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Abstract 

Landscape genomics is used to investigate the potential association between the genotype of an animal 

and a specific environment. It is a relatively new approach applied in livestock genomics. In this study 

,SA Bonsmara cattle from three provinces and different climatic regions were studied using a landscape 

genomics approach. The overall aim was to investigate potential association between the genotypes, 

growth, and the environment. Genotype and growth trait data from 4679 Bonsmara cattle were obtained 

for analysis. The cattle were grouped according to province, ownership, population size per province, 

and sex. After editing and pruning, the final list of animals included 766 cows from the Eastern Cape 

(418), Free State (224), and North-West (124) provinces. The genotypic data originated from four SNP 

array panels; GGP 80k (GeneSeek Genomic Profiler™), GGP 150k (GeneSeek Genomic Profiler™), 

IDB version 3 (International Beef and Dairy), and VersaSNP 50k (Weatherbys Scientific). The 

population structure of the cows was analysed through PCA plots and admixture plots, using GCTA64 

and ADMIXTURE software respectively. The common SNPs across these panels were identified and 

quality control was conducted with PLINK; 25272 SNPs remained for downstream analysis. Weather 

data for the three provinces included summer and winter month temperatures, relative humidity, and 

average annual precipitation, from 2016 to 2021. Landscape genomics analysis was conducted on the 

weather variables and the 25272 common SNPs, using the latent factor mixed model (LFMM)  

landscape ecology association (LEA) software package in RStudio. Nine of the genes identified from 

analyses were previously reported to be associated with growth performance and adaptation. HIBCH; 

CDH18; ATG7; GTDC1; MAP4K3; ADRA1A; PRKG1; and CSMD3 were previously confirmed for 

association with various growth performance traits, while KCNJ16 and PRKG1 were previously found 

to be associated with adaptation traits. A genome wide association study (GWAS) was consequently 

conducted to identify candidate loci associated with eighteen-month weight (18MW). Four SNPs were 

identified from the GWAS. However, no common SNPs were observed when these results were 

compared to those from the LEA landscape genomics analysis. Further studies on larger and more 

informative data sets will be needed for confirmation of the LEA results. 
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Chapter 1. Introduction and Literature Review 

1.1 Introduction 

The South African agricultural industry contributes 2.4% to the country’s gross domestic production 

(GDP) (Bureau for Food and Agricultural Policy (BFAP), 2021), of which the beef industry, contributed 

0.12% to the gross value of production (GVP) during 2018 to 2020 (BFAP, 2021). Some of the 

predominant beef cattle breeds included in this industry are the Bonsmara, Tuli, Boran, Brahman, 

Simmentaler, Hereford, Afrikaner, Drakensberger, and Nguni breeds (van Marle-Köster et al., 2021). 

These breeds are diverse in classification, varying between exotic, composite, and indigenous (Abin et 

al., 2016). The Bonsmara is classified as a medium framed, composite breed and it was developed from 

crossbreeding Bos taurus and Sanga cattle. The distributions of the breeds used for its development 

were 5/8 Afrikaner, 3/16 Hereford, and 3/16 Shorthorn (Bonsma & Bonsma, 1985). The Bonsmara 

breed was developed specifically for the challenging climatic conditions of South Africa. It has grown 

to be the most popular beef breed in the industry (Brand et al., 2021). The three primary South African 

beef production systems include weaner (cow-calf), long yearling, and two-year old systems (Govender, 

2019). The weaner system is the most popular as farmers are able to reduce extended feed and/or 

medical costs by selling the weaners to feedlots or abattoirs early (Chadyiwa & Wepener, 2021). Beef 

farming in South Africa is mainly practiced extensively, on natural grazing with feedlot finishing being 

common (Brand et al., 2021). Therefore, these systems are climate-dependent and susceptible to 

ongoing climate change. Farming with cattle that can tolerate and adapt to the variable climatic 

conditions is critical to ensure consistent animal welfare, production efficiency, and subsequently, stable 

economic returns (Chadyiwa & Wepener, 2021). 

Climate often varies between geographic regions within a country, resulting in variation of genetic 

adaptation to certain climates within animals of the same breed (Vallejo-Trujillo et al., 2022). Livestock 

can better utilize the natural resources of the environment in which they are kept, if they are well-

adapted to that environment (Foster et al., 2009). The majority of South African production 

environments are classified as semi-arid (Webb et al., 2017). However, each of the country’s nine 

provinces differ from one another in climate and/or vegetation. The eastern coastal provinces, KwaZulu-

Natal (KZN), and the Eastern Cape (EC), present with sub-tropical climates and year-round 

precipitation. The Western Cape (WC) differs from all the other provinces (except for a few western 

regions in the Northern Cape (NC)) by having winter rainfall. The NC is classified as a semi-desert 

biome and has the lowest average annual precipitation compared to the other nine provinces (Climate: 

Northern Cape, 2023). Most of the inland provinces, Gauteng (GP), Free State (FS), North-West (NW), 

and Mpumalanga (MP), are relatively similar in climate. The GP and NW provinces experience milder 

winters (average of 13.35oC) whereas, FS and MP, experience colder winters (average of 8oC). All four 
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provinces have relatively warm summers, averaging to 28.25oC. The Limpopo province (L) has mild 

winters and very hot summers (exceeding 40oC). MP experiences higher than average annual 

precipitation in comparison to the other four inland provinces (South African Weather Service, 2020; 

Climate in Gauteng South Africa, 2023; Climate: Limpopo, 2023; Climate in Mpumalanga South 

Africa, 2023; Climate in North-West South Africa, 2023; Climate in Orange Free State South Africa, 

2023). 70% of the national beef cattle herd is accounted for by Free State, North-West, Eastern Cape 

and KwaZulu-Natal provinces (Pienaar et al., 2019). Beef production can be directly or indirectly 

influenced by the environment through its effect on cattle physiology or effects on feed sources. The 

subsequent phenotypic expression of adaptability and production traits can indicate whether the 

environmental influence on the cattle is positive or negative. Additionally, the phenotypic expression 

will provide insight into whether selection for such traits will lead to genetic progress or hinder it. 

In the livestock sector, animal recording and genetic evaluations contribute to genetic progress by means 

of selection. Traditionally, the information required for genetic evaluations have been based on two 

types of information: phenotypic performance and pedigree records (Brand-Williams & Hayes, 2020). 

Best linear unbiased prediction (BLUP) calculations followed, providing breeders with estimated 

breeding values (EBV) for application in selection (Meuwissen et al., 2001). The introduction of a third 

form of information, polymorphisms in the genome, has provided additional tools to improve the 

accuracy of genetic evaluations (Brand-Williams & Hayes, 2020). Genomic information is now 

included in genetic evaluations for genomic breeding values with higher accuracy. Genomic 

information yields the potential of improved breeding value prediction of younger animals, which may 

not have extensive records, by using single nucleotide polymorphisms (SNP). SNPS are available in 

commercial arrays for genotyping large numbers of animals (Garrick, 2011). Further, genomics has also 

created opportunities for the exploration of environmental influence on the genome and subsequently, 

the impact it could have on genetic progress, through landscape genomics. 

Landscape genomics is an analysis method that combines spatial analysis and genotypic information to 

identify candidate genes that could be responsible for adaptive ability to a specific environment or 

productive performance in a specific environment (Joost & Negrini, 2010). Landscape genomics, 

founded through the geography sector, has been developed and applied since the early 2000s (Li et al., 

2017). It stems from landscape genetics, which was developed to evaluate the genetic adaptation of 

plants to a particular environment (Joost & Negrini, 2010). Landscape genomics was also developed 

for this purpose, but it has the potential to be successfully applied in the livestock industry, specifically 

to investigate areas in the genetic realm of livestock adaptation that have been difficult to quantify. The 

possibility of application and success of landscape genomics studies in the livestock industry is 

plausible as the input data required for analysis – spatial data, genetic data, environmental data – exists 

for most livestock animals (Storfer et al., 2018). Pressure is placed on the livestock industry to pursue 

improved efficiency and sustainable production. The environmental adaptations that can be detected 
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from landscape genomics could aid those pursuits (Pariset et al., 2012; Li et al., 2017; Mdladla et al., 

2017; Webb et al., 2017; Flori et al., 2019; Grummer et al., 2019). The genomic tool presents an 

opportunity to explore beef cattle DNA for markers associated with local adaptability. The observed 

variation in allele frequencies is 3tilization3 to be a result of functions of climatic, geographic, and 

disease and pathogen profiles (Mdladla et al., 2017). When landscape genetics was initially introduced, 

the genetic data utilised for analysis consisted of microsatellite markers. The transition to landscape 

genomics resulted in the utilization of SNP markers for analysis (Storfer et al., 2018). 

1.1.1 Motivation 

Growth performance is of interest due to its association with functional efficiency and the premise of 

selecting for adapted animals to improve reproduction and production potential (Bonsma, 1983). 

Previous studies linking bioregion to production and reproduction efficiency (Visagie, 2012; Webb et 

al., 2017) warrant further investigation into the degree of such association. Flori et al. (2019) reported 

that Genomic Environmental Association (GEA) analyses facilitated the detection of genetic variants 

associated with various environmental variables, indicating a degree of genetic adaptation to a specific 

environment. Breeding with animals that are well-adapted to their environment and regional climate is 

important because the consequences of poor adaptation can be observed through diminished immune 

response, metabolic efficiency, and reproductive performance (Nardone et al., 2010; Krebhiel et al., 

2019). 

Climate change predominantly influences livestock production and performance through changes in 

feed resources and ambient temperature (Cheng et al., 2022). Feed resources indirectly affect livestock 

productivity, the distribution of livestock diseases and parasites, the sustainability and buffering ability 

of ecosystems, and rangeland carrying capacity (Rust & Rust, 2013). Further, abnormally high or low 

ambient temperatures stimulate physiological responses in livestock that tend to hinder growth 

performance (Furstenberg & Scholtz, 2009). 

Landscape genomic analysis has been effective in identifying candidate genes associated with 

adaptation to environmental factors (Frichot & Francois, 2015a).  Landscape genomic analysis can also 

play an integral role in predicting population survival by facilitating the analysis of intricate Genotype 

by Environment (GxE) interactions that influence population abundance, distribution, and growth rates 

(Grummer et al., 2019). There is an ever-growing need for conservation of livestock genetic diversity, 

especially in the present time when adaptation to changing climatic conditions is vital (Pariset et al., 

2012). By combining spatial analysis and genomics, landscape genomics could provide valuable insight 

into the extent that a local environment and its geography can influence the genetic structure of livestock 

populations (Pariset et al., 2012). Such information may allow for more purposeful selection of genetic 

resources that will survive and perform in a future greatly affected by global warming and striving for 

food security. 
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1.1.2 Aim of the study 

The aim was to investigate growth performance of Bonsmara cattle in the Eastern Cape, Free State, and 

North-West provinces of South Africa, using a landscape genomic approach. The Free State, North- 

West, and Eastern Cape provinces are being exclusively investigated in the study due to the available 

numbers of registered Bonsmara cattle compared to the other six provinces. 

Objectives: 

 To compile data sets for different geographic regions with climatic variables and phenotypes. 

 To compile dataset with genotypes to match the climatic-phenotypic data. 

To process the genomic and environmental datasets to partition the genomic variation among 

geographic and climatic variables and to remove redundancies in environmental data. 

To generate a list of candidate loci that contribute to the genomic adaptation of Bonsmara cattle 

to their respective environments. 

To annotate the candidate loci to determine whether corresponding genes are associated with 

growth performance or adaptation. 
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1.2 Literature review 

1.2.1 Introduction 

Landscape genomics is the field of study whereby genotypic information from spatially referenced 

populations, environmental data from varying landscapes, and the relevant geographic data are 

combined to identify genomic regions involved in local adaptation (Mdladla et al., 2018). Landscape 

genomics has value in the livestock sector due to the existence of animal ecotypes and biological types 

in different regions of countries. 

In this review, a brief overview is provided on the factors influencing livestock production, traits of 

economic importance, and the role of Bonsmara cattle with reference to their selection for adaptation 

and production in various geographical regions. This is followed by a short discussion on genome-wide 

association studies (GWAS) and the application of SNPs with specific reference to landscape genomics 

and how it can be applied to the livestock industry. 

1.2.2 South African environment and its effects on beef cattle performance 

The genetic selection of cattle to meet specific breeding objectives becomes null and void if the selected 

individuals are not productive. Functional efficiency is a term originally coined by the late Professor JC 

Bonsma (Bonsma & Bonsma, 1985) and relates to reproduction, adaptability, and frame. The 

importance of functional efficiency is that selection of the most functional breeding animal based on 

environmental constraints, will prevent a detrimental decline in performance of the next generation (van 

der Westhuizen, 2019). 

The late Professor Jan Bonsma outlined 16 environmental factors that influence the performance of 

cattle (Bonsma & Bonsma, 1985). These factors were visually arranged in the format of a wheel and 

entitled the Livestock Ecology Wheel (Figure 1.1). The environmental factors of importance that relate 

to this study are temperature, rainfall and humidity, and nutrition. 

Figure 1.1 The Livestock Ecology Wheel developed by Prof. Jan Bonsma (Bonsma & Bonsma, 1985). 
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Natural vegetation in South African provinces 

South Africa is known for its vast variety of flora and fauna, as well as the distinctiveness of vegetation 

species and quality found in each province. Most South African bioregions are arid or semi-arid, with 

high ambient temperatures that may adversely affect the production of livestock during summer (Du 

Preez et al., 1992; De Jager, 1993). Moreover, temperature, in tandem with rainfall, influences the 

vegetation availability, quality and distribution (Visagie, 2012). Natural veld is often the only feed 

source available to grazing cattle. Resultantly, poor nutrient intake, due to poor forage quality, is an 

important constraint in beef cattle production in South Africa (Visagie, 2012). This is a factor that 

ultimately influences the growth performance of cattle. Figure 1.2 illustrates which bioregions are found 

in the different provinces of the country and Table 1.1 summarises the relevant bioregion information 

for the Eastern Cape, Free State, and North-West provinces. 

Figure 1.2 A map depicting the bioregions of South Africa (Mucina et al., 2006). 

The three primary categories of veld type are sweet, sour, and mixed veld, with subcategories 

comprising of combinations of the primary categories (Figure 1.3) (Tainton, 1999). Sourveld is found 

in areas with high rainfall (at least 650mm of precipitation) and soils that are more acidic. The vegetation 

in these areas becomes less palatable and nutritious once it reaches maturity (Ellery et al., 1995; Van 

Rooyen, 2002). Sweetveld occurs in areas with low rainfall (200 to 500mm) and soils that are 

6haracterized by a high base and mineral status. The vegetation is nutritious throughout the year granted 

the veld is managed properly (Ellery et al., 1995; Van Rooyen, 2002). Further, sourveld is predominant 
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in areas where the carbon assimilation is high relative to the nutrient supply, and sweetveld occurs in 

areas where the carbon assimilation is low relative to the nutrient supply. Mixed veld is the intermediate 

of sour and sweetveld (Ellery et al., 1995; Tainton, 1999). Figure 1.3 indicates that sourveld is more 

common in the eastern part of the country (where rainfall tends to be higher) and sweetveld is more 

common in the west (where rainfall tends to be lower). 

Figure 1.3 The distribution of sweet, mixed, and sourveld in South Africa (Tainton, 1999). 

South Africa has a diverse climate ranging from temperate conditions in the Western and Eastern Cape 

to sub-tropical conditions in the Free State and North-West. The temperatures and precipitation levels 

vary throughout the country, resulting in variations of veld types as they are distributed through the 

grassland biome. 

The major climatological factors that influence livestock production are precipitation and temperature 

(Hafez, 1968). The effects of changes to the climate in South African provinces are predominantly 

observed in alterations to feed resources, which subsequently influence the production and performance 

of livestock. Additionally, feed resources impact the distribution of livestock diseases and parasites, 

rangeland carrying capacity, the sustainability and buffering ability of ecosystems (Rust & Rust, 2013). 

One of the ways through which climate change can bring about modifications to these factors is when 

the primary productivity of crops, forages, and rangelands change, which consequently change the 

quantity of forage and fodder available for dry season feeding (Thornton et al., 2007). Another feed 

resource alteration that climate change brings about is the change in species composition of rangelands, 

which may further implicate the types of animal species able to graze the land (Thornton et al., 2007). 

Additionally, the digestibility and rates of degradation of plant species can be altered by climate change, 

as the plants themselves grow to adapt to a different climate (Thornton et al., 2007). 
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Table 1.1 Summary of veld type and bioregion classification of Eastern Cape, Free State, and 

North-West provinces (compiled from Tainton, 1999 and Mucina et al., 2006). 

Eastern Cape Free State North-West 

Well-rounded blend of sweet, 

sour, and mixed veld 

Predominantly sweetveld with 

some mixed veld and sourveld 

in the north-eastern regions 

Predominantly sweetveld, 

some sour and sourish-mixed 

bushveld 

Eight bioregions: 

• Dry Highveld 

Grassland Bioregion, 

• Albany Thicket, 

• Eastern Fynbos-

Renosterveld 

Bioregion, 

• Lower Karoo 

Bioregion, 

• Sub-Escarpment 

Savanna Bioregion, 

• Sub-Escarpment 

Grassland Bioregion, 

• Drakensberg Grassland 

Bioregion, 

• Upper Karoo 

Bioregion 

Six bioregions: 

• Mesic Highveld 

Grassland Bioregion, 

• Central Bushveld 

Bioregion, 

• Dry Highveld 

Grassland Bioregion, 

• Upper Karoo 

Bioregion, 

• Drakensberg Grassland 

Bioregion, 

• Eastern Kalahari 

Bushveld Bioregion 

Four bioregions: 

• Dry Highveld 

Grassland Bioregion, 

• Eastern Kalahari 

Bushveld Bioregion, 

• Central Bushveld 

Bioregion, 

• Mesic Highveld 

Grassland Bioregion 

 

Predicted changes to temperature (overall increase), humidity (overall increase), precipitation (overall 

decrease), and precipitation variability (overall increase) would be the driving forces behind negative 

impacts on livestock production (Angel et al., 2018; Chadyiwa & Wepener, 2021). A 2017 study 

observed that from 1985 to 2014 in Gauteng and Limpopo, the average annual precipitation had 

decreased by 57.361mm and 17.014mm, respectively, and the average maximum temperature increased 

by 0.49 °C and 0.54 °C, respectively (Elum et al., 2017). Such climate change can have direct 

implications on livestock growth, health, and reproduction. 

When livestock struggle to dissipate excess heat, due to the ambient temperature, relative humidity, and 

radiant energy exceeding the normal parameters in which livestock can comfortably exist, they succumb 

to heat stress which can be detrimental to their production abilities (Daramola et al., 2012; Rashamol et 

al., 2020; Cheng et al., 2022). Animals primarily transfer heat by evaporation as it is independent of a 

temperature gradient. However, since humidity affects the evaporation rate, the temperature humidity 

index (THI) becomes more relevant when high temperatures and high humidity persist (Rust & Rust, 

2013). 

Climate change will have the greatest impact on farming systems that are dependent on the environment, 

such as extensive grazing and mixed farming systems. Reduced precipitation corresponds to increased 

droughts, which can negatively impact poorly adapted crop varieties and result in shorter pasture 

growing periods (Konapala et al., 2020; Cheng et al., 2022). Additionally, a demand for more efficient 

water usage will result with reduced average annual precipitation, to meet the water requirements of 
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livestock and vegetation (Webber et al., 2018; Cheng et al., 2022). However, a risk associated with 

water, especially when it is obtained from sources other than natural precipitation, is that of chemical 

contaminants. Ground water located close to rural settlements or larger cities are at risk of containing 

organic or inorganic, biological, or heavy metal contaminants (Nardone et al., 2010). Animals need two 

to three times more water when exposed to temperatures exceeding their thermo-neutral zones. 

Therefore, the risk of excessively consuming dangerous contaminants or water with altered pH, 

increases if such water is exclusively available to them. Effects may be observed in the metabolism, 

fertility, and digestion of the animals (Nardone et al., 2010). 

Temperature and relative humidity 

Most South African beef cattle farms operate as extensive production systems where cattle are 

constantly exposed to natural conditions. Managing the cattle to reduce the climatic impact remains a 

challenge, especially when rapid changes to climatic conditions occur (Gaughan & Cawdell-Smith, 

2015; Lees et al., 2019). Studies investigating the influence of high environmental temperature and 

solar radiation on cattle production, reported reduced dry matter intake, which subsequently led to 

reduced average daily gain, and lower clean dressing percentages (Nardone et al., 2010; Lees et al., 

2019). Solar radiation has an inhibiting effect on the thermoregulatory abilities of animals, especially 

in areas where natural shade is not abundantly available or artificial shading solutions are not possible 

(Lees et al., 2019). 

The effects of rising ambient temperatures on the performance of beef cattle include reduced feed 

conversion efficiencies, reproduction rates, and weight gain, and increased prevalence of internal 

parasite infections, and prevalence of vector-borne diseases (Summer et al., 2019; Cheng et al., 2022). 

Animals have a thermo-neutral zone, within which temperature is regulated through the control of 

sensible heat loss – there is no regulatory alteration to metabolic heat production or evaporative heat 

loss (Gonzalez-Rivas et al., 2020; Cheng et al., 2022). However, when environmental variables 

collectively push the thermo-neutral zones to their upper limits or beyond, the affected animal will begin 

to suffer from “heat stress” (Visagie, 2012; Cheng et al., 2022). The animal’s body will physiologically 

respond to heat stress, to maintain the body temperature within normal range, by increasing heat loss 

and reducing heat production (Bernabuccil et al., 2010; Rashamol et al., 2020). This process of heat 

acclimation has two phases: short-term heat acclimation (STHA) and long-term heat adaptation (LTHA) 

(Collier & Zimbelman, 2007; Visagie, 2012). STHA begins during heat stress periods, and involves the 

alteration of cellular signaling pathways, which ultimately result in the reprogramming of cells to 

withstand the detrimental impact of heat stress (Horowitz, 2001). LTHA occurs after STHA and is 

characterized by the ultimate enhancement of metabolic processes and signaling pathway efficiencies. 

