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Estimation of biophysical variables such as leaf area index (LAI) and canopy chlorophyll 

content (CCC) at high spatiotemporal resolution is important for managing natural and 

heterogeneous environments. However, accurate estimation of biophysical variables 

particularly over heterogeneous environments remains a challenge. The objective of the 

study was to develop locally parameterised grass LAI and CCC empirical models using 

the Sentinel-2 variables combined with the Stepwise multiple linear regression (SMLR) 

and Random forest (RF) at the Golden Gate Highlands National Park (GGHNP) and 

Marakele National Park (MNP) in South Africa. Results showed that in MNP, SMLR 

yielded better LAI estimation with root mean squared error (RMSE) of 0.67 m2.m-2 and 

mean adjusted error (MAE) of 0.54, explaining 48% of LAI variability, when bands and 

indices are combined. In contrast, RF gave better CCC estimation i.e. RMSE and MAE 

of 17.08 µg.cm-2 and 13.18 respectively, explaining about 40% of CCC variability with 

Sentinel-2 bands only. In GGHNP, the RF models provided the best estimates of both 



2 
 

LAI and CCC compared to SMLR models. Furthermore, the CCC and LAI estimation 

models of GGHNP showed improved model accuracies when 50% and 75% of the MNP 

field samples were transferred to the GGHNP models. In contrast, the CCC and LAI 

estimation models of MNP showed a decline in model performance across all scenarios 

where the GGHNP field samples were transferred to the MNP models. These findings 

have significant implications for the development of locally parameterised types of 

models that can provide improved and consistent site-specific accurate estimates of grass 

biophysical parameters over heterogeneous environments. 

 

Keywords: Leaf area index (LAI), Canopy chlorophyll content (CCC), Sentinel-2 

imagery, indices 

 

Introduction 

Estimation of vegetation biophysical variables is important for understanding vegetation 

condition, structure, growth status and gross primary productivity. In light of biodiversity loss 

and ecosystem restoration, these variables can be used to assess and monitor vegetation state 

and biodiversity at large. The leaf area index (LAI) defined as the one-sided leaf area per unit 

of horizontal surface area (Jonckheere et al. 2004) is an important indicator of plant canopy 

structure and growth, and also forms an essential input in climate models to determine 

ecosystem productivity. Another biophysical variable called the leaf chlorophyll content (LCC) 

carries valuable information about vegetation physiology and could be regarded as a key 

indicator of plant health status. Accurate measurements of LCC can be helpful for precision 

management of natural resources and agricultural fields (Bei et al. 2019). Furthermore, the 

canopy chlorophyll content (CCC), which refers to the overall amount of chlorophyll a and b 

pigments in a compact group of plants per unit ground area (Gitelson et al. 2005) is derived 
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from the product of the LCC, μg.cm-2 and the corresponding LAI, m2.m-2 in a subplot 

(Darvishzadeh et al. 2008). CCC is an important indicator of vegetation health condition, plant 

species diversity and forage quality assessment (Ali et al. 2020). These variables i.e. LAI, and 

CCC form part of the essential biodiversity variables (BON 2015) and are also listed and ranked 

as some of the top 30 biodiversity metrics measured from space, using satellite remote sensing 

(Skidmore et al. 2021). 

Heterogeneous ecosystems like the grasslands and savannah of South Africa, are 

characterised by native grasses of different mixture of grass and tree species often distributed 

across varying terrain slopes, soils and geology types (Masemola, Cho, and Ramoelo 2016; 

Ramoelo et al. 2015). Such an environment, analogous to rangelands, is favourable for 

livestock production and grazing by animals (Svinurai et al. 2021). Therefore, it is critical to 

(i) assess areas where there is a change in response to climate and/or anthropogenic effects, (ii) 

monitor the functional status and diversity of the rangeland vegetation communities in-order 

to enhance ecosystem productivity and stability, guided by effective resource management 

strategies and policies. These aforementioned processes are measurable through biophysical 

variables such as LAI, LCC and CCC which can be estimated in the field or through modelling 

procedures applied to remotely sensed imagery (Chuvieco 2016). Recently, there has been a 

successful attempt to generate vegetation biophysical products that provide modelled estimates 

of e.g. LAI, CCC and fractional vegetation cover (FVC) at high spatiotemporal resolutions of 

Sentinel-2 data (Weiss, Baret, and Jay 2020).  

The retrieval accuracy of these biophysical variables (especially LAI and CCC) in 

heterogeneous environments characterised by diversity of land cover, species diversity and 

varying terrain slopes remains a notable concern and an area for further investigation 

(Darvishzadeh et al. 2008; Cho, Ramoelo, and Math 2014; Brown et al. 2021). For example, in 

the heterogeneous grasslands of South Africa, inadequate retrieval accuracies of grass LAI and 
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CCC from the Sentinel-2 Level 2 Prototype Processor (SL2P) (Weiss, Baret, and Jay 2020) 

were reported in a recent validation study (Tsele et al. 2022).  Brown, Ogutu, and Dash (2019) 

assessed the accuracy of the Sentinel-2 derived LAI and CCC biophysical variables over a 

deciduous broadleaf forest site in Southern England. The study reported moderate inaccuracies, 

and suggested using alternative model inversion methods such as the invertible forest 

reflectance model (INFORM) that are optimised for forest environments. A virtually similar 

study by Filipponi (2021) modelled LAI estimates from both Sentinel-2 and Landsat-8 imagery 

over croplands, grasslands, broadleaved and needleleaf forests in Italy. The study found a 

general underestimation of LAI over the aforementioned test site classes, however higher 

overestimations were noted in the grasslands. Furthermore, Ali et al. (2020) compared 

statistical and physically-based methods in estimating CCC using Sentinel-2 data and various 

vegetation indices (VIs) over a heterogeneous mixed mountain forest. It was found that, 

although both methods had comparable prediction accuracies of CCC, the statistical methods 

gave the lowest prediction error coupled with the highest coefficient of determination (R2). 

Overall, these studies show that the performance of the models used to estimate the biophysical 

parameters may lack generality in heterogenous canopies at regional to global level. This could 

be an indication for the need to further explore and develop locally parameterised types of 

models, looking at empirical and/or inversion of the physically-based models. However, in 

agricultural environments which are largely characterised by homogeneous cover, the models 

have demonstrated satisfactory performance (Kganyago et al. 2020; Hu et al. 2020; Kganyago, 

Mhangara, and Adjorlolo 2021) and the potential to be transferred to other sites (Kganyago, 

Adjorlolo, and Mhangara 2022). 

