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Volatility estimation is a crucial task for financial institutions, as it affects various as-

pects of their operations, such as risk management, capital allocation, investment strategy

and derivative valuation. However, the traditional method of using equally weighted mov-

ing averages to estimate volatility can be inaccurate and incorrectly used, especially in

volatile market conditions. It yields financial losses for financial institutions in that the

volatility estimates do not correctly reflect financial markets in real time. In this disser-

tation, we implement the exponentially weighted moving average model instead, which

assigns more weight to recent data than older data. We explore how the choice of the

decay factor λ influences the performance of the exponentially weighted moving average

model in different market scenarios. The optimal value of λ varies depending on the mar-

ket volatility. We therefore demonstrate that the model can provide more reliable and

timely volatility estimates than the equally weighted moving average model. These are

useful for different applications in financial, such as Value at Risk or Expected Shortfall.
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Chapter 1

Introduction

1.1 Introduction

The likelihood of a loss on a position in any financial market, such as the bond market,

stock market, commodities market, derivatives market, and others, is referred to as risk

in the field of finance. The net risk of maintaining both long and short positions in the

market is known as market risk (Metrics, 1996). Since risk exposure cannot be totally

avoided in the world of finance, it is crucial to research and investigate various techniques

for estimating the risk associated with a trading position. We can decide whether or not

this is a position worth taking by quantifying it. In the economy, there are two different

types of risks: systematic risk and non-systematic risk. The portion of returns that is con-

nected with the returns of the investment portfolio is referred to as systematic risk. This

risk cannot be mitigated by diversification. Non-systematic risk is the proportion of returns

that are unrelated to the portfolio’s performance. This risk is reduced by diversifying the

portfolio (Turvey, Driver, and Baker, 1988). Market risk is the risk connected with price

fluctuations in the market. It is possible for a position’s value to change due to changes in

market prices (Turvey, Driver, and Baker, 1988).

Risk factors

Accounting for anticipated changes in the relevant components is equally crucial when

measuring risk. Risk considerations serve as the foundation for financial securities pricing
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2 Chapter 1. Introduction

functions.

Commodity risk factor

Spot and future commodity prices determine exposure to commodity prices. Spot prices

are used for fast commodities’ purchase and delivery. Commodity contracts, such as com-

modity futures, options, and options on commodity futures, are determined by future

prices (Turvey, Driver, and Baker, 1988).

Equity Risk factor

Equities risk indicators are expressed as prices, therefore exposure to them can be de-

scribed as a time series of prices (these are to be obtained from Yahoo Finance). That is,

the underlying determines the equity risk factor. Consider stock in business X; the value

of the position in company X is determined by changes in stock prices or its sensitivity to

changes in an index. The underlying determines equity contracts such as equity futures

and options (Turvey, Driver, and Baker, 1988).

Currency Risk factor

Foreign exchange spot prices create currency risk. Foreign exchange spot rates are the

pricing of foreign currency unit amounts (Turvey, Driver, and Baker, 1988).

1.1.1 The importance of measuring market risk

Risk must be identified and correctly measured to be effectively managed. Because finan-

cial risk cannot be totally avoided, the best thing to do is to gain control over it. This

includes risk exposure and risk management in the financial sector, for example, in the

banking industry. The interest in market risk has grown dramatically during the last three
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1.1. Introduction 3

decades. This is because financial markets evolved during this period. If capital markets

were flawless, investors would be able to achieve the desired level of diversification and

there would be no need to manage financial risk. Take, for example, the Modigliani-Miller

theorem. Financial risk management would be worthless in an ideal theoretical system

with no information inconsistencies, taxes, transaction expenses, or bankruptcy costs, and

no market friction.

Banks substitute illiquid instruments with liquid ones through securitisation. This

global practice has been rapidly expanding, with both exchange-traded and over-the-

counter derivatives becoming important components of markets (Metrics, 1996). These

shifts have occurred concurrently with changes in managerial practices as well as techno-

logical advancements in data processing. There has been a shift away from management

based on accrual accounting and toward risk management based on position marking-to-

market (Metrics, 1996).

Accrual accounting is a method of accounting where revenues and expenses are recog-

nised when they are incurred, regardless of when cash is received or paid. This method

provides a more long-term view of a company’s financial performance, as it takes into

account both current and future obligations. However, with the development of securi-

tisation and the growth of global securities markets, there has been a shift towards risk

management based on the marking-to-market of positions. This method of accounting

involves valuing financial instruments at their current market prices rather than their his-

torical cost. This approach provides more frequent and accurate reporting of investment

gains and losses, which has led many firms to manage their earnings on a daily basis.

The shift towards marking-to-market is largely driven by the increased liquidity and

pricing availability in financial markets, as well as advancements in data processing tech-

nology. With more information available in real time, firms can more accurately assess the

risks associated with their positions and adjust their strategies accordingly. Marking-to-

market also allows for a more transparent view of a company’s financial performance, as it
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4 Chapter 1. Introduction

provides a clear picture of the gains and losses associated with a particular position. This

level of transparency is especially important for investors, who can more accurately assess

the risks associated with a particular investment. In the past, concentrating just on returns

resulted in insufficient performance analysis. Return management does not provide an

indicator of the cost of risk, which is the volatility of the returns. Banks, financial firms,

and corporations are now using integrated market risk indicators (Metrics, 1996).

To appreciate the significance of market risk management, one must analyse market

risk regulatory capital requirements before and following the 2008 financial crisis. VaR is

the potential loss on a financial position or portfolio over a specific time horizon that is

likely to be surpassed, with a given level of confidence. For example, if the VaR estimate

for a portfolio is $1 million with a 99% confidence level over a one-day time horizon, this

means that there is a 1% chance that the portfolio could lose more than $1 million over

the next day.

In the early 1900s, several larger banks began utilising it to assess market risk (O’Brien

and Szerszen, 2014). The financial crisis exposed the fact that VaR provides insufficient

notice of possible loss, as well as the high frequency and magnitude of losses during a cri-

sis period. O’Brien and Szerszen look into the VaR during the pre-crisis and crisis periods.

They conclude that throughout the pre-crisis period, banks’ VaR remained constant with

minimal VaR exceptions. VaR exceptions occur when actual losses on a financial position

or portfolio exceed the VaR estimate. In other words, a VaR exception occurs when the

actual losses are greater than what was expected based on the VaR estimate. For example,

if a portfolio has a VaR estimate of $1 million with a 95% confidence level, this means that

there is a 5% chance that losses could exceed $1 million. If actual losses on the portfolio

are $1.5 million, then this would be considered a VaR exception, since the losses were

greater than the VaR estimate.

In the context of the study by O’Brien and Szerszen, "minimal VaR exceptions" would

mean that banks experienced relatively few instances where actual losses exceeded their
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1.1. Introduction 5

VaR estimates during the pre-crisis period. This suggests that banks’ VaR models were per-

forming reasonably well at the time and that they were effectively managing their risk ex-

posure. However, during the crisis, bank VaR exceptions were significantly higher (O’Brien

and Szerszen, 2014). With insufficient procedures for monitoring market risk, banks and

financial institutions run the risk of incurring massive financial losses. This can have a

huge negative impact on the economy as a whole. This highlights the need to accurately

evaluate market risk.

Volatility is a popular way to assess market risk. A stock’s volatility can be defined as

the standard deviation of the return generated by the stock price over a given time frame

(Hull et al., 2013). These are some of the elements that influence the volatility of the

portfolio:

• The variances and covariances of a portfolio’s risk factors.

• The sensitivity of the portfolio’s assets to risk variables.

Volatility is a frequent risk indicator, and while there are numerous techniques for

measuring it, some have proven to be superior to others. Traditional historical volatility

metrics weight each observation equally, regardless of whether it is recent or not. As a

result, superfluous "ghost effects" of past events might be seen in volatility jumps when

nothing in the real market has occurred to cause these increases. These false mirrors of

the real markets cause significant financial losses. While some approaches to forecasting

volatility do not produce optimal results, others have been improved to produce more re-

flective outcomes. One such method forecasts the variances and covariances (volatilities

and correlations) of the multivariate normal distribution using an exponentially weighted

moving average model (EWMA) (Metrics, 1996). In contrast to the typical volatility fore-

casting approach, which uses an equally weighted moving average. The simple moving

average model (SMA) is the name given to this strategy (Metrics, 1996).

When employing an exponential moving average of historical observations, the most

recent observation is given the greatest weight in the volatility. As a result, volatility reacts

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



6 Chapter 1. Introduction

faster to market leaps and declines exponentially as the weight of the jump observation

falls. To estimate volatility, the EWMA requires the decay factor. The decay factor denoted

by lambda, (λ), is a parameter that defines the relative weights applied to data (returns)

as well as the amount of data collected to evaluate volatility and forecast correlations. An

accurate estimate of λ is thus important to evaluating correct volatilities and, by extension,

accurate market risk.