These improvements are triggered by the modified gene expression brought on by heat stress and 

cellular responses (Horowitz, 2001). 
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The temperature-humidity index (THI) is used as a thermal stress indicator for livestock. The threshold 

limits are as follows: values <74 are defined as ‘alert’; 75<THI<79 are defined as ‘danger’; and values 

exceeding 79 are classified as ‘emergency’ (Amundson et al., 2006). In periods of heat stress, 

respiratory rates increase, and feed intake decreases (Foster et al., 2009). Thus, in regions where the 

THI is high, the overall mature weights of animals may be lower than what is deemed “average” by 

breed standards, due to the consumption of less feed over their lifetimes. 

Decreased feed intake is the primary response to heat stress observed in ruminants. When ambient 

temperatures are higher than normal, the normal metabolic heat released during the fermentation 

process of feed within ruminants consequentially compromises their thermoregulation ability 

(Gonzalez-Rivas et al., 2020). However, this places the animals into a negative energy balance 

(Bernabuccil et al., 2010; Visagie, 2012), which limits weight gain and negatively influences their 

mature weights. Additionally, in the extreme event of chronic heat stress, metabolic adaption 

comprising of alterations to endocrine function, basal metabolism, water and electrolyte metabolism, 

and rumen fermentation, may also take place (Padodara & Jacob, 2013; Angel et al., 2018). Heat- 

stressed animals have much greater water requirements than thermoneutral animals. The main driver 

behind increased water intake is for thermoregulation to counter water evaporation that occurs from 

panting and sweating (Gonzalez-Rivas et al., 2020) and to cool down the reticulum-rumen to lower the 

internal body temperature (Bewley et al., 2008; Gonzalez-Rivas et al., 2020). 

Heat stress has been reported to compromise reproductive efficiency of livestock in tropical or 

subtropical regions, leading to a negative impact on the results of animal selection and eventual meat 

and milk production (Alves et al., 2014; Angel et al., 2018; Rahman et al., 2018). Raised internal body 

temperatures compromise oocyte growth in cows by altering the dynamics of hormone secretion during 

the oestrus cycle (Angel et al., 2018). Most studies have observed that cows suffering from heat stress 

have diminished luteinizing hormone (LH) secretion and that which is secreted does not function 

properly (Bridges et al., 2005; Wolfenson & Roth, 2019). Additionally, the intrauterine environment is 

compromised when high environmental temperatures persist because blood flow towards the uterus is 

decreased to direct increased blood flow to the extremities, to allow greater heat dissipation. Resultantly, 

the temperature in the uterus increases (Dash et al., 2016). Heat stress has also been associated with 

increased embryo mortality and defective embryo development in cattle (Angel et al., 2018). 

Another influence of high environmental temperatures on reproduction is reduced pregnancy rate. A 

study reported reduced pregnancy rates when average daily environmental temperatures and average 

daily THI exceeded 16.7°C and 72.9, respectively (Amundson et al., 2006). Lowered conception rates 

have also been reported to be associated with raised rectal and uterine temperatures (Gwazdauskas, 

1985). 
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In bulls, higher environmental temperatures result in reduced semen concentration, number of 

spermatozoa, motile cells, and major sperm defects per ejaculate (Mathevon et al., 1998; Rahman et al., 

2018). Although the impact of heat stress on sperm quality or ejaculate volume may not be immediate 

or extreme, prolonged exposure can affect field fertility on a long-term basis (Gwazdauskas, 1985). An 

in vivo study by Rahman et al. (2018) investigated the effects of prolonged heat stress on sperm quality 

and alterations in sperm chromatin conformation were observed. This led to increased sperm 

abnormalities and low fertility (Rahman et al., 2018). Bulls exposed to high ambient temperatures 

(>29°C), were reported to present with decreased initial sperm motility, concentration and total sperm 

counts (Tucker & Oxender, 1980; Gwazdauskas, 1985). Further exposure of the bulls to extreme 

temperature (40°C), resulted in decreased motility and percent live spermatozoa, and increased percent 

of abnormal spermatozoa. (Tucker & Oxender, 1980; Gwazdauskas, 1985). 

Some mitigation strategies and adaptation factors to combat the effects of heat stress and ultimately 

improve efficiency in the beef sector (greater output of reproduction, survival, and growth rates), 

include greater emphasis on efficient nutrition, continuous genetic improvement, and modifying 

production systems to diminish their carbon footprint (Gaughan et al., 2019). Mitigating heat stress will 

not only improve animal well-being, but it will also aid in the prevention of economic losses due to 

poor production, fertility, and animal welfare (Gonzalez-Rivas et al., 2020). 

Precipitation 

South African bioregions receive varying average annual precipitation. The inland provinces, GP, FS, 

L, NW, and MP receive between 400 to 620mm per annum and the eastern coastal provinces, EC and 

KZN, receive between 550 to 850mm per annum (Climate in Eastern Cape South Africa, 2023; Climate 

in Gauteng South Africa, 2023; Climate in KwaZulu-Natal South Africa, 2023; Climate in Limpopo 

South Africa, 2023; Climate in Mpumalanga South Africa, 2023; Climate in North-West South Africa, 

2023; Climate in Orange Free State South Africa, 2023). KZN and parts of EC receive year-round 

precipitation, and MP has roughly two to three dry months in the year. GP, FS, L, and NW, however, 

do not receive winter precipitation, thus are at risk of long drought periods. Growth performance has 

been known to have a curvilinear relationship to the seasonal distribution of rainfall – which in turn 

determines the available vegetation of a specific season (Foster et al., 2009). South Africa is a country 

subjected to precipitation variability, frequent droughts, floods, and high ambient temperatures (IPCC 

2007, 2013). Water shortages and heat stress were found to be the two most impactful factors on cattle 

production in semi-arid environments (Dzavo et al., 2019). Studies investigating the impact of water 

scarcity on livestock farming in Sub-Saharan Africa, reported that droughts cause cattle deaths, feed 

shortages, and weak immunity in cattle (Megersa et al., 2014; Tolemariam et al., 2015; FAO, 2016; 

Magita & Sangeda, 2017; Kimaro et al., 2018). 
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Without sufficient precipitation, crops and natural veldt fail to grow and the resulting feed shortages 

negatively affect the cattle production and reproduction (Rojas-Downing et al., 2017; Dzavo et al., 

2019). The vegetation that is available in low precipitation seasons is more likely to be of poor quality 

(Rojas-Downing et al., 2017). Contrastingly, bioregions where high rainfall is more common may offer 

greater quantities of grazing, but it may be of lower nutrient quality due to likely being classified as 

sourveld (Webb et al., 2017). Further, water intake aids feed intake; easing the digestion of dry feed 

(Rojas-Downing et al., 2017). 

Nutrition 

Extensive farming systems in South Africa are associated with semi-arid environments. Since these 

systems are entirely dependent on natural resources, forage and concentrate resources can become 

limited in quantity and quality when environmental stress is severe and prolonged. Extended drought 

periods will negatively affect vegetative growth and forage water content, causing them to be 

unpalatable and highly fibrous (Konapala et al., 2020). Fibrous and unpalatable forages are likely to 

reduce voluntary feed intake. High fibre feed may also result in excess heat production due to excessive 

fermentation, which could lead to an increased thermoregulatory demand for water (Polley et al., 2013). 

Forage quality and quantity has seasonal variability. The quality/digestibility determines the dry matter 

intake (DMI) and subsequently the nutrient intake. Low digestibility equates to increased fermentation 

time, which is not desirable as it results in increased metabolic energy expenditure with low energy 

return (Maas, 1987). Winter is generally associated with poorly digestible feed and summer with highly 

digestible feed (Maas, 1987). The natural veld in semi-arid, South African environments is comprised 

of rangeland that is poor in both quality and quantity. From a nutrition perspective this translates to 

malnutrition and consequently, poor immune status of animals (Dzavo et al., 2019). Further, the 

rangelands in South Africa are classified as sour, sweet, or mixed according to the rainfall they receive 

and the vegetation they contain (Mapiye et al., 2009). Rangelands receiving high annual rainfall (600 

to 800mm), typically on the eastern side of the country, consist primarily of annual grass species and 

are classified as sour veld. These grasses lose nutritive value and palatability in the dry seasons (Ellery 

et al., 1995). Contrastingly, rangelands receiving less than 500mm of annual rain, more common on the 

western side of the country, consist primarily of perennial grass species and are classified as sweet veld 

(Ellery et al., 1995). These grasses remain nutritious and palatable all year round but may be lower in 

quantity due to the lower rainfall. 

Apart from the clear role that available feed plays in growth and production ability of cattle, it is also 

indirectly integral to efficient and successful reproduction. This is primarily due to body condition and 

mass being critical to the various stages of reproduction. Ideally, heifers should reach puberty at 14 to 

16 months of age and first calve at around two years (Michael et al., 2019). Environment and nutrition 

are two of the main factors that influence the age at which heifers reach puberty. Regarding nutrition, 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



13  

energy intake and subsequent body weight are the influencing factors (Buskirk et al., 1995). The goal 

is for heifers to have reached approximately 66% of their mature body weight by their first breeding 

season. Low energy intake will delay the onset of puberty in both heifers and bulls (Maas, 1987). 

Further, it is essential that pre-partum energy intake is sufficient to allow for normal fetal growth and 

development, calf survivability and growth, postpartum breeding efficiency, and short inter-calving 

period (ICP) (Maas, 1987). Adequate energy intake is especially important during the third trimester of 

pregnancy as approximately 75% of fetal growth occurs during this time (Schoonmaker & Eastridge, 

2013). When cows receive inadequate energy during this stage of gestation, reduced neonatal 

survivability and low calf birthweights are observed. Additionally, cows tend to produce poor quality 

colostrum when their feed intake does not meet their energy requirements during the final stages of 

gestation (Maas, 1987; Buskirk et al., 1995). This can be detrimental to calf survival. Further, milk 

production also tends to be lower in malnourished cows, which ultimately leads to low calf growth rates 

and low weaning weights. (Michael et al., 2019). The low body condition scores (BCS) of such cows 

will result in them having a slow return to estrus, reduced future conception rates, and longer inter- 

calving intervals (Maas, 1987; Michael et al., 2019). 

1.2.3 Traits of economic importance 

The growth traits that are recorded for South African beef cattle are generally easy to measure on farm. 

Some of these economically important traits include birth weight (BW), weaning weight (WW), mature 

weight (MW), and average daily gain (ADG). In addition, fertility traits such as age at first calving 

(AFC), inter-calving period (ICP), and scrotal circumference (SC) (Abin et al., 2016; Visser et al., 

2020). A summary of the heritability values for these traits are shown in Table 1.2. SA Stud Book 

utilises an animal recording system called Logix to store the performance records of the breeds which 

they render a service for. The performance records and pedigree records are required for genetic 

evaluations that utilise best linear unbiased prediction (BLUP) animal models to improve selection 

efficiency and obtain genetic change. Genetic evaluations allow for the calculation of estimated 

breeding values (EBVs) which enable accurate selection decisions about economically important traits 

and are useful in determining genetic trends (Abin et al., 2016). 

There are many factors that can alter the weight of an animal from birth to maturity, but growth curves, 

developed through an equation by Brody & Lardy (1946), as well as the generally, consistently strong 

genetic correlations (Table 1.2) between weights at different ages indicate that an individual’s birth 

weight sets the foundation for its future growth performance (Thonney, 2015; Gathura et al., 2020). 

Mature weight (h2 = 0.56) is, genetically, predominantly influenced by additive genetic variation 

(Zimmermann et al., 2021). A cow’s growth performance plays an integral role in her maintenance 

requirement and the manner with which she responds to the environment (Kattnig et al., 1993; James, 
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2009; Webb et al., 2017). For these reasons, it can be deduced that cow size should also influence a 

cow’s adaptive ability. 

Almost 30 years ago, suggestions were made to improve beef cow efficiency by selecting for cow size 

based on the environment (Kattnig et al., 1993). The optimal mature size is dependent on the production 

system and environment (Visagie, 2012). Research has suggested that selection for an optimal cow size 

should be directed towards the animals with mature sizes superiorly adapted to the breeding system, 

environment, and market factors of the regions they were produced in (Dickerson, 1970, 1978). Authors 

have made varying recommendations on which frame sizes would be optimal for which environments. 

Large-framed cattle were suggested to perform better in semi-arid tropics by some (Bonsma, 1983), and 

by others, in regions where forage is in abundant supply (Dickerson, 1978; Solis et al., 1998). 

Additionally, smaller-framed cattle were thought to be at an advantage in humid tropics by some 

(Bonsma, 1983), and by others, regions with hot and dry climates (Dickerson, 1978; Solis et al., 1998). 

Small to medium framed cattle breeds have been observed to perform more successfully in the hot and 

dry conditions of South Africa (Visagie, 2012). Small-framed breeds weight between 320 to 410kg at 

mature size (i.e., Nguni breed) and medium framed breeds weigh between 500 to 580kg at mature size 

(i.e., Bonsmara breed), with bulls being on the heavier side (Strydom, 2008; Brand et al., 2021). By 

selecting for an optimal cow size, potential is created to improve the adaptive ability of beef cows. This 

should in turn improve the overall efficiency of beef production in diverse environments. 

Table 1.2 Summary of heritabilities and genetic correlations for traits 

of interest for beef cattle. 

Trait Heritability Reference* 

Direct birth weight 0.23-0.39 b, c, f, g 

Weaning weight 0.07-0.27 b, c, f, g 

Yearling weight 0.14-0.27 c, f, g 

18 Month weight 0.29 f 

Mature weight 0.32-0.56 b, e, f, g, h 

Age at first calving 0.18-0.40 f, g 

Inter-calving period 0.01-0.03 f, g 

Scrotal circumference 0.40-0.44 b, g 

Rectal temperature 0.18-0.22 d, g 

Genetic Correlations 

Birth weight and weaning 

weight 

Birth weight and mature 

weight 

Weaning weight and 

yearling weight 

Yearling weight and 

mature weight 

0.44-0.53 

 

0.63 

0.84 

 

0.43 

a, g 

 

g 

 

g 

Rectal temperature and 

periodic weight gain 

-0.20 to -0.49 a 

Rectal temperatures and 

birth weight, mature 

-0.05 to -0.20 a 
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1.2.4 Bonsmara breed 

The Bonsmara beef cattle breed was developed at the Mara Research station in South Africa between 

1937 and 1963 to produce a breed that would be well adapted to and perform productively in the diverse 

climate regions of South Africa (Bonsma, 1980; van Marle-Köster et al., 2021). The breed is comprised 

of 5/8 Afrikaner, 3/16 Hereford, and 3/16 Shorthorn breeds, and is thus a blend of European taurine, 

African taurine, and African indicine (Sanga) breeds (Mostert & Exley, 2000; van Marle-Köster et al., 

2021). Mature cows weigh approximately 500 to 550kg (Brand et al., 2021). 

The SA Bonsmaras have been selected to produce economically in sub-tropical climates (Bonsma & 

Bonsma, 1985). Functional efficiency played a major role in breed development. To be registered as 

stud animals, Bonsmara cattle are required to be screened for functional efficiency by breed inspectors 

(Webb et al., 2017), and animals found with structural defects or to be functionally inefficient are culled. 

Some of the characteristics that have aided in the breed’s success in the South African beef industry are 

their adaptability on veld, their growth under both intensive and extensive conditions and their 

mothering ability; which were the traits targeted in the Afrikaner, British Hereford, and Milk Shorthorn 

during the breed’s development (Bonsma, 1980; van Marle-Köster et al., 2021). The breed’s popularity 

has allowed it to grow into the most prevalent beef breed in South Africa (Webb et al., 2017; Brand et 

al., 2021). 

The traits of interest to this review recorded with Logix for Bonsmaras are birth weight (BW), weaning 

weight (WW), yearling weight (YW), and 18-month weight (18MW). The phenotypic averages of these 

traits are 35.21kg, 228.05kg, 271.16kg, and 356.27kg respectively (SA Stud Book/Logix data, 2021). 

It has been observed that Bonsmara breeders typically assume that certain types or sizes of cattle are 

better adapted to specific production regions in South Africa (Webb et al., 2017). Phenotypic 

performance for mature cow weight will be influenced by genetic and environmental effects, and GXE 

associations can also be influential (Neser et al., 2008; Garrick & Enns, 2010; Jordaan, et al., 2021). 

Bonsma (1983) believed that functional efficiency could be applied in Bonsmara cattle based on the 

assumption that selection for phenotypic traits that are influential on an animal’s adaptability to the 

environment, will improve the animal’s ability to express its reproduction and production potential. 

Beef cow efficiency is significantly influenced by adaptive ability, bioregion, and size (Taylor et al., 

2008; Webb et al., 2017). Given the inevitable negative effect that impending climate change will have 

on beef cattle production, it will become increasingly vital to connect genotypes to production 

environments. Pursuing the selection of genotypes that are better adapted to the kind of environments 

weight, and dry season 

gain 
*Burrow, 2001a; Maiwashe et al., 2002b; Van Graan et al., 2004c; Prayaga et al., 2009d; 

Crook et al., 2010e; Van der Westhuizen et al., 2011f; Gathura et al., 2020g; 

Zimmermann et al., 2021h 
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likely to stem from climate change, would be an optimal way to ensure sustainable production (Scholtz 

et al., 2013; Jordaan et al., 2021). 

1.2.5 Landscape genomics 

Genomics is the study field whereby genetic information is identified, quantified, and analysed, using 

a variety of genomic tools. Genomics has grown popular in the animal genetics sector due to the 

potential contributions it offers to improving the understanding of biodiversity, animal production, 

disease susceptibility, and genetic factors underlying observed phenotypic traits (Zhang et al., 2012; 

Kizilkaya et al., 2013; Zhang et al., 2013; Gurgul et al., 2014). Genomics also plays a role in the 

assessment of livestock breeding values and the determination of genomic regions that are linked to 

various production traits (Hayes et al., 2009; Saatchi et al., 2011; Weber et al., 2012; Gurgul et al., 

2014). 

Applications of genomics for beef cattle was introduced to South Africa in 2015, by way of the state- 

funded Beef Genomics Program (BGP) (van Marle-Köster & Visser, 2018). The goal of the program 

was to establish reference populations for the 16 local beef breeds that participated, in an effort to 

implement genomic selection for them (van Marle-Köster & Visser, 2018). The BGP enabled Bonsmara 

breeders to implement genomic enhanced breeding values into their selection programs, ultimately 

accelerating and increasing the accuracy of genetic progress within the breed (van Marle-Köster et al., 

2021). 

The most popular tool in livestock genomic studies is the SNP genotyping array. Commercial SNP 

arrays are quick, reliable, and relatively inexpensive, all while providing genotypic information on large 

quantities of SNPs – which are a primary source of genetic variation (Matukumalli et al., 2009; Gurgul 

et al., 2014). SNPs have become popular due to their genetic stability, responsiveness to high through-

put automated analysis, and abundance in the genome (Vignal et al., 2002; Yadav et al., 2017). SNP 

genotyping arrays enable scientists to detect mutations linked to specific traits or diseases in animals. 

The SNP arrays are designed to describe the genetic variation of a genome of interest in the most 

informative way possible (Gurgul et al., 2014). The first of their kind, the BovineSNP50 genotyping 

array (Illumina Inc., San Diego, CA) became available in 2007 and featured 54001 informative SNP 

probes (Goddard & Hayes, 2011; Qwabe et al., 2013). Over the years, new SNP arrays have been 

developed and improved. Table 1.3 lists the commonly used SNP arrays in the South African beef 

breeding industry. Some have a greater SNP density than others and some are genus specific (Bos 

taurus/Bos indicus). These SNP arrays are often used in genome-wide association studies (GWAS) to 

identify genomic regions that contribute to natural variation in economically important traits (Goddard 

& Hayes, 2011). 
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Table 1.3 Summary of SNP array information (compiled from Reding, 2020; Visser 

et al., 2023). 

LD Panel and label Number of SNP 

variants per array 

Manufacturer 

GeneSeek® Genomic 

Profiler™ 80k 

76 883 GeneSeek® 

GeneSeek® Genomic 

Profiler™ 150k 

139,480 GeneSeek® 

Bovine3k BeadChip 2 900 Illumina, Inc. San Diego 

BovineLD BeadChip 6 909 Illumina, Inc. San Diego 

BovineLD.v2 BeadChip 7 931 Illumina, Inc. San Diego 

BovineSNP50 version 1 54, 001 Illumina, Inc. San Diego 

BovineSNP50-24 version 3 53, 218 Illumina, Inc. San Diego 

Bovine HD BeadChip 777 962 Illumina, Inc. San Diego 

International Beef and Dairy, 

(IDB) version 3 

53,450 International Dairy and 

Beef 

Weatherbys Scientific 

VersaSNP 50K™ 

49 778 Weatherbys Scientific 

Unistel-SA Stud Book 50K 

version 1 

54,394 SA Stud Book 

 

Landscape genomics stem from landscape genetics, which offers a unique collection of spatial analysis 

methods that aim to investigate the manner by which landscape variables influence genetic population 

structures (Storfer et al., 2018). The transition to genomics occurred when SNP markers (hundreds of 

thousands to millions of loci) replaced microsatellite markers (hundreds to thousands of loci) as the 

form of genetic information visualize in studies of spatial genetic variation (Joost et al., 2007; Storfer 

et al., 2018). Landscape genomics studies commonly aim to describe spatial patterns of selection and 

adaptation, whereas landscape genetics studies prioritise explaining the influence of landscape variables 

on gene flow (Storfer et al., 2018). 

