with identifying those who do not 

respond to TB treatment earlier in their treatment course. 

Laboratory results are considered as ground truth for PTB management to determine 

responses to treatment [8]. However, in cases where laboratory results are not available, 

clinical signs and symptoms related to PTB is also a good indicator of treatment response. 

Scoring systems are tools designed to predict outcomes, assist in clinical decision-making, 

support treatment options and manage clinical risk [9]. Various clinical scoring algorithms 

for TB exist, and a systematic review study summarized the sensitivity and specificity of 

some of them [10]. The TBscore is one such system that was developed as a rapid and 

inexpensive tool to monitor TB patients in their treatment and to assess clinical outcomes 

[11]. This scoring system included five symptoms that were self-reported (cough, dyspnoea, 

night sweats, haemoptysis and chest pain) and six signs that were assessed by a trained nurse 

(anaemia, tachycardia, positive finding on lung auscultation, fever, body mass index, and 

mid-upper arm circumference) [11]. This clinical score was also useful for TB diagnosis 

among adults living with HIV who presented to healthcare institutions with signs and 
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symptoms suggestive of TB with high sensitivity (95.5%) and a specificity of 36.9% when a 

cut-off value of two was implemented [12]. In our study, we used this TB scoring system and 

modified it slightly for the population group under consideration. 

Several radiological chest X-ray scoring systems have been reported, for example the RALE 

(Radiographic Assessment of Lung Edema) score and the BRIXIA Chest X-ray Severity 

Scoring System [13]. Both these scoring systems have lately been re-purposed, for COVID-

19 research [13-16]. In the RALE scoring system, each lung (left and right, respectively) is 

scored from 0 to 4, with 0 for no disease involvement and 4 for more than 75% involvement, 

with a total score out of 8 [13]. The BRIXIA score is used to grade lung abnormalities caused 

by disease on an 18-point severity scale [17]. This scoring system divides the lungs into 6 

regions (3 regions for each lung), and each region is given a score (from 0 to 3) based on the 

extent of the lung abnormalities detected [17]. For our retrospective study, we developed a 

TB radiological scoring system based on the aforementioned scoring systems that could be 

used to determine the correlation of newly developed scores. 

Studies on the use of computer science from medical images for the diagnosis of PTB or on 

the differentiation of TB from another pulmonary disease have been reported [18-20], but 

very little evidence exists on the use of radiological image analysis for monitoring treatment 

response and prognosis [21]. As radiomics is gaining popularity in the medical field, it may 

be beneficial to use this to assess responses to TB therapy. 

The motivation for our study was based on a recent study that developed a radiomics score 

(rad score) from CT scans which acted as a potential prognostic imaging feature for 

postoperative survival in solitary hepatocellular carcinoma (HCC) patients [22]. They 

identified six signature features and then applied the least absolute shrinkage and selection 

operator (LASSO) logistic model to develop the optimal rad-score algorithm [22]. This 

algorithm ensured that each feature contributed equally to the rad-score since the 

dimensionality of features could differ significantly. This, in essence, is just a different 

approach to normalization. This study concluded that their rad-score might be complementary 

to the current tumour staging systems [22]. 

Most radiomic studies are performed using data from CT scans because of simplified disease 

segmentation and exposed (non-superimposed) anatomy. If PTB is the disease under 

investigation, CXRs would be more practical as they are an inexpensive, widely accessible 
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imaging modality for disease diagnosis and management [4]. Our study, therefore, used a 

chest X-ray dataset of patients diagnosed with active PTB.  

Some restrictions exist on performing radiomic feature extraction from planar chest X-rays, 

for example, the superimposed chest anatomy overlying the disease of interest and accurate 

disease segmentation to select the ROI for feature extraction [23]. To address this, a recent 

study developed a sliding window segmentation that was applied as a secondary 

segmentation to the entire segmented lung to include the normal tissue and the disease [23]. 

This article shows that the sliding window segmentation can eliminate the need for accurate 

disease segmentation on planar images, as it produces accurate and reproducible radiomic 

signatures and models (AUC = 0.9444 (95% CI [0.8762, 0.9814])) [23]. This sliding window 

segmentation method was applied to our study, even though the traditional consequent steps 

of dimensionality reduction, signature development and model construction were not 

followed through.  

In this study, a unique approach to dimensionality reduction and signature construction was 

applied to assess changes in CXRs that could be linked to other objective measures of TB 

treatment response using a novel CXR radiomics score. The correlation between the 

radiomics score and several calculated clinical- and radiological scores was evaluated. 

 

2. Methodology 

 

2.1. Patient selection 

This was a secondary data analysis on the clinical- and radiological data of 111 patients 

collected for an observational study between August 2013 and July 2018. These patients had 

a laboratory-confirmed diagnosis of PTB with clinical data recorded and a CXR acquired at 

the baseline- and first follow-up clinic visit. The mean time lapse between the baseline and 

the first follow-up visit was 54.39 days (a range of 50–64 days), with all X-rays taken within 

one week of the date of the clinical visit. The CXRs were all reported by radiologists or 

attending doctors with extensive experience in PTB X-ray reporting. 

 

2.2. Clinical score (TBscore) 

The TBscore algorithm was used to calculate a clinical score for each patient [12]; it was 

minimally altered (see Table 1) to only include those signs and symptoms that were included 
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in the initial clinical study database. Tolerances for BMI and pulse rate were intentionally 

altered by expert TB clinicians to have a similar quantitative contribution as the original 

TBscore. In the original TBscore algorithm a BMI < 18 kg/m2 scored 1, a BM I< 16 kg/m2 

scored 2 and a pulse rate of >90 bpm scored 1 with no value for score 2 [12].  

Table 1: Clinical score chart used in this study with a maximum score of 12 

Sign or Symptom CRITERIA 

SCORE 0 1 2 

How do you feel? 7 - 10 (Good) 4 - 6 (Okay) ≤3 (Awful) 

Fever (°C) ≤37.5 (NO) 
 

>37.5deg (YES) 

Pulse rate (bmp) < 90 90 - 100 > 100 

Cough (days) No cough < 60 or 

No cough at 

prior visit 

≥60 or 

No cough at prior 

visit 

BMI (kg/m2) >20 18 - 20 <18 

Nights sweats (days) 0 < 60 days ≥ 60days 

°C = Degrees Celsius, bpm = beats per minute, kg/m2 = kilogram per meter squared   

 

In this study four self-reported symptoms were included; general well-being (recorded as a 

self-reported answer to “how does the patient feel?” as either a score out of 10 (with 10 being 

“excellent” and 1 “awful”), or on a qualitative scale as “Good”, “Okay” or “Awful”), cough 

(duration in days coughing was experienced ), BMI (body-mass-index in kg/m2) and night 

sweats (number of days night sweats were experienced to date). Two clinical signs were 

included; temperature  (oral or axillary temperature ≥ 37.5 °C) and pulse rate (in beats per 

minute) [12]. The symptoms and signs all had a possible score of 0, 1 or 2 resulting in a 

maximum clinical score out of 12 (see Table 1). 