While numerous studies have evaluated the performance of Sentinel-2 data in estimating 

vegetation biophysical variables (Delegido et al. 2011; Clevers and Gitelson 2013; Ramoelo 

and Cho 2018; Sun et al. 2019; Guerini Filho, Kuplich, and Quadros 2020; Andreatta et al. 
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2022) there is limited effort towards examining the performance of Sentinel-2 bands in 

conjunction with red-edge based indices to estimate both LAI and CCC variables over 

heterogenous ecosystems. Few studies reported varying degrees of accuracy when evaluating 

the performance of Sentinel-2 data for predicting LAI and CCC over a heterogenous grassland 

environment using statistical approaches, for example Schwieder et al. (2020) and Sakowska, 

Juszczak, and Gianelle (2016). Furthermore, to our knowledge based on available literature, 

the stepwise multiple linear regression (SMLR) and random forest (RF) which are known to 

be parametric linear and non-parametric non-linear methods respectively, have not been widely 

tested in the context of heterogenous grass biophysical-parameters estimation and monitoring 

from Sentinel-2 imagery. It is worth exploring whether these methods could be potential 

alternatives to current operational approaches, especially in providing improved and consistent 

site-specific accuracy of grass biophysical parameter estimation.  

The notion of transferrable models across geographic sites for estimation of vegetation 

biophysical parameters is important, given the excessive costs associated with field data 

collection in order to obtain extensive training sets. This could affect the potential to estimate 

these parameters at regional to global level with acceptable accuracies. In particular, radiative 

transfer models (RTMs) have minimum reliance on in-situ data and are known to be robust and 

transferrable because they use the physical laws (Goel 1987) to accurately describe the spectral 

variation of canopy reflectance as a function of viewing and illumination geometry, canopy, 

including leaf and soil background characteristics (Darvishzadeh et al. 2011). However, it has 

been reported that RTMs still require local parameterization in order to simulate multispecies 

canopies accurately, especially in heterogenous environments (Atzberger et al. 2015; 

Darvishzadeh et al. 2008; Combal et al. 2003; Bsaibes et al. 2009). In contrast, statistical or 

empirical models often lack transferability to other sites (Verrelst et al. 2015) and also, their 

robustness and accuracy of the modelled relationships depends on the properties of the acquired 
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field data (Atzberger et al. 2015). Therefore, this study explored locally parameterised types of 

SMLR and RF based empirical models on whether the models can be improved through 

transfer scenarios involving different proportions of field samples from different sites. For 

example, this notion was successfully tested by (Kganyago, Adjorlolo, and Mhangara 2022) in 

an agricultural environment whereby, the transferability of empirical models and training 

samples between two study sites in South Africa that share similar site characteristics (i.e. crop 

types) and imagery acquisition conditions was investigated, for improving the accuracy 

retrievals of crop LCC, CCC and LAI biophysical parameters. Based on our observations of 

the available field-sample measurements of grass CCC and LAI between the target sites in this 

study, an assumption was made that the range of values of these biophysical parameters in the 

target sites is not far apart, and therefore the notion of transferability can be tested. The aim of 

this study was to evaluate the Sentinel-2 spectral reflectance bands and various VIs for the 

estimation of grass biophysical parameters during peak productivity over a heterogeneous 

grassland environment in South Africa. The study objectives were to:  

(i) Evaluate and compare the LAI and CCC estimation capability using SMLR and RF 

as well as Sentinel-2 data in heterogeneous environments, 

(ii) Identify which Sentinel-2 derived variables (bands and/or VIs) are important to 

estimate grass LAI and CCC in heterogeneous environments, 

(iii) Evaluate the effect of transferring varying proportions of field samples on improving 

model accuracy from one site to the other. 

 

Material and methods 

Study area 

Two heterogenous study sites were selected in two South African National Parks namely, the 

Golden Gate Highlands National Park (hereafter, GGHNP) located in the Free State province 
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near the Lesotho border, and Marakele National Park (hereafter, MNP) located in the 

Waterberg mountains of the Limpopo province, as shown in Figure 1. The study sites were 

selected based on certain landscape attributes, such as biomes and vegetation communities 

(Mucina and Rutherford 2006). For example, about 36 grass species were identified within the 

visited plots in GGHNP (Figure 1) and the most dominant were Eragrostis curvula, Elionurus 

muticus, Aristida adscensionis, Stiburus alopecuroide, Sporobolus africanus, Heteropogon 

contortus, Tristachya leucothrix, Microchloa caffra, Themeda triandra, Urochloa decumbens, 

Helichrysum rugulosum and Helichrysum pilosellum. Similarly, more than 30 grass species 

were identified across the visited plots in MNP such as (to name a few), Hyperthelia dissoluta, 

Eragrostis lehmanniana, Themeda triandra, Digitaria eriantha, Miscanthus junceus, Digitaria 

Brazzae, Aristida diffusa, Eragrostis racemosa, Schizachyrium jeffisi and Panicum natalense. 

 

Furthermore, the GGHNP and MNP sites are mountainous and characterised by surface height 

variation i.e. elevations that range between approximately 1639 m to 2815 m and 976 m to 

2091 m respectively, estimated from the 30 m resolution Shuttle Radar Topography Mission 

(SRTM) data acquired from the United States Geological Survey (USGS) Earth Explorer 

(https://earthexplorer.usgs.gov/). Both sites fall within the summer rainfall region of South 

Africa. In particular, the GGHNP receives average rainfall of approximately 700 mm per year 

(Mucina and Rutherford 2006) whereas, the MNP site can receive average rainfall of up to 

around 630 mm annually (Van Staden and Bredenkamp 2005). 
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Figure 1: The location of the two selected study sites in South Africa (a) and (b) where LAI, CCC and 

FVC sample field measurements were taken. Site (a) represents the Marakele National Park (MNP) 

whereas site (b) represents the Golden Gate Highlands National Park (GGHNP) on 8 – 10 April 2021 

and 18 – 21 March 2021 respectively. 

 

The dominant underlying geology in the GGHNP includes mudstone, fine-to-medium 

sandstone and basalt, based on the national geology map developed by the Council for 

Geosciences (CG 1997). In the same site, the soils include shallow to deep sandy soil that is 

extremely gravelly as well as a clay-rich subsoil (https://data.isric.org/; Van Engelen and 

Dijkshoorn 2013). On the other hand, in MNP the geology is largely characteristic of sandstone 

and mudstone, followed by granule stone, siltstone and diabase (CG 1997). The soils in MNP 

range from shallow-gravel soil to low activity clayed soil (https://data.isric.org/; Van Engelen 

and Dijkshoorn 2013). 
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Schematic workflow 

Figure 2 show a schematic workflow summarizing the various phases of the methodology that 

were implemented in this study. These phases are discussed in subsequent sections of the paper. 

 

 

Figure 2: Methodological flowchart developed in this study for estimation of grass LAI and CCC in 

heterogenous natural environment in South Africa. 