Spatial data for most of the inhabited regions of the globe are available due to increased and improved 

geographic information systems (GIS) and mapping technologies (Storfer et al., 2018). Additionally, 

from a livestock perspective, developments in next-generation sequencing have enabled the study of 

the genomic basis of local adaptation for nearly any organism (Storfer et al., 2018). The combination 

of these two factors creates a unique place for landscape genomics in the livestock industry. This 

analytical tool is desirable for use within the livestock industry because extensive phenotypic/genotypic 

records are not needed for analysis. The only requirement for obtaining information about the genome 

relative to the environment, is that there are molecular markers spread throughout the genome (Mdladla 

et al., 2017). Further, substantial geographic data is also not needed as geographical coordinates can be 

used as proxies (Mdladla et al., 2017). The information that landscape genomic analysis can offer could 

provide valuable insight into an animal’s (or in this case the Bonsmara breed’s) adaptive genetic 

mechanisms that influence GxE interactions (Vajana, 2017). Flori et al. (2019) reported that Genomic 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



18  

Environmental Association (GEA) analyses assisted in identifying genetic variants associated with 

environmental variables, which describe adaptation to specific environments. 

Application of landscape genomics to the livestock industry 

Some of the limited available studies for landscape genomics in the livestock industry are listed in Table 

1.4. The studies all investigated local adaptation using a landscape genomics approach and provided 

evidence for landscape genomics being a useful tool in detecting candidate loci associated with local 

genomic adaptation. 

One of the primary motivations for using landscape genomic analyses in the livestock sector is that it 

provides an opportunity to use genomic and environmental information to detect signatures of adaptive 

genetic variation that could explain livestock adaptation to the specific environment. Such information 

can supplement typical genetic evaluations for breed improvement (Long, 2008; Rellstab et al., 2015; 

Grummer et al., 2019). Additionally, by integrating global warming models with landscape genomics 

analysis, it becomes possible to predict the effect of climate changes on breed survivability (Joost & 

Negrini, 2010). 

Table 1.4 List of previously conducted landscape genomic studies on the local adaptation of various 

livestock species.  

Species Breed Country  Reference 

Indigenous goats Boer, Kalahari Red and 

Savanna, local ecotypes, 

and Tankwa 

South Africa Mdladla et al., 

2018 

Indigenous cattle Local ecotypes Uganda Vajana et al., 2018 

Indigenous goats 34 local ecotypes Italy Cortellari et al., 

2021 

Indigenous cattle Local ecotypes Eritrea Goitom et al., 2021 

Sheep and goats 26 French sheep breeds, 

16 Italian sheep breeds, 

and 9 Spanish sheep 

breeds. 

8 French goat breeds, 18 

Italian goat breeds, 6 

Spanish goat breeds.  

Mediterranean Serranito et al., 

2021 

Indigenous sheep 13 local ecotypes Ethiopia Wiener et al., 2021 

Indigenous cattle 11 local ecotypes India Bhardwaj et al., 

2023 

 

The landscape genomics study conducted by Mdladla et al. (2018) identified 195 associated candidate 

genes. The authors visualize two landscape genomics approaches, LFMM and SAM. 55 genes were 

identified through the LFMM approach, and 140 genes were identified through the SAM approach. The 

authors noted ADRA1D, BRAF, CALCRL, CALD1, EDNRA, ITPR2, PLCB1, and PRKG1, to be 

candidate genes for local adaptation of indigenous South African goats (Mdladla et al., 2018). The study 

investigating local adaptation of indigenous Italian goats visualize both SAM and LFMM landscape 
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genomics approaches (Cortellari et al., 2021). The SAM approach identified 62 genes, of which DLG1, 

HADC9, and KLF12 were associated with meat and growth; BTRC, DENND1A, and PRKD1 were 

associated with fertility; BTLA was associated with rheumatoid arthritis; and EYA3, KCNJ1, and 

MAPK9 were associated with circadian rhythm (Cortellari et al., 2021). The LFMM approach identified 

two candidate genes from the four SNPs associated with the tested environmental variables. These genes 

were NBEA and RHOBTB1 (Cortellari et al., 2021). 

Serranito et al. (2021) visualize an LFMM approach to identify 42 genes that were believed to be found 

in regions under selection. The authors reported that ADAMTS20, DPH6, NBEA, SOX2, TRPC4, 

TRPC6, UBE2R2/UBAP2, and UHRF1BP1/C23H6ORF106 were associated with local adaptation of 

indigenous Mediterranean sheep and goat breeds (Serranito et al., 2021). Local adaptation of indigenous 

Ethiopian sheep was investigated using a Bayesian approach by Wiener et al. (2021). 56 candidate 

genes were identified and ARMC3, COL6A3, FHAD1, PLCB1, PRDM16, RXFP2, and SDK1 were 

reported to be specifically associated with adaptation to various environmental variables (Wiener et al., 

2021). 

Vajana et al. (2018) visualize a SAM approach and identified a total of 42 candidate genes from the 

variables tested. The authors noted PRKG1 and SLA2 as prominent candidate genes for local adaptation 

of East Coast Fever (ECF) in Ugandan cattle (Vajana et al., 2018). The study by Goitom et al. (2021) 

identified 1061 genes from the landscape genomic approach the authors implemented. Eight of those 

genes were found in genomic regions under positive selection when selection signatures were scanned. 

The genes were AHSG, AIRE, ATP1B3, CASR, IFNAR2, PARS2, ROBO2, and SCHIP1 These genes 

were reported to be associated with stress and defence response, autoimmunity regulation, energy- 

related biosynthesis, cellular mineral homeostasis, blood coagulation, amino-acylation, morphogenesis 

of cells, locomotion, facial morphology, and skeletal and muscle system development (Goitom et al., 

2021). Bhardwaj et al. (2023) visualize a SAM approach for their landscape genomic analysis of 

indigenous Indian cattle. There were 1305 significant SNPs identified from the analysis, from which a 

number of genes were identified that were associated with various forms of adaptation (acclimation, 

adipose tissue, coat colour, cold adaptation, disease resistance, growth, light stress, meat quality, milk 

production, and reproduction) (Bhardwaj et al., 2023). 

Genome-wide association study (GWAS) and selection signatures 

Genome-wide association studies (GWAS) are genotypic studies that aim to identify genetic variants 

that are significantly associated with variation in specific traits (Raza et al., 2020). In addition to 

genotypic information, phenotypic information for the genetic variant being explored is required for the 

GWAS to determine a correlation between the trait and the variant (Hirschhorn & Daly, 2005; Bush & 

Moore, 2012; Santiago et al., 2017). The information provided by a GWAS can be useful in guiding 

selection for complex traits in populations (Bolormaa et al., 2014; de Vos, 2018). The principal 
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assumption supporting GWAS is that significant associations occur when the SNPs and causative 

mutations for a trait are in linkage disequilibrium (LD) (Hayes & Goddard, 2010). 

Genomic selection (GS) differs from marker assisted selection (MAS) in that it considers the effect of 

large numbers of genes on a single trait, instead of the effect of only one or a few genes (Hayes & 

Goddard, 2010). This expansive exploration of gene influence on trait expression allows for potentially 

improved understanding of the variation observed through the expression of complex traits (Korte & 

Farlow, 2013; de Vos, 2018). The sample size and density of the SNP array determine the number of 

SNPs detected through GWAS. The larger the sample size and the higher the density of the SNP array, 

the greater the number of SNPs detected (de Vos, 2018). However, the success of a GWAS depends on 

a number of factors, including LD. The extent of LD across the genome varies between breeds and 

populations, therefore it is important to take into consideration. 

Generally, GWAS results are visualized through a Manhattan plot, allowing for easier interpretation. 

With this approach however, significance levels for the associations, confidence intervals and 

population parameters need to be accounted for (de Vos, 2018). The significance level is displayed on 

the Manhattan plot as a Bonferroni corrected significance level and is usually set to 5%. In which case, 

p-values >0.05 signify that a trait is significantly associated with those SNPs. The confidence interval 

is generally set to 95%. It is important to consider population structure to avoid exaggerated associations 

or high rates of false positives (Hirschhorn & Daly, 2005; de Vos, 2018). 

GWAS has been used exhaustively to explore growth traits in beef cattle (Berry et al., 2017; Raza et 

al., 2020) and numerous SNPs have been identified on various chromosomes for these traits. A 

Canadian study found four SNPs that were significantly associated with BW, pre-weaning daily gain 

(PDG), WW, and YW (Akanno et al., 2018). These SNPs were detected on bovine chromosomes BTA1, 

BTA3, BTA4, and BTA21, and were associated with four candidate genes: U6atac (BW), AGBL4 

(WW), bta-mir-2888-1 (PDG), and REPIN1 (YW), respectively (Akanno et al., 2018). Makina et al. 

(2015) determined several genes to be associated with growth, metabolic processes, muscle organ 

development, and skeletal development. The growth and metabolic process associated genes were 

AJAPI (BTA7), DDX19A, IGFBP4, KCNB1 (BTA8), MYO6, and TGFB1. The genes associated with 

skeletal and muscle organ development were EFHD2, KIAA1797 (BTA6), MTPN (BTA6), and 

TMEM51 (Makina et al., 2015). 

Additionally, another study (Buzanskas et al., 2014) found BW, WW, and YW to be associated with 

SNPs located close to close to genes on various chromosomes. BW was significantly associated with 

SNPs on BTA4 (close to DPP6) and BTA9 (close to MANEA and LOC783932). WW was significantly 

associated with SNPs found on BTA 6 (near FARSB) and BTA11 (near RALGDS). YW was 

significantly associated with SNPs located BTA7 (near ALDH7A1, C7H5orf48, LMNB1, 

LOC100848523, MARCH3, MIR2458, and PHAX); BTA22 (near CDCP1, CLEC3B, EXOSC7, LARS2, 
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LOC614114, LOC101907967, LOC101908013, LOC101908094, LOC101901958, TMEM158, and 

ZDHHC3); and BTA27 (close to LOC101904868) (Buzanskas et al., 2014). The use of GWAS for 

growth trait investigation has provided a greater understanding of the genetic variation expressed with 

these traits. It has also provided useful insight into the candidate genes that could be targeted in growth 

trait selection. 

Selection signatures 

Selection leads to alterations of regions of the genome that result in selection signatures. Identifying 

selection signatures can facilitate the detection of genomic regions that have been targeted by selection 

due to being (or having been) functionally important (Makina et al., 2015). The relevance of identifying 

selection signatures lies in their contribution to understanding mechanisms associated with traits that 

have been exposed to intensive selection. Moreover, selection signatures facilitate the successful 

annotation of significant functional genomic regions (Makina et al., 2015). However, one of the primary 

challenges to identifying selection signatures in livestock is the existence of SNP ascertainment bias. 

The SNP assays utilised for analysis in most studies, contain common SNPs – thus, any information 

regarding levels of LD or the distribution and variability of allele frequencies, would be heavily 

influenced by those common SNPs (Makina et al., 2015). 

Adaptation to specific environments has been observed to leave unique signatures in the genome. This 

is due to an abundance of desirable allele frequencies or frequencies of neutral markers that are in LD 

with favourable alleles (Smith & Haigh, 1974; Ben-Jemaa et al., 2020). These selection signatures may 

expose genes that are connected to traits under selection. Selection signatures can be identified by 

statistical methods that are broadly classified as intra-population statistics and inter-population statistics 

(Saravanan et al., 2020). Intra-population statistics compare the genomic data within populations to 

identify selection signatures. Example approaches include site frequency spectrum, LD, and reduced 

local variability (i.e., runs of homozygosity (ROH)) (Weigand & Leese, 2018; Saravanan et al., 2020). 

Inter-population statistics are dependent on methods that take the extent of differentiation caused by 

locus-specific allele frequencies between populations into account (Zhao et al., 2015; Saravanan et al., 

2020). These approaches include single site differentiation (i.e., fixation index (Fst)) and haplotype- 

based differentiation (i.e., haplotype-based extension of FLK (hapFLK)) (Fariello et al., 2013; 

Saravanan et al., 2020). 

Environmental adaptation is comprised of complex traits that are influenced by many genes and 

metabolic pathways. Thus, it can be challenging to identify only a few loci under positive selection 

(Kemper et al., 2014; Freitas et al., 2021). Despite this challenge, scientists have been able to identify 

candidate genomic regions associated with adaptability traits in various cattle breeds by studying 

selection signatures. One such study was conducted by Freitas et al. (2021), who isolated a few 

candidate genes related to adaptability traits by use of intra- (ROH) and inter-population (Fst, and 
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HapFLK) statistical analysis methods. The authors analysed 32 worldwide cattle breeds (with specific 

focus on Asian cattle) for genomic regions that were potentially under selection for heat tolerance. The 

statistical analysis methods revealed that there were candidate genes associated with physiological 

pathways and processes such as feed intake, heat-shock proteins, and metabolic activity (Freitas et al., 

2021). Additionally, a similar study was conducted by Ben-Jemaa et al. (2020), where genome-wide 

scans for selection signatures provided insight into the adaptive ability of North African cattle. Outlier 

genomic windows were detected, wherein candidate genes associated with adaptation to drought, forage 

scarcity, and infectious diseases were located (Ben-Jemaa et al., 2020). 

Studies such as those conducted by Ben-Jemaa et al. (2020) and Freitas et al. (2021) can be pivotal in 

identifying biological factors that influence adaptation and physiology, and subsequently production, in 

livestock. The genomic regions that were detected by the studies could potentially provide insight to 

the locations of candidate loci involved with environmental adaptation. Such information can be 

beneficial to future landscape genomic studies that seek to investigate the influence of the environment 

on specific SNP variants instead of taking a genome-wide association approach (Gurgul et al., 2014). 

Detail on selection signatures and its application was beyond the scope of this study. 

1.2.6 The methodology of landscape genomics analysis 

Landscape genomic approaches generally require three forms of data for analysis: geographic 

coordinate data, environmental variable data, and genetic information (Joost et al., 2007). The 

environmental data typically included in analysis include rainfall, temperature, relative humidity, 

vegetation and topography (Mdladla et al., 2018), while the genetic information consists of SNP 

markers (Storfer et al., 2018). When genetic information is not readily available and must be sequenced 

specifically for a landscape genomic study; one of the popular sequencing methods visualize is 

restriction-associated digest DNA sequencing (RAD-seq.) (Andrews et al., 2016; Lowry et al., 2017). 

This approach is appealing to scientists because, although reference genomes exist for livestock species, 

a reference genome is not required for RAD-seq. execution. It also enables the identification of 

thousands to millions of SNPs (Storfer et al., 2018; Georges et al., 2019). 

Genome scans can be used to test for loci that are under selection. Two approaches are considered for 

loci detection: (a) differentiation outlier methods (previously FST-outlier tests), and (b) GEA tests 

(Rellstab et al., 2015; Storfer et al., 2018). Of interest to this study are the GEA tests, as they are 

designed to identify significant associations between allele frequencies and environmental variable 

variation (Rellstab et al., 2015). Table 1.5 summarises the compulsory information required for 

computational landscape genomic association tests and the optional components that can be applied. 
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Several statistical model approaches have been developed into computer programs that facilitate the 

detection of GEAs, since landscape genomics was first introduced in the early 2000s (Rellstab et al., 

2015; Li et al., 2017). A few of those models and programs are the spatial analysis method (SAM) 

(Joost et al, 2007), the Bayesian method (BAYENV) (Coop et al., 2010), and the latent factor mixed 

model method (LFMM) (Frichot et al., 2013). Details on these models are given in Table 1.6. When 

compared to other GEA test models, LFMMs were reported to be more effective models for detecting 

loci under selection, when applied to individual-based sampling designs (Lotterhos & Whitlock, 2015; 

Forester et al., 2018; Gugger et al., 2021). 

Table 1.6 Summary of the different statistical models/computational programs used for landscape 

genomics (Frichot & Francois, 2015a; Rellstab et al., 2015). 

Model 

name 

Model 

type 

Advantages Disadvantages Software/R 

package 

Spatial 

analysis 

method 

(SAM) 

Linear 

regression 

model 

Can distinguish slight 

differences in allele 

frequencies between 

populations separated by 

location and landscape. 

Does not correct for 

confounding effects. 

 

Requires pre- and post- 

treatments: 

• Population structure 

analysis (pre) 

SAM (Joost 

et al., 

2007); 

SAMβADA 

(Stucki et 

al. 2017) 

Table 1.5 Necessary and optional information for livestock landscape genomic analyses and 

expected outputs (adapted from Joost & Negrini, 2010). 

 Input Output 

Necessary information required 

for calculation of association 

models 

Environmental data specific to 

the bioregion under 

investigation (topographic 

and/or climatic information, 

descriptive information 

regarding the production 

system i.e., pasture type, 

average annual precipitation, 

soil). 

 

Genetic data specific to the 

bioregion under investigation 

(SNPs). 

Working theories regarding the 

roles of the genomic regions 

associated with the genetic 

markers. 

Potential habitat maps for 

relevant the 

breeds/populations. 

Forecasts of potential effects of 

climate change. 

Forecasts of potential effects of 

landscape change resulting 

from human activity. 

 

Optional extra information on 

diseases and farming systems 

Disease information specific to 

the bioregion under 

investigation. 

 

Farming system data specific 

to the bioregion under 

investigation (socio-economic 

information pertaining to 

farms, management systems, 

objectives, resources). 

Working theories about 

relationships between specific 

genomic regions and disease 

occurrence. 
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• Control of false 

discovery rates 

(post) 

• Visualisation of 

results (post) 

Bayesian 

method 

(BAYENV) 

Linear 

regression 

model 

Can differentiate slight 

variations in allele 

frequencies between 

populations separated by 

location and landscape. 

 

Corrects for confounding 

effects (genomic 

background, isolation-by-

distance patterns, 

population structure). 

Requires pre- and post- 

treatments: 

• Population structure 

analysis (pre) 

• Control of false 

discovery rates 

(post) 

• Visualisation of 

results (post) 

BAYENV 

(Coop et 

al., 2010); 

BAYENV2 

(Günther & 

Coop, 

2013) 

Latent 

factor 

mixed 

model 

method 

(LFMM) 

Linear 

mixed 

model 

Can differentiate slight 

variations in allele 

frequencies between 

populations separated by 

landscape and location. 

 

Corrects for confounding 

effects (genomic 

background, isolation-by-

distance patterns, 

population structure). 

 

Enables separation of 

neutral genetic variation 

from adaptive genetic 

variation to identify 

adaptive genomic 

selection signatures. 

Requires pre- and post- 

treatments: 

• Population structure 

analysis (pre) 

• Control of false 

discovery rates 

(post) 

• Visualisation of 

results (post) 

LFMM 

(Frichot et 

al., 2013); 

LEA 

(Frichot & 

Francois, 

2015) 

 

Methodology of LFMM approach 

Generally, there are two predominant steps involved in GEA studies (Frichot & Francois, 2015a; 

Lotterhos & Whitlock, 2015). The first involves the evaluation of population genetic structure from 

provided genomic data, which is followed by assessing the various factors that may have an influential 

on the interpretation of results. The second step involves correcting any biases attributable to population 

structure results from step one, as well as any other confounding factors (Frichot & Francois, 2015a). 

LFMM methods test associations between genomic information and ecological variables through a 

linear regression model, where the allele frequencies of the animals are stored in a genotypic matrix and 

the ecological variables are factors of the genotypic matrix. The model 

𝐺𝑖𝑙 =  𝜇𝑙 + 𝛽𝑙
𝑇𝑋𝑖 +  𝑈𝑖

𝑇𝑉𝑙 + 𝜖𝑖𝑙  Eqn. 1.1 
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consists of a locus-specific effect, 𝜇𝑙 ; a d-dimensional vector of regression coefficients, 𝛽𝑙 ; K latent 

factors, 𝑈𝑖 ; their corresponding [K] values, 𝑉𝑙.; where, i denotes an individual and l denotes a locus; 

and Gaussian variables with variance 𝜎2 and a mean of zero, 𝜖𝑖𝑙 (Frichot et al., 2013). The associations 

are tested by estimation of unobserved latent factors that model the confounding effects. In essence, the 

latent factors consist of layers of population structure from shared, background genetic variation 

(Frichot & Francois, 2015a). Once confounding effects have been corrected for, any notable 

associations observed between allele frequencies and specific ecological variables, are taken as 

indications of selection at the relevant loci (Frichot et al., 2013). 

In the instance that the investigated ecological variables do not influence genetic variation, LFMM are 

assumed to produce uniformly distributed P-values, given correct calibration of the tests (Frichot & 

Francois, 2015a). To test whether a specific model is calibrated correctly, LFMM can be run with unique 

numbers of latent factors. Optimal LFMM association test performance has been observed for latent 

factor values that are similar to the number of significant components or clusters in a principal 

component analysis (PCA) (Frichot et al., 2013). The output of the LFMM association tests is also 

noteworthy. Results consist of P-values and Z-scores; by combining the Z-scores from multiple runs 

and appropriately controlling the false discovery rate, lists of candidate loci can be generated (Benjamini 

& Hochberg, 1995). The candidate loci can be used to identify genes for annotation, to determine SNPs 

that may be influenced by the environment. 

