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A B S T R A C T

In this study, we present theoretical considerations of, and analyse, the effects of circular
geometry on the stability analysis of semi-linear parabolic PDEs of reaction–diffusion type
with linear cross-diffusion for a two-component system on circular domains. The highlights
of our theoretical and computational findings are: (i) By employing linear stability analysis for
a two-component reaction–diffusion system with linear cross-diffusion on circular disc domains,
we derive necessary and sufficient conditions for the system to exhibit cross-diffusion driven-
instability, dependent on the length scale of the geometry. These analytical studies involve
cross-diffusion and circular geometry to unravel analytical conditions for the full computational
classification of the parameter spaces that allow the system to exhibit Turing, Hopf and
transcritical patterns. (ii) We compute parameter spaces on which patterns are formed only due
to linear cross-diffusion as well as due to a critical domain length. These spaces do not exist
in the absence of cross-diffusion nor when the conditions on the domain length are violated.
(iii) To support our theoretical findings, finite element simulations illustrating the formation
of spot patterns on circular domains are presented. Model parameter values are selected from
parameter spaces that are induced by cross-diffusion, thereby supporting linear cross-diffusion
coupled with reaction–diffusion theory as a candidate mechanism for pattern formation. (iv)
A by-product of this study, is that an activator-depleted reaction–diffusion system with linear
cross-diffusion on circular domains, appears to favour the formation of spot patterns for most
of the parameter values chosen. Such patterns are reminiscent of those observed on stingrays,
which form on approximately circular domains during growth development.
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1. Introduction

Reaction–diffusion equations have attracted a lot of attention due to the wide variety of applications ranging from the formation
f patterns in animal skins to the growth of embryonic structures [1–6]. A renowned scientist Alan Turing first proposed a
ignificant theory on pattern formation in nature in his seminal article in 1952 [7]. Turing’s theory points out how self-organized
attern formation emerges from the interactions on reaction and diffusion of multi-component systems in many biological processes
8–10]. Despite its far reaching impact, the theory has significant limitations. One such limitation is the fact that, for a two
omponent reaction diffusion system, for example, equal diffusion coefficients cannot give rise to patterning. Nevertheless, reaction–
iffusion systems (RDS), including activator-depleted kinetics that describes dynamics of the two species, has been widely used in
nderstanding the spatially periodic structure of Turing patterns [10–17].

Cross-diffusion refers to a phenomenon where the concentration gradient of one species is affected by the fluxes of other species
n biological and chemical systems. Reaction–diffusion systems without cross-diffusion accepts that diffusion of one species is
ndependent from the concentration gradients of other species, hence only a self-diffusion process is described. In addition, the
mergence of pattern formation in classical reaction–diffusion systems without cross-diffusion requires that the diffusion rate of
he inhibitor has to be much larger than the diffusion rate of the activator. This limitation is overcome by the addition of cross-
iffusion to the system, which entails that the inclusion of long-range inhibition and short-range activation is no longer a necessary
ondition for pattern formation under Turing’s diffusion-driven instability theory [8,9,11,12,18]. Reaction–diffusion systems with
inear cross-diffusion have been proposed in understanding the dynamics of a wide range of biological and chemical process. It
as also been shown that the existence of cross-diffusion in the reaction–diffusion systems has significant effect on the evolution of
patial pattern formation [8,12,18]. Cross-diffusion induced reaction–diffusion systems have been widely studied in understanding
he complex dynamical behaviour of biological processes. Studies on [11,12] revealed Turing type of diffusion-driven instability
onditions for the reaction–diffusion system with cross-diffusion on stationary and growing domains. In [11,12] unstable regions
atisfying these conditions have been presented for the spatial patterns supported by numerical simulations. In addition to spatial
attern formation, our contribution includes the conditions for understanding the spatiotemporal dynamics of the reaction–diffusion
ystems in the presence of cross-diffusion. More recent researches include prey–predator systems [19–22], pattern formation [23–28],
acterial chemotaxis [29–31], as well as epidemic models [32–35] and so forth. Another application of RDEs where the presence of
ross-diffusion is relevant and backed up experimentally is given by electrodeposition [36]. A recent study on reaction–diffusion [27]
ystems exhibiting the cross-diffusion provides spatiotemporal pattern formation and numerical simulations considering the effects
f different initial conditions on the stationary rectangular domains. Comparing our contribution with the study [27], our results
eveal the influence of the domain-size on the spatiotemporal pattern formation with the conditions which are essential on the
ircular geometries.

The spatiotemporal dynamics of the RDSs are closely related to the domain-size of the model. The main reason behind this
echanism is that the domain of the model must have a certain size for the patterns to be evolved [12,13,15–17,37]. To contextualize

his study with regards to current state-of-the-art analysis on the criticality of the domain length, it must be noted that it is known
n the literature that when the domain size is large enough to allow for the formation of patterns, but also small enough to affect pattern
election, the so-called intrinsic patterns arise. This is true on both flat domains [38] and surfaces [39]. All of these results are
ualitative. The present paper finally gives a quantitative understanding to these results for the case of circular domains.

Numerical approaches are useful to study such dynamical behaviour of the activator-depleted models due to the existence of the
onlinear reaction kinetics. The finite element method is one of the popular numerical techniques for obtaining a numerical solution
f differential equations. It is flexible with working on different kind of geometries with proper boundary conditions and numerous
tudies have investigated RDs using numerical methods and developed various techniques to understand dynamical behaviour on
ifferent geometries [40–44]. We have used it to enable visualization of the type of pattern structures that result from the different
ypes of instabilities.

In this article, we aim to study the influence of the domain size on the spatiotemporal pattern formation of the cross-diffusive
Ds in polar coordinates. We generalize the framework presented in [16] by extending the results to include the cross-diffusion
arameters on disc-shape domain. We also explore the classification of unstable parameter regions in the presence of cross-diffusion
n the given domain. The process of generation of the parameter spaces for the classification of the unstable spaces is accomplished
hrough the detailed investigation of the stability matrix which is obtained with the help of linear stability analysis. Regions
orresponding to the unstable spaces can be understood by the eigenvalues of the stability matrix. The solution of the eigenvalue
roblem satisfying the boundary conditions is one of the key concept in the process of linearization. We use the analytical results
f eigenvalue problem to obtain the stability matrix which is necessary to present the system parameters.

The rest of the article is structured as follows. In the following section, we give the details of the activator-depleted model
ith cross-diffusion terms in polar coordinates. In Section 2, we present the results of analytical approach based on linear stability
nalysis. In addition, conditions of spatial and spatiotemporal pattern formation are presented with proofs. In Section 3, we present
he parameter spaces with a detailed classification varying the system parameters 𝑑, 𝑑𝑢, 𝑑𝑣 and 𝛾 in light of the conditions derived
n Section 2. In Section 4, we provide finite element solutions of the model on the two-dimensional disc-shape domain to verify the
nalytical findings based on the conditions given by Theorems 2, 3 and 5. In Section 5, we present conclusive remarks and future
2

irections of the work.
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1.1. Model equations

We consider a non-dimensionalized reaction–diffusion system (RDS) with linear cross diffusion for two chemical species 𝑢(𝑟, 𝜃, 𝑡)
nd 𝑣(𝑟, 𝜃, 𝑡) with homogeneous Neumann boundary conditions given by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

⎧

⎪

⎨

⎪

⎩

𝜕𝑢
𝜕𝑡

= 𝛥𝑟𝑢 + 𝑑𝑣𝛥𝑟𝑣 + 𝛾𝑓 (𝑢, 𝑣),

𝜕𝑣
𝜕𝑡

= 𝑑𝛥𝑟𝑣 + 𝑑𝑢𝛥𝑟𝑢 + 𝛾𝑔(𝑢, 𝑣),
(𝑟, 𝜃) ∈ 𝛺, 𝑡 > 0,

𝜕𝑢
𝜕𝑟

+ 𝑑𝑣
𝜕𝑣
𝜕𝑟

= 𝑑𝑢
𝜕𝑢
𝜕𝑟

+ 𝑑 𝜕𝑣
𝜕𝑟

= 0, (𝑟, 𝜃) ∈ 𝜕𝛺, 𝑡 ≥ 0,

𝑢(𝑟, 𝜃, 0) = 𝑢0(𝑟, 𝜃), 𝑣(𝑟, 𝜃, 0) = 𝑣0(𝑟, 𝜃), (𝑟, 𝜃) ∈ 𝛺, 𝑡 = 0,

(1)

where 𝑑 and 𝛾 are positive real constants. In system (1), 𝛥𝑟 represents the Laplace operator in polar coordinates given by,

𝛥𝑟𝑢(𝑟, 𝜃) =
1
𝑟
𝜕
𝜕𝑟

(

𝑟 𝜕𝑢
𝜕𝑟

)

+ 1
𝑟2

𝜕2𝑢
𝜕𝜃2

, (2)

which is obtained using the transformations 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃. At a macroscopic level, the combined random walks of
numerous microscopic particles are well approximated by Fickian diffusion and cross-diffusion.