1.1.2 Volatility Models

There have been numerous methods developed over the years to estimate standard devia-

tions and correlations. These volatility models include extreme value approaches (Parkin-

son, 1980), GARCH (Bollerslev, 1986), and stochastic volatility (Ghysels, Harvey, and Re-

nault, 1996). Time series returns typically exhibit time-dependent volatility, which is why

GARCH models are the most commonly used (Metrics, 1996). The GARCH model is based

on the ARCH model, which was first defined by Engle (Engle, 1982). To mention a few,

the ARCH model was followed by the Generalised ARCH, Integrated GARCH, Exponential

GARCH, and Switching Regime ARCH. Several tests of the GARCH models of foreign ex-

change and stock markets have demonstrated that these approaches can produce better

estimates of volatility than the SMA.

The ARCH class of models is formally defined by

ϵt = ztσt

where zt is an i.i.d mean-zero, unit variance stochastic process, and σt represents the

time-t latent volatility; i.e., E(ϵ2
t |σt) = σ2

t . σ must be measurable based on the information

set available at time t − 1 (Andersen, Bollerslev, and Hadi, 2014).

Volatility is a time-varying series. This is where the ARCH model comes in; it depicts

the change in variance in a time-dependent series. This is for raising or decreasing volatil-

ity. The GARCH is an ARCH extension in that it permits the conditional variance, σ2
t , to be
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1.1. Introduction 7

dependent on preceding conditional variances. As a result, the ARCH models outperform

the SMA models in terms of volatility estimation.
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Chapter 2

Literature Study

2.1 Risk Measurement

Risk exposure analysis for banks is critical for both financial institutions and non-financial

organisations. One of the key sources of risk is market risk; the others are credit risk,

operational, liquidity and climate risk.

Volatility is the most widely used risk indicator in financial markets. Even though sev-

eral ways of determining volatility have been employed in practice over the years, there is

still a need to evaluate the dependability of the various methods. Each approach to cal-

culating volatility has its own set of advantages and disadvantages. Inaccurate volatility

calculation methodologies can cause large financial losses for financial institutions. There

is a need to seek systems that provide real-time volatility forecasts that are accurate repre-

sentations of financial markets. The results are then employed in VaR calculations, capital

allocation models, investment management, and derivative product pricing and hedging

(Alexander, 1998). Volatility for any group of assets is determined by the variances and

covariances of the relevant risk variables, as well as the sensitivity of individual assets

to these risk factors. Extreme value techniques (Parkinson, 1980), nonlinear modelling

such as GARCH (Generalised Auto-Regressive Conditional Heteroscedasticity) (Bollerslev,

1986), and stochastic volatility are examples of previously utilised methods (Harvey et al.,

1994).

Volatility can be defined as the standard deviation of returns, but because returns rise
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2.1. Risk Measurement 9

with the time horizon over which they are assessed, the time horizon over which volatility

is determined must be standardised while everything else remains constant (Dowd, 2007).

The formula for annualised volatility can be written as:

Annualised volatility = σd ∗
√

n

where σd is the daily volatility of returns and n is the number of trading days. The

volatility is given by the square root of the variance of the returns and the number of

trading days is typically taken as 252.

2.1.1 Risk Measurement before VaR

Derivative Risk Measures

Derivatives are financial instruments that derive their value from an underlying asset

such as stocks, bonds, commodities, or currencies. The value of a derivative is based on

the price movements of the underlying asset. Options are a type of derivative that gives

the holder the right, but not the obligation, to buy or sell an underlying asset at a prede-

termined price (called the strike price) on or before a specified date (called the expiration

date). There are two types of options: call options and put options.

A call option gives the holder the right to buy the underlying asset at the strike price,

while a put option gives the holder the right to sell the underlying asset at the strike price.

The holder of an option pays a premium to the seller of the option for the right to buy or

sell the underlying asset. Options are commonly used by investors and traders to manage

risk and to speculate on the price movements of the underlying asset. For example, an

investor who owns a stock may purchase a put option to protect against a potential price

decline, while a trader may purchase a call option if they believe the price of the underly-

ing asset will increase.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



10 Chapter 2. Literature Study

Options can be complex instruments and involve various factors such as volatility, time

decay, and interest rates. As such, it is important for individuals interested in trading op-

tions to have a solid understanding of their mechanics and to carefully consider the risks

involved before making any trades.

The Greek parameters of derivative positions can also be used to estimate their risk.

• Delta (δ): This parameter represents the change in the derivative’s price in relation

to a slight change in the underlying price.

• Gamma (γ): This parameter represents the change in the delta of a derivative in

relation to a slight change in the underlying price. This is the second derivative of

the derivative’s price in relation to the underlying price.

• Rho (ρ): This parameter represents the change in the price of the derivative in rela-

tion to the interest rate.

• Theta (θ): This parameter represents the change in the derivative’s price over time.

• Vega (v): This parameter represents the change in the derivative’s price as a function

of volatility.

Gap Analysis

Gap analysis is a method used to determine a financial institution’s interest-rate risk ex-

posure. It involves selecting a horizon period, such as one year, and identifying the assets

and liabilities in the portfolio that will re-price during that period. Re-price refers to the

adjustment of interest rates on financial assets or liabilities that are tied to market rates.

These adjustments may occur at predetermined intervals, such as when a loan’s interest

rate adjusts after a fixed period, or when a bond’s interest rate resets at regular intervals.

By identifying which assets and liabilities are subject to re-pricing, financial institutions

can estimate their exposure to changes in interest rates over a given horizon period. The

amounts associated with these rate-sensitive assets and liabilities are used to calculate the
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2.1. Risk Measurement 11

gap, which is the difference between the two. The change in net interest income that re-

sults from a change in interest rates is then estimated using the gap and the interest rate

change, as represented by the equation:

△NII = (GAP)△r

where △ NII is the change in net interest income and △r is the change in interest

rates. GAP represents the difference between the rate-sensitive assets and rate-sensitive

liabilities of a financial institution that will re-price within a given horizon period. The

gap is calculated by subtracting the total amount of rate-sensitive liabilities from the total

amount of rate-sensitive assets. For example, if a bank has $1 million in rate-sensitive

assets that will re-price within a one-year horizon period and $800, 000 in rate-sensitive

liabilities that will re-price within the same period, then the gap is $200, 000 ($1 million

−$800, 000).

The gap is an important measure because it provides an estimate of the financial insti-

tution’s exposure to changes in interest rates over the horizon period. By estimating the

change in net interest income resulting from a change in interest rates and comparing it to

the gap, a financial institution can assess whether its interest-rate risk exposure is within

acceptable limits. While this is a simple approach, it has its downsides (Dowd, 2007):

• Gap analysis assumes that the balance sheet is static and that the interest rate en-

vironment will remain constant. In reality, changes in the market environment can

significantly impact the interest-rate risk exposure of a financial institution.

• Gap analysis is a static measure that only provides information on the interest-rate

sensitivity of a financial institution’s balance sheet at a particular point in time. It

does not take into account changes in the balance sheet or interest rate environment

over time.

• Gap analysis relies on several simplifying assumptions, such as the assumption that

interest rates move in parallel across the yield curve, which may not hold in reality.

These assumptions can lead to inaccurate estimates of interest-rate risk exposure.
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12 Chapter 2. Literature Study

Duration Analysis

Duration analysis is a method used to measure the sensitivity of a financial instrument’s

price or value to changes in interest rates. It is a widely used approach in fixed-income

portfolio management and risk analysis.

Duration measures the weighted average time to receive the present value of the cash

flows generated by an investment. It is expressed in years and reflects the bond’s sensitivity

to changes in interest rates. The higher the duration, the more sensitive the bond’s price

is to changes in interest rates. Duration analysis involves estimating the duration of a

portfolio or single security and then using that estimate to determine how changes in

interest rates will impact the value of the portfolio or security. The calculation of duration

involves the present value of future cash flows, the period over which the cash flows are

expected to be received, and the current price of the security. (Dowd, 2007):

D =
∑n

i=1 i ∗ PVCFi

∑n
i=1 PVCFi

where PVCFi is the present value of the cash flow for the period i discounted at the

fitting period yield. The duration metric is used to gain an idea of how sensitive a bond’s

price is to changes in yield:

%△BP ≈ − D△y
(1 + y)

where %△BP is the percentage change in bond price, y is the yield and △y the change

in yield. Duration measures are easy to calculate, and the duration of a bond portfolio is

a simple weighted average of the durations of the individual bonds in the portfolio. This

approach is better compared to gap analysis because it looks at changes in asset and lia-

bility values as opposed to just changes in net income (Dowd, 2007). Duration methods,

on the other hand, have limitations in that they ignore risks other than interest risk, and

even with improvements to improve accuracy, they remain inaccurate in comparison to

other methods. The method has become obsolete since its main advantage (easy duration

calculations) is no longer significant in the face of more sophisticated approaches that can

now be run using programming software (Dowd, 2007).
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2.1. Risk Measurement 13

Portfolio Theory

Portfolio theory assumes that investors select portfolios based on their expected return and

standard deviation. The standard deviation of the portfolio return is used to calculate the

portfolio’s risk. While keeping other variables constant, an investor seeks a portfolio with a

high expected value and a low standard deviation. The goal is to choose the portfolio with

the best-projected return for any given standard deviation. A portfolio of this type is said

to be efficient. The investor selects a subset of optimal investment portfolios and discards

the rest. The investor’s risk tolerance influences the decision. It is worth noting that the

risk of any particular asset is determined not by the standard deviation of its return, but

by the extent to which that asset contributes to overall portfolio risk (Dowd, 2007). The

entire portfolio’s value is determined by the correlation or co-variance of return for each

item in the portfolio with the returns of other assets.