 

2.3. Radiological score (RLscore) 

The radiological dataset had the following 4 data entries recorded that were applicable to this 

study: (1) The CXRs’ acquisition date. (2) The presence of 4 radiological TB expressions 

(cavities, infiltrates, adenopathy and pleural effusion) in the left or right lung recorded 

separately. This was recorded as either ‘YES’ or ‘NO’, where ‘YES’ indicated disease 

presence and ‘NO’ indicated absent disease. For scoring purposes, binary values were 

assigned to the conditions in this study as YES = 1 and NO = 0. This added up to a maximum 

score out of 8 if all 4 expressions were present in both lungs. (3) The CXRs’ cavitation 

classification (recorded as 1, 2 or 3) were according to the conditions set out in Table 2. (4) 

Additionally, the extent of disease classification (recorded as A, B or C) was according to the 
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conditions set out in Table 2. For scoring purposes, numerical values were assigned to each 

condition: A = 1, B = 2 and C = 3. Normal X-rays = 0. 

Table 2: Radiological score conditions of the X-ray classification 

X-ray classification: Cavitation X-ray classification: Extent of disease 

1 Absent, as seen on posteroanterior 

(PA) or anteroposterior (AP) CXR 

view. 

A 

(1) 

Limited: Lesion(s) involving a total lung 

area less than one-quarter the area of the 

entire thoracic cavity, as seen on PA or 

AP view. 

2 Single or multiple cavities with 

diameter < 4 cm in aggregate (for 

each cavity, measure at point of 

maximum diameter) for PA or AP 

CXR view. 

B 

(2) 

Moderate: Lesion(s) of greater than A, 

but, even if bilateral, involve a total lung 

area of less than one-half the area of the 

entire thoracic cavity, as seen on PA or 

AP view. 

3 Single or multiple cavities with 

diameter ≥ 4 cm in aggregate (for 

each cavity, measure at point of 

maximum diameter) for PA or AP 

CXR view. 

C 

(3) 

Extensive: Lesion(s) involving a total 

lung area equal to, or more than half the 

area, of the entire thoracic cavity, as seen 

on PA or AP view. 

 

A radiological score (RLscore) was obtained for each x-ray by including the recorded TB 

expressions (possible 8 points), cavitation classification (possible 3 points) and the extend of 

the disease (possible 3 points). It was calculated according to the algorithm in Equation 1 for 

a maximum score out of 14. 

𝑅𝐿𝑠𝑐𝑜𝑟𝑒 = 𝑆𝑢𝑚(𝑅𝑎𝑑𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑇𝐵 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠) + (𝐸𝑥𝑡𝑒𝑛𝑑 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒)

+ (𝐶𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛) 

[Eq. 1] 

2.4. Radiomics Score (RadScore) 

A non-traditional method was followed to develop the radiomics score (RadScore) in this 

study when a sliding window segmentation was introduced [23]. Figure 1 is a schematic 

overview of the approach followed. 
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Figure 1: A schematic overview of the process followed to develop a radiomics score (RadScore) in 

this study 

 

Image Processing:  

The Total Image Converter (version 8.2.0.237) and Python (version 3.7.6) were used for 

initial pre-processing to ensure that a uniform CXR dataset was used as a cohort and that it 

was in the required format for the radiomics library. Image processing included manually 

cropping all images to square dimensions, correcting unconventional photometric 

interpretations on some images, converting DICOM images to the PNG format, interpolating 
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all images to 256 × 256 pixels with bilinear interpolation, and converting the conventional 

RGB type of PNG images to the scalar type  

Primary Segmentation: 

A fully automatic in-house segmentation model was used to segment the lungs as the primary 

segmentation [24]. The segmentation model resized images to 256 × 256 pixels with bilinear 

interpolation before segmenting the lungs as a 256 × 256 pixel mask output. Figure 2 is an 

example of the lung segmentation achieved with the clavicles removed. 

   
(a) (b) (c) 

Figure 2: An example of the output of the primary segmentation model, (a) The original image, (b) 

The mask (multiplied by 255 to be visually visible) and (c) The mask multiplied with the original 

image. This image was used to evaluate the accuracy of the primary segmentation model 

 

Secondary Segmentation & Radiomic Feature Extraction 

Sliding window masks were created in Python (version 3.7.6) using Numpy.array() and 

PIL.Image() functions. A square sampling window mask (w) with 16 × 16 pixels and a 

window step size (wstep) of 4 pixels was selected as has been previously described [23]. The 

window moved, or slid, from one side of the CXR to the other in both x- and y-dimensions to 

create a new window matrix of 61 × 61 windows. The number of windows in the matrix can 

be calculated using Equation 2 where [Px, Py] refers to the dimensions of the window matrix, 

[nx, ny] is the dimensions of the image in pixels, w is the window size and wstep is the window 

step size [23]. 

𝑃𝑥 =
(𝑛𝑥−𝑤)

𝑤𝑠𝑡𝑒𝑝
+ 1        𝐴𝑁𝐷       𝑃𝑦 =

(𝑛𝑦−𝑤)

𝑤𝑠𝑡𝑒𝑝
+ 1                               [Eq.2] 

The sliding windows, therefore, cause the effective dimensionality of each image’s features 

to increase by a factor of 3721 (61 × 61). This resolution was thought to be adequate to 

resolve the change in radiomic features across the lung within an acceptable computational 

time. 
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The sliding window masks were superimposed on the primary segmented lung mask of each 

CXR. Radiomic features were extracted from each window in the window matrix if the 

window was not masked off by the lung segmentation.  

The Pyradiomics library (version 3.0) was used to extract 93 two-dimensional (2D) first-

order and texture features from each sliding window on each CXR. Shape-based features 

were omitted, as these features used the ROI defined by the mask to calculate the values, 

which is meaningless for the purpose of this study.  

Creating Parameter Maps 

All data processing was performed using R Software (version 4.1.3). From Equation 2, it can 

be seen that 3271 window features were extracted per feature from each CXR. To account for 

the dimensional variability in these features, all windows’ features were normalized with z-

score normalization. All feature values were redistributed to the correct x- and y-coordinates 

in the sliding window matrix. This was conducted for each of the 93 features extracted on 

each of the 111 CXRs. Heatmaps were applied, and a parameter map was printed for each 

feature (see Figure 3). 

