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Abstract 

 
Evaluating the impact of agricultural practices helps policymakers and farmers in their decision-

making. In Zambia, most households depend on agricultural activities, in particular maize 

production. This paper examines the impact of the adoption of residue retention on households’ maize 

yield in northern Zambia. We used the propensity score matching (PSM) method. By using the probit 

model, we also determined the factors that influence the adoption of residue retention. The results 

show that adopting residue retention has a positive and significant net effect on household maize 

yield. Residue retention traps moisture in the soil and improves soil structure. This suggests that a 

greater focus on this aspect is required to encourage more farmers to adopt residue retention to 

improve maize yield. Government policies can be structured to promote residue retention among 

smallholder farmers. 
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1. Introduction  

 

Finding sustainable ways to alleviate poverty through improved agricultural practices should be a 

priority, particularly in nations where the population is highly dependent on agriculture. This is 

important for nations to achieve the United Nations (UN) 2030 agenda of leaving no one behind and 

to implement the Sustainable Development Goals (SDGs), specifically the ones that deal with poverty 

eradication (SDG 1) and food security (SDG 2). Because of their expected effects on the 

competitiveness of the agricultural sector and poverty reduction, agricultural research organisations 
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and policymakers have a long tradition of promoting new agricultural technologies and associated 

practices aiming at more efficient use of external inputs (e.g. hybrid seeds, chemical inputs, 

mechanised equipment, etc.). 

 

In the 1990s, increasing concerns about environmental degradation led to changes in farm 
management practices and a focus on those with a positive effect on food security and the 

environment, such as conservation agriculture (Baudron et al. 2007). More recently, farmers have 

faced new challenges posed by climate change, and new sets of practices such as climate-smart 

agriculture are now being promoted (Hobbs et al. 2008). Many of the technologies and practices have 

the potential to help farmers adapt to these new challenges, especially in specific conditions (Umar 

et al. 2011; Lipper et al. 2014). However, they present further difficulties, as they require more 

sophisticated understanding, often involving trade-offs between different overarching goals (such as 

productivity, sustainability, resilience, etc.), and have different effects, depending on the context in 

which they are used (Knowler & Bradshaw 2007; Läpple & Van Rensburg 2011). Apart from that, 

the adoption of these various practices remains low, despite obvious advantages for farmers and a 

number of initiatives to support them (Andersson & D’Souza 2014). 

  

It is challenging to identify consistent factors in farmers’ adoption of sustainable agricultural 

practices, and attempts to promote them will need to be adapted to the local social and biophysical 

context (Umar et al. 2011; Turmel et al. 2015; Abegunde et al. 2019). Among the different practices, 

the retention of crop residues has been promoted to farmers as a tool to build resilience and improve 

productivity. Residue retention entails the use of crop residues or stalks, which are the substances that 

are left after harvesting crops (Turmel et al. 2015). Mulching the retained residues will include the 

stalks, leaves and others parts, which are used as soil cover. Residue retention is effective in reducing 

soil erosion. Moreover, residue retention has the potential to improve soil organic matter. Climate 

change affects the spatial and temporal availability of water, i.e. rainfall, on which farmers in Zambia 

are dependent. Residue retention traps moisture in the soil for longer periods compared with 

conventional practices, thereby minimising the climate impact on crops and improving resilience. 

Inversely, residue retention promotes disease and pest infestation, which may affect yield as well as 

the occurrence of weeds (Mandal et al. 2004). However, there is some debate on its adaptability to 

and effects in various African farming contexts. As the results of the adoption and effects of this 

practice are likely to be context specific and related to farmers’ perceptions and socio-economic 

conditions (Giller et al. 2009; Tessema et al. 2013; Misaki et al. 2018), the main research questions 

of this paper firstly dealt with the evaluation of the factors that influence the adoption of residue 

retention by maize farmers in northern Zambia, and secondly to evaluate the impact of the adoption 

on maize yields. Zambia is among the leading countries in Africa in the adoption of agricultural 

practices like residue retention, for example conservation agriculture (CA) and climate-smart 

agricultural practices, although there are a lack of studies that have specifically investigated the 

effects of residue retention (Baudron et al. 2007; Kaczan et al. 2013). 