Scenario Analysis

This is also referred to as the "What if" analysis. Different scenarios are set and we inves-

tigate what can be gained or lost under each of them. Multiple paths for each variable,

such as stock price, interest rate, and exchange rate, are considered. The cash flows and

accounting values of assets and liabilities are then hypothesised as to how they might

develop under each scenario. The results are then used to form an opinion about the sit-

uation. One problem with this strategy is that it is strongly dependent on the ability to

select the "right" scenarios to include in the collection. The method’s accuracy is deter-

mined by the analyst’s expertise (or lack thereof). The scenarios must be plausible and

should not contain contradictory or implausible assumptions. The interdependence of the

factors must be thoroughly considered (Dowd, 2007). Another problem is that the ap-

proach does not tell us anything about the possibility of various situations. Therefore, we

must use our best judgement to determine the significance of each scenario.
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14 Chapter 2. Literature Study

2.1.2 Value at Risk

VaR indicates the greatest predicted loss for a certain time frame with a specified level of

confidence for banks, financial institutions, and investors. It is a statistical measure used

to estimate the potential loss in value of an investment or portfolio of investments over a

specified time horizon at a given confidence level. VaR is widely used in risk management

to quantify the potential downside risk of an investment or portfolio. Financial organi-

sations and investors typically use it as a risk indicator. VaR is typically calculated using

historical data or statistical models, and it represents the maximum amount of loss that

could occur with a certain level of confidence over a specified period. For example, a 1-day

95% VaR of $1 million means that there is a 5% chance that the portfolio will lose more

than $1 million over the next day.

In the late 1970s and early 1980s, large financial organisations began to develop in-

ternal systems to measure and aggregate risks across their institutions. This appeared

to be a difficult task to do. In the absence of such systems, good trades or investments

were passed over because they exceeded arbitrary limits, risks were taken with insufficient

awareness of their overall effects on the firm; reducing risk in one area rarely allowed

greater risk-taking in another; and capital allocation was poor. In essence, there were

no risk management systems set up. As this complex issue prevailed, there was a unified

agreement that a sense of the probability of losses at a firm-wide level. This was the rise

of value at risk. Value at risk allowed firms to get a more acceptable sense of their overall

risk. JP Morgan RiskMetrics was one of the systems created. (Dowd, 2007).

This began when Dennis Weatherstone, the chairman of JP Morgan, asked his em-

ployees to provide a daily one-page report highlighting risk and potential losses for the

following 24 hours across the bank’s entire trading portfolio. This report was dubbed the

"4:15 report" since it was due to Weatherstone each day at 4:15, following the close of

business. This was accomplished by creating a method for measuring risks across various

trading positions across the entire organisation. These were then aggregated into a single
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2.1. Risk Measurement 15

risk measure. This risk indicator was known as "value at risk," or the highest expected loss

during the next trading day. The conventional portfolio theory was used to develop value

at risk. It took advantage of the standard deviations and correlations between the returns

of the many traded instruments. On the surface, this approach appeared to be simple, but

putting it into action required a significant amount of effort. This involved selecting mea-

surement conversions, building data sets, generating statistical assumptions and agreeing

on them, devising techniques for predicting volatility and correlations, and establishing

computing systems to do calculations. (Dowd, 2007). By 1990, the system’s fundamental

components were in place: data systems, risk measurement methods, and basic mechanics.

The system’s advantage was that it made senior management more sensitive to risk-

return trade-offs, resulting in a more efficient distribution of risk across the firm’s trades.

By 1993, JP Morgan’s system had attracted a large number of prospective clients who

wanted to buy or lease it for their purposes. Other companies were also focusing on build-

ing their risk measurement systems. Although the theoretical concepts were similar, the

final systems differed mostly due to assumptions made, data used, parameter estimation

processes, and other factors (Dowd, 2007). It is also critical to understand that there is no

single way of calculating VaR. The historical simulation approach is one of the VaR calcu-

lating approaches. VaR is estimated using histograms of prior profit and loss data. Other

techniques include Monte Carlo simulation and parametric methods.

In October 1994, JP Morgan freely made the RiskMetrics model (Morgan, 1994) avail-

able on the internet, along with the data used. This aided the proliferation of VaR systems

and encouraged other software companies to employ the RiskMetrics approach. Security

firms, investment banks, commercial banks, pension funds, other financial institutions,

and non-financial institutions have all adopted the RiskMetrics approach. With this, the

concept of VaR gained traction in the mid-1990s, and it quickly became a dominating mea-

sure of financial risk. VaR systems have also been modified to address credit risks, liquidity

hazards, and operational risks. (Dowd, 2007).
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16 Chapter 2. Literature Study

VaR is defined as follows by Linsmeier and Pearson:

"Losses greater than the value at risk are suffered only with a very small proba-

bility. Subject to the simplifying assumptions used in its calculations, VaR sums

up all the risks in a portfolio into a single value suitable for use in boardrooms,

reporting to regulators or disclosure in an annual report. Once one crosses the

hurdle of using a statistical measure, the concept of value at risk is straightfor-

ward to understand. It is simply a way to describe the magnitude of the likely

losses on the portfolio" (Linsmeier and Pearson, 1996).

In this section, T is introduced as the number of trading days or the sample period

length. This will corroborate the variables in the formulation of the Research Methodology

in Chapter 4. A sequence of historical trading days, {ti}T
i=0, and the corresponding realised

trading losses, {Li}T
i=1, can be used to assess the accuracy of a VaR forecast calculation

using the VaR Coverage Test (Costanzino and Curran, 2018). This involves counting the

number of VaR breaches, which is the Traffic Light approach to back-testing VaR initially

proposed by the Basel Committee for Banking Supervision in 1996 (Banking Supervision

and Banking Supervisors, 1996). The Traffic Light System (Committee et al., 1996) applies

the following scaling factors, k, for the number of VaR exceptions:

Figure 2.1: Basel Traffic Light System

For each trading day i = 1, ..., T, VaRi(α) represents the forecast VaR at level α, defined

by
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2.1. Risk Measurement 17

VaR(α) := in f {z ∈ R : α ≤ FL(z)}

where FL is the cumulative distribution of the random loss variable L. The VaR breach

indicator for each trading day i is defined as

X(i)
VaR(α) :=


0 if Li > VaRi(α)

1 if Li ≤ VaRi(α)

which keeps track of whether a breach occurred for trading day i. The total number of

breaches throughout all T trading days is defined by

XT
VaR(α) :=

T

∑
t=1

1{Li≤VaRi(α)}

Under the null hypothesis that the VaR model is correct, E[XT
VaR(α)] = Tα.

The k-factor in Basel’s traffic light system is a parameter that determines the boundaries

of different zones for back-testing VaR models (Banking Supervision and Banking Super-

visors, 1996). The traffic light system assigns a green, yellow, or red zone to a VaR model

based on the number of exceptions (losses exceeding VaR - exceptions) observed over a

given period. The null hypothesis of the Traffic Light approach is that the VaR model is

correct, which implies that the number of breaches should follow a binomial distribution

with parameters T (the number of trading days) and the VaR coverage rate (the propor-

tion of trading days for which the VaR forecast is exceeded). Under this null hypothesis,

the expected number of breaches is given by T times the VaR coverage rate. To test the

null hypothesis, the Traffic Light approach uses a three-level colour scheme to indicate the

level of confidence in the VaR model

• The green zone indicates that the model is acceptable: if the number of breaches is

less than or equal to the 95% VaR confidence interval around the expected number

of breaches, then the VaR model is considered to be accurate at the 95% confidence
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18 Chapter 2. Literature Study

level, and the green light is shown.

• The yellow zone indicates that the model should be reviewed: if the number of

breaches falls outside the 95% VaR confidence interval but is within the 99% VaR

confidence interval around the expected number of breaches, then the VaR model is

considered to be accurate at the 99% confidence level, and the yellow light is shown.

• The red zone indicates that the model should be rejected: if the number of breaches

is outside the 99% VaR confidence interval around the expected number of breaches,

then the VaR model is considered to be inaccurate at the 99% confidence level, and

the red light is shown.

VaR has both downsides and upsides. In this section, we highlight some of these.

Advantages of Value at Risk

• VaR is a widespread and consistent risk measurement. It can be used in various

positions, risk factors, and portfolio types. It enables inter-portfolio analysis because

it compares the risks of different portfolios.

• VaR aggregates the risks of individual positions into a single measure of portfolio

risk. It enables intra-portfolio analysis since it considers how different risk factors

affecting the portfolio interact.

• Unlike traditional approaches like Greek measures, which only assess one risk factor

at a time, VaR provides a holistic risk measure by taking into account all of the driving

risk factors.

• Unlike traditional methodologies such as the Greeks, which address the question

"what if," VaR is probabilistic and speaks to the possibility of a loss.

• VaR gives a single and simple measure of risk, ’lost money.’
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2.1. Risk Measurement 19

Disadvantages of Value at Risk

• VaR estimates are notoriously inaccurate. VaR estimates can differ depending on the

VaR model used (Beder, 1995). This is due to the various underlying assumptions

made.