Signature Features & Signature Parameter Map 

A visual inspection of the parameter maps was the only method to identify the features that 

could result in a robust and reproducible radiomics signature to collate with the extent of the 

disease. Due to the enormous number of maps under investigation, it was decided to sample a 

simple random sample comprising more than 10% of the parameter maps. All parameter 

maps from this sample were visually inspected and compared to the original X-ray to identify 

the features that represented the disease. Six features were identified on 100% of the 

randomized samples’ CXRs, and these six features were acknowledged as the signature. The 

6 signature feature values were summed to obtain a single signature value for each window in 

the parameter map out of a maximum of 6 (the sum of 6 normalized features). Since we 

noticed that these features all increased with an increase in disease status, we expected that 

the summed features would further highlight the diseased and the higher-density areas in the 

lung. When the 3721 values of the signature features were again redistributed to the correct x- 

and y-coordinates, a single signature parameter map of 61 × 61 windows for each CXR was 

developed. 
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 (q) (r)  
Figure 3: First order feature parameter maps for a single baseline CXR of Patient A; (a)10th 

Percentile, (b)90th Percentile, (c)Energy, (d)Entropy, (e)Interquartile range, (f)Kurtosis, (g)Maximum, 

(h)Mean, (i)Mean-Absolute-Deviation, (j)Median, (k)Minimum, (l)Range, (m)Robust-Mean-

Absolute-Deviation, (n)Root-Mean-Squared, (o)Skewness, (p)Total-Energy, (q)Uniformity and 

(r)Variance 
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Developing the Radiomics Score (RadScore) 

To develop a radiomics score that can be compared to a single integer radiology and clinical 

score, all the signature parameter maps were statistically summarized into a single value. The 

summed features for each CXR, with a numerical range from 0 to 6, were consolidated into 

four frequency bins with a bin width of 1.5. These 4 groups were [0.0; 1.5], (1.5; 3.0], (3.0; 

4.5] and (4.5, 6.0]. The corresponding frequencies of the summed features for each group 

were calculated to obtain crucial information about where most feature information lies. 

Since the signature feature values increased with increased disease status, we could assume 

that a higher score indicated a worse state of PTB and would likely fall in the (3.0; 4.5] or 

(4.5, 6.0] frequency group with healthier lung tissues falling in the [0.0; 1.5] and (1.5; 3.0] 

groups. Due to dimensionality issues caused by the image segmentation techniques applied to 

each CXR, the summed features did not all contain information at the exact same windows 

from baseline to follow-up. The proportions were, therefore, used for each of the four groups 

to circumvent spurious results and to improve accuracy in comparisons between the baseline 

and follow-up CXRs. 

 

2.5. Longitudinal Change 

To evaluate the change in the RadScore, RLscore and the TBscore, the follow-up visit’s score 

was subtracted from the baseline visit’s score according to Equation 3. 

𝐶ℎ𝑎𝑛𝑔𝑒(𝑆𝑐𝑜𝑟𝑒) = 𝐹𝑖𝑟𝑠𝑡 𝑣𝑖𝑠𝑖𝑡 (𝑆𝑐𝑜𝑟𝑒) − 𝑆𝑒𝑐𝑜𝑛𝑑 𝑣𝑖𝑠𝑖𝑡 (𝑆𝑐𝑜𝑟𝑒)         [Eq.3] 

A positive change, therefore, indicates a radiological or clinical improvement, a negative 

change indicates worsening, and 0 indicates no change. 

Spearman’s correlation analysis (the non-parametric equivalent of Pearson’s correlation 

analysis) was performed with a test of significance to evaluate the RadScore, TBscore and 

RLscore correlations. Spearman’s test was used since the clinical score was found to not be 

normally distributed at a 5% level with a p-value of 0.01 using the Shapiro–Wilk test of 

normality. 
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3. Results 

 

3.1. Parameter Maps 

Parameter maps are the normalized features extracted from each CXR’s sliding window mask 

and re-distributed into the correct spatial dimensions with conditional formatting applied. 

Figure 3 is only the 18 first-order features’ parameter maps of a single CXR (Patient A: 

Baseline CXR). 

Visual evaluation was used to identify the features whose parameter maps correlated with 

disease pathology in the lungs. Table 3 provides a list of the six features identified as 

signature features.  

Table 3: The following features were identified as signature features that highlight and quantify the 

disease and correlate to the lung pathology 

Feature 

number 
Feature name 

1 First order – 90th percentiles 

2 First order – Median 

3 First order – Mean 

4 First order – Energy 

5 First order – Root mean square 

6 First order – Total Energy 

 

To obtain signature parameter maps, the six signature features’ values were summed to obtain 

a signature value for every window out of six. These values were again re-distributed to the 

correct x- and y-coordinate matrix, and conditional formatting was applied to obtain a single 

signature parameter map for each CXR. Figure 4 is an example of the signature parameter 

map of Patient A’s baseline CXR (the same patient used in Figure 3). 

 
Figure 4: Signature parameter map obtained for Patient A’s baseline CXR 
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3.2. Developing a RadScore 

Frequency bins were used to develop a RadScore for each patient at each clinical visit. Figure 

5 shows the frequency bins of Patient A at baseline and first follow-up CXR. 

  
(a) (b) 

Figure 5: (a) Plot of the frequency proportions of a baseline CXR of Patient A indicating the four 

groups used to obtain a radiomics score and (b) Plot of the frequency proportions of the corresponding 

follow-up CXR of Patient A 

 

3.3. Change in RLscore, TBscore & RadScore 

Equation 3 was used to calculate the longitudinal change in the RLscore, TBscore and the 

RadScore with the results shown in Figure 6. 

 
Figure 6: Graph indicating the number of patients who showed a decline, no change or an 

improvement in the TBscore, RLscore and RadScore 

 

The correlation between the change in the scores were evaluated using Spearman’s 

correlation, with a test of significance for the correlation. The results are recorded in Table 4, 

Figure 7 (TBscore vs. RLscore), Figure 8 (TBscore vs. RadScore) and Figure 9 (RLscore vs. 

RadScore). 
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Table 4: The correlation between the change in the TBscore, the RLscore and the RadScore as 

calculated using Spearman’s correlation analysis with a p-value testing the significance of the 

correlation 

Scores Being Compared Correlation Value p-value 

TBscore vs. RLscore 0.0884 0.3607 

TBscore vs. RadScore (prop. 3 to 6) 0.0172 0.8589 

RLscore vs. RadScore (prop. 3 to 6) 0.2178 0.0216 

 
Figure 7: Plot of the correlation between the TBscore and the RLscore 

 

 
Figure 8: Plot of the correlation between the TBscore and the RadScore 
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Figure 9: Plot of the correlation between the RLscore and the RadScore 

 

4. Discussions 

In this study, we developed a TB radiomics score (RadScore) from chest X-rays without any 

need for disease segmentation. In traditional radiomic studies, the disease under investigation 

(mostly tumours) is precisely delineated, either manually or with an automatic or semi-

automatic model [25, 26]. The radiomic features are then extracted in the segmented ROI 

only, and a signature is developed that describes the properties of the delineated disease. 

However, the precise delineation of a non-neoplastic disease such as TB is very difficult. The 

sliding window method that was introduced as a secondary segmentation allowed us to 

evaluate the change in radiomic features across the entire lung region. By re-distributing 

every window’s extracted feature into the corresponding x- and y-coordinates, parameter 

maps could be developed. These parameter maps are, in essence, a quantified interpretation, 

either as a first- or second-order (texture features) statistical algorithm of the original image. 

We noticed that only first-order features’ parameter maps corresponded to lung pathology. 

