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Summary

by Rheinhardt Hendrik Sieberhagen

Supervisor: Prof NFJ van Rensburg

Heat transfer modelling is routinely used to model the interaction between a
heat source and a material specimen in applications such as additive manu-
facturing and medical surgery.

The Fourier heat conduction model is well-known in the field of heat transfer,
but in cases involving ultra-short heat pulses, or extremely small specimens,
alternative models such as the Cattaneo-Vernotte (C-V) and dual-phase-lag
(DPL) models are proposed. These two models are based on the concept
of lagging responses (or lag times) in the heat flux and the temperature
gradient.

In 1982 an article appeared that reported on the existence of unwanted os-
cillations related to a so-called “benchmark” problem that is based on the
C-V model. This problem was studied and it was shown that the unwanted
oscillations is the result of an ill-posed problem and not due to the choice
of the numerical technique used to solve the problem. The problem was
re-formulated to have a smooth initial condition and divided into auxiliary
problems. It was solved using D’Alembert’s and the finite element method,
resulting in an oscillation-free solution.

The theory and terminology of vibration analysis, e.g. overdamped and un-
derdamped modes, were incorporated into the Fourier, C-V and DPL heat
conduction models. Weak variational formulations of these models, in terms
of bilinear forms, were presented and the well-posedness of the model pro-
blems was established, based on a general existence result published in 2002.

The modal analysis method was applied to the model problems and formal
series solutions were derived. Convergence of the series solutions was proved
in terms of the energy and inertia norms. This was used as a guideline to en-
sure accurate approximations for the series solutions of the model problems.

Realistic lag time values were derived using modal analysis. This relied on
the assumption that the solutions for the C-V and Fourier models will be the
same after a sufficiently long time.

The concept of a wane time was introduced as the time instant at which the
Fourier and C-V model predictions will correspond. This was proved with
numerical experiments based on a continuous-heating model problem.
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Two model problems, based on single- and multi-pulse heating, were used
to study aspects such as the contribution of overdamped and underdamped
modes to the predicted temperature, the influence of the lag time values on
the C-V and DPL model predictions, and the effect of heating parameters,
e.g. the duty ratio and the number of heating pulses on the model predictions.

In conclusion, modal analysis proved to be successful in determining reliable
lag times values and was effective for the numerical investigations into the
properties of the solutions of the model problems. Future research should
focus on investigating model problems that resemble reliable experimental
techniques, thereby facilitating comparison of theory with practice.
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Chapter 1

Introduction

1.1 Mathematical models for heat conduction

Thermal energy is transported through a specimen by a process of heat trans-
fer. Heat transfer is generally described by the well-known Fourier model
(also known as the parabolic model or diffusion equation) and given by

∂tT =
k

ρcp
∇2T, (1.1.1)

where T denotes the temperature, k the thermal conductivity, ρ the
density and cp the specific heat.

The derivation of the Fourier model is based on the assumption that the
heat flux vector and temperature gradient occur simultaneously. An impor-
tant consequence of this assumption is that a thermal disturbance propagates
at an infinite speed through the specimen [CT82]. For modelling heat trans-
fer induced by short-pulse lasers, or in cases where the material specimen has
small dimensions this assumption may not hold ([TZ98], [ZCG14]). Several
alternative models have been derived based on the concept of lagging re-
sponses in the heat flux and the temperature gradient. These include models
such as the Cattaneo-Vernotte (C-V) model (also known as the hyperbolic
model or the thermal wave model) and the linearized dual-phase lag (DPL)
model.

The C-V model ([CT82], [NBB15], [OT94]) is given by

τ∂2
t T + ∂tT =

k

ρcp
∇2T, (1.1.2)

1
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2 CHAPTER 1. INTRODUCTION

where τ is the relaxation (or lag) time associated with the setting up of the
heat flux vector. The model is based on the assumption that the temperature
gradient causes heat to flow, while the heat flux becomes the effect of the
temperature gradient. The C-V model introduces the concept of a finite wave
speed c at which the thermal disturbance travels. The wave speed is related
to the lag time through the relation c2 = k/(ρcpτ) [Tzo97].

Similarly, the linearized DPL model ([Tzo97], [Tzo95a]) is given by

τq∂
2
t T + ∂tT =

k

ρcp

(

∇2T + τ
T
∂t(∇2T )

)

(1.1.3)

where τq and τ
T

are the phase lags of the heat flux vector and the
temperature gradient, respectively. The linearized DPL model allows either
the temperature gradient or the heat flux vector to be the cause, with the
remaining quantity becoming the effect. (In the remainder of this thesis we
will refer to the “DPL” model.) We take τ = τq, in order to compare the
C-V and DPL models.

These models are routinely used to model the interaction between heat
sources and a material specimen. Additive and subtractive manufactur-
ing processes, as well as bio-heating procedures rely on the generation of
heat within a material specimen by a laser or other suitable source ([KG07],
[ULY21], [YKN04]). Modelling the heat transfer allows one to observe the
effect of the relevant process parameters, e.g. the laser pulse width, on the
predicted temporal and spatial behaviour of the heat energy induced in a
given specimen. Heat transfer modelling also plays a crucial role in determin-
ing the thermal diffusivity α, defined by α = k/(ρcp), from experimentally
obtained data. The laser flash ([BTY11], [PJBA61]) and thermoreflectance
([BYTW10], [TBO01]) methods rely, respectively, on single-pulse or multi-
pulse heating of a given specimen.

Our main concern is the different models proposed as alternatives to the
Fourier model. The following articles, published from 2014 to 2022, prove
that the C-V and DPL models continue to be of interest to the international
research community: Zhang et al [ZCG14] developed a technique to better
analyse the damping behaviour of thermal waves, as predicted by models such
as the C-V and DPL models. They believe that this will benefit the analysis
of experimental and engineering problems. In [NBB15] the C-V model is
recommended above the Fourier model, the argument being that the Fourier
model is not suitable when the dimensions of the specimen is comparable
with, or smaller than the phonon mean free path. Tan et al ([TWZWO18])
derived a hyperbolic heat conduction equation to model the process of laser
ablation by combining the C-V model’s constitutive equation with the energy
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1.2. RESEARCH AIM 3

conservation equation, including a source term. The authors found that the
model predictions based on the C-V model, is in better agreement with ex-
perimental results than the predictions based on the Fourier model. Jha and
Oyelade ([JO22]) studied a transient free convection flow problem, typically
encountered in applications such nuclear reactors and solar energy collectors.
They compared the Fourier, C-V and DPL models, emphasizing the effect
that the lag times have on the model predictions in the case of the DPL
model.

Also of interest are the publications reporting on the application of the C-V
and DPL models in bio-heat transfer problems. G R Ströher and G L Ströher
[SS14] calculated numerical solutions to the Fourier and C-V models and
compared this to analytical solutions of the same models reported on in
the literature. Kumar et al [KSR16] modelled bio-heat transfer in various
biological tissues using the Fourier, the single-phase-lag (SPL) and the DPL
models and came to the conclusion that the results obtained with the DPL
model best agrees with experimental results. Majchrzak and Stryczyński
([MS21]) studied a problem concerning the use of thermal therapy to treat a
tumour embedded in biological tissue. They used the DPL model to predict
the temperature distribution in the blood vessels surrounding the tissue, as
well as in the heated tumour present in the tissue. They compared the
DPL model with the Pennes model, which is based on the Fourier model.
Noticeable differences were found between the respective model predictions.

1.2 Research aim

Our initial research aim was to identify suitable mathematical techniques
to solve heat transfer problems modelled after the Fourier, C-V and DPL
models, and then to compare the respective model predictions, given well-
defined model problems. During subsequent literature studies it came to our
attention that some researchers obtained unwanted or spurious oscillations
when solving the C-V heat equation numerically. This led us to investigate
the so-called “benchmark” problem which was originally formulated by Carey
and Tsai [CT82] and later on referred to as the “benchmark” problem by
Huang and Wu [HW06]:

∂2
t T (x, t) + 2∂tT (x, t) = ∂2

xT (x, t),

T (0, t) = 1 ∂xT (1, t) = 0,

T (x, 0) = ∂tT (x, 0) = 0.

We will refer to it as the CT-benchmark problem.
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4 CHAPTER 1. INTRODUCTION

Carey and Tsai, and Huang and Wu, as well as other researchers ([JLZ02]
[LC04] [LCP05]), reported on the presence of spurious numerical oscillations
in their results when solving problems based on the C-V model. A common
conclusion was that these oscillations are due to the presence of sharp wave
fronts [LC04]. In many cases the researchers attempted to remove or reduce
the oscillatory behaviour by applying various numerical techniques.

We aim to show that the oscillations are due to the fact that the problems are
not well-posed, and not a consequence of the choice of numerical technique.
Furthermore, we want to re-formulate the benchmark problem into a form
that is well-posed, resulting in an oscillation-free solution, not only to the
benchmark problem, but also to problems with similar initial conditions.
Clearly it is necessary to explain what is meant by a well-posed problem.
This is done in Section 4.4.

We then turn our attention to the models proposed as alternatives to the
Fourier model, i.e. the C-V and DPL models. From the literature we have
seen arguments against and in favour of using either the Fourier, the C-V
or the DPL model to predict heat transfer in solids. It appears that fac-
tors such as the magnitude of the parameters as well as the dimensions of
the specimen determines the suitability of a specific model to a given pro-
blem. Matters are further complicated by the lack of reliable parameters,
especially the lag times τ , τq and τ

T
that are associated with the C-V and

DPL models. Some researchers are in favour of calculating these parameters
theoretically, whilst others prefer to determine these parameters experimen-
tally, even though their experimental methodologies, and analysis of results,
are criticised ([Mai19] [OA12]).

Our main aim is to determine the validity of these models and determine the
lag times by deriving conclusions from the mathematical analysis of these
models and not from experimental results. By mathematical analysis we
include all mathematical approaches, i.e. theoretical derivations, theoretical
computations and numerical comparisons.

1.3 Discussion of research objectives

As stated earlier, our initial aim was to validate the C-V and DPL models
against the Fourier model, using suitable mathematical techniques to solve
the models. Subsequent literature studies revealed two crucial aspects that
have to be addressed before attempting to solve these models: firstly, ensure
that the model problem is well-posed, i.e. a solution must exist and it has
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1.3. DISCUSSION OF RESEARCH OBJECTIVES 5

to be unique; secondly, determine reliable lag times τ , τq and τ
T
([CT82]

[HW06] [OA12]). As mentioned in Section 1.2, we will defer the discussion
of well-posed problems to Section 4.4.

We start in Chapter 2 with a summary of the mathematical models for heat
transfer. With the focus of our study being the Fourier, C-V and DPL mo-
dels, we restrict our discussion mainly to these models, briefly referring to
other models where applicable. We elaborate on the DPL model since it
is described as a unified model, i.e. it accommodates all the fundamental
mechanisms associated with phono-electron interaction, phonon scattering,
thermal waves and diffusion ([Tzo95a]). Dimensionless versions of these ma-
thematical models are derived. We introduce our heat absorption model and
use it as input when deriving the boundary and initial conditions for our
model problems. Our heat absorption model stems from the model problem
that Tzou and others ([BH69] [Tzo97]) regarded as ideal to study the influ-
ence of the lag times τq and τ

T
. This model problem concerns a case where

a specimen is suddenly exposed to a continuous heat source at one end. The
heat source is modelled by specifying the boundary condition at the boun-
dary that is being heated. We extend this model to a case where a specimen
is heated by a single step pulse, or a multiple of step pulses. Three model
problems are therefore formulated: continuous, single-pulse and multi-pulse
heating. The validation of the heat transfer models is done by comparing
the respective model predictions retrieved from using these model problems.

In Chapter 3 we suggest two options for formulating well-posed alternatives
to the CT-benchmark problem ([SV11]): either include a jump condition; or
smooth the initial value by adjusting the initial condition T (x, 0) = 0 so that
it has an initial smooth temperature distribution near x = 0 ([Wei95]). In
this way we show that the cause of the unwanted oscillations in the case of
the benchmark problem is the fact that the problem is not well-posed, and
not a result of the choice of numerical technique.

Chapters 4 and 5 discusses the well-posedness of our model problems, as
well as the convergence of the solutions ([CVV18] [VV02]). An abstract
hyperbolic-type heat transfer model is formulated in a Hilbert space set-
ting. The weak variational formulations of the respective model equations
are derived so that existence theory can be applied. Formal series solution
approximations of the problems are derived using a generalised separation of
variables method, and the validity thereof is proved. The convergence of the
partial sums is addressed.

We mentioned at the beginning of this chapter that reliable lag times for the
C-V and DPL models are not available. Yet, it is critical to have reliable
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6 CHAPTER 1. INTRODUCTION

values for the lag times when modelling heat transport. Researchers rely on
either calculating these lag times theoretically or measuring it experimentally.
There is however no consensus on this matter, as highlighted by Ordóñez-
Miranda and Alvarado-Gil [OA12].

Our approach in finding reliable lag time parameters involve a comparison of
the Fourier, the C-V and the DPL models using separation of variables. We
formulate our model problems such that the model-specific partial differential
equation together with its boundary and initial conditions, constitute a well-
posed problem. The formal series solution approximations of the problems,
developed in Chapter 5, are applied to the model problems. We define three
model problems to compare the Fourier, C-V and DPL models. The first two
problems are studied in Chapter 6. The first problem concerns a specimen
that is heated continuously at one endpoint (i.e. the problem suggested by
Tzou to illustrate the lagging behaviour of the DPL model ([Tzo97])). The
second problem deals with a single heat pulse applied to the endpoint. The
third problem is aimed at two physical applications, thermoreflectance and
bio-heating, where the endpoint is heated by multiple pulses (Chapter 7).

We rely on the series solution approximation to find reliable lag time param-
eters ([VVS21]). For τ ( = τq) our strategy is to determine if the results from
the C-V and Fourier models will be the same (within a user-specified error)
after some time t, at least for the first mode. This strategy is based on
the assumption that the Fourier model will yield physically realistic results
after a sufficiently long time. A ballpark value for τ is determined based on
a user-defined accuracy and considerations based on practical measurement
capability. The DPL model is then compared with the Fourier and C-V mo-
dels. As τ = τq is aready determined for the C-V model, the value of τ

T

has to be such that the DPL solution will also be overdamped for the same
number of modes than the C-V model.

Since the models are dimensonless, it follows that the lag time values are
also dimensionless. The lag time values are used for the model problems
involving constant heating as well as single-pulse heating. For the the third
model problem we introduce scaling factors suitable to the physical scenar-
ios being investigated to convert to dimensionless problems. This simplifies
interpretation of the results.

Chapter 8 provides a comprehensive summary of the work done, key results,
and lastly, suggestions for future research.

For convenience, an appendix is included that lists the mathematics and
physics notation frequently used in this thesis. In addition, the notation
associated specifically with heat transfer, is summarized in Section 2.2.
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Chapter 2

Mathematical models for heat
transfer

The main part of this chapter provides a physics-based discussion and deriva-
tion of the heat conduction models of interest to us. The last two sections,
Sections 2.7 and 2.8, introduces the boundary and initial conditions, as well
as the dimensionless mathematical models on which our theoretical deriva-
tions and model problem formulations are based.

It is necessary to do a review of the current state of knowledge on the topic
of heat transfer in solids before attempting new research. As mentioned in
Chapter 1, there is an ongoing debate to decide on the most suitable model
for heat transfer in solids. This review is an attempt to provide a concise
report on the heat transfer models most commonly studied by researchers.

Engineering applications require that the thermal conductivity k, the ther-
mal diffusivity α, and the lag times τ , τq and τ

T
be well known under various

conditions (such as high temperatures) and for the same medium, but for
different microstructures of this medium (e.g solid versus thin film) [Tzo97].
Maillet criticises a number of published papers reporting on the use of the
Fourier, C-V and DPL models [Mai19]. He concludes that proper experi-
mental design and analysis of results are essential when comparing different
models and attempting to derive heat transfer parameters. Ordòñez-Miranda
et al gave a good summary of the situation regarding the determination of
the lag time τ associated with the C-V model [OA12]. They reported that
some researchers determine the lag time experimentally and others rely on
theoretical calculation.

A good example of the controversy surrounding the experimental measure-
ment of τ is the work done on heat transport in non-homogeneous materials

7
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8 CHAPTER 2. MATHEMATICAL MODELS FOR HEAT TRANSFER

(such as biological tissue and sand). Some researchers claim that hyperbolic
effects are easily observed during experiments, reporting lag times in the or-
der of seconds in processed meat, copper-coated lead spheres and synthetic
sand ([Kam90] [MKVM95]). There experimental methods, and therefore also
their results, were met with criticism from other researchers who performed
similar measurements and claimed that they could find no evidence of the
hyperbolic effect, concluding that the Fourier model is sufficient in this case
[OA12]. Roetzel et al [RPD03] studied this case, in the end disagreeing with
both teams’ experimental philosophies. There main critisism was that both
research teams determined τ and α independently, whilst according to them,
it should be measured simultaneously.

Tzou provides us with an example of a theoretical calculation [Tzo95a]. He
describes how he calculated the lag times for various metals using formulas
that he derived from the parabolic two-step model for heat transfer. He did
however point out that his method of calculation only yields reliable results if
constant thermal properties are assumed, ballistic electron component effects
are excluded and if thin specimens are studied (although he did not specify
any actual thickness).

From the above discussion, it is clear that reliable values for the lag times
present in the C-V and DPL models are not available. Our point of departure
is to get more clarity on how to determine reliable values for these lag times.
We will attempt do determine these values through mathematical analysis
and not through experimentation – this will be dealt with in Chapter 6.

2.1 Heat transfer in solids

Heat transfer in solids is a physical phenomenon that is brought about by a
number of physical mechanisms (characteristic of the type of material that is
involved, e.g. metals, semiconductors, insulators etc.) and further influenced
by factors such as the physical dimensions of the material and the temporal
nature of the applied heat source. In a microscopic sense, heat transfer can
be described as a process whereby energy carriers collide with each other,
transferring energy from one carrier to another. The average distance trav-
elled by a carrier between two successive collisions are defined as the mean
free path and the time required to travel this average distance, the mean free
time.

If we consider a solid, crystalline substance, we can describe it as a periodic
structure made up of atoms or molecules. This is known as the lattice, with
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2.1. HEAT TRANSFER IN SOLIDS 9

the atoms/molecules situated at the lattice nodes. It is customary in the field
of solid state physics to model the atoms as a system of coupled harmonic
oscillators which vibrate collectively according to their vibrational normal
modes. The energy associated with such a vibrational mode is known as a
phonon [CDL77]. When phonons interact with each other it is commonly
referred to as phonon-scattering or phonon collisions. When electrons inter-
act with phonons (for example in the case of a metal), it is referred to as
phonon-electron interaction. Although a phonon is not a real physical par-
ticle, its modes of interaction is described as if it is a particle that possesses
energy and can transfer its momentum. The phonons and electrons therefore
act as the heat (or energy) carriers.

Various mathematical models have been developed over the years, based on
the underlying physical mechanisms that are believed to be responsible for
heat transfer. These models may be classified under three types [Tzo97]
[TZ98]:

• Macroscopic models

• Microscopic models

• Phase-lag models

The best known macroscopic model is the parabolic model, based on Fourier’s
law. We will refer to this model as the Fourier model. This model describes
heat transport as a diffusive process that takes place on a macroscopic level
both in space and time. A macroscopic process will require that a large
number of heat carriers (e.g ∼ 1023) interact with each other within a large
physical domain (i.e much larger than the mean free path), and over a long
time (i.e. much longer than the mean free time) before an observation is
made. Fourier’s law relies on the basic assumption that the onset of heat flow
follows immediately after the establishment of a temperature gradient across
a material specimen. This assumption was however criticised and the idea
started to develop that a time delay (or time lag) exists between the instant
when heat flow starts and the establishment of a temperature gradient. This
resulted in the development of a thermal wave model (popularly known as the
C-V model). Although the thermal wave model is classified as a macroscopic
model, it does, according to Tzou [Tzo97], describe microscale effects in time.

Further research into heat transport led to the belief that the microscopic
characteristics of materials should be considered when attempting to model
heat transport. The microscopic situation exists when the physical dimen-
sions of the specimen is of the same order as the mean free path of the energy

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



10 CHAPTER 2. MATHEMATICAL MODELS FOR HEAT TRANSFER

carriers and the interaction time is of the same order as the mean free time.
With these models it becomes important to make a distinction between dif-
ferent material types, since different energy carriers are involved in the heat
transfer process. In metallic films it is believed that heat transport is brought
about by the interaction between phonons and electrons, whilst in the case
of dielectric materials, semiconductors and insulators, phonon scattering is
responsible for heat transfer. This resulted in the microscopic models that
include models such as the two-step and phonon-scattering models.

The phase-lag (or time lag) models (single-phase lag and dual-phase lag) is
intended to link the macroscopic and microscopic approaches in modelling
heat transfer. From the phase-lag models it is possible to derive the parabolic
model, the C-V model, the two-step models and the phonon-scattering model.

2.2 Conservation of energy and constitutitve

equations

Key to any model for heat transfer is the conservation of energy. To describe
this mathematically, we define a fixed domain Ω for the specimen and con-
sider an arbitrary region D (where D is in Ω) with a boundary defined as E .
Table 2.1 summarizes the notation typically associated with heat transfer,
used throughout this and subsequent chapters.

Table 2.1: Heat transfer notation

Symbol Description Units

[ρ] (Volume density) kg m−3

[cp] (Specific heat capacity) J kg−1K−1

[k] (Thermal conductivity) W m−1K−1

[α] (Thermal diffusivity) m2s−1

[q] (Heat flux) W m−2

[T ] (Temperature) K or ◦C
[τ ] (Relaxation time) s
[τq] (Lag time associated with q) s
[τ

T
] (Lag time associated with ∇T ) s

The quantity of heat that is required to raise the temperature of the material
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2.2. CONSERVATION OF ENERGYAND CONSTITUTITVE EQUATIONS11

in D from 0 K to T K is
∫∫∫

D

ρcpT dV.

We define n as the outward unit vector that is normal to D. Then the heat
flux q across E into D is given by

−
∫∫

E

q · n dS.

The basic assumption of the theory is that the quantity of heat entering D
per unit time must equal the amount of flux entering into it:

d

dt

∫∫∫

D

ρcpT dV = −
∫∫

E

q · n dS.

A consequence of the conservation of heat energy is that

ρcp∂tT = −∇ · q. (2.2.1)

The response of the heat flux q to a temperature gradient ∇ is determined
when the relation for the conservation of energy is combined with a con-
stitutive equation. Three different constitutive equations are of interest in
this study: Fourier’s law, the Cattaneo-Vernotte equation and the linearized
dual-phase-lag equation. These are respectively given by

q = −k∇T, (2.2.2)

q + τ∂tq = −k∇T (2.2.3)

and
q + τq∂tq = −k [∇T + τ

T
∂t (∇T )] . (2.2.4)

Combining these constitutive equations with the energy conservation equa-
tion, and combining the thermal constants k, ρ and cp into α = k/ρcp,
which is known as the thermal diffusivity, leads to the following governing
equations for heat transfer:

The well-known Fourier model (or diffusion equation)

∂tT = α∇2T, (2.2.5)

the Cattaneo-Vernotte (C-V) model

τ∂2
t T + ∂tT = α∇2T (2.2.6)

and the dual-phase-lag (DPL) model
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12 CHAPTER 2. MATHEMATICAL MODELS FOR HEAT TRANSFER

τq∂
2
t T + ∂tT = α∇2T + ατ

T
∂t(∇2T ). (2.2.7)

As mentionded before, one of the goals set out for this study is to compare
the C-V and the dual-phase lag (DPL) models with the parabolic model.
These models have been the topic of interest for many years and are still
considered to be valid [Lam13]. Whether or not a model is considered valid,
depends on its range of applicability [EGJA06].

To determine the range, factors such as the time scale, the length scale and
the specimen temperature should be considered. The parabolic model is
considered valid when the specimen length is much larger than the mean
free path of the electrons or phonons and when the time scale of the process
being investigated is much larger than the mean free time of the electrons
or phonons. Zhang et al [ZCG14] explained that the parabolic model is not
valid for situations where pulsed high-power heat sources are used, ultra-low
temperature conditions are present and microscale specimens or biological
tissue are investigated.

Another argument (supported by experimental evidence [JLZ02]), is that the
pulse duration of the thermal disturbance should be short enough and the
heat flux high enough, to observe thermal behaviour that deviates from that
predicted by the parabolic model – this provides a case for models such as the
C-V and DPL models. They also concluded that the C-V and DPL models
predicted their experimental results at least qualitatively.

Tang et al [TA99] used the C-V model to predict the results obtained by
other researchers under experimental conditions of ultra-low temperatures
and high-speed heating. They found good agreement with the experimental
results.

Further evidence of the validity of the C-V and DPL models can be found
in recently published articles. Nasri et al [NBB15] studied heat transport
in semiconductor microstructures using the C-V model. They argued that
the dimensions of the specimen was comparable to the phonon mean free
path and therefore the parabolic model would not be suitable. Kumar et al
[KSR16] studied heat transfer in biological tissue, comparing the parabolic,
SPL and DPL models – their conclusion was that the DPL model yields the
best results. As a final example, Askarizadeh and Ahmadikia [AA15] studied
heat transfer in skin tissue, comparing the DPL, C-V and Pennes (a parabolic
model based on Fourier’s law) models.
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2.3. MACROSCOPIC HEAT TRANSFER 13

2.3 Macroscopic heat transfer

2.3.1 Fourier model

The Fourier model is widely accepted for many engineering applications
([Sin94] [TZ98] [YS97a]). Typical engineering applications consider the me-
dia to be a macroscopic continuum, dealing only with macroscopic informa-
tion. The Fourier model therefore ignores heat transfer mechanisms that take
place on a microscopic level, e.g. heat transfer via electron-phonon interac-
tion. The conditions under which the Fourier model is valid, is summarized
by Tamma [TZ98] as follows:

1. L/∆ ≫ 1: The physical dimension L of a specimen is much larger
than the mean free path ∆ of the heat carriers. This condition is
referred to as the macroscopic space scale.

2. t/τr ≫ 1: The physical process time t is considerably larger than the
relaxation time τr. This condition is referred to as the macroscopic
time scale.

3. T ≫ 0 Kelvin: The Fourier model predicts experimental results accu-
rately for operating conditions close to room temperature T .

Probably the most important aspect to keep in mind is that the derivation
of the Fourier model is based on the assumption that the heat flux vector
and temperature gradient occur simultaneously. An important consequence
of this assumption is that a thermal disturbance propagates at an infinite
speed through the specimen [CT82].

2.3.2 Cattaneo-Vernotte Model

The Cattaneo-Vernotte (C-V) model is also known as the thermal wave model
([CT82] [OT94]). It is based on the concept of a delay between the heat flux
vector and the temperature gradient during heat conduction [Tzo95a]. This
implies that the heat propagates at a finite speed, as opposed to an infinite
speed, as is the case with the Fourier model. They argued that Fourier’s
law should in fact make provision for a relaxation time τ . The concept of a
relaxation time is well-described by Joseph and Preziosi [JP89]: in an ideal
solid thermal energy is transported by free electrons and by phonons. The
phonons and electrons undergo collisions, dissipating energy in the process
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14 CHAPTER 2. MATHEMATICAL MODELS FOR HEAT TRANSFER

and this can be viewed as a “thermal resistance” in the solid. The time period
associated with the onset of these collisions and the moment when resistive
heat flow commences, is then defined as the relaxation time τ . They added
that different relaxation times or processes may exist during heat propagation
and that it is difficult to determine the average relaxation time.

Although the C-V model is attributed to Cattaneo [Cat48][Cat58] and Ver-
notte [Ver58a][Ver58b], they were not the only researchers to point out the
problem with an infinite speed of heat propagation. Morse and Feshbach
suggested that provision should be made for a finite speed, proposing Eq.
(2.2.3), and commenting that the Fourier model is indeed valid after a long
time [MF53]. Maxwell also derived Eq. (2.2.3), but then ignored the time-
derivative term since it “..may be neglected, as the rate of conduction will
rapidly establish itself”[Max67].

From the available literature, it seems that no one is entirely clear on how
Cattaneo and Vernotte arrived at Eq. (2.2.3) [JP90][Mul87]. Müller’s inter-
pretation of Cattaneo’s work is that the heat flux depends on the temperature
gradient as follows:

q = −k1∂xT + k2∂t(∂xT ). (2.3.1)

What Eq. (2.3.1) suggests is that, for a one-dimensional case, the heat flux
at (x, t) is proportional to the temperature gradient at (x, t), and on the
temperature gradient at an earlier time at the same position x. Combining
this with the one-dimensional version of the energy conservation law Eq.
(2.2.1), results in

∂tT =
k1
ρcρ

∂2
xT − k2

ρcρ
∂t(∂

2
xT ). (2.3.2)

According to Müller, Cattaneo noticed that this predicts propagation of heat
at infinite speed. Cattaneo then proceeded to re-write Eq. (2.3.1) to

q = −k1 [1− τ∂t] ∂xT, (2.3.3)

where τ = k2/k1. Re-arranging terms, and with the requirement that k2 ≪
k1, results in

q + τ∂tq ≈ −k1∂xT, (2.3.4)

which resembles the familiar form of the C-V equation as proposed by Cat-
taneo (with k = k1 ):

q + τ∂tq = −k∇T. (2.3.5)
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2.4. MICROSCOPIC HEAT TRANSFER 15

As shown in the previous section, the combination of this constitutive equa-
tion with the energy conservation law results in a hyperbolic heat conduction
equation:

τ∂2
t T + ∂tT = α∇2T. (2.3.6)

This equation models heat transfer as a damped wave [Tzo97].

2.4 Microscopic heat transfer

In Chapter 7 we conduct numerical experiments related to thermoreflectance
measurements of a gold thin film. The focus of our discussion here is therefore
on heat transfer in metal thin films subject to ultrafast laser pulse heating.
The intention is to provide a concise description of the basic concepts in-
volved in heat transfer in metals, and is therefore not a comprehensive text
on the topic of heat transfer in metals. The interested reader may consult
textbooks in the field of solid state and statistical physics ([Bla74] [Kit05]
[Pat72] [Ros90]).

Fortunately the theory of heat transfer in metals is also the basis of the
development of the two-step (or two-temperature) models. As we will see
in the case of a metal, distinction is made between the electron and lattice
temperature – therefore the term: ”two-temperature”. It is interesting to note
that in the case of biological materials, distinction is also made between two
temperatures: the temperature of the vascular region (blood vessels) and the
extravascular region (tissue), suggesting that the two-temperature models
may be adapted to model heat transfer in biological materials ([KKR16]
[MT14] [ZCL17]).

The microscopic models are based on the belief that heat transfer in solids
relies either on phonon-electron interaction (in metals) or on phonon scat-
tering (in dielectrics, insulators and semiconductors). The microscopic mo-
dels mentioned most frequently are: the two-step models (where distinction
is made between the parabolic and the hyperbolic two-step models), the
phonon-scattering model and the phonon radiative transfer model ([TC94]
[Tzo97]).

2.4.1 Heat transfer in metal thin films

We consider here the situation where metal thin films are heated by short
laser pulses. A general description of the heating process distinguishes be-
tween different steps or stages. The electrons first have to absorp the photon
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16 CHAPTER 2. MATHEMATICAL MODELS FOR HEAT TRANSFER

energy, then the energy is transferred from the electrons to the crystal lattice
and finally heat is transferred throughout the specimen [QT93a]. The topic
of heat transfer in metals is however still much-debated and experimental ev-
idence suggests that more stages should be considered, especially when the
applied heat pulse is in the femtosecond range [SVAIF94] [TM94] [BDFW00]
[NTYB11] [WHGM99] [HN09]. These stages are associated with the differ-
ent heat transfer mechanisms in metal thin films, owing to the interaction
between the different energy carriers. With each mechanism is associated a
characteristic time duration, which should be considered together with the
experimental time scales of interest when comparing experimental results
with theoretical predictions.

We start with the energy absorption stage. Electrons close to the metal sur-
face are excited into higher energy levels, resulting in a hot, non-thermalised
(i.e. non-equilibrium) electron gas. Initially it was believed that during this
stage, the hot electrons thermalise rapidly (within approximately 20 fs) via
electron-electron scattering, attaining a Fermi-Dirac distribution and estab-
lishing an electron temperature ([BDFW00] [Bro90]). This idea of a rapid
thermalisation time followed from the assumption that the large electron
population affords optimal electron-electron interaction, allowing thermali-
sation to take place within a very short time-span [SVAIF94]. With this
assumption, the thermalisation time scale is therefore much shorter than the
typical laser pulse duration of about 100 fs to 150 fs, used in femtosecond
spectroscopic studies.

It is however suggested that after laser excitation, the electrons being in a
highly non-equilibrium state, first undergo nondiffusive ballistic transport.
An electron temperature Te is therefore not yet established ([BDFW00]
[WHGM99]). Experimental results show that the thermalisation time can
be extended to a few hundred femtoseconds – measurements on gold thin
films for example yielded a thermalisation time of approximately 700 fs
which is comparable to electron-phonon relxation times of approximately
1 ps ([HMWM97] [Sin10] [SVAIF94]). Again using the example of gold, the
non-equilibrium electrons penetrate into the material with ballistic velocities
in the order of 106 m.s−1 and can reach a ballistic range of 100 nm in the case
of a 100 fs pulse. The assumption is then that within the time frame span-
ning the (femtosecond) laser pulse, no temperature gradient exists within the
electron gas (i.e ∇Te = 0).

Distinction should be made between transition metals and noble metals, as
this determines the extent of the ballistic range. For transition metals the
ballistic range is of the same order as the optical absorption depth, but for
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2.4. MICROSCOPIC HEAT TRANSFER 17

noble metals, the ballistic transport range is significant longer and has to be
considered when modeling the heat transport [WHGM99].

The ballistic stage is followed by the relaxation stage where excited elec-
trons relax via electron-electron scattering to restore equilibrium (therefore
having a Fermi-Dirac distribution). It now makes sense to assign an ”elec-
tron temperature”. During this time the lattice temperature is considered
to be unchanged since the electron heat capacity is much smaller than that
of the lattice – the lattice is assumed to have a Planck distribution. (Values
reported for gold has the lattice heat capacity Cl = 2, 5 × 106J m−3 K−1

and the electron heat capacity Ce = 2, 1 × 104J m−3 K−1). The electron
temperature Te is considerably higher than the lattice temperature Tℓ and
therefore the electron gas and the lattice is in non-equilibrium. This tem-
perature gradient is responsible for the diffusion of hot electrons into the
specimen.

Equilibrium between the electron gas and the lattice is restored via electron-
phonon scattering, so that Te = Tℓ > T0, where the equilibrium temperature
is higher than the initial thin film temperature T0 [SVAIF94]. The time
required to restore thermal equilibrium between the electron gas and the
lattice is known as the relaxation time and is considered to be in the order
of picoseconds [QT92].

During the last stage thermal diffusion into the specimen takes place, with
the electron gas returning to the original temperature T0 – this requires
about 100 ps [SVAIF94]. The diffusion length or distance is determined by
the electron-phonon coupling strength.

Remark Although it may appear that heat transfer in metals is described as
a series of sequential steps, the transfer of heat from the electron gas to the
lattice commences once the ballistic and diffusive electron transport processes
start [BDFW00]. This is supported by Tas and Maris that reported that the
electron-phonon interaction substantially changes the electron distribution,
even before the electron gas has time to fully thermalise [TM94].

2.4.2 Two-Step Models

Initial developments in the theory of heat transfer in metals suggested a two-
step process. This is atrributed to Kaganov et al [KLT57] and Anisimov
et al [AKP74] who decided to model heat transfer in a metal as a two-
step process. This model became known as the parabolic two-step model
(PTS), otherwise known as the two-temperature model (TTM). Qiu and
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18 CHAPTER 2. MATHEMATICAL MODELS FOR HEAT TRANSFER

Tien [QT93a] developed the hyperbolic two-step (HTS) model, which can be
viewed as a three-step process. This model was derived from the Boltzmann
transport equation, accounting for ballistic heat transport in the electron gas,
and is prescribed when the laser pulse length is considerably shorter than the
electron-phonon relaxation time [QT93a] [Tzo97].