Challenges to the LFMM approach 

It has been reported that one of the primary challenges to LFMM methods is deciding on an appropriate 

K value (Lotterhos & Whitlock, 2015). Choosing incorrect K values can skew the output and be 

detrimental to the interpretation of results. K values that are too large (K>50) result in more conservative 

tests and a decline in the power to reject neutrality (Patterson et al., 2006). Therefore, although 

challenging, finding the optimal K value is key. A suitable K value can be equal to a reasonable estimate 

of the number of genetic clusters, determined from clustering programs such as STRUCTURE or 

ADMIXTURE (Patterson et al., 2006; Frichot et al., 2013). Observations have shown that when the 

number of latent factors (K) are equal to the number of genetic clusters (observed in the PCA), LFMM 

tests perform optimally (Frichot et al., 2013). 

Another limitation to this model type is that it requires pre- and post-treatments of data and output 

(Frichot & Francois, 2015a). Prior to the LFMM analysis, analysis of population structure must be 

conducted. Post LFMM analysis, the false discovery rates need to be controlled for and the results need 

to be visualized in plots and graphs (Frichot & Francois, 2015a). Despite these challenges, it has been 

reported that when calibrated correctly and when the K value was true, LFMM produced lower false 

negative and false positive rates than other models (Lotterhos & Whitlock, 2015). 
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Landscape Ecological Association (LEA) analysis 

Landscape ecology association (LEA) analysis refers to an Rstudio package developed by Frichot and 

Francois (2015a, 2015b). The LEA v.3.8.0 package is an integrated framework that combines the two 

main steps of a GEA: population structure genetic analysis and ecological association study (Frichot & 

Francois, 2015a). The package allows for population structure analysis by way of principal component 

analysis (PCA) or alternatively, non-negative matrix factorization algorithms (sNMF) (Frichot et al., 

2013; Frichot et al., 2014). The ecological association of allele frequencies with ecological gradients is 

conducted through LFMM. LEA v.3.8.0 also comprises methods for statistical model calibration and 

false discovery rate control (Frichot & Francois, 2015a). Population structure analysis allows for the 

assessment of any genetic factors that may influence the interpretation of results. The ecological 

association study includes correction for biases caused by population structure and other confounding 

factors (Frichot & Francois, 2015a). The functions implemented in LEA can process very large genomic 

datasets without compromising the R program memory. Thus, by performing these two required 

analytical steps within a unified framework, algorithmic speed and memory allocation are visualized, 

whilst the statistical analysis flexibility and the visualization methods of Rstudio are conserved and 

benefited from (Frichot & Francois, 2015a). 

Prerequisites for using a landscape genomics approach 

The success of landscape genomics analysis is dependent on adequate regional and international 

genotypic data and sampling, which may be lacking in some studies. The costs associated with regional 

sampling and genotyping may hinder developing countries, such as South Africa, from conducting 

landscape genomic studies (Mdladla et al., 2017). Thus, more international studies and pooling of 

resources from international sources is required for the overall success of landscape genomics (Mdladla 

et al., 2017). 

1.2.7 Conclusion 

The environment plays an important role in beef cattle growth performance, given that extensive 

farming systems are predominantly implemented in the South African beef industry. The full extent of 

the environmental influence remains unclear as mature Bonsmara cow sizes vary between geographical 

regions and thus, standard points of reference for maintenance requirements or adaptive abilities do not 

exist. This creates challenges when breeders want to select for improved growth performances amidst 

rising levels of climate change. Landscape genomics offers opportunities to investigate associations 

between animal genotypes and the environments they are exposed to. The results from landscape 

genomics analyses should identify potential candidate genes that may aid in genomic selection for 

improved growth performance and adaptability to environment. 
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Chapter 2. Materials and Methods 

2.1 Introduction 

For this study, 4679 Bonsmara genotypes generated within the Bovine Genome Project (BGP) and Red 

Meat Research & Development (RMRD) projects, as well as through private breeders, were made 

available for the study with the required consent of the SA Bonsmara Breeders Society. Ethical approval 

for use of the external data was granted by the Ethics Committee from the University of Pretoria 

(NAS274/2020). 

2.2 Materials 

2.2.1 Genotypes 

A total of 4679 genotypes were obtained from SA Stud Book representing nine different geographical 

regions in South Africa. Only animals that were born in the same province in which they were raised, 

were included in the study. Most animals that complied with this criterion, were located in the Eastern 

Cape, Free State, and North-West provinces. Only these three geographical regions were included in 

the current project, as there were too few animals in the other provinces to generate statistically 

significant results. All male animals were removed from the dataset as most bulls moved between 

provinces from birth to maturity when sold. The editing process is described in Figure 2.1. 

 

Figure. 2.1 Diagram breaking down the editing and pruning of raw data. 
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To be eligible for analysis, animals were required to have been born and raised at a single geographical 

location. The selected female animals had been born and raised on the same farm and phenotypic 

recordings for the traits of interest were available. After editing and pruning, 766 genotyped cows 

representing the Eastern Cape, Free State and North-West provinces were included in the analysis 

(Table 2.1). 

Table 2.1 Bonsmara genotypes representing different regions of South 

Africa included in this study. 

Province Number of breeders Number of genotypes 

Eastern cape 7 418 

Free state 15 224 

North-west 20 124 

Total 42 766 

 

The SNP arrays used to genotype all the cattle are listed in Table 2.2. The second column indicates how 

many cattle, total, are recorded on each panel, and the proportion of bulls and cows. 

Table 2.2 Complete genotype dataset obtained from SA Stud Book.  

LD Panel and label Number of cattle per array Number of SNP variants per 

array 

GeneSeek® Genomic 

Profiler™ 80k 

597 cattle: 195 cow, 402 bulls 76 883 

GeneSeek® Genomic 

Profiler™ 150k 

1952 cattle: 1123 cows, 829 

bulls 

139 480 

International Beef and Dairy, 

(IDB) version 3 

829 cattle: 474 cows; 355 bulls 53 450 

Weatherbys Scientific 

VersaSNP 50K™ 

1525 cattle: 399 cows, 1126 

bulls 

49 778 

 

To visually represent the geographic information of the landscapes being investigated, a dataset of the 

coordinates for farms from the respective provinces was uploaded to an online interactive data 

visualization software Tableau version 2021.2.7 (Tableau Software, LLC, Seattle, WA). This software 

allows for data to be represented through maps, graphs, charts, and diagrams (Hamersky, 2016). Figure 

2.2 was produced to illustrate the spread of farms in the three provinces. The blue, red and black boxes 

refer to the North-West, Free State and Eastern Cape provinces respectively. The labels indicate 

respective weather stations, where the environmental data were obtained from, and their coordinates. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



29  

 

Figure 2.2 Map indicating geographical coordinate locations of animals on farms in North-West, Free State and 

Eastern Cape (Tableau, 2021). 

2.2.2. Phenotypes 

The production traits that were taken into consideration to investigate the effect of adaptation on growth 

performance consisted of birth weight (BW), weaning weight (WW), yearling weight (YW) and 18- 

month weight (18MW). Measurement data for these traits was available for most of the cows used in 

analysis, the number of available phenotypes per province are listed in Table 2.3. These phenotypes 

were utilised in a GWAS to identify any existing significant SNPs associated with growth performance, 

specifically 18MW. 

 

The average phenotypic performances for the traits are given in Table 2.4. The average performance 

measurements were calculated from the data obtained from SA Stud Book.  

Table 2.3 Number of phenotypes available per trait, per province.  

 Number of 

animals 

BW WW YW 18MW 

Eastern Cape 

Free State 

North-West 

TOTAL 

418 

224 

124 

766 

418 

215 

123 

756 

400 

211 

116 

727 

332 

163 

102 

597 

314 

122 

89 

525 

Table 2.4 Age of measurement and average performance for weight traits in cows per province. 

Trait BW WW YW 18-MW 

Age of measurement Within 3 days of 

birth 

151-270 days 

 

271-450 days 451-634 days 

Eastern Cape 35.12kg 232.8kg 272.32kg 374.79kg 

Free State 34.43kg 225.35kg 276.69kg 357.37kg 

North-West 33.62kg 224.60kg 262.75kg 335.05kg 

Average overall 35.2kg 228.0kg 271.16kg 356.27kg 
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2.2.3 Environmental variables 

Environmental data from the Eastern Cape, Free State and North-West provinces was requested from 

the SA Weather Bureau. They provided raw data consisting of daily recordings for maximum and 

minimum temperatures, maximum and minimum relative humidity and precipitation from two weather 

stations in each province. The recordings ranged from 2001 to 2021, however, there were many 

inconsistencies in the measurements with some years missing entire months of recordings, especially 

the years 2001-2015. The recordings from the years 2016 to 2021 were utilised for analysis. The farm 

locations for all the animals were compared to the coordinates of the two weather stations in each 

province. The values corresponding to the closest weather station were the ones applied to the relevant 

farms. 

The maximum and minimum relative humidity data did not vary significantly, thus the recordings were 

consolidated and placed under the single variable of “relative humidity” or “Rhum”, to simplify analysis 

and minimize run time. The data was processed to obtain an average annual value for each variable, 

which corresponded to the respective weather stations. This was as per recommendations by the authors 

of the Landscape Ecology Association (LEA) v.3.8.0 software (Frichot & Francois, 2015a) and 

observations of environmental input file formats of sample data sets provided by the authors as public 

access (Frichot & Francois, 2015b, Mdladla et al., 2018). Table 2.5 shows the average measurements 

for each variable over the 2016 to 2021 period, calculated from the weather data obtained from the SA 

Weather Bureau in 2021. The values in Table 2.5 were those used in the environmental data sets for the 

LEA analysis. 

Table 2.5 Climatic variable data for provinces (averages from 2016 to 2021). 

Weather 

station 

location 

aCompno Summer 

month 

temperature 

(°C) 

Winter 

month 

temperature 

(°C) 

Relative 

humidity 

(%) 

Average 

precipitation 

(mm) 

PE (Eastern 

Cape) 

30616 28.55 7.12 63.82 445.85 

East London 

(Eastern 

Cape) 

30703 25.65 10.6 65.46 418.42 

Taung 

(North-West) 

30985 31.3 3.73 53.04 488.03 

Mafikeng 

(North-West) 

30728 28.27 5.9 53.97 477.81 

Bethlehem 

(Free State) 

30655 26.52 2.02 60.46 654.94 

Bloemfontein 

(Free State) 

30144 30.52 3.64 49.71 558.81 

aCompno, weather station reference number 
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2.3 Statistical analyses 

2.3.1 Quality control of genotypic information 

Genotypic information for the cattle was obtained from SA Stud Book and originated from the following 

SNP array panels; GGP80k, GGP150k, IDB and Versa 50k. Quality control (QC) was conducted using 

Plink v1.90b6.18 64-bit (Purcell et al., 2007). QC was executed for each panel, for sample call rate, 

SNP call rate, minor allele frequencies and Hardy-Weinberg Equilibrium (HWE) with cut-off levels 

being 0.05. The cut-off level for the HWE was 0.0001. These cut-off levels allowed for the removal of 

the cattle that had more than 5% missing genotypes, and the SNPs that were missing in more than 5% 

of the cattle, had a MAF lower than 5%, and violated the HWE (p<0.0001). The common SNPs between 

the arrays were then extracted and the data sets were merged. After QC, 766 cows remained, and 25 

272 common SNPs were extracted from the panels and used for downstream analysis. 

Principal component analysis (PCA) plots were created for the cows from each province using the 

GCTA64 v.1.93.2 (Yang et al., 2011) program and Microsoft Excel 365 v.2022 (Build 14931.20132) 

(Microsoft Corporation, 2018). These plots were created to compare the genomic relationships between 

Bonsmara populations in the respective provinces. Before the plots were constructed, genetic 

relationship matrices were calculated from the 25 272 common SNPs using GCTA64 v.1.93.2 (Yang et 

al., 2011). Eigenvalues and eigenvectors were subsequently generated for the principal components. 

The PCA plots were produced through Microsoft Excel 365 v.2022 (Microsoft Corporation, 2018) by 

plotting the eigenvector values; first, principal component (PC) 1 vs. principal component (PC) 2 and 

second, PC 1 vs. PC 3. 

From the PCA plots, it was observed that there was an outlier group of animals originating from the 

Eastern Cape. Referral back to the list of owners and the animals that belonged to specific breeders, 

revealed that all the animals in the cluster belonged to a single breeder. To determine the population 

substructure of these animals, their identity by descent was calculated. Plink v1.90b6.18 64-bit (Purcell 

et al., 2007) was utilised to calculate the identical by descent (IBD) values. The average proportion of 

IBD was calculated for the subgroup of animals and those exhibiting the highest relatedness were 

identified. Of the 55 animals in the subgroup, 29 exhibited values greater than 0.04 (list of cows found 

in Addendum A). Despite the high relatedness of the subgroup, none of the animals were removed from 

the analysis data set. Due to the exploratory nature of the project a larger data set was considered optimal 

to conduct a more extensive investigation into the environmental influence on genetic expression. 

2.3.2 Admixture 

To gain a better understanding of the ancestral history of the Bonsmara populations that were used in 

analysis, the genomic information was analysed with the program, ADMIXTURE version 1.3 

(Alexander et al., 2009). 
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ADMIXTURE version 1.3 (Alexander et al., 2009) required a K value, which represents the number of 

ancestral populations related to each individual in a herd (Alexander et al., 2020). K values from 1 to 

20 were tested through ADMIXTURE (Alexander et al., 2009) to obtain the necessary Q files. It was 

decided to use a K value that corresponded to the number of genetic clusters in the PCA plots. Therefore, 

the analysis investigation was continued with a K value of 5. 

The Admixture was visualised in a graph created by the program, Genesis-windows10-java8-0.3.0- 

210808a (Buchmann & Hazelhurst, 2014). The Q file for K=5 and the .fam file of the files used for 

admixture, were uploaded to the Genesis program as was required to execute the command “New 

Admixture graph”. 

2.3.3 Climatic variable correlations 

The amount of existing correlation between the environmental variables for each province was 

investigated through the rstatix package in RStudio (Kassambara, 2023). The Pearson correlation 

method was specified to calculate the coefficients (Schober et al., 2018). The correlation coefficients 

were presented in table format. The tables were created using Microsoft Excel 365 v.2022 (Microsoft 

Corporation, 2018). 

2.3.4 LEA Analysis 

LEA v.3.8.0 (Francois & Frichot, 2015a) was used to analyse the data. The LEA v.3.8.0 R package 

allowed for a genome-wide test for local adaption (Francois & Frichot, 2015a). This was done through 

statistical tests that employed latent factor mixed models (LFMM) which fall under the GEA analysis 

type (Lotterhos & Whitlock, 2015). The LFMM utilise a Markov chain Monte Carlo (MCMC) 

algorithm to sample from a probability distribution (Mdladla et al., 2018). The MCMC algorithm 

enabled a regression analysis, whereby the confounding variables were modelled with unobserved, 

latent factors (Frichot & Francois, 2015b; Mdladla et al., 2018). The regression analysis and variable 

modelling enabled the estimation of correlations that existed between the environmental variables and 

allelic frequencies (Frichot & Francois, 2015b). With LEA v.3.8.0, the environmental variables were 

considered as fixed effects (Frichot et al., 2013). Although LEA is an integrated framework that enables 

population structure analysis (pre-processing step) in addition to the LFMM analysis, the in-script steps 

for the population structure analysis were excluded as they were executed externally using GCTA64 

v.1.93.2 (Yang et al., 2011) and ADMIXTURE version 1.3 (Alexander et al., 2009) software as 

explained previously in this section. 

Pre-processing 

The LEA analysis was conducted on an environmental file and a genotype file. Analysis was run 

separately for each individual environmental variable and the genotypes from the relevant province; 

thus, it was run 12 separate times. The environmental file was in .env format and the genotype (SNP) 
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file was in .ped format (Frichot & Francois, 2015b). The .ped file was converted into .lfmm and .geno 

formats; which were relevant to the remainder of the analysis. The environmental variables: summer 

month temperature, winter month temperature, relative humidity, and precipitation, and their respective 

values, were placed into individual .env files and analysis was run on each file separately. The .env files 

were initially created with an additional column containing the animal IDs (in numerical order) so as to 

keep track of which variable was linked to which animal. The animal ID column was removed for 

analysis as the LEA v.3.8.0 only accepted .env files with a single column of values. 

The parameters of the run were set to the default settings as these were appropriate for the dataset sizes 

(Frichot & Francois, 2015b). The iteration number, the Gibbs Sampler algorithm, was set to 10 000. 

The burnin number was set to 5 000, which is half of the total number of cycles – as recommended 

(Frichot & Francois, 2015b). The number of run repetitions was set to 10 to gain increased reliability 

of results and reduced false positives. The K values (K=3 (EC), K=1 (FS), K=1 (NW), overall K=5) 

were determined from the PCA plots. 

Post-processing 

The LEA software required some post-processing of the output. The z-scores for multiple runs were 

combined using the Fisher-Stouffer method and p-values were re-adjusted to increase the power of the 

LFMM test statistic (Lipták, 1958; Frichot & Francois, 2015b). The re-adjusted p-values were then 

applied to the Benjamini-Hochberg procedure by a set of commands to obtain the list of candidate loci 

(Frichot et al., 2013; Frichot & Francois, 2015b). LEA included the control of false discovery rates; 

therefore, it did not have to be executed separately as a post-processing step. The visualisation of the 

results was also included in the R. script provided by the LEA authors; thus, it also did not have to be 

executed separately. 

The final post-processing step was to annotate the candidate loci. The SNP names were determined by 

cross-referencing the candidate loci list to the SNP .map file. The fixation indices (FST) of all the SNPs 

were calculated using PLINK and the SNP .map file. The 20 SNP variants with the highest FST values 

were identified for each respective LEA v.3.8.0 analysis candidate loci result list and were selected for 

gene annotation. The chromosome and base pair positions were then used to identify the SNP IDs 

through the European Variant Archive (EVA, http://www.ebi.ac.uk/eva). The SNP IDs were placed 

into the Ensembl Variant Predictor (McLaren et al., 2016) to obtain the Ensembl IDs for genes 

associated with the variants. Lastly, the Ensembl gene IDs were placed into the Panther Classification 

System data base version 14 (Mi et al., 2019) to obtain their relevant annotation information. 

The Panther Classification System distributed the molecular functions and biological processes of the 

identified genes into various categories, each of which was distinguished by proportional percentage 
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(Mi et al., 2019). The proportional percentages were visualised in proportional circles created in 

Microsoft Excel 365 v.2022 (Microsoft Corporation, 2018). “Circle” shapes were chosen for the various 

molecular function and biological process proportions. To visualise the different proportions, the radii 

of the circles were adjusted using the following formula: 

𝑟 = (2 × √(
𝑎𝑟𝑒𝑎

𝜋
)) ÷ 400      Eqn. 2.1 

The “area” component of the formula equated to the proportional percentage value of the molecular 

function or biological process, which was provided by the Panther Classification System (Mi et al., 

2019). The adjusted diameter was divided by 400 to obtain a decimal value which was applied to both 

the “height” and “width” size modifiers (found in the “Size” tab of the “Shape Format” ribbon in 

Microsoft Excel 365 v.2022) to adjust the proportional shape of the circle (Microsoft Corporation, 

2018). To distinguish the functions/processes from one another, the circles were filled with different 

colours and keys were created to indicate which coloured circle belonged to which molecular function 

or biological process. 

2.3.5 GWAS 

A GWAS was conducted on the common 25 272 SNPs to determine if any of them were significantly 

associated with BW, WW, YW, or 18MW. The GWAS results were used as comparative benchmarks 

to the SNPs from the candidate loci identified by the landscape genomics analyses. Plink v1.90b6.18 

64-bit (Purcell et al., 2007) was utilised for the association studies and separate phenotype files were 

created for each trait. A separate association study was conducted for each trait. The Manhattan plots 

for each of the association studies were produced using the following packages tidyverse, ggtext and 

ggplot, in RStudio 2022.12.0 Build 353 (Purcell et al., 2007; Wickham, 2016; Wickham et al., 2019; 

RStudio, 2022; Wilke & Wiernik, 2022). The significance level for the Manhattan plots was set to 5x10-

8 as this is considered the significance level of a convincing association (Pirinen, 2023). 
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Chapter 3. Results 

The results are organised into three categories: input, output, and gene annotation. The input results 

comprise those obtained during the preparation of the input files; PCA plots, ADMIXTURE plot, and 

an environmental association plot. The output results are those derived directly from the LEA v.3.8.0 

analysis; lists of detected candidate loci and built-in GWAS Manhattan plots and p-value histograms 

(Addendum C), for each environmental variable tested. The gene annotation results consist of those 

obtained from the ontological deduction process; candidate loci, SNP ID, and Ensembl gene ID 

identification, and gene annotation. Lastly, the GWAS analysis is displayed in a Manhattan plot with 

significant associations to 18MW. 

3.1 Input results 

Figure 3.1 is a PCA plot for PC1 vs PC2. There are three predominant clusters visible in this plot; with 

two being formed by individual clusters of Eastern Cape animals and the third being an amalgamation 

of the remaining Eastern Cape cows, all the Free State cows and all but one of the North-West cows. 

There appears to be an outlier from the North-West that falls to the west of the primary cluster consisting 

of animals from all three provinces. This animal was excluded from subsequent analyses, leaving the 

final number of cows for analysis at 765. 

 

 

 

 

 

 

 

Figure 3.1 PCA of PC1 vs PC2, for the 766 Bonsmara cows included in the study. EC = Eastern Cape province, 

FS = Free State province, NW = North-West province. 