This was expected as the texture features derived from secondary matrixes are too far 

removed from the original grayscale intensities of the CXR. 

 The parameter maps appeared as smoothed image versions because the sliding windows in 

the secondary segmentation reduced the resolution of the image. This segmentation allows 

for some overlap of the pixels from one window to the next, which ensures that no image 

information is lost. When the window size of the secondary segmentation is reduced, the 

signature parameter map seems less smooth, but this is at the cost of additional computational 
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time and resources. The boundaries between the features in this study are well resolved as we 

used a window step size of only 4 pixels [23].   

Signature parameter maps were developed in this study by adding the six features that 

individually corresponded to lung pathology. Other mathematical and statistical methods 

were also considered to develop a single signature value for each window, but it was found 

that the simple sum of these features was the optimal choice to highlight lung pathology 

compared to the standalone features’ parameter maps. Figure 10 shows the strong correlation 

between the radiomic signature map (a) and the original CXR (b). Since each window in the 

signature parameter map had a normalized quantitative signature value that was directly 

proportional to the colour scale, this parameter map could be used not only as a visual tool 

enhancing radiological features but also as a quantitative tool to assist in CXR reporting, 

especially in disease management. When the parameter map of a baseline CXR is compared 

to that of a follow-up CXR, uncertainties in visual assessment can be eliminated using 

quantitative comparisons of the lung ROI. 

  
(a) (b) 

Figure 10: The radiomic signature parameter map (a) correlates strongly to the lung pathology on the 

CXR (b) 

 

If image registration was included as an initial step in this study, it might have been possible 

to use image subtraction of the baseline and follow-up CXR to determine differences in the 

signature maps. These differences would have clearly indicated the change in the extent of 

the disease (better or worse) and the position, visually and quantitatively. However, in this 

retrospective study, image registration was not considered. For individual cases, manual 

quantitative comparisons of the lung region of interest could be made, but this is too time-

consuming to incorporate as a standard practice in the clinical environment. 
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The aim of our study was ultimately to develop a radiomics score that could automatically 

assign a single numerical value to each CXR and contribute to quantitative X-ray reporting, 

which is essential but still lacking for evaluating TB responses to treatment. Various 

consolidation methods were evaluated; however, we concluded that by using the change in 

the proportion of the windows (with feature values between 3.0 and 6.0), the most reliable 

score could be achieved. To evaluate the relevance of the developed radiomics score 

(RadScore), its correlation to a developed clinical- and radiological score was tested. 

Figures 7-9 are the plots of the correlations, and visually they seem to indicate the presence 

of outliers. The presence of outliers is known to be problematic, particularly within 

correlation analysis [27]. To this end, all outliers were tested to see if they are statistically 

significant using Grubbs Test [28]. Furthermore, the practical and clinical importance of 

these outliers were carefully considered as well. In all cases, the outliers were statistically 

insignificant and were therefore not removed.  

The TBscore and the RLscore indicated a poor correlation of 0.09 with no statistical 

significance (p-value = 0.36). This might be accounted for by the slower improvement seen 

in lung pathology on CXR compared to a faster response to treatment to the clinical signs and 

symptoms of PTB. Additionally, the lower sensitivity of X-rays to detect minor changes in 

lung pathology can be a contributing factor [29]. This could also explain the even poorer 

correlation of 0.02 between the TBscore and the RadScore, with no statistical significance (p-

value=0.86). It is known that CXR plays a vital role in the management of PTB, but that it 

cannot be used as a standalone tool [30]. The poor correlations between the clinical signs and 

symptoms and the RL- and the RadScore also show that they cannot be used in isolation from 

laboratory-confirmed results in the management of PTB.  

The RLscore and the RadScore had a much stronger correlation of 0.22, which was 

statistically significant (p-value = 0.02). This shows that the RadScore accurately quantifies 

the subjective radiological reports. The RadScore might, therefore, have the potential to 

eliminate the need for CXR reporting in TB management programs, which is currently only 

qualitative. This could benefit some of the world’s highest TB-burdened countries that have 

limited resources and a shortage of clinicians experienced in CXR reporting. If the RadScore 

is applied and supported with the developed signature parameter maps as a quantitative 

objective interpretation of CXR, it could improve the accuracy of X-ray reporting and 

strengthen the current role of CXRs in TB management programs. 
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Since the x-rays were used as foundational input for the RadScore construction an excellent 

correlation between the RL- and the RadScore was expected if the dimensionality reduction 

and signature development were accurately applied, which we ensured in this study. The 

likely cause of the lower-than-expected correlation is the high-density ribs that were 

superimposed on the lung anatomy in the lung ROI. These higher density overlying structures 

cause noise that is detected in the radiomic features. This reduced the accuracy of the features 

extracted, especially in the lateral lung regions as seen in Figure 4. We attempted to address 

this issue by applying a bone suppression model, which was proven to outperform most other 

available models at the time [31], to all CXRs in this study before the primary lung 

segmentation This was, however, unsuccessful as this model was still too immature at the 

time of this study due to the small training cohort, with a limited dynamic range, that was 

used to train this model. When a matured and accurate bone suppression model is developed 

that can retrospectively remove the ribs, most of the noise that influences the radiomic 

features will be removed. The radiomics scoring method proposed in this study would then 

most likely result in a RadScore that has a very high correlation to the RLscore. 

The methodology introduced in this study is labour-intensive and expensive in terms of 

knowledge and computational resources. A future perspective is to develop this into software 

with a user-friendly interphase where a CXR image can easily be uploaded and the clinical 

data entered. The software can then automatically perform the image post-acquisition 

processing, apply the segmentation model and radiomic feature extraction library to the CXR, 

and complete the rapid parameter map and score constructions. If this is developed as an 

application rather than server-based software, it should be accessible from any computer, 

regardless of its processing power. This eliminates the restriction of computational power, 

which might be a limiting factor in many high-TB-burdened countries. Following this, 

RadScore should be useful as a quantitative tool to evaluate the changes in PTB disease 

characteristics as seen from CXRs, which could greatly assist clinicians, especially in 

resource-limited countries, in the management of PTB. 
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5. Conclusions 

In this study, a radiomics score (RadScore) was developed from chest X-rays that showed a 

good correlation, with statistical significance, to a developed radiological score. It was shown 

that the RadScore can be used to quantify the change in the disease characteristics seen on X-

rays of patients diagnosed with pulmonary TB. Integrating the RadScore as a quantitative 

objective interpretation of X-rays could improve the accuracy of X-ray reporting and 

strengthen its role in TB management programs. As part of the RadScore construction, 

signature parameter maps were created that showed excellent qualitative correlations that 

could further increase the acceptance of chest X-rays as a quantitative tool for assessing TB 

response in medical research and clinical practice. 
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CHAPTER 6 

 

Discussions 

 

Pulmonary tuberculosis (PTB) remains one of the leading causes of death globally from a 

single infection agent. Chest x-rays (CXR) are the most frequently used imaging procedure 

for diagnosis and management of this disease and is also gaining prominence as a high-

volume screening tool. But image reporting continues to be a challenge of this non-neoplastic 

pulmonary disease, due to a lack of expert readers and the inherent superimposed nature of x-

rays. This can be addressed by quantifying digital x-rays with tools such as radiomic feature 

extraction. In recent years radiomics has gained increasing popularity due to its ability to 

quantify medical images and for the construction of radiomic signatures, nomograms, 

machine learning classifiers and models to assist in disease diagnosis, prediction of disease 

status, response to treatment and disease prognosis.  