Remark. Note that, for the cross-diffusive system to be well-posed, the main diffusion parameter 𝑑 and cross-diffusion parameters
𝑑𝑢 and 𝑑𝑣 must exist in a way that 𝑑 − 𝑑𝑢𝑑𝑣 > 0. This is the so-called normally elliptic condition on the diffusion parameters 𝑑,
𝑑𝑢 and 𝑑𝑣 which requires that the diffusion tensor matrix is positive definite and that entails that 𝑑 − 𝑑𝑢 𝑑𝑣 > 0. This regularity
ondition ensures the well-posedness of the system of partial differential equations [45]. This elliptic condition also ensures the
lobal existence and uniqueness of solutions for the full nonlinear system, provided the reaction-kinetics given by 𝑓 (𝑢, 𝑣) and 𝑔(𝑢, 𝑣)
re Lipschitz continuous or that they satisfy maximum principles (see [45] Chapter 14). For details, on classical global existence
nd uniqueness of solutions of reaction–diffusion in the absence of cross-diffusion, see the work of [45], Chapter 14. The proof of
he global existence and uniqueness of the solutions for system (1) in the presence of linear cross-diffusion should follow similar
rguments, however, this is not a trivial calculation.

It must be noted that if the condition on the positivity of the determinant of the diffusion matrix is satisfied, then the boundary
onditions can be written as,

𝜕𝑢
𝜕𝑟

= 𝜕𝑣
𝜕𝑟

= 0. (3)

System (1) is posed on a circular domain defined as 𝛺 = {(𝑥, 𝑦) ∈ R2 ∶ 𝑥2 + 𝑦2 < 𝜌2} and its boundary is given by
𝜕𝛺 = {(𝑥, 𝑦) ∈ R2 ∶ 𝑥2 + 𝑦2 = 𝜌2}. The parameter 𝑑 in System (1) denotes the ratio of the diffusion coefficients as 𝑑 =

𝐷𝑣
𝐷𝑢

, while

𝑢 =
𝐷𝑢𝑣
𝐷𝑢

and 𝑑𝑣 =
𝐷𝑣𝑢
𝐷𝑢

denote the ratio between the cross-diffusion coefficients and the diffusion coefficient of the 𝑢 component.

ere, 𝐷𝑢 and 𝐷𝑣 represent dimensional diffusion coefficients of the components 𝑢 and 𝑣 respectively, and 𝐷𝑢𝑣 and 𝐷𝑣𝑢 represent
imensional cross-diffusion coefficients of the components 𝑢 and 𝑣 respectively. Details on the nondimensionalization process of
ystem (1) are presented in [11].

In System (1) the functions 𝑓 (𝑢, 𝑣) = 𝛼 − 𝑢 + 𝑢2𝑣 and 𝑔(𝑢, 𝑣) = 𝛽 − 𝑢2𝑣 denote the nonlinear activator-depleted reaction kinetics
here 𝛼 and 𝛽 are non-dimensional positive constants [1,3,14].

It must be noted that the eigenvalues of the Kronecker product of the diffusion matrix and the Laplacian (like here, we have
⊗ 𝛥 — with 𝐷 the diffusion matrix and 𝛥 the Laplacian) are given by all combinations of products of the eigenvalues of the

iffusion matrix and the Laplacian, that is, if 𝜇 is an eigenvalue of the Laplacian, and if 𝜆 is an eigenvalue of the diffusion matrix,
hen 𝜇𝜆 is an eigenvalue of the Kronecker product of the diffusion matrix and the Laplacian.

. Stability analysis in the presence of cross-diffusion on disc shape domain

The activator-depleted model given by System (1) admits a constant uniform steady state unique solution (𝑢𝑠, 𝑣𝑠) = (𝛼 +
𝛽, 𝛽

(𝛼+𝛽)2 ) [1,11,12]. The uniform steady-state is a unique stationary point where the reaction kinetics satisfy 𝑓 (𝑢𝑠, 𝑣𝑠) = 𝑔(𝑢𝑠, 𝑣𝑠) = 0,

s well as the zero-flux boundary condition of System (1). Stability analysis is performed using the linear stability theory to locally
erturb System (1), and thus we proceed by investigating the local evolution of the dynamics of the perturbed variables, namely,
𝑢, 𝑣) = (𝑢𝑠 + 𝜖𝑢̄, 𝑣𝑠 + 𝜖𝑣̄), with 0 < 𝜖 ≪ 1, that is, in the neighbourhood of the uniform steady state. Employing asymptotic expansions

and the Taylor expansion, ignoring 𝑂(𝜖2) and any higher order terms on the functions of the two variables, leads to the derivation
of a linearized reaction–diffusion system (1), with linear cross-diffusion, which we write in matrix–vector form as

̄ ̄ ̄
3

𝐰𝑡 = 𝐃𝛥𝑟𝐰 + 𝛾𝐉𝐅𝐰. (4)



Nonlinear Analysis: Real World Applications 77 (2024) 104042G. Yigit et al.

F

N
p

w
t
s

T
B

L

w

I

c
u
d

Here, the solution vector 𝐰̄, diffusion coefficient matrix 𝐃, reaction kinetics vector 𝐅, and the Jacobian matrix 𝐉𝐅 are expressed as

𝐰̄ =
[

𝑢̄
𝑣̄

]

,𝐃 =
[

1 𝑑𝑣
𝑑𝑢 𝑑

]

,𝐅(𝑢, 𝑣) =
[

𝑓 (𝑢𝑠, 𝑣𝑠)
𝑔(𝑢𝑠, 𝑣𝑠)

]

, 𝐉𝐅 =
[

𝑓𝑢(𝑢𝑠, 𝑣𝑠) 𝑓𝑣(𝑢𝑠, 𝑣𝑠)
𝑔𝑢(𝑢𝑠, 𝑣𝑠) 𝑔𝑣(𝑢𝑠, 𝑣𝑠)

]

. (5)

or the interested reader on linear stability analysis, we refer the reader to works by Turing [7], Murray [1] and Madzvamuse [5].
We proceed with the linearization procedure by finding the eigenfunctions of Laplace operator satisfying the homogeneous

eumann boundary conditions. Such eigenfunctions for the Laplace operator are obtained by solving the following eigenvalue
roblem,

⎧

⎪

⎨

⎪

⎩

𝛥𝑟𝑤 = −𝑘2𝑤, 𝑘 ∈ R
𝜕𝑤
𝜕𝑟

|

|

|𝑟=𝜌
= 0 𝜌 ∈ R+ ⧵ {0},

(6)

here 𝛥𝑟 represents the Laplace operator on a disc shape domain presented in (2). The method of separation of variables is applied
o the eigenvalue problem (6), thereby enabling us to find a solution as 𝑤(𝑟, 𝜃) = 𝑅(𝑟)𝛩(𝜃). The following theorem indicates the
olution of the eigenvalue problem (6).

heorem 1. Let 𝑤(𝑟, 𝜃) satisfy the eigenvalue problem (6) under the homogeneous Neumann boundary conditions and 𝑛 be the order of
essel’s function in R ⧵ 1

2
Z. Then, for a fixed pair (𝑛, 𝑚), with 𝑚 any positive integer, there exists an infinite set of eigenfunctions of the

aplace operator in the form of [16]

𝑤𝑛,𝑚(𝑟, 𝜃) = [𝑅1
𝑛,𝑚(𝑟) + 𝑅2

𝑛,𝑚(𝑟)]𝛩𝑛(𝜃) (7)

here 𝑅1
𝑛,𝑚(𝑟) and 𝑅2

𝑛,𝑚(𝑟) represent the Bessel functions of first kind given as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑅1
𝑛,𝑚(𝑟) =

∞
∑

𝑗=0

(−1)𝑗𝐶0(𝑟 𝑘𝑛,𝑚)2𝑗+𝑛

4𝑗 𝑗!(𝑛+𝑗)(𝑛+𝑗−1)⋯(𝑛+1)

𝑅2
𝑛,𝑚(𝑟) =

∞
∑

𝑗=0

(−1)𝑗𝐶0(𝑟 𝑘𝑛,𝑚𝑟)2𝑗−𝑛

4𝑗 𝑗!(−𝑛+𝑗)(−𝑛+𝑗−1)⋯(−𝑛+1)

(8)

for 𝑗 = 2𝑚. Here, 𝐶0 is the first coefficient of the Bessel series. 𝛩𝑛(𝜃) is expressed as

𝛩𝑛(𝜃) = 𝑒(𝑛𝜃𝑖). (9)

n the above, 𝑘2𝑛,𝑚 represents the eigenmodes which are defined by

𝑘2𝑛,𝑚 =
4(2𝑚 + 1)(𝑛 + 2𝑚 + 1)(𝑛 + 4𝑚)

𝜌2(𝑛 + 4𝑚 + 2)
. (10)

Proof. The solution procedure of the eigenvalue problem requires the applications of the same steps as presented in [16]. □

Now we can write the solution of the linearized system (1), following the above standard method of separation of variables for
the solution of the eigenvalue problem (6) on a disc domain in closed form expansion of the basis of the eigenfunctions defined by,

𝑢(𝑟, 𝜃, 𝑡) =
∞
∑

𝑚=0
𝑈𝑛,𝑚𝑒

𝜆(𝑛,𝑚)𝑡𝑅𝑛,𝑚(𝑟)𝛩𝑛(𝜃) (11)