 

Remotely-sensed imagery 

Sentinel-2 images were acquired free of charge from the European Space Agency data hub 

(https://scihub.copernicus.eu/dhus/#/home) on the 27th of March 2021 and the 9th of April 

2021. The selection of the images was such that they (i) are free from any cloud obscuration 

(ii) covered the two study sites and (iii) had acquisition dates that were very close (i.e. <= 6 

days) to the field data collection dates. Sentinel-2 multispectral imager (MSI) data has 13 
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spectral bands, characterised by fine spatial resolutions in the range 10-60 m, that cover large 

geographic areas (i.e. 120km × 120km per scene) at high a temporal resolution of up-to 5 days 

(Table 1). The Sentinel-2 images were pre-processed to surface reflectance or Bottom of the 

Atmosphere (BOA) reflectance i.e. Level-2A using the SNAP Sentinel-2 atmospheric 

correction tool, Sen2Cor, version 2.8 (Louis et al. 2016).   

 

Table 1: Resolution characteristics of the Sentinel-2 MSI data. The spectral bands (and VIs discussed 

later) were used as input predictor variables in this study for regression modelling. 

Band 

number 

Band description Central wavelength 

(nm) 

Bandwidth Spatial 

resolution (m) 

Temporal 

resolution 

B1 Coastal aerosol 443 20 60 5 days 

B2 Blue 490 65 10 

B3 Green 560 35 10 

B4 Red 665 30 10 

B5 Red edge1 705 15 20 

B6 Red edge2 740 15 20 

B7 Red edge3 783 20 20 

B8 Near infrared 842 115 10 

B8A Narrow near infrared 865 20 20 

B9 Water vapour 945 20 60 

B10 Cirrus 1375 30 60 

B11 Shortwave infrared1 1610 90 20 

B12 Shortwave infrared2 2190 180 20 

 

Furthermore, the Sentinel-2 BOA images were resampled to the spatial resolution of 20 m 

using the resampling function within the SNAP software version 8.0 

(https://step.esa.int/main/download/snap-download/). This spatial resolution is such that the 20 

m x 20 m pixels in sampled geographic areas correspond to single field plots of size of 20 m x 
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20 m that contains two subplots, each of size 1 m x 1 m. In particular, the total number of 

sampled locations were 80 and 68 in GGHNP and MNP, respectively. The sampling strategy 

involved a combination of stratified and purposive sampling methods (Tsele et al. 2022). 

Random samples were initially taken across different grass vegetation communities and 

varying slope terrains spanning the crests, valleys and low to mid-slopes. However, when in 

the field, there were certain inaccessible areas, which led to the use of purposive sampling 

where re-placement of the sampled locations was done, close to the randomized points. Lastly, 

the geographical coordinates of the field sublots were used to extract corresponding Sentinel-

2 20 m resolution pixels of spectral reflectance and VIs for modelling LAI and CCC in both 

the GGHNP and MNP sites.  

 

Vegetation indices used 

VIs are simple band mathematical expressions that capitalize on varying spectral information 

between bands, in order to enhance the radiometric signal of the target feature while 

suppressing that of other features (Chuvieco 2016). In remote sensing of vegetation, many 

studies have successfully demonstrated that VIs can be used as an optical measure of greenness, 

and also as a proxy measure of vegetation biochemical and biophysical variables such as leaf  

nitrogen content (LNC), LAI, CCC, green biomass and FVC, for example Ramoelo et al. 

(2012); Ramoelo and Cho (2018); Masemola, Cho, and Ramoelo (2016); Ali et al. (2020); 

Guerini Filho, Kuplich, and Quadros (2020), Andreatta et al. (2022). Furthermore, such studies 

found VIs beneficial in developing statistical and/or physically-based models for retrieval of 

biophysical vegetation attributes. In this study, 26 VIs were computed based on Sentinel-2 

bands (Table 2) and evaluated as prediction variables for estimation of LAI and CCC in a 

heterogeneous grassland environment. Majority of the VIs used in this study, included at least 

one Sentinel-2 red-edge band as shown in Table 2 because, their inclusion have shown to have 
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the potential for improved estimation of vegetation biophysical variables such as the LAI, CCC 

and LNC, for example Delegido et al. (2011); Clevers and Gitelson (2013); Sun et al. (2019); 

Ali et al. (2020).  

 

Table 2: Vegetation indices (VIs) and bands that were used as input predictor variables in this study 

during modelling procedures. All VIs were computed using the Sentinel-2 spectral bands. The bands 

(Bi) highlighted in bold represent the red-edge bands of Sentinel-2 data. 

Index Name  Formula based on Sentinel-2 bands  Citation 

SR1 Simple ratio 1 B8/B4  Jordan (1969) 

SR2 Simple ratio 2 B2/B6 Henrich et al. 

(2012) SR3 Simple ratio 3 B4/B5 

SR4 Simple ratio 4 B2/B5 

SR5 Simple ratio 5 B5/B4 

SR6 Simple ratio 6 B6/B5 

SR7 Simple ratio 7 B7/B4 

SR8 Simple ratio 8 B8/B5 

SR9 Simple ratio 9 B8A/B5 

SR10 Simple ratio 10 B5/B3 

SR11 Simple ratio 11 B5/B2 

SR12 Simple ratio 12 B5/B9 

NDVI1 Normalized difference VI1 (B8-B4)/(B8+B4) Rouse Jr et al. 

(1973) 

NDVI2 Normalized difference VI2 (B7-B4)/(B7+B4) Henrich et al. 

(2012) NDVI3 Normalized difference VI3 (B7-B3)/(B7+B3) 

NDVI4 Normalized difference VI4 (B3-B5)/(B3+B5) 

NDVI5 Normalized difference VI5 (B9-B5)/(B9+B5)   

NDVI6 Normalized difference VI6 (B5-B3)/(B5+B3)         
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RE Red edge (B4+B7)/2    Horler, 

DOCKRAY, and 

Barber (1983), 

Horler et al. 

(1983) 

REP Red edge position 700 + 40*[(RE-B5)/(B6-B5)]    Dawson and 

Curran (1998) 

CIRE Chlorophyll index red edge (B9/B5) -1               Gitelson, Keydan, 

and Merzlyak 

(2006) 

CRE Chlorophyll red edge (B7/B5)(-1)   Gitelson, Gritz, 

and Merzlyak 

(2003) 

LCI Leaf chlorophyll index (B8-B5)/(B8+B4)         Datt (1999) 

MCARI Modified Chlorophyll Absorption 

in Reflectance Index 

((B5-B4)-0.2(B5-B3))×(B5/B4)   Daughtry et al. 

(2000) 

PNDVI Pan NDVI (B9-(B3+B5+B2))/(B9+(B3+B5+B2))   Wang et al. 

(2007) 

RBNDVI Red-Blue NDVI (B9-(B5+B2))/(B9+(B5+B2)) Wang et al. 