A systematic review on the existing applications of radiomics to PTB, for the purpose of 

diagnosis or differentiation from other pulmonary pathology, was performed in Chapter 2 of 

this thesis. It showed that, at the time of this review in 2021, radiomic feature extraction has 

only been applied in five studies, all of which used CT or PET/CT images as the input 

imaging modality. This review highlighted many disparities and uncertainties that remain in 

the field of radiomic studies applied to PTB. One key finding was the lack of radiomic 

research using planar images. However, in 2022 additional papers were published on the 

application of radiomics in PTB by applying standard computer vision techniques and one of 

these was briefly discussed in Chapter 4.1 This study applied a unique segmentation using a 

deep learning approach to train a model to automatically identify the thoracic disease in the 

lung and to generate bounding boxes around it. In this study radiomic features were used to 

create heat maps to assist the model in identifying the disease, rather than to quantify disease 

characteristics.1 This study achieved an AUC of 0.843 and localization of 0.679 in T(IoU) = 

0.1 in disease detection, but did not mention which radiomic features were utilised.1 The 

models developed in this thesis performed much better than the one mentioned above with 

the standard-deviation model achieving an AUC of 0.9444 (95% CI, 0.8762; 0.9814) and the 

variance model an AUC of 0.9288 (95% CI, 0.9046; 0.9843). Refer to Table 2 in Chapter 4 

for the complete performance indicators.  
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Even though planar radiomic feature extraction studies remain uncommon for PTB it is 

gaining some popularity for other diseases such as COVID-19. A few recent studies were 

published on the use of radiomic feature extraction from CXR for COVID-19 diagnosis and 

management.2-3 One study developed a CXR-based radiomics integrated model to assess the 

predictive role of such models for ICU (intensive care unit) hospitalization and the overall 

outcome of COVID-19 patients.3 Their preliminary results demonstrated that a rapid model 

based on two radiomic features (inverse variance, run length non-uniformity normalized) and 

a basic inflammatory index collected at admission, can predict ICU hospitalization.3  In 2022 

another study was published that implemented a 2D sliding kernel to map the impulse 

response of radiomic features throughout the entire CXR image.2 They investigated three 

deep neural network architectures that showed an improved sensitivity, specificity, accuracy 

and ROC AUC results with the inclusion of radiomic analysis in deep learning model 

designs.2 Different radiomic features were identified as important in the three different neural 

networks; GLCOM entropy and GLRLM short-run-emphasis were selected in the VGG-16 

model, GLCOM entropy and GLCOM sum-entropy were selected in the VGG-19 model and 

GLCOM sum-average and GLRLM short-run-high-gray-level-emphasis were selected in the 

DenseNet-121 model.2 

Chapter 2 of this thesis is a literature review paper that was published without adding the 

performance information of the methods used. The table below can be viewed as an addition 

to Tabel 1 (page 33) where the reviewed studies’ results are compared to the results of the 

radiomic models developed in this thesis (indicated as Study F). In instances where multiple 

radiomic models were developed in the reviewed studies, only the best performing model or 

signature was recorded. From Table 1 below it can be seen that the radiomic models 

developed in this thesis (Study F) outperforms all other models except for the model 

developed in Study A (Bei et al.). 
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Table 1: Performance indicators of the TB radiomic models or signatures developed in the literature 

study performed in Chapter 2 and compared to the results of this study (F).  

Study Author Cohort AUC 95% CI Accuracy Sensitivity Specificity 

A Bei et al.4 
Training 0.970 0.939-1.000 93.02% 0.950 0.913 

Validation 0.957 0.899-1.000 93.10% 0.923 0.938 

B Shi et al.5 
Training 0.93 0.84-1.00 * * * 

Validation * * * * * 

C Feng et al.6 
Training 0.933 0.892-0.974 0.878 0.831 0.931 

Validation 0.874 0.813-0.934 0.846 0.868 0.763 

D Cui et al.7 
Training 0.914 * * 0.890 0.796 

Validation 0.900 * * 0.788 0.907 

E Du et al.8 
Training 0.91 0.84-0.95 0.84 0.74 0.96 

Validation 0.91 0.80-0.96 0.83 0.86 0.78 

F 
Du Plessis  

et al.9 

SD Model 0.944 0.876-0.981 0.833 0.771 0.896 

Variance 

Model 
0.929 0.905-0.974 0.875 0.854 0.896 

* These values were not recorded in the literature 

Since no scientific literature could be found on the optimal post-acquisition image processing 

steps to apply to planar images in radiomic studies, a comparative study was performed on 

this in Chapter 3. For this study one third of the total dataset was randomly selected and 

consisted of 103 PA CXR images with sizes ranging between 1479 x 1629 pixels and 3520 x 

4280 pixels (mean: 1812 x 2020 pixels). For clarity on the workflow followed in this chapter 

a comprehensive workflow flowchart is available in Annexure 3. A second flowchart that 

includes images was also added to Annexure 3 to illustrate the image processing workflow. 

This chapter showed that the interpolation algorithm and most standard post-acquisition 

processing applied to planar images does not significantly influence the radiomic signatures 

obtained. Only cropping images to squares (equal width-to-height pixel ratios) influenced the 

constructed signatures. It was therefore recommended that the focus in radiomic studies from 

planar images should rather be on selecting the correct dimensionality reduction methods that 

are robust against the influence of possible variations in image quality that might be 

emphasised during image processing.  

Chapter 3 also showed that radiomic feature extraction was reproducible when the various 

image processing and interpolation methods were applied to the same input image. If the 

CXR however would have been repeated a few minutes apart there would have been some 

changes to the disease characteristics on the CXR. However, the image protocols used for 

CXR acquisition in this study do attempt to minimize these changes. The CXR images were 

all acquired using standard protocols with large SIDs (Source Image Distances = 180cm), PA 

orientation and with the patient positioned close to the detector. This minimizes the 
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magnification artefacts and the size distortion. The changes to the intensity matrix would 

therefore be small and repeatable outcomes should be achieved. Furthermore, to ensure that 

the models constructed in this thesis are mature enough to deliver reproducible signatures 

even with repeated CXR, adequately large sample sizes were used. 

PTB has diverse radiological presentations. Accurate segmentation of these disease 

presentations is difficult and time consuming and not always feasible with large data sets. 