𝑣(𝑟, 𝜃, 𝑡) =
∞
∑

𝑚=0
𝑉𝑛,𝑚𝑒

𝜆(𝑛,𝑚)𝑡𝑅𝑛,𝑚(𝑟)𝛩𝑛(𝜃), (12)

where 𝑈𝑛,𝑚 and 𝑉𝑛,𝑚 represent coefficients corresponding to the eigenfunctions in the eigen-expansion of the series solution to (6).
Substituting the solutions (11) and (12) into System (1) gives the fully linearized form of (1) as a system of ordinary differential
equations (ODEs) given by

𝜕
𝜕𝑡

[

𝑢̄
𝑣̄

]

=

[

−𝑘2𝑛,𝑚 + 𝛾𝑓𝑢(𝑢𝑠, 𝑣𝑠) −𝑑𝑣𝑘2𝑛,𝑚 + 𝛾𝑓𝑣(𝑢𝑠, 𝑣𝑠)

−𝑑𝑢𝑘2𝑛,𝑚 + 𝛾𝑔𝑢(𝑢𝑠, 𝑣𝑠) −𝑑𝑘2𝑛,𝑚 + 𝛾𝑔𝑣(𝑢𝑠, 𝑣𝑠)

]

[

𝑢̄
𝑣̄

]

. (13)

Since we know explicitly the uniform steady state, (𝑢𝑠, 𝑣𝑠) = (𝛼+𝛽, 𝛽
(𝛼+𝛽)2 ), the individual entries of the Jacobian matrix in System (13)

an be computed explicitly. We exploit this to find the partial derivatives of the reaction kinetics 𝑓 (𝑢, 𝑣) and 𝑔(𝑢, 𝑣) evaluated at the
niform steady state solutions (𝑢𝑠, 𝑣𝑠), explicitly in terms of the system parameters. Therefore, we write the following two-component
ynamical system (13) in the form of a two-component discrete eigenvalue problem as

⎡

⎢

⎢

𝛾 𝛽−𝛼
𝛼+𝛽 − 𝑘2𝑛,𝑚 𝛾(𝛽 + 𝛼2) − 𝑑𝑣𝑘2𝑛,𝑚

−𝛾 2𝛽 − 𝑑 𝑘2 −𝛾(𝛽 + 𝛼2) − 𝑑𝑘2

⎤

⎥

⎥

[

𝑢̄
𝑣̄

]

= 𝜆
[

𝑢̄
𝑣̄

]

. (14)
4

⎣ 𝛼+𝛽 𝑢 𝑛,𝑚 𝑛,𝑚⎦
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To proceed, we find the corresponding characteristic polynomial for (14) in 𝜆. The characteristic polynomial satisfying the System
(14) in 𝜆 can be written as

|

|

|

|

|

|

𝛾 𝛽−𝛼
𝛼+𝛽 − 𝑘2𝑛,𝑚 − 𝜆 𝛾(𝛽 + 𝛼2) − 𝑑𝑣𝑘2𝑛,𝑚

−𝛾 2𝛽
𝛼+𝛽 − 𝑑𝑢𝑘2𝑛,𝑚 −𝛾(𝛽 + 𝛼2) − 𝑑𝑘2𝑛,𝑚 − 𝜆

|

|

|

|

|

|

= 0, (15)

which corresponds to a quadratic polynomial in 𝜆. It can be easily shown that the characteristic polynomial can be expressed as
(

𝛾
𝛽 − 𝛼
𝛼 + 𝛽

− 𝑘2𝑛,𝑚 − 𝜆
)

(

−𝛾(𝛽 + 𝛼2) − 𝑑𝑘2𝑛,𝑚 − 𝜆
)

−
(

𝛾(𝛽 + 𝛼2) − 𝑑𝑣𝑘
2
𝑛,𝑚

)

(

−𝛾
2𝛽

𝛼 + 𝛽
− 𝑑𝑢𝑘

2
𝑛,𝑚

)

= 0. (16)

ritten more compactly in terms of the trace and the determinant of the stability matrix on the left hand-side of (16), the
haracteristic polynomial becomes

𝜆2 −  (𝛼, 𝛽)𝜆 +(𝛼, 𝛽) = 0, (17)

here  (𝛼, 𝛽) and (𝛼, 𝛽) represent the trace and the determinant of the stability matrix, respectively. Thus, the eigenvalues are
btained as the roots of the quadratic Eq. (17) and are given by

𝜆1,2 =
 (𝛼, 𝛽) ∓

√

 2(𝛼, 𝛽) − 4(𝛼, 𝛽)
2

. (18)

We compute the  (𝛼, 𝛽) and (𝛼, 𝛽) of the matrix given in (14) as follows

 (𝛼, 𝛽) = 𝛾
(

𝛽 − 𝛼
𝛼 + 𝛽

− (𝛽 + 𝛼)2
)

− (𝑑 + 1)𝑘2𝑛,𝑚 (19)

and

(𝛼, 𝛽) =
(

𝛾
𝛽 − 𝛼
𝛼 + 𝛽

− 𝑘2𝑛,𝑚

)

(

−𝛾(𝛽 + 𝛼)2 − 𝑑𝑘2𝑛,𝑚
)

−
(

𝛾(𝛽 + 𝛼)2 − 𝑑𝑣𝑘
2
𝑛,𝑚

)

(

−𝛾(
−2𝛽
𝛼 + 𝛽

) − 𝑑𝑢𝑘
2
𝑛,𝑚

)

. (20)

The roots of the characteristic equation include a parameter representing the domain size of the disc, given by 𝜌 as well as all other
model parameters. Now, the relationship between the domain-size controlling parameter 𝜌 and the rest of the model parameters is
explored through the analysis of  (𝛼, 𝛽) and (𝛼, 𝛽). Note that the cross-diffusion parameters 𝑑𝑢 and 𝑑𝑣 appear only in determinant
of the stability matrix (𝛼, 𝛽), whereas  (𝛼, 𝛽) is independent of the cross-diffusion parameters 𝑑𝑢 and 𝑑𝑣. In the following section,
we present conditions for the dynamics of cross-diffusive reaction–diffusion system to exhibit both spatial (time-independent) and
spatiotemporal (time-dependent) pattern formation on disc-shape domains.

2.1. Domain-dependent analysis for spatiotemporal pattern formation on the disc-shape domain

For stability, the eigenvalues of the matrix in Eq. (13) need to have a non-positive real part. Assuming 𝛼, 𝛽 ∈ R+
0 , linear stability

s warranted if  (𝛼, 𝛽) ≤ 0 and (𝛼, 𝛽) ≥ 0. Then two possibilities occur: If 0 ≤ (𝛼, 𝛽) ≤  2(𝛼,𝛽)
4 , then the eigenvalues are all negative

(hence real-valued), whereas if  2(𝛼,𝛽)
4 < (𝛼, 𝛽), then the eigenvalues are non-real. In the sequence below, we detail the analysis of

the stability of Eq. (13).
To derive the conditions on the domain-size, we analyse the characteristic polynomial (17), when the roots of (17) consists of a

complex-conjugate pair. We first consider the partition of the parameter plane (𝛼, 𝛽) ∈ R2
+ by the following curve

 2(𝛼, 𝛽) − 4(𝛼, 𝛽) = 0. (21)

Eq. (21) is a partitioning curve which admits on one side of the curve the regions when 𝜆1,2 ∈ R and on the other side, corresponds
to 𝜆1,2 ∈ C∖R. The eigenvalues 𝜆1,2 are a complex conjugate pair if (𝛼, 𝛽) ∈ R2

+ satisfy the following inequality

 2(𝛼, 𝛽) − 4(𝛼, 𝛽) < 0. (22)

Given that the inequality (22) is satisfied, one must admit (𝛼, 𝛽) > 0. We note that the trace of the stability matrix is independent
of cross-diffusion terms 𝑑𝑢 and 𝑑𝑣 and therefore the domain-dependent conditions proven in [16] without cross-diffusion remain
unchanged. Restricting the analysis to the trace of the stability matrix in the presence of linear cross diffusion yields the same results
as those obtained in the absence of cross-diffusion. It is only through the analysis of the determinant of the stability matrix that
the effects of linear cross-diffusion can be studied. In particular, we will explore the positivity of (𝛼, 𝛽). Before we proceed, we
first recall the statements of Theorems 2 and 3 in [16] in the spirit of our model posed on a disc-shaped domain, in the absence of
cross-diffusion. We note that the following two theorems are established based on the analysis of the trace of the stability matrix
(13), and the trace  includes only the main diffusion coefficient 𝑑. Later on, we will state extensions of such theorems when
cross-diffusion terms are taken into account, which require the analysis of  of the stability matrix since cross-diffusion terms 𝑑𝑢
5

and 𝑑𝑣 appear explicitly in .