(2007) 

 

Stepwise multiple linear regression  

The stepwise multiple linear regression (SMLR) fits field observed biophysical variable (e.g. 

LAI or CCC) using a linear combination of predictor variables (e.g. spectral reflectance bands 

and/or VIs). The fitting can be described using the following, generic first-order multiple linear 

regression equation (Eberly 2007): 
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0 1 2 .... xB a b c               (1) 

where B is the LAI or CCC; a, b and c are the predictor variables, β0, β1, β2 and βx are the 

unknown coefficients and ε is the random error. The required assumptions prior to using the 

equation were observed. Equation 1 was recursively applied using both the forward and 

backward selection procedures available in the ‘olsrr’ package version 0.5.3 in R-studio 

(Hebbali and Hebbali 2017) to find optimal models based on a variable set of important 

predictors (i.e. Sentinel-2 bands and/or VIs) for estimating grass LAI and CCC in the MNP and 

GGHNP sites. In particular, the Akaike information criterion (AIC) within the ‘olsrr’ package 

provided the means for optimal model selection by estimating the quality of each model 

(Hebbali and Hebbali 2017).  

 

Random Forest 

Random forest (RF) is an ensemble machine-learning algorithm (Breiman 2001) that builds an 

assortment of multiple decision trees. RF is an extension of the Classification and Regression 

Trees (CART) algorithm (Breiman et al. 2017) and has been found in other studies to be 

potentially more accurate and relatively robust to outliers, when compared to other non-linear 

non-parametric methods such as the individual decision trees and neural networks (Mutanga, 

Adam, and Cho 2012; Chen et al. 2014; Rodriguez-Galiano et al. 2012; Liang et al. 2016). For 

every tree that is grown in a RF, a new training set of size m is randomly selected with 

replacement from the original training set of size M (where m < M). The proportion of samples 

that is not selected in the original training set, is left out-of-bag (OOB) and used to estimate the 

model performance and variable importance. Furthermore, for each node of the tree, there are 

X input variables (e.g. spectral bands) from which only x number of variables of out the X are 

randomly selected for determining the optimal split at that node for growing a forest of trees. 

The unclassified pixel is run through each of the generated trees, and each tree would then 
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classify this pixel into one of the Y classes (as defined in the training data set). Finally, the pixel 

would be assigned to the class that had the most classifications i.e. majority vote.  

In this study, the variable selection using random forests (VSURF) package available 

in R-statistics software (Genuer, Poggi, and Tuleau-Malot 2015) was used for estimating LAI 

and CCC with Sentinel-2 data in MNP and GGHNP. A variable selection process was executed 

for three modelling scenarios encompassing the Sentinel-2 bands, Sentinel-2 derived VIs, and 

the combination of bands and VIs in-order to identify the important variables in estimating 

grass LAI and CCC in heterogeneous environments. Furthermore, the implementation of the 

RF algorithm using the randomForest package in R statistical software version 4.1.3, was fine-

tuned using the caret package (Kuhn 2008) in R. The caret package provides various functions 

that expedite the development of predictive models by offering tools for tasks such as data 

splitting, pre-processing, feature selection, model tuning, and variable importance selection. 

To determine the optimal model, the root mean square error (RMSE), R2, and mean absolute 

error (MAE) were calculated during parameter tuning, with the minimum root mean squared 

error (RMSE) value being used as the selection criterion. 

 

Cross-validation for SMLR and RF regression, and evaluation of model prediction 

accuracies 

A rigorous measure of model error requires a set of data points or observations that were not 

utilised in model calibration. In instances where few sample data points exist, splitting the 

points into validation and calibration datasets may lead to having few cases in each dataset. In 

contrast to the split-sample approach, a cross-validation procedure can be implemented (Snee 

1977). Cross-validation is a method that is based on dividing the observations into different or 

equally-sized sub-datasets, and each time the method does calibration using an empirical 

function, it leaves out one or more observations at a time for testing purposes (Chuvieco 2016). 

In this study, given that there were relatively few ground observations in both study sites i.e. 

MNP (68 samples) and GGHNP (80 samples), the observations in the sample dataset for each 

site were not split into training and validation datasets. Furthermore, the cross-validation 

resampling method (Snee 1977) was used to validate the SMLR and RF fitted models. In this 
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study, the observations in the dataset for each site were randomly divided into k = 10 equal-

sized sub-datasets. We defined 5 iterative validation steps and, in each step, the k sub-datasets 

were used only once as a validation dataset for model testing. The results from each of these 

iterative steps, were assessed using statistical performance metrics such as the R2, RMSE, 

Relative root mean squared error (RRMSE) and MAE.  

The prediction accuracies of the SMLR and RF models were evaluated with the R2, 

RMSE, RRMSE and MAE. These represent some of the standard performance metrics (Chai 

and Draxler (2014)) that are widely used in numerous studies involving the estimation of 

vegetation biophysical and/or biochemical parameters, for example Ali et al. (2021); 

Kganyago, Mhangara, and Adjorlolo (2021); Verrelst et al. (2015); Ramoelo and Cho (2018); 

Guerini Filho, Kuplich, and Quadros (2020); Richter et al. (2012); Darvishzadeh et al. (2008). 

The R2 shown in Equation 1 was computed for each model to measure the goodness of fit. This 

was followed by the computation of RMSE shown in Equation 2 which indicate the amount of 

error expressed in the units of the biophysical variable of interest i.e. m2.m-2 for LAI and µg.cm-

2 for CCC. RMSE can range from 0 to ∞ and a lower value (closer to 0), indicate an accurate 

model (Chai and Draxler 2014). Additionally, the RRMSE shown in Equation 3 was used to 

facilitate comparison of model accuracies between different variables, where model accuracy 

was regarded as either excellent (RRMSE<10%), good (10%<RRMSE<20%), fair 

(20%<RRMSE<30%) or inadequate (RRMSE>30%) (Jamieson, Porter, and Wilson 1991; 

Heinemann et al. 2012). Furthermore, MAE shown in Equation 4 was also used a 

supplementary metric to RMSE to evaluate model error. The combination of MAE and RMSE 

metrics gave a representation of the variation in model error distribution, which can be 

normally- or uniformly distributed (Chai and Draxler 2014). 
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where km  is the observed biophysical variable i.e. LAI or CCC, and ke  is the model predicted 

biophysical variable i.e. LAI or CCC, km , and ke  denotes the respective means of observed 

and model predicted biophysical variables, n is the sample size, and N is the number of errors. 

 

Results and Discussion 

Field measurements of biophysical variables 

Table 3 show the summary statistics of the grass biophysical variables and terrain attributes 

over the two study sites. Generally, the field measurements across the subplots, resembled an 

approximately normal distribution, which was inferred from the proximity of the respective 

mean and median values per variable. The difference between these two basic statistical 

measures i.e. measures of central tendency, was considered in this study as a natural test for 

data distribution symmetry (Gastwirth 1971). 
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Table 3: Summary statistics of selected terrain attributes and measured biophysical variables of 

grassland sample subplots. The statistical parameters, CV denotes the coefficient of variation, and 

StDev the standard deviation. 