 

As elsewhere, the effect of agricultural practices is also a cause of debate in northern Zambia (Giller 

et al. 2009; Total LandCare [TLC] 2017). In fact, studies on the effect of adopting residue retention 

are based mainly on field experiments or trials (Mandal et al. 2004; Chivenge et al. 2007). They do 

not take into account the fact that farmers in the real-world situation face many factors that are 

external to production and have the potential to affect the effect of adopted practices (Ibrahim et al. 

2008; Jat et al. 2019). The impact of conservation agriculture on crop production can be found in 

literature on the Zambian situation (Thierfelder & Wall 2010; Manda et al. 2016). We argue that 

context is important, and that focusing on specific technologies, and not treating CA practices as a 

package in impact evaluation studies, provides more accurate information. Moreover, farmers rarely 

adopt the full bundle of practices, but often opt for specific technologies under incomplete 
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information. Therefore, this research adds to the body of knowledge on the adoption of residue 

retention as a CA practice by estimating the effect on farmers’ total household maize yield in northern 

Zambia.  

 

2. Data and methods 

 

2.1 Study area and data sources 

 

The study covered two provinces, the Northern Province (which includes Kasama, Mungwi, Mbala 

and Luwingu districts) and Luapula Province (which includes Mansa, Samfya and Kawambwa 

districts). The provinces are located in northern Zambia and share the same agroecological region 

(region III, see Figure 1). The survey was carried out by Total LandCare (TLC) Zambia as part of the 

Smallholder Productivity Promotion Programme (S3P), funded by the International Fund for 

Agricultural Development (IFAD). The S3P project was designed to address low yield and improve 

output and market access in the agricultural sector (TLC 2017). The survey data was collected from 

maize farmers in the two provinces in 2019. Data collection included key informant interviews and 

focus group discussions with extension officers and farmers in agricultural camps. The survey 

participants consisted of 306 maize farmers, who were selected from different districts in the study 

areas using stratified random sampling.  

 

 
Figure 1: Agroecological zones and the study area 

Source: Makondo and Thomas (2020) 

 

2.2 Propensity score-matching procedure 
 

The study used the propensity score matching (PSM) method to shed light on the effect of the 

adoption of residue retention on maize yield. Residue retention has been treated as part of climate-

smart agricultural technology (CSA) in the literature because of its potential to improve farmers’ 

adaptation and productivity. The PSM method is widely used in the impact evaluation literature, as it 

creates conditions similar to a randomised experiment (Rosenbaum & Rubin 1983; Mendola 2007). 

First, it establishes an adequate counterfactual to estimate the true causality of change. The aim is to 
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assess what the situation of farmers would have been if they had not adopted residue retention. 

Second, PSM accounts for potential selection bias that may arise in adoption. Residue retention is 

one of the least adopted technologies in Zambia (Andersson & D’Souza 2014). Furthermore, PSM 

does not impose structure and assumes common support, and thus is efficient in controlling for 

selection bias (Heckman et al. 1998). Our study used observational data, thus adoption was not 
randomly distributed among the farmers, as they make private decisions to adopt or not to adopt, 

leading to self-selection problems (Abdulai 2016). The outcome variable used was maize yield in the 

2018/2019 season.  

 

Following Rubin (1974), the outcomes for non-adopting and adopting households were defined as 

shown in equations (1) and (2) respectively, with Y0 representing outcomes for non-adopters and Y1 

for adopters. The X represent observable household characteristics that simultaneously influence 

adoption and outcome variables (maize yield). The assumption is that unobserved random errors are 

different; 𝜇 ≠ 𝜀. Due to potential selection bias, the effect of adoption was not estimated as the 

difference in outcomes of adopters and non-adopters (𝑌1 - 𝑌0), known as the average treatment effect 

(ATE).  

 

𝑌0 = 𝐵0𝑋 + 𝜇                       (1) 

 

𝑌1 = 𝐵1𝑋 + 𝜀                       (2)  

                                                                                   

The existence of selection bias due to observable characteristics was tested using a t-test. The PSM 

method controls for selection bias by matching adopters and non-adopters with similar observed 

characteristics and estimating the more robust average treatment effect on the treated (ATT). The 

interest is to estimate the counterfactual, which is not observable. The PSM method relies on two 

main assumptions: (i) the conditional independence assumption (CIA); and (ii) the common support 

or overlap assumption, which is required to hold to estimate the treatment effect (adoption). The CIA 

assumption requires that adoption be random and not correlated with maize yield when the observed 

characteristics of farmers are controlled (Mendola 2007). The common support assumption requires 

that adopting farmers be similar to non-adopters in terms of observed characteristics, and be 

unaffected by participation (Khandker et al. 2009). This study assumed that only observable 

household characteristics affect adoption (i.e. CIA assumption), following Rosenbaum and Rubin 

(1983), as shown in Equation (3).  