Nonlinear Analysis: Real World Applications 77 (2024) 104042G. Yigit et al.

p
s

s
a
t
c

R
i
T
c

p

H
g

T
o
t

Theorem 2 (Condition for Hopf/Transcritical Bifurcation). Let 𝑢 and 𝑣 satisfy the cross-diffusive reaction–diffusion system (1) with positive
parameters 𝛼 > 0, 𝛽 > 0, 𝑑 > 0, and 𝛾 > 0 on a disc-shape domain with radius 𝜌. For System (1) to exhibit Hopf and/or transcritical
bifurcations, the domain-size controlling parameter 𝜌 of the disc shape must be large enough satisfying

𝜌2 ≥ 4(𝑑 + 1)(2𝑚 + 1)(𝑛 + 2𝑚 + 1)(𝑛 + 4𝑚)
𝛾(𝑛 + 4𝑚 + 2)

, (23)

where 𝑛 ∈ R ⧵ 1
2
Z is the associated order of the Bessel’s equation and 𝑚 is any positive integer.

Proof. The proof of this theorem is accomplished through the positivity of the trace  (𝛼, 𝛽) of the stability matrix given by (13).
Note that, the trace  (𝛼, 𝛽) of the stability of matrix (13) is independent of cross-diffusive coefficients, it includes only the main
diffusion coefficient 𝑑. Therefore we conclude that, the requirement for the system to exhibit Hopf/transcritical bifurcations stays
the same as those of the case without cross-diffusion, yet producing the condition on domain size parameter 𝜌 in terms of the main
diffusion coefficient 𝑑, only. The proof of this theorem for the case of no cross-diffusion is presented in [16]. □

Theorem 3 (Turing Diffusion-Driven Instability). Let 𝑢 and 𝑣 satisfy the cross-diffusive reaction–diffusion system (1) with real positive
arameters 𝛼 > 0, 𝛽 > 0, 𝑑 > 0, and 𝛾 > 0 on the disc shape domain 𝛺 ∈ R2 with radius 𝜌. If the domain-size controlling parameter 𝜌
atisfies the condition

𝜌2 <
4(𝑑 + 1)(2𝑚 + 1)(𝑛 + 2𝑚 + 1)(𝑛 + 4𝑚)

𝛾(𝑛 + 4𝑚 + 2)
, (24)

then the instability of the cross-diffusive system (1) is restricted to Turing type only, which means under this condition temporal periodicity
in the dynamics is forbidden. In (24), 𝑛 ∈ R ⧵ 1

2
Z is the associated order of the Bessel’s equation and 𝑚 is any positive integer.

Proof. The proof of this theorem is acquired through exploring the real part of the eigenvalues 𝜆1,2 when the discriminant  2 −4
of the characteristic polynomial is negative. The surface  (𝛼, 𝛽) is analysed within the range of the admissible unstable parameter
paces (𝛼, 𝛽) ⊂ R2 using the monotonicity conditions and Hessian matrix which leads to condition (24). We note that the current
nalysis is based on the fact that the trace  (𝛼, 𝛽) of the stability matrix (13) is independent of 𝑑𝑢 and 𝑑𝑣. Therefore, we conclude
hat the requirement of Theorem 3 stays same in the case without cross-diffusion. The proof of this theorem for the case of no
ross-diffusion is presented in [16]. □

emark. Note that Theorem 2 is the necessary condition for the system to exhibit Hopf/transcritical type of bifurcation, however
t does not exclude the existence of the Turing type instability. However, Theorem 3 forbids the existence of temporal periodicity.
o appreciate the contributions of cross-diffusion to the classical reaction–diffusion theory, we analyse the conditions when the
ross-diffusion coefficients 𝑑𝑢 and 𝑑𝑣 are taken into account. This entails studying when the determinant of the stability matrix
(𝛼, 𝛽) is positive. We proceed with the expansion of the determinant of the stability matrix (13) and write it in the form of a
roduct of a strictly positive quantity 1

𝛼+𝛽 with a cubic polynomial in 𝛽 as follows

(𝛼, 𝛽) = 𝑝0 + 𝑝1𝛽 + 𝑝2𝛽
2 + 𝑝3𝛽

3, (25)

where

𝑝0 =
1

𝛼 + 𝛽
𝜅0(𝛼), 𝑝1 =

1
𝛼 + 𝛽

𝜅1(𝛼), 𝑝2 =
1

𝛼 + 𝛽
𝜅2(𝛼), and 𝑝3 =

1
𝛼 + 𝛽

𝜅3(𝛼).

ere, the 𝜅𝑖’s (𝑖 = 0, 1, 2, 3) are expanded in terms of all the remaining parameters of the system and these can be shown to be
iven by

𝜅0(𝛼) = 𝛼3𝛾2 + 𝛼3𝛾𝑘2𝑛,𝑚 + 𝛼𝑑𝑘4𝑛,𝑚 − 𝛼𝑑𝑢𝑑𝑣𝑘
4
𝑛,𝑚 + 𝛼𝑑𝛾𝑘2𝑛,𝑚 + 𝛼3𝑑𝑢𝛾𝑘

2
𝑛,𝑚, (26)

𝜅1(𝛼) = 𝑑𝑘4 − 𝑑𝑢𝑑𝑣𝑘
4
𝑛,𝑚 − 𝑑𝛾𝑘2𝑛,𝑚 + 3𝛼2𝛾2 + 3𝛼2𝛾𝑘2𝑛,𝑚 + 3𝛼2𝑑𝑢𝛾𝑘2𝑛,𝑚 − 2𝑑𝑣𝛾𝑘2𝑛,𝑚, (27)

𝜅2(𝛼) = 3𝛼𝛾(𝑘2𝑛,𝑚(𝑑𝑢 + 1) + 𝛾), (28)

𝜅3(𝛼) = 𝛾𝑘2𝑛,𝑚 + 𝛾2 + 𝑑𝑢𝛾𝑘
2
𝑛,𝑚 = 𝛾(𝑘2𝑛,𝑚(𝑑𝑢 + 1) + 𝛾). (29)

Note that since 𝛼, 𝛽 ∈ R+
0 , therefore, we assert that (𝛼, 𝛽) > 0 requires the positivity of the cubic polynomial in 𝛽 given in (25).

We start by normalizing the polynomial such that the coefficient of 𝛽3 is one, which implies that we can write

𝛽3 +
𝜅2(𝛼)
𝜅3(𝛼)

𝛽2 +
𝜅1(𝛼)
𝜅3(𝛼)

𝛽 +
𝜅0(𝛼)
𝜅3(𝛼)

> 0. (30)

he domain-size controlling parameter 𝜌, which is the radius of disc, is now used as a parameter of the coefficients of (30). In light
f the following theorem given in [46], we aim to obtain the conditions required for (30) to hold, in terms of 𝜌, 𝑑, 𝑑𝑢, 𝑑𝑣, 𝛾, and
he spectrum of the Laplace operator.
6
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Theorem 4 (Conditions on Positivity for a Cubic Polynomial). Let (𝛽) = 𝛽3 + 𝑎𝛽2 + 𝑏𝛽 + 𝑐 be defined as non-degenerate cubic polynomial.
For the positivity of (𝛽), the following conditions must be satisfied;

(𝑖) 𝑐 > 0, (𝑖𝑖) 𝑎, 𝑏 ≥ 0, and (𝑖𝑖𝑖) 𝛥(𝛽) = 𝑎2𝑏2 + 18𝑎𝑏𝑐 − 27𝑐2 − 4𝑎3𝑐 − 4𝑏3 ≤ 0

where 𝛥(𝛽) represents the discriminant of (𝛽).

Proof. The proof can be found in [47] . □

The three conditions on 𝑎, 𝑏, and 𝑐 in Theorem 4 are represented in terms of the system parameters as follows

𝑎 =
𝜅2(𝛼)
𝜅3(𝛼)

=
3𝛼𝛾2 + 3𝛼𝛾𝑘2𝑛,𝑚 + 3𝛼𝑑𝑢𝛾𝑘2𝑛,𝑚

𝛾𝑘2𝑛,𝑚 + 𝛾2 + 𝑑𝑢𝛾𝑘2𝑛,𝑚
≥ 0, (31)

𝑏 =
𝜅1(𝛼)
𝜅3(𝛼)

=
(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4𝑛,𝑚 − (𝑑𝛾 − 3𝛼2𝛾 − 3𝛼2𝑑𝑢𝛾 − 2𝑑𝑣𝛾)𝑘2𝑛,𝑚

𝛾𝑘2𝑛,𝑚 + 𝛾2 + 𝑑𝑢𝛾𝑘2𝑛,𝑚
+

3𝛼2𝛾2

𝛾𝑘2𝑛,𝑚 + 𝛾2 + 𝑑𝑢𝛾𝑘2𝑛,𝑚
≥ 0, (32)

nd

𝑐 =
𝜅0(𝛼)
𝜅3(𝛼)

=
(𝑑 − 𝑑𝑢𝑑𝑣)𝛼𝑘4𝑛,𝑚 + (𝛼3𝛾 + 𝛼𝑑𝛾 + 𝛼3𝑑𝑢𝛾)𝑘2𝑛,𝑚 + 𝛼3𝛾2

𝛾𝑘2𝑛,𝑚 + 𝛾2 + 𝑑𝑢𝛾𝑘2𝑛,𝑚
> 0. (33)

roposition 1. Let the cubic polynomial (𝛽) in Theorem 4 be described as

(𝛽) = ℎ(𝛽)𝛽 + 𝑐, (34)

where ℎ(𝛽) = 𝛽2 + 𝑎𝛽 + 𝑏, with 𝑎, 𝑏, 𝑐 given by (31)–(33) and 𝛽 ≥ 0. The non-negativity of the quadratic polynomial ℎ(𝛽) must satisfy that
ither 𝑎 ≥ 0, 𝑏 ≥ 0, or 𝑏 > 0, 4𝑏 ≥ 𝑎2. This means that the cubic polynomial (𝛽) is strictly positive for all 𝛽 ≥ 0 and 𝑐 > 0 satisfying the
bove conditions.