Mathematically the hyperbolic two-step model is described by three coupled
equations, which include two energy equations ([QT93a] [Tzo95b]):

Ce∂tTe = −∇ · qe −G(Te − Tℓ) (2.4.1)

and
Cℓ∂tTℓ = G(Te − Tℓ), (2.4.2)

and the constitutive equation

qe = −k∇Te − τ
F
∂tqe. (2.4.3)

In the above equations G is the electron-lattice coupling constant, k is the
thermal conductivity of the phonon-electron system, Ce and Cℓ are the
electron- and lattice heat capacities respectively and τ

F
is the thermalisa-

tion time evaluated at the Fermi surface, or simply the thermalisation 1 time
of the electron gas [Dug16][Tzo95b]. Equation (2.4.1) models the heating of
the electron gas and Eq. (2.4.2) the heating of the lattice via electron-phonon
interaction. Equation (2.4.3) models the heat propagation through the elec-
tron gas, with the last term in this equation, representing the thermalisation
stage in the electron gas.

G is given by

G =
π4

18

(neukB)
2

keq
, (2.4.4)

where kB is the Boltzmann constant, ne is the electron number density, u is
the speed of sound, and keq is the equilibrium thermal conductivity, where the
electrons and phonons are in thermal equilibrium (considered to be the case
during slow-rate heating). The equilibrium thermal conductivity may also
be interpreted as the inherent or macroscopic thermal conductivity (which is
the typical value used in thermal engineering applications), i.e. its value is
not influenced by the measurement conditions. The effective thermal conduc-
tivity k of the phonon-electron system, not being in equilibrium, is related

1Qiu and Tien [QT93a] and Tzou [Tzo97] uses the term relaxation time to refer to the
mean time for electrons to change their states (it is characteristic of whether the electron-
dynamics are diffusive or ballistic), whereas we use the term thermalisation time in this
thesis.
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2.4. MICROSCOPIC HEAT TRANSFER 19

to the equilibrium thermal conductivity keq through

k = keq
Te

Tℓ

. (2.4.5)

Equation (2.4.5) points to the reasoning that the thermal conductivity is
modified by the local electron and phonon temperatures during short-rate
heating, i.e. whilst the electron and phonon temperatures are different, the
ratio k/keq is proportional to Te/Tℓ [QT93a].

Using Eq. (2.4.2) we express Te in terms of Tℓ (or Tℓ in terms of Te), substitute
the expressions for Te (or Tℓ) into Eq. (2.4.1), and combine the result with
the constitutive equation, Eq. (2.4.3), to arrive at the hyperbolic two-step
(HTS) model [Tzo95b]:

∇2T +

(

Cℓ

G

)

∂t(∇2T ) =
τ
F
CeCℓ

kG
∂3
t T +

τ
F
(Ce + Cℓ)

k
∂2
t T

+
CeCℓ

kG
∂2
t T +

(Ce + Cℓ)

k
∂tT, (2.4.6)

where T = Tℓ (or = Te). This is a single equation, governing either the
lattice or the electron temperature. The electron-lattice coupling constant G
is strongly affected by size effects according to Qiu and Tien [QT93b]. They
developed a model that predicts that, decreasing the size of a specimen, will
increase the magnitude of G. Increasing G implies that the relaxation time
is reduced, which in turn implies that lattice peak-temperature will increase.

If the duration of the applied heat pulse is of the same order as the relaxation
time, and therefore an order of magnitude longer than the thermalisation
time, it implies that the electron-gas itself is in equilibrium. What remains
is that equilibrium between the electron gas and lattice has to be restored.
A two-step process is then sufficient [QT92]: relaxation via electron-phonon
interaction, and thermal diffusion into the lattice [QT92]. Mathematically
the two-step model is described by the same energy equations belonging to
the HTS model, Eq. (2.4.1) and Eq. (2.4.2), but with the exeption that the
constitutive equation does not include the electron thermalisation process:

qe = −k∇Te. (2.4.7)

The derivation of the parabolic two-step model (PTS) is similar to the
hyperbolic two-step model, except that the constitutive equation used, is
Eq. (2.4.7). The parabolic two-step model (PTS) is given by the single equa-
tion

∇2T +

(

Cℓ

G

)

∂t(∇2T ) =
CeCℓ

kG
∂2
t T +

(Ce + Cℓ)

k
∂tT, (2.4.8)
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20 CHAPTER 2. MATHEMATICAL MODELS FOR HEAT TRANSFER

governing either the lattice or the electron temperature. A wave term is
present in Eq. (2.4.8) even though heat transport throught the electron gas
is governed by diffusion.

If the laser pulse duration is considerably longer than the relaxation time,
there is ample time to establish thermal equlibrium between the electrons
and the metal lattice. The conclusion is then that the heating is a one step
process, i.e. the Fourier model may be used, and it is not necessary to
consider microscopic effects.

Returning to Eq. (2.4.6) we observe that if τ
F
approaches zero, the HTS

model approaches the PTS model (Eq. (2.4.8)). If τ
F

approaches zero and
G infinity, the HTS model resembles the Fourier model. To confirm that this
is the case, we refer to the expression for energy conservation, Eq. (2.2.1),
where the specific heat capacity cp, with units J kg−1K−1 is used and the
thermal diffusivity is defined as α = k/ρcp. Ce and Cℓ in the two-step mo-
dels are defined as volumetric heat capacities, with units J m−3 K−1. With
the reasoning that the electrons and lattice are in thermal equilibrium at
this point, it can be argued that c

V
is the equilibrium heat capacity of the

electron-phonon system, and k is the equilibrium thermal conductivity of
the same system. We realise that the equilibrium thermal conductivity that
we refere to here, is exactly the effective thermal conductivity defined in Eq.
(2.4.5), with Te = Tℓ. The thermal diffusivity in the two-step model frame-
work, is then defined as α = k/c

V
. The units of α , in both definitions are

m2 s−1 confirming then that the HTS model equation, Eq. (2.4.6) resembles
the Fourier model equation, Eq. (2.2.5), when τ

F
approaches zero and G

infinity.

2.5 Phase lag models

We will see in this section how the linearized dual-phase lag (DPL) model
follows from the parabolic two-step model. In general, the DPL model is
intended to be a unified model that combines the theories of the macroscopic
and microscopic models, at the same time accommodating the transition
between the different models [Tzo95a][Tzo97]. The DPL model therefore
describes heat transfer processes in other materials as well, including as we
have already mentioned, dielectrics, insulators and semiconductors, porous
materials and also biological materials ([KKR16] [MT14] [ZCL17]).
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2.5.1 The unified field approach

The phase-lag models, developed by Tzou [CXW08], are based on the no-
tion that finite times are required for the substructural interactions to take
place within a given material type. Our earlier discussion in Section 2.4 al-
ready introduced this notion with the thermalisation and relaxation times
associated with heat transfer in metals. We should also consider other ma-
terial types. Porous materials, such as fine blasting sand, mainly consist
of randomly distributed gaseous pores surrounded by solid structures (sand
particles) and can be viewed as a microstructural material. When heat flow
reaches a pore, most of heat energy circulates around the pore, relying mainly
on the solid particle to conduct the heat. This is due to the thermal con-
ductivity of the solid particle being higher than that of the gaseous pore.
The remainder of the heat exchanges energy with the gas (air) trapped in-
side the pore. The heat transfer via the solid particles versus the pores are
distinguished by finite and distinct delay times. Amorphous materials such
as silica aerogels and random metal-sphere assemblies are noncrystalline in
nature, implying the absence of a periodic lattice structure. The material
structure can best be desribed as a ”non-continuous” or ”disordered” ar-
rangement of atoms/molecules or particles, resulting in clusters inside the
material with localised thermal behaviour. As is the case with porous ma-
terials, heat transfer through these materials is characterised by finite and
distinct delay times ([LT20] [DA08] [Sos18] [Win16]). Dielectric crystals, in-
sulators and semiconductors all have a crystalline structure and heat transfer
relies on phonon scattering. Two types of phonon scattering mainly occurs:
momentum-conserving and momentum-nonconserving. A distinct and finite
relaxation time is associated with both types [JP89][Tzo97].

In all the examples mentioned here, the materials are seen as consisting
of distinct substructures (ranging from meso- to nanoscale) characterised
by finite and distinct delay or lag-times, that influence the transfer of heat
through the material. Tzou introduced the phase-lag approach by suggesting
that there is a time-lag between the heat flux vector and the temperature
gradient [Tzo93b][Tzo97].

The phase-lag models most frequently studied, include the single-phase-lag
(SPL) ([CXW08] [PRDSS00]) and dual-phase-lag (DPL) models ([Tzo95a]
[Tzo95b] [WXZ01]). A three-phase-lag model has also been developed in re-
cent years, finding application in bioheat transfer problems ([HAA20] [ZSY20]).
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We start with the SPL model, in which case a phase-lag is introduced in
the heat flux vector q, with the Fourier constitutive equation changing to
([MR16] [Tzo93b] [Tzo97]):

q(r, t+ τq) = −k∇T (r, t). (2.5.1)

According to Tzou, this implies that the temperature gradient ∇T (r, t) is
the cause and the heat flux q the effect. Once the temperature gradient
is established, heat flow is assumed to be instantaneous. Using a first-order
Taylor expansion of τq around t, and assuming that τq is small so that
the higher order terms may be ignored, Tzou arrived at

q + τq∂tq ≈ −k∇T. (2.5.2)

Equation (2.5.2) has the same form as the C-V model constitutive equation,
Eq. (2.2.3), but one should keep in mind that these models were developed
along different physical arguments [JP90]. Combining Eq.(2.5.2) then with
the energy conservation law, Eq. (2.2.1), leads to the linearized SPL model

τq
α
∂2
t T +

1

α
∂tT = ∇2T. (2.5.3)

Tzou, by considering the macroscopic models (describing diffusion, thermal
waves and his single-phase-lag concept) together with the microscopic mo-
dels (describing phonon-electron interaction and phonon scattering), saw the
opportunity to develop a unified model or ”generalized lagging response”,
referred to as the dual-phase-lag (DPL) model. The intention with the DPL
model is to capture all the different microstructural and temporal effects
on a microscopic level, into a single macroscopic model that relies on finite
lag times to accommodate the various microstructural interactions that take
place within a specimen ([Tzo95a][Tzo95b]). Tzou therefore wanted a model
that describes the microscopic phonon-electron interaction during heat trans-
fer in a metal film in a microscopic fashion. At the same time this model
should accommodate diffusion, thermal waves, phonon-electron interactions
and even phonon scattering, thereby including heat transfer in other material
types.

The generalized lagging response is illustrated by the two-step model applied
to the case where a metal is subject to pulsed laser heating [Tzo95a]. We re-
call from Section 2.4 that a nonequilibrium thermodynamic situation exists;
therefore whilst energy is exhanged between the lattice and free electrons,
the lattice temperature remains unchanged. From a microscopic perspective,
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the increase in lattice temperature is delayed due to the phonon-electron in-
teractions and this delay is known to be the relaxation time. Tzou describes
this continued build up of phonon-electron interaction as a macroscopic de-
layed response or lagging between the temperature gradient and the heat flux
vector. To address the lagging response between the temperature gradient
and heat flux vector, he introduces two phase lags in the Fourier constitutive
equation, Eq. (2.2.2): τq, the phase lag of the heat flux vector, and τ

T
, the

phase lag of the temperature gradient. As mentioned earlier, the C-V model
assumes that the temperature gradient precedes the heat flux. The DPL
model however allows for two situations: the temperature gradient preced-
ing the heat flux, i.e. τ

T
< τq, or the heat flux preceding the temperature

gradient, i.e. τ
T
> τq.

The Dual-Phase-Lagging (DPL) constitutive equation is then

q(r, t+ τq) = −k∇T (r, t + τ
T
), (2.5.4)

where τq is described as the delay in heat-flow, departing from a position
r in the material, and τ

T
as the delay in establishing a temperature gradient

after the heat flow has arrived at a point r. Tzou aimed to derive a governing
equation that is equivalent to the PTS model equation. He observed that a
first-order Taylor expansion of the delayed constitutive equation (Eq. 2.5.4),
in both τq and τ

T
, results in equivalence. Taking the first-order Taylor ex-

pansion of Eq. (2.5.4) with respect to t, yields [Tzo95a]:

q + τq∂tq ≈ −k [∇T + τ
T
∂t (∇T )] . (2.5.5)

Combining this with the energy conservation law, Eq. (2.2.1), results in the
linearized DPL model.

τq
α
∂2
t T +

1

α
∂tT = ∇2T + τ

T
∂t(∇2T ). (2.5.6)

Remark: The phase lags are assumed to be temperature-independent and
may be regarded as effective values averaged over a nominal temperature
range [TC01].

2.5.2 Interpretation of the DPL model and its time
lags

Tzou gives a synopsis of the characteristics of the DPL model with its asso-
ciated lag times, serving as a guideline on how to interpret the DPL model
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24 CHAPTER 2. MATHEMATICAL MODELS FOR HEAT TRANSFER

from a physical perspective and also how the values of the lag times, influ-
ences the mathematical solutions obtained when applying the DPL model to
a heat transfer problem [Tzo97]. Together with Tang and Araki[TA99], in-
teresting observations are made about the characteristics of Eq. (2.5.6) with
respect to the values of τ

T
and τq, and how, with specific lag time values,

the DPL model can reduce to either the C-V or even the Fourier model.

Tzou lists a number of characteristics of the DPL model, which according to
him, best describe the model’s potential to act as a unified model that allows
all the fundamental mechanisms associated with phonon-electron interaction,
phonon scattering, thermal waves and diffusion, to be captured by one single
model.

1. If τq = τ
T
= 0, Eq. (2.5.6) reduces to the Fourier model equation.

2. If τ
T

= 0, thereby removing the mixed-derivative term, Eq. (2.5.6)
reduces to the C-V model equation, with τq ≡ τ . τq is therefore
responsible for the wave nature.

3. τq induces thermal waves with sharp wave-fronts, separating the heated
and unheated zones in the solid.

4. If τq = τ
T
6= 0, the temperature prediction resembles that of the Fourier

model. This is motivated by re-writing Eq. (2.5.6) as follows:

(∇2T − 1

α
∂tT ) + τq∂t(∇2T − 1

α
∂tT ) = 0.

In the case of a homogeneous initial temperature, the above equation
has the general solution

∇2T − 1

α
∂tT = 0,

which is the Fourier model equation.

5. τ
T

can be seen as adding a diffusion-like nature into the equation
through the inclusion of the mixed-derivative term; it smooths the wave
fronts by promoting conduction in the specimen material.

6. If τ
T
> τq, the temperature prediction is described as ”over-diffusion

behaviour”. In this case the temperature gradient follows after the heat
flux vector.

7. If τq > τ
T

> 0, the temperature prediction is described as ”wavy
behaviour”. In this case, the temperature gradient precedes the heat
flux vector.
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2.5.3 The PTS model versus DPL model

Tzou performed a detailed comparison between his DPL model and the
parabolic two-step model. We observe the similarity between Eqs. (2.4.8)
and (2.5.6) in terms of time and space derivatives. Comparing the coefficients
in Eqs. (2.4.8) and (2.5.6) results in

α =
k

Ce + Cℓ

; τq =
1

G

[

1

Ce

+
1

Cℓ

]−1

; τT =
Cℓ

G
. (2.5.7)

From the theory of the parabolic two-step (PTS) model we know that G,
Ce and Cℓ are microscopic properties that cause the time lags (microscale
effects in time) on a macroscopic level. In both the PTS and the DPL models,
temperature-independent thermal properties are assumed, and therefore the
similarity between Eqs. (2.4.8) and (2.5.6) are only valid for temperature-
independent thermal properties [Tzo95c].

It is insightful to mention the similarity between the phonon-scattering model
and the DPL model as well. The phonon-scattering model was developed
along a similar fashion than the PTS model, by Guyer and Krumhansel
[GK66][Tzo95a]. As we mentioned in Section 2.5, there are two processes
that occur during phonon-scattering: a momemtum-nonconserving process
and a momentum-conserving process. A relaxation time is associated with
both processes: τ

R
when momentum is lost, and τ

N
when momentum is

conserved. The resulting energy equation is

3

c2
∂2
t T +

3

τ
R
c2
∂tT = ∇2T +

9τ
N

5
∂t(∇2T ), (2.5.8)

where c is the average phonon speed. Comparing the coefficients in Eqs. (2.5.8)
and (2.5.6) we find that [Tzo95c]

α =
τ
R
c2

3
; τq = τR; τT =

9τ
N

5
. (2.5.9)

These similarities between the DPLmodel and the PTS and phonon-scattering
models, allows for the calculation of the macroscopic phase-lags from the
microscopic thermal properties, e.g. τ

T
and τq can be calculated from the

experimentally determined values of G, Ce and Cℓ. This is indeed what
Tzou does in [Tzo95a], as we mention at the beginning of this chapter.
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2.6 Heat absorption model

We need to discuss the heat absorption models for the model problems in-
vestigated in Chapter 6 and 7. We follow the approach suggested by Tzou
[Tzo97] and restrict ourselves to a straightforward model that, according to
Tzou, depicts the effect of the phase lags. Tzou studies a problem where the
temperature at the boundary x = 0 is raised instantaneously (and continu-
ously) to a temperature Tb, modeled by the boundary condition T (0, t) = Tb.
We adopt this model for the case of continuous heating applied to the boun-
dary of a specimen (Sections 6.6 and 6.8).

The heat absorption model used for the single- and multi-pulse cases are
based on Tzou’s approach for continuous heating. Our decision to adopt
Tzou’s model is based on the following assumptions of the heat delivery to,
and absorption by the specimen: Considering that laser sources are common
to both the applications that we investigate in Section 7.5 (thermoreflectance)
and Section 7.6 (bio-heating), we base our discussion on pulsed laser sources.
In a physical setup the pulsed laser source, focused at x = 0, and with the
assumption that the laser pulse has a top-hat temporal profile [BFAPB12],
provides energy to the boundary surface of the specimen. We assume that all
the optical energy contained in the laser pulse is absorbed by the heat carriers
of the specimen, at the boundary x = 0. In the thermoreflectance application
we consider a metal (gold) thin film, where the electrons and the phonons are
the heat carriers [QT93a]. In the bio-heating application, the blood vessels
(vascular region) and the surrounding tissue (extravascular region) act as the
heat carriers [MT14]. Absorption of the laser energy causes a thermal pulse
(or disturbance) within the skin layer (i.e. close to x = 0) of the specimen
by increasing the thermal energy of the heat carriers in this region [Ros90].
The thermal disturbance is quantified by the change in temperature of the
specimen at x = 0 [TC01]. We assume then that a change in temperature
at e.g x = 0 resembles the conversion of the absorbed optical energy at
x = 0 to heat energy. It follows that the temperature pulse therefore inherits
the pulse characteristics of the laser source.

We proceed to model the step heat pulse (for the single-pulse case) as a step
function of the temperature at x = 0, i.e. at t = 0 the temperature T
rises instantaneously to say Tb, and returns instantaneously to T = 0 at
the time instant when the laser pulse stops. The multi-pulse case is modeled
using this same step function, repeated for multiple cycles, with a set time
period between the onset of consecutive pulses. We model the heat absorp-
tion process in the three different cases mathematically by describing the
boundary conditions at x = 0.
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2.7 Boundary and initial conditions

Consider the wave equation in a multi-dimensional bounded domain denoted
by Ω. We limit ourselves to surface-based conduction boundary conditions –
convection and radiation boundary conditions are not considered here. Then,
the heat flux and the temperature has to be prescribed at the boundary
surfaces as required. We will not consider cases where the flux q varies at a
boundary, but will allow for the temperature T to vary. We use the notation
ḡ to indicate a vector quantity, and g to indicate a scalar quantity. Let n̄
be a unit outer normal vector to the boundary ∂Ω and let Σ be part of the
boundary ∂Ω. We have different boundary conditions on Σ and ∂Ω − Σ:

On Σ : q̄ · n̄ must be prescribed and on ∂Ω− Σ : T must be prescribed.

Consider an insulated boundary Σ, i.e. q̄ · n̄ = 0 on Σ. It follows that
∂tq̄ · n̄ = ∂t(q̄ · n̄) = 0.

DPL model

We consider the constitutive equation for the DPL model:

q̄ · n̄+ τq∂tq̄ · n̄ = −k∇T · n̄− τ
T
k∇(∂tT · n̄)

With an insulated boundary then, we have

0 = −k∇T · n̄− τ
T
k∇(∂tT · n̄), (2.7.1)

so that
∇T · n̄ = 0 on Σ.

The directional temperature derivative, ∇T · n̄ = dT/dn, is zero at the
boundary Σ, i.e the boundary is insulated.

Remark It follows from conservation of energy that

ρcp∂tT · n̄ = −∇ · (q̄ · n̄) = 0.

C-V model

Setting τ
T
= 0, the C-V model is a special case of the linear DPL model. It

follows then that
∇T · n̄ = 0 on Σ.
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Fourier model

For the Fourier model, it follows from Eq. (2.2.2) that

0 = −k∇T · n̄.

Then

∇T · n̄ = 0 on Σ.

The boundary input at ∂Ω − Σ, for all three models, is given by

T = Tb on ∂Ω − Σ, (2.7.2)

where Tb is a prescribed non-zero function on ∂Ω − Σ.

Initial conditions

It remains to specify the initial conditions. At t = 0 the specimen is at a uni-
form temperature T0. Therefore for all three the models being investigated,

T (r, 0) = T0, (2.7.3)

where r denotes the three-dimensional position coordinate. For the C-V and
DPL modes the inital time-rate change of the temperature ∂tT (r, 0) has to
be specified as well. Let

∂tT (r, 0) = T1. (2.7.4)

2.8 Dimensionless forms

With the objective of having a model containing only two parameters, di-
mensionless variables are introduced in both the energy conservation law and
the respective constitutive equations belonging to the above models, through
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the following transformation of parameters:

T ∗ =
T

T0

r∗ =
r

D

t∗ =
t

t0

q∗ =
qt0

DρcρT0

S∗ =
St0
ρcpT0

τ ∗q = τq/t0

τ ∗
T

= τ
T
/t0

α∗ = αt0/D
2. (2.8.1)

Here T0 is a suitable temperature scaling factor (e.g the initial temperature),
D is the specimen spatial dimension, defined by D =

√

x2 + y2 + z2 and t0
is a suitable time scaling factor (we suggest an approach that may be used
to calculate t0 in Section 2.8.1). S represents an internal, volumetric heat
source.

The dimensionless forms of the respective models are derived making use of
the dimensionless parameters defined by Eq. (2.8.1). Although the model
problems we study do not include an internal heat source, we formulate the
problems here as general as possible for the sake of the theoretical derivations
performed in Chapter 4. The energy conservation law (Eq. (2.2.1)), with the
addition of a source term S∗ then becomes

∂t∗T
∗ = −∇∗ · q∗ + S∗. (2.8.2)

Substituting the dimensionless parameters into Eq. (2.2.2), the dimensionless
constitutive equation for the Fourier model becomes

q∗ = −α∗∇∗T ∗. (2.8.3)

Substituting the dimensionless parameters into Eq. (2.2.4), the dimensionless
constitutive equation for the DPL model becomes

q∗ + τ ∗q ∂t∗q
∗ = −α∗∇∗T ∗ − α∗τ ∗

T
∂t∗(∇∗T ∗). (2.8.4)

With τ
T
= 0 it follows that the dimensionless constitutive equation for the

C-V model is expressed as

q∗ + τ ∗q ∂t∗q
∗ = −α∗∇∗T ∗. (2.8.5)
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Returning to the original notation, we present the energy conservation law

∂tT = −∇ · q + S (2.8.6)

and the respective constitutive equations for the DPL, C-V and Fourier mo-
dels

q + τq∂tq = −α∇T − ατ
T
∂t(∇T ), (2.8.7)

q + τq∂tq = −α∇T, (2.8.8)

and
q = −α∇T. (2.8.9)

Combining the energy conservation law with the respective constitutive equa-
tions leads to

∂tT = α∇2T + S, (2.8.10)

τq∂
2
t T + ∂tT = α

(

∇2T + τ
T
∂t(∇2T )

)

+ S + τq ∂tS (2.8.11)

and
τq∂

2
t T + ∂tT = α∇2T + S + τq ∂tS. (2.8.12)

The boundary and initial conditions have the same form as given in Sec-
tion 2.7.

2.8.1 Determining t0 and α∗

It is proposed to determine t0, making use of the 1-dimensional form of the
parabolic model. We use separation of variables and consider the first mode
k = 1:

u1(t) = e−απ2t/4d2 , (2.8.13)

where α and d are the specimen parameters. t0 is then defined as the time
at which u1(t0) = 0.99u1(0). We then have

exp(−απ2t0/4d
2) = 0.99.

∴ t0 = −4 ln(0.99)d2

απ2
= k1 ×

d2

α
,

where k1 =
−4 ln(0.99)

π2 .

Next, α∗ is calculated using

α∗ =
αt0
d2

= k1.

We observe that α∗ is independent of the length d and diffusivity α, the same
being true for τ ∗.
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Chapter 3

Tracking a sharp crested wave
front

This chapter is the article ”Tracking a sharp crested wave front in hyperbolic
heat transfer” by R H Sieberhagen and N F J van Rensburg, published in
Applied Mathematical Modelling 36 (2012), 3399-3410, virtually unchanged.
To avoid unnecessary errors, few changes were made.

3.1 Introduction

Heat transfer problems relying on the hyperbolic model, are routinely ap-
proximated using numerical techniques. Over the years researchers have
reported on the presence of oscillations and how they proceeded to suppress
or eliminate these oscillations from their results. It is commonly believed
that the main cause of these oscillations, is the presence of sharp wave fronts
– see e.g. Liu and Chen [LC04]. A few examples from the literature serves to
highlight the issue of numerical oscillations. Carey and Tsai [CT82] studied
a one-dimensional problem using finite elements and various time integration
techniques that resulted in “fictitious numerical oscillations” near the wave
front. Li et al [LCP05] stated that fictitious numerical oscillations are a ma-
jor problem when solving the hyperbolic equation numerically, particularly
when sharp propagation fronts and reflective boundaries are present. Jiang
et al [JLZ02] eliminated numerical oscillations and the sharp discontinuity,
believed to be brought about by the numerical differencing of the hyperbolic
equation. Huang and Wu [HW06] studied the same problem (referring to
it as the “benchmark” problem) as did Carey and Tsai [CT82] and claimed

31
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32 CHAPTER 3. TRACKING A SHARP CRESTED WAVE FRONT

that they derived a formula to reduce the oscillatory behaviour of the nume-
rical solution. As already indicated in the Introduction, we will refer to this
problem as the CT-benchmark problem.

These numerical oscillations are not surprising and in this chapter we will
indicate why it is to be expected. We focus on the one-dimensional CT-
benchmark problem studied by Carey and Tsai [CT82] as well as Huang and
Wu [HW06]. The problem concerns a propagating heat wave reflected off a
boundary. We show that the origin of the reported oscillations does not lie
with the numerical techniques, but rather with the fact that the problem,
as formulated, is not well-posed. We re-formulate the problem to one where
the solution is smooth, that is, a classical solution can be obtained (see e.g
[Wei95]). However, a sharp-crested wave front is still present which will be
problematic to track. Our remedy is to construct a solution by dividing the
problem into three auxiliary problems and solve them by different techniques.
The result is an oscillation-free solution.

The outline of this chapter is as follows. The model problem is derived in
Section 3.2, starting with the dimensionless form and then proceeding to an
alternative formulation of the problem. We discuss in Section 3.3 a set of
auxiliary problems that is used to construct a solution to the model problem.
D’Alembert’s method and the finite element approximation, used to solve the
auxilliary problems, are discussed in Sections 3.4 and 3.5 respectively. The
solutions obtained to the auxiliary problems are combined in Section 3.6 to
arrive at the final solution of the model problem. A jump condition, necessary
to render the model problem well-posed in the event of a discontinuity at the
wave front, is derived in Section 3.8. Finally, the conclusion is given in
Section 3.9.

3.2 The model problem

3.2.1 Transformation of the model problem

Recall the dimensionless hyperbolic model derived in Section 2.8. In order
to address the issues raised by Carey and Tsai [CT82] as well as Huang and
Wu [HW06], the one-dimensional form of this model will be used here:

τ∂2
t T (x, t) + ∂tT (x, t) = α ∂2

xT (x, t). (3.2.1)

It is re-written as

∂2
t T (x, t) + 2γ∂tT (x, t) = c2 ∂2

xT (x, t), (3.2.2)
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where 2γ = 1/τ and c2 = α/τ . With c2 = 1 and γ = 1, it is the same as
the CT-benchmark problem studied by Huang and Wu[HW06]. The CT-
benchmark problem was derived from Eq. (3.2.2) through the following
transformation of variables

T ∗ =
T

T0

x∗ =
cx

2α

t∗ =
c2t

2α

q∗ =
αq

ckT
. (3.2.3)

The CT-benchmark problem will now be referred to as Problem 1.

Problem 1

∂2
t T (x, t) + 2γ∂tT (x, t) = c2 ∂2

xT (x, t),

T (0, t) = 1 ∂xT (1, t) = 0,

T (x, 0) = ∂tT (x, 0) = 0.

The “solution” is supposed to have a jump along the line x = t.

As mentioned earlier, the problem is not well-posed; a classical or smooth
solution does not exist for the problem as formulated. On the other hand, if
discontinuities are allowed with no jump condition, there are more than one
solution. Consider for example the following “solution”: For t ≥ 0, T = 0
for t < x and T = 1 for t ≥ x. It satisfies the partial differential equation
except on the line x = t, the boundary conditions and initial conditions.

To address the well-posedness of the problem, it is convenient to consider
an equivalent problem (Problem 2). Let θ = T − 1, then θ is a solution of
a different problem: one boundary condition changes to θ(0, t) = 0 and one
initial condition changes to θ(x, 0) = −1.

Problem 2

∂2
t θ + 2γ∂tθ − c2∂2

xθ = 0,

θ(0, t) = ∂xθ(1, t) = 0,

θ(x, 0) = θin(x), ∂tθ(x, 0) = 0.

Let θin(x) = −1, then T = θ+1 is a solution of Problem 1 (the CT-benchmark
problem) if and only if θ is a solution of Problem 2.
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Problem 2 has a unique classical solution if the function θin is twice continu-
ously differentiable on the closed interval [0,1] and if

θin(0) = (θin)
′(1) = (θin)

′′(0) = 0, (3.2.4)

see e.g. Section 26 in Weinberger [Wei95]. Note that, if θin(x) = −1, then
the function does not satisfy the condition θin(0) = 0 above. However it is
possible to formulate an initial smooth temperature distribution that is an
excellent approximation of the inadmissable initial value.

Initial value for Problem 2

Let 0 < δ < 1 and θin(x) = θδ(x), where θδ is twice continuously differen-
tiable on the closed interval [0, 1],

θδ(0) = (θδ)
′(1) = (θδ)

′′(0) = 0, (3.2.5)

and

−1 ≤ θδ(x) ≤ 0 for 0 ≤ x < δ

θδ(x) = −1 for δ ≤ x ≤ 1.

This means that θδ does satisfy the conditions for the existence of a classical
solution while it is equal to −1 on an interval [δ, 1] for an arbitrary small δ.
We present an example:

θδ(x) = −6(
x

δ
)5 + 15(

x

δ
)4 − 10(

x

δ
)3 for 0 ≤ x < δ,

θδ(x) = −1 for δ ≤ x ≤ 1. (3.2.6)

Straightforward calculation yields θδ(0) = θ′δ(0) = θ′′δ (0) = 0. Note also, that
θδ(δ) = −1 and θ′′δ is continuous at x = δ. With the choice θin(x) = θδ(x),
we now have a sufficiently smooth initial value which is a good approximation
of the inadmissable constant initial value when δ is small.

How to track the sharp crested wave front remains a problem. The strategy
to deal with it, is outlined in the next section.

Remark From a physical perspective, the choice of δ should take into
account the absorption depth of a laser source. This implies that δ should
be extremely small. When the problem is approximated using a numerical
method (such as finite differences or finite elements), obvious complications
will arise.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



3.3. AUXILIARY PROBLEMS 35

3.3 Auxiliary problems

The strategy is to use a set of auxiliary problems to construct a solution for
Problem 2. These problems are formulated here, followed by an explanation
of the method.

Problem A1

∂2
t u = c2∂2

xu

u(0, t) = ∂xu(1, t) = 0,

u(x, 0) = θin(x),

∂tu(x, 0) = γθin(x).

Problem A2

∂2
tw + 2γ∂tw − c2∂2

xw + γ2w = 0,

w(0, t) = ∂xw(1, t) = 0,

w(x, 0) = θin(x), ∂tw(x, 0) = 0.

Problem A3

∂2
t v + 2γ∂tv − c2∂2

xv = γ2f

v(0, t) = ∂xv(1, t) = 0,

v(x, 0) = ∂tv(x, 0) = 0.

An exact solution for Problem A1 is constructed in the next section. An
exact solution of Problem A2 is obtained from the solution of Problem A1 as
follows. Suppose u is the solution of Problem A1. Let w(x, t) = e−γtu(x, t),
then u(x, t) = eγtw(x, t). Consequently

∂tu = γeγtw + eγt ∂tw,

∂2
t u = γ2eγtw + 2γeγt ∂tw + eγt ∂2

tw.

It is easy to see that w satisfies the partial differential equation and boundary
conditions. Also,

w(x, 0) = u(x, 0) = θin(x),

∂tw(x, 0) = ∂tu(x, 0)− γu(x, 0) = 0.

We conclude that w is a solution of Problem A2.
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Finally, if f(x, t) = w(x, t) in Problem A3, then θ(x, t) = v(x, t) + w(x, t) is
a solution of Problem 2.

An approximation for the solution of Problem A3 can be obtained using any
standard numerical method. Note that the initial values for Problem A3 are
zero and there is no prominent wave front.

The solution u(x, t) of Problem 1 has a prominent wave front when θin = θδ
and δ is small. Consequently the same will be true for the solution of
w(x, t) = e−γt u(x, t) of Problem A2.

3.4 D’Alembert’s method for Problem A1

In this section we construct an exact solution for Problem A1 using D’Alembert’s
method. This method is well known, see Chapter 1 Weinberger [Wei95] for
an explanation and justification. The method is valid for any sufficiently
smooth θin that satisfies (3.2.4), hence we may use θin = θδ as specified
in Subsection 3.2.1.

Solution of Problem A1

We solve the problem for the two cases: u1 a solution of Problem A1, but
with ∂u1

∂t
(x, 0) = 0 and u2 a solution of Problem A1, but with u2(x, 0) = 0.

The solutions u1 and u2 are then added.

Case 1: Construct an extension g1 of θin which is twice continuously diffe-
rentiable on (−∞,∞) with period 4, is symmetric with respect to x = 1 and
skew symmetric with respect to x = 0. To be precise

g1(x) = −g1(−x) and g1(x) = g1(2− x).

A sketch of g1(x) is provided in Figure 3.1 for the case where θin = θδ and
with c2 = 1. (The function g1(x) appears to have discontinuities because
δ is extremely small.)

The function u1 given by

u1(x, t) =
1

2
g1(x+ ct) +

1

2
g1(x− ct)

is a solution of the wave equation that satisfies the initial conditions and
boundary conditions. This is easily verified by direct calculations.

Case 2: Let g′2 = g1 with g2(0) = 0. Consequently

g2(x) = g2(−x) and g′2(x) = g′2(2− x).
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Figure 3.1: The functions g1(x) and g2(x)

A sketch of g2(x) is provided in Figure 3.1 for the case where θin = θδ.

The function u2 given by

u2(x, t) =
γ

2c
g2(x+ ct)− γ

2c
g2(x− ct)

is a solution of the wave equation that satisfies the initial conditions and
boundary conditions.

Finally, the solution of Problem A1 is u = u1 + u2.

The Wave Front

We now consider the two cases θin(x) = θδ(x) and θin(x) = θ0(x) = −1.
If the initial condition for Problem A1 is θδ(x), then a classical solution of
Problem A1 exists for any positive value of δ (but not for δ = 0). We denote
this solution by uδ.