• VaR has a detrimental impact on both upside and downside variance.

• The mean-variance uses quadratic utility functions, which are not growing functions

and so are not practical (Joshi and Paterson, 2013).

• It is overly simplistic for general distributions other than the normal distribution.

• VaR is insufficient in capturing the potential for extreme losses in the tail of loss

distributions.

Uses of Value at Risk

• VaR is used to set an institution’s total risk target.

• VaR can inform hedging, trading, investment, and portfolio management decisions.

• VaR can be used to decide on capital requirements. The higher the VaR and the

greater the capital requirement, the riskier the activity (Dowd, 2007).

• Other types of risk, such as credit risk and operational risk, can be measured using

item risk measurement systems based on VaR.

• VaR is included in reports, disclosures, and annual reports.

2.1.3 Expected Shortfall

According to Rosenberg and Schuermann (Rosenberg and Schuermann, 2006), VaR is

insufficient in capturing the potential for extreme losses in the tail of loss distributions.

Therefore, a conditional measure is needed to assess the severity of losses once a VaR

threshold has been exceeded. Expected Shortfall (ES) addresses this issue by taking into

account the probability-weighted losses beyond the VaR threshold, which accounts for
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20 Chapter 2. Literature Study

both the severity of losses and their likelihood, as noted by Nadarajah, Zhang, and Chan

(Nadarajah, Zhang, and Chan, 2014).

VaR is frequently criticised for relying on historical data and therefore having limited

predictive power for uncertain futures. However, this same criticism also applies to ES.

To address this issue, the Basel Committee on Banking Supervision (BCBS, 2013) has

mandated the use of ES for determining both the capital requirements based on internal

models and the risk weights for the revised standardised approach.

Under the proposed Basel framework, the VaR confidence level will be lowered from

99% to 97.5%, and ES will measure the probability-weighted losses beyond this threshold.

As illustrated in Figure 2, this new confidence level provides a risk level similar to that of

the existing 99% VaR threshold, with only a 0.5% difference for the normal distribution.

With a larger number of observations in the 2.5% tail, compared to the previous 1% tail,

the move to ES is expected to result in more stable model output and less sensitivity to

extreme outlier observations. Banks may choose to adopt fatter-tailed distributions, as

indicated in Figure 2.2 (c), which shows the difference between normal and t-distributed

assumptions.

Figure 2.2 displays three different scenarios for portfolio volatility of 1%: (a) the nor-

mal distribution VaR at the 99% confidence level, as well as the ES counterpart, (b) the

same as (a), but with the 97.5% confidence interval, and (c) the VaR and ES for both

normal and t-distributed assumptions, with excess kurtosis of 3 and degrees of freedom

parameter of 6.

The expected shortfall at a particular quantile, q, is represented by ESq, which is defined

as the probability-weighted average of values in the tail of the distribution to the left of q,

such that

ESq = E(L|L < VaRq)

.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



2.1. Risk Measurement 21

Figure 2.2: Expected Shortfall

In the case of a normal distribution, the formula for ESq is expressed as

ESq =
f (VaRq)

q

where

f (x) =
1√
2πσ

exp (− x2

2σ2 )

that is, the probability density function of the normal distribution is represented by

f (x), where σ denotes the volatility, and it is assumed that mean, µ = 0. To calculate ESq

for any volatility, σ, and at any significance level, q, the function below must be integrated:

ESq =
∫ q

−∞
x f (x)dx

=
∫ q

−∞

x√
2πσ

exp (− x2

2σ2 )

(2.1)

Let u = exp (− x2

2σ2 ) then dχ = − x
σ2 exp (− x2

2σ2 ) so −σ2dχ = −x exp (− x2

2σ2 )dχ.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



22 Chapter 2. Literature Study

Substituting ESq = − σ√
2π

∫ q
−∞ dχ = − σ√

2π
exp− x2

2σ2

∣∣∣∣∣
−∞

q

= − σ√
2π

exp− q2

2σ2 .

Consider the t-distribution which has fat tails and is commonly considered a better rep-

resentation of VaR:

ESq =
∫ q

−∞
t f (t)dt

where f (t) is the probability density function of the t-distribution (for µ = 0 and

standard deviation, σ):

f (t) =
Γ(ν + 1)√
νπΓ( ν

2 )σ
(1 +

t2

σ2ν
)(

ν+1
2 )

where ν counts the degrees of freedom:

k =
6

ν − 4
+ 3

where is the kurtosis of the data (Rozga and Arneric, 2009). For ν even

Γ(ν + 1√
νπΓ( ν

2 )
=

(ν − 1)(ν − 3) . . . 5 · 3
2
√

ν(ν − 2)(ν − 4) . . . 4 · 2

and for ν odd

Γ(ν + 1√
νπΓ( ν

2 )
=

(ν − 1)(ν − 3) . . . 4 · 2
2
√

ν(ν − 2)(ν − 4) . . . 5 · 3

To calculate ESq for any volatility, σ, any number of degrees of freedom, ν, and any

significant level, , the integral below must be determined:

ESq =
∫ q

−∞
t · Γ(ν + 1)

σ
√

νπ · Γ( ν
2 )

·
(

1 +
t2

σ2ν

)−( ν+1
2 )

dt

Let Θ = Γ(ν+1)√
νπ·Γ(ν/2) and χ = 1 + t2

σ2ν
then dχ = 2t

σ2ν
dt so σ2ν

2 , dχ = tdt

Substituting
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2.1. Risk Measurement 23

ESq = Θ
σν

2

∫ q

−∞
χ−((ν+1)/2)dχ

=
Θσν

1 − ν

[
χ((1−ν)/2)

]q

−∞

=
Γ(ν + 1)
Γ(ν/2)

· σ

1 − ν

√
ν

π
· (1 + q2/(σ2ν))

1−ν
2

For ES tail event measurements, advanced simulation and sampling techniques are

required; as a result, banks will find it much harder to back-test ES, which takes into

account both loss size and likelihood, as opposed to VaR, which only takes into account

loss likelihood (Yamai, Yoshiba, et al., 2002). In VaR, violations are observable variables,

making it easier to apply formal statistical techniques to assess whether the distribution of

the violations complies with a known underlying model. This is done by comparing model

predictions with observed results. This is not true for ES model predictions, as these

may only be compared to model outcomes. Despite the wide range of back-testing ES

procedures available, these are vastly inferior to the VaR equivalents (Nadarajah, Zhang,

and Chan, 2014).  
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24 Chapter 2. Literature Study

2.2 Volatility Forecast Models

The variability of volatility over different periods is known as time-varying volatility. This

is critical for pricing derivatives, calculating risk measures, and hedging portfolio risk,

among other things. As a result, scholars and practitioners alike are interested in and

studying conditional variance. Because conditional variance is unobserved, evaluating

and comparing different models has become challenging. Unobserved variance is some-

times substituted with squared returns, but this results in poor out-of-sample performance

(Hansen and Lunde, 2005). This was resolved by Anderson and Bollerslev (Andersen

and Bollerslev, 1998). They concluded that volatility models are useful and responded,

"Yes, typical volatility models do produce accurate estimates." Andersen and Bollerslev

based their evaluation on an estimated measure of volatility using intra-day returns rather

than noisy measurements of daily volatility, the squared intra-day returns. These achieved

good out-of-sample volatility model performance. Hansen and Lunde (Hansen and Lunde,

2005) explored the relative effectiveness of various volatility models in terms of their abil-

ity to forecast realised volatility. They employed White’s superior predicting ability tests to

do this (White, 2000) and Hansen (Hansen et al., 2001). These are also known as "data

snooping tests."

A moving average is essentially an arithmetic average of consecutive data points from

a time series collected across a rolling window. (Alexander, 1998). This looks to have

been a useful tool in financial forecasting over the years. If portfolio volatility is consistent

over time, the historical volatility estimator (Figlewski, 1994) is an efficient method. The

estimator is defined as

σ =

√√√√ 1
T

T

∑
t=1

(rt − r̄)2. (2.2)

The exponentially weighted moving average (EWMA) model should be employed when

there are fast high and low volatility swings. This weighs recent returns more heavily. The

equation is given as follows
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2.2. Volatility Forecast Models 25

σ =

√√√√(1 − λ)
T

∑
t=1

λt−1(rt − r̄)2. (2.3)

For the equations above, the portfolio return in month t is given by rt, T is the sample

period length, r̄ is the mean return across the sample period, and λ (0 ≤ λ ≤ 1) is the

decay factor.