Figure 3.2 is a PCA plot of PC1 vs PC3. In this plot, there are only two clear clusters. The primary 

cluster consists of animals from all three provinces, as well as the Eastern Cape cluster that fell in the 

top right quadrant of Figure 3.1. The second cluster was the other outlier Eastern Cape cluster that fell 

in the top left quadrant of Figure 3.1. There remained a single North-West outlier in the middle of the 

two clusters, which was excluded from the analyses. 
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Figure 3.2 PCA of PC1 vs PC3, for the 766 Bonsmara cows included in the study. EC = Eastern Cape province, 

FS = Free State province, NW = North-West province. 

Although most of the animals clustered together, there appeared to be even tighter clusters within 

province. This was especially observed within the NW cluster of animals. This was less evident with 

the cows from the Eastern Cape province. The 55 Eastern Cape animals that clustered in the top left 

quadrant of Figure 3.1 and in the bottom left quadrant of Figure 3.2 all belonged to a single farmer. The 

relatedness of these animals was further investigated by means of their IBD values. An even split was 

observed between highly related (>0.04) and moderate to lowly related (0.01 to 0.039) animals, with 28 

animals falling into the highly related category and 27 animals falling into the moderate to lowly related 

category. The animals were not removed from analysis, but their clustering was taken into consideration 

and factored into the K value for the Eastern Cape LEA v.3.8.0 analysis. 

The admixture plots (Figure 3.3, 3.4, 3.5) illustrated a diverse range of ancestry for all the animals. The 

admixture plots corresponded to the clustering observed in the PCA plots (Figures 3.1 and 3.2). Figure 

3.3 illustrated the population substructure for K=3, considering only the three provinces. Figure 3.4 

illustrated the population substructure for K=4, taking into consideration the top left quadrant cluster 

presented for the EC cows in Figure 3.1. Figure 3.5 illustrated the population substructure for K=5, 

additionally taking into consideration the top right quadrant cluster for the EC cows in Figure 3.1. The 

genetic relatedness based on breed composition was evident across the plot as was observed by the 

proportion of admixture indicated by the proportions of red, blue, and green in the vertical lines that 

represented each individual. The group of Eastern Cape cows that exhibited larger proportions of green 

and smaller proportions of red, pink, blue, and yellow represented those that form the two separate 

clusters observed in the PCA plots (Figures 3.1 and 3.2). 
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Figure 3.3 Admixture plot for Bonsmara populations from EC, FS, NW (K=3). Black lines indicate the 

separation of cattle by province.  
 

Figure 3.4 Admixture plot for Bonsmara populations from EC, FS, NW (K=4). Black lines indicate the 

separation of cattle by province.  

Figure 3.5 Admixture plot for Bonsmara populations from EC, FS, NW (K=5). Black lines indicate the 

separation of cattle by province.  

 

The correlation strength of the environmental variables was tested using the rstatix package in RStudio 

(Kassambara, 2023). Tables 3.1, 3.2, and 3.3 exhibit the existing correlation coefficients between the 

annual average environmental variable recordings of each province, over the 2016-2021 periods. 

The correlation coefficients for the EC environmental variables indicated a strong positive relationship 

between summer and winter month temperatures, and a moderate positive relationship between summer 

month temperature and relative humidity. A moderate negative relationship was observed between 

winter month temperature and relative humidity. While weak inverse relationships were observed for 

summer month temperature and precipitation, winter month temperature and precipitation, and relative 

humidity and precipitation. 

Table 3.1 Correlation matrix depicting the relationships between the average annual 

environmental variables for the EC from 2016 to 2021.  

 SMT (°C) WMT (°C) Rhum (%) Precipitation (mm) 

SMT (°C) 1.000 0.503 0.385 -0.103 

WMT (°C) 0.503 1.000 -0.286 -0.023 

Rhum (%) 0.385 -0.286 1.000 -0.143 

Precipitation (mm) -0.103 -0.023 -0.143 1.000 
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The correlation coefficients for the FS environmental variables (Table 3.2) indicate strong positive 

correlations observed between summer month and winter month temperatures, and relative humidity 

and precipitation. 

Table 3.2 Correlation matrix depicting the relationships between the average annual 

environmental variables for the FS from 2016 to 2021.  

 SMT (°C) WMT (°C) Rhum (%) Precipitation (mm) 

SMT (°C) 1.000 0.857 -0.344 -0.210 

WMT (°C) 0.857 1.000 -0.131 -0.153 

Rhum (%) -0.344 -0.131 1.000 0.557 

Precipitation (mm) -0.210 -0.153 0.557 1.000 

 

Table 3.3 indicates the correlation coefficients for the NW environmental variables. The coefficients 

indicate that a strong positive relationship was observed between the summer and winter month 

temperatures, similar to other provinces. 

Table 3.3 Correlation matrix depicting the relationships between the average annual 

environmental variables for the NW from 2016 to 2021.  

 SMT (°C) WMT (°C) Rhum (%) Precipitation (mm) 

SMT (°C) 1.000 0.858 -0.291 -0.077 

WMT (°C) 0.858 1.000 -0.030 -0.013 

Rhum (%) -0.291 -0.030 1.000 0.025 

Precipitation (mm) -0.077 -0.013 0.025 1.000 

 

3.2 Output results 

The LEA v.3.8.0 results presented candidate loci for each respective analysis run. The number of 

candidate loci produced for each environmental variable and each province are summarised in Table 

3.1. Notably, the LEA v.3.8.0 analysis identified very similar, if not the same (as seen in the Eastern 

Cape and Free State provinces), candidate loci for all the environmental variables within province. The 

number of detected candidate loci were similar for the all the variables of the respective provinces and 

when reviewing the individual loci in each list, it was observed that LEA v.3.8.0 detected the same 

candidate loci for the environmental variables within the provinces. Except for five loci between EC 

variables; four loci between FS variables; and nine loci between NW variables. Although the detected 

candidate loci were similar between variables within province, they differed from those detected from 

the environmental variables from other provinces. 

Table 3.4 indicates K=1-3; these K values are based on the number of clusters observed for each 

province in the PCA plots (Figures 3.1 and 3.2). In Figure 3.1, the EC province has three clusters, the 

FS province has one cluster, and the NW province also has one cluster. Collectively, K=5, but given 

that LEA v.3.8.0 analysis was run for each individual province, individual K values based on their PCA 

genetic clustering was appropriate. The R. script used for the LEA v.3.8.0 analyses is found in 
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Addendum B and the visualised Manhattan plots and histograms of the candidate loci p-values are found 

in Addendum C. 

Table 3.4 List of the number of candidate loci detected with LEA v.3.8.0 analysis.  

K Summer month 

temperature 

Winter month 

temperature 

Relative 

humidity 

Precipitation 

Eastern Cape 

K = 3 Candidates: 1272 Candidates: 1267 Candidates: 1267 Candidates: 1267 

Free State 

K = 1 Candidates: 1231 Candidates: 1231 Candidates: 1227 Candidates: 1227 

North-West 

K = 1 Candidates 2177 Candidates: 2179 Candidates: 2170 Candidates: 2177 

 

The SNP names for the candidate loci were determined by cross-referencing the candidate loci list with 

the SNP map file. Afterward, the FST values for all the candidate SNPs were calculated using Plink 

v1.90b6.18 64-bit (Purcell et al., 2007) and the 20 SNPs with the highest FST values were chosen for 

gene annotation. Given that the majority of the candidate loci identified for the environmental variables 

within the provinces were very similar, the same top 20 SNPs, based on FST values, were identified 

within the provinces. These SNPs are listed in Table 3.5. 

Table 3.5 List of SNP variants chosen for gene annotation based on FST value. 

Province SNP name FST value 

Eastern Cape Hapmap60763-rs29014471 0.220403 

 ARS-BFGL-NGS-15262 0.159269 

 UA-IFASA-6154 0.136891 

 Hapmap30781-BTA-129235 0.123797 

 BTA-25512-no-rs 0.12186 

 Hapmap52624-rs29010906 0.121411 

 BovineHD0500016099 0.120668 

 ARS-BFGL-NGS-95580 0.118472 

 Hapmap47719-BTA-74313 0.109666 

 BTA-54868-no-rs 0.107576 

 BTB-00690781 0.104844 

 Hapmap46867-BTA-74870 0.103043 

 ARS-BFGL-NGS-42574 0.102842 

 BovineHD0200037035 0.101988 

 BTA-101385-no-rs 0.098452 

 BTB-01216169 0.0956736 

 Hapmap42094-BTA-119925 0.0953916 

 ARS-BFGL-NGS-61477 0.095326 

 UA-IFASA-4213 0.094439 

Free State ARS-BFGL-BAC-2790 0.237314 

 ARS-BFGL-NGS-113925 0.169203 

 ARS-BFGL-NGS-118306 0.157003 

 BTB-00358369 0.132608 

 BovineHD1800012264 0.131119 

 BTA-25512-no-rs 0.12186 

 ARS-BFGL-NGS-11435 0.114971 

 BTA-21281-no-rs 0.114971 

 Hapmap46867-BTA-74870 0.103043 
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 Hapmap35516-

SCAFFOLD70087_15055 

0.0986397 

 Hapmap41178-BTA-120553 0.0939485 

 Hapmap40537-BTA-43945 0.0936463 

 ARS-BFGL-NGS-58613 0.0932169 

 Hapmap50985-BTA-49760 0.0913317 

 Hapmap41389-BTA-95970 0.089002 

 ARS-BFGL-NGS-116503 0.0882002 

 ARS-BFGL-NGS-99210 0.0850691 

 ARS-BFGL-NGS-73895 0.084101 

 BTB-00049653 0.0837741 

 ARS-BFGL-NGS-113915 0.0835864 

North-West ARS-BFGL-NGS-118306 0.157003 

 BovineHD0100037733 0.142343 

 Hapmap30781-BTA-129235 0.123797 

 ARS-BFGL-NGS-117841 0.119023 

 ARS-BFGL-NGS-11435 0.114971 

 Hapmap43154-BTA-11252 0.112013 

 BTA-110709-no-rs 0.11135 

 BovineHD1500006335 0.107096 

 BTB-00690781 0.104844 

 Hapmap46867-BTA-74870 0.103043 

 BovineHD0200037035 0.101988 

 BTB-01548042 0.100665 

 ARS-BFGL-NGS-20165 0.0965003 

 ARS-BFGL-NGS-27414 0.0962613 

 BovineHD2200002791 0.0952757 

 BTA-42967-no-rs 0.0943384 

 ARS-BFGL-NGS-67912 0.0935373 

 BTB-00049981 0.0922843 

 BTB-01349174 0.0919727 

 ARS-BFGL-NGS-107749 0.0904915 
 

3.3 Gene annotation results 

The IDs of the 60 SNPs chosen for annotation were determined from the European Variant Archive 

(EVA, http://www.ebi.ac.uk/eva) using the chromosome number and position of the SNPs. Table 3.6 

summarises the preliminary SNP information for the respective provinces. The SNPs that were common 

between the provinces are in bold. One SNP was common among all three provinces; Hapmap46867- 

BTA-74870, found on BTA5. The Eastern Cape and the Free State cows had an additional SNP in 

common; BTA-25512-no-rs, found on BTA2. The Eastern Cape and the North-West cows had one 

additional SNP in common; BTB-00690781, found on BTA18. The Free State and the North-West had 

two additional SNPs in common; ARS-BFGL-NGS-118306, found on BTA1, and ARS-BFGL-NGS- 

11435, found on BTA10. 
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Table 3.6 Summary of SNP IDs and relevant genetic information (EVA, 2023). 

SNP name ID Chromosome Position 

Eastern Cape 

Hapmap60763-rs29014471 rs29014471 4 57984488 

ARS-BFGL-NGS-15262 rs111013945 23 31312887 

UA-IFASA-6154 rs41590851 8 104158107 

Hapmap30781-BTA-129235 rs41742728 14 53174026 

BTA-25512-no-rs rs41608694 2 26140855 

Hapmap52624-rs29010906 rs29010906 2 6047203 

BovineHD0500016099 rs135460220 5 56757198 

ARS-BFGL-NGS-95580 rs110720564 21 66951310 

Hapmap47719-BTA-74313 rs41651515 10 70736766 

BTA-54868-no-rs rs41637678 22 56085534 

BTB-00690781 rs41859545 18 2047277 

Hapmap46867-BTA-74870 rs41654519 5 105275043 

ARS-BFGL-NGS-42574 rs42948402 11 6322937 

BovineHD0200037035 rs110480115 2 127598142 

BTA-101385-no-rs rs41615248 6 100328689 

BTB-01216169 rs42373071 20 52674980 

Hapmap42094-BTA-119925 rs41619869 4 82923306 

ARS-BFGL-NGS-61477 rs109922560 11 78001260 

UA-IFASA-4213 rs29017131 11 21581503 

Hapmap51737-BTA-50812 rs41641772 20 53757088 

Free State 

ARS-BFGL-BAC-2790 rs43305347 2 41672298 

ARS-BFGL-NGS-113925 rs110991778 2 49943710 

ARS-BFGL-NGS-118306 rs110230072 1 69244252 

BTB-00358369 rs43563141 8 75347512 

BovineHD1800012264 rs41822969 18 41563324 

BTA-25512-no-rs rs41608694 2 26140855 

ARS-BFGL-NGS-11435 rs110134942 10 77234231 

BTA-21281-no-rs rs41572236 10 95524114 

Hapmap46867-BTA-74870 rs41654519 5 105275043 

Hapmap35516-

SCAFFOLD70087_15055 

rs29018805 18 41533147 

Hapmap41178-BTA-120553 rs41573759 2 52612052 

Hapmap40537-BTA-43945 rs41582522 18 58666276 

ARS-BFGL-NGS-58613 rs42254761 4 78609385 

Hapmap50985-BTA-49760 rs41637019 2 129882579 

Hapmap41389-BTA-95970 rs41615129 1 99642111 

ARS-BFGL-NGS-116503 rs110915150 26 47230247 

ARS-BFGL-NGS-99210 rs110578763 17 52740918 

ARS-BFGL-NGS-73895 rs109511653 26 6948695 

BTB-00049653 rs43263479 1 107910690 

ARS-BFGL-NGS-113915 rs109316550 17 32911852 

North-West 

ARS-BFGL-NGS-118306 rs110230072 1 69244252 

BovineHD0100037733 rs137454952 1 132498578 

Hapmap30781-BTA-129235 rs41742728 14 53174026 

ARS-BFGL-NGS-117841 rs110442188 12 14724296 

ARS-BFGL-NGS-11435 rs110134942 10 77234231 

Hapmap43154-BTA-11252 rs29017015 4 62742887 

BTA-110709-no-rs rs41574618 3 6546124 
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BovineHD1500006335 rs41749003 15 24233148 

BTB-00690781 rs41859545 18 2047277 

Hapmap46867-BTA-74870 rs41654519 5 105275043 

BovineHD0200037035 rs110480115 2 127598142 

BTB-01548042 rs42668898 1 22720015 

ARS-BFGL-NGS-20165 rs41903329 19 23561900 

ARS-BFGL-NGS-27414 rs110815204 19 61205726 

BovineHD2200002791 rs110088513 22 9354589 

BTA-42967-no-rs rs41581157 18 42407639 

ARS-BFGL-NGS-67912 rs43713533 15 28882493 

BTB-00049981 rs43266806 1 112675358 

BTB-01349174 rs42468701 2 135378292 

ARS-BFGL-NGS-107749 rs109830113 18 33986486 
 

Once the IDs of the SNP variants had been identified through the European Variant Archive, they were 

applied to the Ensembl Variant Predictor (McLaren et al., 2016) to obtain the Ensembl IDs of their 

respective associated genes. Table 3.7 summarises the associated gene information obtained from the 

Ensembl Variant Predictor (McLaren et al., 2016) for the SNP variants identified from the Eastern Cape 

cows. 20 SNP variants were chosen for gene annotation from the Eastern Cape cows, based on their Fst 

values. Of those 20 chosen SNPs, 11 were identified by the Ensembl Variant Predictor (McLaren et al., 

2016) to be associated with genes. One of those 11 SNPs was associated with an unclassified gene. 

BTA-54868-no-rs was associated with gene ENSBTAG00000054247 and ENSBTAG00000035827, 

but gene ENSBTAG00000054247 was not recognised by the Panther Classification System database 

(Mi et al., 2019). 

Table 3.7 Summary of SNP and gene information obtained from Ensembl Variant 

Predictor for the Eastern Cape (McLaren et al., 2016).  

SNP ID ID Location Symbol Gene ID 

Hapmap52624-

rs29010906 

rs29010906 2:6109495-

6109495 

C2H2orf88 ENSBTAG00000026994 

Hapmap52624-

rs29010906 

rs29010906 2:6109495-

6109495 

HIBCH ENSBTAG00000007787 

BTA-25512-

no-rs 

rs41608694 2:26092212-

26092212 

MYO3B ENSBTAG00000003626 

Hapmap60763-

rs29014471 

rs29014471 4:57623147-

57623147 

IMMP2L ENSBTAG00000004398 

UA-IFASA-

6154 

rs41590851 8:102459234-

102459234 

FKBP15 ENSBTAG00000005116 

ARS-BFGL-

NGS-42574 

rs42948402 11:6290438-

6290438 

RFX8 ENSBTAG00000033998 

UA-IFASA-

4213 

rs29017131 11:21555819-

21555819 

MAP4K3 ENSBTAG00000016442 

Hapmap30781-

BTA-129235 

rs41742728 14:51026484-

51026484 

CSMD3 ENSBTAG00000038281 

BTB-

00690781 

rs41859545 18:2015648-

2015648 

GLG1 ENSBTAG00000002303 

Hapmap51737-

BTA-50812 

rs41641772 20:53680094-

53680094 

CDH18 ENSBTAG00000037844 
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https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core%3Bg%3DENSBTAG00000054247%3Btl%3DyC5RgYViNYujMJxF-9052539
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https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=2:6109445-6109545;tl=yC5RgYViNYujMJxF-9052539
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https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=2:6109445-6109545;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000007787;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=2:26092162-26092262;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=2:26092162-26092262;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000003626;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=4:57623097-57623197;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=4:57623097-57623197;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000004398;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=8:102459184-102459284;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=8:102459184-102459284;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000005116;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=11:6290388-6290488;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=11:6290388-6290488;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000033998;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=11:21555769-21555869;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=11:21555769-21555869;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000016442;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=14:51026434-51026534;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=14:51026434-51026534;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000038281;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=18:2015598-2015698;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=18:2015598-2015698;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000002303;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=20:53680044-53680144;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=20:53680044-53680144;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000037844;tl=yC5RgYViNYujMJxF-9052539
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ARS-BFGL-

NGS-95580 

rs110720564 21:65301050-

65301050 

WDR25 ENSBTAG00000007233 

BTA-54868-

no-rs 

rs41637678 22:55445815-

55445815 
- ENSBTAG00000054247 

BTA-54868-

no-rs 

rs41637678 22:55445815-

55445815 

ATG7 ENSBTAG00000035827 

 

 

Table 3.8 lists the Ensembl gene IDs for the SNP variants identified from the Free State cows. Not all 

the SNP variants were found to be associated with genes through the Ensembl Variant Predictor 

(McLaren et al., 2016). Of the ten Free State SNP variants that were linked to genes, two were linked 

to unclassified genes. ARS-BFGL-NGS-113915 was associated with gene ENSBTAG00000055005, 

which was not recognised by Panther Classification System database (Mi et al., 2019). Hapmap40537- 

BTA-43945 was associated with gene ENSBTAG00000053131, which was recognised by Panther 

Ontology as a C2H2 zinc finger transcript ion ((Mi et al., 2019). 

Table 3.8 Summary of SNP and gene information obtained from Ensembl Variant Predictor 

for the Free State (McLaren et al., 2016).  

SNP ID ID Location Symbol Gene ID 

BTB-

00049653 

rs43263479 1:107060820-

107060820 

SMC4 ENSBTAG00000005862 

BTA-25512-

no-rs 

rs41608694 2:26092212-

26092212 

MYO3B ENSBTAG00000003626 

Hapmap41178-

BTA-120553 

rs41573759 2:52511673-

52511673 

GTDC1 ENSBTAG00000001132 

BTB-

00358369 

rs43563141 8:74054145-

74054145 

ADRA1A ENSBTAG00000031632 

ARS-BFGL-

NGS-11435 

rs110134942 10:76922630-

76922630 

SPTB ENSBTAG00000004732 

ARS-BFGL-

NGS-113915 

rs109316550 17:32550404-

32550404 

- ENSBTAG00000055005 

ARS-BFGL-

NGS-99210 

rs110578763 17:50485602-

50485602 

TMEM132B ENSBTAG00000006626 

Hapmap40537-

BTA-43945 

rs41582522 18:58328337-

58328337 

- ENSBTAG00000053131 

ARS-BFGL-

NGS-73895 

rs109511653 26:6941707-

6941707 

PRKG1 ENSBTAG00000018404 

ARS-BFGL-

NGS-116503 

rs110915150 26:46882777-

46882777 

DOCK1 ENSBTAG00000031890 

 

Table 3.9 presents the Ensembl gene IDs for the SNP variants identified from the North-West cows. Of 

the initial 20 SNP variants chosen from the Fst values, only ten were found to be associated with genes 

by the Ensembl Variant Predictor (McLaren et al., 2016). As was the case with the SNPs for the Free 

State cows, two of the ten SNPs from the North-West cows were associated with unclassified genes. 