 

𝑌𝑖 ⊥ 𝐷|𝑋,                      (3) 

 

where D is a dichotomous dependent (treatment) variable, equal to one when farmers adopted (and 

zero otherwise). The “⊥” denotes independence, and the variables to the right of “|” are the 

conditioning variables. To be precise, the potential outcomes (Yi) are independent of treatment 

assignment given the set of variables, hence would not be affected by the socioeconomic 

characteristics of the farmers if the only characteristics used were those that are the same for the 

adopters (with the treatment) and the non-adopters (without the treatment). There are, however, 

systematic socioeconomic differences between treatments, thus the expectation is that the potential 

outcome would be influenced by the differences. The study applied the probit model to estimate the 

propensity or probability that a farmer adopts residue retention, as shown in Equation (4).  

 

𝑃(𝑋) = Pr(𝐷 = 1|𝑋) = 𝐸(𝐷|𝑋)                    (4) 

 

P(X) represents the estimated propensity scores. Rigorous tests ensure that all covariates that 

determine the adoption of residue retention are included in the propensity score equation. Covariates 
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that influence adoption are likely to be data driven, and literature and context specific. Using the 

propensity scores, the region of common support was defined; this is where the distributions of the 

propensity score for adopters and non-adopters overlap. Adopters and non-adopters that fell outside 

the common support region were dropped. In addition, the estimation of the treatment effect 

(adoption) takes place in the region of common support. Satisfying the common support assumption 
ensured that households with similar observed variables have a positive probability of adopt and not 

adopting (Heckman et al. 1999; Caliendo & Kopeinig 2005). In essence, it rules out perfect 

predictability of the adoption state, given the observed variables as shown in Equation (5). 

 

0 < 𝑃(𝐷 = 1|𝑋) < 1                     (5) 

 

The common support assumption needs to be satisfied so that non-adopters are matched with adopters 

based on the distribution of covariates, such that farmers from the two groups share similar observable 

characteristics (Rosenbaum & Rubin 1983). Adopters and non-adopters were matched using 

propensity scores. The study applied common matching methods – nearest neighbour, radius 

matching and kernel (Rosenbaum & Rubin 1985). The weights assigned in each matching method 

affect the estimation of the treatment effect. The standardised bias, t-test and pseudo-R2 tests were 

used to assess the matching quality (i.e. balancing property). Matching with a good comparison group 

ensures that a true hypothetical mean outcome is estimated, as shown in Equation (6). For instance, 

the observed mean outcome for adopters is given as 𝐸(𝑌1|𝐷 = 1), and their hypothetical mean 

outcome as 𝐸(𝑌0|𝐷 = 1).1 The ATT was estimated as shown in Equation (7) (Rosenbaum & Rubin 

1985), such that: 

 

𝐸(𝑌0|𝐷 = 1) − 𝐸(𝑌0|𝐷 = 0) =  0                   (6) 

 

𝐴𝑇𝑇 = 𝐸(∆|𝐷 = 1) = 𝐸(𝑌1|𝑋, 𝐷 = 1) − 𝐸(𝑌0|𝑋, 𝐷 = 1)                (7) 

 

The treatment effect includes variance attributed to the derivation of propensity scores, common 

support region, and matching. Failure to account for this variation results in wrongly estimated 

standard errors (Caliendo & Kopeinig 2005). One widely used method to deal with this problem is 

bootstrapping (Johnson et al. 1991; Lechner 2002; Horowitz 2003). By bootstrapping, the results 

were re-estimated including the initial stages in the estimation, viz. propensity score and common 

support. The PSM method hinged on the CIA assumption, thus requiring sensitivity analysis to be 

carried out to establish how the potential existence of unobserved characteristics (hidden bias) may 

affect adoption. Rosenbaum bounds sensitivity analysis was adopted to check how hidden bias 

(unobserved influences) may affect the results of the study (i.e. the degree to which unobserved 

influences would require the results of the study to be questioned), as the method assumes that only 

observed characteristics influence the adoption of residue retention.  