If δ = 0, then Problem A1 does not have a solution. However, the D’Alembert
construction can still be implemented. Now g1 is periodic with period 4 and

g1(x) =







1 for −2 ≤ x < 0
0 for x = 0
−1 for 0 < x < 2.
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38 CHAPTER 3. TRACKING A SHARP CRESTED WAVE FRONT

Similarly, g2 is periodic with period 4 and

g2(x) =

{

x for −2 ≤ x < 0
−x for 0 ≤ x < 2.

The function g1(x) is discontinuous as well as the derivative of g2(x). The
D’Alembert construction yields the function

u0(x, t) =
1

2
g1(x+ ct) +

1

2
g1(x− ct) +

γ

2c
g2(x+ ct)− γ

2c
g2(x− ct). (3.4.1)

It is obvious that
uδ(x, t) → u0(x, t) as δ → 0. (3.4.2)

For the mathematical model it is desirable that δ be extremely small, so we
may consider the function u0 (although not a solution) as an approximation
to the solution uδ. In Section 3.6 we show how u0 can be used to track the
wave front.

3.5 Finite element approximation

In this section we consider the finite element approximation for a solution
of Problem A3. The first step is to write the problem in variational form.
Multiply the partial differential equation by a function φ that is differentiable
on [0, 1] and integrate. Integration by parts yields

∫ 1

0

∂2v

∂t2
(x, t)φ(x)dx+ 2

∫ 1

0

∂v

∂t
(x, t)φ(x)dx+

∫ 1

0

∂v

∂x
(x, t)φ′(x)dx

= −∂v

∂x
(0, t)φ(0) +

∫ 1

0

f(x, t)φ(x)dx.

For the procedure to be valid, it is necessary for ∂v/∂x to be continuous.
This is the case for the solution of Problem A3. However, the situation is
different for the CT-benchmark problem, since ∂T/∂x is not continuous.

A function φ is called a test function if its derivative is continuous on the
closed interval [0, 1] and φ(0) = 0.

Variational form of Problem A3

Find v such that for each t > 0, v(x, t) is a test function and
∫ 1

0

∂2v

∂t2
(x, t)φ(x)dx+ 2

∫ 1

0

∂v

∂t
(x, t)φ(x)dx+

∫ 1

0

∂v

∂x
(x, t)φ′(x)dx

=

∫ 1

0

f(x, t)φ(x)dx (3.5.1)
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for all test functions φ, with initial conditions v(x, 0) = 0 and ∂v/∂t(x, 0) = 0.

Next we consider test functions φ1, φ2, . . . , φn and denote the span of this
set by Sh. The following problem is the finite element approximation.

Galerkin approximation

Find vh such that for each t > 0,

vh(x, t) =

n
∑

j=1

vj(t)φj(x) (3.5.2)

and
∫ 1

0

∂2vh

∂t2
(x, t)φi(x)dx+ 2

∫ 1

0

∂vh

∂t
(x, t)φi(x)dx+

∫ 1

0

∂vh

∂x
(x, t)φ′

i(x)dx

=

∫ 1

0

f(x, t)φi(x)dx for i = 1, 2, . . . , n, (3.5.3)

while vh(x, 0) = 0 and ∂vh/∂t(x, 0) = 0.

We find that vh satisfies Eq. (3.5.3) if and only if

n
∑

j=1

v′′j (t)

∫ 1

0

φjφi + 2
n

∑

j=1

v′j(t)

∫ 1

0

φjφi +
n

∑

j=1

vj(t)

∫ 1

0

φ′
jφ

′
i

=

∫ 1

0

f(x, t)φi(x)dx for i = 1, 2, . . . , n.

Next we introduce notation to rewrite the system of ordinary differential
equations for the functions vj . Let

Kij =

∫ 1

0

φ′
jφ

′
i, Mij =

∫ 1

0

φjφi and fi(t) =

∫ 1

0

f(x, t)φi(x)dx,

then the vector function v̄ = [v1 v2 . . . vn]
T satisfies an initial value problem

for a system of ordinary differential equations.

Mv̄′′ + 2Mv̄′ +Kv̄ = f̄(t) with v̄(0) = v̄′(0) = 0̄. (3.5.4)

This is known as a semi-discrete problem. The well known piecewise li-
near basis functions, see e.g. Strang and Fix[SF73] and Becker, Carey and
Oden [BCO81], are sufficiently accurate to approximate the solution of Pro-
blem A3, as can be seen from Table 3.1. The matrices M and K for piecewise
linear basis functions are given in these references. There are of course other
possibilities.
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40 CHAPTER 3. TRACKING A SHARP CRESTED WAVE FRONT

A stable finite element method for the wave equation

We use a special case of a Newmark scheme (see e.g. Zienkiewicz [Zie77]).
The following scheme is (theoretically) unconditionally stable for the finite
element method.

1

(δt)2
M [v̄k+1 − 2v̄k + v̄k−1] +

1

δt
M [v̄k+1 − v̄k−1]

+
1

4
K [v̄k+1 + 2v̄k + v̄k−1 ] =

1

4
[f̄(tk+1) + 2f̄(tk) + f̄(tk−1)].(3.5.5)

3.6 Tracking the wave front

Recall that uδ is the solution of Problem A1 with the initial condition θin(x) =
θδ(x) and the solution of Problem A2 is wδ(x, t) = e−tuδ(x, t). The function
w0 = e−tu0 is not a solution of Problem A2 but the limit of wδ = e−tuδ as
δ → 0. Using this fact and the fact that δ is extremely small, we may use w0

as an approximation for the solution wδ of Problem A2. It is necessary to
change Eq. 14 accordingly and use the approximation f(x, t) = w0(x, t) =
e−tu0(x, t).

Consider the semi-discrete problem, Eq. (3.5.4). Since we use f(x, t) =

e−tu0(x, t) we have fi(t) = e−t
∫ 1

0
u0(x, t)φi(x)dx. It is convenient to ap-

proximate u0(x, t) by its interpolant

n
∑

j=1

u0(xj , t)φj(x). (3.6.1)

As a result we have e−tMū(t) instead of f̄(t), where uj(t) = u0(xj , t) and
(3.5.4) becomes

Mv̄′′ + 2Mv̄′ +Kv̄ = e−tMū(t) with v̄(0) = v̄′(0) = 0̄.

Remark The function u0(x, t) is equal to its interpolant except on the
element containing the wave front, hence the approximation is accurate.

The Newmark scheme (3.5.5) for the FEM approximation now changes to

1

(δt)2
M [v̄k+1 − 2v̄k + v̄k−1] +

1

δt
M [v̄k+1 − v̄k−1]

+
1

4
K [v̄k+1 + 2v̄k + v̄k−1 ] =

1

4
e−tk M [e−δtū(tk+1) + 2ū(tk) + eδtū(tk−1) ].
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Figure 3.2: Illustration of the Solution Strategy

The solution strategy is illustrated by Figure 3.2 for t = 0.5. The functions
u1, u2, u, w, v and T are shown. The approximate solution to Problem 1 is
given by T = θ + 1 = v + w + 1. The wave front is contained in w, whilst v
does not contain any prominent wave front.

3.7 Numerical Experiments and Results

Numerical experiments were performed to study the convergence of the so-
lution to Problem 3. Note that γ = 1 and c2 = 1 to resemble the CT-
benchmark problem. The numerical calculations were performed with a max-
imum of 2560 elements. Experiments showed that the results are reliable for
at least 3 significant digits. The following ratio between the element lengths
and time increments was used during calculations: r = (δt/δx)2 = 1. The
number of time steps was consequently determined by r and the number of
elements.

The solution of Problem 1 evaluated at times t = 0.5, t = 0.9 and t = 1.1 are
given by Figures 3.3, 3.4 and 3.5. No oscillations can be seen in these graphs,
before or after reflection from the boundary. To ensure that the scaling used
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Table 3.1: The function v(x, t) for t = 0.5

x v x v
0.4968 -0.0897 0.5008 -0.0901
0.4976 -0.0898 0.5016 -0.0902
0.4984 -0.0899 0.5024 -0.0902
0.4992 -0.0900 0.5032 -0.0902
0.5000 -0.0901 0.5040 -0.0902

in these graphs do not hide possible oscillations, the actual values of v as a
function of x were examined. No evidence of oscillations was found. This is
illustrated by data for the case t = 0.5, given in Table 3.1. It shows v as a
function of x for t = 0.5. The values of v decreases monotonically with x.
These results prove that this solution strategy does provide oscillation-free
results.
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Figure 3.3: Result for Problem 1: t = 0.5

3.8 Jump condition

In this section we derive a jump condition that will render the CT-benchmark
problem well posed. Recall that T = θ + 1 and θ = v + w. The function v
and its partial derivatives are continuous, hence the discontinuities in T and
its partial derivatives must be attributed to the function w. To determine
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Figure 3.4: Result for Problem 1: t = 0.9
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Figure 3.5: Result for Problem 1: t = 1.1

the discontinuities of w0 we consider wδ before and after the sharp crested
wave and take the limit as δ → 0. The jump in w0 is

[w0] = lim
δ→0

{wδ(x, x+ δ)− wδ(x, x− δ)}.

The wave front is contained in a strip around the line x = t. To be precise, the
front is between the lines t = x+δ and t = x−δ. Since wδ(x, t) = e−tuδ(x, t),
we calculate uδ = u1 + u2 at (x, x+ δ) and (x, x− δ):
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u1(x, x+ δ) =
1

2
g1(2x+ δ) +

1

2
g1(−δ)

= −1

2
+

1

2
= 0,

u1(x, x− δ) =
1

2
g1(2x− δ) +

1

2
g1(δ)

= −1

2
− 1

2
= −1.

Consequently

u1(x, x+ δ)− u1(x, x− δ) = 1.

Next

u2(x, x+ δ) =
1

2
g2(2x+ δ)− 1

2
g2(−δ),

u2(x, x− δ) =
1

2
g2(2x− δ)− 1

2
g2(δ).

Therefore

u2(x, x− δ)− u2(x, x− δ)

=
1

2
g2(2x+ δ)− 1

2
g2(2x− δ)−

[

1

2
g2(−δ)− 1

2
g2(+δ)

]

.

Since g2 is continuous,

lim
δ→0

{u2(x, x+ δ)− u2(x, x− δ)} = 0.

It follows that

[u0] = lim
δ→0

{uδ(x, x+ δ)− uδ(x, x− δ)} = 1

and therefore [w0] = e−t (as can be seen in Figure 3.2).

Now consider the partial derivatives of wδ. Note that ∂wδ/∂x = e−t∂uδ/∂x
and ∂wδ/∂t = −e−tuδ + e−t∂uδ/∂t. Reasoning as above, we find that

[

∂u0

∂x

]

= −1 and

[

∂u0

∂t

]

= 1.

Consequently
[

∂w0

∂x

]

= e−t

[

∂u0

∂x

]

= −e−t
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and
[

∂w0

∂t

]

= −e−t[u0] + e−t

[

∂u0

∂t

]

= −e−t + e−t = 0.

It follows that [w0] + [∂w0/∂x] = 0.

We conclude that the jump condition to be imposed on the CT-benchmark
problem (Problem 1) across the characteristic x = t is

[T ] +

[

∂T

∂x

]

= 0

and the solution is
T = w0 + v + 1.

3.9 Conclusion

We have shown how to find an accurate solution to a so-called “benchmark”
problem, that is not well-posed. It is reportedly plagued by oscillations when
solved numerically. A discontinuity arises where T = 0 at t = 0 while
T (0, t) = 1 for t > 0. This in turn, leads to a discontinuous wave front.
To have a well-posed problem, a jump condition needs to be specified. We
provide an initial smooth temperature distribution as an alternative to the
inadmissable initial value, thereby “smoothing” the jump and leading to a
solution with a sharp crested wave front but no discontinuity.

A numerical method was developed that allows for the jump, i.e. the jump
condition must be incorporated in the algorithm. This was done by splitting
the problem into auxilliary problems which we solved by different methods.
This resulted in a solution free of oscillations.

To conclude this chapter, we note that the existence of a weak solution for
the CT-benchmark problem was not considered. This is postponed to be
treated in Chapter 4.
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Chapter 4

Second order hyperbolic-type
problems

4.1 Vibration models

In this section we introduce model problems for mechanical vibrations. We
then proceed to show that these problems are similar to the hyperbolic-type
heat problems. It is useful to interpret these hyperbolic-type heat conduction
models in terms of mechanical vibrations. We also borrow the terminology
weak damping and strong damping; underdamped and overdamped modes.

Multi-dimensional wave equation

In the two-dimensional case the wave equation models the vibration of a
membrane [Inm, Section 6.6]. We have the partial differential equation

ρ∂2
tw = τ ∇2w − k∂tw,

where ρ is the mass per unit area, τ the constant tension per unit length,
and k a damping constant.

In the three-dimensional case the wave equation models the propagation of
sound waves. The following derivation follows [PR05, Section 1.4.2] with
some modification.

Consider a gas at rest, i.e. the velocity v = 0. Suppose the pressure is p0 and
the density is ρ0. A small disturbance leads to motion in the gas, and the
pressure p and density ρ are no longer constant. The linear approximation
for the continuity equation is

∂t ρ
∗ + ρ0∇ · v = 0, (4.1.1)

47
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where ρ∗ = ρ− ρ0. The linear approximation for the equation of motion for
an ideal gas is

ρ0∂t v +∇p∗ = 0, (4.1.2)

where p∗ = p− p0 and where modified pressure is considered.

We use the approximation

ρ∗ = f(p)− f(p0) + cp∗ (4.1.3)

where c = f ′(p0). Combining Equations (4.1.1), (4.1.2) and (4.1.3) yields the
acoustic wave equation

c∂2
t p

∗ −∇2p∗ = 0.

General case

Consider the wave equation in an n-dimensional bounded domain (n = 2 or 3)
denoted by Ω. The boundary of Ω is denoted by ∂Ω and the unit outer normal
vector to Ω at ∂Ω by n.

Let Σ be part of the boundary ∂Ω. We have different boundary conditions
on Σ and ∂Ω−Σ. Given functions f, u0 and u1, find w defined on Ω̄× [0, T ]
such that

ρ∂2
tw = ∇ · (A∇w)− k∂tw + f in Ω× (0, T ),

w = 0 on ∂Ω− Σ,

(A ∇w) · n = 0 on Σ,

while w(·, 0) = u0 and ∂tw(·, 0) = u1.

For the sake of generality, the given parameters in the problem are presented
as the matrix of functions A = (aij) and the functions k and ρ. However in
this thesis the parameters are constant in all the cases that we investigate.

Vibration of a beam

The Rayleigh beam model can be found in many books, e.g. [Inm, Sec-
tion 6.5]. This beam model is convenient to illustrate the three types of
damping that we discuss here. (See e.g [VV02].) The equations of motion
for the deflection u of the beam is given by

ρA∂2
t u = ∂xV +Q, (4.1.4)

ρI∂2
t ∂xu = V + ∂xM. (4.1.5)
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In these equations M denotes the moment, V the shear force and Q a trans-
verse force density.

The constitutive equation is given by

M = EI∂2
xu. (4.1.6)

Combining (4.1.4), (4.1.5) and (4.1.6) yields the partial differential equation:

ρA∂2
t u = ∂x(ρI∂

2
t ∂xu)− ∂2

x(EI∂2
xu) +Q.

Less well known are examples of the different types of damping. Three ex-
amples are given in [VV02] as motivation for the theory in the article.

Example 1 Viscous damping

Here Q = q−k∂tu for a given k > 0 and q is the load. Equation (4.1.4) takes
the form

ρA∂2
t u+ k∂tu = ∂xV + q in (0, ℓ) for t ≥ 0.

Example 2 Kelvin-Voigt damping

The constitutive equation (4.1.6) is replaced by

M = EI∂2
xu+ µ∂t∂

2
xu.

(This constitutive equation is also used in [Inm, Section 6.7]). The transverse
force Q in (4.1.4) is now the load q.

For Examples 1 and 2 we consider a cantilever beam, so the boundary con-
ditions are given by

u(0, t) = ∂xu(0, t) = 0, (4.1.7)

V (ℓ, t) = M(ℓ, t) = 0.

For the last example the boundary conditions, Eq. (4.1.7), are retained but
damping terms are introduced at the other end point.

Example 3 Boundary damping

Suppose k1 > 0 and k0 > 0 are given. Consider the undamped problem
where Q = q and the constitutive equation is given by (4.1.6). We now have
damping at the boundary x = ℓ:

V (ℓ, t) = −k0∂tu(ℓ, t),

M(ℓ, t) = −k1∂t∂xu(ℓ, t).
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Variational forms

To obtain the variational form, multiply the equations of motion (4.1.4) and
(4.1.5) by arbitrary functions v and w and integrate. Using integration by
parts we have

∫ ℓ

0

ρA∂2
t u v =

∫ ℓ

0

(∂xV +Q) v

= −
∫ ℓ

0

V v′ + V (ℓ)v(ℓ)− V (0)v(0) +

∫ ℓ

0

Qv (4.1.8)

and

∫ ℓ

0

ρI∂2
t ∂xuw =

∫ ℓ

0

(V + ∂xM)w

=

∫ ℓ

0

V w −
∫ ℓ

0

M w′ +M(ℓ)w(ℓ)−M(0)w(0).(4.1.9)

Now replace w by v′ in equation (4.1.9) and add the resulting equation to
equation (4.1.8). The result is

∫ ℓ

0

ρA∂2
t u v +

∫ ℓ

0

ρI∂2
t ∂xu v

′

= −
∫ ℓ

0

M v′′ + V (ℓ)v(ℓ)− V (0)v(0) +M(ℓ)v′(ℓ)−M(0)v′(0) +

∫ ℓ

0

Qv.

Test functions

Define the space of test functions by

T [0, ℓ] = {v ∈ C2[0, ℓ] : v(0) = v′(0) = 0}.

Using suitable notation, all three the examples may be written in the same
variational form. The bilinear forms b and c for all three examples are given
by

b(u, v) = EI

∫ ℓ

0

u′′ v′′ and c(u, v) = ρA

∫ ℓ

0

uv+ρI

∫ ℓ

0

u′v′ for u, v ∈ C2[0, ℓ].

The bilinear form a is different for each example.

Example 1: a(u, v) = k
∫ ℓ

0
u v,
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Example 2: a(u, v) = µ
∫ ℓ

0
u′′ v′′,

Example 3: a(u, v) = k1u
′(ℓ)v′(ℓ) + k0u(ℓ)v(ℓ).

The variational equation for each case is then

c(∂2
t u(·, t), v) + a(∂tu(·, t), v) + b(u(·, t), v) = (q(·, t), v) (4.1.10)

for all v ∈ T [0, ℓ].

In [VV02] the damping in Examples 1 and 2 are classified as weak and strong
damping respectively. The damping in Example 3 is neither weak nor strong.
We will see in Section 4.4 how this classification is applied to the C-V and
DPL models.

In Section 5.2 we introduce the concept of “conservation” of the dimensionless
energy E of a solution u to prove convergence of the partial sums. It follows
that E(t) ≤ E(0). This is a mathematical definition, based on the principle
of energy conservation which states that the sum of the kinetic and potential
energy (i.e. the mechanical energy) of a body cannot increase and remains
constant with time in the absence of damping. See [CVV18].

Kinetic energy

The kinetic energy of a particle or system is defined by

T (t) =
1

2
c(∂tu(·, t), ∂tu(·, t)).

Potential energy

The potential energy of a particle or system is defined by

V (t) =
1

2
b(u(·, t), u(·, t)).

Mechanical energy

The sum T (t) + V (t) yields the total or mechanical energy E(t):

E(t) = T (t) + V (t)

which is constant or decreasing.
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4.2 Heat conduction models

In this section we formulate the heat conduction models to be studied. Con-
sider an n-dimensional bounded domain (n = 2 or 3) denoted by Ω. Let
n be a unit outer normal vector to the boundary ∂Ω and let Σ be part of
the boundary ∂Ω. We have different boundary conditions on Σ and ∂Ω−Σ:

Remark If we consider an insulated boundary Σ, then q · n = 0 on Σ. It
follows that ∂tq · n = ∂t(q · n) = 0.

Recall the dimensionless versions of the energy conservation law and the three
different constitutive equations associated with the DPL, C-V and Fourier
model respectively (discussed in Section 2.8).

The problems are as general as possible for theoretical purposes.

Problem DPL

The energy conservation law is

∂tT = −div q + S, (4.2.1)

and the constitutive equation is

q + τq∂tq = −α∇T − ατT∂t(∇T ). (4.2.2)

The boundary conditions are q · n = Q on Σ and the temperature Tb on the
boundary ∂Ω− Σ.

Initial conditions: T (x, 0) = T0(x) for x ∈ Ω; ∂tT (x, 0) = Td(x) for x ∈ Ω.

Remark If we consider an insulated boundary Σ, then q · n = 0 on Σ. It
follows that ∂tq · n = ∂t(q · n) = 0.

Problem C-V

The problem is the same as Problem DPL except that Eq. (4.2.2) is replaced
by

q + τq∂tq = −α∇T. (4.2.3)

Initial conditions: T (x, 0) = T0(x) for x ∈ Ω; ∂tT (x, 0) = Td(x) for x ∈ Ω.
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Assumptions on the parameters for DPL and C-V models

1. τq, τT , α ∈ C1(Ω̄).

2. There exist positive constants c1 and c2 such that
c1 ≤ τq ≤ c2, c1 ≤ τT ≤ c2 and c1 ≤ α ≤ c2.

Remark Recall that only constant values are used in numerical experiments.

Problem F

The Fourier model is given by the energy conservation law Eq. (4.2.1) and
the constitutive equation

q = −α∇T. (4.2.4)

The requirements on the boundary conditions are the same as for the previous
models.

Initial condition: T (x, 0) = T0(x) for x ∈ Ω.

Assumptions on the parameters for the F model

1. α ∈ C1(Ω̄).

2. There exist positive constants c1 and c2 such that
c1 ≤ α ≤ c2.

4.3 Variational forms

The variational form of a problem is used to determine well-posedness and
for application of the finite element method.

Divergence theorem (or Gauss’s theorem)

If Gi ∈ C1(Ω̄) for i = 1, 2, 3, then

∫∫∫

Ω

div G dV =

∫∫

∂Ω

G · n dS.

where div G is the divergence of the vector G, n is the unit outward normal
vector and dS indicates the surface integral.
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Proposition 4.3.1. Green’s formula

If G ∈ C2(Ω̄) and v ∈ C1(Ω̄), then

∫∫∫

Ω

(div G)v dV = −
∫∫∫

Ω

G · (grad v) dV +

∫∫

∂Ω

vG · n dS.

Proof Since div (Gv) = (div G)v +G · (grad v) we have that

∫∫∫

Ω

(div G)v dV =

∫∫∫

Ω

div (Gv) dV −
∫∫∫

Ω

G · (grad v) dV.

The result follows from the divergence theorem (Gauss’s theorem). �

To derive the variational form, we first introduce the test functions.

Test functions

T (Ω) = {v ∈ C1(Ω̄)
∣

∣ v = 0 on ∂Ω − Σ}.

Next, we multiply Eq. (4.2.1) by an arbitrary function v and integrate. Using
Green’s formula we have

∫∫∫

Ω

∂tTv dV =

∫∫∫

Ω

q · ∇v dV +

∫∫∫

Ω

Sv dV

−
∫∫

∂Ω

v q · n dS. (4.3.1)

Using the fact that v = 0 on ∂Ω− Σ and q · n = 0 on Σ, we have
∫∫∫

Ω

∂tTv dV =

∫∫∫

Ω

q · ∇v dV +

∫∫∫

Ω

Sv dV.

Substitute Eq. (4.2.2) into Eq. (4.3.2):

∫∫∫

Ω

∂tTv dV +

∫∫∫

Ω

α∇T · ∇v dV +

∫∫∫

Ω

ατ
T
∂t(∇T ) · ∇v dV

= −
∫∫∫

Ω

τq ∂tq · ∇v dV +

∫∫∫

Ω

Sv dV. (4.3.2)

We next differentiate Eq. (4.2.1) with respect to time t, and then multiply
throughout with τq. Finally, interchanging the partial derivative ∂t and the
divergence operator div, yields

τq ∂
2
t T = −τq div(∂tq) + τq ∂tS.
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Multiply by v and integrate (again using Green’s formula).
∫∫∫

Ω

τq ∂
2
t Tv dV =

∫∫∫

Ω

τq ∂tq · ∇v dV +

∫∫∫

Ω

τq ∂tSv dV. (4.3.3)

From Eq. (4.3.2) and Eq. (4.3.3) we have, if T is a solution of Problem DPL,
then for each v ∈ T (Ω), the variational form of Problem DPL is

∫∫∫

Ω

τq(∂
2
t T )v dV +

∫∫∫

Ω

(∂tT )v dV +

∫∫∫

Ω

α (∇ T ) · (∇ v) dV

+

∫∫∫

Ω

ατ
T
[∂t(∇ T ) · (∇ v)] dV

=

∫∫∫

Ω

Sv dV +

∫∫∫

Ω

τq ∂tSv dV. (4.3.4)

The variational form of the C-V model follows as a special case from the
DPL model:

∫∫∫

Ω

τq(∂
2
t T )v dV +

∫∫∫

Ω

(∂tT )v dV

= −
∫∫∫

Ω

α (∇ T ) · (∇ v) dV +

∫∫∫

Ω

Sv dV

∫∫∫

Ω

τq ∂tSv dV.

The Fourier model follows trivially from the equation above
∫∫∫

Ω

(∂tT )v dV = −
∫∫∫

Ω

α (∇ T ) · (∇ v) dV +

∫∫∫

Ω

Sv dV.

T (Ω) is the subset of C1(Ω̄) that vanish on ∂Ω−Σ. We substitute the defined
bilinear forms into Eq. (4.3.4).

Notation for the inner product and norm of L2(Ω): For functions f
and g in L2(Ω) let

(f, g)Ω =

∫∫∫

Ω

fg dV

and
‖f‖ =

√

(f, f)Ω.

Bilinear forms for Problem DPL

a
∇
(u, v) =

∫∫∫

Ω

ατ
T
∇u · ∇v dV (4.3.5)

b(u, v) =

∫∫∫

Ω

α∇u · ∇v dV, (4.3.6)

c(u, v) =

∫∫∫

Ω

τquv dV, (4.3.7)
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For convenience we introduce the function F :

F (x, t) = S(x, t) + τq ∂tS(x, t).

Problem DPLV

Find T such that for each t > 0 and T (·, t) ∈ T (Ω), we have

c(∂2
t T (·, t), v) + (∂tT (·, t), v)Ω + a

∇
(∂tT (·, t), v) + b(T (·, t), v) = (F (·, t), v)Ω

(4.3.8)
for each v ∈ T (Ω), with T (·, 0) = T0 and ∂tT (·, 0) = Td.

From a mathematical point of view the C-V model is a special case of the
DPL model where τ

T
= 0.

Problem C-VV

Find T such that for each t > 0 and T (·, t) ∈ T (Ω), we have

c(∂2
t T (·, t), v) + (∂tT (·, t), v)Ω + b(T (·, t), v) = (F (·, t), v)Ω (4.3.9)

for each v ∈ T (Ω), with T (·, 0) = T0 and ∂tT (·, 0) = Td.

Formally, the Fourier model can be derived from Eq. (4.3.9) by letting τq = 0.

Problem FV

Find T such that for each t > 0 and T (·, t) ∈ T (Ω), we have

(∂tT (·, t), v)Ω + b(T (·, t), v) = (S(·, t), v)Ω (4.3.10)

for each v ∈ T (Ω), with T (·, 0) = T0.

Up to this point it is possible to consider the C-V model as a special case of
the DPL model when τ

T
= 0. However, when it comes to existence theory

and modal analysis, this is not the case.

Kinetic energy and potential energy may be defined for any hyperbolic-type
model. The physical relevance is not clear but the concepts are useful for the
mathematical analysis, see e.g Chapter 5.

Referring to our discussion in Secton 4.1, we introduced three types of dam-
ping associated with vibrating beam problems and defined bilinear forms for
each, classifying it as weak or strong damping, or the case where it is neither
weak nor strong. The precise definitions of these damping types are given
in Sections 4.5.1 and 4.5.2. We will adopt the terminology damping, weak

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



4.4. WEAK VARIATIONAL FORMS 57

damping etc. also for heat conduction models, and classify the C-V model
as the weak damping case, and the DPL model as the strong damping case.

One-dimensional models

The models are given by (4.3.8), (4.3.9) and (4.3.10) with some changes to
the notation.

Notation for the inner product and norm of L2(0, 1):

(f, g) =

∫ 1

0

fg

and
‖f‖ =

√

f, f .

The bilinear forms now become

a
∇
(u, v) =

∫ 1

0

ατ
T
u′v′ dx

b(u, v) =

∫ 1

0

αu′v′ dx,

c(u, v) =

∫ 1

0

τq uv dx,

4.4 Weak variational forms

In order to apply existence theory to our model problems, we first need to
derive the weak variational forms of the respective problems. Introducing

a
D
(u, v) = (u, v)Ω + a

∇
(u, v),

we rewrite Eq. (4.3.8) as

c(∂2
t T (·, t), v) + a

D
(∂tT (·, t), v) + b(T (·, t), v) = (F (·, t), v)Ω (4.4.1)

for each v ∈ T (Ω).

Let V (Ω) be the closure of T (Ω) with respect to the norm of H1(Ω). The
bilinear forms c and a are defined for functions in L2(Ω) whilst b is defined for
functions in H1(Ω) using weak derivatives. However, the partial derivatives
∂tT and ∂2

t T do not make sense when a function may be changed arbitrarily
on a set of measure zero.
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We define a function w(t) = T (·, t). Then w′(t) may be defined with respect
to the norm of L2(Ω), or other norms depending on the situation.

For the time interval we consider a bounded or unbounded interval of real
numbers J that contains zero. We then have that J is either an unbounded
interval containing zero, or J = [0, T ), or J = [0,∞). It is left to define the
derivative of a function u′(t) in terms of the norm of a given (Banach) space
Y . The function u should have its values in Y .

Definition 4.4.1. Derivative
Let t be any interior point of J . Suppose there exists a v ∈ Y such that

lim
‖h‖→0

∥

∥h−1
(

u(t+ h)− u(t)
)

− v
∥

∥

Y
= 0,

then v is the derivative of u at t. The derivative is denoted by u′(t) and
u′(t) ∈ Y to avoid confusion. The derivative (function) u′ is defined in the
usual way as u′(t) for every t ∈ J , with u′′ defined by (u′)′.

Notation

u ∈ C (J, Y ) if u is continuous on J with respect to the norm of Y .

u ∈ Ck (J, Y ) if u(k) ∈ Ck (J, Y ).

Instead of Eq. (4.4.1) consider

c(u′′(t), v) + a
D
(u′(t), v) + b(u(t), v) = (F (·, t), v)Ω (4.4.2)

for each v ∈ V (Ω). Equation (4.4.2) is the weak form of Eq. (4.4.1).

Problem DPLW

Find a function T with T ′(t) ∈ V (Ω) and T ′′(t) ∈ L2(Ω) such that

c(T ′′(t), v) + a
D
(T ′(t), v) + b(T (t), v) = (F (t), v)Ω (4.4.3)

for each v ∈ V (Ω), while T (0) = T0 and T ′(0) = Td.

Problem C-VW

If τ
T
= 0, then a

C
(u, v) = (u, v)Ω. Find T , with T ′(t) ∈ V (Ω) and T ′′(t) ∈

L2(Ω) such that

c(T ′′(t), v) + a
C
(T ′(t), v) + b(T (t), v) = (F (t), v)Ω (4.4.4)

for each v ∈ V (Ω), while T (0) = T0 and T ′(0) = Td. Formally, Problem C-
VW is a special case of Problem DPLW. If τ

T
= 0, then a

C
(u, v) = a(u, v) =

(u, v)Ω.
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Problem FW

If τq = 0, then a
C
(u, v) = (u, v)Ω. Find T , with T ′(t) ∈ V (Ω) such that

a
C
(T ′(t), v) + b(T (t), v) = (S, v)Ω (4.4.5)

for each v ∈ V (Ω), while T (0) = T0. Formally, Problem FW is a special case
of Problem C-VW.

4.5 Existence of solutions

As we have already pointed out in Section 1.3, it is essential that a mathe-
matical problem is well-posed, i.e, a solution must exist and be unique. This
is further emphasized in Chapter 3 where we discuss a so-called benchmark
problem that is not well-posed and therefore does not have a classical or
smooth solution. Non-smooth solutions were not considered. We point out
that the discontinuous initial condition is the problem, and then propose a
strategy to better formulate and solve such a problem. Many researchers
attempted to solve this and similar problems (obtaining unacceptable results
and blaming the numerical techniques for this), not realizing that it is not
well-posed.

Regarding existence, it is convenient to use the general second order hyper-
bolic equation or general linear vibration problem in variational form as set
out in [VV02]. (It may be helpful to consider also [VS19].) We also consi-
dered the theory in the book by Evans [Eva98] but concluded that it would
require lengthy explanations. The same can be said about Chapter 5 in the
book of Showalter [Sho77].

Now, following [VV02], we generalize Problems DPLW and C-VW. Let X ,
W and V denote real Hilbert spaces such that V ⊂ W ⊂ X .

Notation

X has inner product 〈·, ·〉X and norm ‖ · ‖X .

W has inner product c and norm ‖ · ‖W .

V has inner product b and norm ‖ · ‖V .

a denotes a bilinear form defined on V
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Recall J , a bounded or unbounded interval of real numbers (refer to Sec-
tion 4.4). Consider a bilinear form a defined on V and the following general
problem.

Problem G

Given a function f : J → X , find a function u ∈ C1(J ;V ) such that u′ is
continuous at 0 and for each t ∈ J , with

u′(t) ∈ V, u′′(t) ∈ W

and

c
(

u′′(t), v
)

+ a
(

u′(t), v
)

+ b
(

u(t), v
)

=
(

f(t), v
)

X
for each v ∈ V, (4.5.1)

with u(0) = u0 , u′(0) = u1 .

Note that u′(t) ∈ V implies that the derivative is defined in the normed space
V (see the previous section).

Assumptions on spaces

The following assumptions are required for existence theory (as well as finite
element convergence theory).

E1 V is dense in W and W is dense in X .

E2 There exists a positive constant Cb such that ‖v‖W ≤ Cb‖v‖V for each
v ∈ V .

E3 There exists a positive constant Cc such that ‖w‖X ≤ Cc‖w‖W for each
w ∈ W .

The general case for damping is first considered in [VV02].

E4 The bilinear form a is non-negative, symmetric and bounded on V , i.e.
there exists a positive constant Ca such that for v, w ∈ V , |a(u, v)| ≤
Ca‖u‖V ‖v‖V .
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The following general result is from [VV02].

Theorem 4.5.1. Suppose Assumptions E1, E2, E3 and E4 hold. If u0 ∈ V
and u1 ∈ V , and there exists some y ∈ W such that

b (u0, v) + a (u1, v) = c (y, v) for each v ∈ V, (4.5.2)

then, for each f ∈ C1 ([0, T ), X) there exists a unique solution

u ∈ C ([0, T ), V ) ∩ C1 ([0, T ),W ) ∩ C1 ((0, T ), V ) ∩ C2 ((0, T ),W )

for Problem G. If f = 0 then u ∈ C1 ([0,∞), V ) ∩ C2 ([0,∞),W ).

Remark In [VV02] there is a typo. It is stated that u1 ∈ W is required
which is not sufficient. The condition in the theory above is correct according
to the proof in [VV02].

Remark Problems DPLW and C-VW in the previous section are special
cases of Problem G.

Application to heat conduction problems

Consider Problems DPLW and C-VW. For both problems the space X is
L2(Ω) and the space W is the set L2 with inner product c(·, ·). Recall that
V (Ω) is the closure of T (Ω) with respect to the norm of H1(Ω).

Remark Deka and Dutta [DD19] refer to [VV02] but provide little detail
regarding the applicability of the results in [VV02].

4.5.1 Problem G with weak damping

Assumption E4W Weak damping

The bilinear form a is non-negative, symmetric and bounded on W , i.e.
there exists a positive constant CW such that for u, v ∈ W , |a(u, v)| ≤
CW‖u‖W‖v‖W .