BTB-01548042 was associated with gene ENSBTAG00000048578, and this gene was not recognized 

by Panther Classification System database (Mi et al., 2019). ARS-BFGL-NGS-67912 was associated 
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https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000054247;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=22:55445765-55445865;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=22:55445765-55445865;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000035827;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core%3Bg%3DENSBTAG00000053131%3Btl%3DYn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=1:107060770-107060870;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=1:107060770-107060870;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000005862;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=2:26092162-26092262;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=2:26092162-26092262;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000003626;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=2:52511623-52511723;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=2:52511623-52511723;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000001132;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=8:74054095-74054195;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=8:74054095-74054195;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000031632;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=10:76922580-76922680;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=10:76922580-76922680;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000004732;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=17:32550354-32550454;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=17:32550354-32550454;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000055005;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=17:50485552-50485652;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=17:50485552-50485652;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000006626;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=18:58328287-58328387;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=18:58328287-58328387;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000053131;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=26:6941657-6941757;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=26:6941657-6941757;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000018404;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=26:46882727-46882827;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=26:46882727-46882827;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000031890;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core%3Bg%3DENSBTAG00000048578%3Btl%3DK8dO2vLXk0sLTcWt-9052541
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with gene ENSBTAG00000051802, and whilst this gene was recognised by Panther Classification 

System database (Mi et al., 2019), it was an unclassified gene and no information was available for it. 

Table 3.9 Summary of SNP and gene information obtained from Ensembl Variant Predictor for the 

North-West (McLaren et al., 2016).  

SNP ID ID Location Symbol Gene ID 

ARS-BFGL-NGS-

11435 

rs110134942 10:76922630-

76922630 

SPTB ENSBTAG00000004732 

ARS-BFGL-NGS-

117841 

rs110442188 12:14680247-

14680247 

TSC22D1 ENSBTAG00000047739 

ARS-BFGL-NGS-

27414 

rs110815204 19:60628536-

60628536 

KCNJ16 ENSBTAG00000024903 

Hapmap30781-BTA-

129235 

rs41742728 14:51026484-

51026484 

CSMD3 ENSBTAG00000038281 

BovineHD150000633

5 

rs41749003 15:23899610-

23899610 

TTC12 ENSBTAG00000010008 

BTB-00690781 rs41859545 18:2015648-

2015648 

GLG1 ENSBTAG00000002303 

ARS-BFGL-NGS-

20165 

rs41903329 19:22981474-

22981474 

RTN4RL1 ENSBTAG00000012302 

BTB-01548042 rs42668898 1:23214124-

23214124 

- ENSBTAG00000048578 

BTB-00049981 rs43266806 1:111775805-

111775805 

GMPS ENSBTAG00000013013 

ARS-BFGL-NGS-

67912 

rs43713533 15:28453282-

28453282 

- ENSBTAG00000051802 

 

The Ensembl gene IDs that were obtained from the Ensembl Variant Predictor (McLaren et al., 2016) 

were loaded into Panther Classification System database (Mi et al., 2019) to gain more information 

about all the respective genes. There were ten of the 20 Eastern Cape SNPs chosen for gene annotation 

that were found by Panther Classification System database to be associated with genes. The basic 

identification information for these genes is summarised in Table 3.10. The myosin IIIB, MYO3B; Golgi 

apparatus protein 1, GLG1; and coiled-coil domain-containing protein 69, CCDC69 genes were not 

placed in any Panther protein class. 

Table 3.10 Summary of the associated gene information for the Eastern Cape SNP variants (Mi et 

al., 2019; Pantherdb, 2023b, 2023c, 2023d, 2023e, 2023g, 2023h, 2023k, 2023l, 2023o, 2023p, 

2023r, 2023z).  

Gene ID Mapped IDs Gene Name 

Gene Symbol 

 

PANTHER 

Family/Subfa

mily 

PANTHER 

Protein class 

BOVIN|ENSBTAG00

000026994|UniProtKB

=Q3SZY8 

ENSBTAG0000

0026994 

Small membrane 

A-kinase anchor 

protein 

C2H2orf88 

Small 

membrane A-

kinase anchor 

protein 

Scaffold/adapt

or protein 

BOVIN|ENSBTAG00

000007787|UniProtKB

=A0A3Q1LUU2 

ENSBTAG0000

0007787 

3-

hydroxyisobutyryl-

CoA hydrolase, 

mitochondrial 

3-

hydroxyisobut

yryl-CoA 

Hydrolase 
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https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core%3Bg%3DENSBTAG00000051802%3Btl%3DK8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=10:76922580-76922680;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=10:76922580-76922680;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000004732;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=12:14680197-14680297;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=12:14680197-14680297;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000047739;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=19:60628486-60628586;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=19:60628486-60628586;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000024903;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=14:51026434-51026534;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=14:51026434-51026534;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000038281;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=15:23899560-23899660;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=15:23899560-23899660;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000010008;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=18:2015598-2015698;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=18:2015598-2015698;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000002303;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=19:22981424-22981524;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=19:22981424-22981524;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000012302;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=1:23214074-23214174;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=1:23214074-23214174;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000048578;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=1:111775755-111775855;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=1:111775755-111775855;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000013013;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=15:28453232-28453332;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Location/View?contigviewbottom=variation_feature_variation%3Dnormal;db=core;r=15:28453232-28453332;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000051802;tl=K8dO2vLXk0sLTcWt-9052541
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000026994;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000026994;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000007787;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000007787;tl=yC5RgYViNYujMJxF-9052539
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HIBCH hydrolase, 

mitochondrial 

BOVIN|ENSBTAG00

000003626|UniProtKB

=A0A3Q1M4N6 

ENSBTAG0000

0003626 

Myosin IIIB 

MYO3B 

Myosin IIIB - 

BOVIN|ENSBTAG00

000004398|UniProtKB

=Q2KI92 

ENSBTAG0000

0004398 

Mitochondrial inner 

membrane protease 

subunit 2 

IMMP2L 

Mitochondrial 

inner 

membrane 

protease 

subunit 2 

Protease  

BOVIN|ENSBTAG00

000005116|UniProtKB

=F1MNV8 

ENSBTAG0000

0005116 

Peptidylprolyl 

isomerase 

FKBP15 

FK506-

binding 

protein 15  

- 

BOVIN|ENSBTAG00

000033998|UniProtKB

=E1BAR6 

ENSBTAG0000

0033998 

RFX family 

member 8, lacking 

RFX DNA binding 

domain 

RFX8 

DNA-binding 

protein RFX8  

Winged 

helix/forkhead 

transcription 

factor 

BOVIN|ENSBTAG00

000016442|UniProtKB

=E1BJH5 

ENSBTAG0000

0016442 

Mitogen-activated 

protein kinase 

kinase kinase 

kinase 3 

MAP4K3 

Mitogen-

activated 

protein kinase 

kinase kinase 

kinase 3 

Non-receptor 

serine/threoni

ne protein 

kinase 

BOVIN|ENSBTAG00

000038281|UniProtKB

=A0A3Q1LWF2 

ENSBTAG0000

0038281 

CUB and Sushi 

multiple domains 3 

CSMD3 

CUB and 

Sushi domain 

containing 

protein 3 

- 

BOVIN|ENSBTAG00

000002303|UniProtKB

=A0A3Q1LL67 

ENSBTAG0000

0002303 

Golgi apparatus 

protein 1 

GLG1 

Golgi 

apparatus 

protein 1 

 

- 

BOVIN|ENSBTAG00

000037844|UniProtKB

=Q08DJ5 

ENSBTAG0000

0037844 

Cadherin-18 

CDH18 

Cadherin-18 Cadherin 

BOVIN|ENSBTAG00

000007233|UniProtKB

=A0A3Q1NBM5 

ENSBTAG0000

0007233 

WD repeat domain 

25 

WDR25 

WD repeat 

containing 

protein 25 

- 

BOVIN|ENSBTAG00

000035827|UniProtKB

=A0A3Q1LXA9 

ENSBTAG0000

0035827 

Ubiquitin-like 

modifier-activating 

enzyme ATG7 

ATG7 

Ubiquitin-like 

modifier-

activating 

enzyme ATG7 

Ubiquitin-

protein ligase 

 

Figures 3.6(a) and 3.6(b) depict the distributions of the types of molecular functions and biological 

processes for the classified genes identified from the EC cow LEA v.3.8.0 analyses. The molecular 

functions included binding (33.3%), catalytic activity (50.0%), and transcription regulator activity 

(16.7%). The biological processes included biological adhesion (5.3%), biological regulation (10.5%), 

cellular processes (31.6%), developmental processes (10.5%), localization (5.3%), metabolic processes 

(21.1%), multicellular organismal processes (10.5%), and response to stimulus (5.3%). The unclassified 

genes to which no PANTHER category was assigned were not included in the figures. 
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https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000003626;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000003626;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000004398;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000004398;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000005116;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000005116;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000033998;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000033998;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000016442;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000016442;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000038281;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000038281;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000002303;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000002303;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000037844;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000037844;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000007233;tl=yC5RgYViNYujMJxF-9052539
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000007233;tl=yC5RgYViNYujMJxF-9052539
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Figure 3.6 The proportions of the molecular functions (a) and biological processes (b) for the genes identified 

from the EC cow analyses (Mi et al., 2019). 

There were 20 SNPs chosen for gene annotation from the Free State. Nine of the 20 SNPs were found 

by Panther Classification System database to be associated with genes (Mi et al., 2019). Table 3.11 

summarises the basic identification information for the nine genes. Three of the nine genes did not fall 

into a Panther protein class. Notably, the Free State and Eastern Cape cows share the Myosin IIIB 

(MYOB3) gene. 

Table 3.11 Summary of the associated gene information for the Free State SNP variants (Mi et al., 

2019; Pantherdb, 2023a, 2023f, 2023j, 2023n, 2023p, 2023q, 2023u, 2023v, 2023w). 

Gene ID Mapped IDs Gene Name 

Gene Symbol 

 

PANTHER 

Family/Subfam

ily 

PANTHER 

Protein 

class 

BOVIN|ENSBTAG00

000005862|UniProtKB

=E1BMZ9 

ENSBTAG00000

005862 

Structural 

maintenance of 

chromosomes 

protein 

SMC4 

Structural 

maintenance of 

chromosomes 

protein 4 

 

- 

BOVIN|ENSBTAG00

000003626|UniProtKB

=A0A3Q1M4N6 

ENSBTAG00000

003626 

Myosin IIIB 

MYO3B 

Myosin IIIB - 

Binding 

Catalytic activity 

Transcription 

regulator activity 

Biological adhesion 

Biological regulation 

Cellular process 

Developmental process 

Localization 

Metabolic process 

Multicellular 

organismal process 

Response to stimulus 

16.7% 

50.0% 

33.3% 

31.6% 
10.5% 

10.5% 
5.3% 

5.3% 

10.5% 

5.3% 
21.1% 
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https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000005862;tl=Yn7pBQQYi0pxk6Rd-9052540
https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000005862;tl=Yn7pBQQYi0pxk6Rd-9052540
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https://www.ensembl.org/Bos_taurus/Gene/Summary?db=core;g=ENSBTAG00000003626;tl=Yn7pBQQYi0pxk6Rd-9052540


47  

BOVIN|ENSBTAG00

000001132|UniProtKB

=Q08DA7 

ENSBTAG00000

001132 

Glycosyltransfera

se-like domain-

containing protein 

1 

GTDC1 

Glycosyltransfer

ase-like domain-

containing 

protein 1 

 

Glycosyltran

sferase 

BOVIN|ENSBTAG00

000031632|UniProtKB

=A0A3Q1MAT2 

ENSBTAG00000

031632 

Alpha-1A 

adrenergic 

receptor 

ADRA1A 

Alpha-1A 

adrenergic 

receptor 

G-protein 

coupled 

receptor 

BOVIN|ENSBTAG00

000004732|UniProtKB

=F1MKE9 

ENSBTAG00000

004732 

Spectrin beta 

chain 

SPTB 

Spectrin beta 

chain, 

erythrocytic  

Actin or 

actin-

binding 

cytoskeletal 

protein 

BOVIN|ENSBTAG00

000006626|UniProtKB

=E1BKR8 

ENSBTAG00000

006626 

Transmembrane 

protein 132B 

TMEM132B 

Transmembrane 

protein 132B 

 

- 

BOVIN|ENSBTAG00

000053131|UniProtKB

=A0A3Q1LXZ5 

ENSBTAG00000

053131 

KRAB domain-

containing protein 

- 

KRAB domain-

containing 

protein 

ZNF747-related  

C2H2 zinc 

finger 

transcription 

factor 

BOVIN|ENSBTAG00

000018404|UniProtKB

=P00516 

ENSBTAG00000

018404 

cGMP-dependent 

protein kinase 1 

PRKG1 

- Non-

receptor 

serine/threo

nine protein 

kinase 

BOVIN|ENSBTAG00

000031890|UniProtKB

=F1MIX6 

ENSBTAG00000

031890 

Dedicator of 

cytokinesis 1 

DOCK1 

Dedicator of 

cytokinesis 

protein 1 

Guanyl-

nucleotide 

exchange 

factor 

 

The molecular function and biological process types and distributions for the genes identified from the 

FS cow LEA v.3.8.0 analyses are presented in Figures 3.7(a) and 3.7(b). The molecular functions were 

grouped into four types: binding (40.0%), catalytic activity (20.0%), molecular function regulation 

(20.0%), and molecular transducer activity (20.0%). The biological processes were grouped into six 

types. 33.3% of the classified genes were involved in cellular processes, and 12.5% were involved in 

biological regulation, localization, locomotion, response to stimulus, and signalling, respectively. The 

unclassified genes to which no PANTHER category was assigned were not included in the figures. 
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(a) 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

Figure 3.7 The proportions of the molecular functions (a) and biological processes (b) for the genes identified 

from the FS cow analyses (Mi et al., 2019). 

Of the original 20 North-West SNPs chosen for gene annotation, eight were found by Panther 

Classification System database to be associated with genes (Mi et al., 2019). The basic identification 

information for these genes is summarised in Table 3.12. Five of the eight genes did not form part of a 

Panther protein class. The SPTB, the spectrin beta chain, erythrocytic gene, was detected in both the 

Free State and North-West cows. The Golgi apparatus protein 1 (GLG1) and the CUB and Sushi 

domain-containing protein 3 (CSMD3) genes were detected in both the Eastern Cape and North-West 

cows. 

Table 3.12 Summary of the associated gene information for the North-West SNP variants (Mi et 

al., 2019; Pantherdb, 2023e, 2023h, 2023i, 2023m, 2023s, 2023v, 2023x, 2023y). 

Gene ID Mapped IDs Gene Name 

Gene Symbol 

 

PANTHER 

Family/Subfam

ily 

PANTH

ER 

Protein 

class 

BOVIN|ENSBTAG00

000004732|UniProtKB

=F1MKE9 

ENSBTAG000000

04732 

Spectrin beta chain 

SPTB 

Spectrin beta 

chain, 

erythrocytic 

Actin or 

actin-

binding 

cytoskele

tal 

protein 

Binding 

Catalytic activity 

Molecular function 

regulator 

Molecular 

transducer activity 

Biological regulation 

Cellular process 

Localization 

Locomotion 

Response to stimulus 

Signalling  

20.0% 20.0% 

20.0% 

40.0% 

12.5% 

37.5% 
12.5% 

12.5% 

12.5% 

12.5% 
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BOVIN|ENSBTAG00

000010008|UniProtKB

=E1BEU1 

ENSBTAG000000

47739 

TSC22 domain 

family protein 1 

TSC22D1 

TSC22 domain 

family protein 1 

 

- 

BOVIN|ENSBTAG00

000024903|UniProtKB

=Q0VD28 

ENSBTAG000000

24903 

Potassium inwardly 

rectifying channel 

subfamily J 

member 16 

KCNJ16 

Inward rectifier 

potassium 

channel 16  

Ion 

channel 

BOVIN|ENSBTAG00

000038281|UniProtKB

=A0A3Q1LWF2 

ENSBTAG000000

38281 

CUB and Sushi 

multiple domains 3 

CSMD3 

CUB and Sushi 

domain-

containing 

protein 3 

- 

BOVIN|ENSBTAG00

000047739|UniProtKB

=Q3MHL6 

ENSBTAG000000

10008 

Tetratricopeptide 

repeat domain 12 

TTC12 

Tetratricopeptid

e repeat protein 

12 

 

- 

BOVIN|ENSBTAG00

000002303|UniProtKB

=A0A3Q1LL67 

ENSBTAG000000

02303 

Golgi apparatus 

protein 1 

GLG1 

Golgi apparatus 

protein 1 

- 

BOVIN|ENSBTAG00

000012302|UniProtKB

=E1BEI7 

ENSBTAG000000

12302 

Reticulon 4 

receptor like 1 

RTN4RL1 

Reticulon-4-

receptor-like-1 

 

- 

BOVIN|ENSBTAG00

000013013|UniProtKB

=A0A3Q1LUN6 

ENSBTAG000000

13013 

Glutamine 

amidotransferase 

GMPS 

GMP synthase 

[glutamine-

hydrolysing]  

Ligase 

 

The types and distributions of molecular function and biological processes relevant to the classified 

genes identified from the NW cow LEA v.3.8.0 analyses are illustrated in the Figures 3.8(a) and 3.8(b). 

There were three different molecular functions that the genes were involved in: binding (50.0%), 

catalytic activity (25.0%), and transporter activity (25.0%). 

(a) 
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Eight different biological processes were illustrated in Figure 3.8(b). Most of the genes were again 

involved in cellular processes (33.3%). Biological regulation, developmental processes, and 

multicellular organismal processes, all had 13.3% of the identified classified genes involved with them. 

Localization, locomotion, metabolic processes, and response to stimuli, all had 6.7% of the identified 

classified genes involved with them. The unclassified genes to which no PANTHER category was 

assigned were not included in the figures. 

(b) 

 

 

 

 

 

 

Figure 3.8 The proportions of the molecular functions (a) and biological processes (b) for the genes identified 

from the NW cow analyses (Mi et al., 2019). 

3.4 GWAS 

The GWAS results were visualised through Manhattan plots using various R packages; tidyverse, ggtext 

and ggplot (Purcell et al., 2007; Wickham, 2016; Wickham et al., 2019; Wilke & Wiernik, 2022). The 

significance level of the Manhattan plots was set to 10-8, based on suggestion that this is considered the 

significance level of a convincing association (Pirinen, 2023). The results from the GWAS for birth 

weight and the set of 25 272 common SNPs, which were used for the landscape genomics LEA v.3.8.0 

analyses, are visualised in Figure 3.9. No significant SNP associations were identified for this trait. 

Figure 3.9 Manhattan plot for the significant SNPs associated with BW, derived from the 25 272 common SNPs 

also used in LEA analysis. 
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Figure 3.10 is the Manhattan plot that visualises the GWAS results for weaning weight and the set of 

25 272 common SNPs, which were used for the landscape genomics LEA v.3.8.0 analyses. There were 

no significant SNP associations identified for this trait. 

Figure 3.10 Manhattan plot for the significant SNPs associated with WW, derived from the 25 272 common SNPs 

also used in LEA analysis. 

The results from the GWAS for yearling weight and the set of 25 272 common SNPs, which were used 

for the landscape genomics LEA v.3.8.0 analyses, are visualised in the Manhattan plot Figure 3.11. 

There were also no significant SNP associations identified for this trait. 

Figure 3.11 Manhattan plot for the significant SNPs associated with YW, derived from the 25 272 common SNPs 

also used in LEA analysis. 

The GWAS results for eighteen-month weight and the set of 25 272 common SNPs, used for the 

landscape genomics LEA v.3.8.0 analyses, are visualised in Figure 3.12. These results indicated four 

significant SNP associations with the growth trait. The first three SNPs (Hapmap49016-BTA-110674, 

Hapmap32099-BTA-151095, Hapmap59651-rs29009956) are located on BTA6, and the fourth (ARS- 

BFGL-NGS-26337) is located on BTA26.  
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Figure 3.12 Manhattan plot for the significant SNPs associated with 18MW, derived from the 25 272 common 

SNPs also used in LEA analysis. 

The SNPs with significant associations with 18MW observed in Figure 3.12 were compared to the 

significant candidate SNP loci identified by the LEA v.3.8.0 analysis. There were no similarities 

between the results. 
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Chapter 4: Discussion 

4.1 Introduction 

The Bonsmara breed is considered the most popular composite beef breed in South Africa with an 

estimated 130 000 registered stud cattle (Brand et al., 2021; UP George Bonsmaras, 2023). The breed 

is known for its adaptability to the diverse SA climate and is also farmed in countries such as Namibia, 

Botswana, and South America (Strydom et al., 2016; Gouws, 2020; Barbosa et al., 2022). Previous 

studies (Visagie, 2012; Webb et al., 2017) confirmed the role of the environment on the growth and 

performance of Bonsmara cattle. This study aimed to investigate the environmental association with 

growth in Bonsmara based on genotypic information. A landscape genomic approach was followed to 

seek insight on the role of the environment on growth performance. 18MW was the most suitable 

phenotype due to the available recordings. 

Growth performance is associated with various economically important traits that are important to 

commercial farmers (Zhuang et al., 2020). In addition, the associated traits (BW, WW, YW, 18MW) 

are important for stud farmers to consider as bulls and cows need to meet specific breed standards to be 

registered with breed societies (Bonsmara SA, 2019). In this study, growth performance in Bonsmara 

cows from different South African regions including the Eastern Cape, Free State, and North-West 

provinces was investigated. It should be noted that for a landscape genomics analysis, the animals 

included had to be born and grown in the same environment. Although, 4769 genotypes were available, 

after careful investigation only 765 Bonsmara cows met the criteria, having 18MW measurement and 

lived their whole productive life on the same farm and environment. 