The SMA model is a volatility forecasting strategy based on moving averages with con-

stant, equal weights (Metrics, 1996). The pitfalls that come with this method result in

"ghost effects." To avoid this, J.P Morgan and Reuters (Metrics, 1996) introduced the use

of exponentially weighted moving averages. To employ this method, the decay factor, λ

must be determined, depending on whether the market is quiet or turbulent. This pa-

rameter controls the relative weights assigned to the observations as well as the effective

amount of data used in estimating volatility. According to Moosa and Bollen (Bollen,

2015), when forecasting risk measures over short time horizons, the EWMA volatility es-

timator outperforms the Auto-Regressive Conditional Heteroscedasticity (ARCH) volatility

models.
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2.2.1 Timeline for Volatility Forecast Models

1982

1986

1990

1996

1998

2000
2001

RF Engle: ARCH models

T Bollerslev: GARCH models, Taylor: IGARCH models

GW Schwert: IGARCH

JP Morgan and Reuters: RiskMetrics™–Technical Document, EWMA Model

Andersen and Bollerslev: Yes, standard volatility models do provide accurate forecasts

H White: Data Snooping
PR Hansen: A Test for Superior Predictive Ability
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2.3. Simple Moving Average 27

2.3 Simple Moving Average

The Simple Moving Average weights all the historical data equally. The unbiased estimator

of variance is given by

σ2
t =

1
n − 1

n

∑
i=1

(rt−i − r̄)2. (2.4)

When using daily data the average return, r̄, will be significantly low so we can treat it

as though it were zero (Dowd, 2007). This does not affect the estimates significantly and

it will usually reduce the standard errors.

Downsides of the Simple Moving Average Model

• "Ghost effects": Since this model assigns the same weight to all historical data, old

events have the same impact as recent occurrences. That is, even if an extreme event

occurs relatively early, it will still have an impact on the volatility estimate for later

periods, even if the event is old and the markets have returned to normal. This in-

troduces "ghost effects," in which estimates are artificially high or low for particular

periods, even though this is not the case in real markets.

• Constant volatility: Since the underlying volatility is assumed to be constant, all

volatility variations occur in the sampling error. A short-term volatility estimate will

generate a more volatile volatility estimate than a long-term volatility estimate.
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28 Chapter 2. Literature Study

2.4 GARCH Models

A time series method called Auto-Regressive Conditional Heteroskedasticity (ARCH) pre-

dicts volatility as a function of prior returns. The generalised ARCH (GARCH) model of

volatility is based on past returns and volatility Metrics, 1996. This is the fundamental

difference between the ARCH and GARCH models. According to GARCH, the value of

volatility today is determined not just by yesterday’s return but also by yesterday’s volatil-

ity. ARCH models generate bursting, which causes volatility to rise and decrease instantly.

GARCH models handle this by taking into account previous volatility values. Volatility

is determined by q previous volatility and p past returns, according to the GARCH(p,q)

model. In general, the GARCH models predict volatility based on one or more previous

volatility and return periods. It varies from the EWMA model in that it determines volatility

in a more generalised manner (Dowd, 2007). The GARCH(p,q) model is given as

σ2
t = ω + α1r2

t−1 + · · ·+ αpr2
t−p + β1σ2

t−1 + · · ·+ βqσ2
t−q > 0

where α1, . . . , αp, β1, . . . , βq ≥ 0. The constraints on the parameter values ensure that

the conditional variance is always positive. Different GARCH models use a different num-

ber of past terms. The number of parameters is determined by the minimum that fits the

data acceptably (Dowd, 2007).

GARCH(1,1) is the most popular GARCH model. It is given as

σ2
t = ω + αr2

t−1 + βσ2
t−1 (2.5)

where ω ≥ 0, α, β ≥ 0, α + β < 1. This model usually fits the data significantly well.

This can be shown by estimating the GARCH(1,1) parameters on statistical software such

as SAS. The α and β give information about the movement of volatility. A high value of

α means that the volatility has pronounced peaks and troughs, that is, it reacts to market

movements quickly. A high value of β means that volatility takes a long time to change.

Usually the values of α and β are less than 0.25 and over 0.7, respectively (Dowd, 2007).
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2.4. GARCH Models 29

The EWMA model is a special case of the GARCH(1,1) where ω = 0, α = 1− λ and β = λ,

resulting in

σ2
1,t = (1 − λ)r2

1,t−1 + λσ2
1,t−1. (2.6)

The main distinction between the EWMA and the GARCH model is the addition of a

positive ω element in the GARCH model. This is the GARCH(1,1) model’s mean reverting

component. That is, if volatility becomes too high, it tends to fall back to long-run variance

over time, and if volatility becomes too low, it tends to climb back to long-run variance over

time. The long-run variance is the value to which the variance tends to revert over time

(Dowd, 2007). It is given by

VLR =
ω

1 − α − β
. (2.7)

Factoring (2.7) into (2.5) we get

σ2
t = (1 − α − β)VLR + αr2

t−1 + βσ2
t−l

σ2
t − VLR = α(r2

t−1 − VLR) + β(σ2
t−1 − VLR)

(2.8)

Now, assuming that the forecast is for k periods, (2.8) becomes:

σ2
t+k − VLR = α(r2

t+k−1 − VLR) + β(σ2
t+k−1 − VLR) (2.9)

Given that the expected value E[r2
t+k−1] = σ2

n+k−1, it follows that

E[σ2
t+k − VLR] = (α + β)(σ2

n+k−1 − VLR). (2.10)

Therefore the forecast for the kth period ahead is given by

E(σ2
t+k) = VLR + (α + β)k(σ2

t − VLR) (2.11)

Since α + β < 1, the second term in (2.11) falls away as k increases, therefore the
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variance forecast converges to the long-run variance. This is the mean reversion of GARCH

forecasts as they revert back to the long-run variance VLR. The forecasts are then used to

obtain estimates of the volatility term structure using geometric returns. The return and

variance at time t over the next n periods are:

i=1 ∑n
j=1 corrt(rt+i, rt+j) (2.12)

The correlation terms are usually small relative to the volatilities and co-variances,

therefore

vart(rt,n) ≈
n

∑
i=1

vart(rt+i). (2.13)

2.4.1 Estimating GARCH Models

In the book, Measuring market risk (Dowd, 2007), these are the steps provided for the

estimation of GARCH models:

1. Apply a simple filter, such as an autoregressive moving average (ARMA) model, to

the returns. This is done to eliminate any serial correlations in the data.

2. The residuals are squared and conditional heteroscedasticity is assessed (changing

variance). There are several conventional tests for this, including Pierce tests and

Ljung-Box tests.

3. To choose a certain GARCH specification, look at the partial autocorrelation coeffi-

cients or other data. These include the selection of a specific noise process, either

normal or t process.

4. Use a maximum likelihood technique to estimate the model’s parameters.

5. Check the GARCH model’s sufficiency by ensuring that the standardised innovations

are i.i.d. and follow the anticipated noise distribution.
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2.5. Exponentially Weighted Moving Average 31

The GARCH model has several advantages over the simple moving average (SMA)

method for forecasting volatility. Firstly, GARCH is a more sophisticated model that takes

into account the complex dynamics of financial markets, including the tendency for volatil-

ity to cluster and for large changes in volatility to occur. In contrast, SMA is a simple

method that only considers the average of past observations, without taking into account

any underlying patterns or dynamics.

Secondly, GARCH provides a more accurate forecast of volatility by incorporating both

past and current information about volatility. This is because the GARCH model includes

both autoregressive and moving average components that allow for the model to adapt to

changing market conditions. In contrast, SMA only considers past data, so it may not be

able to capture changes in volatility that occur in real-time.

2.5 Exponentially Weighted Moving Average

The Exponentially Weighted Moving Average Model is a refinement of the SMA. This model

places more emphasis on recent data and less emphasis on historical data. The estimate is

given as

σ2
t =

n

∑
i=1

αir2
t−i,

n

∑
i=1

αi = 1 (2.14)

where the weights αi decline as i increases, the weights sum up to 1. In the EMWA,

the weights decrease exponentially with time. That is, the influence of an observation

decreases with time because the EMWA model depends on the λ parameter, αi+1
αi

= λ,

where the constant λ falls between 0 and 1. The volatility forecasting equation is given by

σ2
t ≈ (1 − λ)

n

∑
i=1

λi−1r2
t−i (2.15)

The approximation is valid if the n is sufficiently large. The derivation of the volatility

estimate is presented in the Research Method chapter:

σ2
t = λσ2

t−1 + (1 − λ)r2
t−1 (2.16)
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From this, we see that the volatility estimate for time t, σt, obtained at t − 1 is calcu-

lated using the volatility estimate, σt−1 from the previous time point and the return rt−1

from the previous time point. This is a straightforward updating rule that allows us to ad-

just the volatility from time to time based on the most recent return (Dowd, 2007). A high

value of λ indicates a slower weight loss, whereas a low value indicates a rapid weight

loss. The value is calculated using the available data, but the RiskMetrics-Technical Doc-

ument (Metrics, 1996) specifies a value of 0.94 for daily return data and 0.97 for monthly

return data. Advocating a single number implies that it will remain constant over time.

However, this has been proven to be false.
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Chapter 3

Research Data

3.1 Selection of Stocks

In this chapter, the data for the investigation are discussed. The data consist of daily

prices of 10 equities each from the US, UK, and RSA, representing two developed and

one emerging market. The equities are selected from various industries to diversify the

portfolio risk. The data are obtained from Yahoo Finance (Finance, n.d.) from January

1, 2012, to March 31, 2022. The portfolio is constructed using equal weighting, which

means that each asset has the same proportion in the portfolio. This is a simple asset

allocation method that does not require any optimisation or estimation of expected returns

or covariances. Portfolio optimisation using Modern Portfolio Theory is not the focus of

this study, but rather the impact of different risk measures on portfolio performance. The

standard deviation volatility is calculated using one year of historical data and the k-factor

must be estimated using data from a year of VaR.