Definition

Eb = { x ∈ V
∣

∣ there exists a y ∈ W such that c(y, v) = b(x, v) for all v ∈ V }.
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The following result is from [VV02].

Theorem 4.5.2. Suppose Assumptions E1, E2, E3 and E4W hold. Let J
be an interval containing zero, then there exists a unique solution

u ∈ C1 (J, V ) ∩ C2 (J,W )

for Problem G for each u0 ∈ Eb, u1 ∈ V and each f ∈ C1 (J,X). If f = 0
then u ∈ C1 ((−∞,∞), V ) ∩ C2 ((−∞,∞),W ).

Remark Theorem 4.5.2 may be applied to the undamped case (a = 0).

Application to Problem C-VW

For the C-V model, τ
T
= 0, and a

C
(u, v) = (u, v)Ω, which implies that

|ac(u, v)| ≤ ‖u‖‖v‖ ≤ τ 2q ‖u‖W‖v‖W

(by the Cauchy-Schwarz inequality). Therefore Theorem 4.5.2 can be applied
to Problem C-VW.

In order to use Theorem 4.5.2. it must be verified that T0, Td and F meet
the requirements in the theorem. Firstly T0 and Td must both belong to
V (Ω). Using the definition of Eb above existence of a y ∈ W such that
b(T0, v) = c(y, v) is required.

Next consider whether T0 ∈ Eb. We now use Eqs. (4.3.6) and (4.3.7). If
T0 ∈ C2(Ω̄) and satisfy the boundary conditions then using integration by
parts, we find that

b(T0, v) =

∫∫∫

Ω

α∇T0 · ∇v dV =

∫∫∫

Ω

α∇2T0 · v dV

=
α

τq
c(∇2T0, v). (4.5.3)

It follows from the theory in [VV02] that T (t) ∈ Eb if T (0) = T0 ∈ Eb. This
means that T (·, t) is at least in H2(Ω) for each t.

For convenience we repeat the definition of the function F :

F (x, t) = S(x, t) + τq ∂tS(x, t).

Consequently, the range of F is in L2(Ω)× V (Ω) and it is required that

F ∈ C1(J ;L2(Ω)× V (Ω)).
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This means that the derivative ∂2
t S must exist.

Application to the CT-benchmark problem

The equivalent problem formulation of the CT-benchmark problem is a spe-
cial case of Problem C-V, with α = 1, τq = 1 and the damping coefficient is 2.
Following from the discussion in Chapter 3, based on the work by Weinberger
[Wei95], a classical solution of the equivalent, and therefore CT-benchmark
problem is possible, provided that θin(0) = (θin)

′(1) = (θin)
′′(0) = 0, and

θin ∈ C2[0, 1].

If the CT-benchmark problem is to have a weak solution, it is required that
θin ∈ Eb and θ

′

in ∈ V . It is clear that the CT-benchmark problem does
not even have a weak solution. (The conditions θin ∈ Eb and θ

′

in ∈ V are
necessary conditions.)

4.5.2 Problem G with strong Damping

Assumption E5S Strong damping
The bilinear form a is positive definite on V , i.e. there exists a K > 0 such
that a(u, u) ≥ K‖u‖2V for any u ∈ V .

Theorem 4.5.3. Suppose Assumptions E1, E2, E3, E4 and E5S hold. Let
f : [0, T ] → W be locally Lipschitz. Then there exists a unique solution

u ∈ C ([0, T ), V ) ∩ C1 ([0, T ),W ) ∩ C2 ((0, T ),W )

for Problem G, for any u0 ∈ V , u1 ∈ W . If f = 0 then

u ∈ C ([0,∞), V ) ∩ C1 ([0,∞),W ) ∩ C∞ ((0,∞), V ) .

Remark It follows from the definitions of weak and strong damping and
Assumption E2 that damping cannot be weak and strong.

Application to Problem DPLW

We defined a
D
(u, v) = (u, v)Ω + a∇(u, v) in Section 4.4. It follows that

aD(u, u) ≥ a
∇
(u, u) =

∫∫∫

Ω

ατ
T
∇u · ∇u dV = τ

T
b(u, u).

Thus the damping is strong in the case of the DPL model.
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Using the one-dimensional bilinear forms defined in Section 4.3 we have the
same situation:

a
D
(u, u) ≥ τ

T

∫ 1

0

αu′u′ dx = τ
T
b(u, u). (4.5.4)

As mentioned above, the damping in the DPL model cannot be considered
as weak.

To apply Theorem 4.5.3 consider the conditions. The condition on the func-
tion F is the same as in Subsection 4.5.1. For the initial condition we only
need T0 ∈ V (Ω) and Td ∈ L2(Ω).

4.6 FEM approximation

In this section we discuss convergence of the FEM approximation for second
order hyperbolic-type problems briefly.

The assumptions made for existence theory (for example assumptions on
spaces) are also required for convergence of the FEM approximation. How-
ever, more assumptions must be made to obtain optimal error estimates.

In only a minor part of this thesis is FEM relevant. Nevertheless it is worth
noting that several publications on FEM can be used to determine conver-
gence and error estimates for Problems C-VW, DPLW and FW. We mention
two articles which are convenient since the formulation of the weak varia-
tional problems are the same as in Section 4.4.

The results derived in [BV13] are applicable to the case of weak damping
for Problem G, i.e. Problem C-VW. For Problem DPLW, the strong dam-
ping case, one may use the results from [BSV17] which are valid for general
damping. It is therefore also valid for strong damping.

In Chapter 3 the FEM is used to solve Problem A3. Since the forcing function
f and initial conditions are sufficiently smooth, the problem has a classical
solution. As a result optimal error estimates can be derived.
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Chapter 5

Modal analysis

5.1 Introduction

It is well known that Problem 1 Section 3.2 can be “solved” using separation
of variables. If fn is an eigenfunction of the eigenvalue problem

c2f ′′
n + λnfn = 0

with corresponding eigenvalue λn, then

T ′′ + 2γT ′ + λnT = 0

can be solved. The function un(x, t) = Tn(t)fn(x) is referred to as a modal
solution for the PDE. It also satisfies the boundary conditions. The idea is
that the solution of Problem 1 can be approximated by partial sums of modal
solutions. Convergence of the approximation can be proved, see e.g. [Wei95,
Section 26]. (A rigorous proof as in the book is not trivial.)

Modal analysis can also be done on the problem in variational form, even
when classical solutions do not exist. It turns out that convergence of partial
sums depends on completeness of eigenfunction expansions. The theory can
be found in the Functional Analysis textbook by Zeidler [Zei95]. One may
also consider Evans’ book [Eva98].

For this thesis the article [CVV18] is convenient. The theory is presented in
[CVV18] using a variational approach.

For the heat conduction models the general abstract formulation, Problem
DLPW, is developed in Section 4.4. The associated eigenvalue problem can
be one, two or three dimensional, depending on the spatial dimension of the

65
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66 CHAPTER 5. MODAL ANALYSIS

model. But it is possible to derive conditions in terms of the physical param-
eters of the models whether the modes are underdamped or overdamped.

This chapter must be seen as a preparation for the important Chapter 6. It
does not contain new mathematics; it is rather a new approach that connect
the second order variational problem to Functional Analysis. The chapter
was written before 2018 when [CVV18] was published but I was informed
of this approach and thank the authors. Writing up the Chapter is my own
work.

Of course, one may consider other methods to solve problems of this type,
but we found modal analysis convenient. Modal analysis provides a means
to estimate the unknown lag times. Also, it provides a link to the work in
[CVV18] and finite element analysis.

5.2 Modal solutions

5.2.1 Eigenvalue problem

Consider Problem G (in Section 4.5) with modal damping and f = 0:

c
(

u′′(t), v
)

+ a
(

u′(t), v
)

+ b
(

u(t), v
)

= 0 for each v ∈ V, (5.2.1)

u(0) = u0 and u′(0) = u1.

Consider a possible solution of the form u(t) = y(t)w, w ∈ V . Substituting
this trial solution into Eq. (5.2.1), we obtain:

c
(

y′′(t)w, v
)

+ a
(

y′(t)w, v
)

+ b
(

y(t)w, v
)

= 0. (5.2.2)

For the undamped case where a = 0, u is a solution of Eq. (5.2.1) if and only
if

y′′(t) + λy(t) = 0

and

b(w, v)− λ c(w, v) = 0 for each v ∈ V.

It is therefore necessary to consider the following eigenvalue problem.

Problem EG

Find w ∈ V and λ ∈ C such that w 6= 0 and

b
(

w, v
)

= λ c
(

w, v
)

for each v ∈ V. (5.2.3)
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If the pair (λ, w) is a solution of Problem EG, then λ is called an eigenvalue
and w an associated eigenvector. It follows that u(t) = y(t)w is a solution of
Eq. 5.2.1, called a modal solution.

If a 6= 0, the method still works if modal damping is assumed; i.e.

a(·, ·) = k1 c(·, ·) + k2 b(·, ·)

where k1, k2 are non-negative real numbers.

Then a trial solution of the form u(t) = y(t)w has to satisfy

(y′′(t) + k1y
′(t)) c

(

w, v
)

+ (k2y
′(t) + y(t)) b

(

w, v
)

= 0 for each v ∈ V.

Therefore u is a solution of Eq. (5.2.1) if and only if (λ, w) is a solution of
Problem EG and the function y is a solution of

y′′(t) + (k1 + λk2) y
′(t) + λy(t) = 0. (5.2.4)

Note that the undamped case (a = 0) is included as a special case of modal
damping (k1 = k2 = 0) and it need not be considered separately.

The idea is to use the series

∞
∑

k=1

yk(t)wk

as a solution for Eq. (5.2.1). In order to establish the validity of this formal
series solution, the following general notation is introduced.

Notation

Consider an arbitrary Hilbert space H with inner product 〈·, ·〉 and norm
‖ · ‖. Suppose x ∈ H and (φn) ⊂ H is an orthonormal sequence. The partial
sums sn are defined as follows:

sn =

n
∑

k=1

〈x, φk〉 φk for each n.

Definition Complete orthonormal sequence

An orthonormal sequence (φn) is called complete (or total), when

‖sn − x‖ → 0 as n → ∞ for each x ∈ H.
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If ‖sn − x‖ → 0 as n → ∞, we write

x =

∞
∑

k=1

〈x, φk〉φk.

Consider Problem EG for the Hilbert spaces V and W from Section 4.5, and
recall Assumptions E1 to E4 for these spaces. For modal damping, it is clear
that the bilinear form a satisfies Assumption E4.

As b is symmetric and nonnegative, it is important to note that λ 6= 0.
Assuming that λ = 0, implies that u = 0, which is not an eigenvector. It is
also not difficult to prove the following:

(a) The eigenvalues are real and non-negative.

(b) The eigenvectors are orthogonal in W with respect to the inner pro-
duct c.

These facts and more follow from Theorem 5.2.1 below. Note that for the
space V an additional assumption is required.

Assumption C1 Any bounded set in V is relatively compact in W .

Theorem 5.2.1. Consider the eigenvalue problem EG. Suppose assumptions
E1, E2, E3 and C1 hold, then:

(a) All the eigenvalues λ are real and two eigenvectors that correspond to
different eigenvalues are orthogonal.

(b) Each eigenspace is finite dimensional.

(c) There exists a sequence of orthonormal eigenvectors (wk) with a cor-
responding increasing sequence of eigenvalues (λk).

(d) For this increasing sequence (λk), we have λk → ∞ as k → ∞.

(e) The orthonormal sequence (wk) of eigenvectors is complete in W .

Proof: See Section 5.5.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



5.2. MODAL SOLUTIONS 69

5.2.2 Series solution

From Theorem 5.2.1, Problem EG has an increasing sequence λk of eigenval-
ues with corresponding eigenvectors wk, i.e. b(wk, v) = λk c(wk, v). Conse-
quently, if yk is a solution of Eq. (5.2.4), then uk(t) = yk(t)wk is a solution
of Eq. (5.2.1) and

c
(

y′′k(t)wk, v
)

+ a
(

y′k(t)wk, v
)

+ b
(

yk(t)wk, v
)

= 0 for k = 1, 2, ... . (5.2.5)

As Eq. (5.2.1) is a linear problem, superposition of solutions is allowed, and
the partial sum uN defined by

uN(t) =

N
∑

k=1

yk(t)wk, (5.2.6)

is also a solution of Eq. (5.2.1).

In general uN will not satisfy the specified initial conditions uN(0) = u0 and
u′
N(0) = u1.

Formal series solution

To solve Eq. (5.2.1) for specified initial conditions, a series solution is used:

u(t) =

∞
∑

k=1

yk(t)wk. (5.2.7)

The question then arises whether it is possible to write given initial values
u0 and u1 as eigenfunction expansions.

Approximation of initial values

From Theorem 5.2.1, it follows that for u0 ∈ W and u1 ∈ W ,

u0 =
∞
∑

k=1

c(u0, wk)wk and u1 =
∞
∑

k=1

c(u1, wk)wk.

The coefficients c(u0, wk) and c(u1, wk) are called generalised Fourier coef-
ficients for u0 and u1. See Section 5.4. Hence, the following initial values
should be used for yk when solving Eq. (5.2.4):

yk(0) = c(u0, wk) and y′k(0) = c(u1, wk).
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Fourier coefficients and orthogonal eigenvectors

If (wk) is an orthogonal sequence of eigenvectors, the formal series solution
can be written as

u(t) =
∞
∑

k=1

yk(t)wk.

As vk is not necessarily normalized in W , the eigenvector expansions for u0

and u1 changes to

u0 =

∞
∑

k=1

‖vk‖−2
W c(u0, vk)vk and u1 =

∞
∑

k=1

‖vk‖−2
W c(u1, vk)vk (5.2.8)

since wk = ‖vk‖−1
W vk. Therefore the Fourier coefficients are given by

‖vk‖−2
W c(u0, vk) and ‖vk‖−2

W c(u1, vk)

and the following initial values should be used for yk when solving Eq. (5.2.4):

yk(0) = ‖vk‖−2
W c(u0, vk) and y′k(0) = ‖vk‖−2

W c(u1, vk). (5.2.9)

These expressions for the series solution and the Fourier coeffients are used
in applications.

5.2.3 Convergence in energy

In this subsection the word “energy” refers to a purely mathematical concept,
and not to the thermal energy used in the heat conduction models ([CVV18]).

Consider Problem G with initial conditions u(0) = u0 ∈ V and u′(0) =
u1 ∈ W . The existence of a solution is proved in Section 4.5. For the
approximation uN in Eq. (5.2.6) of the solution u of Problem G, it is shown
in [CVV18] that

‖u(t)− uN(t)‖V → 0 as N → ∞.

In the proof the dimensionless energy expression, defined below, is used.

Definition Dimensionless energy

The dimensionless energy E associated with a function u is given by

E(t) =
1

2
c(u′(t), u′(t)) +

1

2
b(u(t), u(t))

=
1

2
‖u′(t)‖2W +

1

2
‖u(t)‖2V .
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It is easy to see that for any solution u of Eq. (5.2.1), (as expected from
physics)

E(t) ≤ E(0). (5.2.10)

If u is a solution of Eq. (5.2.1) on the interval J , u ∈ C1(J, V ) ∩ C2(J,W ),
and

E ′(t) = c(u′′(t), u′(t)) + b(u(t), u′(t))

= − a(u′(t), u′(t)) ≤ 0.

Recall that uN is a solution of Eq. (5.2.1) with initial conditions uN(0) = uN
0

and u′
N(0) = uN

1 . Hence the error function uE
N = u − uN also satisfies

Eq. (5.2.1) with uE
N(0) = u0 − uN

0 and (uE
N)

′(0) = u1 − uN
1 .

Let EE(t) denote the energy associated with the error function uE
N . The

energy inequality Eq. (5.2.10) is valid for uE
N :

EE(t) ≤ EE(0) for all t > 0.

Rewritten in terms of norms, this energy inequality yields:

‖u(t)− uN(t)‖2V + ‖u′(t)− u′
N(t)‖2W ≤ ‖u0 − uN

0 ‖2V + ‖u1 − uN
1 ‖2W . (5.2.11)

For any u1 ∈ W , it follows from Theorem 5.2.1 that there exist Fourier
coefficients c(u1, wk) such that

‖u1 − uN
1 ‖W → 0 as N → ∞.

But it is also necessary to approximate u0 in the energy norm ‖ · ‖V . This
does not follow from Theorem 5.2.1.

Note that in addition to being orthogonal in W with respect to c, the eigen-
vectors wk ∈ V are also orthogonal with respect to b:

b(wi, wj) = λic(wi, wj) = 0 for all i 6= j.

Consequently, for any x ∈ V , Fourier coefficients can be calculated with
respect to the inner product b. The following theorem is proved in [CVV18].

Theorem 5.2.2. Consider any x ∈ V . If

ηk =
b(x, wk)

b(wk, wk)
and xN =

N
∑

k=1

ηkwk,

then ‖x− xN‖V → 0 as N → ∞.
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Note, that

‖wk‖2V = b(wk, wk) = λkc(wk, wk) = λk‖wk‖2W = λk for all k. (5.2.12)

For any x ∈ V , the following result follows from Eq. (5.2.3) combined with
Eq. (5.2.12):

ηk =
b(x, wk)

b(wk, wk)
=

λkc(x, wk)

b(wk, wk)
= c(x, wk).

(Recall that the eigenfunctions wn are normalised with respect to the norm
in W .) This means that the same Fourier coefficients for x are obtained,
irrespective of whether they are calculated with respect to the inertia inner
product c or the energy inner product b. The main significance of Theo-
rem 5.2.2 is that convergence of the partial sums is obtained with respect to
the energy norm ‖.‖V .
It follows from Theorem 5.2.2 that for any u0 ∈ V there exist Fourier coeffi-
cients ηk for u0, such that

‖u0 − uN
0 ‖V → 0 as N → ∞, (5.2.13)

and therefore that EE(t) → 0 as N → ∞.

Consequently, for all t > 0, we have convergence of the partial sum uN(t) to
the solution u(t) in the energy norm ‖.‖V and convergence of u′

N(t) to the
derivative u′(t) in the inertia norm ‖.‖W . In addition, the accuracy of these
approximations in terms of the partial sums can be guaranteed as it depends
only on the accuracy of the partial sum approximations of u0 and u1 at time
t = 0.

Remark

In [CVV18] the following Parseval-type expressions are derived for x ∈ V :

‖x‖2W =
∞
∑

k=1

η2k =
∞
∑

k=1

c(x, wk)
2, (5.2.14)

‖x‖2V =
∞
∑

k=1

λkη
2
k =

∞
∑

k=1

λkc(x, wk)
2. (5.2.15)

If the eigenfunctions vk are not normalised in W , as in Eq. (5.2.8), the partial
sum xN is written as

xN =

N
∑

k=1

c

(

x,
vk

‖vk‖W

)

vk
‖vk‖W

=

N
∑

k=1

c(x, vk)

‖vk‖W
vk

‖vk‖W
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and the expressions in Eq. (5.2.14) and Eq. (5.2.15) change to

‖x‖2W =

∞
∑

k=1

c(x, vk)
2

‖vk‖2W
, (5.2.16)

‖x‖2V =

∞
∑

k=1

λk
c(x, vk)

2

‖vk‖2W
. (5.2.17)

5.3 Heat conduction models

5.3.1 Weak formulation

Recall Problem DPLW in Section 4.4, and consider the homogeneous problem
(with F = 0):

c
(

T ′′(t), v
)

+ a
D

(

T ′(t), v
)

+ b
(

T (t), v
)

= 0, for each v ∈ V (Ω), (5.3.1)

T (0) = T0 and T ′(0) = Td.

From this point onward we assume that α, τq and τ
T
are constant.

The bilinear form b(·, ·) is defined in Eq. (4.3.6). It is not desirable that the
parameter α is “hidden” in b.

Notation Let b∗(·, ·) = 1
α
b(·, ·) and γ = 1

2τq
.

Note that

b∗(u, v) =

∫∫∫

Ω

grad u · grad v dV.

Equation (4.3.8) in (Problem DPLV) now reads

(

T ′′(t), v
)

Ω
+ 2γ

(

T ′(t), v
)

Ω
+

α

τq
b∗
(

T (t), v
)

+
ατ

T

τq
b∗
(

T ′(t), v
)

= 0 (5.3.2)

for each v ∈ V (Ω).

The C-V model follows directly when τ
T
= 0 :

(

T ′′(t), v
)

Ω
+ 2γ

(

T ′(t), v
)

Ω
+

α

τq
b∗
(

T (t), v
)

= 0 for each v ∈ V (Ω). (5.3.3)

Mutliplying throughout with τq and then letting τq = 0, results in the
Fourier model

(

T ′(t), v
)

Ω
+ α b∗

(

T (t), v
)

= 0 for each v ∈ V (Ω). (5.3.4)
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5.3.2 Modal solutions

In the rest of this section we apply the theory from Section 5.2. Consider
Problem DPLW and a possible solution of the form

T (t) = y(t)w, w ∈ V (Ω).

Substituting this trial solution into Eq. (5.3.2), we obtain

(

y′′(t)w, v
)

Ω
+ 2γ

(

y′(t)w, v
)

Ω
+

α

τq
b∗
(

y(t)w, v
)

+
ατ

T

τq
b∗
(

y′(t)w, v
)

= 0.

(5.3.5)
We therefore consider the following eigenvalue problem (a special case of
Problem EG):

Problem EGH

Find w ∈ V and λ ∈ C such that w 6= 0 and

b∗
(

w, v
)

= λ
(

w, v
)

Ω
for each v ∈ V (Ω).

Now T is a solution of Eq. (5.3.1) if and only if (λ, w) is a solution of
Problem EGH and

y′′ +

(

2γ +
ατT
τq

λ

)

y′ +
αλ

τq
y = 0. (5.3.6)

For the C-V model τT = 0, and y is a solution of

y′′ + 2γy′ +
αλ

τq
y = 0. (5.3.7)

For the Fourier model multiply Eq. (5.3.7) by τq, set τq = 0, and then y is
a solution of

y′ + αλy = 0. (5.3.8)

From Section 5.2 follows that Problem EGH has a sequence λk of eigenvalues
with corresponding eigenvectors wk, i.e. b

∗(wk, v) = λk (wk, v)Ω.

Remarks

1. Note that the same eigenvalue problem, Problem EGH applies to all
three models.

2. The eigenvectors wk are not necessarily normalized in W (Ω) = L2(Ω)
(as already mentioned in Section 5.2.2).
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3. The ordinary differential equations for the time dependent function y
for depend only on the eigenvalues λ determined in Problem EGH. The
spatial dimensions of the eigenfunctions do not affect these solutions.

In the next chapter, we consider the solution yk of the ordinary differential
equation corresponding to the model under consideration, for each k. Initial
values for the differential equations are the Fourier coefficients for T0 and
Td, as explained in Section 5.2.2.

The series solution is given by

T (t) =

∞
∑

k=1

yk(t)wk. (5.3.9)

5.4 Generalized Fourier series and symmetric

compact operators

This section contains some important results from the literature on general-
ized Fourier series. It will be used in the next section to prove Theorem 5.2.1
in Section 5.2.

An inner product space X is a vector space X with an inner product 〈·, ·〉
defined on it. The associated norm ‖ · ‖ is defined by ‖x‖ = 〈x, x〉1/2.
The following notation is used by Kreyszig, [Kre89].

Assume that (φn) ⊂ X is an orthonormal sequence in X , and that
Vm = span {φ1, φ2, . . . , φm} for each m.

For any u ∈ X , let ck = 〈u, φk〉 for each k. These constants are called the
Fourier coefficients of u.

The partial sums sn are defined as:

sn =
n

∑

k=1

〈u, φk〉 φk =
n

∑

k=1

ckφk for each n.

A number of useful results regarding partial sums are listed here.

Theorem 5.4.1 ([Kre89]). Using the notation above:

(a) 〈u − sn, w〉 = 0 for each w ∈ Vn. Consequently, ‖u − sn‖ ≤ ‖u − w‖
for each w ∈ Vn.
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76 CHAPTER 5. MODAL ANALYSIS

(b) ‖u− sn‖2 = ‖u‖2 − ‖sn‖2.

(c) lim
n→∞

sn = u if and only if lim
n→∞

‖sn‖ = ‖u‖.

(d) ‖sn‖2 =
n

∑

k=1

c2k.

(e) lim
n→∞

sn = u if and only if
∞
∑

k=1

〈u, φk〉2 = ‖u‖2.

(f) Let (φk) be an orthonormal sequence in a Hilbert space H. If

u =
∞
∑

k=1

ckφk

converges and the limit is u, then the coefficients ck are the Fourier
coefficients 〈u, φk〉, hence

u =
∞
∑

k=1

〈u, φk〉φk.

(g) If the Fourier series for u converges to w, then the Fourier coefficients
for w and u are the same and

〈u− w, φk〉 = 0 for each k.

(h) Let (φk) be an orthonormal sequence in a Hilbert space H. Then for
any u ∈ H, the series

∞
∑

k=1

ckφk

with Fourier coefficients ck = 〈u, φk〉, converges in the norm of H
(not necessarily to u).

Definition Symmetric operator

A densely defined linear operator A is symmetric if, for all u and v in the
domain of A,

〈Au, v〉 = 〈u,Av〉.

The following results for symmetric operators are valid for complex Hilbert
spaces. In order to apply these results to a real Hilbert space H , the space
H is embedded into a complex Hilbert space. See [Sch71, Section VI.5] for
details.
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Theorem 5.4.2 (Proposition 7.1.1 [Zei95] ). Let A be a linear bounded sym-
metric operator on H. Then

(i) 〈Au, u〉 is real for all u ∈ H.

(ii) All the eigenvalues of A are real.

(iii) Two eigenvectors of A with different eigenvalues are orthogonal.

(iv) If (un) is a complete orthonormal sequence of eigenvectors of A, then
the corresponding sequence (λn) of eigenvalues contains all the eigen-
values of A.

Definition Compact operator

For two normed spaces X and Y , a linear operator A : X → Y is called a
compact operator if for every bounded subset M ⊂ X , the image A(M) is
relatively compact in Y ; that is, the closure of A(M) is compact in Y .

Theorem 5.4.3 (Theorem 4A [Zei95]). Let A : H → H be a linear compact
symmetric operator on the separable Hilbert space H with H 6= {0}, A 6= 0
and hence ‖A‖ 6= 0 (if Au = 0, then u = 0). Then, the following hold true:

(i) Two eigenvectors of A that correspond to different eigenvalues are or-
thogonal.

(ii) The operator A has an orthonormal sequence of eigenvectors with cor-
responding eigenvalues.

(iii) Each eigenspace is finite dimensional.

(iv) For the sequence (λn) of eigenvalues, we have

λn → 0 as n → ∞.

(v) The orthonormal sequence (un) of eigenvectors is complete in H.

5.5 Bilinear forms

This section contains a discussion of the proof of Theorem 5.2.1 of Section 5.2
as presented in [CVV18].
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It is necessary to show that a symmetric compact linear operator K can be
constructed from the bilinear form b. The relationship between the eigenval-
ues and eigenvectors of b and K is the main result that is required in order
to apply the general theory Fourier series for symmetric compact operators
in Section 5.4.

Let X , W and V denote real Hilbert spaces such that V ⊂ W ⊂ X , as
introduced in Section 4.5. Recall assumptions E1 to E4 from Section 4.5, as
well as the additional assumption C1 from Section 5.2.

Proposition 5.5.1. For each f ∈ W , there exists a unique u ∈ V such that

b(u, v) = c(f, v) for each v ∈ V.

Proof Let φ(v) = c(f, v), then φ is a functional and it is clearly linear.

For any v ∈ V ,

|φ(v)| = |c(f, v)|
≤ ‖f‖W‖v‖W
≤ Cb‖f‖W‖v‖V .

Therefore we have that φ is a bounded linear functional on V .

Following from Riesz’s Theorem [Kre89, Section 3.8], φ can be represented
in terms of the inner product b on V :

b(u, v) = φ(v) = c(f, v) for each v ∈ V.

Next an operator K is constructed from the bilinear form b:

K: W 7−→ V , with Kf = u if b(u, v) = c(f, v) for all v ∈ V .

Lemma 5.5.1. The operator K is linear, bounded and symmetric.

Proof It is trivial to show that K is linear. To show that K is bounded,
note that, from the Cauchy-Schwarz inequality,

‖Kf‖2V = |b(Kf,Kf)| = |c(f,Kf)| ≤ ‖f‖W‖Kf‖W .

Since Kf ∈ V , Assumption E2 states that there exists a constant Cb such
that ‖Kf‖W ≤ Cb‖Kf‖V . Therefore

‖Kf‖2V ≤ Cb‖f‖W‖Kf‖V
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5.5. BILINEAR FORMS 79

and hence

‖Kf‖V ≤ Cb‖f‖W .

Therefore the linear operator K from (W, ‖ · ‖W ) to (V, ‖ · ‖V ) is bounded.
Finally, it follows from the symmetry of b and c that

b(Kf, v) = c(f, v) = c(v, f) = b(Kv, f)

for each f and v in V . Therefore the operator K is symmetric.

Corollary K is a compact linear operator from (W, ‖ · ‖W ) to (W, ‖ · ‖W ).

Proposition 5.5.2. K is invertible, i.e. for each u ∈ R(K), the range of
K, there exists a unique f ∈ W such that u = Kf .

Proof To prove the uniqueness, we need to prove that Kf = 0 implies
that f = 0. Let Kf = 0 then b(Kf, v) = 0 for all v ∈ V . That is c(f, v) =
b(Kf, v) = 0 for all v ∈ V . Since V is dense in W it follows that c(f, v) = 0
for each v ∈ W , hence f = 0.

The relationship between the eigenvalues and eigenvectors of b and those of
the operator K is stated in the following lemma.

Lemma 5.5.2. u ∈ V and b(u, v) = λc(u, v) for each v ∈ V if and only
if Ku = λ−1u.

Proof Recall that the eigenvalues of b can not be zero. From the definition
of K we have b(u, v) = c(K−1u, v) for all v ∈ V . Hence b(u, v) = λc(u, v)
for all v ∈ V if and only if λc(u, v) = c(K−1u, v) for all v ∈ V . Since V is
dense in W , this is equivalent to K−1u = λu or Ku = λ−1u.

Proof of Theorem 5.2.1

This theorem is a reformulation of Theorem 5.4.3 of Section 5.4. Using the
corollary to Lemma 5.5.1, and Lemma 5.5.2, the proof of this theorem is
immediate.

Remark

An alternative approach, where the eigenfunction expansions are obtained
directly from the bilinear forms, is developed in [Hil62].

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



80 CHAPTER 5. MODAL ANALYSIS

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 6

Comparison of heat conduction
models

6.1 Introduction

In this study, three heat conduction models are used to describe the effects
of intense heating in a short time interval, and in this chapter the main
objective is to compare the predictions from the C-V and DPL models with
that of the Fourier model.

The single-pulse problem as formulated in Section 6.9 is used for these com-
parisons. A single heat pulse is applied to one endpoint of a one-dimensional
specimen for a short time interval. Of specific interest is the temporal and
spatial behaviour of the heat pulse as it propagates through the specimen.
The comparison between the models is presented in Section 6.10, but there
are several issues to consider in preparation for this comparison. We start
with a simpler case where heating is applied continuously to one of the end-
points of a one-dimensional specimen in Sections 6.6 and 6.8.

Three-dimensional models are derived in Section 2.8, but the simplified one-
dimensional versions are presented in Section 6.2 and they are used for com-
paring the models. Investigating one-dimensional models is not only a simpler
option, but it is standard practise to determine the diffusivity of materials
relying on one-dimensional heat transfer modelling. In this case, the heat
transfer is modelled as a one-dimensional process, whereby heat diffuses from
the front face to the rear face of a given specimen; e.g. [Bab10] and [BTY11].
The diffusivity of the material is then calculated from the thickness of the
specimen and the so-called heat diffusion time.

81
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82 CHAPTER 6. COMPARISON OF HEAT CONDUCTION MODELS

Separation of variables (discussed in Section 5.3) is used to find solutions
for the three heat conduction models. Eigenfunction series expansions of
the solutions are obtained. There are several advantages to using this ap-
proach rather than using numerical methods. The eigenvalue problem (Pro-
blem EGH in Section 5.3) is the same for all three models. The functions
that model the time behaviour do not depend on the spatial dimension of the
problem, i.e. do not depend on the dimension of the eigenvalue problem. But
it is possible to derive conditions in terms of the physical parameters of the
models for whether the modes are underdamped or overdamped. (The terms
underdamped and overdamped are not commonly used in the context of heat
conduction, but are borrowed from the theory of mechanical vibrations.) The
conditions are derived in Section 6.2 for the three heat conduction models.

Another advantage of the separation of variables approach is that partial
sums of the series can be used to find approximate solutions for the different
models. As shown in Section 5.2.3, the accuracy of these approximations
depends only on the accuracy of the partial sum approximations of the initial
conditions. Consequently, an exact upper bound for the error at any time
t > 0 is available.

Next we have to consider which initial temperature distribution to use for the
models. As discussed in Chapter 3, a discontinuous initial temperature dis-
tribution is often used, but is inadmissible. For the models to be well-posed,
a smooth initial condition has to be used, and the procedure for construct-
ing a smooth initial condition arbitrarily close to the discontinuous one, is
described in Section 3.2.1. However, calculating the Fourier coefficients for
the smooth initial condition is not practical. For the convergence in energy
approach discussed in Section 5.2.3, at least a continuous initial condition
is required. A continuous piecewise linear function can be constructed that
is arbitrarily close to the discontinuous initial value. This initial value can
be used to determine the number of terms to use in the partial sums. The
Fourier coefficients for the discontinuous initial condition are easy to obtain,
and are used in the numerical simulations.

Physically realistic values for the two lag times τq, the phase lag of the
heat flux, and τ

T
, the phase lag of the temperature gradient, are required.

One of the challenges in heat conduction modelling is that these lag times
(or relaxation times) are not reliably known. The modal analysis allows
for calculating feasible values for the lag times τq and τ

T
. We find feasible

values for the lag times based on the assumption that the Fourier model
yields physically realistic results after a sufficiently long time [MF53]. This
assumption follows from the reasoning that after a thermal disturbance is
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6.2. ONE-DIMENSIONAL HEAT CONDUCTION MODELS 83

brought about in a specimen, and the lag times have elapsed, the Fourier
model is sufficient to predict the temperature. Therefore, to be feasible as
heat conduction models in the context of intense heating in a short time
interval, the solutions of the C-V and DPL models should equal the solution
of the Fourier model after a sufficiently long time.

We first calculate a ballpark value for τq in Section 6.3, and use this value in
the comparison of the Fourier and the C-V models. The C-V model predicts
a prominent wave front, as shown in Chapter 3.

The same value for τq is then used to estimate values for τ
T
. The DPL,

C-V and Fourier models are compared. Two cases are considered for the
DPL model: one where the value of τ

T
is chosen such that both over- and

underdamped modes are present, and the other, where τ
T
is chosen such that

only overdamped modes are present.

Once all these issues have been addressed, a comparison of the three models
for the single-pulse problem is presented in Section 6.10.

In this chapter a numerical value for α is required for simulations and for
other calculations. The calculation of α is described in Section 2.8.1, and
α = 0.0040732 is obtained. This value for α is used throughout this chapter.

6.2 One-dimensional heat conduction models

We start with the case where heating is applied continuously to one of the
endpoints of a one-dimensional specimen, keeping the temperature constant
at that endpoint. This is a simpler case than the single-pulse problem, but
the results for this case are used for part of the single-pulse problem. In the
next sections, the DPL and C-V models are compared to the Fourier model
for this simpler case.

6.2.1 Model problem

The dimensionless DPL problem is described in Section 2.8 and the weak
formulation is given in Problem DPLW. See Eq. (4.4.3). Consider the case
where F = 0.
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The one-dimensional DPL model problem for T (x, t) is given by

∂2
t T + 2γ ∂tT − ατ

T

τq
∂t∂

2
xT = c2 ∂2

xT, 0 < x < 1, t > 0 (6.2.1)

T (0, t) = 1

∂xT (1, t) = 0

T (x, 0) = T0(x)

∂tT (x, 0) = Td(x)

where 2γ =
1

τq
and c2 =

α

τq
.