Summer and winter month temperatures, relative humidity, and rainfall were analysed alongside the 

genotypes of 765 Bonsmara cows (following quality control) using a landscape genomics approach 

through the LEA v.3.8.0 package (Frichot & Francois, 2015a) in RStudio (Rstudio, 2022). The 

candidate loci that were produced from the LEA v.3.8.0 analysis were used to identify and annotate 

genes that were potentially associated with growth traits. Landscape genomics is a relatively new 

approach in the livestock sector (Joost & Negrini, 2010). It is also a rapidly evolving field with 

methodologies being consistently changed and adapted as novel genomic information about species is 

discovered (Storfer et al., 2018). 

4.2 Population structure analysis 

The first step in this study was to consider the population structure of the cows representing the three 

provinces. The PCA plots confirmed the genetic variability and being from the same breed, the cows 

clustered together near the centre of the axes. The two EC clusters indicated two lines and cross 

referencing their IDs to the breeder they belong to, found that all the animals belonged to the same 

breeder. Thus, the separate clusters are probably due to different breeding objectives and selection 
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emphasis implemented by the breeder. Similar clustering for SA Bonsmara cattle was reported by 

Bosman et al. (2017) using genotypes from the same database. 

In order to estimate the most correct K value for the LEA v.3.8.0 analysis, the population structure 

analysis was confirmed with Admixture (Pritchard et al., 2000). The EC cows indicated three genetic   

sub clusters, while FS and NW had one each. A population structure analysis, conducted by Makina et 

al. (2016), that allowed for three ancestral populations, predicted that the Bonsmara breed composition 

consisted of 41% European taurine, 42% African taurine, and 16% indicine. These findings correspond 

to the breeds that were used to develop the Bonsmara breed, 5/8 Afrikaner, 3/16 Hereford, and 3/16 

Shorthorn (Bonsma, 1985; van Marle-Köster et al., 2021). This explains the consistency in admixture 

proportions for the individual cows observed in the population analysis in this study. The outlier groups 

of Eastern Cape cattle seem to have differing proportions of admixture in comparison to the other 

animals, and this remains constant in all three admixture plots. This observed differentiation is typical 

in seed stock farming where a relatively small percentage of breeders tend to supply the majority of 

superior genetics. The effect of this in the Bonsmara populations is high genetic linkage observed in 

some herds and fragmented genetic linkage in others (Bosman et al., 2017). 

4.3 Climate correlations 

The majority of South Africa is classified as having a subtropical climate and experiencing spring and 

summer precipitation (September to February), with the exception of southwestern South Africa which 

experiences winter precipitation (Blamey et al., 2018). The results showed positive correlation 

coefficients between summer and winter month temperatures for all three provinces, which are similar 

to those reported in previous literature (Irwin & Good, 2012; Chikosi et al., 2018; van der Walt & 

Fitchett, 2021). Warmer summers can correspond to warmer winters and cooler summers can 

correspond to cooler winters, especially with the extreme warm temperature trends observed in South 

Africa (van der Walt & Fitchett, 2021). The correlation coefficients for the relationships between 

relative humidity and precipitation, over the 2016 to 2021 period, for the FS and NW provinces were 

positive. This observed relationship supports the expected relationship between relative humidity and 

precipitation observed in sub-tropical climates (Park & Min, 2017; Denson et al., 2021). 

The FS and NW provinces fall into the subtropical class, whilst the EC province is situated in the 

transition zone between summer precipitation regions and winter precipitation regions (Blamey et al., 

2018). The EC region is thus influenced by subtropical and mid latitude weather systems (Mahlalela et 

al., 2020). The expected weather patterns for the FS and NW are cold, dry winters and hot, wet summers 

(Beck et al., 2018). The expected weather patterns for the EC are warm summers, cold winters, and 

year-round rainfall although, higher precipitation has been historically recorded for the summer months 

(Jury, 2013; Weldon & Reason, 2014; Beck et al., 2018; Engelbrecht et al., 2018; Mahlalela et al., 

2020). Due to the subtropical climates in the provinces that were investigated, the expected relationship 
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between temperature and relative humidity for all three provinces is positive, with higher temperatures 

corresponding to higher percentages of relative humidity (Jury, 2013; Beck et al., 2018). The 

relationship between relative humidity and precipitation is also positive (Park & Min, 2017; Singh et 

al., 2019; Denson et al., 2021). 

The observed negative correlation coefficients for the relationship between summer month temperature 

and relative humidity, however, were not as expected for the FS and NW provinces. This could be 

explained by the recent droughts (2015 to 2016 and 2018 to 2020) experienced in South Africa 

(Mahlalela et al., 2020; Meza et al., 2021). In South Africa, temperatures are reported to be increasing, 

however, some of the average annual temperatures in the country during the 2019 to 2021 period were 

cooler than in past years (Mahlalela et al., 2020; South African Weather Service, 2020; South African 

Weather Service, 2021; South African Weather Service, 2022). Cooler temperatures are likely to have 

limited the amount of humid air brought in by the subtropical air masses (Kalahari high pressure cell), 

ultimately lowering the average annual precipitation levels, contributing to the effects of the recorded 

droughts (Wright et al., 2019; Mahlalela et al., 2020). Mahlalela et al. (2020) reported that the 

east/northeast region (which forms part of the larger eastern South Africa region along with the eastern 

Free State) has been statistically showing a significant decline in spring precipitation. Thus, despite 

increasingly warmer temperatures in comparison to previous years, mildly cooler temperatures recorded 

during 2019 to 2021 may have resulted in the negative correlation observed between the summer and 

winter month temperatures and relative humidity and ultimately, less average annual precipitation as 

well. 

The EC correlation coefficient for summer month temperature and relative humidity was positive, as 

expected for the EC climate. However, the correlation coefficient for winter month temperature and 

relative humidity was negative, as with the FS and NW provinces. Additionally, the correlation 

coefficient for the relationship between relative humidity and precipitation was also not as expected for 

the EC, as this was negative. These observations may be due to the ENSO (El-Niño Southern 

Oscillation), SIOD (South Indian Ocean subtropical dipole), and Southern Annular Mode (SAM(2)) 

climate modes, which are very impactful on regional precipitation in South Africa (Mahlalela et al., 

2020). With ENSO and SIOD strongly influencing subtropical southern African precipitation in the 

summer (Reason, 2001; Mahlalela et al., 2020), and SAM(2) having strong influence over western South 

African precipitation during the winter (Reason & Rouault, 2005). Due to regions of the EC being 

situated in the transition zone between the ENSO and SIOD, and SAM(2) climate modes, minor 

oscillations in any one of their patterns could substantially impact seasonal rainfall in the EC (Mahlalela 

et al., 2020). 

Furthermore, the complexity of the weather data used for this study may also have influenced the 

correlation coefficients as well. The limited range of data recordings and the incompleteness of the full 
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weather records did not provide a clear picture of historic weather patterns in the EC, FS, and NW 

provinces. The gaps in the data may have skewed the correlation coefficients, giving insight into only 

the most recent weather events, and not the province climates as a whole. 

4.4 LEA v.3.8.0 analysis, gene annotation and GWAS 

Summer month temperature, winter month temperature, relative humidity, and average annual 

precipitation were run separately, with the 25 272 SNPs, for each of the three provinces in LEA v.3.8.0 

analysis and resulted in a list of candidate loci. The environmental variables that resulted in the highest 

number of SNP associations were summer month temperature for EC, summer and winter month 

temperatures for FS, and winter month temperature for NW. This indicates that temperature may be the 

environmental variable mostly associated with performance compared to relative humidity and 

precipitation (Rashamol et al., 2020). Temperature is a likely variable due to the availability and 

accuracy of recordings based on weather bureau data. Relative humidity and precipitation are dependent 

on each other, with lower relative humidity associated with lower rainfall (Park & Min, 2017; Denson 

et al., 2021). 

Due to the large number of candidate loci that were detected the FST values were calculated and the top 

20 from each list were chosen for gene annotation (Gugger et al., 2021), to ensure that false positives 

are not included. False positives have been warned against for landscape genomics studies that are 

reliant on genome scans (Lotterhos & Whitlock, 2015; Rellstab et al., 2015; Storfer et al., 2018). In 

literature replication is regarded as a guideline for excluding false positives as loci that are repeatedly 

detected are less likely to be the result of confounding population structure effects or environmental 

covariances (Rellstab et al., 2015; Storfer et al., 2018). Further, literature has indicated that loci detected 

by multiple analysis methods or candidate genes associated with phenotypes known to be under 

selection, are less likely to be false positives, compared to those without a known function (Storfer et 

al., 2018). 

The following SNP variants were not included in the latter stages of the gene annotation as they were 

not associated with any classified genes, namely BTA-54868-no-rs, detected in the Eastern Cape cows; 

ARS-BFGL-NGS-113915 and Hapmap40537-BTA-43945, detected in the Free State cows; and BTB- 

01548042 and ARS-BFGL-NGS-67912, detected in the North-West cows. Of the seven SNP variants 

that were detected in more than one province, Hapmap46867-BTA-74870, BovineHD0200037035, and 

ARS-BFGL-NGS-118306 were not associated with any genes (classified or unclassified). No further 

gene information was found for them. Hapmap46867-BTA-74870 was the only SNP variant to be 

detected in cows from all three provinces by the LEA v.3.8.0 analysis, however, it was not located close 

to any of the other identified genes or pathways. 
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The 25 genes identified from this study were MYO3B, GLG1, SPTB, C2H2orf88, HIBCH, IMMP2L, 

RFX8, CDH18, ATG7, MAP4K3, FKBP15, WDR25, SMC4, TMEM132B, GTDC1, ADRA1A, KRAB 

domain-containing protein, PRKG1, DOCK1, TSC22D1, KCNJ16, CSMD3, TTC12, RTN4RL1, and 

GMPS. The following 17 were all confirmed to the bovine species: MYO3B, SPTB, HIBCH, IMMP2L, 

CDH18, ATG7, MAP4K3, TMEM132B, GTDC1, ADRA1A, KRAB domain-containing protein, PRKG1, 

DOCK1, TSC22D1, KCNJ16, CSMD3, and RTN4RL1. Of those that have been confirmed in cattle, the 

following nine genes have been reported to be involved with cattle growth, performance and adaptation, 

and are thus of particular interest to the objective of the study: CSMD3 (Ghoreishifar et al., 2020), 

CDH18 (Ahmad et al., 2023), MAP4K3 (Adjei-Fremah et al., 2018), HIBCH (Aliloo et al., 2020; Kenny 

et al., 2022), ATG7 (Nakanishi et al., 2019; Silva et al., 2022), GTDC1 (Bolormaa et al., 2011), 

ADRA1A (Hromádková et al., 2020), PRKG1 (Lonergan et al., 2010; Sherman et al., 2010; Taye et al., 

2017; Vajana et al., 2018), and KCNJ16 (Sammad et al., 2022). Where CSMD3, CDH18, MAP4K3, 

HIBCH, and ATG7 were detected in the ES cows; PRKG1, GTDC1, and ADRA1A, were detected in the 

FS cows; and KCNJ16 and CSMD3, were detected in the NW cows. 

There were eight out of the 25 identified genes, across the three provinces, whose functions have yet to 

be confirmed in beef cattle. The main functions of these genes have been stated but they will not be 

discussed in detail as the genes that have been confirmed in the bovine species were the focus of this 

study. The eight unconfirmed genes included GLG1, RFX8, C2H2orf88, FKBP15, WDR25, SMC4, 

TTC12, and GMPS. In humans the Golgi apparatus protein 1, GLG1, gene’s function has been related 

to the negative regulation of transforming growth factor beta receptor signaling pathway (GeneCards, 

2023a). This gene was not placed in any specific Panther molecular function category. The DNA- 

binding protein gene, RFX8, was classified in the “binding” and “transcription regulator activity” 

metabolic function classes. Its molecular functions include the binding and regulation of genes 

transcribed by RNA polymerase II in the cis-regulatory region (Mi et al., 2019; Pantherdb, 2023r). The 

small membrane A-kinase anchor protein, C2H2orf88, was not characterized by any specific Panther 

molecular function category, however, it is classified as a scaffold/adaptor protein and these proteins 

are generally involved in forming multi-protein complexes that combine cAMP signaling with other 

pathways (Carnegie et al., 2009). The peptidylprolyl isomerase binding protein 15 gene, FKBP15, was 

not placed into any specific Panther molecular function category, however it is involved in actin and 

protein binding, as well as endocytosis (NCBI, 2023a), while the WD repeat containing protein 25 gene, 

WDR25, has been reported to be involved in cellular processes, such as apoptosis and gene regulation 

(GeneCards, 2023c). WDR25 was not placed into any specific Panther molecular function category. 

SMC4, the structural maintenance of chromosomes protein 4 gene, was not characterized by any specific 

Panther molecular function category. This gene codes for proteins that are essential to successful 

chromosome transmission during replication and segregation of the genome (Harvey et al., 2002). The 

tetratricopeptide repeat domain 12 gene, TTC12, was not placed in any specific Panther molecular 
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function category, however it is considered an encoded protein and has been found to be involved in 

protein complex formation (Xu et al., 2015), while glutamine amidotransferase, GMPS,  was classified 

with the “catalytic activity” molecular function and enables ligase activity (Mi et al., 2019; Pantherdb, 

2023i). All of the above mentioned genes are associated with protein pathways, however more research 

is needed to determine their specific functions in relation to cattle, specifically the Bonsmara breed. 

Whole genome sequencing could be utilized to investigate the influence of these genes in the bovine 

genome.  

Eastern Cape 

There were two genes identified from the EC cow population that have previously been confirmed in 

dairy cattle but were not reported to be associated with growth or adaptation traits - IMMP2L and 

MYO3B (Bermingham et al., 2014; Skebiel et al., 2018). Neither of these genes were characterized by 

a specific Panther molecular function category. The mitochondrial inner membrane protease subunit 2 

gene, IMMP2L, is classified as a protease protein and it is involved in processing proteins targeted for 

mitochondrial compartments and the assembly of mitochondrial respiratory chain complexes (Mi et al., 

2019; Pantherdb, 2023l; Skibiel et al., 2018). The bovine myosin IIIB, MYO3B gene is involved in the 

regulation of immune response (Chen et al., 2016). It has been identified as a QTL related to resistance 

to bovine tuberculosis (Bermingham et al., 2014). 

The following five genes, detected from the EC cows, were found to be associated with growth 

performance: CSMD3, CDH18, MAP4K3, HIBCH, and ATG7. CSMD3 was not placed in any Panther 

molecular function category, whilst CDH18 was placed into the Panther molecular function “binding” 

class, and MAP4K3, HIBCH, and ATG7 were placed into the molecular function “catalytic activity” 

class (Mi et al., 2019). These classes distinguish between the activity that the product of the gene 

possesses at a molecular level. The product of CDH18 would thus participate in binding activities, 

whilst the products of MAP4K3, HIBCH and ATG7 would all participate in catalytic activities (Mi & 

Thomas, 2009).  

The CUB and Sushi multiple domains 3 gene, CSMD3, encodes a transmembrane protein (Mi et al., 

2019; Pantherdb, 2023e) and has previously been reported to be involved in bovine body size and stature 

(Ghoreishifar et al., 2020). The detection of the gene in the EC cows could be due the targeted selection 

for growth in Bonsmara cattle, which led to increased expression of the gene. Additionally, the CSMD3 

detection could also be due to the gene’s close location on BTA14 to another, LOC781881, reported by 

Bolormaa et al. (2011) to be associated with intramuscular fat (IMF) content. Targeted selection by 

breeders for IMF may have resulted in increased expression of LOC781881, and subsequently CSMD3, 

due to existing linkage disequilibrium (LD) between the genes (Bush & Moore, 2012). Further, 

associations have been reported between 18MW and bioregion (Webb et al., 2017). 
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The Cadherin-18 gene, CDH18, is classified as a cadherin protein. Its molecular functions include 

cadherin binding and calcium ion binding. Furthermore, its biological processes include multicellular 

organism development and cell morphogenesis (Mi et al., 2019; Pantherdb, 2023d). It has been reported 

to be significantly associated with AFC (Ahmad et al., 2023). AFC is negatively correlated with body 

weight at different ages, meaning selection for heavier body weight creates a favourable condition for 

earlier reproduction (Bourdon & Brinks, 1982; da Gama et al., 2021). The detection of this gene in the 

EC cows could explain the targeted selection of growth traits in the Bonsmara breed. 

The mitogen-activated protein kinase kinase kinase kinase 3 gene, MAP4K3, is classified as a non- 

receptor serine/threonine protein kinase is a transcription regulator (Kulkarni et al., 2022) and enables 

the catalysis of serine and threonine reactions. Kulkarni et al. (2022) reported that when supplemented 

with probiotics, MAP4K3 gene expression is modulated and may have a positive impact on growth 

performance. Probiotic supplementation is common practice in the livestock industry. The positive 

effects observed in cattle specifically, post probiotic supplementation include enhanced growth 

performance, improved host innate immunity, reduced stress, and maintenance of a consistent, 

continuous supply of lactic acid to the rumen microbiome (Nocek et al., 2002; Adjei-Fremah et al., 

2018). The influence and enhanced effects of probiotics are partly the result of produced antibacterial 

substances that combat the pathogenic microbes found in cattle rumens (Dhama et al., 2008; Adjei- 

Fremah et al., 2018). Given that probiotics are given to beef cattle to improve production performance 

and lower stress levels (Carraud, 1990; Adjei-Fremah et al., 2018; Kelsey & Colpoys, 2018), prolonged 

use may have led to the modulated gene expression of MAP4K3 in the EC Bonsmara population. 

The mitochondrial 3-hydroxyisobutyryl-CoA hydrolase, HIBCH, is classified as a hydrolase protein. 

Its molecular function involves the catalysis of a reaction whereby a thioester bond is hydrolysed (Mi 

et al., 2019; Pantherdb, 2023k). The gene’s biological processes include carboxylic acid catabolic 

processes, organonitrogen compound catabolic processes, branched-chain amino acid metabolic 

processes, and alpha-amino acid metabolic processes (Mi et al., 2019; Pantherdb, 2023k). All these 

biological processes include the chemical reactions and pathways either resulting in the breakdown of 

the respective molecules or involving them (Mi et al., 2019; Pantherdb, 2023k). Further, a selection 

signature study on Kenyan dairy cattle by Aliloo et al. (2020), reported a candidate gene that was found 

in a region overlapping the HIBCH gene. The HIBCH gene was found to be near the bovine myostatin 

gene, which plays a critical role in bovine muscle development (Sharma et al., 1999). Additionally, a 

study by Kenny et al. (2022) reported HIBCH to be found in a QTL region defined for carcass fat. The 

identification of the gene from the EC cows may be attributed to the targeted selection of the MSTN 

gene to prevent the incidence of double muscling in future progeny (van der Westhuizen, 2018). 

The Ubiquitin-like modifier-activating enzyme gene, ATG7, is classified as a Ubiquitin-protein ligase. 

The molecular functions of this gene include catalytic activity on proteins and ligase activity that 
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subsequently forms carbon-sulfur bonds (Mi et al., 2019; Pantherdb, 2023b). It is also involved in 

several biological processes, including, nucleus organisation, proteolysis, protein lipidation, cellular 

response to starvation, protein modification, mitochondrion autophagy, C-terminal amino acid 

modification, and lysosomal microautophagy of a cell’s nucleus (Mi et al., 2019; Pantherdb, 2023b; 

Ouellet et al., 2021). Two studies, one focused on Nellore cattle (Silva et al., 2022) and another focused 

on Japanese Black cattle (Nakanishi et al., 2019), reported ATG7 to be associated with body weight and 

skeletal muscle growth during the fattening period. This is due to the important role that autophagy 

plays in preserving muscle mass under stress conditions and maintaining myofiber integrity (Nakanishi 

et al., 2019; Silva et al., 2022). The detection of this gene in the EC cows may be explained by the 

emphasis placed on selection for growth traits in the Bonsmara breed to meet specific breed standards 

set by the Bonsmara breeders’ society (Steyn et al., 2014). As well as to promote superior growth in 

artificial insemination (AI) bull progeny (Bonsmara SA, 2019). 

Free State 

There were five genes identified in the FS Bonsmara cow population that have been confirmed cattle, 

but no associations were found for these genes with growth and adaptation. The genes were 

TMEM132B, KRAB domain-containing protein, SPTB, DOCK1, and MYO3B. The transmembrane 

protein 132B, TMEM132B, gene did not fall into any specific Panther molecular function category. It 

enables various molecular processes in humans, and cattle are an ortholog of the gene (NCBI, 2023b). 

The KRAB domain-containing protein, ZNF747-related, gene, was not placed in any specific Panther 

molecular function category, but it is classified as a C2H2 Zinc finger transcription factor. This gene is 

involved in nucleolus maintenance, cell proliferation and differentiation, apoptosis, and transcriptional 

repression of RNA polymerase promoters (Urrutia, 2003; Mi et al., 2019; Pantherdb, 2023n). SPTB, 

spectrin beta chain gene, erythrocytic, fell into the “binding” Panther molecular function category, and 

is involved in actin filament binding and actin cytoskeleton organisation (Mi et al., 2019; Pantherdb, 

2023v). Alterations to the SPTB gene’s expression have previously been linked to embryonic lethality 

in cattle (Oishi et al., 2006; Rezende et al., 2021). The dedicator of cytokinesis 1, DOCK1 gene, fell 

into the “binding” and “catalytic activity” Panther molecular function categories. Its specific functions 

include GDP, GTP, and small GTPase binding, and it is involved in cell and neuron migration (Mi et 

al., 2019; Pantherdb, 2023f). Its involvement in neuron migration has associated the gene with brain 

development and may influence neuronal behaviour and variations in bovine temperament (Valente et 

al., 2016). 