3.1.1 Johannesburg Stock Exchange Stocks

The following industries are represented by the stocks chosen for the South African market:

• Pharmaceutical: Adcock Ingram Holdings Limited was established in 1890 in Krugers-

dorp by EJ Adcock as a pharmacy. It produces, sells, and distributes medical supplies

both domestically and abroad. The South African city of Midrand serves as its head-

quarters. It was worth R9.38B as of October 2023.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



34 Chapter 3. Research Data

• Mining, precious metals, and other metals: Ernest Oppenheimer, a businessman,

formed Anglo American Platinum Limited in 1917. Before May 2011, it was known

as Anglo Platinum Ltd. The business produces and supplies platinum group met-

als, base metals, and precious metals both domestically and abroad. Johannesburg,

South Africa, serves as its corporate headquarters. It was valued at R188.36B in

October 2023.

• Accommodations: Hans Enderle founded City Lodge Hotels Limited in 1985 with

financial support from the Mine Pension Funds. The company’s main office is in

Bryanston, South Africa. The corporation manages hotels both domestically and

abroad. It was worth R2.62B as of October 2023.

• Financial Services: Discovery Limited was founded in 1992 and is based in Sandton,

South Africa. It offers private medical insurance products, commercial short-term

risk insurance products, as well as health, life, car, and home insurance, as well as

insurance for vehicles, buildings, the contents of homes, and movable possessions.

Additionally, it offers managed care services, financial solutions, investment prod-

ucts, and retail banking services like deposits, loans, and advances, as well as Vitality,

a program that promotes healthy living. It was worth R92.21B in October 2023

• Pharmaceutical Retailers: Before changing its name in June 2009, Clicks Group Lim-

ited was known as New Clicks Holdings Limited. Its headquarters are in Cape Town,

South Africa, where Jack Goldin founded it. It was worth R61.99B in October 2023.

• Thermal coal: Before changing its name in November 2006, Exxaro Resources Lim-

ited was known as Kumba Resources Limited. Mxolisi Mgoyo founded it in 2000,

and it is headquartered in Centurion, South Africa. The business creates semi-sifted

coking coal, thermal coal, and metallurgical coal. Its estimated value as of October

2023 was R63.43B.

• Real Estate Investment Trust: Investec Property Fund Limited was established in

2008. Investec Property Proprietary Limited is in charge of managing it. The fund
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3.1. Selection of Stocks 35

consists of R27 billion in direct and indirect South African real estate investments. It

was worth R14.9B in October 2023.

• Medical Care Facilities: Dr Jackie Shevel started Netcare Limited. It was founded in

1996, and Sandton, South Africa, serves as its corporate home. Hospitals are run by

the corporation in South Africa. It was worth R19.39B in October 2023.

• Energy and chemicals company: Sasol Limited was established in 1950 in Sasolburg,

South Africa, to produce speciality chemicals. The South African Government Em-

ployees Pension Fund, Allan Gray, and Industrial Development Corporation of South

Africa Limited are a few of the company’s key shareholders. It engages in mining,

gas, fuels, and chemical businesses. Johannesburg, South Africa, serves as its corpo-

rate headquarters. It was valued at R166.03B in October 2023.

• Retail: Shoprite Holdings Limited is an investment holding company for the retail

sale of food. Its segments include Furniture, Other Operating, Supermarkets RSA,

and Supermarkets Non-RSA. Christo Wiese founded it in 1979, and its main office is

in Brackenfell, South Africa. It has a R142.71B market value in October 2023.

3.1.2 London Stock Exchange Stocks

The following industries are represented by the stocks chosen on the British market:

• Financial services: Henry Allan Engelhardt founded Admiral Group plc in 1993 as an

insurance company. The business offers automobile insurance solutions both domes-

tically and abroad. It has a October 2023 value of £7.38B.

• Asset management: Aberdeen Diversified Income and Growth Trust is a fund that is

jointly held by Aberdeen Fund Managers Limited and BlackRock Investment Manage-

ment (UK) Limited. The fund makes investments in securities from diverse compa-

nies operating in various industries. It was established in January 1898 and valued

at £230.77M in October 2023.

A fund called Scottish Mortgage Investment Trust plc was established in 1909. Baillie
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Gifford Co. launched it. The fund is managed by them, and their global headquar-

ters are in the UK. It was worth £12.777M as of October 2023.

Investment firm 3i Infrastructure plc specialises in making investments in infrastruc-

ture. In January 2016, it was established. It was worth £3.7B in pounds as of October

2023.

In 1945, 3i Group plc was established. It is a private equity firm with a focus on

management leveraged buyouts and buy-ins, middle markets, infrastructure, mature

companies, growth capital, and middle markets. Additionally, it offers debt manage-

ment and financing. Its main office is in London, United Kingdom. It was valued at

£18.558M in October 2023.

• Biotechnology company: Abcam plc was founded in 1998. It is a biology-based busi-

ness that specialises in finding, creating, and disseminating reagents and equipment

for scientific study, diagnostics, and medication discovery. Its corporate headquarters

are in Cambridge, Great Britain. It had a value of £986.1M in the financial year 2022.

The company 4D Pharma plc was founded in 2014. The business creates live biother-

apeutic items in the UK. Before that, it went by the name Schosweveen 18 Limited.

Its main office is in Leeds, Great Britain. It was worth £2.6B in financial year 2022.

• Gambling: Avi, Aaron, Shay, and Ron Ben-Yitzhak created 888 Holdings plc in 1997.

The business offers products and services for online gaming and betting. Gibraltar is

home to its headquarters. It was worth £3.0B in financial year 2022.

• Agencies for advertising: 4imprint Group plc was founded in 1921. In North Amer-

ica, the UK, and Ireland, the business sells promotional products directly to con-

sumers. Its main office is in London, United Kingdom. Its worth in the financial year

2022 was £240.3M.

• Application of software: 1Spatial plc was founded in 2005. In the United Kingdom,

Ireland, the United States, and Australia, the company creates, markets, and sup-

ports IT products while also offering consulting and support services. Its corporate
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headquarters are in Cambridge, Great Britain. It was valued at £38.5M in financial

year 2023.

• Publishing: Pearson PLC was founded in 1844. It creates educational materials,

assessments, and services in the United Kingdom and around the world. The content

is intended for Assessment and Qualifications, English Language Learning, Higher

Education, Virtual Learning, and Workforce Skills. Its headquarters are in London,

United Kingdom. It was worth £1.507M in December 2019.

3.1.3 New York Stock Exchange Stocks

The stocks chosen for the market in the United States of America are from the following

industries:

• Telecommunications Services: AT&T Inc is a global telecommunications, media, and

technology services provider. It was founded in 1983 and was previously known as

SBC Communications Inc until its name was changed in 2005. Its headquarters are

in Dallas, Texas. It was valued at $402.9B in the financial year 2022.

• Diagnostics and research: Danaher Corporation was founded in 1969. The company

creates, manufactures, and sells professional, medical, industrial, and commercial

products and services all over the world. Its businesses include biology, diagnostics,

and environmental and applied solutions. Its headquarters are in the District of

Columbia, Washington. It was valued at $160.39B in October 2023.

• Mining, precious metals, and other metals: Freeport-McMoRan Inc was founded in

1987. The company’s operations include mineral property mining in North America,

South America, and Indonesia. The company’s headquarters are in Phoenix, Arizona.

It was valued at $58B in October 2023.

• Automobile Manufacturers: Elon Musk founded Tesla Inc in 2003. In the United

States, China, and internationally, the company designs, develops, manufactures,

leases, and sells electric vehicles as well as energy generation and storage systems.

It was previously known as Tesla Motors, Inc until its name was changed in February
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2017. The company’s headquarters are in Austin, Texas. It was valued at $870B in

October 2023.

• Utilities: NextEra Energy Inc was founded in 1925. In North America, the com-

pany generates, transmits, distributes, and sells electricity to retail and wholesale

customers. The company’s headquarters are in Juno Beach, Florida. It was valued at

$153.57B in October 2023.

• Entertainment: Netflix Inc was founded in 1997. The company offers streaming

services for TV shows, documentaries, feature films, and mobile games in a variety

of genres and languages to its members. The company’s headquarters are in Los

Gatos, California. It was valued at $119.74B in October 2023.

• Beverages: The Coca-Cola Company was established in 1886. This is a beverage

company that manufactures, markets, and sells various non-alcoholic beverages all

over the world. The company’s headquarters are in Atlanta, Georgia. It was valued

at $87.6B in October 2023.

• Airlines: United Airlines Holdings Inc, founded in 1968, is an airline company. It

operates in North America, Asia, Europe, Africa, the Pacific, and the Middle East.

The company’s headquarters are in Chicago, Illinois. It was valued at $13.25B in

October 2023.

• Discount Store: In 1945, Walmart Inc was founded. The company’s global opera-

tions include retail and wholesale. It has stores in supercenters, supermarkets, hy-

permarkets, warehouse clubs, and cash and carry. The company’s headquarters are

in Bentonville, Arkansas. It was valued at $550B in October 2023.

• Information Technology Services: Xerox Holdings Corporation was founded in 1906.