 

3. Results and discussion 

 

3.1 Characteristics of the sampled households 

 

Table 1 presents a summary of the characteristics of the sampled population. The mean age of the 

respondents was 49. The gender of the respondents was distributed between 43.14% females and 

56.89% males. The educational background of the respondents showed that 3.59% had never received 

any formal education, 50% of respondents had primary school education, 45.75% had secondary 

education as their highest educational level, and only 0.65% of respondents had completed tertiary 

 
1 E is the expectation operator 
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education. Education is said to enable farmers to understand, acquire and interpret information that 

helps in decision-making. In the adoption literature, formal education is reported to improve farmers’ 

knowledge and skills to understand the potential benefits of agricultural practices and technologies 

for their yield. Respondents cultivated maize on 1.24 hectares of land on average, and 69% of 

respondents had contact with extension officers during the 2018/2019 planting season. The data was 
collected at the end of the planting season. 

 

Table 1: Descriptive statistics of sampled households for residue retention (N = 306) 
Variables Mean Standard dev. Percentage (%) 

Age 49.2 13.136 - 

Female 

Male 

- 

- 

- 

- 

43.14 

56.86 

Education 

Never 

Primary 

Secondary 

Tertiary  

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

3.59 

50.00 

45.75 

0.65 

Province 

Luapula 

Northern 

 

- 

- 

 

- 

- 

 

45.42 

54.58 

Married 0.83 0.376 - 

HH size 7 2.910 - 

Extension access 0.69 0.462 - 

Maize area 1.24 4.339 - 

Source: TLC Household Survey 2019 

 

3.2 Awareness and reported effects of climate change on crop and livestock productivity  

 

The lack, or limited awareness, of climate change hinders farmers’ adaptation ability (see Nzeadibe 

et al. 2011). To effectively adapt to climate change, farmers must correctly perceive or observe 

current and future climate trends. As shown in Table 2, households reported varying effects of climate 

change that directly affected their welfare. About 72.88% (cumulative percentage) of farmers 

experienced at least one impact attributed to climate change. In addition, most farmers reported that 

climate variability led to a decline of 36.27% in crop production. In contrast, only 2.28% of the 

respondents experienced a decline in livestock production due to climate change. In this study, 

livestock was reported to be less affected by climate change and variability than crops. This is similar 

to the findings on adaptation in South Africa by Thomas et al. (2007), who found that smallholder 

farmers ceased investment in crops and rather invested more in livestock production during drought 

seasons and in cases of high climate and weather variability. 

 

Table 2: Reported effects of climate change 

Climate change effects 
Residue retention  

Frequency Percentage 

A decline in crop yield 111 36.27 

Decline in livestock  7 2.29 

Difficult to time seasons 24 7.84 

Increase in yields  4 1.31 

Increased diseases 35 11.44 

Decrease in water availability 8 2.61 

Decline crop yield and livestock  34 11.11 

No consequences 83 27.12 

Source: TLC Household Survey 2019 
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3.3 Adoption of residue retention 

 

Most rural households in Zambia earn a living from agricultural activities. However, the progressively 

changing climatic conditions threaten their livelihoods. Households often would find a way to adapt 

to the aspects that threaten their livelihoods and their agricultural activities by employing strategies 
that increase their resilience to factors such as climate change. Residue retention is promoted as a 

sustainable practice that has the potential to improve soil fertility and trap moisture, thus improving 

crop yield. The data shows that 32.68% of the sample population adopted residue retention, while 

67.2% did not adopt it. This confirms the assertion that adoption among smallholder farmers remains 

low in sub-Saharan Africa (Dinar et al. 2012; Shongwe 2014). Adopters are maize farmers 

(households) who only adopted. 

 

3.4 Selection bias 

 

Using the observable characteristics of the households, systematic differences were checked between 

adopters and non-adopters of the technologies under investigation. Checking for systematic 

differences between adopters and non-adopters is the first and most important step in impact 

evaluation and may direct the researcher on which valuation method to use. Observational studies on 

adoption often suffer from the existence of selection bias, causing the sample population between the 

two groups to be non-random or not a true representation of the whole population (Mendola, 2007; 

Becerril & Abdulai 2010; Kassie et al. 2011). 