roof. The proof of this Proposition is presented in [46,47]. □

The influence of the domain size controlling parameter 𝜌2 on system parameters including cross-diffusion coefficients is explored
y the following theorem.

heorem 5 (Condition on 𝜌 for Spatiotemporal Pattern Formation of Cross-Diffusive System). For the reaction–diffusion system (1) with
linear cross-diffusion to exhibit spatio-temporal pattern formation, the domain size controlling parameter 𝜌 must satisfy,

𝜌2 >
4(𝑑 − 𝑑𝑢𝑑𝑣)(2𝑚 + 1)(𝑛 + 2𝑚 + 1)(𝑛 + 4 𝑚)

(7𝑑 + 8𝑑𝑣)(𝑛 + 4𝑚 + 2)𝛾
. (35)

roof. Manipulating the inequality (31) through algebraic operations yields a straightforward condition as 3𝛼 ≥ 0. This requirement
rises from the fact that (𝛼, 𝛽) ∈ R2

+ in System (1). By employing the second condition outlined in Proposition 1 to ensure the
ositivity of (𝛽), we are now able to express the following conditions,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

3𝛼2 +
(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4𝑛,𝑚 − (𝑑 + 2𝑑𝑣)𝛾𝑘2𝑛,𝑚

(1 + 𝑑𝑢)𝛾𝑘2𝑛,𝑚 + 𝛾2
≥ 9𝛼2

4
,

𝛼2 +
(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4𝑛,𝑚 + 𝑑𝛾𝑘2𝑛,𝑚

(1 + 𝑑𝑢)𝛾𝑘2𝑛,𝑚 + 𝛾2
> 0.

(36)

The conditions of (36) are simplified as follows

4(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4𝑛,𝑚 − 4(𝑑 + 2𝑑𝑣)𝛾𝑘2𝑛,𝑚
(1 + 𝑑𝑢)𝛾𝑘2𝑛,𝑚 + 𝛾2

≥ −3𝛼2, (37)

and
3(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4𝑛,𝑚 + 3𝑑𝛾𝑘2𝑛,𝑚

(1 + 𝑑𝑢)𝛾𝑘2𝑛,𝑚 + 𝛾2
> −3𝛼2. (38)

e proceed to analyse a special case of (37) given by the equal sign combined with inequality (38). Hence, we obtain the following
ystem,

⎧

⎪

⎪

⎨

⎪

⎪

4(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4𝑛,𝑚 − 4(𝑑 + 2𝑑𝑣)𝛾𝑘2𝑛,𝑚
(1 + 𝑑𝑢)𝛾𝑘2𝑛,𝑚 + 𝛾2

= −3𝛼2,

3(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4𝑛,𝑚 + 3𝑑𝛾𝑘2𝑛,𝑚
2 2

> −3𝛼2.

(39)
7

⎩
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Substituting −3𝛼2 from the second inequality into the right-hand term of the first equality leads to the following inequality

3(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4𝑛,𝑚 + 3𝑑𝛾𝑘2𝑛,𝑚
(1 + 𝑑𝑢)𝛾𝑘2𝑛,𝑚 + 𝛾2

>
4(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4𝑛,𝑚 − 4(𝑑 + 2𝑑𝑣)𝛾𝑘2𝑛,𝑚

(1 + 𝑑𝑢)𝛾𝑘2𝑛,𝑚 + 𝛾2
. (40)

To proceed, we solve (40) for 𝑘2𝑛,𝑚 to obtain a sufficient condition, on the radius of the disc, 𝜌, that will establish the positivity of
the cubic polynomial (30), thereby ensuring the positivity of the determinant of the stability matrix given by (25). For the derivation
of the desired condition, the sign of the denominator of both sides of (40) is exploited, which requires the analysis to independently
investigate the case when the denominator on both sides of (40) is either positive or negative. Such requirement enforces two
independent cases to explore, namely 𝑑𝑢 > −1 or 𝑑𝑢 < −1, subject to 𝑑 − 𝑑𝑢𝑑𝑣 > 0. Hence, the current analysis admits the concept of
ross-diffusion where one of the species can either be negative or positive.

However, the determinant of the diffusion matrix must be positive to guarantee the regularity of the partial differential system.
e exploit the experimental investigation presented in [9] and results therein, where both negative and positive cross-diffusion,

iving rise to Turing type behaviour in the dynamics. Such experimental findings create the platform to explore the cross-diffusive
arameter 𝑑𝑢 across the full spectrum of the real line in particular, both for the choice of negative and positive real values. Therefore,
xploiting such observations we consider 𝑑𝑢 > −1, which corresponds to the positivity of the denominator of both sides of (40). As
result, we write

3(𝑑 − 𝑑𝑢𝑑𝑣)𝑘2𝑛,𝑚 + 3𝑑𝛾 > 4(𝑑 − 𝑑𝑢𝑑𝑣)𝑘2𝑛,𝑚 − 4(𝑑 + 2𝑑𝑣)𝛾 (41)

or

3𝑑𝛾 + 4(𝑑 + 2𝑑𝑣)𝛾 > (𝑑 − 𝑑𝑢𝑑𝑣)𝑘2𝑛,𝑚. (42)

Re-arranging inequality (42) results in

𝑘2𝑛,𝑚 <
(7𝑑 + 8𝑑𝑣)𝛾
𝑑 − 𝑑𝑢𝑑𝑣

. (43)

Substitution of 𝑘2𝑛,𝑚 =
4(2𝑚 + 1)(𝑛 + 2𝑚 + 1)(𝑛 + 4 𝑚)

𝜌2(𝑛 + 4𝑚 + 2)
into condition (43) allows us to write the condition on the disc radius 𝜌 as,

4(2𝑚 + 1)(𝑛 + 2𝑚 + 1)(𝑛 + 4 𝑚)
𝜌2(𝑛 + 4𝑚 + 2)

<
(7𝑑 + 8𝑑𝑣)𝛾
𝑑 − 𝑑𝑢𝑑𝑣

. (44)

Inequality (44) is re-arranged to yield the desired condition,

𝜌2 >
4(𝑑 − 𝑑𝑢𝑑𝑣)(2𝑚 + 1)(𝑛 + 2𝑚 + 1)(𝑛 + 4 𝑚)

(7𝑑 + 8𝑑𝑣)(𝑛 + 4𝑚 + 2)𝛾
, (45)

hich completes the proof. □

emark. Note that, for the cross-diffusive system to be well-posed, the main diffusion parameter 𝑑 and cross-diffusion parameters
𝑢 and 𝑑𝑣 must exist in a way that 𝑑−𝑑𝑢𝑑𝑣 > 0. The above analysis assumes this condition holds as part of the cross-diffusive driven
nstability condition, i.e. the determinant of the diffusion matrix given in Eq. (5) must be positive. The proof of this condition is
hown in [11].

. Numerical classification of the unstable regions

In this section, we plot the parameter spaces characterized by positive 𝛼 and 𝛽 values to validate our theoretical results by varying
he system parameters 𝑑, 𝑑𝑢, 𝑑𝑣 and 𝛾. The partition curve which separates the regions defining real and complex roots must satisfy

 2 − 4 = 0, (46)

which indicates which regions are characterized by repeated real, real and different and complex eigenvalues. The nature of the
eigenvalues are determined by the sign of discriminant  2 −4. We proceed to define  2 −4 implicitly as a 6th order polynomial
in 𝛽 using system parameters 𝑑, 𝑑𝑢, 𝑑𝑣, 𝛾 and 𝛼 in (46) as

𝛹 (𝛼, 𝛽) = 0(𝛼) + 1(𝛼)𝛽 + 2(𝛼)𝛽2 + 3(𝛼)𝛽3 + 4(𝛼)𝛽4 + 5(𝛼)𝛽5 + 6(𝛼)𝛽6, (47)

where the coefficients 𝑖’s are expanded as

0 = 𝛾2𝛼6 + 2𝛾𝛼4(−𝛾 + (𝑑 − 2𝑑𝑢 − 1)𝑘2𝑛,𝑚) + 𝛾2𝛼2 − 2𝛼2(𝑑 − 1)𝛾𝑘2𝑛,𝑚 + 𝛼2(𝑑 + 4𝑑𝑢𝑑𝑣 − 2𝑑 + 1)𝑘4𝑛,𝑚,

1 = 6𝛾2𝛼5 − 12𝛾2𝛼3 + 8𝛾𝛼3(𝑑 − 2𝑑𝑢 − 1)𝑘2𝑛,𝑚 − 𝛾2 − 4𝑑𝑣𝑘2𝑛,𝑚 + (𝑑2 + 4𝑑𝑢𝑑𝑣 − 2𝑑 + 1)𝑘4𝑛,𝑚,