The corporation is a technology firm that designs, develops, and sells document man-

agement systems and solutions in the United States, Europe, Canada, and around the

world. The company’s headquarters are in Norwalk, Connecticut. It was valued at

$2.38B in October 2023.
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Chapter 4

Research Methodology

4.1 RiskMetrics Forecasting Methodology

This chapter introduces the RiskMetrics forecasting methodology, which employs the ex-

ponentially weighted moving average model (EWMA) to predict the variances and covari-

ances of the multivariate normal distribution (Metrics, 1996). We have reproduced the

derivation and implementation of the RiskMetrics forecast methodology, which is essential

to understand the approach used in the dissertation. In comparison to the simple moving

average model, this method produces more accurate results. It accomplishes this by fo-

cusing more on the most recent data. This chapter introduces the RiskMetrics forecasting

methodology, which employs the exponentially weighted moving average model (EWMA)

to predict the variances and covariances of the multivariate normal distribution (Met-

rics, 1996). We have reproduced the derivation and implementation of the RiskMetrics

forecast methodology, which is essential to understand the approach used in the disser-

tation. In comparison to the simple moving average model, this method produces more

accurate results. It accomplishes this by focusing more on the most recent data. This chap-

ter introduces the RiskMetrics forecasting methodology, which employs the exponentially

weighted moving average model (EWMA) to predict the variances and covariances of the

multivariate normal distribution (Metrics, 1996). We have reproduced the derivation and

implementation of the RiskMetrics forecast methodology, which is essential to understand

the approach used in the dissertation. In comparison to the simple moving average (SMA)

model, this method produces more accurate results. It accomplishes this by focusing more

on the most recent data.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



40 Chapter 4. Research Methodology

When adopting the EWMA model for estimating, volatility reacts faster to market

surges since new data have a higher weight than older data. When the spike observa-

tion diminishes after the market surge, the volatility reduces exponentially. This removes

any ghost effects from the findings.

To forecast volatility, the EWMA model takes use of previous data. In essence, the

method’s fundamental premise is that future patterns will be similar to historical ones. We

observe and study the following attributes, as we would with any time series model:

• The term "trend" refers to the long-term movement of a time series, indicating whether

it is increasing, decreasing, or remaining stable over time. A trend can be either lin-

ear or non-linear, and it is often used to identify the underlying direction of a time

series.

• Seasonality recognises the pattern that repeats itself at fixed intervals within a given

period, such as a year, a month, or a day. This pattern is often influenced by seasonal

factors such as weather, holidays, or cultural events.

• Cycles are fluctuations in a time series that occur at irregular intervals and are not

necessarily related to seasonal factors. These fluctuations can be caused by economic

cycles, technological changes, or other factors that affect the underlying dynamics of

the time series. Cycles can be either short-term or long-term, and they are often

modelled using a cyclical component, which captures the cyclic fluctuations of the

time series.

4.1.1 Volatility Estimation and Forecasting

Recall the volatility estimators of the equally weighted moving average model and the

exponentially weighted moving average for a set of T returns as shown in Chapter 2

σ =

√√√√ 1
T

T

∑
t=1

(rt − r̄)2 (4.1)

and
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σ =

√√√√(1 − λ)
T

∑
t=1

λt−1(rt − r̄)2, (4.2)

respectively, where rt is the portfolio return in month t, T is the sample period length,

r̄ is the mean return across the sample period, and λ (0 ≤ λ ≤ 1) is the decay factor. The

exponentially weighted moving average model is dependent on the decay factor. The rela-

tive weights given to the observations (returns) and the effective quantity of data utilised

in calculating volatility are determined by λ. The decay factor is best determined for the

volatilities (variations) and correlations (covariances) that are compatible with their re-

spective covariance matrices. RiskMetrics works with 480 data points. There is an ideal

decay factor that minimises the variance forecast’s root mean square error (RMSE). Risk-

Metrics (Metrics, 1996), for example, uses RMSE as the forecast error measuring criteria.

The best λ value must be based on the most current data and evolves. The decay factor

for a 1-day prediction is 0.94, according to the RiskMetrics (Metrics, 1996).

1-day RiskMetrics Volatility Forecast

Recall Equation (2.14) from Chapter 2. This is a Geometric sum to infinity and allows us

to approximate the volatility forecasts as

σ2
t ≈ (1 − λ)

n

∑
i=1

λi−1r2
t−i (4.3)

The approximation is valid assuming that n −→ ∞. The exponentially weighted es-

timator is utilised recursively. For the derivation of the recursive form, we assume the

following assumption:

• Assume a limitless quantity of data are accessible.

• Assume that the sample mean is equal to zero, r = 0.

For the 1-day RiskMetrics volatility estimate, we take the data available at time t (one

day earlier) to calculate the variance forecast for the period t + 1 as follows

σ2
1,t+1|t = λσ2

1,t|t−1 + (1 − λ)r2
1,t (4.4)
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Therefore, the formula for the 1-day RiskMetrics volatility estimate is

σ1,t+1|t =
√

λσ2
1,t|t−1 + (1 − λ)r2

1,t (4.5)

The subscript t + 1|t is read as "the time t + 1 forecast given information up to and

including time t." This reading format follows for all the subscripts. This explicitly shows

that the variance (volatility) is time-dependent (4.4) and is derived as follows

σ2
1,t+1|t = (1 − λ)

∞

∑
i=0

λir2
1,t−i

= (1 − λ){r2
1,t + λ(r2

1,t−1 + λr2
1,t−2 + . . .)}

= (1 − λ){r2
1,t + λr2

1,t−1 + λ2r2
1,t−2 + . . .}

= (1 − λ)r2
1,t + λ(1 − λ)(r2

1,t−1 + λr2
1,t−2 + r2

1,t−3)

= λσ2
1,t|t−1 + (1 − λ)r2

1,t

(4.6)

The covariance estimators for a set of T returns of both the equally weighted moving

average model and the exponentially weighted moving average are given as follows

σ2
12 =

1
T

T

∑
t=1

(r1t − r̄1)(r1t − r̄2) (4.7)

and

σ2
12 = (1 − λ)

T

∑
t=1

λj−1(r1t − r̄1)(r1t − r̄2) (4.8)

respectively, where rt is the portfolio return in month t, T is the length of the sample

period, r̄ is the mean return over the sample period and λ (0 ≤ λ ≤ 1) is the decay factor.

The recursive form of the 1-day RiskMetrics covariance forecast is given as

σ2
12,t+1|t = λσ2

12,t|t−1 + (1 − λ)r1t.r2t (4.9)

(4.9) is derived as follows.
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σ2
12,t+1|t = (1 − λ)

∞

∑
i=0

λir1,t−i · r2,t−i

= (1 − λ){r1,t · r2,t + λr1,t−1 · r2,t−1 + λ2r1,t−2 · r2,t−2 + . . .}

= (1 − λ)r1,t · r2,t + λ(1 − λ)(r1,t−1 · r2,t−1 + λr1,t−2 · r2,t−2 + λ2r1,t−3 · r2,t−3)

= λσ2
12,t|t−1 + (1 − λ)r1,t−1 · r2,t−1

Consequently, the 1-day RiskMetrics prediction of correlation is given as

ρ12,t+1|t =
σ2

12,t+1|t
σ1,t+1|t · σ2,t+1|t

(4.10)
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4.2 Optimal Decay Factor

The volatility and correlation estimates from RiskMetrics need to be produced using the

ideal decay factor, λ. We describe how to select the ideal decay factor in this section. We

use an example with two return series, r1,t and r2,t, to illustrate our point. The covariance

matrices linked to these results are provided by

∑ =

 σ2
1 (λ1) σ2

12(λ3)

σ2
21(λ3) σ2

2 (λ2)


Each variance and covariance is expressed explicitly as a function of its decay factor

therefore the covariance matrix ∑ is a function of three decay factors, λ1, λ2 and λ3. For

∑ to be a covariance matrix, the following conditions must be met:

• The variances σ2
1 and σ2

2 are non-negative.

• The variances σ2
12 and σ2

21 must be equal.

• The correlation between r1,t and r2,t has the range −1 ≤ ρ ≤ 1 where ρ =
σ2

12
σ1σ2

.

The whole covariance matrix is subject to a single optimum decay factor application

by RiskMetrics, which means that separate decay factors are utilised for the daily volatility

and correlation matrix and the monthly volatility matrices. To calculate a decay factor,

480 variance data point projections were used (Metrics, 1996). Although it is theoretically

feasible to select ideal decay factors that are compatible with each covariance matrix,

doing so, in reality, is far more difficult (Metrics, 1996).

4.2.1 Forecast Error Measure: Root Mean Squared Error Criterion

In this part, we go over the criteria RiskMetrics uses to pick the decay factor that will

produce the best forecast accuracy.
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Definitions:

• The forecast of time t + 1 of the variance of the return rt+1 at time period t is given

by

Et[r2
1,t+1] = σ2

1,t+1|t (4.11)

A forecast made for time t + j, j ≥ 1 is given by

Et[r2
1,t+j] = σ2

1,t+j|t (4.12)

This is the expected value of the squared return one time period earlier.