This can result in significant inter- and intra- observer-bias, and variability in segmentation is 

the biggest cause of irreproducible radiomics outcomes in non-neoplastic diseases. To 

eliminate the need for disease delineation a novel sliding window segmentation, that allowed 

the extracted radiomic features to mimic the textural changes across the lung region caused 

by the disease, was developed in Chapter 4. This segmentation was applied as a secondary 

segmentation superimposed on a primary automatic lung segmentation mask. Following these 

segmentations, two radiomics signatures consisting of 10 secondary features were developed. 

It was shown in a recent study that radiomic feature selection is highly dependent on the 

feature selection methods used, but that features selected by statistically similar models are 

similar.10 The relevance of the features used in radiomic models therefore depends on the 

model used.10 In this thesis we have used six different feature selection methods and 

evaluated four different models, not only on their predictive performance, but also on their 

selected features. Only second order features were included in the models. These texture 

features give insight into the spatial arrangement of the pixels and hence the intra-lesion 

heterogeneity. Entropy, from various feature groups, were included in the signature features, 

which is an indication of the degree of disorder and uncertainty found in the image matrixes. 

A possible reason for the exclusion of any first order features are the shared pixels in the 

sliding windows. Since each window consists of 16 x 16 pixels and the windows step size is 4 

pixels, a quarter of each window is shared with its neighbouring windows. The change in the 

basic first order feature values from one window to the next might therefore not be 

sufficiently strong to be detected as significant by the models.  

After thorough evaluation of the feature selection methods and model algorithms, two well 

performing radiomic models were constructed that could assist clinicians with the diagnosis 

of PTB cavities from digital CXR. When added to the clinical signs and symptoms, this 

might reduce requirements for laboratory results and shorten time to treatment. It can also 

improve the accuracy of CXR reporting currently regaining prominence as a high-volume 
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screening tool. This radiomic model that can detect cavities will also be useful in future PTB 

management studies when serial CXR, with their corresponding models, are studied. 

The disadvantage of the developed secondary segmentation is that it significantly increased 

the dimensionality of the data by more than 3500 folds. This additional dimensionality has 

not yet been encountered in any previous radiomic study and necessitated thorough 

investigation of various statistical methods and dimensionality reduction and model 

construction algorithms. It is fundamental to use the correct algorithms for dimensionality 

reduction and model construction that are robust against any variations that may occur in the 

input data. The various statistical methods considered were briefly mentioned in Chapter 4. 

Table 2 is a summary (calculated as the average of all the CXR feature values) of the actual 

feature values that was obtained for the standard deviation and the variance consolidation 

methods. These values were however not used to develop the models, but each CXR’s value 

were considered separately. Table 2 does however give an indication of the dimensionality 

differences that are present in radiomic features. 

Table 2: A summary (calculated as the average of all the normal and cavity CXR values) of the 

signature features for the standard deviation (SD) and variance models. 

Signature feature 
Standard deviation 

 
Variance 

Cavity Normal 
 

Cavity Normal 

glcm_Correlation 0.2464 0.2471 
 

0.0608 0.0612 

glcm_DifferenceEntropy 0.2032 0.2015 
 

0.0417 0.0409 

gldm_DependenceEntropy 0.6744 0.6679 
 

0.4570 0.4474 

gldm_DependenceNonUniformityNormalized 0.0718 0.0706 
 

0.0053 0.0051 

gldm_DependenceVariance 1.1150 1.1181 
 

1.2480 1.2552 

gldm_LargeDependenceHighGrayLevelEmphasis 109.1003 109.0483 
 

12119.1640 12007.1294 

gldm_SmallDependenceLowGrayLevelEmphasis 0.0332 0.0319 
 

0.0011 0.0010 

glrlm_RunEntropy 0.6400 0.6489 
 

0.4115 0.4229 

glrlm_RunLengthNonUniformityNormalized 0.1157 0.1165 
 

0.0134 0.0136 

glrlm_ShortRunLowGrayLevelEmphasis 0.0916 0.0919 
 

0.0084 0.0085 

glszm_GrayLevelNonUniformity 1.7593 1.7146 
 

3.1369 2.9771 

glszm_ZoneEntropy 0.6618 0.6402 
 

0.4403 0.4112 

ngtdm_Busyness 20.6448 26.6745 
 

1735.3986 2128.3086 

ngtdm_Contrast 0.0345 0.0326 
 

0.0015 0.0012 

 

Studies on the use of computer science from medical images for the diagnosis of PTB or on 

the differentiation of TB from another pulmonary disease have been reported on, but little 

evidence exists on the use of radiological image analysis for monitoring treatment response 

and prognosis. To evaluate the change in the radiomic features over time, using serial images 

of the same patient, a unique approach to radiomic signature construction was taken in 
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Chapter 5. The radiomic features extracted from each sliding window, when the secondary 

segmentation was applied to the CXR of each PTB patient, were re-distributed into the x- and 

y-coordinates in a two-dimensional matrix, corresponding to the sliding window coordinates, 

to create feature parameter maps. Feature parameter maps showing a strong correlation to the 

lung pathology was summed to construct a signature parameter map for each CXR. The 

signature parameter maps were an accurate visual resemblance to the radiological images 

when some image formatting methods were applied. Since the signatures in this chapter was 

developed by visual assessment, it is expected that only first order features are included in the 

signature. Texture features derived from secondary matrixes are too far removed from the 

original grayscale intensities of the CXR and would not produce meaningful visual results. 

Early radiomic research was dominated by the analysis of semantic, radiologist-defined 

features that carried qualitative real-world meaning.11 But lately, with the rapid development 

of machine learning approaches, the emphasis is placed on high-throughput agnostic 

analyses.11 This took the focus toward an increase in predictive power and further away from 

a biological and mathematical understanding of the findings.11 The signatures developed in 

this chapter aimed to re-connect the radiomic features to the image characteristics and disease 

status as was done in initial radiomic studies. After additional processing, feature parameter 

maps were developed that might be valuable as a quantitative supplementary indicator in the 

management of PTB disease and further increase the acceptance of CXR as a tool for 

assessing the TB response in medical research and clinical practice.   

In Chapter 5 further dimensionality reduction methods were applied to consolidate the 

signature parameter maps to radiomics scores. A radiology- and clinical score for each 

corresponding patient was also developed using existing scoring algorithms. When the 3 

scores were compared a strong correlation was found between the radiological and the 

radiomics score that was statistically significant. This showed that the developed radiomics 

score was able to quantify the change in the disease characteristics as seen from digital CXR 

of patients diagnosed with PTB. Radiomic analysis of serial x-rays taken while patients 

receive TB therapy has the potential be a quantitative monitoring tool of response to therapy. 

In this study three different outcomes were therefore successfully achieved when radiomic 

feature extraction was used to quantify PTB characteristics from chest x-rays; A radiomics 

model was constructed that achieved good classification accuracy for normal chest x-rays and 

cavities on x-rays of people suffering from PTB, signature parameter maps were developed 

that quantitatively represents the lung pathology, and a radiomics score was built that could 
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be used as a quantitative monitoring tool for response to therapy. These outcomes could 

increase the accuracy of CXR reporting, which is currently regaining prominence as a high-

volume screening tool, by alleviating the subjectivity introduced by human judgement on x-

rays. Accompanied with clinical signs and symptoms, it might also aid diagnosis and 

commencement of TB treatment. Quantitative CXR interpretation can further increase the 

acceptance of CXR as a tool for assessing the TB response in medical research and clinical 

practice.  