Of the nine genes identified from the FS cows, three were associated with growth and adaptation. These 

were GTDC1, PRKG1, and ADRA1A. GTDC1 and PRKG1 were not placed in any Panther molecular 

function category, whilst ADRA1A was classed into the “molecular transducer activity” function (Mi et 

al., 2019). 
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The glycosyltransferase-like domain-containing protein 1, GTDC1, is classified as a 

glycosyltransferase. This gene is involved in glycan chain biosynthesis, especially the glycan classes in 

the Golgi apparatus (Varki et al., 2022). It has also been reported to be associated with IMF percentage 

(Bolormaa et al., 2011). IMF plays an important role in the palatability and quality of meat and thus the 

gene is targeted for selection in Bonsmara cattle (Nguyen et al., 2021; Linde et al., 2023). The GTDC1 

gene is located close to the HIBCH gene, which is close to the MSTN gene. Thus, the detection of the 

gene in the FS cows is likely due to the targeted selection of the bovine myostatin gene for development 

and regulation of skeletal muscle as well as selection for IMF content (Sheng et al., 2021). 

The cGMP-dependent protein kinase 1, PRKG1, is classified as a non-receptor serine/threonine protein 

kinase. The broad functions of this gene include the enabling of ATP binding, cGMP binding, cGMP-

dependent protein kinase activity, calcium channel regulator activity, and protein serine kinase activity 

(Mi et al., 2019; Pantherdb, 2023q). It has been reported to be associated with feed conversion efficiency 

(FCE) and residual feed intake (RFI) (Lonergan et al., 2010; Sherman et al., 2010; Taye et al., 2017). 

Vajana et al. (2018) reported that the gene was similarly identified in a landscape genomics analysis 

study on Ugandan cattle and their adaptability to East Coast Fever. They reported that due to its 

inflammatory response, PRKG1 was also proposed to be associated with tick resistance in South African 

cattle (Mapholi et al., 2016). The detection of this gene in the FS cows could be explained by one of 

the province’s predominant bioregions – the Dry Highveld grassland (Mucina et al., 2006). Webb et al. 

(2017) reported that Dry Highveld grassland and Eastern Kalahari bushveld bioregions were associated 

with higher 18MW compared to Central bushveld and Mesic Highveld grassland bioregions. Given the 

gene’s reported association with FCE and RFI (Lonergan et al., 2010; Sherman et al., 2010; Taye et al., 

2017), the vegetation in the Dry Highveld grassland could be complementary to these traits, creating 

favourable conditions for PRKG1 expression. 

The Alpha-1A adrenergic receptor gene, ADRA1A, is involved in several biological processes. Some of 

these include the activation of phospholipase C activity, cAMP-mediated signalling, and the regulation 

thereof, activation of adenylate cyclase activity and the regulation thereof, inositol phosphate-mediated 

signalling, and the regulation of calcium ion concentration in cells (Mi et al., 2019; Pantherdb, 2023a). 

The gene also encodes an α1-adrenergic receptor for catecholamines (Hromádková et al., 2020). 

Expression of the ADRA1A gene was reported to be higher in the ileum and adrenal glands of colostrum 

fed calves (Hromádková et al., 2020). Subsequently, it was speculated that the α1-adrenergic receptors 

coded for by the gene, may play a role in fundamental digestive function regulation and mucosal 

immunity (Santulli et al., 2012; Scanzano & Cosentino, 2015; Hromádková et al., 2020). The presence 

of more α1-adrenergic receptors due to higher expression of ADRA1A, were thought to ultimately aid in 

the adaptation of the neonate to its new environment outside of the womb, as well as facilitate proper 

digestive functioning (Hromádková et al., 2020). There were no calves included in the group of FS 

cows investigated in this study, therefore the detection of this gene in the FS cows may be attributed to 
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adaptive digestive responses to environmental stresses brought on by the recent droughts (Walker & 

Drouillard, 2012; Howell et al., 2022). 

North-West 

The three NW genes that have been confirmed in cattle but were not associated with growth or 

adaptation included TSC22D1, RTN4RL1, and SPTB. To date, the TSC22 domain family protein 1, 

TSC22D1, has mostly been found to regulate the transcription of multiple genes in humans (GeneCards, 

2023b), but in cattle it may be associated with maternal calving difficulty (Purfield et al., 2020). This 

gene was not placed into a specific Panther molecular function category. The reticulon 4 receptor like 

1 gene, RTN4RL1, was placed into the “binding” Panther molecular function category and it enables 

signaling receptor binding and heparin binding. It is also involved in the biological processes of axon 

guidance (Mi et al., 2019; Pantherdb, 2023y). 

Only two of the eight genes identified in the NW Bonsmara cow analyses were associated with growth 

and adaptation, KCNJ16 and CSMD3. KCNJ16 was placed into the Panther molecular function 

“transporter activity” category, while CSMD3 was not placed in any Panther molecular function 

category (Mi et al., 2019). 

The potassium inwardly rectifying channel subfamily J member 16, KCNJ16, is classified as an ion 

channel and include voltage-gated potassium channel and ligand-gated ion channel activity (Mi et al., 

2019; Pantherdb, 2023m). It is also involved in biological processes which include potassium ion 

transmembrane transport and the regulation thereof (Mi et al., 2019; Pantherdb, 2023m). Sammad et al. 

(2022) reported that the gene may be a participating candidate gene in the homeostatic modifications 

that take place in response to heat stress. A negative relationship between temperature and growth 

performance traits was reported by Webb et al. (2017). This relationship is observed because of the 

negative influence that high ambient temperatures have on the energy status of cattle. Of the various 

summer month temperatures analysed alongside the cows’ genomic SNP data in LEA v.3.8.0, the NW 

summer month temperatures were the highest. This might explain the need for homeostatic response to 

heat stress, and subsequent expression of the KCNJ16 gene in cows born and raised in the NW province. 

CSMD3 (also detected in the EC cows) is associated with body size and stature in cattle (Ghoreishifar 

et al., 2020). Heavier 18MW have previously been reported to be strongly associated with Dry Highveld 

grassland and Eastern Kalahari bushveld (Webb et al., 2017). Both of which are the predominant 

bioregions in the NW province (Mucina et al., 2006). The association of the Dry Highveld grassland 

and Eastern Kalahari bushveld bioregions with larger 18MW may be an explanation for the detected 

CSMD3 gene in the NW cows. This possible explanation is in addition to the gene’s close location, on 

BTA14, to LOC781881, which has been associated with IMF (Bolormaa et al., 2011). 
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Out of the 25 detected genes, nine were associated with growth performance or adaptation. Only one 

gene (CSMD3) out of those nine growth/adaptation related genes was detected in multiple provinces 

(EC and NW). The variable expression of growth performance and adaptation related genes between 

the provinces may be due to different breeders having different breeding objectives. Variation in 

breeding system, expenses, factors that influence cattle performance, among other considerations, 

influence an individual breeder’s breeding objectives (Kluyts et al., 2003). Additionally, the 

environmental variables used for analyses were recorded from 2016 to 2021. During this time, South 

Africa experienced two significant droughts during 2015 to 2016 and 2018 to 2020 (Meza et al., 2021). 

The variability in the gene expression observed between the provinces may also be attributable to 

differing degrees of adaptation in response to the periods of drought. The extent to which the droughts 

affected each of the environments would explain gene suppression or expression differences between 

the cow populations (Cavalli & Heard, 2019). The detection of at least one growth related gene from 

all three provinces, however, supports the nature of the Bonsmara stud breeding industry. Where 

optimal growth performance is targeted in selection to ensure that cattle meet breed standards to qualify 

for registration and strong selection pressure is applied for growth performance in AI bulls (Bonsmara 

SA, 2019). 

GWAS result comparison 

The GWAS analysis for 18MW identified four significant SNPs in all cows from the three provinces, 

namely Hapmap49016-BTA-110674, Hapmap32099-BTA-151095, and Hapmap59651-rs29009956; 

and ARS-BFGL-NGS-26337. Of these SNP variants, only one was found to be associated with a 

classified gene, namely SNP ARS-BFGL-NGS-26337, associated with sphingomyelin synthetase 1, 

SGMS1 (Mi et al., 2019; Pantherdb, 2023t). The other three SNPs were all found on BTA6 but their 

association to pathways or functions was undetermined. The molecular function of the SGMS1 gene is 

to transfer phosphorus-containing groups from one compound to another. The biological functions it is 

involved in include phospholipid biosynthetic processes and ceramide biosynthetic processes 

(Pantherdb, 2023t). Specific functions of the SGMS1 gene related to cattle performance have not been 

reported. However, a study on the genetic variation of RFI in Australian Angus cattle, documented that 

SGMS1 was expressed significantly higher in bulls strongly selected for RFI, than in bulls selected for 

low RFI (de Las Heras-Saldana et al., 2019). 

None of the significantly associated SNPs identified from the GWAS with 18MW, were also detected 

from the LEA v.3.8.0 analysis based on the environmental variables. However, that was not an 

indication of poor efficacy of the LEA v.3.8.0 analyses, as the LEA v.3.8.0 analysis did detect the nine 

candidate SNP variant loci that were in some way associated with genes involved with growth 

performance. 
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With the results from this study, it can be concluded that there is potential to investigate growth 

performance using a landscape genomics approach. The LEA v.3.8.0 analysis was successful in 

detecting candidate loci that were associated with genes previously reported to be involved with growth 

performance or adaptation. Gene annotation of the detected candidate genes was helpful in gaining 

understanding of their functions and the processes they are involved in. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



65  

Chapter 5: Critical review, general conclusion, and 

recommendations 

5.1 Conclusion 

This study was the first attempt to perform a landscape genomic analysis on SA Bonsmara cattle, with 

the aim to search for genetic and environmental associations with growth performance. It is of interest 

to have more information on size and genetic adaptation to a specific environment. Genotypes of 

Bonsmara cows from the Eastern Cape, Free State and North-West provinces of South Africa, were 

analysed using a landscape genomic approach in the form of LFMM analysis through the LEA v.3.8.0 

package in R. Landscape genomics analysis seeks to establish whether ecological-genotypic 

associations exist for an organism and the environment it originated from and inhabits (Gugger et al., 

2021). To investigate such associations effectively with a landscape genomic approach, in this case 

LFMM via LEA v.3.8.0, the genotypic data should have some historic exposure to the ecological 

climate. Historic weather data was available from the weather bureau to provide an extensive view of 

the provinces included. In the study, the LEA v.3.8.0 analysis provided results on SNP-climate 

associations in the form of candidate loci that were annotated to identify several genes that are all to 

some extent, influenced by the temperature, relative humidity, and rainfall. 

Of the thousands of candidate loci detected from the LEA v.3.8.0 analysis, 60 SNPs were chosen for 

gene annotation. The annotation determined 25 classified genes where nine, CSMD3, CDH18, 

MAP4K3, HIBCH, ATG7, GTDC1, ADRA1A, PRKG1, and KCNJ16 were associated with growth 

performance or adaptation. CSMD3 has been associated with body size and stature in cattle 

(Ghoreishifar et al., 2020). CDH18 has been reported to be significantly associated with age at first 

calving (Ahmad et al., 2023). MAP4K3 is believed to have a positive influence on growth performance 

when an animal is supplemented with probiotics (Kulkarni et al., 2022). HIBCH has been found near 

the bovine myostatin gene and in a QTL region defining carcass fat (Sharma et al., 1999; Aliloo, 2020; 

Kenny et al., 2022). The ATG7 gene is involved with cellular autophagy which has been reported to 

play an important role in body weight and skeletal muscle growth in cattle (Nakanishi et al., 2019; Silva 

et al., 2022). GTDC1 has been reported to be associated with intramuscular fat percentage (Bolormaa 

et al., 2011). ADRA1A encodes an α1-adrenergic receptor for catecholamines, which might be involved 

in the regulation of fundamental digestive functions and glucose metabolism (Hromádková et al., 2020). 

PRKG1 has been associated with FCE, RFI, and tick resistance (Lonergan et al., 2010; Sherman et al., 

2010; Mapholi et al., 2016; Taye et al., 2017). KCNJ16 has been reported to play a role in homeostatic 

processes that take place in response to heat stress (Sammad et al., 2022). 
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5.2 Efficacy of investigation 

A limitation for landscape genomic analyses lies in the nature of the South African cattle stud breeding 

industry. Cows and bulls are raised on farms but change ownership throughout their lives as they are 

purchased at different ages and moved between provinces and climatic biomes. This can happen 

multiple times in an animal’s life for the purpose of increasing the gene pool in a breeding herd. Given 

the established differences in climate and environment between the South African provinces, this also 

means that the cattle are subsequently exposed to varying climates. This hinders the establishment of 

heritable local genetic adaptation. Gugger et al. (2021) mentioned that the stability of the Californian 

endemic oak genetics in a 66entralized location over an extended period improved the efficacy of the 

landscape genomic analysis. Therefore, a landscape genomic approach is most successfully applied 

when the genetic information has been exposed to a single geographical environment over the course 

of decades (Storfer et al., 2018; Gugger et al., 2021). This factor was taken into consideration during 

the animal selection process, however, not to the extent of decades. When effort was made to identify 

animals that had parents and grandparents born and raised or that spent a significant portion of their 

lives in the same geographic region as their offspring, not a single cow out of the chosen 765 could be 

identified. This was due to the parents and grandparents having been moved around the country for stud 

breeding purposes. The overall effect of this is that the cows used for analysis did not have inherited 

genetic information that had been exposed to a single environment for decades, meaning that the 

adaptation they express to their environments is more likely to be temporary instead of permanently 

inherited from their parents. 

The environmental variables chosen for analysis were summer month temperatures, winter month 

temperatures, relative humidity, and average annual precipitation (Gugger et al., 2021; Shryock et al., 

2021). The environmental data received from the SA Weather Bureau was extensive, dating back to 

2001 for most of the weather stations. Ideally, more historic weather data is desirable for landscape 

genomic analyses as it would correspond to historic genetic data of the species being investigated and 

would consider weather trends over long time periods in the landscape genomic analysis (Gugger et al., 

2021). However, there were gaps in the raw weather data received for this study, which limited the 

available climatic variable data for analysis to the short period of 2016 to 2021. More extensive and 

complete data would have improved the accuracy of the landscape genomics analysis. 

The results obtained from the LEA v.3.8.0 analysis indicated that there was some association between 

the environment and cow growth performance. Nine out of the 25 classified-gene-associated SNP 

variants were documented to have some association with growth performance or adaptation. The study 

confirmed the need for follow up analyses with larger numbers of genotypes. Whole-genome 

sequencing (WGS) data could provide more dense genomic information for an association study. 
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5.3 Recommendations 

There are several modifications that can be made to the methodology to potentially improve the outcome 

of the results. The first would be to obtain more extensive and complete weather data for analysis. 

WorldClim weather data can be downloaded using the raster package in R. This data would be more 

extensive and completed data records from the early 2000s can also be accessed (Hijmans et al., 2005; 

Mdladla et al., 2018). 

Another avenue that could be investigated is to identify specific SNPs on the panels that are known to 

have an association with growth traits or adaptive traits and to test the animals’ genotypes for these 

specific SNPs against the environmental variables (Joost et al., 2007). This would be an alternative to 

the genome-wide investigation conducted for this study. Analysing a small number of specific SNPs 

would allow for a more focused approach at investigating the existence of SNP-climate associations. 

Additionally, to achieve alternate associations for growth performance traits, the GWAS could have 

been conducted using de-regressed EBVs instead of phenotypes. 

The use of WGS data will offer a more expansive scope of genomic information for investigation of 

GEA (Yoder et al., 2014; Rellstab et al., 2015). Analysing a larger dataset of genotypes, instead of 25 

272, might allow for the detection of more SNP-climate associations than were detected in this study. 

Bhardwaj et al. (2023) obtained the genetic information for the cattle they investigated from a 777k 

BovineHD BeadChip. This allowed for the identification of 1305 significant SNPs. Yoder et al. (2014) 

utilised a WGS approach to identify a data set of nearly two million SNPs for their environmental 

association study. Along with denser genomic information for analysis, Stucki et al. (2017) suggested 

the use of the SAMβADA approach as it allows for the analysis of large WGS datasets on desktop 

computers. It has also been reported to process data ten times faster than a LFMM approach (Stucki et 

al., 2017). 

In this first attempt to use landscape genomics it was demonstrated that it can be used for identifying 

candidate loci. Follow up studies should however use larger datasets, with more historic weather data 

and genotypes from whole genome sequencing. 
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Addenda 

Addendum A: 

Table A. IBD values for EC clusters in Figure 

3.1 and Figure 3.2 

BONZAFF0000XXXX3944 0.058038 

BONZAFF0000XXXX4272 0.056866 

BONZAFF0000XXXX3782 0.055947 

BONZAFF0000XXXX4264 0.055802 

BONZAFF0000XXXX0971 0.054395 

BONZAFF0000XXXX1003 0.052723 

BONZAFF0000XXXX0930 0.052513 

BONZAFF0000XXXX7856 0.051612 

BONZAFF0000XXXX4041 0.051221 

BONZAFF0000XXXX7898 0.050138 

BONZAFF0000XXXX4298 0.048713 

BONZAFF0000XXXX7872 0.048585 

BONZAFF0000XXXX3758 0.048217 

BONZAFF0000XXXX4322 0.047892 

BONZAFF0000XXXX4314 0.047836 

BONZAFF0000XXXX3733 0.047587 

BONZAFF0000XXXX0955 0.047486 

BONZAFF0000XXXX9906 0.047278 

BONZAFF0000XXXX3951 0.046806 

BONZAFF0000XXXX9617 0.046477 

BONZAFF0000XXXX5021 0.045301 

BONZAFF0000XXXX3915 0.045156 

BONZAFF0000XXXX3790 0.045047 

BONZAFF0000XXXX3527 0.043064 

BONZAFF0000XXXX5252 0.04213 

BONZAFF0000XXXX3808 0.041291 

BONZAFF0000XXXX6249 0.040585 

BONZAFF0000XXXX3923 0.040101 

BONZAFF0000XXXX3561 0.039533 

BONZAFF0000XXXX1029 0.039024 

BONZAFF0000XXXX1011 0.034373 

BONZAFF0000XXXX3538 0.033226 

BONZAFF0000XXXX3931 0.033192 

BONZAFF0000XXXX3645 0.032417 

BONZAFF0000XXXX4544 0.031889 

BONZAFF0000XXXX4569 0.031738 

BONZAFF0000XXXX1078 0.03058 

BONZAFF0000XXXX3504 0.029684 

BONZAFF0000XXXX3520 0.028817 

BONZAFF0000XXXX3553 0.027712 

BONZAFF0000XXXX4577 0.027206 

BONZAFF0000XXXX4585 0.026927 

BONZAFF0000XXXX0540 0.024375 
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BONZAFF0000XXXX8190 0.022356 

BONZAFF0000XXXX4593 0.020035 

BONZAFF0000XXXX3689 0.018411 

BONZAFF0000XXXX4407 0.017415 

BONZAFF0000XXXX4957 0.017139 

BONZAFF0000XXXX3572 0.016602 

BONZAFF0000XXXX4399 0.014329 

BONZAFF0000XXXX3697 0.01373 

BONZAFF0000XXXX4431 0.012656 

BONZAFF0000XXXX3705 0.012167 

BONZAFF0000XXXX3598 0.009019 

BONZAFF0000XXXX3606 0.007599 

 

Addendum B: LEA Script 

library(LEA) 

# Creation a the genotypic file: "genotypes.lfmm" 

file("ECgeno.ped") 

ped2lfmm("ECgeno.ped", "ecgeno.lfmm", force = TRUE) 

ped2geno("ECgeno.ped", "ecgeno.geno", force = TRUE) 

project = NULL 

project = lfmm("ecgeno.lfmm", 

               "EC_Htemp.env", 

               K = 3, 

               repetitions = 10, 

               project = "new") 

# compute adjusted p-values 

p = lfmm.pvalues(project, K = 3) 

pvalues = p$pvalues 

alpha = 0.2 

L = length(pvalues) 

# Benjamini-Hochberg's algorithm: 

w = which(sort(pvalues) < alpha * (1:L) / L) 

candidates = order(pvalues)[w] 

# GWAS significance test 

par(mfrow = c(1,1)) 

hist(pvalues, col = "lightblue") 

plot(-log10(pvalues), pch = 19, col = "blue", cex = .7) 

options(max.print=3000) 

View(candidates) 
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Addendum C: Manhattan plots and histogram p-value plot results from the GWAS 

built into LEA. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C1. Manhattan plot for EC summer month temperatures, K = 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C2. Pvalue histogram for EC summer month temperatures, K = 3.  
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Figure C3. Manhattan plot for EC winter month temperatures, K = 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure C4. Pvalue histogram for EC winter month temperatures, K = 3.  
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Figure C5. Manhattan plot for EC average annual precipitation, K = 3.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure C6. Pvalue histogram for EC average annual precipitation, K = 3.  
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Figure C7. Manhattan plot for FS summer month temperatures, K = 1.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure C8. Pvalue histogram for FS summer month temperatures, K = 1.  
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Figure C9. Manhattan plot for FS winter month temperatures, K = 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure C10. Pvalue histogram for FS winter month temperatures, K = 1.  
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Figure C11. Manhattan plot for FS average annual precipitation, K = 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure C12. Pvalue histogram for FS average annual percipitation, K = 1.  
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Figure C13. Manhattan plot for NW summer month temperatures, K = 1.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure C14. Pvalue histogram for NW summer month temperatures, K = 1.  
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Figure C15. Manhattan plot for FS winter month temperatures, K = 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure C16. Pvalue histogram for NW winter month temperatures, K = 1.  
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Figure C17. Manhattan plot for NW average annual precipitation, K = 1.  

  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure C18. Pvalue histogram for NW average annual precipitation, K = 1.  
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