2 = 15𝛾2𝛼4 − 24𝛾𝛼2 + 12𝛾𝛼2(𝑑 − 2𝑑𝑢 − 1)𝑘2𝑛,𝑚 + 𝛾2 + 2(𝑑 + 4𝑑𝑣 − 1)𝑘2𝑛,𝑚 + 𝛾 + (𝑑2 + 4𝑑𝑢𝑑𝑣 − 2𝑑 + 1)𝑘4𝑛,𝑚,

3 = 5𝛼3𝛾 − 5𝛾2𝛼 + 8𝛾𝛼(𝑑 − 2𝑑𝑢 − 1)𝑘2𝑛,𝑚,

4 = 15𝛾2𝛼2 − 6𝛾2 + 2𝛾(𝑑 − 2𝑑𝑢 − 1)𝑘2𝑛,𝑚,

 = 6𝛼𝛾2, and  = 𝛾2.
8
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Fig. 1. Classification of the parameter spaces for the reaction–diffusion system with linear cross-diffusion for model parameters 𝑑 = 2, 𝑑𝑢 = 𝑑𝑣 = 0.1, 𝛾 = 10. A:
A region with real-distinct negative eigenvalues, B: A region with complex-conjugate eigenvalues with negative real part, C: A region with complex-conjugate
eigenvalues with positive real part, D: A region with real-distinct eigenvalues with at least one positive eigenvalue. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

By fixing all model parameters except 𝛽, Eq. (47) determines the boundary between stable and unstable regions. We have adopted
a similar algorithm and approach presented in [15] where the parameter classification is performed for the classical RDS, in the ab-
sence of cross-diffusion. Using the conditions presented in Section 2, the full classification of the stable and unstable regions on (𝛼, 𝛽)
plane is illustrated in Fig. 1. Each segment presents the regions of stable and unstable regions with real and complex eigenvalues.

The regions where the real part of the eigenvalues (whether purely real or complex) is positive correspond to unstable regions,
by which the uniform steady state solution (𝑢𝑠, 𝑣𝑠) is asymptotically unstable. Stable regions for the uniform steady state solution are
those where the real part of the eigenvalues is negative. Regions that allow Turing pattern formation to emerge are those associated
with the instability of the uniform steady state solution when the eigenvalues are real or are a complex conjugate pair.

The region corresponding to the real distinct eigenvalues is shown in magenta colour in segment 𝐴, and the parameters chosen
from this region result in the solutions (𝑢𝑠, 𝑣𝑠) becoming uniformly stable. Similarly, parameters chosen from the segment 𝐵 in the
green region, show that eigenvalues are complex with a negative real part, entailing that the solutions are asymptotically stable.
Regions showing unstable spaces presented by the segments 𝐶 and 𝐷, where the uniform steady state solution is unstable, are
given by the colours in red and blue, respectively. We observe a Hopf bifurcation in the system dynamics when the parameters are
selected from the red region. Parameters chosen from the blue region indicate that eigenvalues are real and distinct with at least
one positive root, where we can observe Turing type of patterns. Further investigation of unstable regions are performed by varying
system parameters 𝑑, 𝑑𝑢, 𝑑𝑣 and 𝛾 within the 𝛼 and 𝛽 plane.

We begin with the plots of unstable spaces, where the system parameters 𝑑, 𝑑𝑢, 𝑑𝑣 and 𝛾 are varied to give rise to spatiotemporal
pattern formation, satisfying the conditions of Theorems 2 and 5. Fig. 2(a)–(d) present the regions on the admissible parameter space
𝛼 and 𝛽 corresponding to the complex eigenvalues with a positive real part indicating Hopf bifurcation regions, and pure imaginary
eigenvalues indicating the transcritical type of bifurcations. In Fig. 2(a), the effect of the self diffusion parameter 𝑑 is presented,
while the rest of the parameters are fixed. Hopf bifurcation regions are represented in segments 𝐴 − 𝐸 whereas the transcritical
curves are given by 𝑡1 − 𝑡5. Hopf bifurcation regions grow when 𝑑 is decreased, and the limit cycle regions are shifted from 𝑡1 to 𝑡5.
Our numerical demonstration include plotting the parameter space for the case when 𝑑 = 1, such a space does not exist if the model
system has no cross-diffusion. This region is shown in Fig. 2(a), represented by the largest region, covering each colour segment.
On the other hand, an increase in the reaction scaling parameter 𝛾 has an opposite effect on the Hopf and transcritical regions
compared to an increase in self-diffusion coefficient 𝑑. We observe from Fig. 2(b)–(c) that varying the cross-diffusion parameters
𝑑𝑢, and 𝑑𝑣 does not change the position of the limit cycle curve, whereas decreasing the linear cross-diffusion coefficients 𝑑𝑢, and 𝑑𝑣
results in smaller Hopf bifurcation regions. Parameter values and regions corresponding to Hopf/transcritical type of bifurcations
are summarized in Table 1 including each parameter selection in light of the conditions of Theorems 2 and 5.

We proceed with the plots of Turing parameter spaces satisfying the conditions of Theorems 2 and 5 as shown in Fig. 3. We note
that when the domain-size 𝜌 satisfies the conditions given in Theorems 2 and 5, then all types of instabilities are allowed. Fig. 3
9
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Fig. 2. (a)–(d) Parameter spaces for Hopf bifurcation regions and limit cycle curves with domain-size 𝜌 restricted to satisfy conditions of Theorems 2 and 5 for
various system parameters. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

is generated by varying system parameters 𝑑, 𝑑𝑢, 𝑑𝑣 and 𝛾. These parameters, selected from these segments given by the capital
letters, are expected to exhibit spatial periodicity. We observe from Fig. 3(a) that increasing the self diffusion coefficient 𝑑 results in
an increase of the Turing regions. The Turing region for the case 𝑑 = 1 is obtained as is shown by the region 𝐴 in Fig. 3(a). Again,
this region does not exist in the absence of linear cross-diffusion. We observe that an increase in the cross-diffusion coefficient 𝑑𝑢
leads to a decrease in Turing spaces, whereas an increase in the cross-diffusion coefficient 𝑑𝑣 results in an increase in Turing spaces.
Furthermore, an increase in 𝛾 gives rise to a decrease in Turing spaces. Details of parameter choice for generation of Turing spaces
satisfying the conditions of Theorems 2 and 5 are presented in Table 1.

In Fig. 4, we exhibit Turing spaces that demonstrate the validity of conditions in Theorem 3. These correspond to eigenvalues
that are real with at least one of them positive. We observe that variations of system parameters 𝑑, 𝑑𝑢, 𝑑𝑣 and 𝛾 result in similar
regions as those shown in Fig. 3. Moreover, the main difference between Figs. 4 and 3 is that, Fig. 4 is generated according to the
fact that the condition of Theorem 3 prohibits the existence of Hopf/transcritical type bifurcations and restricts the system to show
only Turing type instability. The detailed choice of parameters indicating each segment are presented in Table 2.

4. Numerical simulations with finite element method on disc-shape domain

To validate the theoretical observations presented in Theorems 2, 3, and 5, we present numerical simulations of the model
system (1) using the finite element method. For details on the finite element method, we refer the interested readers to [42,48].
The finite element method is characterized by seeking weak solutions which solve a week variational form. This process is then
10
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Fig. 3. (a)–(d) Turing spaces with domain-size 𝜌 satisfying conditions of Theorems 2 and 5 for various system parameters.

followed by seeking a weak finite element solution for the space-discretized weak formulation [49,50]. This leads to a system of
ordinary differential equations. Domain discretization is one of the key concepts in finite element method. In our work, the finite
element mesh for the disc-shape domain is obtained by using an open package domain generator called 𝐺𝑚𝑠ℎ [51]. Finally, a time-
discretization is carried out to convert the system of ordinary differential equations into a system of nonlinear or linear algebraic
equations (depending on the time-stepping scheme employed). We refer the interested to consult the work in [52,53] with regards
to time-stepping schemes for reaction–diffusion systems.

We note that the initial conditions are selected to be small random perturbations around the uniform steady-state, presented
in [13,15–17] and these are given by,

𝑢0(𝑥, 𝑦) = 𝛼 + 𝛽 + 0.0016 cos(2𝜋(𝑥 + 𝑦)) + 0.01
8
∑

𝑛=0
cos (𝑛𝜋𝑥), and 𝑣0(𝑥, 𝑦) =

𝛽
(𝛼 + 𝛽)2

+ 0.0016 cos(2𝜋(𝑥 + 𝑦)) + 0.01
8
∑

𝑛=0
cos (𝑛𝜋𝑥).

Model parameters 𝛼 and 𝛽 are selected in light of the parameter spaces generated in Section 3 exhibiting cross-diffusion-driven
instability. We keep the size of the radius fixed as 𝜌 = 1, and vary the remaining parameters 𝑑, 𝑑𝑢, 𝑑𝑣, and 𝛾 while ensuring
that the conditions of domain-size presented in Section 3 remain valid. In all our numerical simulations, we take 6402 triangular
elements, generating 6668 degrees of freedom. Time-discretization is accomplished by using the first-order semi-implicit backward
differential formula (1-SBEM) [54] with timestep 𝛥𝑡 = 0.001. For the finite element algorithm, these selected numerical parameters
11
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Fig. 4. (a)–(d) Turing spaces with domain-size 𝜌 restricted to satisfy conditions of Theorems 3 and 5 for various system parameters.

satisfy the stability and convergence of the numerical method. Simulations showing the evolution of Turing patterns are presented in
Section 4.1, while simulations corresponding to the Hopf and limit cycle behaviour are presented in Section 4.2. Parameter selection
information is provided in the captions of each simulations. It must be noted that patterns obtained remained unchanged in all our
simulations when the timestep and meshsize are refined (results not shown).