The successful quantification of PTB characteristics from chest x-rays using radiomics, as 

achieved in this study, has great potential to improve diagnosis and disease management and 

to being a significant role player in personalized precision medicine.  
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CHAPTER 7 

 

Future Perspectives 

 

The most pressing challenges and limitations of radiomic studies applied to planar images 

have been discussed in this thesis and include the inherently superimposed nature of planar 

images, small datasets, limited computational resources and a lack of standardization. All 

four of these limitations and challenges should further be addressed in future studies. 

This study did attempt to address the limitations caused by the inherent superposed nature of 

two-dimensional (2D) images by applying bone suppression software to the chest x-rays 

(CXR) before extracting radiomic features. Since CXR are a two-dimensional superimposed 

representations of the three-dimensional anatomy in the chest, the rib and clavicle bones are 

overlaying the lung tissue of interest. These denser structures in the ROI will cause the 

quantified grey-level intensities to represent the lung pathology less accurately. By removing 

these denser structures from the superimposed CXR, the PTB expressions in the lung will be 

more obvious.  

There are two approaches to bone suppression software applications. The retrospective 

approach is to apply image processing algorithms that can train a model to remove the high-

density anatomical structures. Or prospectively a second x-ray with a different energy can be 

acquired immediately after the first and Dual-Energy subtraction can be applied.1 Some 

commercial bone suppression software packages are readily available and clinically in use, 

such as the Phillips- and the Carestream Bone Suppression Software packages (see Figure 1). 

Both have prospective approaches with the software packages integrated in the x-ray 

acquisition workflow and applied to the images before they are sent to the PACS.1 These 

would therefore not be relevant for this retrospective study.  
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(a) (b) 

Figure 1: (a) A clinical example of an original unprocessed CXR (b) The same CXR with the Phillips 

Bone Suppression software applied that was able to successfully suppress all high density anatomy1  

 

Some retrospective bone suppression studies on x-rays have already been done, with different 

levels of accuracy, using various deep learning models.2 One study used Dilated Conditional 

GAN (Generative Adversarial Network) for bone suppression and proved that this model 

“outperforms current state-of-the-art bone suppression methods using X-ray images”.2 With 

the developer’s permission, the Dilated Conditional GAN bone suppression model was 

obtained and applied to this thesis’ dataset. Some image processing was required to get this 

dataset in the same format as the training dataset of the bone suppression model. It included: 

Image format conversion from DICOM to PNG, interpolation to match the training images’ 

size, and image inversion to match the training set intensities (e.g., the maximum and 

minimum pixel values were swapped around). Figure 2 is an example of one original CXR 

with its corresponding processed and inverted image. 

 

  
(a) (b) 

Figure 2: (a) An original CXR. (b) The same CXR, processed and inverted to be in the same format 

as the training set of the Dilated Conditional GAN bone suppression model 
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After image processing the bone suppression model was applied with the hope of removing 

the ribs and clavicles to evaluate the influence it has on this study’s outcomes. Figure 3 are 

examples of two patients’ outcomes. Unfortunately, the bone suppression model gave very 

poor results. The bones were not suppressed, but instead the image quality was compromised. 

This is most likely due to the immaturity of the model, as it was only trained using a single 

publicly available dataset of 272 images.2 Another explanation might be the limitation of 

deep neural networks that losses performance with a new 'domain', i.e. if the data distribution, 

or the dynamic range, on which the model was trained and/or tested differs significantly from 

the one it is applied to.  

  
(a) (b) 

  
(c) (d) 

Figure 3: (a) Original input image of Patient A, (b) Output image of Patient A after the Dilated 

Conditional GAN bone suppression model was applied, (c) Original input image of Patient B and (d) 

Output image of Patient B after the Dilated Conditional GAN bone suppression model was applied 

 

Since this immature model had already been compared to, and outperformed, all other known 

models at the time,2 no other model was considered for this study. The results presented in 

this thesis will most likely improve significantly when a mature bone suppression model can 
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be developed and applied to the CXR dataset before radiomic feature extraction. The 

radiomic features will then not be influenced by the high-density bony anatomy overlying the 

lung and TB disease expressions. 

Possibly the biggest challenge in radiomic studies remains the limited number of medical 

images available for feature extraction. The number of possible features available to extract 

are often more than the number of images. Even more so, in this retrospective study where 

the dimensionality of each x-ray’s features was increased by more than 3500 folds. This 

sample size limitation is not only apparent in radiomic feature extraction, but in all computer 

science studies involving medical image datasets. The rule of thumb for data sample size in 

computer vision for machine learning is 1000 samples per class and in deep learning 4000 

samples per class.3 It is unlikely to ever obtain this quantity of samples in medical image 

studies. However, by re-training models with an unseen dataset, regardless of its size, the 

accuracy and reliability of the models will always improve. An increased sample size will 

naturally follow when unseen datasets are used for model construction in all future studies 

that follow from this one.  

To extract the radiomic features and to construct the radiomic signatures and model in this 

study was a labour intensive process that involved plenty of hard coding and a thorough 

understanding of radiomics and image processing. More work is needed to make the 

developed tools available to any medical professional who does not have pre-existing 

knowledge in the field of computer science or radiomics. This can be achieved by developing 

a user friendly interface where an CXR image can easily be uploaded and incorporated to the 

segmentation model, feature extraction library and model algorithms used and developed in 

this study. If this is developed as an application, rather than server based software, this should 

be accessible from any computer, regardless of its processing power. This will eliminate the 

restriction of computational power which might be a limiting factor in many high TB 

burdened countries. The radiomics- and radiological score developed in Chapter 5 can also be 

incorporated into this application to assist clinicians with the quantitative interpretation of 

CXR in follow-up appointments. Once this tool is developed and made readily available to 

assist in the management of TB, it can allow the treatment of PTB across the world to be 

more patient specific. 

The rapid growth in the radiomics field has contributed to a lack of standardization of both its 

scientific integrity and its clinical relevance.4 This restriction was attended to as best possible 
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in this study, but it will be beneficial to pay further attention to it in follow-up studies when 

the plea for standardization was addressed. A published suggestion to address the issue is for 

all researchers to contribute to a Picture archiving and radiomics knowledge system (PARKS) 

where quantitative image features are shared, compared and co-analyzed.4 This will assist 

with the improvement of standardization of image acquisition, analysis and reporting in 

radiomics. An intrinsic limitation of radiomics is that the feature algorithms summarise 

information over a region of the image and lose context and detail in many cases. This might 

be an area that needs to be addressed in all future radiomic studies. 