Setting u(x, t) = 1− T (x, t), yields the model that will be used in computa-
tions, as the boundary conditions are homogenised.

∂2
t u+ 2γ ∂tu− ατ

T

τq
∂t∂

2
xu = c2 ∂2

xu, 0 < x < 1, t > 0 (6.2.2)

u(0, t) = 0

∂xu(1, t) = 0

u(x, 0) = u0(x)

∂tu(x, 0) = ud(x)

The expressions for the series solutions developed in Section 5.3 apply to this
problem. The series solution Eq. (5.3.9) yields the solution for u(x, t) as:

u(x, t) =

∞
∑

k=1

yk(t)wk(x).

The expression for the temperature T (x, t) is then obtained as:

T (x, t) = 1− u(x, t) = 1−
∞
∑

k=1

yk(t)wk(x).

As before, the corresponding C-V model is obtained by setting τ
T
= 0 in

Eq. (6.2.2). Multiplying the C-V model by τq, and then setting τq = 0 yield
the Fourier model.
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6.2.2 Eigenvalue problem

The eigenvalue problem associated with Eq. (6.2.2) is the same for all three
models, and has homogeneous boundary values.

w
′′

k(x) + λkwk(x) = 0, 0 < x < 1,

wk(0) = 0,

w′
k(1) = 0.

The eigenfunctions are

wk(x) = sin νkx, for k = 1, 2, . . . (6.2.3)

where νk = (2k − 1)π/2 and the eigenvalue is given by

λk = ν2
k . (6.2.4)

Note that the eigenfunctions wk(x) are not normalized in W = L2(0, 1) as

‖wk‖2W =

∫ 1

0

sin2 νkx dx =
1

2
.

6.2.3 The DPL model

For each k we require the solution yk(t) for the ordinary differential equation

y
′′

k +

(

2γ +
ατ

T
λk

τq

)

y
′

k +
αλk

τq
yk = 0. (6.2.5)

Setting 2γk = 2γ +
ατ

T
λk

τq
, the solutions of the characteristic equation of

Equation (6.2.5) is given by

−γk ±
√

γk2 − c2ν2
k ,

where γk = γ +
ατ

T
λk

2τq
, c2 =

α

τq
and νk =

√
λk =

(2k − 1)π

2
.

In the overdamped case (γk
2 > c2ν2

k), we have

yk(t) = ake
rk
1
t + bke

rk
2
t, (6.2.6)
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with rk1 and rk2 given by

rk1 = −γk + µk,

rk2 = −γk − µk,

where µk =
√

γk2 − c2ν2
k .

Note that

yk(0) = ak + bk,

y′k(0) = rk1ak + rk2bk.

Using the initial values u0(x) and ud(x), as explained in Eq. (5.2.9), it
follows that

ak + bk = 2

∫ 1

0

u0(x)wk(x) dx, (6.2.7)

rk1ak + rk2bk = 2

∫ 1

0

ud(x)wk(x) dx. (6.2.8)

In the underdamped case (γk
2 < c2ν2

k), we have

yk(t) = e−γkt
(

ck cosω
d
kt + dk sinω

d
kt
)

, (6.2.9)

where ωd
k =

√

c2ν2
k − γk2.

Note that

yk(0) = ck,

y′k(0) = −γkck + ωd
kdk.

Again using the initial values u0(x) and ud(x) yields

ck = 2

∫ 1

0

u0(x)wk(x) dx (6.2.10)

−γkck + ωd
kdk = 2

∫ 1

0

ud(x)wk(x) dx. (6.2.11)

The case of critical damping (λ2
k = c2ν2

k), is ignored, as it has little signifi-
cance for practical applications.

The series solution is given by

u(x, t) =

∞
∑

k=1

yk(t)wk(x). (6.2.12)
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6.2.4 The C-V model

For each k we require the solution yk(t) for the ordinary differential equation

y
′′

k(t) + 2γ y
′

k(t) +
αλk

τq
yk(t) = 0. (6.2.13)

The solutions of the characteristic equation of Eq. (6.2.13) are given by

−γ ±
√

γ2 − c2ν2
k .

In the overdamped case (γ2 > c2ν2
k), we have

yk(t) = ake
rk
1
t + bke

rk
2
t, (6.2.14)

with rk1 and rk2 given by

rk1 = −γ + µk,

rk2 = −γ − µk,

and where µk =
√

γ2 − c2ν2
k .

In the underdamped case (γ2 < c2ν2
k), we have

yk(t) = e−γt
(

ck cosω
d
kt + dk sinω

d
kt
)

, (6.2.15)

where ωd
k =

√

c2ν2
k − γ2.

The procedure for calculating the coefficients ak, bk, ck and dk is exactly
the same as for the DPL model. The only difference is that γk is replaced
by γ. The series solution has the same form as for the DPL model.

6.2.5 The Fourier model

For each k we require the solution yk(t) for the ordinary differential equation

y
′

k(t) + αλk yk(t) = 0. (6.2.16)

The solution for Eq. (6.2.16) is given by

yk(t) = ake
−rkt; rk = αν2

k . (6.2.17)

The series solution is given by

u(x, t) =
∞
∑

k=1

ake
−rktwk(x). (6.2.18)

Using the initial value u0(x) yields

ak = ‖wk‖−2
Ω (u0, wk)Ω = 2

∫ 1

0

u0(x)wk(x) dx. (6.2.19)
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6.2.6 Initial values for numerical experiments

The initial value ud(x) = 0 is used for simplifying the calculations. This
condition is also required to compare the results of the C-V and DPL models
with the Fourier model.

Choosing a suitable initial value u0(x) is more complicated.

Recall that

θδ(x) =







−6(x
δ
)5 + 15(x

δ
)4 − 10(x

δ
)3, for 0 ≤ x < δ,

−1, for δ ≤ x ≤ 1.

For the model problem, the initial value u0(x) = −θδ(x) is specified when
investigating whether the problem is well-posed. It is shown that this ini-
tial value is an admissible smooth function. Note that for this initial value
u(x, 0) = 1 for δ ≤ x ≤ 1 and that δ ≪ 1.

For numerical experiments it is not practical to calculate the Fourier co-
efficients for this initial condition. But the inadmissible initial condition
u0(x) = 1 can be approximated arbitrarily closely by −θδ by choosing
δ sufficiently small.

However, note that for the one-dimensional DPL and C-V models, the inertia
space is W = L2(0, 1), and the energy space V ⊂ H1(0, 1). The initial value
u0(x) = 1 is not an appropriate initial value, as the boundary condition
u(0, t) = 0 implies that u0(x) does not belong to the energy space V ⊂
H1(0, 1). Therefore the convergence in energy results cannot be used.

However, this discontinuous function can be approximated arbitrarily closely
by a continuous piecewise linear function uδ(x) that does belong to V .

uδ(x) =

{

x/δ, 0 ≤ x < δ
1, δ ≤ x ≤ 1

(6.2.20)

A function uδ(x) close to u0(x) = 1 can be used to determine an indication
of the number of terms to use in the partial sums of the series solutions. See
Section 6.5 for details.

The Fourier coefficients for these three options will not differ much, and the
initial value u0(x) = 1 is used in the simulations.
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6.2.7 Fourier coefficients for numerical experiments

With u0(x) = 1 and ud(x) = 0, the Fourier coefficients are given by

(u0, wk)Ω = 2

∫ 1

0

sin νkx dx =
2

νk
=

4

(2k − 1)π
(6.2.21)

and
(ud, wk)Ω = 0. (6.2.22)

DPL model

Overdamped case

To determine the coefficients ak and bk, we use Eq. (6.2.7) and Eq. (6.2.8).

ak + bk =
2

νk
,

rk1ak + rk2bk = 0.

It follows that

ak =
−2rk

νk(1− rk)
and bk =

2

νk(1− rk)
with rk =

rk2
rk1
.

The overdamped case in terms of ak is then

yk(t) = ak

(

er
k
1
t − 1

rk
er

k
2
t

)

. (6.2.23)

Underdamped case

The coefficients ck and dk are determined using Eq. (6.2.10) and Eq. (6.2.11).

ck =
2

νk
,

−γkck + ωd
kdk = 0.

It follows that dk =
ckγk
ωd
k

.

The underdamped case in terms of ck is then

yk(t) = cke
−γkt

(

cosωd
kt+

γk
ωd
k

sinωd
kt

)

. (6.2.24)
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C-V model

The procedure for calculating the coefficients ak, bk, ck and dk is exactly
the same as for the DPL model. The only difference is that γk is replaced
by γ.

For the underdamped case the expression simplifies to

yk(t) = cke
−γt

(

cosωd
kt+

1

2τqωd
k

sinωd
kt

)

. (6.2.25)

Fourier model

From Eq. (6.2.19) the Fourier coefficient ak is used directly in the series
solution:

ak = 2

∫ 1

0

sin νkx dx =
2

νk
=

4

(2k − 1)π
. (6.2.26)

6.3 Lag time τq for the C-V model

As mentioned in the beginning of this chapter, the lag time τq is not reliably
known. Our aim is to determine a realistic value for τq.

It is known that, especially in the case of metals, the Fourier model yields
physically realistic results after a sufficiently long time. The main assumption
we use for estimating realistic values for τq is that the solutions of the C-V
and Fourier models will be the same (within a user-specified error) after a
sufficiently long time. The eigenfunctions and eigenvalues are the same for
both models, regardless of the spatial dimension, and therefore it is sufficient
to compare the time-dependent functions.

The differential equation Eq. (5.3.7) for the time dependent function y(t) in
the C-V model can be written in the form

τqy
′′ + y′ + αλy = 0. (6.3.1)

This form simplifies comparison with the Fourier model in Eq. (5.3.8). Note
that if the dimensionless constant τq ≪ 1, then Eq (6.3.1) will approach
Eq. (5.3.8).

Requiring that the two models give the same result after a sufficiently long
time t, means that the solutions of the models should be approximately equal
when only the first modes are used.

For the Fourier model, from Eq. (6.2.17) for k = 1,

yp1(t) = e−r1pt; r1p = αν2
1 . (6.3.2)
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For the C-V model, from Eq. (6.2.14) for k = 1,

y1(t) = a1e
r1
1
t + b1e

r1
2
t, (6.3.3)

with

r11 = −γ + γ
√

1− c2ν2
1/γ

2

r12 = −γ − γ
√

1− c2ν2
1/γ

2.

From the assumption that τq ≪ 1, it follows that
c2ν2

1

γ2 = 2αν2
1τq ≪ 1.

Using the fact that (1 − x)
1

2 can be approximated by (1 − 1
2
x) if x is

sufficiently small, we obtain

(

1− c2ν2
1

γ2

)
1

2

≈
(

1− c2ν2
1

2γ2

)

. (6.3.4)

This approximation yields that

r11 ≈ −c2ν2
1

2γ
= −αν2

1

r12 ≈ −2γ +
c2ν2

1

2γ
= −2γ + αν2

1 .

Consequently, y1(t) may now be approximated by

y1(t) ≈ a1e
−αν2

1
t + b1e

−2γteαν
2

1
t.

Since we chose 2γ ≫ 1, it follows that e−2γt ≈ 0, and therefore

y1(t) ≈ a1e
−αν2

1
t. (6.3.5)

To find the value for a1, the initial values y1(0) = 1 and y′1(0) = 0 are
prescribed, as yp1(0) = 1.

Recall that the objective is to determine a realistic ballpark value of τq.

Assuming that τq ≪ 1, it follows that
c2ν2

1

γ2
≪ 1. We now have to decide

exactly how small
c2ν2

1

γ2
should be. We start with assuming an accuracy

ε ≥ c2ν2
1

γ2
=

1

1000
. Then τq is calculated from

τq ≤
ε

π2α
=

1

1000π2α
. (6.3.6)
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Using α = 0.0040732 yields τq = 0.024875, and the coefficients for yp1(t) and
y1(t) can then be calculated:

r11 = −0.010; r12 = −40.191; a1 = 1.000; b1 = −2.502× 10−4; r1p = 0.010;

Note that r1 = r12/r
1
1 ≈ 4000.

Substituting these results into Eq. (6.3.2) and Eq. (6.3.5) shows that

y1(t) ≈ yp1(t). (6.3.7)

It is also instructive to determine a maximum value of τq for which Eq. (6.3.7)
will hold. This implies that we want to determine the largest value of τq for
which r11 does not differ noticeably from r1p. We increase τq by adjusting the
user-specified accuracy ε and recalculating τq each time using Eq. (6.3.6).

Table 6.1 presents the values for r11, r12, r1p and a1 calculated for a range
of values for ε.

Table 6.1: Parameters for y1p(t) and y1(t) for a range of ε values

ε τq r11 r12 r1 −r1p a1

0.0008 0.020 -0.010 -50.242 4998 -0.010 1.000
0.001 0.025 -0.010 -40.191 3998 -0.010 1.000
0.004 0.100 -0.010 -10.040 998 -0.010 1.001
0.02 0.498 -0.010 -2.000 198 -0.010 1.005
0.04 0.995 -0.010 -0.995 97.990 -0.010 1.010
0.2 4.975 -0.011 -0.190 17.944 -0.010 1.059
0.5 12.437 -0.012 -0.069 5.828 -0.010 1.207

With the assumption that practical measurements can be done with an ac-
curacy of, for example, 5%, we decide that a noticeable difference would then
also be approximately 5%.

For τq ≤ 1, we find that r11 ≈ −r1p. However for τq ≈ 5 and τq ≈ 12.5 the
differences are 10% and 20% respectively.

For numerical simulations the value τq = 0.024875 will be used.

6.4 Wane time for C-V model

From the discussion in Section 3.2.1 we know that for the initial condition
u0(x) = 1, a sharp wave front propagates into the specimen. The wave
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front is associated with the “jump” that exists along the line x = t (refer
to Section 3.2.1). This prominent wave front disappears after some time.
We refer to this time as the wane time. We assume that the Fourier and
C-V models will predict the same results at the time that this wave front
disappears.

Our objective is to determine the time instant tw at which the wave front
disappears. As a means to determine this time instant, we consider the
solution of Problem A2, derived in Section 3.3:

w(x, t) = e−γtu(x, t).

The function w(x, t) describes the height of the almost vertical wave front
(see Figure 3.2) whilst e−γt describes the rate at which this wave front dimi-
nishes. It is then proposed that tw is the time t at which e−γt has reduced
to, e.g 1/1000 (a user-specified difference) of its value at t = 0:

tw = −2τq ln(0.001).

Using τq = 0.024875, we find tw = 0.344.

It is also interesting to predict how far into the specimen the wave front will
travel. The dimensionless distance x is calculated from the dimensionless
wave front speed c.

The calculated dimensionless wave front speed is c =
√

α/τq = 0.405 ([TZ98]),
from which the dimensionless penetration distance into the specimen may be
calculated as x = ctw = 0.139. Since α and τq are specimen independent, the
dimensionless penetration depth x is also specimen independent.

6.5 Initial values and convergence in energy

As explained earlier, in the numerical experiments we choose u0(x) = 1 and
ud(x) = 0.

In Chapter 5, it is shown that for appropriately chosen initial values u0(x) and
ud(x), convergence in energy for the series solution can be guaranteed for any
t > 0. The error estimates for the initial values can be used to determine the
number of terms to use in the series approximation of the solutions for the
C-V and Fourier models for any time t > 0.

For the one-dimensional DPL and C-V models, the inertia space is W =
L2(0, 1), and the energy space V ⊂ H1(0, 1). The initial value u0(x) = 1 is
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not an appropriate initial value, as the boundary condition u(0, t) = 0 im-
plies that u0(x) is discontinuous at x = 0 and does not belong to the energy
space V ⊂ H1(0, 1). Therefore the convergence in energy results cannot be
used. However, this initial value can be approximated arbitrarily closely by
the following continuous piecewise linear function uδ(x) that does belong
to V .

uδ(x) =

{

x/δ, 0 ≤ x < δ
1, δ ≤ x ≤ 1

(6.5.1)

In the following numerical investigation accurate approximations for uδ(x)
using the eigenfunctions are determined both in the inertia norm and the
energy norm. The objective of these calculations is to determine an estimate
for the number of terms to use in the series solutions in order to obtain accu-
rate approximations for the solutions of the Fourier, C-V and DPL models.

6.5.1 Inertia norm calculations

The inertia norm for uδ(x) is given by

‖uδ‖2W =
1

δ2

∫ δ

0

x2 dx+

∫ 1

δ

dx = 1− 2δ

3
(6.5.2)

The Fourier coefficients cuδ
k for uδ(x):

cuδ
k = ‖wk‖−1

W (uδ, wk)Ω

=
√
2

(

1

δ

∫ δ

0

x sin νkx dx+

∫ 1

δ

sin νkx dx

)

=
√
2

(−1

νk
cos νkδ +

1

δν2
k

sin νkδ −
1

νk
cos νk +

1

νk
cos νkδ

)

=

√
2

δν2
k

sin νkδ (6.5.3)

Inertia norm error for n terms:

Euδ =

∣

∣

∣

∣

∣

‖uδ‖2W −
n

∑

k=1

(cuδ
k )2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

1− 2δ

3

)

−
n

∑

k=1

(cuδ
k )2

∣

∣

∣

∣

∣

(6.5.4)

Relative inertia norm error for n terms:

Euδ
rel =

∣

∣

∣

∣

‖uδ‖2W −
∑n

k=1(c
uδ
k )2

‖uδ‖2W

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

1− 2δ
3

)

−
∑n

k=1(c
uδ
k )2

1− 2δ
3

∣

∣

∣

∣

∣

(6.5.5)
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6.5.2 Energy norm calculations

u′
δ(x) =

{

1/δ, 0 < x < δ
0, δ < x < 1

(6.5.6)

The energy norm for uδ(x):

‖uδ‖2V =

∫ δ

0

(u′
δ)

2 dx+

∫ 1

δ

(u′
δ)

2 dx =
1

δ
(6.5.7)

The energy norm for the eigenfunction wk(x):

‖wk‖2V =

∫ 1

0

ν2
k cos

2 νkx dx =
ν2
k

2
(6.5.8)

The Fourier coefficients cuδ,V
k for uδ(x) using the energy norm:

cuδ,V
k = ‖wk‖−1

V b∗(uδ, wk)

=

√
2

νk

(
∫ δ

0

u′
δ(x)w

′
k(x) dx+

∫ 1

δ

u′
δ(x)w

′
k(x) dx

)

=

√
2

νk

(

1

δ

∫ δ

0

νk cos νkx dx

)

=

√
2

δνk
sin νkδ (6.5.9)

Energy norm error for n terms:

Euδ,V =

∣

∣

∣

∣

∣

1

δ
−

n
∑

k=1

(cuδ,V
k )2

∣

∣

∣

∣

∣

(6.5.10)

Relative energy norm error for n terms:

Euδ,V
rel =

∣

∣

∣

∣

∣

‖uδ‖2V −
∑n

k=1(c
uδ,V
k )2

‖uδ‖2V

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1− δ

n
∑

k=1

(cuδ,V
k )2

∣

∣

∣

∣

∣

(6.5.11)

Remark

Note that these calculations agree with the Parseval expressions Eq. (5.2.16)
and Eq. (5.2.17):

(

cuδ,V
k

)2

=
2(sin νkδ)

2

δ2ν2
k

= λk (c
uδ
k )2 .
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6.5.3 Approximation errors for uδ

In Table 6.2 the inertia and energy errors and relative errors are presented
for two functions uδ(x) with δ = 0.01 and δ = 0.001.

Clearly, a large number of terms are required to obtain an accurate approxi-
mation for uδ(x), and this means that an equally large number of terms
are required when using the partial sums of the series solutions to obtain
accurate approximations for the solutions of the heat conduction models.

Table 6.2: Approximation errors for uδ

δ n Euδ Euδ
rel Euδ,V Euδ,V

rel

0.01 16 0.007 0.0071 68.88 0.6888
0.01 100 2.763× 10−5 2.782× 10−5 9.718 0.09718
0.01 500 2.705× 10−7 2.723× 10−7 2.022 0.02022

0.001 16 0.0120 0.0120 968.0 0.9680
0.001 100 0.0014 0.0014 802.2 0.8022
0.001 500 3.898× 10−5 3.900× 10−5 226.3 0.2263
0.001 5000 2.705× 10−8 2.707× 10−8 20.22 0.02022

6.5.4 Approximating the initial condition u0(x) = 1

We start by approximating the initial condition u0(x) = 1 to verify the
computational code and to determine how many terms to use in the series
solution approximations.

For the approximation of the initial condition u0(x) = 1, the Fourier coeffi-
cients in Eq. (6.2.21) and the eigenfunctions in Eq. (6.2.3) are used:

u0(x) ≈ fn =
n

∑

k=1

2

νk
sin νkx (6.5.12)

In Figure 6.1 the series approximations f16 for n = 16 and f1000 for
n = 1000 are shown.

For the chosen values of α and τq, the first 16 modes of the C-V model are
overdamped and the other modes are underdamped. We notice that if only
overdamped modes (f16) are used, the approximation oscillates excessively
about u0(x) = 1. If both overdamped and underdamped modes are included
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(f1000), a good approximation is obtained. The difference fdiff indicates the
contribution from the underdamped modes. Clearly including underdamped
modes is essential for obtaining a reasonable approximation for the chosen
initial value u0.

For the DPL model the range of overdamped and underdamped modes differs
from the C-V model case, but the same observation remains true.

The oscillations near x = 0 are expected as we are using a discontinuous
initial condition u0(x) = 1. These oscillations are known as the Gibbs
phenomenon, and are typical of a Fourier series near a point of discontinuity
(in this case at x = 0).

0 0.2 0.4 0.6 0.8 1
x

-0.5

0

0.5

1

1.5

u
f
16

f
1000

f
diff

Figure 6.1: Series approximation for u0(x) = 1.

6.6 Comparison of C-V and Fourier models

In this section the results of numerical simulation of the C-V model are pre-
sented. The numerical experiments are performed using τq = 0.024875 and
α = 0.004073. Note that in these simulations the homogenised temperature
distribution u(x, t) is shown, and not the real temperature distribution
T (x, t) = 1− u(x, t).

As mentioned before, in this case, the first 16 modes of the C-V model are
overdamped, and the other modes are underdamped. This is an important
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fact, as intuitively, the underdamped modes may lead to contradictions with
the second law of thermodynamics.

We approximate the temperature distribution u(x, t) for times t > 0 for the
C-V model. The approximate solution uCV

1000 using n = 1000 terms is shown
in each case, as well as the contribution from the overdamped modes uCV

16 .
The decision to use n = 1000 terms is based on numerical experimentation
and the calculations of approximation errors presented in Table 6.2.

Firstly, we present the results for t = 0.075 since the wave front had enough
time to develop and to be clearly visible. The results predicted by the C-
V model are compared with the Fourier model in Figure 6.2. Where the
Fourier model predicts a smooth rise from 0 to 1, the C-V model predicts a
distinct jump (wave front) in the temperature at x ≈ 0.03. In Figure 6.3, the

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

x

-0.5

0

0.5

1

1.5

u

t = 0.075

u
1000
CV

u
1000
F

Figure 6.2: Spatial temperature distribution at t = 0.075; C-V and Fourier
models.

contribution to uCV
1000 by the overdamped modes and underdamped modes

are presented separately. The contribution from the underdamped modes
uCV
diff is calculated as the difference between uCV

1000 and uCV
16 . An important

observation is that it is essential to include the underdamped modes of the
C-V model in the calculation since these modes capture the wave front. The
contribution uCV

16 from the overdamped modes shows no sign of the wave
front. Increasing t has the effect that the wave front diminishes until it
disappears at approximately t = 0.35 (see Figure 6.4). This corresponds
well with the wane time tw = 0.344 calculated in Section6.4, proving our
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assumption that the Fourier and C-V models will predict the same results
at t = tw. Note that at t = 0.35 the contribution from the underdamped
modes, uCV

diff , is negligible. For smaller values of the time t, the number

0 0.05 0.1 0.15 0.2

x

-0.5

0

0.5

1

1.5

u

t = 0.075

u
16
CV

u
1000
CV

u
diff
CV

Figure 6.3: Spatial temperature distribution at t = 0.075; C-V model.

of terms n has to be increased to sufficiently reduce the effect of the Gibbs
phenomenon. The oscillations are reduced in amplitude when more modes
are used. For instance, for t = 0.01, we have to use n = 2000 in stead of
n = 1000. The spatial progression of the wave front is studied by calculating
u(x, t) at various fixed x points, each time varying the time from t = 0 to
t = 0.35. Figure 6.5 gives the result for x = 0.02. Note the jump in the
uCV
1000 curve at t ≈ 0.05. The arrow indicates the point on the curve that is

considered to be the edge of the wave front. Table 6.3 gives the arrival time
tJ of the wave front at point x, for x ranging between 0.005 and 0.050. A
straight line fit through these data points produces a gradient of 0.404, which
agrees well with the dimensionless wave front speed calculated in Section 6.4
as c =

√

α/τq = 0.405.

6.7 Lag times τq and τ
T

for the DPL model

The lag times τq and τ
T
for the DPL model are also not reliably known. In

Section 6.3 realistic values for the lag time τq for the C-V model are calculated
using the assumption that the solutions for the C-V and Fourier models will
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
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1000
CV

u
diff
CV

Figure 6.4: Spatial temperature distribution at t = 0.35; C-V model.
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Figure 6.5: Temperature profile at x = 0.02; C-V model.

be the same (within a user-specified accuracy) after a sufficiently long time.
The same assumption is used for the solutions of the DPL model.

The differential equation Eq. (5.3.6) for the time dependent function y(t) in
the DPL model can be written in the form

τqy
′′ + (1 + αλτ

T
)y′ + αλy = 0. (6.7.1)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



6.7. LAG TIMES τq AND τ
T

FOR THE DPL MODEL 101

Table 6.3: Arrival time tJ of wave front at position x

x tJ

0.005 0.0099
0.010 0.0223
0.020 0.0470
0.030 0.0718
0.050 0.1214

This form simplifies comparison with the Fourier model in Eq. (5.3.8) and the
C-V model in Eq. (5.3.7). Note that if the dimensionless constant τ

T
≪ 1,

then Eq (6.7.1) is close to Eq. (5.3.7). If both the constants τq ≪ 1 and
τ
T
≪ 1, then Eq (6.7.1) is close to Eq. (5.3.8).

As for the C-V model, the assumption that the Fourier and DPL models give
the same result after a sufficiently long time, means that the solutions of the
two models should be approximately the equal when only the first modes are
used.

For the Fourier model, from Eq. (6.2.17) for k = 1,

yp1(t) = e−r1pt; r1p = αν2
1 . (6.7.2)

For the DPL model, from Eq. (6.2.6) for k = 1,

y1(t) = a1e
r1
1
t + b1e

r1
2
t, (6.7.3)

with

r11 = −γ1 + γ1

√

1− c2ν2
1/γ

2
1

r12 = −γ1 − γ1

√

1− c2ν2
1/γ

2
1 .

At this point, we assume that
c2ν2

1

γ2

1

≪ 1. Using the fact that (1− x)
1

2 can

be approximated by (1− 1
2
x) if x is sufficiently small, we obtain

(

1− c2ν2
1

γ2
1

)
1

2

≈
(

1− c2ν2
1

2γ2
1

)

. (6.7.4)
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Using this approximation yields that

r11 ≈ −c2ν2
1

2γ1

= − αν2
1

1 + αν2
1τT

= −αν2
1 (1 + αν2

1τT )
−1.

At this stage an additional condition is required: αν2
1τT ≪ 1. Using the fact

that (1 + x)−1 can be approximated by (1−x) if x is sufficiently small,
we obtain

r11 ≈ −αν2
1 .

Similarly,

r12 ≈ −2γ1 +
c2ν2

1

2γ1
≈ −2γ1 + αν2

1 .

Consequently, y1(t) may now be approximated by

y1(t) ≈ a1e
−αν2

1
t + b1e

−2γ1teαν
2

1
t.

Since we chose 2γ1 ≫ 1, it follows that e−2γ1t ≈ 0, and therefore

y1(t) ≈ a1e
−αν2

1
t. (6.7.5)

To find the value for a1, the initial values y1(0) = 1 and y′1(0) = 0 are
prescribed, as yp1(0) = 1.

Recall that the objective is to determine realistic values for τq and τ
T
for

the DPL model. The two conditions that ensure that the solutions of the
DPL and Fourier models are the same after a sufficiently long time, are
c2ν2

1/γ
2
1 ≪ 1 and αν2

1τT ≪ 1. We now have to decide exactly how small
these quantities should be. We start with assuming an accuracy ε for both
the quantities. Then an upper bound for τ

T
is calculated from αν2

1τT ≤ ε,
as

τ
T
≤ ε

αν2
1

=
4ε

απ2
. (6.7.6)

From c2ν2
1/γ

2
1 ≤ ε, follows

αν2
1

τqγ2
1

=
4αν2

1τq
(1 + αν2

1τT )
≤ ε,

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



6.8. COMPARISON OF DPL, C-V AND FOURIER MODELS 103

and therefore

τq ≤
ε

απ2

(

1 +
απ2τ

T

4

)2

. (6.7.7)

This means that the upper bound τq ≤ ε/(απ2), used for the C-V model may
be used for the DPL model as well, in order to compare the solutions of the
models. This means that the same value for τq may be used for both the C-V
and DPL models. The value for τ

T
has to be chosen to satisfy Eq. (6.7.6).

6.8 Comparison of DPL, C-V and Fourier

models

The aim is now to compare the results from the DPL model with both the
C-V and Fourier models. We use the values for α and τq as calculated in
Section 6.3: α = 0.004073 and τq = 0.024875 (with ε = 0.001).

In the C-V model, a constant damping constant 2γ is present in the dif-
ferential equation for y(t), but in the case of the DPL model (refer to Sec-
tion 5.3.2), the damping constant increases with the mode number k accord-
ing to:

2γk = 2γ +
τ
T
α

τq
ν2
k

where 2γ = 1/τq. We can simplify the above equation, using c2 = α/τq, to
obtain an expression for γk:

γk = γ +
τ
T
c2ν2

k

2

The values of γ and c2 are already fixed by τq and the choice of α. We
now proceed to calculate a suitable value for τ

T
. We consider two cases for

the DPL model: firstly where both over- and underdamped modes are al-
lowed and secondly, where only overdamped modes are allowed. Appropriate
assumptions are required to find suitable values for τ

T
for these two cases.

6.8.1 DPL-I model

Both overdamped and underdamped modes are allowed in this case. We refer
to this case as “DPL-I”.

For the problem investigated in Section 6.6, we have that the modes of the
C-V model are overdamped up to k = 16 (γ > cνk for k = 1, 2, . . . , 16).
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Therefore, for the modes of the DPL model

γk = γ +
τ
T
c2ν2

k

2
> cνk, for k = 1, 2, . . . , 16 (6.8.1)

This means that the value of γ ensures that the modes of the DPL model
are overdamped, at least up to k = 16.

We use the assumption that mode 17 of the DPL model is also overdamped
to find a suitable value for τ

T
. Assuming

γ17 > cν17

provides the condition

τ
T
>

2(cν17 − γ)

c2ν2
17

, (6.8.2)

With τq = 0.024875 and α = 0.004073, we determine that τ
T
= 0.0041782 is

the smallest value that will ensure that the first 17 modes of the DPL model
are overdamped.

Whether the higher modes of the DPL model are over- or underdamped is
determined by the damping criterion c2ν2

k/γ
2
k . From Figure 6.6 it can be

seen that the modes from k = 18 to k = 360 are underdamped (i.e.
where c2ν2

k/γ
2
k > 1), whilst the remaining modes, k < 18 and k > 360, are

overdamped. Figure 6.7 shows the temperature distribution for the DPL-I
model, calculated for t = 0.075. It is interesting to compare these results
with those obtained for the Fourier model and the C-V model. Combining
results from Figure 6.2 and 6.7 into one graph, Figure 6.8, we observe that
the DPL-I model predicts a temperature distribution that has a shape very
similar to that of the Fourier model. The DPL-I model does however predict
that the maximum temperature is reached closer to the x = 0 boundary
than is the case for the Fourier model. This means that, compared to the
Fourier model, the DPL-I model predicts a slower spatial progression of the
heat wave into the medium. Recall that the true temperature is given by
T (x, t) = 1 − u(x, t). If we compare Eq. (2.2.6) and (2.2.7), representing
the C-V and DPL models respectively, note that if τ

T
≈ 0, the DPL-I

model prediction will approach that of the C-V model. This observation is
supported by the discussion in Section 5.3.2). In Figure 6.9 the solutions
for the DPL-I model with τ

T
= 0.0001 and the C-V model are compared

at t = 0.075. With this choice of τ
T
, the underdamped modes range from

k = 17 to k = 15 716.

For the DPL-I model the damping constant γk for the underdamped modes
increases with mode number, in contrast to the C-V model where the dam-
ping constant is γ. Even a small lag time τ

T
generates a significant reduction
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Figure 6.7: Spatial temperature distribution at t = 0.075; DPL-I model.

in the Gibbs oscillations (as seen in Figure 6.9) due to the increased damping
of the higher modes. In Section 6.4 we make the assumption that the Fourier
and C-V models will predict the same results at t = tw (where tw is the wane
time). We test this assumption by calculating the results at t = tw = 0.35,
including the DPL-I model in the comparison (Figure 6.10). We see that the
difference between the respective model predictions is negligible, indicating

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



106 CHAPTER 6. COMPARISON OF HEAT CONDUCTION MODELS

-0.05 0 0.05 0.1 0.15 0.2

x

0

0.2

0.4

0.6

0.8

1

1.2

u

t = 0.075

u
360
DPL

u
1000
CV

u
1000
P

Figure 6.8: Spatial temperature distribution at t = 0.075; Fourier, C-V and
DPL-I models.
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Figure 6.9: Spatial temperature distribution at t = 0.075; C-V and DPL-I
models, with τ

T
= 0.0001.

that the wane time tw can be used to estimate the time instant at which the
DPL-I model will correspond to the Fourier model prediction.
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Figure 6.10: Temperature profiles at t = tw = 0.35.

6.8.2 DPL-II model

Only overdamped modes are allowed in this case. We rewrite Eq. (6.8.1) in
quadratic form:

τ
T
c2

2
ν2
k − cνk + γ > 0. (6.8.3)

As before, since the values of c2 and γ are fixed by the choice of τq and α,
it is left to determine τ

T
such that the inequality (6.8.3) is satisfied. From

the discriminant of this inequality it follows that

τ
T
>

1

2γ
. (6.8.4)

In order for all the modes of the DPL model to be overdamped, it is required
that

τ
T
≥ τq.

Figure 6.11 shows that with τ
T
≥ τq, only overdamped modes are present for

all k. Choosing τ
T
= τq, only overdamped modes are used to calculate the

partial sum for the DPL model. We chose n = 1000. Once again there are
oscillations present in the vicinity of the x = 0 boundary. The amplitude of
the oscillations are smaller than those found in the DPL-I results. We present
the results for the Fourier, the C-V and the DPL-II models at t = 0.075
in Figure 6.12. Comparing Figure 6.12 with Figure 6.8, we see that the
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DPL-II model predicts the maximum temperature at the same position in
the specimen as does the Fourier model.

We are interested in comparing the DPL-II model with the Fourier and C-V
models at t = tw. The result is given by Figure 6.13. As is the case with
the DPL-I model (Figure 6.10), there is no observable difference between the
respective model predictions, and the wane time tw can be used to estimate
the time instant at which the DPL-II model will correspond to the Fourier
model prediction.

In summary, if 0 < τ
T
< τq, we have the DPL-I case, and if 0 < τq < τ

T
,

we have the DPL-II case. It is convenient to define δ ≡ τ
T
/τq – then

0 < δ < 1 indicates the DPL-I model and δ ≥ 1 indicates the DPL-II
model. Recalling our discussion in Section 2.5.2, 0 < δ < 1 implies that
the temperature gradient precedes the heat flux vector, and δ ≥ 1 that the
temperature gradient follows after the heat flux vector.