Site 

Measured 

variables 

No. of 

Subplots Min. Max. Mean Median StDev CV 

GGHNP 

  

  

  

LAI (m2.m-2) 80 0.61 6.24 2.26 2.02 1.24 0.55 

CCC (μg.cm-2) 80 7.24 162.61 46.01 37.05 32.26 0.70 

FVC 80 0.47 1.00 0.86 0.87 0.11 0.13 

Grass height (cm) 80 5.00 34.00 11.92 11.00 5.48 0.46 

Elevation (m) 80 1832.20 2102.41 1966.04 1960.56 78.36 0.04 

Slope (°) 80 0.49 12.04 3.67 3.26 2.59 0.70 

Aspect (°) 80 0.00 357.51 174.36 135.00 130.72 0.75 

         

MNP 

  

  

  

LAI (m2.m-2) 68 0.47 5.00 1.90 1.90 0.84 0.44 

CCC (μg.cm-2) 68 9.29 132.59 42.37 42.72 20.98 0.50 

FVC 68 0.25 0.97 0.62 0.60 0.18 0.28 

Grass height (cm) 68 4.50 37.00 16.38 15.75 8.30 0.51 

Elevation (m) 68 1307.59 1893.29 1470.54 1389.27 167.68 0.11 

Slope (°) 68 0.34 14.12 3.61 3.16 2.65 0.73 

Aspect (°) 68 0.00 354.81 131.63 68.11 125.11 0.95 

 

Table 3 data for GGHNP (which is mainly a grassland environment) suggests the sampled 

subplots were characterised by high vegetation cover with little variability according to the 

respective mean, standard deviation and CV of the FVC. This is also corroborated by the high 

LAI values reaching a maximum of 6.24. The CCC suggests the grasses in the sampled areas 

were on average green and healthy. However, the grass height, LAI and CCC showed 

moderately high variability (i.e. according to CV that ranged from approximately 46% to 70%) 
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compared to the FVC biophysical variable. This variability is representative of the various 

vegetation communities across the sections of the park, and in particular the heterogenous 

grassland environment. In addition, the CCC’s variability could also be controlled by the 

different soils and climate within GGHNP, for example Li et al. (2018). 

On the other hand, the grasses in MNP (which is generally a mixed savanna and 

grassland environment) had on average, moderately-high vegetation cover marked by FVC of 

62%. The CCC was on average, moderate and showed little variability (StDev and CV of about 

21% and 50% respectively) across the subplots in MNP compared to in GGHNP (Table 3). 

However, the LAI and grass height appeared to have a relatively high variability (i.e. CV of 

about 44% and 51% respectively) across the subplots indicating widespread vegetation 

structural differences and heterogeneity of the mountainous savanna and grassland 

environment.  

Furthermore, Table 3 include statistical information on the altitude, slope and aspect 

particularly where our subplots were located. This provides important information on terrain 

variability where our subplots were located. It is evident that our study sites are mountainous, 

characterised by high altitude ranges (Table 3). Considerable care during sampling design was 

taken to ensure that our subplots were located in fairly homogeneous surroundings 

characterised by varying slope terrains as this can be seen on the slope values (Table 3). On 

average the two sites, at least where our subplots were located had south to southeast facing 

slopes i.e. aspect (Table 3). 

 

LAI model performance  

Table 4 and Table 5 show the LAI modelling results from the SMLR and RF methods tested 

on different modelling scenarios involving the Sentinel-2 MSI bands, VIs and the combination 

of bands and VIs. For each modelling scenario, the selection of the best performing LAI model 
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was based on firstly, the lowest RMSE and MAE followed by RRMSE. The LAI modelling 

results in MNP (Table 4) show that SMLR had a better estimation capability i.e. RMSE of 0.67 

m2.m-2 explaining about 48% of LAI variability, when the bands and VIs are combined.  

 

Table 4: LAI predictive modelling results in MNP using stepwise multiple linear regression (SMLR) 

and Random Forest (RF).  

Model Scenarios  R2 RMSE (m2.m-2)  RRMSE (%) MAE 

SMLR 

LAI and Bands only 0.33 0.72 35.68 0.57 

LAI and Indices only  0.48 0.67 31.85 0.54 

LAI, Bands and 

Indices  

0.48 0.67 27.31 0.54 

RF 

LAI and Bands only 0.38 0.68 24.36 0.53 

LAI and Indices only  0.33 0.71 31.44 0.58 

LAI, Bands and Indices  0.34 0.74 31.34 0.59 

 

This performance is marginally followed by the RF model using only the bands, which yielded 

RMSE of 0.68 m2.m-2 explaining approximately 38% of LAI variability in MNP. In particular, 

notwithstanding the low MAE values, both these models demonstrated a fair or reasonable LAI 

estimation capability in MNP with RRMSE values of 27.31% (SMLR) and 24.26% (RF) 

respectively. However, in GGHNP, the RF model based on a combination of bands and VIs 

show a relatively better LAI estimation capability with RMSE of 0.93 m2.m-2 when compared 

to SMLR (Table 5).  
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Table 5: LAI predictive modelling results in GGHNP using stepwise multiple linear regression (SMLR) 

and Random Forest (RF).  

Model Scenarios  R2 RMSE (m2.m-2)  RRMSE (%) MAE 

SMLR 

LAI and Bands only 0.33 1.05 43.12 0.90 

LAI and Indices only  0.33 1.07 40.92 0.85 

LAI, Bands and Indices  0.39 0.95 35.95 0.77 

RF 

LAI and Bands only 0.32 1.04 32.28 0.85 

LAI and Indices only  0.44 0.95 20.81 0.75 

LAI, Bands and 

Indices  

0.43 0.93 22.24 0.74 

 

In addition, the RF model explained approximately 43% of LAI variability and showed a fair 

predictive performance according to lower RRMSE and MAE values (Table 5). In overall, 

these results (Table 4 and Table 5) highlighted the importance of using the combination of 

bands and VIs as model predictor variables to achieve better LAI estimation capability in MNP 

and GGHNP. In contrast, using the bands and VIs separately for LAI estimation in MNP and 

GGHNP revealed inadequate model accuracies with RRMSE’s generally greater than 30%.  
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Table 6: CCC predictive modelling results in MNP using stepwise multiple linear regression (SMLR) 

and Random Forest (RF).  