 

Table 32 shows the existence of selection bias in the adoption of residue retention. The results show 

that male-headed households are distributed differently between adopters and non-adopters of residue 

retention (p > 0.074). Secondly, a significant difference exists between the adopters of residue 

retention and the non-adopters in their awareness of climate change (p > 0.004). Adopters and non-

adopters of residue retention are significantly different in extension contact (p > 0.000). Farmers who 

have contact with extension services are likely to adopt agricultural technologies. Other observable 

characteristics that are systematically different between the two groups include access to agricultural 

inputs (p > 0.011), legume cultivation (p > 0.002), training in running a farm as a business 

(p > 0.031), and access to market information and involvement in seed multiplication (p > 0.000). 

 

3.5 Propensity score estimates  
 

Table 4 presents the probit results in estimating the propensity scores for the adoption of residue 

retention. Access to extension services had a positive and significant influence on the adoption of 

residue retention, at P < 0.000. This finding is supported by Prokopy et al. (2015). According to 

Akerele (2014), the rate at which farmers adopt agricultural technologies depends on extension 

contact, which improves farmers' access to vital information in improving maize production. The 

results further show that maize farmers who grow legumes are more likely to adopt residue retention. 

Legumes are often intercropped with maize or rotated, the residues from legumes are also used as a 

soil cover (residue retention). From the results, farmers producing their seeds are likely to adopt 

residue retention. 

 

  

 
2 See the Appendix at the end for the table defining all the variables used in the study. 
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Table 3: Variables used in the residue retention propensity score-matching estimation 
Variable Residue retention (Yes) Residue retention (No) 𝑷 > 𝑻(𝑿𝟐) 

Gender 0.83 0.74 0.074* 

Climate change3 0.92 0.79 0.004*** 

Aware of good agricultural practices 0.80 0.72 0.148 

Maize area 1.09 1.31 0.681 

Extension access 0.83 0.63 0.000*** 

Input access 0.65 0.50 0.011** 

Market access 0.94 0.87 0.076* 

Livestock4 0.39 0.35 0.545 

Treadle pump5 0.07 0.03 0.097* 

Legumes  0.78 0.60 0.002*** 

Seed multiplication 0.51 0.30 0.000*** 

Knapsack sprayer 0.19 0.17 0.590 

Farmer received training to run a farm as a business 0.86 0.75 0.031** 

Source: Own calculations. * significant at 10%, ** significant at 5% and *** significant at 1% 

 

Table 4: Probit estimates of residue retention 
Variable Coefficient Z P > | z | 

Male  0.242 1.19 0.233 

Climate change awareness 0.403 1.61 0.107 

Aware of good agricultural practices 0.023 0.11 0.912 

Maize area -0.018 -0.28 0.777 

Extension access 0.673 3.66 0.000*** 

Input access 0.249 1.42 0.156 

Market access 0.144 0.48 0.630 

HH had livestock -0.065 -0.38 0.707 

HH used treadle pump in farming 0.034 0.09 0.929 

Farmer planted legumes 0.398 2.16 0.031** 

Seed multiplication  0.423 2.35 0.019** 

Knapsack sprayer -0.116 -0.53 0.593 

farmer received training to run a farm as a business 0.093 0.42 0.672 

Constant -2.118 -5.38 0.000 

Summary     

Number of observations 306   

Pseudo R2 0.115   

Source: Own calculations; * significant at 10%, ** significant at 5% and *** significant at 1% 

 

3.6 Impact of residue retention on maize yield  

 

The question is, what would have been the situation if the adopters of residue retention did not adopt? 

Alternative matching algorithms were used to this end. These included the most common matching 

estimator, and the nearest neighbour method (NNM) with replacement (five neighbours) (see Table 

5). According to Caliendo and Kopeinig (2005), this type of NNM improves the average quality of 

matching and decreases bias. Other algorithms used include kernel-based and radius calliper 

matching. The results presented in Table 5 were consistent in all matching algorithms, with the 

adoption of residue retention having a positive effect on farmers’ maize yields. The ATT estimates 

showed that adopters of residue retention were 19.5% to 25.3% better off in maize yield in the 

2018/2019 season than they would have if they had not adopted. The positive effect is consistent with 

 
3 Climate change awareness. 
4 Livestock variable; this was coded 1 if household had cattle or goats, and 0 otherwise. Smallholder farmers practising 

mixed farming may feed fodder (crop residues) to livestock during dry seasons. 
5 Treadle pumps are used for irrigation.  
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impact evaluation studies on the effect of conservation agriculture (Hailu et al. 2014; Kuntashula et 

al. 2014; Nkhoma et al. 2017).  