6.9 Single-pulse problem

We use a numerical case study, involving a single heat pulse applied to a
boundary of a one-dimensional specimen, to compare the DPL and C-V mo-
dels with the Fourier model. The assumption is that the results, as predicted
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Figure 6.12: Spatial temperature distribution at t = 0.075; Fourier, C-V
and DPL-II models.
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Figure 6.13: Temperature profiles at t = tw = 0.35.

by the C-V and DPL models, will approach that of the Fourier model after
some time t has elapsed. The main aim is therefore to test this assumption
and not to develop a full, realistic mathematical model of an actual physical
process, e.g. the heating of a thin metal film with a laser pulse.

We now formulate a mathematical model for the physical problem where a
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single heat pulse is applied to the boundary of a specimen. Another assump-
tion is made here: all the heat is absorbed at the boundary at x = 0.

6.9.1 Single-pulse problem for C-V model

The mathematical model is given by

∂2
t T + 2γ ∂tT = c2 ∂2

xT (6.9.1)

T (0, t) =

{

1, 0 ≤ t < tp
0, t ≥ tp

∂xT (1, t) = 0

T (x, 0) = 0

∂tT (x, 0) = 0.

where 2γ = 1/τq, c2 = α/τq and tp is the time instant at which the pulse
is stopped. The boundary condition T (0, t) = 1 for t < tp corresponds to
when the heat pulse is applied to the boundary, and T (0, t) = 0 for t ≥ tp
corresponds to when the heat pulse is stopped. The boundary condition
T (0, t) = 0 may be regarded as not being realistic since it implies that the
temperature of the specimen immediately returns to its original temperature
when the heat source is removed, but it can be justified based on the original
assumption that the heat is only absorbed at x = 0. Refer to the discussion
in Section 2.6.

The strategy used here is to divide this problem into two problems corres-
ponding to the different boundary conditions at x = 0.

Problem 1: T (0, t) = 1 (0 ≤ t < tp)

As before, an equivalent problem with homogeneous boundary conditions is
required. Let u(x, t) = 1− T (x, t). Then

∂2
t u+ 2γ ∂tu = c2 ∂2

xu (6.9.2)

u(0, t) = 0

∂xu(1, t) = 0

u(x, 0) = 1

∂tu(x, 0) = 0

The results derived in Section 6.2.7 may then be applied to solve for u and
consequently for T . Setting uk(x, t) = yk(t)wk(x) and applying separation
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of variables result in

u(x, t) =

∞
∑

k=1

bkyk(t)wk(x), (6.9.3)

with

u(x, 0) =

∞
∑

k=1

bkwk(x).

T (x, t) = 1− u(x, t) is the general solution for Eq. (6.9.1) when 0 ≤ t < tp.

Problem 2: T (0, t) = 0 (t ≥ tp)

We denote the general solution to Problem 2 by T̃ (x, t). The values for
T (x, tp) and ∂tT (x, tp) now become the initial conditions for Problem 2.
We write this as

T̃ (x, tp) = 1− u(x, tp)

and

∂tT̃ (x, tp) = −∂tu(x, tp).

Problem 2 is now formulated as

∂2
t T̃ + 2γ ∂tT̃ = c2 ∂2

xT̃ (6.9.4)

T̃ (0, t) = ∂xT̃ (1, t) = 0

T̃ (x, tp) = T (x, tp) = 1− u(x, tp)

∂tT̃ (x, tp) = ∂tT (x, tp) = −∂tu(x, tp),

Our strategy to solve T̃ (x, t) relies on continuing to use u(x, t) (for t ≥ tp).
We define Q(x, t) = T̃ (x, t) + u(x, t). Then T̃ (x, t) = Q(x, t)− u(x, t) will
satisfy the partial differential equation (6.9.4).

Q(x, t) is then the solution of

∂2
tQ + 2γ ∂tQ = c2 ∂2

xQ (6.9.5)

Q(0, t) = ∂xQ(1, t) = 0

Q(x, tp) = 1

∂tQ(x, tp) = 0,

For t ≥ tp then, Q(x, t) = u(x, t− tp) and it follows that

T̃ (x, t) = u(x, t− tp)− u(x, t). (6.9.6)
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6.9.2 Single-pulse problem for DPL model

The general solution for the DPL model has the same form as for the C-V
model:

T̃ (x, t) = u(x, t− tp)− u(x, t). (6.9.7)

The results of Sections 6.2.2 and 6.2.7 are applied to solve for u(x, t).

6.9.3 Single-pulse problem for Fourier model

The single-pulse problem is described by the following mathematical model

∂tT = α ∂2
xT (6.9.8)

T (0, t) =

{

1, 0 ≤ t < tp
0, t ≥ tp

∂xT (1, t) = 0

T (x, 0) = 0

The solution strategy used for the C-V model, is applied here.

Problem 1: T (0, t) = 1 (0 ≤ t < tp)

Let u(x, t) = 1− T (x, t). Then

∂tu = α ∂2
xu (6.9.9)

u(0, t) = 0

∂xu(1, t) = 0

u(x, 0) = 1

The results derived in Section 6.2.7 may then be applied to solve for u(x, t) and
consequently for T (x, t).

Problem 2: T (0, t) = 0 (t ≥ tp)

We denote the general solution to Problem 2 by T̃ (x, t). The value for
T (x, tp) now becomes the initial conditions for Problem 2. The derivation
of the solution is similar to Problem 2 for the C-V model.
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Problem 2 is now formulated as

∂tT̃ = α ∂2
xT̃ (6.9.10)

T̃ (0, t) = ∂xT̃ (1, t) = 0

T̃ (x, tp) = T (x, tp) = 1− u(x, tp).

Defining Q(x, t) = T̃ (x, t) + u(x, t), Q(x, t) is then the solution of

∂tQ = α ∂2
xQ (6.9.11)

Q(0, t) = ∂xQ(1, t) = 0

Q(x, tp) = 1,

and it follows that

T̃ (x, t) = u(x, t− tp)− u(x, t). (6.9.12)

6.10 Single-pulse problem: numerical

investigation

In this section, the solutions of the single-pulse problem for the Fourier, the
C-V and the DPL models are compared. Our interest lies in how the different
models predict the temporal and spatial behaviour of a heat pulse. Since the
Fourier model assumes that heat transfer is instantaneous, i.e. there is no
lagging effect, it is expected that the Fourier model will predict lower peak
temperatures than those predicted by the C-V and DPL models. To test
this theory, it is necessary to determine the comparative magnitudes of the
predicted peak temperatures as well as the positions x where such peaks
occur within the specimen at different times t.

All temperature profiles for T (x, t) are calculated with dimensionless spatial
increments ∆x = 0.0001 and using n = 3000 terms. As before, the values
for the models parameters are given by α = 0.0040732, τq = 0.024875, and
τ
T
= 0.0041782 (DPL-I) and τ

T
= 0.024875 (DPL-II), unless otherwise

indicated.

6.10.1 Temperature distributions at t = tp

In order to observe how the temperature profile predictions of the C-V and
DPL models differ from the temperature profiles predicted by the Fourier
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model we need to decide on a suitable value for the dimensionless pulse
length tp. If tp is too long, there will be no distinction between the results
from the respective models. In Section 6.4, this time instant (referred to as
the wane time tw) is estimated as tw = 0.344. In Section 6.6, we estimate
the time when the results of the C-V model are approximately the same as
those of the Fourier model to be t ≈ 0.35. We did this by observing when the
thermal wave front, characteristic of the C-V model, is no longer visible on
the graph of the temperature distribution. See Figure 6.4 in Section 6.6. The
pulse length tp should be considerably shorter than 0.35. We found through
numerical experimentation that tp = 0.075 is a suitable value.

Before we start with the comparison, we first need to validate our numerical
method. The solutions of Problem 1 for the models (Fourier, C-V, DPL-I and
DPL-II) are presented and discussed in Sections 6.6 and 6.8. The solutions
for the different models at t = tp = 0.075 are shown in Figure 6.14. Recall
that the solutions of Problem 1 are obtained by solving an equivalent problem
with homogenous boundary conditions, and then setting T (x, t) = 1−u(x, t).
See Figure 6.8 and 6.12 for the graphs of u(x, t) at t = 0.075. These

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

x

-0.5

0

0.5

1

1.5

T

tp = 0.075

Fourier: t = t
p

C-V: t = t
p

DPL-I: t = t
p

DPL-II: t = t
p

Figure 6.14: Spatial temperature distribution at tp = 0.075; Fourier, C-V,
DPL-I, DPL-II.

temperature profiles are used as initial values for Problem 2. Note that for
all these profiles T (0, tp) = 1. This means that there is again a discontinuity
(resulting in the Gibbs phenomenon) at x = 0, as the boundary condition
is given by T (0, t) = 0.

We start with the Fourier model. The temperature profiles for the Fourier
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model are calculated using the solution for Problem 2 at time t = tp and the
solution for Problem 2 at time t = tp + 0.0005, that is 0.0005 time units
after the pulse is switched off. See Figure 6.15.

As expected, oscillations are present near x = 0 for the case t = tp due to
the discontinuity. These oscillations are due to the Gibbs phenomenon, since
the oscillations diminish when more modes are used. Also, as expected for
the parabolic partial differential equation, even after the short time interval
up to tp + 0.0005, the temperature profile has smoothed out. A similar
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Figure 6.15: Spatial temperature distribution at t = tp and t = tp + 0.0005;
Fourier model.

calculation for the C-V model yields the temperature profiles at t = tp and
t = tp + 0.0005 as shown in Figure 6.16. There are hardly any difference
between these profiles, and the profiles compare well with the solution for
Problem 1 at t = tp as shown in Figure 6.14. The expected sharp wave
front is clearly visible at approximately x = 0.03. A similar validation
is done for both cases of the DPL model, and the results are displayed in
Figure 6.17 and 6.18. For these models there are no visible difference between
the temperature profiles at t = tp and t = tp +0.0005. As with the Fourier
and C-V models, the Gibbs oscillations near x = 0 is a feature in these
profiles.

This concludes the validation of our numerical method.
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Figure 6.16: Spatial temperature distribution at t = tp and t = tp + 0.0005;
C-V model.
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Figure 6.17: Spatial temperature distribution at t = tp and t = tp + 0.0005;
DPL-I model.

6.10.2 Comparing the C-V and Fourier models

We start with the C-V model. We choose a fixed pulse length tp = 0.075 and
examine the temperature profile at two time instances after the pulse has
stopped: t = tp + 0.025 and t = tp + 0.05.
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Figure 6.18: Spatial temperature distribution at t = tp and t = tp + 0.0005;
DPL-II model.

The C-V model predicts a sharp wave front close to the x = 0 boundary. The
wave front is associated with the accumulation of heat energy in a localized
area (or narrow strip) in the specimen due to the lagging behaviour. For
t = tp + 0.025, the wave front edge is at x ≈ 0.04 (Figure 6.19), whilst for
t = tp + 0.05 it is at x ≈ 0.05 (Figure 6.20). The peak temperature drops
from about 0.8 to about 0.55 as t increases from 0.025 to 0.05. Note that the
peak is significantly higher than the prediction of the Fourier model.

The C-V model under-predicts the temperature (compared to the Fourier
model), in the region left of the wave front. To the right of the wave front,
the specimen remains at its initial temperature. If we continue to increase t,
the wave front moves further into the specimen, with its peak reduced, until
it matches the temperature profile of the Fourier model, as was predicted
earlier in Section 6.6. Another feature of the C-V model is the presence of
oscillations at the two points of discontinuity e.g. when the pulse starts and
stops. The oscillations are not visible at the right edge due to the scaling of
the graph.

6.10.3 Comparing the DPL and Fourier models

In contrast to the C-V model, the DPL-I model predicts a smooth peak,
progressing along the specimen. This peak is significantly higher and more
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Figure 6.19: Spatial temperature distribution at t = tp + 0.025; C-V vs
Fourier model.
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Figure 6.20: Spatial temperature distribution at t = tp+0.05; C-V vs Fourier
model.

localised than the prediction of the Fourier model. For t = tp + 0.025 (Fig-
ure 6.21), the temperature is over-predicted close to the x = 0 boundary and
then under-predicted after a short distance, when compared to the Fourier
model. For t = tp + 0.05 (Figure 6.22), close to the x = 0 boundary (left of
the peak), the DPL-I model corresponds very well with the Fourier model.
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To the right of the peak, the DPL-I model under-predicts slightly when com-
pared to the Fourier temperature profile. The peak temperatures for the two
models appear at approximately the same positions.
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Figure 6.21: Spatial temperature distribution at t = tp + 0.025; Fourier vs
DPL-I model.
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Figure 6.22: Spatial temperature distribution at t = tp + 0.05; Fourier vs
DPL-I model.

The DPL-II model is represented by Figures 6.23 and 6.24. In this case
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the peak temperatures predicted by the DPL-II model is also higher than
those predicted by the Fourier model, but the peak temperatures appear at
positions much closer to the boundary at x = 0.

We notice another distinct feature: The Fourier, C-V and DPL-I models
satisfy the boundary condition at x = 0 of Problem 2, but for the DPL-II
model a significant jump still appears near x = 0. The discontinuity in
the temperature at x = 0 has not been resolved at t = tp + 0.025 or at
t = tp +0.05, but the jump in temperature is reducing as the time increases.

When the value for τ
T

is increased, the dissipative nature of the heat con-
ducting process is enhanced, and the ability of the thermal wave to conduct
heat energy into the specimen is reduced. Therefore, for the DPL-II model
the discontinuity in the temperature at x = 0 when the heat pulse is
stopped, requires considerable time before the discontinuity is resolved.
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Figure 6.23: Spatial temperature distribution at t = tp + 0.025; Fourier vs
DPL-II model.

6.10.4 Temperature changes at a fixed position

One of the advantages of using the series solutions to generate approximate
solutions, is that it is straightforward to gain insight into the temporal be-
haviour of the Fourier, C-V, DPL-I and DPL-II models.

We start off by investigating how the temperature changes with time t, at
a fixed position x = 0.02 in the specimen. A prerequisite for comparing the
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Figure 6.24: Spatial temperature distribution at t = tp + 0.05; Fourier vs
DPL-II model.

models is to ensure that the pulse length is long enough to allow all three
models to predict similar peak temperatures. Numerical experimentation
confirmed that tp = 0.075 is sufficiently long. Figure 6.25 shows the pre-
dicted temperatures for the Fourier, C-V, DPL-I and DPL-II models, using
the pulse length tp = 0.075. Recall that for 0 < t < tp = 0.075, the heat
pulse is on, and at t = tp = 0.075 the pulse is stopped.

Figure 6.25 shows how the temperature changes with time t, at a fixed
position x = 0.02 (number of modes n = 3000 ). For all the models the
temperature T at x = 0.02 is initially at zero, as prescribed by the initial
condition. A first observation is that the onset of the increase in temperature
at x = 0.02 happens at different times for the different models.

For the Fourier model, the temperature starts to increase close to t ≈ 0, and
when the heat pulse is stopped at t = tp = 0.075 the temperature starts to
drop smoothly.

The C-V model predicts the longest delay for the onset of the temperature
increase. At t ≈ 0.05, the sharp thermal wave front reaches the point
x = 0.02 and the expected sharp rise in temperature is observed. Note that
after t = tp = 0.075 when the heat pulse has been stopped, the increase in
temperature continues for a while longer. The temperature reaches a peak
value at t ≈ 0.125 when the thermal wave has moved past x = 0.02 and
then a sharp drop in temperature is observed. After that the temperature
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Figure 6.25: Temperature profiles at x = 0.02; Fourier, C-V, DPL-I and
DPL-II models.

predicted by the C-V model approaches the value predicted by the Fourier
model.

The DPL-I has a later onset of the temperature increase than the DPL-II
model. Both the DPLmodels predict that the peak temperatures at x = 0.02
are reached some time after the heat pulse is stopped. The DPL-I model pre-
dicts a peak temperature comparable to that of the C-V model, but achieved
at an earlier time. The peak temperature predicted by the DPL-II model is
lower than that of the other models. The temperature predicted by the DPL
models, also approach the value predicted by the Fourier model, as expected.
At time t = 0.35 the temperatures predicted by the different models are all
equal.

Sketching the graphs in Figure 6.25 required careful consideration of the
calculations of the approximate solutions for the models. For the C-V and
DPL models, using T (x, t) = 1 − u(x, t) for the solutions for Problem 1
resulted in a small jump at t = tp between the solutions of Problem 1
and Problem 2. Replacing the solution for Problem 1 by T (x, t) = u0(x)−
u(x, t) ensures continuity at t = tp. In this case, all the expressions in the
solutions are approximated using the same number of terms in the partial
sum approximations.

The temporal behaviour of the models exhibit one of the key differences
between the Fourier (parabolic) model, and the C-V and DPL (hyperbolic)
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models. When the pulse is stopped, the Fourier model predicts an almost im-
mediate decrease in temperature, while the hyperbolic models predict further
increases in temperature before a sharp (C-V model) or slow (DPL model)
decrease in temperature. For the Fourier model, the peak temperature, at
the fixed position x = 0.02, is achieved close to the time t = tp, and for
the C-V and DPL models, the peak temperatures are achieved some time
after the heat pulse has been stopped. This phenomenon is expected, as the
boundary condition

∂tT̃ (x, tp) = −∂tu(x, tp) 6= 0

for Problem 2 of the C-V and DPL models, means that the thermal wave
contains momentum at t = tp, that causes an increase in temperature even
after the heat pulse has stopped.

Closer to the boundary, at the point x = 0.005 (as shown in Figure 6.26)
the maximum temperatures predicted by the models are higher than at x =
0.02. We observe that the DPL-II model also predicts a decrease starting
almost directly after t = tp, although the drop is less sharp than for the
other models. Next we investigate the effect of using a fixed position x very

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

t

-0.5

0

0.5

1

1.5

T

tp = 0.075

x = 0.005

Fourier
C-V
DPL I
DPL II

Figure 6.26: Temperature profiles at x = 0.005; Fourier, C-V, DPL-I and
DPL-II models.

close to the boundary at x = 0. At the point x = 0.001 the predicted
temperatures, obtained by using n = 3 000 terms, are shown in Figure 6.27.
Clearly these predictions are not acceptable approximate solutions as three of
the models (Fourier, C-V and DPL-I) predict maximum temperature values
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greater than 1. It is therefore necessary to increase the number of modes n
when predicting the temperature values near the x = 0 boundary. We use the
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Figure 6.27: Temperature profiles at x = 0.001; Fourier, C-V, DPL-I and
DPL-II models, with n = 3 000.

approximation errors for uδ(x) in Table 6.2 as a guideline for determining
the number of modes to use. For uδ(x) with δ = 0.001 the relative energy
norm error εuδ,V

rel = 0.02022 ≈ 2% when using n = 5 000 modes.

As u0(x) = uδ(x) = 1 for 0.001 < x ≤ 1, this means that at least
5 000 modes are required for a good approximation of u0(x) = 1. We
determine through numerical experimentation that the number of modes
required to achieve accurate temperature predictions is n = 10 000. Note
that the relative energy norm error εuδ,V

rel when using n = 10 000 modes,
is 0.0101 ≈ 1%. The predicted temperatures are shown in Figure 6.28. In
summary, we observe that close to the boundary at x = 0 all four models
predict an immediate drop in temperature after the pulse is stopped. We also
observe that the closer a point is to the boundary at x = 0, the more similar
are the temperature predictions of the Fourier, C-V and DPL-I models. The
DPL-II model predicts a slower increase in temperature, as well as a slower
decrease after the pulse is stopped.
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Figure 6.28: Temperature profiles at x = 0.001; Fourier, C-V, DPL-I and
DPL-II models, with n = 10 000.

6.10.5 Effect of τ
T

on temperature profiles

For the DPL model y is the solution of

y′′ + (2γ + 2γατTλ) y
′ + c2λy = 0, (6.10.1)

and for the C-V model y is a solution of

y′′ + 2γy′ + c2λy = 0. (6.10.2)

If τ
T
≈ 0, the DPL-I model approaches the C-V model. This is verified

in Section 6.8.1 by choosing τ
T

= 0.0001 in the DPL-I model, and then
comparing the solutions of the C-V and DPL-I models at t = 0.075. See
Figure 6.9. Note that in this case the first 16 modes of both the C-V and
DPL-I models are overdamped.

For the solutions of the heat pulse problem the same observation holds. We
start with the spatial profiles. In Figure 6.29 the solutions of the single-pulse
problem at time t = tp + 0.025 is shown for both the C-V and DPL-I model.
The two solutions compare well, except that the solution of the DPL-I model
is much smoother. Even the small lag time τ

T
= 0.0001 generates a significant

reduction in the Gibbs oscillations at the two points of discontinuity. This is
due to the increased damping of the underdamped modes of the DPL-I model,
as explained in Section 6.6. The time temperature profiles for the C-V and
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Figure 6.29: Spatial temperature distribution at t = tp + 0.025; C-V vs
DPL-I model, with τ

T
= 0.0001.

DPL-I models, at x = 0.02, for τ
T
= 0.0001, are shown in Figure 6.30.

In this case, the profile of the DPL-I model also resembles that of the C-V
model, with the main difference being that the DPL-I profile is smooth.
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Figure 6.30: Temperature profiles at x = 0.02; C-V vs DPL-I model, with
τ
T
= 0.0001

For comparison, the spatial temperature profiles for the C-V, DPL-I and
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DPL-II models, at t = tp + 0.025 are shown in Figure 6.31. For DPL-I,
τ
T
= 0.0041782 and for DPL-II τ

T
= 0.024875 ( δ ≡ τ

T
/τq = 1 ). Recall that,

as calculated in Section 6.8.1, for τ
T
< 0.0041782 only the first 16 modes for

the DPL-I model are overdamped. The value τ
T
= 0.0041782 is the smallest

value for which the 17−th mode of the DPL-I model is also overdamped. It
is therefore an appropriate value for τ

T
to use for investigating the difference

between the C-V and DPL-I models.

As the same value for τq is used in both models, it also means that c2 (and γ)
has the same values in Eq. (6.10.1) and (6.10.2). We expect that the C-V
and DPL-I models will predict similar rates for the progression of heat energy
into the specimen. This can be motivated by the fact that the wave front
speed c calculated for the C-V model (Section 6.4), is equal to the wave speed
for the DPL-I model, since both models use the same dimensionless values
for α and τq.

For the DPL-II model, the value of τ
T
ensures that all the modes are over-

damped. In this case a slower spatial progression of the heat wave into the
specimen is expected. From the spatial profile, Figure 6.31, it can be seen how
the maximum predicted temperature lags behind that of the C-V and DPL-I
models. In fact, what we see from calculating time profiles at different fixed x
positions (Figure 6.32, 6.33 and 6.34), is that the heat wave decelerates into
the specimen, compared to the C-V and DPL-I models. Furthermore we see
that the predicted peak temperatures for the DPL-I model are slightly lower
than those of the C-V model, whereas the peak temperatures for DPL-II
model are significantly lower. Choosing δ = 2 (τ

T
= 2τq) leads to a sig-

nificant change in the predicted spatial profile. The temperature gradually
decreases with x, with the jump at x = 0 still evident (Figure 6.35), and with
the temperature at x = 0, slightly higher. The time profile, Figure 6.36 for
x = 0.02, shows the peak temperature at a lower level.
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Figure 6.31: Spatial temperature distribution at t = tp +0.025; C-V, DPL-I
and DPL-II models.
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Figure 6.32: Temperature profiles at x = 0.005; C-V, DPL-I vs DPL-II
models.

6.11 Conclusion

In this chapter, it is shown that the modal analysis of the hyperbolic heat
conduction models, as presented in Chapter 5, provides an effective approach
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Figure 6.33: Temperature profiles at x = 0.01; C-V, DPL-I and DPL-II
models.
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Figure 6.34: Temperature profiles at x = 0.02; C-V, DPL-I vs DPL-II model.

for finding approximate solutions. These approximate solutions are expressed
as partial sums of series solutions, and are used for investigating and com-
paring the properties of the hyperbolic heat conduction models with that of
the Fourier model.

A key result is that this approach allows one to determine a range of realistic
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Figure 6.35: Spatial temperature distribution at t = tp + 0.025; C-V vs
DPL-II model, with δ = 1 and δ = 2.
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Figure 6.36: Temperature profiles at x = 0.02; C-V vs DPL-II model with
δ = 1 and δ = 2.

values for the dimensionless lag times τq and τ
T
based on the assumption that

the Fourier model yields physically realistic results after sufficient time, and
that the temperatures predicted by the hyperbolic models should be close to
those of the Fourier model at that time.
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Approximating the solutions of the respective models by partial sums requires
careful consideration of the number of terms to use. To be confident that
the comparisons between the models are valid and that genuine properties of
the solutions are identified, the accuracy of the partial sum approximations
had to be established. As the initial value for the model problems is a dis-
continuous function, the Gibbs phenomenon has a considerable effect on the
predicted temperatures near the points of discontinuity. The discontinuous
initial temperature distribution is successfully approximated by a continuous
piecewise linear function that belongs to the energy space. The number of
terms required in the partial sums is obtained through the calculation of the
energy norm error for this function, and we show that the approximation
error does not grow as time increases. We use these calculations in nume-
rical experiments and confirm that it is indeed efficient in determining the
required number of terms/modes to use for a particular problem.

The comparison between the different models focusses on how each model
behaves close to x = 0, how the peak temperatures compare, and how the
heat pulse propagates into the specimen.

The results from comparing the models include the following observations:

• We confirm that after a sufficiently long time, the predictions from the
C-V and DPL models correspond to those of the Fourier model.

• The prominent thermal wave front expected for the C-V model is ob-
served.

• Both over- and underdamped modes are required for accurate predic-
tions for the C-V and DPL-I models.

• If τ
T
≪ 1, then the temperatures predicted by the DPL-I model ap-

proach those predicted by the C-V model, but with a smooth profile.

• The DPL-II stands out in that it does not resolve the discontinuity at
x = 0.

In the next chapter we extend the solution strategy for the single-pulse pro-
blem to find a solution for the multi-pulse problem. Numerical experiments,
based on two physical applications, are performed to illustrate the effective-
ness of using truncated modal series solutions for multi-pulse problems.
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Chapter 7

Multi-pulse problems

7.1 Introduction

In Chapter 6 we compare the Fourier model with the C-V and DPL models
for the cases where continuous and single-pulse heating are applied to the
boundary surface of the specimen. The aim of this chapter is to investigate
how the modal series solutions that are derived in Chapter 6 can be adapted
to the case of multi-pulse heating. Furthermore, we want to show that these
solutions can be used to investigate heat transfer in two physical applications,
namely thermoreflectance and bio-heating, where the multi-pulse heating
parameter values differ significantly.

In Section 7.2 we briefly introduce these applications and identify the relevant
heat pulse parameters used in these multi-pulse heating applications. The
parameters include the duration of a single pulse (called the pulse width tp),
the separation time between the start of subsequent pulses (called the pulse
period τp) and the duty ratio rd = tp/τp. We provide typical parameters from
thermoreflectance and bio-heating experiments. These applications provide
a wide range of values for the duty ratio for the physical scenarios in our
numerical experiments.

Section 7.3 introduces dimensionless versions of the multi-pulse problem for
the one-dimensional Fourier, C-V and DPL models. It follows that the pa-
rameters used in the numerical experiments are limited to the lag times
τq and τ

T
and thermal diffusivity α of the specimen, and the pulse width

tp and pulse period τp of the heat source. The lag times are estimated
using the method described in Section 7.3.4.

In Section 7.4 we consider multi-pulse problems for the Fourier, C-V and
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DPL models. We start with parameter values as in Section 6.9 to be able
to compare the properties of the temperature profiles for multi-pulse heating
with those of single-pulse heating. The effect of the pulse period τp and
the number of pulses m is also investigated. We then investigate typical
scenarios, first from thermoreflectance (Section 7.5), and then from bio-heat
applications (Section 7.6). For these applications, we use time-scaling factors
(e.g. diffusion time and half-time) suitable to the physical scenario at hand
to convert to the dimensionless problems. This simplifies the interpretation
of results, and illustrate the flexibility of the series solution approximation.

Finally, Section 7.7 contains some concluding remarks.

7.2 Multi-pulse heating parameters

As mentioned already, the models introduced in Chapter 1 are routinely
used to model heat transfer problems. Typical heat sources include various
types of lasers or radio-frequency sources. The heat may be delivered to a
specimen, either continuously, or in a pulsed fashion. The pulsed techniques
are divided into single-pulse or multi-pulse techniques.

We choose to highlight two applications in our discussion of heating pa-
rameters: a measurement technique for the thermal diffusivity of thin film
specimens (thermoreflectance), and bio-heating. The aim is to use parame-
ters that represent extremes of e.g. pulse widths, pulse periods and thermal
diffusivity values, in order to investigate how the different models predict
heat transfer. Pulse widths can range from a few hundred femtoseconds (in
the case of thermoreflectance) to a few hundred milliseconds (in the case
of bio-heating), and thermal diffusivity values of specimens subject to bio-
heating are typically much lower than those studied in thermoreflectance
measurements. It must be stressed that we are not attempting to duplicate
results reported in the fields of thermoreflectance and bio-heating, but rather
to compare the different models, using our modal solution strategy.

The thermoreflectance technique is used to determine the thermal diffusi-
vity α for metal and semiconductor thin films ([BTY11] [TBO01] [Bab10]
[TBO99] [TYB09] [NTYB11]). Thermoreflectance infers the change in sur-
face temperature of a specimen from the measured change in reflectivity of
the specimen surface. The thin film thicknesses typically range from less
than 100 nm to a few microns.

Typical experimental arrangements used are: heating the front surface whilst
measuring the change in reflectance from the front surface; or heating the rear
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surface whilst measuring the change in reflectance from the front surface. The
latter configuration is similar to the laser flash method ([PJBA61] [Bab10]
[AHZCB13]) in the sense that one surface is heated, whilst the opposite
surface is probed to record the temperature rise over time. The general
assumption is that heat transfer is governed by diffusion. The Fourier model
is therefore used to derive a theoretical profile for the temperature rise at
the rear face of the specimen. This temperature-rise is represented by the
half-time t

1/2
, which is the time required for the rear surface to reach half

its maximum temperature rise. Another quantity used to characterise the
temperature rise, is the heat diffusion time td, i.e the time required for
the heat to diffuse across the specimen. It is related to the half-time by
td = t

1/2
/0.1388. The thermal diffusivity is calculated from

α = d2/td, (7.2.1)

where d is the specimen thickness.

The lasers used in thermoreflectance setups are distinguished mainly by the
duration of each single-pulse, and the separation time between consecutive
pulses. We will refer to the pulse duration as the pulse width tp and the
separation time as the pulse period τp. Laser pulse widths range from about
100 fs to a few nanoseconds and pulse periods range from nanoseconds to
several microseconds. Another useful parameter is the duty ratio defined as
rd = tp/τp. In practice, the laser pulses are not applied indefinitely but are
applied to the specimen for a finite time so that one could refer to a pulse-train
consisting of m number of pulses. One of the first successful femtosecond
thermoreflectance experiments were performed on gold specimens. The re-
ported value for the thermal diffusivity of gold is α = 1.2495× 10−4 m2s−1

[BFI62].

In bio-heating, heating of the specimen is achieved by either continuous or
multi-pulse heating. In multi-pulse heating the duty ratio rd is used to
control the amount of heat delivered to a target area or volume within a spe-
cimen. Bio-heat applications rely on controlling the heat delivery to ensure
that the tissue surrounding the treated area is not damaged by heat accumu-
lation ([MYSY21] [SK20] [YA20]). Ma et al [MYSY21] describes a numerical
bio-heat experiment, where the pulse width tp used, is either 0.3 s or 0.5 s,
and the pulse period τp is 1 s, yielding a duty ratio rd = tp/τp = 0.3 or 0.5.
A typical value for the thermal diffusivity of blood is 5.881× 10−8m2 s−1.

Similar to Chapter 6 where we investigate the cases of constant and single-
pulse heating, we want to determine how the individual model predictions
will compare in the multi-pulse case.
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7.3 Multi-pulse models

In this section, we formulate one-dimensional models for the case where mul-
tiple heat pulses are applied to the boundary of a specimen. We show how
the modal solutions for single-pulse models, as derived in Section 6.9, can be
adapted to solve these multi-pulse models. As was the case with the single-
pulse model, we will not develop a full, realistic mathematical model of an
actual physical process, and we retain the assumption that all the heat is
absorbed at the boundary at x = 0.

7.3.1 Multi-pulse problem for the C-V and

DPL models

The multi-pulse problem is similar to the single-pulse problem, with the
difference that the heat pulse is modelled using a step function with multiple
pulse cycles for the temperature T (0, t) at the boundary.

To simplify the formulation of the multi-pulse problem and also the im-
plementation of our numerical calculations, we define a pulse cycle as a
”pulse ON” followed by a ”pulse OFF” event. The first ”pulse ON” starts
at t = 0 and stops at t = t1. The first ”pulse OFF” stops at t = t2. To be
consistent with laser terminology, the pulse width is tp = t1 and the pulse
period is τp = t2 (i.e. the total duration of ”pulse ON” and ”pulse OFF”).
For a pulse-train consisting of m pulse cycles, the boundary condition at
x = 0 is given by

T (0, t) =







1, tn−1 ≤ t < tn
0, tn ≤ t < tn+1

0, t ≥ t2m

(7.3.1)

with t0 = 0 and n = 1, 3, 5, . . . (2m− 1).

Solving the multi-pulse problem for the first pulse cycle is done in the same
way as for the C-V, DPL and Fourier model (refer to Sections 6.9.1 to 6.9.3.
Note however that Problem 2 is formulated on a finite time interval. We use
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the DPL model to illustrate the solution strategy:

∂2
t T + 2γ ∂tT − τ

T
c2 ∂t∂

2
xT = c2 ∂2

xT (7.3.2)

T (0, t) =







1, tn−1 ≤ t < tn
0, tn ≤ t < tn+1

0, t ≥ t2m

∂xT (1, t) = 0

T (x, 0) = 0

∂tT (x, 0) = 0

where 2γ = 1/τq, c2 = α/τq and tp is the pulse width. To solve this
model, we start by considering the time interval 0 ≤ t < tp and use the
notation T1(x, t) for the temperature T (x, t) restricted to this interval.

Problem 1 (”pulse ON”): T1(0, t) = 1 (0 ≤ t < t1 = tp)

To use the separation of variables method, we need to homogenize the boun-
dary value by setting u1(x, t) = 1 − T1(x, t) and then solve the equivalent
problem (Problem 1) for u1(x, t). Problem 1 is formulated as

∂2
t u1 + 2γ∂tu1 − τ

T
c2∂t∂

2
xu1 = c2∂2

xu1, 0 < x < 1, 0 < t < tp (7.3.3)

u1(0, t) = 0

∂xu1(1, t) = 0

u1(x, 0) = 1

∂tu1(x, 0) = 0.

As in Section 6.9.2, the solution for Problem 1 is given by T1(x, t) = 1 −
u1(x, t), for 0 ≤ t < t1, where u1(x, t) is the solution of the homogenized
problem. The series representation of u1(x, t) is derived in Sections 6.2.2
to 6.2.5 using modal analysis.

Remark: In the remainder of this section, we show that the solutions of all
further subproblems can be expressed in terms of the function u1(x, t). This
is a key feature of the methodology used for simulating temperature profiles
for the multi-pulse problems.

Problem 2 (”pulse OFF”): T2(0, t) = 0 (t1 ≤ t < t2 = τp)

We denote the solution to Problem 2 by T2(x, t). The values for T1(x, t1) and
∂tT1(x, t1) now become the initial conditions for Problem 2.
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As in Sections 6.9.1 and 6.9.2, Problem 2 is formulated as

∂2
t T2 + 2γ ∂tT2 − τ

T
c2 ∂t∂

2
xT2 = c2 ∂2

xT2 (7.3.4)

T2(0, t) = ∂xT2(1, t) = 0

T2(x, t1) = T1(x, t1) = 1− u1(x, t1)

∂tT2(x, t1) = ∂tT1(x, t1) = −∂tu1(x, t1)

To solve for T2(x, t) we use u1(x, t) for t ≥ t1 and define Q1(x, t) =
T2(x, t) + u1(x, t). Then T2(x, t) = Q1(x, t) − u1(x, t) satisfies Eq. (7.3.4)
and Q1(x, t) is the solution of

∂2
tQ1 + 2γ ∂tQ1 − τ

T
c2 ∂t∂

2
xQ1 = c2 ∂2

xQ1 (7.3.5)

Q1(0, t) = ∂xQ1(1, t) = 0

Q1(x, t1) = 1

∂tQ1(x, t1) = 0

Equation (7.3.5) is the same as Eq. (7.3.3), except that the initial conditions
are specified at t = t1. From the linearity of the partial differential equation,
it consequently follows that for t ≥ t1, Q1(x, t) = u1(x, t− t1) and therefore

T2(x, t) = u1(x, t− t1)− u1(x, t), (7.3.6)

or, alternatively,

T2(x, t) = T1(x, t) + u1(x, t− t1)− 1. (7.3.7)

The function T2(x, t) is the solution for Problem 2 for t1 ≤ t < t2, but as
the function T2(x, t) is defined for all t it can be used in the expressions
for the solutions associated with the subsequent pulses.