Model Scenario R2 RMSE (µg.cm-2)  RRMSE (%) MAE 

SMLR 

CCC and Bands only 0.27 18.41 42.15 15.13 

CCC and Indices only  0.35 17.82 38.69 14.13 

CCC, Bands and Indices  0.33 18.32 31.32 15.20 

RF 

CCC and Bands only 0.40 17.08 26.16 13.18 

CCC and Indices only  0.24 19.16 37.68 15.35 

CCC, Bands and Indices  0.31 18.43 37.66 14.83 

 

CCC model performance  

Results in Table 6 and In GGHNP, the RF model again demonstrated better estimation 

capability of CCC in comparison to the SMLR modelling results. In particular, the RF model 

using both spectral bands and VIs as predictor variables, yielded a better predictive 

performance with low RMSE and MAE values of 21.15 µg.cm-2 and 16.72 respectively, 

capturing relatively higher CCC variability (R2 = 0.53) compared to SMLR in GGHNP (Table 

7). Furthermore, the RF model based only on VIs as predictor variables, became the second-

best performing model in predicting CCC in GGHNP. Therefore, the RF models based on a 

combination of bands and VIs, and band only, provided reasonable CCC prediction accuracies 

i.e. RRMSE’s of 23.25% and 23.13% compared to SMLR in GGHNP, respectively (Table 7). 

 show the relative predictive performance of SMLR and RF models tested on different 

modelling scenarios involving the Sentinel-2 spectral bands and/or VIs for estimation of CCC 

in MNP and GGHNP. For each modelling scenario, selection of the optimal CCC model was 

based on the lowest RMSE and MAE followed by RRMSE. The CCC modelling results in 
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MNP (Table 6) show that RF yielded a better predictive performance with RMSE and MAE 

values of 17.08 µg.cm-2 and 13.18 respectively, explaining about 40% of CCC variability when 

only the Sentinel-2 bands are used. Additionally, this model had a fair CCC estimation 

capability over MNP with RRMSE of approximately 26.16% compared to the SMLR and other 

modelling scenarios. This performance is marginally followed by the SMLR model using only 

the VIs as predictor variables, which had RMSE and MAE values of 17.82 µg.cm-2 and 14.13 

respectively, explaining about 35% of CCC variability in MNP. Notwithstanding the 

encouraging performance of SMLR, the SMLR CCC prediction accuracies in MNP based on 

all three modelling scenarios were found to be inadequate i.e. RRMSE’s > 30% (Table 6). 

  In GGHNP, the RF model again demonstrated better estimation capability of CCC in 

comparison to the SMLR modelling results. In particular, the RF model using both spectral 

bands and VIs as predictor variables, yielded a better predictive performance with low RMSE 

and MAE values of 21.15 µg.cm-2 and 16.72 respectively, capturing relatively higher CCC 

variability (R2 = 0.53) compared to SMLR in GGHNP (Table 7). Furthermore, the RF model 

based only on VIs as predictor variables, became the second-best performing model in 

predicting CCC in GGHNP. Therefore, the RF models based on a combination of bands and 

VIs, and band only, provided reasonable CCC prediction accuracies i.e. RRMSE’s of 23.25% 

and 23.13% compared to SMLR in GGHNP, respectively (Table 7). 

The SMLR CCC results in GGHNP based on all three modelling scenarios, yielded 

inadequate prediction accuracies with relatively high RRMSE’s reaching approximately 

57.49%. Interestingly, there is a notable drop in the RRMSE to 47.73% for the SMLR, which 

suggests that, the inclusion of both the bands and VIs in the modelling process may improve 

the prediction accuracy of CCC in GGHNP. This is evident when observing the RF model 

results based on the bands and VIs modelling scenario (Table 7). 
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Selection of important predictor variables  

The packages used for SMLR and RF algorithms, namely the AIC (Hebbali and Hebbali 2017) 

and VSURF (Genuer, Poggi, and Tuleau-Malot 2015) respectively, have built-in variable 

selection measures that were executed for different modelling scenarios, in order to find 

optimal models based on a variable set of important predictors i.e. Sentinel-2 bands and/or VIs. 

Table 8 and Table 9 show results of the chosen optimal models and their corresponding variable 

sets of important variables for estimating grass LAI and CCC in the MNP and GGHNP 

heterogeneous sites. For LAI estimation, the model scenario involving the combination of 

bands and VIs was common for both sites, but the important variables differ (Table 8). 

However, for estimation of CCC, different modelling scenarios involving Sentinel-2 bands 

only and both the bands and VIs combined, yielded optimal models in MNP and GGHNP sites 

respectively, with each model having a different set of important variables (Table 9).  

 

Table 7: Estimation of LAI best models based on important variables in MNP and GGHNP 

Model 

Scenario 

R2 RMSE 

(m2.m-2) 

RRMSE 

(%) 

MAE Important variables 

SMLR for LAI in MNP 

LAI, Bands 

and Indices  

0.48 0.67 27.31 0.54 B1, B2, B7, B8, B12, SR1, 

SR4, SR5, SR12, NDVI2, 

NDVI3, NDVI4, NDVI5, 

RBNDVI, RE, MCARI, LCI 

RF for LAI in GGHNP 

LAI, Bands 

and Indices  

0.43 0.93 22.24 0.74 PNDVI, REP, CIRE, SR9, B11 
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For LAI estimation in MNP, SMLR gave a better performance whereas in GGHNP, RF 

performed better (Table 8). A set of important variables for the RF LAI model included the 

Shortwave infrared1 band coupled with red-edge based indices i.e. PNDVI, REP, CIRE, SR9. 

Furthermore, for the SMLR LAI model had a relatively longer list of important variables 

comprising the Sentinel-2 bands (i.e. coastal aerosol, blue, red edge3, near infrared and 

shortwave infrared2) and indices such as SR1, SR4, SR5, SR12, NDVI2, NDVI3, NDVI4, 

NDVI5, RBNDVI, RE, MCARI and LCI. Both LAI optimal models by SMLR and RF in MNP 

and GGHNP respectively (Table 8), did not have any overlap between their important 

variables; thus, each LAI model per site had a unique set of important predictor variables.   

 

Table 8: Estimation of CCC best models based on important variables in MNP and GGHNP. 

Model 

Scenario 

R2 RMSE 

(µg.cm-2) 

RRMSE 

(%) 

MAE Important variables 

RF for CCC in MNP 

CCC and 

Bands only 

0.40 

 

17.08 26.16 13.18 B12, B1, B8A, B4 

RF for CCC in GGHNP 

CCC, Bands 

and Indices  

0.53 21.15 23.25 16.72 CIRE, B11, SR6, B5, REP, SR9 

 

For CCC estimation in MNP and GGHNP, RF gave a better predictive performance in both 

sites compared to SMLR (Table 9). In MNP, a set of important variables for the RF CCC 

optimal model included only a few Sentinel-2 bands i.e. shortwave infrared2, coastal aerosol, 

narrow near infrared and red. While in GGHNP, the RF CCC optimal model had a set of 

important variables comprising the Sentinel-2 bands (i.e. shortwave infrared2 and red edge1) 

and red-edge based indices such as CIRE, SR6, REP and SR9 (Table 9). Both RF CCC optimal 
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models in MNP and GGHNP respectively, did not have any overlap between their important 

predictor variables; thus, each RF CCC model per site had a unique set of important variables. 