 

The Rosenbaum bounds sensitivity analysis was used for its suitability when using continuous 

outcome variables, viz. maize yield (Caliendo & Kopeinig 2005). As presented in Table 5, the critical 
gamma, Γ, ranged from 1.25 to 1.30 across matching estimators. If individuals with similar 

observable characteristics differed by 55% in their chances to adopt residue retention, the results 

would have to be revised. This percentage is fairly high, thus the results show the true effect of residue 

retention on welfare outcomes, as the covariates used were found to have an association with the 

adoption and outcome variables. Sensitivity analysis of the effect on crop income was not necessary, 

because it did not have any significant impact. 

 

Table 5: Effect of the adoption of residue retention 

Matching algorithm Adopters 
Non-

adopters 
ATT 

Bootstrapped 

standard 

errors 

t-stat 

Critical-level 

hidden bias (the 

critical gamma, Γ) 

NNMY 98 161 0.253 0.137 1.84* 1.25 

RadiusY 98 206 0.195 0.135 1.45  

KernelY 98 206 0.248 0.141 1.75* 1.30 

Source: Own calculations; * significant at 10%, ** significant at 5% and *** significant at 1% 

 

4. Conclusion 

 

The study used smallholder farmers’ data to estimate the effect of adopting residue retention on 

farmers’ household maize yield. Farmers use technologies or practices to improve their returns in 

agricultural production. The study provided three important outcomes. First, residue retention was 

found to have a positive net effect on maize yield. Overall, the findings of this study validate the 

potential for residue retention in improving farmers’ yields. Therefore, farmers in the study areas 

must be encouraged to adopt residue retention. Second, access to extension services influences the 

adoption of residue retention. Government policies can be structured in a way to strengthen extension 

services so that farmers receive context-specific information on their production. And last, the 

adoption of residue retention is low, with only a third of the population having adopted residue 

retention, despite Zambia being among the sub-Saharan countries leading in adoption. 
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Appendix 

 

Definition of variables used in the study 
Variable  Definition/Codes  Adoption  

Age6  Age of farmer in years: 1 if the age of the farmer is 18 to 35 (youth); otherwise 0  +/-  

Gender  1 if the household (HH) head (farmer) is male; otherwise 0  +  

Marital status  1 if HH head was married; otherwise 0  +  

Education  Level of education of farmer (0 never, 1 primary, 2 secondary, 3 tertiary)  +  

Household size  Number of household members  +  

Maize area  Size of the maize farm cultivated, in hectares  +/-  

Agribusiness  1 if the farmer received training to run a farm as a business; otherwise 0  +  

Aware of GAPs1  1 if the farmer was aware of good agricultural practices; otherwise 0  +  

Extension access  1 if the farmer received extension services; otherwise 0  +  

Market access  1 if the farmer had access to market information; otherwise 0  +  

Climate change  1 if farmers perceived climate change; otherwise 0  +  

Input access  1 if the farmer had access to agricultural inputs (seed and fertiliser); otherwise 0  +  

Legumes  1 if the farmer planted legumes; otherwise 0  +  

Province  1 if the farmer was from Northern Province; otherwise 0  +  

Livestock  1 if HH had livestock; otherwise 0  +/-  

Manure/residue  1 if HH adopted manure or retention; otherwise 0    

Tillage  1 if HH had practised minimum tillage in the past; otherwise 0  +  

Treadle pump  1 if HH used treadle pump in farming; otherwise 0  +  

Knapsack sprayer  1 if the farmer used a sprayer in farming; otherwise 0  -  

Seed multiplication  1 if HH was involved in seed multiplication in farming; otherwise 0  +  

Maize yield  Quantity of maize produced per hectare by HH  +  

Crop income  Income from maize produce sold, per hectare (ZK2/ha)  +  
1 Good agricultural practices 
2 Zambian Kwacha 

 
6 The official age range for young people (youth) in Zambia is from 18 to 35 years (Government of the Republic of 

Zambia [GRZ] 2020).  