For the second pulse cycle, as for the first cycle, two subproblems, Problem 3
and Problem 4, are considered for the ”pulse ON” and ”pulse OFF” events.

Problem 3 (”pulse ON”): T3(0, t) = 1 (t2 ≤ t < t3 = τp + tp)

The values for T2(x, t2) and ∂tT2(x, t2) are the starting values for Problem 3:

∂2
t T3 + 2γ ∂tT3 − τ

T
c2 ∂t∂

2
xT3 = c2 ∂2

xT3 (7.3.8)

T3(0, t) = 1

∂xT3(1, t) = 0

T3(x, t2) = T2(x, t2) = u1(x, t2 − t1)− u1(x, t2)

∂tT3(x, t2) = ∂tu1(x, t2 − t1)− ∂tu1(x, t2)
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To homogenize this problem, we set

T3(x, t) = 1− u2(x, t).

Problem 3 is equivalent to

∂2
t u2 + 2γ ∂tu2 − τ

T
c2 ∂t∂

2
xu2 = c2 ∂2

xu2 (7.3.9)

u2(0, t) = 0

∂xu2(1, t) = 0

u2(x, t2) = 1− [u1(x, t2 − t1)− u1(x, t2)]

∂tu2(x, t2) = −[∂tu1(x, t2 − t1)− ∂tu1(x, t2)]

To solve for u2(x, t) we continue using T2(x, t) for t ≥ t2 and define
Q2(x, t) = u2(x, t) + T2(x, t).

Then Q2(x, t) is a solution of

∂2
tQ2 + 2γ ∂tQ2 − τ

T
c2 ∂t∂

2
xQ2 = c2 ∂2

xQ2 (7.3.10)

Q2(0, t) = ∂xQ2(1, t) = 0

Q2(x, t2) = 1

∂tQ2(x, t2) = 0

and can be expressed in terms of u1(x, t).

For t2 ≤ t < t3:

u2(x, t) = Q2(x, t)− T2(x, t)

= u1(x, t− t2)− [u1(x, t− t1)− u1(x, t)]

The solution for Problem 3 is given by

T3(x, t) = 1− {u1(x, t− t2)− [u1(x, t− t1)− u1(x, t)]} , (7.3.11)

or, alternatively,

T3(x, t) = 1− u1(x, t− t2) + T2(x, t). (7.3.12)

Problem 4 (”pulse OFF”): T4(0, t) = 0 (t3 ≤ t < t4 = 2τp)

We denote the solution of Problem 4 by T4(x, t). The values for T3(x, t3) and
∂tT3(x, t3) become the initial conditions for Problem 4:

∂2
t T4 + 2γ ∂tT4 − τ

T
c2 ∂t∂

2
xT4 = c2 ∂2

xT4 (7.3.13)

T4(0, t) = ∂xT4(1, t) = 0

T4(x, t3) = T3(x, t3) = 1− u2(x, t3)

= 1− {u1(x, t3 − t2)− [u1(x, t3 − t1)− u1(x, t3)]}
∂tT4(x, t3) = ∂tT3(x, t3) = −∂tu2(x, t3)

= −{∂tu1(x, t3 − t2)− [∂tu1(x, t3 − t1)− ∂tu1(x, t3)]}
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As before, to solve for T4(x, t) we continue using u2(x, t) for t ≥ t3 and
define Q3(x, t) = T4(x, t) + u2(x, t).

Then T4(x, t) = Q3(x, t)− u2(x, t) will satisfy Eq. (7.3.13) and Q3(x, t) is
the solution of

∂2
tQ3 + 2γ ∂tQ3 − τ

T
c2 ∂t∂

2
xQ3 = c2 ∂2

xQ3 (7.3.14)

Q3(0, t) = ∂xQ3(1, t) = 0

Q3(x, t3) = 1

∂tQ3(x, t3) = 0

For t ≥ t3, Q3(x, t) = u1(x, t− t3) and it follows that

T4(x, t) = u1(x, t− t3)− {u1(x, t− t2)− [u1(x, t− t1)− u1(x, t)]} , (7.3.15)

or
T4(x, t) = T3(x, t) + u1(x, t− t3)− 1. (7.3.16)

The solutions for Problems 1 to 4 can be summarised as:

T1(x, t) = 1− u1(x, t) (t0 ≤ t < t1)

T2(x, t) = T1(x, t) + u1(x, t− t1)− 1 (t1 ≤ t < t2)

T3(x, t) = 1− u1(x, t− t2) + T2(x, t) (t2 ≤ t < t3)

T4(x, t) = T3(x, t) + u1(x, t− t3)− 1 (t3 ≤ t < t4)

For a pulse train with m pulse cycles the solution is given by a sequence of
functions

Tn(x, t) = 1− u1(x, t− tn−1) + Tn−1(x, t) (tn−1 ≤ t < tn)

(7.3.17)

Tn+1(x, t) = Tn(x, t) + u1(x, t− tn)− 1 (tn ≤ t < tn+1)

for n = 1, 3, 5, . . . , 2m− 1.

Note that T0(x, 0) = 0 and that T2m(x, t) is defined for t ≥ t2m−1.

For the multi-pulse problem for the C-V model, set τ
T
= 0 in Eq. (7.3.2)

and all subsequent problems.

7.3.2 Multi-pulse problem for the Fourier model

We solve the multi-pulse problem for the Fourier model in the same way as
the C-V and DPL models, even though the partial differential equation is a
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diffusion equation. For the multi-pulse problem, the boundary condition at
x = 0 for the single-pulse problem (Eq. (6.9.8)), has to be adapted, similar
to Eq. (7.3.1), so that the multi-pulse Fourier model is given by

∂tT = α ∂2
xT (7.3.18)

T (0, t) =







1, tn−1 ≤ t < tn
0, tn ≤ t < tn+1

0, t ≥ t2m

∂xT (1, t) = 0

T (x, 0) = 0

with t0 = 0 and n = 1, 3, 5, . . . (2m− 1).

Problem 1 (”pulse ON”): T1(0, t) = 1 (0 ≤ t < t1)

As before, the problem is homogenized by setting u1(x, t) = 1−T1(x, t). This
problem is solved using separation of variables, and T1(x, t) = 1−u1(x, t) is
the solution for Eq. (7.3.18) when 0 ≤ t < t1. The series representation for
u1(x, t) is derived in Section 6.2.5.

Problem 2 (”pulse OFF”): T1(0, t) = 0 (t1 ≤ t < t2)

We denote the solution to Problem 2 by T2(x, t). The value for T1(x, t1) is
the initial condition for Problem 2.

Problem 2 is formulated as

∂tT2 = α ∂2
xT2 (7.3.19)

T2(0, t) = ∂xT2(1, t) = 0

T2(x, t1) = T1(x, t1) = 1− u1(x, t1)

As before, to solve for T2(x, t) we use u1(x, t) for t ≥ t1. We define
Q1(x, t) = T2(x, t) + u1(x, t). Then T2(x, t) = Q1(x, t) − u1(x, t) satisfies
Eq. (7.3.19).

Q1(x, t) is the solution of

∂tQ1 = α ∂2
xQ1 (7.3.20)

Q1(0, t) = ∂xQ1(1, t) = 0

Q1(x, t1) = 1

For t ≥ t1, Q1(x, t) = u1(x, t− t1) and it follows that

T2(x, t) = u1(x, t− t1)− u1(x, t). (7.3.21)

The solution for the subsequent pulse cycles are derived in the same way as
in Section 7.3.1 and are given by Eq. (7.3.17).
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7.3.3 Series solution

For the numerical investigation of the multi-pulse problem, the series repre-
sentation of the solutions u1(x, t) for the Fourier, C-V and DPL models are
required. This section contains a short summary of these series representa-
tions as derived in Section 6.2.

All three models have the same associated eigenvalue problem, and the eigen-
functions (normalised with respect to the norm of the square integrable func-
tions) are given by

wk(x) = sin νkx with νk =
(2k − 1)π

2
for k = 1, 2, . . . . (7.3.22)

The series representation for the solution u1(x, t) follows as

u1(x, t) =
∞
∑

k=1

yk(t)wk(x) (7.3.23)

where yk(t) must be determined for each of the three models. The initial
condition u1(x, 0) = 1 is used for all three models, and it is easy to check
that

yk(0) =

∫ 1

0

u1(0, t)wk(x) dx =
2

νk
. (7.3.24)

The additional initial condition ∂tu1(x, 0) = 0, yielding y′k(0) = 0 is required
for the C-V and DPL models.

Fourier model:

We solve first order linear differential equations to find

yk(t) =

√
2

νk
e−rkt with rk = αν2

k . (7.3.25)

DPL model:

The DPL model is a second order hyperbolic differential equation, and we
use the terminology from vibration analysis to describe properties of the
eigenfunctions (or modes). We introduce the notation γk = γ + τ

T
c2ν2

k and
consider two cases for the modes: the overdamped case (γ2

k > c2ν2
k) and the

underdamped case (γ2
k < c2ν2

k).

In the overdamped case, let rk1 = −γk+
√

γ2
k − c2ν2

k , rk2 = −γk−
√

γ2
k − c2ν2

k

and rk = rk2/r
k
1 . Then

yk(t) = ak

(

er
k
1
t − 1

rk
er

k
2
t

)

with ak = −
√
2rk

νk(1− νk)
. (7.3.26)
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In the underdamped case, let ωd
k =

√

c2ν2
k − γ2

k. Then

yk(t) = cke
−γkt

(

cosωd
kt+

γk
ωd
k

sinωd
kt

)

with ck =

√
2

νk
. (7.3.27)

When computing the series solution in Eq. (7.3.23) for the DPL model it
must be checked for each k, whether Eq. (7.3.26) or Eq. (7.3.27) applies.

For the DPL model the constitutive equation is given by

q(x, t + τq) = −∂xT (x, t+ τ
T
),

where q is the heat flux and ∂xT the temperature gradient. A linear
approximation of this constitutive equation is used to derive the model. For
the numerical simulations in Sections 7.4 to 7.6, we distinguish between two
cases. For 0 < τ

T
< τq, the temperature gradient precedes the heat flux

vector [Tzo97]. We refer to this case as DPL-I. In this case, the first modes
are overdamped, followed by some underdamped modes, and then all the
remaining modes are overdamped. For 0 < τq < τ

T
the temperature

gradient follows after the heat flux vector. We refer to this case as DPL-II,
and note that all the modes are overdamped. The case where τ

T
= τq, is a

special case, and in [Tzo97, Section 2.5] Tzou identifies this as a case where
heat transfer occurs by diffusion. We include this special case with DPL-II,
as all the modes are overdamped. It is convenient to define δ ≡ τ

T
/τq –

then 0 < δ < 1 indicates the DPL-I model and δ ≥ 1 indicates the DPL-II
model. For the special case where δ = 1, we expect the DPL-II model to
display diffusive behaviour, i.e. similar to the Fourier model.

C-V model:

For the C-V model, we choose τ
T
= 0 in Eq. (7.3.26) and Eq. (7.3.27).

This means that γk = γ for all k.

For the C-V model, the first modes are overdamped, but all higher modes
are underdamped at the same rate e−γt.

7.3.4 Parameter values for numerical investigation

The first issue is to decide on the number of terms n to use for the finite sum
approximations for u1(x, t). In the simulations we use the discontinuous
initial condition u1(x, 0) = 1. Recall that this is the same initial conditon
used in the continuous and single-pulse heating cases in Chapter 6. We
therefore follow the same procedure as described in Section 6.5. We use error
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estimates as a guideline for the relative approximation error and determine
the number of modes n by deciding on an acceptable relative approximation
error. For n = 3000 modes, the relative approximation error (in the norm
of the square integrable functions) is less than 4×10−5, and we will use this
value in most of the simulations. Note that the required number of modes
does not depend on the values of the parameters α, τq and τ

T
, as these

parameters do not appear in the eigenfunctions.

Secondly, the value for the dimensionless thermal diffusivity α∗ is required,
which depends on t0, the time scaling factor for the dimensionless time
variable. For the simulations in Section 7.4, we use the value for t0 as
chosen for the continuous and single-pulse simulations in Chapter 6. This
allows for easy comparison with the multi-pulse problems. We recall from
Section 2.8.1 that at t0, the fundamental modal solution for the Fourier
model has decreased by 1%. We have

t0 = −4 ln(0.99)d2

π2α
≈ 0.0040732

d2

α
(7.3.28)

and consequently, the dimensionless thermal diffusivity follows as

α∗ =
t0α

d2
= 0.0040732. (7.3.29)

It is easy to use a different reference time t0. In Section 7.5, for simula-
tions linked to a thermoreflectance example, we use the diffusion time td as
reference time. In this case,

t0 = td =
d2

α
with α∗ = 1. (7.3.30)

In Section 7.6, we consider bio-heat applications and use the half-time t
1/2

as
reference time which yields

t0 = t
1/2

=
d2

α
with α∗ = 0.1388. (7.3.31)

In all cases, due to the choice of t0, the value for α∗ is independent of the
specimen thickness d and the thermal diffusivity α.

Thirdly, values for the dimensionless lag times τ ∗q and τ ∗
T

are required. In
Sections 6.3 and 6.7 we derive upper bounds,

τ ∗q ≤ ε

α∗π2
and τ ∗

T
≤ 4ε

α∗π2
(7.3.32)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



7.4. COMPARISON WITH SINGLE-PULSE PROBLEM 145

for the lag times, with ε ≪ 1 a user specified accuracy. Using ε = 0.001, we
obtain the value τ ∗q = 0.024875. The value for τ ∗

T
is chosen in such a way

that sensible comparisons between the DPL and C-V models are possible. We
obtain τ ∗

T
= 0.0041782 for the DPL-I model, and τ ∗

T
= τ ∗q = 0.024875 for

the DPL-II model. These values for the lag times are used in Section 7.4.

For the numerical investigations related to the thermoreflectance example
in Section 7.5 and the bio-heat application in Section 7.6, we seek values of
the lag times that result in distinct differences between the different model
predictions. When deciding on the values for τ ∗q and τ ∗

T
, we ensure that

values remain within an acceptable range. The upper bounds given in Eq.
(7.3.32) are used, however, ε has to be specified in a consistent and realistic
way. This is done by choosing a value for ε, finding r11 and rF1 respectively,
and calculating the percentage fractional difference 100 × |(rF1 − |r11|)/rF1 |.
We decide on a maximum allowable percentage of approximately 10% and
consistently use this value to ensure that for each choice of ε, the values for
τ ∗q and τ ∗

T
remain within an acceptable range.

7.4 Comparison with single-pulse problem

In the remaining sections all variables and parameters are dimensionless and,
for convenience, we return to using the original notation. Where physical
parameters are referred to, it will be clear from the context, and the units
are given.

Our investigation of the multi-pulse problem starts by finding the solutions
for the Fourier, C-V and DPL models with the values for the dimension-
less parameters as in Section 6.9, so that the single-pulse problems and
the multi-pulse problems can be compared. These parameter values are:
α = 0.0040732, τq = 0.024875, τ I

T
= 0.0041782 (DPL-I model) and

τ II
T

= τq = 0.024875 (DPL-II model). In this case δII = 1. We use fi-
nite sum approximations of the series solutions, with n = 3000 modes, to
find temperature distributions. These temperature profiles are temporally
calculated at a fixed position in the specimen over time. In particular, we
investigate the effects of changing the pulse period τp and the number m of
pulse cycles in the pulse-train on the solutions.

Before starting with the investigation, we want to determine how accurately
the temperature pulse mimics the incident heat pulse, at positions close
to x = 0. In Section 6.10.4 we mention that at positions close to the
x = 0 boundary, it is necessary to increase the number of modes n to ensure
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accurate predictions. We find through experimentation that at x = 0.001,
at least n = 30000 modes are required to ensure an accurate solution. Fig-
ure 7.1, with the pulse width tp = 0.075 and the pulse period τp = 0.15,
shows that for all the models, except the DPL-II model, the temperature pro-
file closely resembles the incident step heat pulse. The DPL-II temperature
profile gradually ramps up, reaches a slightly lower maximum temperature
value, and gradually decreases again. This deviation from the step pulse is
expected considering the strong damping built into the DPL-II model.
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Figure 7.1: Temperature profiles at x = 0.001, close to the boundary

Figure 7.2 shows the temperature profiles for a three-pulse problem, calcu-
lated at a fixed position x = 0.02. The C-V temperature profile is charac-
terised by sharp thermal wave fronts, that distinguish it from the profiles of
the other models. Small amplitude Gibbs oscillations are present near these
sharp wave fronts. (Using more modes reduces the amplitude of the Gibbs
oscillations; this is also true near the discontinuities.)

The instant when the temperature at x = 0.02 starts to rise, also differs for
the respective models. The Fourier and DPL-II models predict an immediate
rise in temperature, followed by the DPL-I model. The C-V model however
predicts a fairly long delay, compared to the other models, followed by a
sudden jump in the temperature at the arrival of the thermal wave front.
As expected, the temperature profiles for the first pulse cycle agree with the
profiles for the single-pulse models in Figure 6.25.

Similar for each model, is the increase in the peak temperature value with
each consecutive pulse. This is to be expected since the temperature does
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not decrease to its original zero level before the next pulse is incident on the
specimen. The most noticeable difference between the models is the difference
in predicted peak temperatures. The highest temperatures are predicted by
the C-V model, followed by the DPL-I, then Fourier, and lastly the DPL-II
model. The difference does however reduce with each consecutive pulse. The
time t at which the peak temperatures are reached also differ according to
the model used. From first to last we have the Fourier, DPL-II, DPL-I and
C-V model.

As anticipated, a sufficiently long time after the final pulse, the temperatures
predicted by the four models are equal.
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Figure 7.2: Temperature profiles at x = 0.02 for 3-pulse problem

Another interesting observation is obtained by choosing the fixed position
x deeper into the specimen. Calculating the temperature profiles at say
x = 0.075 (Figure 7.3) shows that the three pulses are starting to merge.
However, the merging effect is less for the DPL-I model, and for the C-V
model three distinct pulses are still clearly visible.

These properties of the temperature profiles agree with the physics of heat
transfer. In the derivation of the heat transfer models in Section 6.9.1, we
assume that all the optical energy is absorbed at x = 0. The absorbed energy
increases the internal energy of the heat carriers in the surface region of the
specimen. Initially, the gradient is small and therefore the diffusion of energy
from the surface to the interior is slow. This results in a swift temperature
rise in the surface region. Through interaction between the heat carriers,
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the temperature gradient gradually increases with time, thereby promoting
diffusion of energy from the surface to the interior. The diffusion process
is slower than the absorption and the distinction between individual pulses
becomes less with increasing x. The heat energy is distributed throughout
the specimen resulting in a temperature level that is lower than the initial
level in the surface region ([SYS07] [Yil12]).
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Figure 7.3: Temperature profiles at x = 0.075 showing merging of pulses

Next we investigate the effect of the pulse period on the temperature profiles.
In Section 6.8 (Figures 6.10 and 6.13) it is shown that for the single-pulse
problem, the four models predict the same temperatures from about t = 0.35.
To determine the effect of the pulse period τp on the model predictions, we
therefore increase the pulse period τp to 0.35, while keeping the pulse width
unchanged at tp = 0.075. The reason for this choice is to determine the effect
when enough time elapses between consecutive pulses, for the temperature to
return to zero before the next pulse starts. We then compare the temperature
profiles at x = 0.02 with those in Figure 7.2 where τp = 0.15.

Two properties are worth mentioning. Firstly, for the longer pulse period,
the peak pulse heights increase at a slower rate. This is to be expected since
more time is available for the temperature to decrease to a lower level before
the arrival of the next pulse. We see in Figure 7.4 that all four models pre-
dict approximately the same temperature when the next pulse arrives, i.e.
temperature values are within about 3 % of each other. In Figure 7.2 there
are still significant differences between the model predictions when the next
pulse arrives. Secondly, the solutions of the Fourier and DPL-I models start
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to agree well before the arrival of the next pulse. This agreement between
the solutions of these two models did not occur for the case τp = 0.15 in Fig-
ure 7.2. The pulse period τp also has an effect on the merging of individual
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Figure 7.4: Temperature profiles at x = 0.02 with increased pulse period
τp = 0.35

pulses. Repeating the calculation with the same parameters as for Figure 7.3,
but increasing the pulse period to τp = 0.35 ( rd = 0.075/0.35 = 0.214 ), we
see that the merging is reduced, and that three distinct temperature pulses
are visible for all four temperature profiles (Figure 7.5). The peak pulse
heights are also lower, compared to Figure 7.3. At a fixed point x deeper
into the specimen, merging of the pulses will again be more prominent.

Next, we want to investigate the effect of increasing the number of pulses
m. In Figure 7.4, we have tp = 0.075 and τp = 0.35. For three pulses,
the heating duration is 2τp + tp = 0.775. If the pulse period is reduced
to τp = 0.175 whilst keeping tp fixed, the duty ratio is doubled ( rd =
0.075/0.175 = 0.429 ). To keep the heating duration unchanged, we increase
the number of pulses from m = 3 to m = 5.

Using the DPL-I profile as reference we see that the maximum temperature
has increased from T ≈ 0.52 in the 3-pulse case (Figure 7.4) to T ≈ 0.59 in
the 5-pulse case (Figure 7.6). The other models show similar behaviour. This
is due to the higher duty ratio for the 5-pulse case, implying that more heat
energy is injected into the specimen during the heating stage. The increase
in peak temperature per pulse is higher in the 5-pulse case.
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Figure 7.5: Merging of peaks at x = 0.075 with increased pulse period
τp = 0.35
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Figure 7.6: Temperature profiles at x = 0.02 for 5-pulse problem with fixed
heating duration

If we do not restrict the heating duration and increase the number of pulses to
m = 20, with tp = 0.075 and τp = 0.175, the peak temperatures gradually
ramp up as shown in Figure 7.7. For instance, the peak temperatures for
the DPL-I solution reaches a plateau value of T ≈ 0.63, which is not much
higher than the maximum after 5 pulses shown in Figure 7.6.
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Figure 7.7: Temperature profiles at x = 0.02 for 20-pulse problem; reaching
a plateau

Increasing the pulse period τp while keeping the pulse width tp unchanged,
decreases the duty ratio rd. Decreasing rd reduces the heat energy injected
into the specimen, and will lead to lower peak temperatures and lower plateau
values. We illustrate this effect with examples based on bio-heating in Sec-
tion 7.6.

All the previous temperature profiles are calculated at a fixed point x in
the interior of the specimen. In some applications the spatial temperature
distribution is required, and in particular, the effect of the number of pulses
on the temperature profile is of importance. The modal series solutions can
be used to find spatial temperature distributions across the specimen at a
fixed time t. This will be discussed in Section 7.6.

7.5 Thermoreflectance case study: low duty

ratio rd

The case we investigate here relates to femtosecond thermoreflectance ex-
periments carried out on metal thin films. See, for instance, [Tzo97] and
[Bro90] for early contributions. In a typical setup the front face is heated by
the laser, while the rear surface is probed to determine the change in reflec-
tion, from which the change in temperature is determined. We choose a gold
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thin film specimen with thickness d = 50 nm, and with thermal diffusivity
α = 1.2495× 10−4 m2s−1. A typical laser pulse width is tp = 0.1 ps.

For the dimensionless models, the front face is at x = 0 and the rear face
at x = 1. For this example, we use the diffusion time as the time scaling
factor, with t0 = td = d2/α = 20 ps. The diffusion time is a concept
that is well-known within the international materials metrology community,
concerned with the measurement of thermophysical properties of materials
([BTY11][Bab10]), and it is easy to accommodate this different time scaling
factor in the modal series solutions.

The following values are obtained for the dimensionless parameters with the
new time scaling. Using Eq. (7.3.29) we calculate the dimensionless thermal
diffusivity as α = 1. The dimensionless pulse width is given by tp =
0.1/20 = 0.005. The pulse period τp = 5 is chosen to ensure that, for each
model, subsequent pulse heights at a fixed interior point are almost equal.
This means that the duty ratio is therefore rd = tp/τp = 0.001.

The aim in this section is to study numerical examples where, at least ini-
tially, there is a distinct difference between the different model predictions.
The lag times are determined by experimentation in order to achieve this.
The experimentation is done using Eq. (7.3.32), with ε = 0.125 and check-
ing that the percentage fractional difference 100×|(rF1 −r11)/r

F
1 |, introduced

in Section 7.3.4, remains less than 10%.

The values τq = 0.012665, τ I
T

= 0.002868 (DPL-I model) and τ II
T

=
0.037995 (DPL-II model) are obtained. We have the lag time ratios δI =
τ I
T
/τq = 0.22645 and δII = τ II

T
/τq = 3.0. These lag time values are used

in Figures 7.8 to 7.10. We focus on two aspects: the characteristics of the
temperature pulses, specifically the pulse width and pulse height behaviour,
and the effect of values used for the lag times, τq and τ

T
, and consequently δ.

7.5.1 Characteristics of temperature pulses and wave

fronts

Figure 7.8 shows the solutions for the four models, for three pulse cycles.
Due to the low duty ratio (i.e. rd ≪ 1 ) no merging of pulses is observed.
Three distinct pulses are predicted to reach the rear face at x = 1. Since
the pulse period τp is long enough, the temperatures decrease to almost
the same near zero value for all four the models before the next pulse starts.
Subsequent pulses are therefore almost identical. The most noticeable feature
of the temperature profile is the relatively high peak heights, and the narrow
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peak widths (although not clearly visible in the figure) of the C-V model
compared to the other three models.
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Figure 7.8: Temperature T at x = 1 showing 3 almost identical pulses.
τq = 0.012665; τ I

T
= 0.002868 ( δI = 0.2265 ); τ II

T
= 0.037995 ( δII = 3 )

In Figure 7.9 we display the solutions for the first pulse only (observed at
x = 1 ), in order to investigate the distinction between the different models
in more detail. The DPL-I model predicts a pulse height higher than the
Fourier model and the DPL-II model a pulse height lower than the Fourier
model. The C-V model predicts a pulse more than three times the height
of the DPL-I model. We also see that the DPL-II model predicts that the
pulse arrives at x = 1 earlier, than for the Fourier model, and that the
C-V model predicts the longest delay. To the right of the wave front, the
C-V model coincides almost perfectly with the DPL-I model. After reaching
their respective maximum temperatures, the model predictions coincide from
t ≈ 0.4. We can assume that from this time onwards, up to the start of the
next pulse cycle, the transfer of heat in the specimen occurs by diffusion.

The maximum temperature values are relatively low at x = 1, i.e. ∼ 10−2.
Compared to the boundary condition T (0, t) = 1, this implies an almost
hundred-fold reduction in the temperature across the specimen. Analysing
the numerical values in Figure 7.9, we see that the temperature pulse width
predicted by the C-V model equals the original heat pulse width tp = 0.005.
At the same time, the other models predict a temporal pulse broadening up
to about t = 2.5. This conservation of the pulse width and the sharp wave
fronts, is in accordance with the theory of the C-V model [OT94] [Tzo97]. In
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contrast to the C-V model, the pulse shapes predicted by the other models
skew to the right.

Although not typically of interest in thermoreflectance, the large reduction
in temperature across the specimen, prompts us to investigate the predicted
temperature profiles in the interior of the specimen. Figure 7.10 shows the
respective temperature profiles at x = 0.2. The maximum temperature
values are approximately an order of magnitude higher than the values at
x = 1. Calculating the temperature profiles at various x positions (results
not shown here), shows that pulse width broadens with x (except for the
C-V model), with a simultaneous decrease in pulse height. By comparing
Figure 7.9 and Figure 7.10, we also notice that the pulse skewing increases
with x.

Since the endpoint at x = 1 is insulated we expect that the thermal energy
delivered at x = 0 by the pulsed source, will be conserved within the speci-
men, i.e. the area under the temporal profile will remain at a constant value.
Following from our discussion in Section 6.9.1, the heat energy E delivered
to (and therefore transferred through) the specimen by a single laser pulse
is given by E =

∫ tp
0

P
peak

dt, where P
peak

is the laser peak power. Since
we model the heat pulse as a temperature step function, we can say that
∫ τp
0

T (0, t)dt (with T (0, t) defined in Eq. (7.3.1)) represents the amount
of heat transferred into the specimen. With tp = 0.005 in the present

numerical example, we have
∫ τp
0

T (0, t)dt =
∫ tp
0

T (0, t) dt = 0.005. For the
temperature profiles in Figures 7.9 and 7.10, the areas under the profile from
t = 0 to t = τp = 5 are calculated using numerical integration. Two obser-
vations are made: firstly, for a given x position, the areas for the respective
models are equal at ≈ 0.005, and secondly, the area remains constant at a
value of ≈ 0.005, irrespective of the x position.

The modal analysis summary in Section 7.3.3 provides an explanation for the
pulse broadening and skewing of the pulse profile in the case of the C-V and
DPL-I models. For the C-V model, from Equations (7.3.22), (7.3.23) and
(7.3.27) (with γk = γ) the contribution to the series solution for u1(x, t) by
the k-th mode is given by

2

νk
e−γt

(

cosωd
kt+

γ

ωd
k

sinωd
kt

)

sin νkx. (7.5.1)

We consider only the underdamped modes since propagation speeds are not
associated with overdamped modes. A standard trigonometric identity shows
that

cosωd
kt sin νkx =

1

2

(

sin(νkx+ ωd
kt) + sin(νkx− ωd

kt)
)

. (7.5.2)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



7.5. THERMOREFLECTANCE CASE STUDY: LOWDUTY RATIO rd155

From standard wave theory, the function sin(νkx− ωd
kt) represents a wave

that is propagating to the right at a speed ωd
k/νk and sin(νkx + ωd

kt) a
wave propagating to the left at the same speed. The product sinωd

kt sin νkx
can be expressed in a similar way. Therefore, for each of the underdamped
modes of the C-V model, the propagation speed associated with the k-th
mode is given by

ωd
k

νk
= c

√

1− γ2

c2ν2
k

= c

√

1− 1

4ατqν2
k

< c, (7.5.3)

and
ωd
k

νk
→ c =

√

α/τq when k → ∞. (7.5.4)

As the limit is approached from below, the wave front speed for the C-V
model is given by c =

√

α/τq as stated by [TZ98] and others. For the cur-
rent parameter values only the first mode of the C-V model is overdamped,
and the propagation speeds associated with the underdamped modes quickly
approach c. Hardly any pulse broadening occurs as the individual contri-
butions to the series solution from the underdamped modes are propagated
at almost the same speed. All the underdamped modes are damped by the
same factor e−γt and the shape of the temperature pulse is also retained,
but with a reduction in the height of the pulse.

For the DPL-I model the propagation speeds for the underdamped modes
are given by

ωd
k

νk
= c

√

1− γ2
k

c2ν2
k

. (7.5.5)

In contrast to the C-V model, these propagation speeds for the underdamped
modes differ widely and significant pulse broadening and changes to the shape
of the pulse occur. Also keep in mind that for the DPL-I model the majority
of the modes are overdamped, and for these modes no associated propagation
speeds are available.

In the case of the Fourier model, where we have an infinite propagation speed
for the thermal disturbance, a change in temperature at x = 0 is experi-
enced simultaneously throughout the specimen. Initially the heat energy is
concentrated close to the surface region, whereafter the energy is gradually
distributed throughout the specimen, resulting in a broad temperature pulse
that decreases with x. For the DPL-II model all the modes are overdamped,
and there are no finite propagation speeds associated with the individual
modal contributions to the series solution. This suggests that the pulse
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broadening that occur for the DPL-II model can be explained in the same
way as for the Fourier model.
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Figure 7.9: Temperature T at x = 1 displaying only the first pulse.
τq = 0.012665; τ I

T
= 0.002868 ( δI = 0.2265 ); τ II

T
= 0.037995 ( δII = 3 )
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Figure 7.10: Temperature T at x = 0.2 displaying only the first pulse.
τq = 0.012665; τ I

T
= 0.002868 ( δI = 0.2265 ); τ II

T
= 0.037995 ( δII = 3 )

It is well known that the C-V model predicts that when a heat pulse is
incident at one boundary of a specimen, the wave front is reflected off the
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opposite boundary ([CT82] [LC04] [OT94]). Since the DPL-I model, with
τ
T
≪ 1, approaches the C-V model, we choose to examine both models to

see if we can find evidence of wave front reflection – the Fourier model is
included as a reference. Firstly, both the C-V and the DPL-I model predict
reflected pulses. In Figure 7.11 the peak values of the reflected pulses at
x = 0.8 are lower than that of the incoming pulses. At a fixed position
closer to x = 1, the reflected pulses have higher peak values. In Figure 7.12,
at x = 1, only one temperature pulse appears which is the superposition of
the incoming and reflected pulses.

Secondly, the DPL-I model shows the same behaviour as the C-V model, with
respect to its predicted pulse width. The pulse width remains constant and
the peak height decreases with x. The reflected pulse widths of both models
are the same as the incoming pulses. The peak heights for the DPL-I model
are approximately equal to the heights of the sharp thermal wave fronts of the
C-V model at x = 0.8 when they arrive at this position. The areas under the
temperature profiles are calculated for x = 0.2, x = 0.8 and x = 1 (note
that τ I

T
≪ 1 for the DPL-I model in this case) and are found to remain at

the same value of ≈ 0.005 as the areas determined for Figures 7.9 and 7.10.
The area is again conserved, even though there is hardly any broadening
of the pulse widths and the pulse shapes are retained. Noticeable reflected
pulses are present and these contribute to the calculated area.

It is interesting to see that the wave front arrival times correspond to the
times predicted by the theory. As discussed earlier, the dimensionless speed
of the wave front is given by c =

√

α/τq. Using this equation, the predicted
arrival time of the wave front at x = 0.8 is t = 0.0903, which corresponds
well with the wave front arrival time in Figure 7.11 ( t = 0.092 ). A similar
calculation, assuming that the wave front has traveled a dimensionless dis-
tance of 1.2, shows that the reflected wave front is expected to arrive back at
x = 0.8 at t = 0.135. Again this corresponds well with the value observed
in Figure 7.11.

7.5.2 Effect of lag time ratios δ

In the following numerical experiments, we investigate how the value of δ
influences the differences and similarities between the DPL, C-V and Fourier
model predictions. Referring to Section 6.8, the range of possible values for
δ is: 0 < δI < 1 and δII ≥ 1.
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Figure 7.11: Temperature T at x = 0.8 displaying only the first pulse;
including the C-V model.
τq = 0.012665; τ I

T
= 0.000025 ( δI = 0.001974 )
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Figure 7.12: Temperature T at x = 1 displaying only the first pulse;
including the C-V model.
τq = 0.012665; τ I

T
= 0.000025 ( δI = 0.001974 )

Case δI → 0:

In the first experiment we investigate what happens when δI → 0. We do this
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by either reducing τ I
T
and keeping τq fixed at the reference value, or increasing

τq and keeping τ I
T
fixed at the reference value. The former case is already

discussed in Section 7.5.1 (Figures 7.11 and 7.12). For τ I
T
= 0.000025 (or

δI = 0.001974 ) the DPL-I temperature profiles at x = 0.8 and x = 1, have
narrow smooth pulses with the pulse width equal to that of the C-V profile.
This resemblance is expected as τ I

T
<< 1.