Given that a similar pattern was also observed with LAI models for the two sites, this could be 

an indication of the heterogeneous nature of the sites in-terms of grass species diversity, 

diversity of land cover and varying terrain slopes (Tsele et al. 2022). 

Interestingly, these results suggest that in GGHNP alone, the RF models can provide 

better estimates of both LAI and CCC (Table 8 and Table 9). In addition, common important 

variables namely, CIRE, B11, REP and SR9 were found to be among the ideal predictors of 

both LAI and CCC in GGHNP according to the RF models (Table 8 and Table 9). Whereas in 

MNP, similar important variables (i.e. B12 and B1) were chosen according to the SMLR and 

RF models in the estimation of LAI and CCC, respectively. Furthermore, the Wilcoxon rank 

sum test (Rey and Neuhäuser 2011) was used to evaluate the statistical significance of the 

difference between the resulting accuracies of the prediction models in Table 8 and Table 9. 

The resulting values of the Wilcoxon test exceeded the significance level of 0.05 for all the 

models, meaning there is no statistically significant difference between the median of the CCC 

estimated in GGHNP and the CCC estimated in MNP i.e. p-value = 0.51. Similarly, there is no 

statistically significant difference between the median of the LAI estimated in GGHNP and 

that estimated in MNP i.e. p-value = 0.99. 

 

LAI and CCC prediction maps of MNP and GGHNP 

Figure 3 show the realistic patterns of LAI and CCC spatial predictions across the GGHNP 

influenced by numerous variables such as rainfall, temperature, seasons, underlying soil and 

geology types, topography and vegetation type. The LAI spatial variations suggest that the 

region is characterised largely by high biomass. For example, all sections of the GGHNP were 

estimated to have, on average LAI values > 2 with the largest LAI mean values of about 2.7, 
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2.6 and 2.5 corresponding to the top-left section (locally named as Little Serengeti), top-right 

section (locally identified as Witkrans) and bottom-right section (locally known as Heuweltop) 

respectively (Figure 3). A similar pattern of spatial variations of CCC is also evident across the 

sections.  

 

Figure 3: The LAI (A) and CCC (B) distribution maps in GGHNP estimated using the best performing 

models based on the RF algorithm (i.e. in Table 8 and Table 9 respectively) during peak productivity 

of the grassland. 
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The vegetation types found in these sections are (in the order of dominance) the eastern 

Free State sandy grassland, Basotho montane shrubland, Lesotho highland basalt grassland and 

northern Drakensberg highland grassland (Mucina and Rutherford 2006). Interestingly, the 

areas that appeared reddish on the map with lower LAI values < 1 (Figure 3) were found to 

coincide with mostly basaltic lava and mudstone underlying geology types according to the 

South African national geology map (CG 1997). Whereas, higher LAI values coincided largely 

with the fine-grained sandstone underlying geology type. Furthermore, higher grass LAI values 

> 3 were mostly in regions dominated by shallow, deeper and gravelly soils (Leptosols), 

whereas lower grass LAI values occurred largely in regions dominated by silt, clay and loam 

soils (https://data.isric.org/). The estimated CCC followed the LAI trends in these regions 

(Figure 3). These estimations in GGHNP could be used to identify and monitor potential 

hotspots where the grazers are most likely to be found. In addition, overgrazed areas coupled 

with the seasonal effects on the varying concentrations of vegetation biophysical variables (like 

LAI and CCC) can also be monitored.  

Figure 4 show the realistic patterns of LAI and CCC estimations across the MNP region 

which could be influenced by numerous variables such as seasons, soil type, underlying 

geology, elevation and vegetation type. For example, in the western part of MNP which is 

dominated by the sandy bushveld vegetation type (Mucina and Rutherford 2006), clay-rich 

subsoil (ferric lixisols) and mudstone geology was modelled to have, on average lower LAI 

values (<= 2) with variable CCC in the range 18 to 81 (µg.cm-2). This LAI estimate may suggest 

the area in the western region has low biomass, thus could be characterised by low volume 

grazing. However, the central and eastern parts of MNP that are largely characterised by 

moderate to high elevation (i.e. ~1024 to 2091 m), mountain bushveld vegetation type (Mucina 

and Rutherford 2006), sandstone and siltstone geology types and shallow-gravel soil, were 

modelled to have, on average higher LAI values of about 3.  
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Figure 4: The LAI (A) and CCC (B) distribution maps in MNP estimated using the best performing 

models based on the SMLR algorithm (i.e. in Table 8) and the RF algorithm (i.e. in Table 9) 

respectively, during peak productivity of the grassland. 
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Most areas that were estimated to have the highest LAI > 4 (Figure 4), appeared to have 

some linear disconnected patterns suggesting that it may be in the water-logged areas and 

wetlands i.e. channelled-valley bottom wetlands. This suggestion was confirmed by use of the 

DEM map (not shown). CCC also appeared very high (> 60 µg.cm-2) along the aforementioned 

areas. These estimations (Figure 4) can be used to infer that the central, eastern including a 

section of the northern parts of MNP are characterised by high volume grazing or at least that 

is where most grazers are located. This observation is yet to be confirmed with animal location 

data by linking it with the maps (Figure 4).  

 

Assessing the effect of transferring varying proportions of field samples on model accuracy 

Table 10 – Table 13 show statistical modelling results based on varying proportions of field 

samples that were applied on the best performing LAI and CCC estimation models presented 

earlier in Table 8 and Table 9. The CCC and LAI estimation models of GGHNP showed 

improved model accuracies when 50% and 75% of the MNP field samples were transferred to 

the GGHNP models. In particular, the CCC estimation model of GGHNP showed minor 

improvements with RMSEs of 21.06 µg.cm-2 and 21.12 µg.cm-2 and RRMSEs of 23.14% and 

23.24% when the varying proportions of 50% and 75% of the MNP field samples were used, 

respectively (Table 10) compared to the original CCC estimation model with RMSE of 21.15 

µg.cm-2 and RRMSE of 23.25% (Table 9). Virtually similar improvements could notably be 

seen in the LAI estimation model of GGHNP with RMSEs of 0.85 and 0.89 corresponding to 

RRMSEs of 21.14% and 21.36% when the varying proportions of 75% and 50% of the MNP 

field samples were used, respectively (Table 11) compared to the original LAI estimation 

model with RMSE of 0.93 and RRMSE of 22.24% (Table 8). However, when transferring less 

(< 50%) or more (>75%) of the MNP field samples, the accuracies of the GGHNP CCC and 

LAI models tend to decline i.e. higher RMSEs and RRMSEs coupled with lower R2 values. 
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This could be an indication of the dynamics in the two study sites, in that they have different 

types of grasses, fire regimes, and also dissimilar dominant biomes i.e. GGHNP is mainly 

grassland and MNP is both grassland and mesic savanna (Mucina and Rutherford (2006)).  