4.1. Spatial pattern formation

Fig. 5 presents the evolution of spatial pattern formation considering the choice of parameters from the Turing region, when
the domain-size controlling parameter 𝜌 is subject to the conditions of Theorems 2 and 5, as indicated in Fig. 3. Snapshot series in
Fig. 5 show the spatiotemporal evolution of the 𝑢 profile, starting with the formation of stripe-type patterns which then transform
into spatially inhomogeneous spot-patterns. In (h), we plot the 𝐿2 norms of the discrete time derivatives of the 𝑢 and 𝑣-components
of the solution to demonstrate the temporal stability behaviour of the solutions as they evolve in time.

The spatiotemporal evolution profile of the 𝑢 component of the solution for the investigation of the effect of negative cross-
diffusion under the conditions of Theorems 2 and 5 is presented in Fig. 6. In particular, the numerical simulation is selected
specifically to include the choice of the self-diffusion coefficient as 𝑑 = 1 which does not give rise to pattern formation in the
12
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Table 1
Parameter classification of the instability types when varying 𝑑, 𝑑𝑢, 𝑑𝑣, 𝛾 to satisfy Theorems 2 and 5.
Figure index Fig. 2(a) Fig. 2(a) Fig. 3(a)

Types of instability Hopf bifurcation Transcritical bifurcation Turing instability

(𝒅, 𝑑𝑢 , 𝑑𝑣 , 𝛾, 𝜌) 𝜆1,2
𝜆 ∈ C,Re(𝜆1,2) > 0 𝜆 ∈ C, 𝑅𝑒(𝜆1,2) = 0 0 < 𝜆1 ∈ R or 0 < 𝜆2 ∈ R

(1,0.1,0.1,10,10) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 ∪ 𝐸 𝑡5 𝐸
(4,0.1,0.1,10,10) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 𝑡4 𝐸 ∪𝐷
(6,0.1,0.1,10,10) 𝐴 ∪ 𝐵 ∪ 𝐶 𝑡3 𝐸 ∪𝐷 ∪ 𝐶
(8,0.1,0.1,10,10) 𝐴 ∪ 𝐵 𝑡2 𝐸 ∪𝐷 ∪ 𝐶 ∪ 𝐵
(10,0.1,0.1,10,10) A 𝑡1 𝐸 ∪𝐷 ∪ 𝐶 ∪ 𝐵 ∪ 𝐴

Figure index Fig. 2(b) Fig. 2(b) Fig. 3(b)

Types of instability Hopf bifurcation Transcritical bifurcation Turing instability

(𝑑,𝒅𝒖 , 𝑑𝑣 , 𝛾, 𝜌) 𝜆1,2
𝜆 ∈ C,Re(𝜆1,2) > 0 𝜆 ∈ C, 𝑅𝑒(𝜆1,2) = 0 0 < 𝜆1 ∈ R or 0 < 𝜆2 ∈ R

(8,−0.5,0.1,10,10) 𝐴 Fixed 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 ∪ 𝐸
(8,6,0.1,10,10) 𝐴 ∪ 𝐵 Fixed 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷
(8,13,0.1,10,10) 𝐴 ∪ 𝐵 ∪ 𝐶 Fixed 𝐴 ∪ 𝐵 ∪ 𝐶
(8,25,0.1,10,10) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 Fixed 𝐴 ∪ 𝐵
(8,40,0.1,10,10) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 ∪ 𝐸 Fixed 𝐴

Figure index Fig. 2(c) Fig. 2(c) Fig. 3(c)

Types of instability Hopf bifurcation Transcritical bifurcation Turing instability

(𝑑, 𝑑𝑢 ,𝒅𝒗 , 𝛾, 𝜌) 𝜆1,2
𝜆 ∈ C,Re(𝜆1,2) > 0 𝜆 ∈ C, 𝑅𝑒(𝜆1,2) = 0 0 < 𝜆1 ∈ R or 0 < 𝜆2 ∈ R

(2,0.1,1,10,10) 𝐴 Fixed 𝐴
(2,0.1,2,10,10) 𝐴 ∪ 𝐵 Fixed 𝐴 ∪ 𝐵
(2,0.1,3,10,10) 𝐴 ∪ 𝐵 ∪ 𝐶 Fixed 𝐴 ∪ 𝐵 ∪ 𝐶
(2,0.1,4,10,10) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 Fixed 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷
(2,0.1,5,10,10) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 ∪ 𝐸 Fixed 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 ∪ 𝐸

Figure index Fig. 2(d) Fig. 2(d) Fig. 3(d)

Types of instability Hopf bifurcation Transcritical bifurcation Turing instability

(𝑑, 𝑑𝑢 , 𝑑𝑣 , 𝜸, 𝜌) 𝜆1,2
𝜆 ∈ C,Re(𝜆1,2) > 0 𝜆 ∈ C, 𝑅𝑒(𝜆1,2) = 0 0 < 𝜆1 ∈ R or 0 < 𝜆2 ∈ R

(2,0.1,0.1,2,10) 𝐴 𝑡1 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 ∪ 𝐸
(2,0.1,0.1,4,10) 𝐴 ∪ 𝐵 𝑡2 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷
(2,0.1,0.1,6,10) 𝐴 ∪ 𝐵 ∪ 𝐶 𝑡3 𝐴 ∪ 𝐵 ∪ 𝐶
(2,0.1,0.1,8,10) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 𝑡4 𝐴 ∪ 𝐵
(2,0.1,0.1,10,10) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 ∪ 𝐸 𝑡5 𝐴

Table 2
Parameter classification for Turing instability when varying 𝑑, 𝑑𝑢, 𝑑𝑣, 𝛾 to satisfy Theorems 3 and 5, forbidding Hopf/transcritical
bifurcations.
(𝒅, 𝑑𝑢 , 𝑑𝑣 , 𝛾, 𝜌)/Fig. 4(a) (𝑑,𝒅𝒖 , 𝑑𝑣 , 𝛾, 𝜌)/Fig. 4(b)

(2,0.1,0.1,5,5) 𝐴 (2, 0, 0.1, 5, 5) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 ∪ 𝐸
(3,0.1,0.1,5,5) 𝐴 ∪ 𝐵 (2, 1, 0.1, 5, 5) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷
(4,0.1,0.1,5,5) 𝐴 ∪ 𝐵 ∪ 𝐶 (2, 2.5, 0.1, 5, 5) 𝐴 ∪ 𝐵 ∪ 𝐶
(5,0.1,0.1,5,5) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 (2, 5, 0.1, 5, 5) 𝐴 ∪ 𝐵
(6,0.1,0.1,5,5) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 ∪ 𝐸 (2, 10, 0.1, 5, 5) 𝐴

(𝑑, 𝑑𝑢 ,𝒅𝒗 , 𝛾, 𝜌)/Fig. 4(c) (𝑑, 𝑑𝑢 , 𝑑𝑣 , 𝜸, 𝜌)/Fig. 4(d)

(2,0.1,0,5,5) 𝐴 (2, 0.1, 0.1, 2.5, 5) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 ∪ 𝐸
(2,0.1,0.5,5,5) 𝐴 ∪ 𝐵 (2, 0.1, 0.1, 3, 5) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷
(2,0.1,1,5,5) 𝐴 ∪ 𝐵 ∪ 𝐶 (2, 0.1, 0.1, 3.5, 5) 𝐴 ∪ 𝐵 ∪ 𝐶
(2,0.1,1.5,5,5) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 (2, 0.1, 0.1, 4, 5) 𝐴 ∪ 𝐵
(2,0.1,2,5,5) 𝐴 ∪ 𝐵 ∪ 𝐶 ∪𝐷 ∪ 𝐸 (2, 0.1, 0.1, 5, 5) 𝐴
13
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Fig. 5. (a)–(f) Finite element simulations corresponding to the 𝑢-component of the cross-diffusive reaction–diffusion system on a disc-shape domain. Parameters
are selected to satisfy conditions of Theorems 2 and 5 with 𝑑 = 3.5, 𝛾 = 500, 𝑑𝑢 = 0.01, 𝑑𝑣 = 0.85, 𝛼 = 0.1 and 𝛽 = 0.3, as shown in Fig. 3. (g) Plot of the 𝐿2
norms showing the convergence of the numerical solutions 𝑢 and 𝑣.

absence of cross-diffusion. It has been shown in [12] that the case of 𝑑 = 1 cannot give rise to the formation of patterns in the
absence of cross-diffusion. Simulations are presented based on the choice of parameters from regions given by Fig. 3 to validate the
conditions of Theorems 2 and 5.