In this thesis it was seen that different radiomic features were included in the signatures 

developed in chapter 4 and 5 respectively. Chapter 2 also showed that many different features 

are included in signatures and nomograms developed in different studies even when the same 

image modality and anatomical ROI are considered. A future perspective for all radiomic 

studies would be to explore the reasons to why the features included in the final signatures 

work? What do they mean physically? And why some texture features are superior to others?   

Chapter 4 briefly discusses the various statistical algorithms and machine learning models 

tested and considered for dimensionality reductions and model construction purposes in this 

study. A final future perspective will be to thoroughly describe, formalize and record all the 

statistical work completed in this study. 
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CHAPTER 8  

 

Conclusion  

 

Pulmonary tuberculosis (PTB) is a worldwide epidemic that can only be fought effectively 

with early and accurate diagnosis and proper disease management. The means of diagnosis 

and disease management should be easily accessible, cost effective and readily available in 

the high tuberculosis (TB) burdened countries where it is most needed. Currently digital chest 

x-ray imaging (CXR) remains the most widely accessible imaging modality in high TB 

burdened countries, and is regaining prominence as a high-volume screening tool, hence it 

was used in this thesis to quantify PTB characteristics using radiomics.  

The robust radiomic signatures, models and scores that were developed in this thesis could be 

used as a valid and readily available biomarker, when the future perspectives are completed. 

This might not only have an enormous impact on the clinical care provided to patients 

suffering from PTB but will also greatly assist towards the World Health Organization’s “The 

End TB Strategy”. This study fits in with the one pillar identified in this strategy to intensify 

research and innovation for the rapid development of new high-impact tools that can 

dramatically change TB prevention and care. The radiomic signatures, models and scores, 

together with the sliding window segmentation developed in this thesis, will also address a 

few other challenges in TB diagnosis and monitoring such as a shortage of expert readers and 

human subjectivity. By statistical quantification of imaging features subjectivity can be 

eliminated and reproducibility can be achieved. Quantitative analysis might also reveal 

underlying biological characteristics of TB that are not visible to the human eye. 

Additionally, these models and scores could assist clinical trials of novel agents being 

evaluated for efficacy against TB by identifying early in the process those agents or regimens 

that have the greatest effect against PTB and will result in fewer treatment failures. 

Radiomics is a high-impact tool that was successfully utilized in this thesis to quantify the 

characteristic of PTB using planar chest x-rays, and that has the potential to be used as an 

imaging biomarker in the near future.  
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ANNEXURES  
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modification, monitor the conduct of your research, or suspend or withdraw ethics approval.

Ethics approval is subject to the following:
• The ethics approval is conditional on the research being conducted as stipulated by the details of all documents submitted 

to the Committee. In the event that a further need arises to change who the investigators are, the methods or any other 
aspect, such changes must be submitted as an Amendment for approval by the Committee.

 

We wish you the best with your research.

Yours sincerely
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Dr R Sommers
MBChB  MMed (Int)  MPharmMed  PhD
Deputy Chairperson of the Faculty of Health Sciences Research Ethics Committee, University of Pretoria

The Faculty of Health Sciences Research Ethics Committee complies with the SA National Act 61 of 2003 as it pertains to health research and the United States Code of 
Federal Regulations Title 45 and 46.  This committee abides by the ethical norms and principles for research, established by the Declaration of Helsinki, the South African 
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14 October 2021
Approval Certificate

Annual Renewal

Dear Mrs T du Plessis

Ethics Reference No.:  473/2020  
Title: Quantification of pulmonary tuberculosis characteristics from digital chest x-rays using radiomics 

The Annual Renewal as supported by documents received between 2021-09-22 and 2021-10-13 for your research, was approved 
by the Faculty of Health Sciences Research Ethics Committee on 2021-10-13 as resolved by its quorate meeting.

Please note the following about your ethics approval:
• Renewal of ethics approval is valid for 1 year, subsequent annual renewal will become due on 2022-10-14.
• Please remember to use your protocol number (473/2020 ) on any documents or correspondence with the Research 

Ethics Committee regarding your research.
• Please note that the Research Ethics Committee may ask further questions, seek additional information, require further 

modification, monitor the conduct of your research, or suspend or withdraw ethics approval.

Ethics approval is subject to the following:
• The ethics approval is conditional on the research being conducted as stipulated by the details of all documents submitted 

to the Committee. In the event that a further need arises to change who the investigators are, the methods or any other 
aspect, such changes must be submitted as an Amendment for approval by the Committee.

We wish you the best with your research.

Yours sincerely

_____________________________________
On behalf of the FHS REC, Professor Werdie (CW) Van Staden
MBChB,  MMed(Psych),  MD,  FCPsych(SA),  FTCL,  UPLM
Chairperson: Faculty of Health Sciences Research Ethics Committee

The Faculty of Health Sciences Research Ethics Committee complies with the SA National Act 61 of 2003 as it pertains to health research and the United States Code of

Federal Regulations Title 45 and 46.  This committee abides by the ethical norms and principles for research, established by the Declaration of Helsinki, the South 

African Medical Research Council Guidelines as well as the Guidelines for Ethical Research: Principles Structures and Processes, Second Edition 2015 (Department of 

Health) 
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11 November 2022
Approval Certificate

Annual Renewal

Dear Mrs T du Plessis,

Ethics Reference No.:  473/2020 – Line 2
Title: Quantification of pulmonary tuberculosis characteristics from digital chest x-rays using radiomics 

The Annual Renewal as supported by documents received between 2022-10-26 and 2022-11-09 for your research, was approved 
by the Faculty of Health Sciences Research Ethics Committee on 2022-11-09 as resolved by its quorate meeting.

Please note the following about your ethics approval:
• Renewal of ethics approval is valid for 1 year, subsequent annual renewal will become due on 2023-11-11.
• Please remember to use your protocol number (473/2020) on any documents or correspondence with the Research Ethics

Committee regarding your research.
• Please note that the Research Ethics Committee may ask further questions, seek additional information, require further 

modification, monitor the conduct of your research, or suspend or withdraw ethics approval.

Ethics approval is subject to the following:
• The ethics approval is conditional on the research being conducted as stipulated by the details of all documents submitted 

to the Committee. In the event that a further need arises to change who the investigators are, the methods or any other 
aspect, such changes must be submitted as an Amendment for approval by the Committee.

We wish you the best with your research.

Yours sincerely

_____________________________________
On behalf of the FHS REC, Professor Werdie (CW) Van Staden
MBChB,  MMed(Psych),  MD,  FCPsych(SA),  FTCL,  UPLM
Chairperson: Faculty of Health Sciences Research Ethics Committee

The Faculty of Health Sciences Research Ethics Committee complies with the SA National Act 61 of 2003 as it pertains to health research and the United States Code of

Federal Regulations Title 45 and 46.  This committee abides by the ethical norms and principles for research, established by the Declaration of Helsinki, the South 

African Medical Research Council Guidelines as well as the Guidelines for Ethical Research: Principles Structures and Processes, Second Edition 2015 (Department of 

Health) 
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