 

Table 9: The best performing RF model for CCC in GGHNP was used (Table 8). A 70%/30% testing 

and validation split only for the scenario GGHNP: 100% and MNP: 100%. Cross validation was used 

for the rest of the scenarios with varying proportions of samples. 

Field samples used % R2 RMSE (µg.cm-2)  RRMSE (%) MAE 

GGHNP: 100%  

MNP: 100% 

0.32 22.43 53.23 15.70 

GGHNP: 100%  

MNP: 75% 

0.36 21.12 23.24 16.39 

GGHNP: 100%  

MNP: 50% 

0.45 21.06 23.14 16.47 

GGHNP: 100%  

MNP: 25% 

0.43 22.48 24.30 17.45 

 

In contrast to the improved model results (Table 10 and Table 11), the CCC and LAI 

estimation models of MNP showed a decline in model performance across all scenarios where 

the GGHNP field samples were transferred to the MNP models (Table 12 and Table 13). 

Notwithstanding the aforementioned decline, the scenario where 100% of the GGHNP field 

samples were transferred to the MNP models had better RSME values (for both CCC and LAI 

estimations) compared to other scenarios with varying proportions of samples. For example, 

the scenarios with proportions of 50% and 75% GGHNP field samples, further lowered the 

MNP model performance, evident in the increasing RSME values in the approximate range of 

24.97-25.16 µg.cm-2 and 0.92-0.95 for CCC and LAI estimations, respectively (Table 12 and 
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Table 13) compared to the original CCC (17.08 µg.cm-2) and LAI (0.67) estimation models of 

MNP (Table 8 and Table 9).  

 

Table 10: The best performing RF model for LAI in GGHNP was used (Error! Reference source not 

found.). A 70%/30% testing and validation split was performed only for the scenario GGHNP: 100% 

and MNP: 100%. Cross validation was used for the rest of the scenarios with varying proportions of 

samples. 

Field samples used % R2 RMSE (m2.m-2)  RRMSE (%) MAE 

GGHNP: 100%  

MNP: 100% 

0.32 0.97 47.67 0.72 

GGHNP: 100%  

MNP: 75% 

0.38 0.85 21.14 0.66 

GGHNP: 100%  

MNP: 50% 

0.38   0.89 21.36 0.70 

GGHNP: 100%  

MNP: 25% 

0.39 0.92 21.91 0.74 

 

Furthermore, a notable drop is evident in the R2 values and suggests using proportions of 

GGHNP field samples below 100% in the MNP models, did not positively contribute in 

capturing the variability the LAI and CCC across the MNP site. In overall, the decline in model 

performance across all scenarios where the GGHNP field samples were transferred to the MNP 

models may be attributed to the dynamic nature of the two study sites. For example, the 

GGHNP field samples were transferred into the MNP models that represent a site comprising 

both the grassland and savanna biomes. Whereas, the MNP field samples were transferred into 

the GGHNP models that represent a site covered by only the grassland biome. This may have 

been the reason for the improved model accuracies in GGHNP when 50% and 75% of the MNP 

grass samples were transferred to the GGHNP models.  
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Table 11: The best performing RF model for CCC in MNP was used (Table 8). A 70%/30% testing 

and validation split only for the scenario MNP: 100% and GGHNP: 100%. Cross validation was used 

for the rest of the scenarios with varying proportions of samples. 

Field samples used % R2 RMSE (µg.cm-2)  RRMSE (%) MAE 

MNP: 100%  

GGHNP: 100% 

0.19 19.0 47.26 15.15 

MNP: 100%  

GGHNP: 75% 

0.15 24.97 35.12 18.14 

MNP: 100%  

GGHNP: 50% 

0.18 25.16 37.06 18.25 

MNP: 100%  

GGHNP: 25% 

0.25 20.51 30.52 15.79 

 

 

Table 12: The best performing SMLR model for LAI in MNP was used (Error! Reference source not 

found.). A 70%/30% testing and validation split only for the scenario MNP: 100% and GGHNP: 100%. 

Cross validation was used for the rest of the scenarios with varying proportions of samples. 

Field samples used % R2 RMSE (m2.m-2)  RRMSE (%) MAE 

MNP: 100%  

GGHNP: 100% 

0.26 0.85 43.51 0.65 

MNP: 100%  

GGHNP: 75% 

0.20 0.95 23.0 0.72 

MNP: 100%  

GGHNP: 50% 

0.20 0.92 22.58 0.71 

MNP: 100%  

GGHNP: 25% 

0.19 0.98 25.49 0.73 
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Conclusions 

This paper developed locally parameterised empirical models to evaluate the Sentinel-2 

spectral reflectance bands and various VIs for the estimation of grass LAI and CCC during 

peak productivity over heterogeneous environments in two South African National Parks. Our 

findings show that SMLR yielded better LAI estimation in MNP when selected bands and 

indices are combined as predictor variables. Whereas, for LAI estimation in GGHNP, RF gave 

a better performance based on a unique set of important predictor variables such as the PNDVI, 

REP, CIRE, SR9 and B11 compared to SMLR in MNP. Furthermore, RF yielded better 

predictive performance in the estimation of CCC in both MNP and GGHNP sites. These results 

suggest that in GGHNP alone, the RF models can provide better estimates of both LAI and 

CCC. The resulting values of the Wilcoxon test exceeded the significance level of 0.05 for all 

the models, meaning there is no statistically significant difference in their predictive 

performance in estimating LAI and CCC. The generated prediction maps of GGHNP and MNP 

showed realistic spatial patterns of LAI and CCC estimates influenced numerous variables such 

as climate, seasons, topography, vegetation type as well as soil and geology types.  

Furthermore, the CCC and LAI estimation models of GGHNP showed improved model 

accuracies when 50% and 75% of the MNP field samples were transferred to the GGHNP 

models. In contrast, the CCC and LAI estimation models of MNP showed a decline in model 

performance across all scenarios where the GGHNP field samples were transferred to the MNP 

models. The relative performance in model accuracies may be attributed to the dynamic nature 

of the two study sites. Nonetheless, this study showed that locally parameterised empirical 

models can be improved through transfer scenarios involving different proportions of field 

samples from different sites, based on the assumption that the range of field sample values of 

biophysical parameters between the sites are not far apart. Overall, these findings prompt the 
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need for further development of locally parameterised types of models over heterogenous 

ecosystems. 
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