In Fig. 7, we demonstrate the evolution of spatial pattern formation corresponding to the choice of model parameters from
Turing regions shown in Fig. 4. We note that, the condition on the domain size 𝜌 satisfies Theorem (24) which entails that the
only admissible pattern is restricted to Turing type, forbidding the existence of spatiotemporal patterning in the dynamics. Snapshot
series illustrated in Fig. 7, showing the development of the 𝑢 component, exhibit the spatiotemporal dynamics starting with the
formation of stripe and spot patterns which transient to form spatially inhomogeneous spot patterns. The plot of the discrete 𝐿2
norms of the discrete time derivative of the numerical solutions 𝑢 and 𝑣, indicate the evolution of the temporal stability dynamics
as predicted by condition (24) of Theorem 3.

4.2. Spatiotemporal pattern formation

In this section, we extend our finite element simulations to investigate the effects of parameter selection for the spatiotemporal
pattern formation in light of the conditions on the size of disc radius 𝜌. The choice of the model parameters corresponding to the
theoretical predictions are presented in the captions of each figure. We have provided our simulations in a series of snapshots at
specific time stages. For each simulation, we provide the plots of the discrete 𝐿2 norm of the discrete time derivative of the numerical
solutions of 𝑢 and 𝑣 showing the temporal periodicity in the dynamics.

In Fig. 8, we present the finite element simulations when model parameters are selected from the parameter spaces shown in
Fig. 2. These correspond to the case when eigenvalues are a complex-conjugate pair. As predicted by the conditions of Theorems 2
14
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Fig. 6. (a)–(f) Finite element simulations corresponding to the 𝑢-component of the cross-diffusive reaction–diffusion system on the disc-shape domain. Parameters
are selected to satisfy conditions of Theorems 2 and 5 with 𝑑 = 1, 𝛾 = 480, 𝑑𝑢 = −0.5, 𝑑𝑣 = 0.43, 𝛼 = 0.07 and 𝛽 = 0.3 as shown in Fig. 3. (g) Plot of the 𝐿2
norms showing the convergence of the numerical solutions 𝑢 and 𝑣.

and 5, time periodicity in the dynamics can be well-observed in the snapshots of Fig. 8. We observe the transition of spot patterns
changing from one type to another, periodically. We observe that the periodic spatiotemporal evolution of the spot patterns exhibit
a cyclic behaviour in the dynamics of the spot patterns on the circular domain. The 𝐿2 norm of the discrete time derivative of the
numerical solutions supports the time periodicity in the short and long term dynamics as shown by Fig. 10 (a) and (b). We also
provided a video for this particular simulation as a supplementary material.

Finite element numerical simulations in Fig. 9 are presented to investigate the special case when 𝑑 = 1, which is now able to
generate the emergence of patterns only in the presence of cross diffusion. The plot of the 𝐿2 norm of the discrete time derivative
of the numerical solutions 𝑢 and 𝑣 exhibits the spatiotemporal periodicity, with the same frequency of periodicity and a decaying
amplitude, as shown in Fig. 11 (a) and (b). Initially, spot patterns alternate from one form to another, with the system finally
converging to inhomogeneous solutions in the long term. The parameters 𝛼 and 𝛽 are chosen from the Hopf bifurcation region as
shown in Fig. 2.

We demonstrate the effect of negative cross-diffusion in the spatiotemporal pattern formation with a series of snapshots given in
Fig. 12. In this particular simulation model parameters are selected as 𝑑 = 1, 𝑑𝑢 = −0.1, 𝑑𝑣 = 0.5, 𝛼 = 0.085, in light of Fig. 2 (a)–(b).
These correspond to the case when eigenvalues are a complex-conjugate pair. The plot of the 𝐿2 norm of the discrete time derivative
of the solutions 𝑢 and 𝑣 exhibits spatiotemporal periodicity, with the same frequency of periodicity and amplitude, as shown in Fig. 13
(a) and (b). Spot patterns alternate from one form to another, indicating a limit cycle behaviour in the spatiotemporal dynamics.
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Fig. 7. (a)–(f) Finite element simulations corresponding to the 𝑢-component of the cross-diffusive reaction–diffusion system on the disc-shape domain. Parameters
are selected to satisfy conditions of Theorems 3 and 5 with 𝑑 = 12, 𝛾 = 250, 𝑑𝑢 = 2, 𝑑𝑣 = 1, 𝛼 = 0.05 and 𝛽 = 0.7, as shown in Fig. 4. (g) Plot of the 𝐿2 norms
showing the convergence of the numerical solutions 𝑢 and 𝑣.

Mathematical analysis of such limit cycles for these types of models (for partial differential equations with linear cross-diffusion) is
an open problem.

5. Conclusion

Rigorous mathematical analysis of a cross-diffusive reaction–diffusion model relating the domain-size of the disc with the system
parameters is presented for the system exhibiting spatiotemporal pattern formation. An analytical method is employed to derive the
conditions on radius of disc 𝜌. The eigenvalue problem on the disc, whose solution is obtained with the use of Bessel series, plays an
essential role in completing the linear stability analysis which is necessary to derive the conditions analytically. Parameter spaces are
classified and presented numerically according to conditions of Hopf and transcritical bifurcations, and Turing cross-diffusion-driven
instabilities. By using finite element simulations, we demonstrate the existence of spatiotemporal periodicity corresponding to Hopf
and transcritical type of bifurcations on a disc shape domain. Our most revealing results show the ability of cross-diffusion as a
model candidate to enhance patterning when coupled with the classical self-diffusion process. The inclusion of linear cross-diffusion
entails that equal self-diffusion coefficients are able to give rise to spatial pattern formation, which is not possible if cross-diffusion
is not present as a physical process. Such novel results entail the relaxation of the restrictive Turing diffusion-driven instability
conditions.

Some of the open problems in this area include (but are not limited to):

• Stability analysis of reaction–diffusion systems with linear cross-diffusion on growing domains and evolving surfaces.
16



Nonlinear Analysis: Real World Applications 77 (2024) 104042G. Yigit et al.
Fig. 8. Finite element simulations corresponding to the 𝑢-component of the cross-diffusive reaction–diffusion system on the disc shape domain exhibiting
spatiotemporal pattern formation. Parameters are selected to satisfy conditions of Theorems 2 and 5 on 𝜌 with 𝑑 = 2.6, 𝛾 = 375, 𝑑𝑢 = 1, 𝑑𝑣 = 0.65, 𝛼 = 0.09 and
𝛽 = 0.1, as shown in Fig. 2.
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Fig. 9. Finite element simulations corresponding to the 𝑢-component of the cross-diffusive reaction–diffusion system on the disc shape domain exhibiting
spatiotemporal pattern formation. Parameters are selected to satisfy conditions of Theorems 2 and 5 on 𝜌 with 𝑑 = 1, 𝛾 = 180, 𝑑𝑢 = 0.5, 𝑑𝑣 = 0.5, 𝛼 = 0.085 and
𝛽 = 0.1.
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Fig. 10. (a) The plot of the discrete time derivative of the numerical solutions 𝑢 and 𝑣 showing the spatiotemporal periodicity on 𝑡 ∈ [0, 1.6] for the numerical
simulation shown in Fig. 8. (b) The plot of the discrete time derivative of the numerical solutions 𝑢 and 𝑣 showing the spatiotemporal periodicity on 𝑡 ∈ [0, 3]
for the numerical simulation shown in Fig. 8.

Fig. 11. (a) The plot of the discrete time derivative of the numerical solutions 𝑢 and 𝑣 showing the spatiotemporal periodicity for 𝑡 ∈ [0, 2] of the numerical
simulation shown in Fig. 9. (b) The plot of the discrete time derivative of the numerical solutions 𝑢 and 𝑣 showing the spatiotemporal periodicity on 𝑡 ∈ [0, 3]
for the numerical simulation shown in Fig. 9.
19



Nonlinear Analysis: Real World Applications 77 (2024) 104042G. Yigit et al.
Fig. 12. Finite element simulations corresponding to the 𝑢-component of the reaction–diffusion system on the disc shape domain exhibiting spatiotemporal
pattern formation with negative cross-diffusion. Parameters are selected to satisfy conditions of Theorems 2 and 5 on 𝜌 with 𝑑 = 1, 𝛾 = 250, 𝑑𝑢 = −0.1, 𝑑𝑣 = 0.5,
𝛼 = 0.085 and 𝛽 = 0.1.
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Fig. 13. (a) The plot of the discrete time derivative of the numerical solutions 𝑢 and 𝑣 showing the spatiotemporal periodicity on 𝑡 ∈ [0, 1.6] for the numerical
simulation shown in Fig. 12. (b) The plot of the discrete time derivative of the numerical solutions 𝑢 and 𝑣 showing the spatiotemporal periodicity on 𝑡 ∈ [0, 3]
for the numerical simulation shown in Fig. 12.

• Bifurcation analysis of semi-linear parabolic systems of reaction–diffusion equations with linear cross-diffusion to study the
transitions from uniform states to limit cycles.

• Stability analysis of reaction–diffusion systems with nonlinear cross-diffusion. Solution methods for such systems could include
perturbation theory involving weakly nonlinear analysis for partial differential equations.

• Stability analysis of multi-component reaction–diffusion systems with linear cross-diffusion.

These open problems form part of our current studies.
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