Increasing τq by a factor 4 to 0.05066 whilst keeping τ I
T

= 0.002868, we
have δI = 0.0566. We compare the DPL-I profile with the Fourier profile
(looking at the insert in Figure 7.13), and at the same compare this result
with Figure 7.10, where δI = 0.2265. In Figure 7.10 the Fourier and DPL-I
temperature peaks are almost the same and the DPL-I profile starts to in-
crease shortly after the Fourier profile. In the case of Figure 7.13 the DPL-I
temperature peak is more than double the Fourier peak, and the delay before
the temperature increase starts, is longer. With Figures 12 and 13 showing
that the DPL-I model (with δi = 0.001974 ) approaches the C-V model,
the indication is that the DPL-I model in this case, with δI = 0.0566, is
approaching the C-V model. This suggests that the DPL-I model shows C-V
behaviour not only when τ I

T
≪ 1 but also when δI ≪ 1 ( δI → 0 ).
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Figure 7.13: Temperature T at x = 1, displaying only the first pulse.
τq = 0.05066; τ I

T
= 0.002868 ( δI = 0.0566 )
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Case δI → 1:

The second experiment investigates the case when δI → 1. We first use
τ I
T
= 0.002868 and decrease τq by a factor of 4 to 0.00316625 (Figure 7.14

– profile ‘DPL I’), and then fix τq at the reference value of 0.012665 and
increase τ I

T
by a factor of 4 to 0.011472 (Figure 7.14 – profile ‘DPL I a’).

We find that δI = 0.906. In the ‘DPL I’ case, the DPL-I temperature profile
coincides almost perfectly with the Fourier profile. This is ascribed to the
fact that the lag times are relatively small (almost negligible), ensuring an
almost perfect match between the DPL-I and Fourier models. Due to the
substantially longer lag times, compared to the ‘DPL I’ case, the ‘DPL I a’
temperature profile is shifted slightly to the right of the Fourier profile, even
though δI is the same for both ‘DPL I’ and ‘DPl I a’ cases.
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Figure 7.14: Temperature T at x = 1, displaying only the first pulse.
τq = 0.00316625; τ I

T
= 0.002868 ( δI = 0.906 )

Case δII = 1:

The third experiment’s aim is to study how the DPL-II model predictions
compare with the Fourier model. We start by decreasing τ II

T
to 0.012665,

with τq fixed at the reference value, (i.e. δII = 1 ). The result is that
the DPL-II temperature profile closely follows the Fourier profile, although
lagging slightly behind the Fourier profile (Figure 7.15 – profile ‘DPL II’).
This result is in agreement with Tzou’s prediction that the Fourier and DPL
models correspond when δII = 1 (see Section 2.5.2). Next, we increase τq to
0.037995, with τ II

T
fixed at the reference value, (i.e. δII = 1 ). The result is
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that the lag between the DPL-II temperature profile and the Fourier profile
increases, with the peak temperature also reducing (Figure 7.15 – profile
‘DPL II a’).
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Figure 7.15: Temperature T at x = 1 displaying only the first pulse.
δII = 1

Case δII > 1:

We already have an example of the effect when δII > 1 (Figure 7.9 illustrates
the case where δII = 3). We explore here what happens if we increase
δII even further. We start by increasing τ II

T
by a factor of 2 to 0.07599, with

τq fixed at the reference value, (i.e. δII = 6 ). The DPL-II temperature peak
is considerably lower than the Fourier model’s peak and the temperature rise
starts earlier (Figure 7.16 – plot ‘DPL II’). Decreasing τq by a factor of 2 to
0.0063325, with τ II

T
fixed at the reference value, (i.e. δII = 6 ), we find that

the peak temperature value increases, although still lower than the Fourier
peak temperature (Figure 7.16 – plot ‘DPL II a’).

In summary, we conclude that if δI is close to 0, the DPL-I model shows a
sharp thermal wave front similar to the C-V model. If δI is close to 1, then
the DPL-I model predictions are close to the Fourier model, although the
relative magnitudes of the lag times should also be considered. Similarly, if
δII is close to 1, then the DPL-II model predictions are close to the Fourier
model. In general, we see that if δ < 1, the temperature rise starts later and
the lower the δ value is, the higher the peak temperature values. In contrast,
if δ > 1, the temperature rise starts at an earlier stage and the higher the δ
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Figure 7.16: Temperature T at x = 1 displaying only the first pulse.
δII = 6

value, the lower the predicted temperature peak values become. In all cases
the DPL, C-V and Fourier models predict the same temperature values, after
a sufficiently long time.

7.6 Bio-heating case study: high duty ratio rd

In this section we use experimental and specimen parameters applicable to
bio-heating [MYSY21]. The example is a blood specimen, with thickness
d = 2 mm and thermal diffusivity α = 5.881 × 10−8 m2s−1. With no
preference for either the diffusion time td or the half-time t

1/2
found in

literature, we choose the half-time t
1/2

to be the scaling parameter, since
we prefer a scaling factor closest to the typical pulse widths used in our
numerical experiments ([BTY11] [PJBA61]). Then t0 = 0.1388d2/α ≈ 10 s.
A typical heating pulse width is tp = 0.5 s and the duty ratio rd = 0.5,
implying that τp = 1 s.

The dimensionless pulse width and pulse period are tp = 0.05 and τp = 0.1
respectively, and the dimensionless thermal diffusivity is α = 0.1388. Our
first aim is to find lag times that, during an initial time interval, yield dis-
tinct differences between the temperature profiles predicted by the respec-
tive models. Again, this is done following the guidelines in Sections 6.3 and
6.7 on how to determine appropriate lag times. We find τq = 0.024333,
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τ I
T
= 0.017395 and τ II

T
= 0.072999. The lag time ratios are δI = 0.72 and

δII = 3.0.

In bio-heat applications one is generally interested in the temperature at the
incident surface as well as in the interior of the specimen. We also notice
that the duty ratio in this case has roughly the same magnitude as that used
in Section 7.4. An investigation of the temporal profiles will therefore lead
to the same results as in Section 7.4, i.e. the C-V model is characterised
by a sharp wave front; the instants at which the temperature starts to rise,
as predicted by the different models, follow the same sequence (Fourier first,
then DPL-II, DPL-I and lastly C-V); the peak temperature increases with
each consecutive pulse; and the peak temperatures predicted by each model,
differs.

As an example, In Figure 7.17, we show the temporal temperature profiles
at x = 0.5 for a 7-pulse case. Except for the C-V model, almost complete
merging of the individual pulses have occurred. On the insert the 7 wave
fronts for the C-V model are visible. The DPL-II model predicts the lowest
temperature, the DPL-I and Fourier, an equal and slightly higher tempera-
ture, with the C-V model the highest temperature. Apart from the slight
peak difference, the models predict the same profile over the time span of
the merged pulse. When compared to the temperature profiles in Figure 7.3,
in this case the merging of pulses resulting from pulse broadening is more
advanced.
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Figure 7.17: Temperature T at x = 0.5 for a 7-pulse problem
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We also know from Section 7.4 that the temperature reaches a plateau level
after a sufficient number of pulses, and that the pulses merge at some point
in the interior of the specimen. These observations follow from the temporal
profiles at fixed x points in Section 7.4. We now turn to spatial temperature
distributions at fixed times t.

We ascribe the temperature increase per pulse to the fact that, due to the high
duty ratio ( rd = 0.075/0.15 = 0.5 ), the temperature at a given x position
does not return to its original zero level before the next pulse is incident at
x = 0. This suggests that on the spatial temperature profiles more than one
pulse will be visible at a fixed time t. In Figure 7.18 we use a three-pulse
example, with tp = 0.05 and τp = 0.1, to evaluate the spatial temperature
distribution at tev = 0.199 ( tev indicates the evaluation time), just before
the third pulse starts (i.e. during a ”pulse OFF” event). We immediately
notice that all the models, except the C-V model, predict single, merged
pulses. The C-V model predicts two separate pulses, indicated by the sharp
wave fronts. For the DPL-I and DPL-II temperature distributions the sharp
rises close to x = 0 is noticeable. This is due to the delays τ I

T
and τ II

T
in

forming temperature gradients. As τ I
T
< τ II

T
the DPL-I model has a shorter

delay and more quickly adjusts to the zero temperature at x = 0 after the
start of the ”pulse OFF” event. Ignoring the C-V profile’s wave front, the
models agree from about x = 0.4 onwards.
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Figure 7.18: Spatial temperature distribution at tev = 0.199

At tev = 0.205 (”pulse ON” event) we see how the third pulse deposits heat
energy into the specimen close to x = 0 (Figure 7.19). The temperature
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disturbance due to the first two pulses are present as a single merged peak
for both the Fourier and DPL-I model, whilst the DPL-II temperature pro-
file smoothly decreases from x = 0 to the interior of the specimen. The
C-V model maintains distinct wave fronts, and Gibbs oscillations occur near
x = 0.
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Figure 7.19: Spatial temperature distribution at tev = 0.205

We next investigate the effect of a large number of pulses on the spatial dis-
tribution of the temperature in the specimen. We study a 50-pulse example,
using the same pulse parameters and lag times as for Figure 7.18. Figure 7.20
gives the result just before the 50th pulse starts, and Figure 7.21 just after.
Increasing the number of pulses leads to a more uniform temperature distri-
bution throughout the specimen, except for the region up to x ≈ 0.3 where
the different models predict different distributions.

We are also interested in the effect of reducing the duty ratio rd. We reduce
rd by either reducing the pulse width tp whilst maintaining the pulse
period at τp = 0.1, or maintaining tp whilst increasing τp. We first
reduce the duty ratio from rd = 0.5 by a factor of 2 to 0.25, by choosing
tp = 0.025 and τp = 0.1. We see that the temperature level in the second half
of the specimen reduces by the same factor of 2 from T ≈ 0.4 (Figure 7.22)
to T ≈ 0.2 (Figure 7.23). In Figure 7.24 we maintain tp = 0.05 and
increase τp by a factor of 2 to 0.2, with rd remaining at 0.25. The
temperature level in the second half of the specimen increases to T ≈ 0.24.
On the C-V profile only one wave front is visible as opposed to the two wave
fronts in Figure 7.23. From these results we deduce that there does not
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Figure 7.20: Spatial temperature distribution at t = 4.899; before pulse 50
starts; rd = 0.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Position  x

0

0.2

0.4

0.6

0.8

1

1.2

T
em

pe
ra

tu
re

  T

tev = 4.905

tp = 0.05

p = 0.1

"Pulse ON"

Fourier
C-V
DPL-I
DPL-II

Figure 7.21: Spatial temperature distribution at t = 4.905; after pulse 50
starts; rd = 0.5.

necessarily exist a direct relation between the factor by which the duty ratio
rd is reduced and the corresponding reduction in the temperature level. The
two examples we give here, has the same duty ratio, but the pulse width
tp differs, resulting in different temperature levels.
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Figure 7.22: Spatial temperature distribution at t = 4.975, after pulse 50
stops; rd = 0.5.
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Figure 7.23: Spatial temperature distribution at t = 4.975; rd = 0.25.

7.7 Conclusion

Heat transfer behaviour in a specimen subject to multiple heat pulses is in-
vestigated, for the Fourier, Cattaneo-Vernotte and dual phase lag models
respectively. One dimensional models are used, and as is commonly done,
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Figure 7.24: Spatial temperature distribution at t = 9.95; τp increased;
rd = 0.25.

the effect of the heat pulses is modelled as a temperature step function at
the one endpoint. To solve the multi-pulse problem, a series of single-pulse
problems is considered where the final temperature distribution for a given
pulse cycle, provides the initial temperature for the subsequent pulse cycle.
We successfully adapt the separation of variables procedure in Section 6.9 for
calculating the modal series solution for a single-pulse problem to solve the
multi-pulse problem. In addition, the solution for the multi-pulse problem is
expressed in terms of the solution of a homogenised problem associated with
the single-pulse problem. Using the truncated modal series as an approxi-
mate solution proved to be an effective method for a numerical investigation
into the properties of the solutions of multi-pulse problems. Both temporal
temperature profiles (temperature versus time at a fixed position) and spatial
profiles (temperature versus position at a fixed time) are readily available.

The aim of the numerical experiments is two-fold: to compare the tempe-
rature predictions by the Fourier, C-V and DPL models, and to identify
situations where the C-V and DPL temperature profiles differ significantly
from those of the Fourier model. The numerical simulations cover a wide
range of physical parameters. Two experimental techniques where pulsed
heating is used, thermoreflectance and bio-heating, provide realistic physical
parameters for the heat pulses. These values are used for designing nume-
rical experiments that cover a wide range of physical scenarios. Values for
the phase lags in the C-V and DPL models are harder to find, and we use
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the upper bounds given in Section 7.3.4 as guidelines. These upper bounds
ensure that the temperature predictions for the C-V and DPL models ap-
proach those of the Fourier model after some time, as in many heat transfer
situations the Fourier model provides acceptable results after a sufficiently
long time.

As a first step, the parameter values are chosen as for the single-pulse problem
in Section 6.10, and the temperature profiles are compared with the multi-
pulse case. There are obvious similarities between the single-pulse and multi-
pulse cases, but we observe two interesting phenomena for the multi-pulse
case, namely the merging of temperature pulses when observed at fixed points
deeper into the specimen, and when increasing the duty ratio, and/or the
number of pulses, a plateau value is established in the specimen for the peak
temperatures.

For simulations associated with thermoreflectance experiments we use the
diffusion time td as the time scaling factor, as this is a well-known concept
in the field. In this case the duty ratio of the laser pulses is low and the
temporal temperature profiles at the insulated endpoint of the specimen is
of main interest. Key findings for these simulations are that distinct pulses
persist in the temperature profiles throughout the specimen, even though a
broadening of the pulses occur towards the insulated eindpoint. Reflected
temperature waves are observed in some of the temperature profiles of the
C-V model, as well as in some of those of the DPL model.

For bio-heat applications the duty ratio is high and the spatial temperature
profiles are of interest. In this case we use the half-time t1/2 as the time
scaling factor. Key findings for these simulations are the noticeable merging
of pulses, leading to a uniform spatial temperature distribution, as well as
the clear effect of the time lag in the temperature gradient at the onset and
termination of each pulse. Although numerical calculations were performed
for example problems including up to 50 pulses, the computational time never
exeeded one minute.

The truncated modal series solution proved to be an efficient procedure for
investigating the properties of the multi-pulse heat transfer problems, and
modal properties provide insight into the behaviour of the solutions.
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Chapter 8

Conclusion and future research

8.1 Overview

The aim of our research was to study heat transfer in specimens subject to
short-pulse heating. Literature studies showed that other models are pro-
posed as alternatives to the Fourier model, which is considered to be ina-
dequate in predicting the temperature in certain cases ([TZ98]). Our main
interest is in the C-V ([OT94]) and DPL ([Tzo95a]) models, frequently sug-
gested as alternatives to the Fourier model. We observed two interesting
aspects during our literature study: the occurence of unwanted or spurious
oscillations when approximating the C-V model using numerical techniques;
and the lack of reliable values for the lag times τ , τq and τ

T
that appear in

the C-V and DPL models. We therefore focused our efforts on the compari-
son of the Fourier, C-V and DPL models, and determining the origin of the
unwanted oscillations, with the intention of proposing a solution.

In Chapter 2 the derivation of the model equations is presented, including a
summary of the characteristics of the Fourier, C-V and DPL models. The
discussion of the DPL model is preceded by a section on the microscopic
effects of heat transfer in metals and the derivation of the two-step heat
transfer model, from which the DPL model follows. We discussed the heat
absorption process in a specimen as it determined how we formulated the
boundary conditions in our model problems. We derived the dimensionless
versions of the heat conduction models, together with the boundary and
initial conditions on which this study was based.

The issue of unwanted oscillations, related to the CT-benchmark problem (a
special case of the C-V model), was investigated in Chapter 3. This problem
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was originally formulated by Carey and Tsai in 1982 [CT82]. It was shown
that the unwanted oscillations is the result of an ill-posed problem and not
due to the choice of the numerical technique used to solve the problem. The
CT-benchmark problem was re-formulated to a problem that has a smooth
initial condition. The problem was divided into three auxiliary problems.
D’Alembert’s method was used to obtain exact solutions for the first two
auxiliary problems, and the finite element method was used to obtain an
approximate solution to the third auxiliary problem. A numerical algorithm
was developed, resulting in a solution method that can successfully track the
sharp wave front but without a discontinuity, i.e. free of oscillations.

In Chapter 4 we started off by introducing model problems for mechanical
vibrations. The similarities with the hyperbolic-type heat conduction pro-
blems (i.e. the C-V and DPL models) were pointed out, and the terminology,
e.g. overdamped and underdamped modes, were adopted for use with the
heat conduction problems. General abstract formulations were developed for
the Fourier, C-V and DPL models. Following this, variational forms were
derived and expressed in terms of defined bilinear forms. Ultimately, weak
variational forms of these models were derived to apply existence theory to
the C-V and DPL models.

In Chapter 5 we applied the modal analysis method to the general second
order hyperbolic equation expressed in variational form. Substitution of a
trial solution into this abstract equation led to an eigenvalue problem. With
the requirement that the eigenvectors form an orthogonal sequence, a formal
series solution was derived. In order to apply the model formulations de-
rived in Chapter 4 to subsequent chapters, the formulations were adapted to
include the physical parameters that appear in the heat conduction models.
The convergence of the series solution was expressed in terms of the energy
norm ‖.‖V and inertia norm ‖.‖W . It was found that the partial sum uN(t)
converges to the solution u(t) in the energy norm and u′

N(t) to the derivative
u′(t) in the inertia norm, for all t > 0. Therefore, the accuracy of these
approximations relies on the accuracy of the partial sum approximations at
time t = 0.

Chapter 6 is devoted to a comparison between the Fourier, C-V and DPL
heat conduction models. Two important aspects had to be dealt with before
starting with the comparison: deciding on the initial value for the numerical
experiments, and determining realistic values for the lag times used in the
numerical experiments.

Series solutions were derived for the model problems based on the C-V, DPL
and Fourier models in Section 6.2. We proposed a smooth temperature distri-
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bution function to approximate the initial value. It is however not practical
to calculate the Fourier coefficients for this initial value and we therefore
opted to use the simpler, discontinuous initial condition. In order to ensure
that the accuracy achieved when using this discontinuous initial value is ac-
ceptable, error estimates in the energy and inertia norms were calculated and
used as a guideline to decide on the number of terms required in the series
approximation.

To determine realistic lag times for our numerical experiments, we relied
on the premise that, given a sufficiently long time has elapsed, the model
predictions from the C-V and Fourier models will correspond. For τq ≪ 1,
this means that for the first mode, the respective time dependent functions for
the C-V model will be equal to that of the Fourier model after a sufficiently
long time. To determine τ

T
we further assumed that τ

T
≪ 1, ensuring that

the DPL model approaches the Fourier model (refer to Section 6.7). We
derived upper bounds for the lag times τq and τ

T
, given by

τq ≤
ε

απ2
and τ

T
≤ 4ε

απ2
,

with ε a user specified accuracy and α the dimensionless thermal diffusivity.
The transformation of α to the dimensionless value is done using a reference
time t0, which can be adjusted to represent the time scales characteristic
of the physical scenario being investigated. Adjusting t0, scales α and con-
sequently τq and τ

T
to achieve a range of values for the lag times that are

realistic for a given numerical experiment.

In Section 6.4 we introduced the concept of a wane time tw as the time instant
at which the wave front, characteristic of the C-V model, disappears. We
predicted that the solutions for the Fourier and C-V models will be the same
at the time that the wave front disappears. An expression was derived for
the wane time, tw = −2τq ln(σ), where σ is equal to the ratio of the reduced
wave front height at t = tw, to the original height at t = 0.

The comparison between the Fourier, C-V and DPL models for the con-
tinuous heating model problem started off by testing our assumption that
the respective model predictions will agree after a sufficiently long time has
elapsed, i.e. at t ≈ tw. Additional numerical experiments were performed to
study the respective contributions of the overdamped versus underdamped
modes to the predicted temperature profiles, and especially how it affects the
wave front present in the C-V model. The DPL-I model’s dependency on the
over- and underdamped modes to achieve accurate temperature predictions,
was investigated. Also of interest was the behaviour of the DPL models close
to x = 0, in view of the discontinuity that exists at x = 0.
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The approach to solving the single-pulse model problem was to divide the
problem into two sub-problems corresponding to the different boundary con-
ditions at x = 0 (refer to Section 6.9.1). We referred to the sub-problems
as “Problem 1” and “Problem 2” respectively. The solution derived for the
continuous heating model problem was used to solve Problem 1, i.e. when
the pulse is applied. To solve Problem 2 (when the pulse is stopped), the end
temperature distribution for Problem 1 is assigned as the initial temperature
distribution for Problem 2, continuing with the solution for Problem 1 to
obtain the solution for Problem 2. The model comparison mainly focused on
how each model behaves close to x = 0, how the peak temperatures compare,
and how the heat pulse propagates into the specimen. Interesting observa-
tions were made regarding the resemblance between the DPL-I model and
the C-V model when τ

T
≪ 1, and the behaviour of the respective models

when the pulse is stopped.

In Chapter 7 we considered the multi-pulse model problem. It is similar to
the single-pulse problem, except that the multiple of m identical heat pulses
is modelled as a periodic step function consisting of m steps. The model
problem was divided into 2×m sub-problems, where the end temperature
distribution for a given sub-problem becomes the initial distribution for a
subsequent sub-problem. The solution to the multi-pulse problem with m
pulse cycles is given by a sequence of functions

Tn(x, t) = 1− u1(x, t− tn−1) + Tn−1(x, t) (tn−1 ≤ t < tn)

Tn+1(x, t) = Tn(x, t) + u1(x, t− tn)− 1 (tn ≤ t < tn+1)

for n = 1, 3, 5, . . . , 2m − 1. This solution is made possible since continuity
allows linking of the solutions of the sub-problems. The focus of the model
comparison was to examine the effect of the duty ratio rd and the number
of pulses m on the predicted temperature profiles. Numerical experiments
were performed using parameter values typical of thermoreflectance and bio-
heating applications.
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8.2 Key results

It was shown that the unwanted oscillations related to the CT-benchmark
problem, as formulated by Carey and Tsai in 1982, is the result of an ill-
posed problem and not due to the choice of the numerical technique used to
solve the problem. The CT-benchmark problem was re-formulated to have a
smooth initial condition, and divided into auxiliary problems that were solved
using D’Alembert’s and the finite element method. The solution method is
able to track the wavefront without a discontinuity, ensuring oscillation-free
results.

The theory and terminology of vibration analysis were incorporated into the
heat conduction models. Weak variational formulations of these models (in
terms of bilinear forms) were presented and the well-posedness of the DPL
and C-V model problems was established, based on a general existence result
by Van Rensburg and Van der Merwe in 2002.

The modal analysis method was applied to the general second order hyper-
bolic equation and the formal series solution of the heat conduction problems
were derived. Convergence of the series solution was proved in terms of the
energy and inertia norms. An important conclusion was that the accuracy of
the partial sum approximations of the series solutions, relies on the accuracy
of the partial sum approximations at time t = 0.

The comparison between the Fourier, C-V and DPL heat conduction mo-
dels started with the task of deciding on a suitable initial condition. The
discontinuous initial condition was preferred above a smooth temperature
distribution function since it simplifies the calculation of the Fourier coeffi-
cients. Expressions were derived for the energy and inertia norm errors and
were used as a guideline to determine the number of terms required for the
calculation of the partial sums of the series solutions. This ensured accurate
approximations for the solutions of the model problems, even though the
discontinuous initial condition was used.

In order to perform numerical experiments with realistic lag time values,
upper bounds for the lag times τq and τ

T
were derived using modal analysis.

The derivation relied on the assumption that the solutions for the C-V and
Fourier models will be the same after a sufficiently long time. The lag times
can be scaled using the expressions for the upper bounds, to represent the
physical scenario of interest.

We introduced the concept of a wane time tw as the time instant at which the
wave front disappears, and predicted that the Fourier and C-V models will
correspond at t = tw. The comparison based on the continuous heating model
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problem, proved that tw is a reliable way to quantify the time required for the
Fourier model and the C-V and DPL models to correspond. Regarding the
respective contributions from the overdamped and underdamped modes, it
was found that it is essential to initially include the underdamped modes of
the C-V model since these modes capture the wave front. The DPL-I model
requires both over- and underdamped modes to achieve accurate temperature
predictions. Numerical experimentation showed that the DPL-II model does
not resolve the discontinuity at x = 0 caused by the discontinuous initial
value.

The solution strategy for the single-pulse problem was to divide the pro-
blem into two sub-problems, and assign the end temperature distribution for
the first sub-problem, as the initial temperature distribution for the second
sub-problem. The solutions for the sub-problems, linking the solutions in
the end. We highlight two interesting observations. If τ

T
≪ 1, the DPL-I

model resembles the C-V model, predicting a prominent wavefront, but with
a smooth profile. When the pulse is stopped, the Fourier model predicts
a sudden drop in temperature, whilst the other models further increase in
temperature before experiencing a sharp drop in the C-V model case, and a
gradual drop in the DPL case.

The solution strategy for the multi-pulse problem was similar to the single-
pulse problem in that the identical heat pulses were modelled as a sequence
of sub-problems, with the solution expressed as a corresponding sequence of
functions. With a low duty ratio rd (e.g. in the thermoreflectance appli-
cation) we observed distinct temperature pulses in the temperature profiles
throughout the specimen, although a broadening of the pulses occur towards
the insulated eindpoint at x = 1 for the Fourier and DPL models. In the case
of the C-V model the pulse width remained constant. For a high duty ratio
rd (e.g. bio-heat application) the temperature pulses merge in the interior of
the specimen, and increasing the number of pulses at the same time, result
in a temperature plateau being established in the interior of the specimen.

In conclusion, modal analysis proved to be successfull in determining reliable
dimensionless values for the lag times τq and τ

T
, and was effective for the

numerical investigations into the properties of the solutions of our model
problems.
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8.3 Future research

8.3.1 Background

In Chapters 6 and 7 we compared the Fourier, C-V and DPL heat conduction
models using simplified model problems as test cases. The simplifications in-
volved restricting ourselves to one-dimensional versions of these models, and
the assumption that all the heat is absorbed instantaneously at the boun-
dary x = 0. Both simplifications are justified: one-dimensional models are
accepted in the thermophysical metrology community when determining the
thermal diffusivity α, and the heat absorption model is one that was re-
garded as sufficient by Tzou ([Tzo97]), and Baumeister and Hamill ([BH69])
to study the lagging and wave behaviour of the DPL and C-V models re-
spectively. Our model problems, together with the use of modal analysis,
proved to be effective in gaining insight into the characteristics of the heat
conduction models. In addition we also determined reliable values for the lag
times τq and τ

T
using modal analysis.

In Chapter 2 we discussed instances where researchers criticised each others
experimental methodologies and approach in analysing the measurement re-
sults ([OA12]). In some cases researchers performed similar experiments,
with some claiming they observed hyperbolic effects, whilst others claimed
that the Fourier model is valid. Maillet ([Mai19]) also stated that proper
experimental design is essential when comparing models and attempting to
derive heat transfer parameters from the results.

Our suggestions for future research are aimed at addressing two aspects in
heat transfer research:

1. Formulating realistic model problems that resemble properly designed
measurement setups, thereby facilitating comparison with reliable ex-
perimental techniques.

2. Identifying suitable mathematical techniques to solve these model pro-
blems. In addition this requires that reliable values for model parame-
ters (e.g lag times) are determined, and that model problems are well-
posed and convergence of solutions proved.

In our opinion the experimental methodology applied by the thermophys-
ical metrology community can be regarded as state-of-the-art with respect
to the measurement of thermophysical parameters and have the potential to
serve as a reliable validation of theoretical model predictions. We motivate
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this as follows: the thermal diffusivity α is an important heat transfer pa-
rameter used in engineering applications, and having accurately measured
values is therefore important. The expectation of scientists and engineers
using thermophysical properties (e.g. α) in thermal modelling and design,
is that these are reliably known and traceable to the International System
of Units (SI), published by the Bureau International des Poids et Mesures
(BIPM). The responsibility of coordinating international efforts to ensure
reliable measurements of thermophysical properties of materials is assigned
to the various working groups within the Consultative Committee for Ther-
mometry (CCT), operating within the BIPM ([Bab10]).

We briefly introduced the two standardized methods used to measure α in
Section 7.2: the laser flash method for measuring α in bulk specimens, and
the thermoreflectance methods (also known as the ultrafast laser flash meth-
ods) used to measure α in thin film type specimens ([BTY11]). Both tech-
niques rely on heat transfer modeling to calculate the value of α from the mea-
surement results. The laser flash method relies solely on the one-dimensional
Fourier (diffusion) model to analyse the measurement data ([AHZCB13]). In
the case of the thermoreflectance methods, the metrology community has
been relying on the Fourier model for the data analysis for quite some time,
but experimental evidence exists that shows that the Fourier model is not
adequate in describing the heat transfer behaviour for the femtosecond ther-
moreflectance method ([BFI62] [Bro90] [NTYB11]).

Thermoreflectance has the potential to exhibit both Fourier and non-Fourier
heat transfer behaviour and we therefore suggest that model problems should
be based on the technique of thermoreflectance, as developed and approved
by the thermophysical metrology community.

8.3.2 Research suggestions

We suggest a two-fold approach to formulate realistic model problems. Firstly,
an accurate source model should be formulated, e.g. the laser pulse’s tem-
poral characteristics, as well as the spatial absorption by the specimen have
to be described by this model. Secondly, alternatives to the linearized DPL
heat conduction model should be considered. Motivation for alternative heat
conduction models can be found with the attempts to explain the results
obtained during femtosecond thermoreflectance measurements. Nakamura et
al ([NTYB11]) reports that their experimental results during approximately
the first 2 picoseconds are not explained by the Fourier model. They studied
the model predictions from two other models, namely the two-temperature
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model and the non-thermal model and the conclusion was that the non-
thermal model best explained the results during the first 2 picoseconds.
The non-thermal model takes into account ballistic transport effects, i.e.
implying longer electron-thermalization times, up to approximately 700ps
([HMWM97] [Sin10] [SVAIF94]) – see Section 2.4.1. Therefore the electron-
thermalization time can be longer than the laser pulse width. Using a source
model that assumes instantaneous heat absorption is therefore not going to
track the ballistic phase of the electrons, the laser’s temporal behaviour, and
the transition to a diffusive heat transfer condition.

Suggestions for alternative heat conduction models include, but are not lim-
ited to:

• Linearized DPL with source term

• Two-temperature model (TTM) – also known as parabolic-two-step
model (PTS); with source term

• Hyperbolic-two-step model (HTS) – with source term

• Second-order DPL model – with source term

The choice of mathematical technique used to solve any of these models will
be determined by the model equation itself as well as the requirement to prove
convergence. At the same time it would be required that the models are well-
posed. The requirement to determine reliable values for model parameters,
remains.

We present an example model of a realistic source term S(x, t) whereafter
example model formulations, based on the above mentioned heat conduction
models, will follow.

Source term S(x, t)

A model that describes both the temporal nature of a laser pulse, as well
as the absorption profile in the specimen would be required. A typical laser
pulse source S(x, t) is modelled as follows ([QT93a] [TM94] [Tzo97])

S(x, t) = 0.94

(

1−R

tpδ

)

exp

[

(

−x

δ

)

− 2.77

(

t

tp

)2
]

, (8.3.1)

where R is the optical reflectivity, tp is the laser pulse width and δ is the
optical penetration depth of the laser.
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To derive a specific model problem, S(x, t) is included in the energy conser-
vation equation

ρcp∂tT = −∂xq + S. (8.3.2)

As shown in Chapter 2, the energy conservation equation is combined with
the relevant constitutive equation. As an example we choose the linearized
DPL constitutive equation,

q + τq ∂tq = −k ∂xT + k τ
T
∂t(∂xT ), (8.3.3)

and arrive at the linearized DPL model equation, including a source

∂2
t T + 2γ∂tT = c2∂2

xT + c2τ
T
∂t∂

2
xT +

c2

k
S +

c2

k
τq ∂tS. (8.3.4)

Linearized DPL model with source term

The dimensionless single-pulse model problem with a source term is given by

∂2
t T + 2γ ∂tT = c2 ∂2

xT + τ
T
c2 ∂t∂

2
xT + 2γS + ∂tS (8.3.5)

∂xT (0, t) = 0

∂xT (d, t) = 0

T (x, 0) = T0

∂tT (x, 0) = 0.

The initial condition T (x, 0) = T0 assumes that heating starts from a sta-
tionary state. Since the typical heating period is very short it is assumed
that the heat loss from the boundaries are negligible, therefore the bound-
aries are insulated. The initial conditions stem from the assumption that the
specimen is at a constant temperature before the heating starts.

Two-temperature model with source term

The source term is included in the electron-energy equation

Ce∂tTe = k∂2
xTe −G(Te − Tℓ) + S. (8.3.6)

From the three coupled equations, representing the two-temperature model,
follows

(

CeCℓ

kG

)

∂2
t T +

(

Ce + Cℓ

k

)

∂tT = ∂2
xT +

(

Cℓ

G

)

∂t(∂
2
xT ) +

1

k
S. (8.3.7)

This equation (where T = Te = Tℓ ) governs either the lattice or the electron
temperature.
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Hyperbolic two-step (HTS) model with source term

So far, none of the models make provision for the electrons undergoing non-
diffusive ballistic transport. This is a requirement to model femtosecond ther-
moreflectance measurements according to Nakamura et al ([NTYB11]). The
hyperbolic two-step model fulfils this requirement by modifying the constitu-
tive equation to have a form similar to that of the C-V model’s constitutive
equation

q = −k ∂xTe − τ
F
∂tq, (8.3.8)

where τ
F
is the thermalisation time of the electron gas [Dug16][Tzo95b], and

τ
F
∂tq represents the thermalisation stage in the electron gas. Combining the

coupled equations associated with the HTS model, including the source term
as in Eq. (8.3.6) leads to

τ
F

(

CeCℓ

kG

)

∂3
t T +

(

τF (Ce + Cℓ)

k
+

CeCℓ

kG

)

∂2
t T +

(

Ce + Cℓ

k

)

∂tT

= ∂2
xT +

(

Cℓ

G

)

∂t(∂
2
xT ) +

1

k
(S + τ

F
∂tS) . (8.3.9)

Second-order DPL model with source term

Tzou proposed a second-order DPL model, that according to him, correlates
with the HTS model. This variation of the DPL model is based on the
first-order effect in τ

T
and the second-order effect in τq, so that the DPL

constitutive equation becomes

q + τq ∂tq +
τ 2q
2
∂2
t q = −k [∂xT + τ

T
∂t (∂xT )] . (8.3.10)

Combining this constitutive equation with the energy equation, Eq. (8.3.2),
yields the second-order DPL model equation

τ 2q
2α

∂3
t T +

τq
α
∂2
t T +

1

α
∂tT

= ∂2
xT + τ

T
∂t(∂

2
xT ) +

1

k

(

S + τq∂tS +
τ 2q
2
∂2
t S

)

. (8.3.11)

The model is therefore characterised by the addition of a third-order term
describing the transient temperature response. The intention with second-
order DPL model is to account for non-diffusive ballistic heat transfer in an
electron gas.
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Appendix A

Frequently used notation

Table A.1 includes frequently used or important mathematical notation, in-
dicating where a definition or reference to it occurs in the thesis.

Table A.2 includes nomenclature associated with heat transfer and laser pulse
parameters.

Table A.1: Mathematics notation

Symbol Description Section

Ω n-dimensional bounded domain 4.2
∂Ω Boundary of Ω 4.2
(f, g)

Ω
Inner product: (f, g)

Ω
=

∫

Ω

fg 4.3

J Bounded or unbounded interval 4.4
containing zero

L2(Ω) Square integrable functions 4.3
u′(t) ∈ Y Weak partial derivative 4.4

w.r.t. norm of Y
Hm(Ω) Sobolev space: the subspace of 4.4

functions in L2(Ω) with weak
partial derivatives up to order m
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196 APPENDIX A. FREQUENTLY USED NOTATION

Table A.2: Physics notation

Symbol Description

α Thermal diffusivity
q Heat flux
T Temperature
τ Relaxation time
τq Lag time associated with q
τ
T

Lag time associated with ∇T
t Time
d Length
td Heat diffusion time
t
1/2

Half-time

tp Pulse width
τp Pulse period
rd Duty ratio: rd = tp/τp
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