• The forecast of the time t + 1 of the covariance between two series r1,t+1 and r2,t+1

at time period t is given by

Et[r1,t+1 · r2,t+1] = σ2
12,t+1|t (4.13)

A forecast made at time t + j, j ≥ 1 is given by

Et[r1,t+j · r2,t+j] = σ2
12,t+j|t (4.14)

Since the variance forecast error is

ϵt+1|t = r2
t+1 − σ2

t+1|t

the expected value of the forecast error is zero, from (4.9):

Et[ϵt+1|t] = Et[r2
t+1]− σ2

t+1|t = 0.

To choose the optimal decay factor, the average squared errors must be minimised.

Applying this to daily forecasts of variance, we get the daily root mean squared predictions

error as
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RMSEv =

√√√√ 1
T

T

∑
t=1

(r2
t+1 − σ̂2

t+1|t(λ))
2 (4.15)

where rt+1 is the portfolio return in month t + 1, T is the length of the sample period,

σ̂2 is the unbiased estimator of σ2 and λ (0 ≤ λ ≤ 1) is the decay factor. The expression of

the variance’s prediction value as a function of λ is given. To choose the best decay factor

in practice, we look for the lowest RMSE across a range of λ (Metrics, 1996) values. This

is an optimisation problem, linear programming to be exact. This is achieved on MS Excel

VBA using the solver.

Similarly, for the accuracy of covariance forecasts, we have that the covariance forecast

error is

ϵ12,t+1|t = r1,t+1r2,t+1 − σ2
12,t+1|t

such that, by (4.12) we have

Et[ϵ12,t+1|t] = Et[r1,t+1r2,t+1]− σ2
12,t+1|t = 0.

Then applying this to daily forecasts of covariance, we get the daily root mean squared

predictions error as

RMSEc =

√√√√ 1
T

T

∑
t=1

(r1,t+1r2,t+1 − σ̂2
12,t+1|t(λ))

2

where rt+1 is the portfolio return in month t + 1, T is the length of the sample period,

σ̂2 is the unbiased estimator of σ2 and λ (0 ≤ λ ≤ 1) is the decay factor. It is crucial to

keep in mind that although the criteria listed above are solely statistical, they might not

be the greatest option for risk management because other variables are taken into account

when choosing the best projection (Metrics, 1996). To guarantee that the variance and co-

variance predictions are helpful for risk managers who do not update their systems daily,

for example, the ideal decay factor must provide for enough stability on such estimates
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(West, Edison, and Cho, 1993).

Mathematical Optimisation Problem:

The objective of the optimisation problem is to find the value of that minimises the

RMSEv, subject to the constraint that λ must be between 0 and 1. This is a constrained

optimisation problem, and various optimisation techniques can be used to find the op-

timal value of λ that satisfies the constraint and minimises the objective function. The

optimisation problem is formulated as follows

(OP)


minRMSEv =

√
1
T ∑T

t=1(r
2
t+1 − σ̂2

t+1|t(λ))
2

s.t.

0 ≤ λ ≤ 1

where:

• RMSEv is the root mean square error with respect to the unknown decision variable

λ,

• r2
t+1 is the portfolio return in month t + 1,

• T is the length of the sample period,

• σ̂2
t+1|t is the unbiased estimator of σ2 for the period t + 1, given the value of λ,

• and λ is the decision variable representing the decay factor that affects the calcula-

tion of the estimator σ̂2
t+1|t.
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4.2.2 RiskMetrics: The Optimal Decay Factor

In the application of the EWMA method, T = 250. The forecast error measuring criteria is

selected to be the RMSE. Basel recommends the size of the historical data to be a mini-

mum of one year and a maximum of 3 years.

For the daily data sets, one optimal decay factor is computed from the 480 data points.

Let λ̂i the ith optimal decay factor where 1 ≤ i ≤ N with N denoting the number of time

series in the RiskMetrics database. Let τi be the ith RMSE associated with λ̂i, that is, τi is

the minimum RMSE for the ith time series. The decay factor is derived as follows (Metrics,

1996). This is the linear programming problem:

1. Find ∏, the sum of all N minimal RMSE’s, τi’s:

∏ =
N

∑
i=1

τi (4.16)

2. Define the relative error measure:

θi =
τi

∑N
i=1 τi

(4.17)

3. Define the weight ϕi:

ϕi =
θ−1

i

∑N
i=1 θ−1

i

(4.18)

4. The optimal decay factor λ is defined as

λ =
N

∑
i=1

ϕiλ̂i (4.19)

The optimal decay factor applied by RiskMetrics is a weighted average of individ-

ual optimal decay factors where the weights are a measure of individual forecast

accuracy.
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4.2.3 Interpretation of Optimal Decay Factor

Consider the two terms in (4.4).

• Term 1: λσ2
1,t|t−1, the dictates the persistence in volatility. Regardless of what hap-

pens in the market, if the volatility was high yesterday it will be high today. The closer

λ is to 1, the more persistent the volatility will follow the market shock (Alexander,

2008). The closer λ is to 1, the more the EWMA is like the SMA.

• Term 2: (1 − λ)r2
1,t, this dictates the intensity of the reaction of volatility to market

events. The smaller λ is, the more the volatility reacts to the data observed in the

previous day’s return (Alexander, 2008).

Consider the term ∑T
i=1 λi−1 ∼= 1

(1−λ)
in (4.3). This equivalence is true for T −→ ∞. To

compare with the SMA, a better representation of the EWMA is (Metrics, 1996):

λt−1

∑T
i=1 λi−1

(4.20)

as opposed to (1 − λ)λt−1.

From this, it is clear to see that (4.20) is 1
T for λ = 1. That is, the EWMA is a SMA for

λ = 1.

4.2.4 EWMA Implementation

For the implementation of this research project, the volatility used to calculate VaR is es-

timated using two different methods: simple moving averages (SMA) and exponentially

weighted moving averages (EWMA). After estimating the volatility using both methods,

the number of exceptions obtained in the VaR calculation is checked to determine which

method has fewer exceptions. By comparing the results of both methods, the research

aims to identify which volatility estimation method is more effective for calculating VaR.

Hypothesis

The null hypothesis for the research is: There is no significant difference in the number

of exceptions obtained in the VaR calculation using simple moving averages (SMA) and
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50 Chapter 4. Research Methodology

exponentially weighted moving averages (EWMA).

The alternative hypothesis is: The number of exceptions obtained in the VaR calculation

using EWMA is lower than the number obtained using SMA.

The data used for the implementation are described in Chapter 3. We implement the

EWMA in three different economies, two developed countries and one developing country:

• South Africa (SA), United Kingdom (UK), and the United States of America (USA).

• 10 stocks each from the Johannesburg Stock Exchange (JSE), London Stock Ex-

change (LSE) and New York Stock Exchange (NYSE).

• Three diversified portfolios.

• The data are collected at a daily frequency from January 1, 2012, to March 31, 2021,

from Yahoo Finance. Note that this includes the Global COVID-19 pandemic period.

• Build up a time series of λs using one year of historical data and rolling the sample

period forward three months each time to determine a new measurement. 
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Chapter 5

Results and Analysis

5.1 Exponentially Weighted Moving Average and Simple

Moving Average

While all the stocks in the respective portfolios are used in the model and portfolio results

are shown where relevant, specific stock results are used to demonstrate certain points.

5.1.1 UK Stocks

The SMA method applies equal weights to all the returns, despite how old or recent it

is. Unlike the SMA method, the EWMA model depends on the λ parameter known as the

decay factor. This determines the relative weights that are applied to the returns and the

amount of data used in estimating volatility (Metrics, 1996).
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52 Chapter 5. Results and Analysis

Figure 5.1: A comparison between the EWMA and SMA weighting: January
2012 - December 2012, UK Stocks.

Figure 5.1 shows the difference in how the data is weighted by the EWMA and the

SMA. Consider the investment portfolio consisting of stocks in different industries (devel-

oped economy), e.g. asset management, insurance and biotechnology. Figure 5.2 shows

a time series of λs built using one year of historical data and rolling the sample period for-

ward three months each time to get a new measurement. For the UK economy, throughout

the 2012 - 2021 time period, the decay factor varies considerably: λP ∈ [0.79, 0.99]. Con-

sider turbulent markets: October 2015 - September 2016, λP ∈ [0.79, 0.92] from λP = 0.96

during the previous time point and April 2019 - December 2020, λP ∈ [0.85, 0.87] from

λP = 0.97 during the previous period. The BREXIT vote and COVID-19 pandemic hap-

pened during these turbulent markets in October 2015 - September 2016 and March 2020

- December 2020, respectively. The decay factor considers the state of the economy. λ is

at its lowest so the EWMA weighting is more on the most recent data and therefore gives

a better reflection of the volatility of the market.
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5.1. Exponentially Weighted Moving Average and Simple Moving Average 53

Figure 5.2: UK λ series measured over quarters from 2012 to 2021.

Figure 5.3 depicts a disadvantage of the SMA. It requires a time window for the data

before before the volatility can be determined, whereas the EWMA volatility does not. To

make the two volatility metrics similar, a cutoff is applied such that the SMA period is used

instead, as seen in 5.4.
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54 Chapter 5. Results and Analysis

Figure 5.3: A comparison between the EWMA and SMA volatility: January
2012 - December 2012, Admiral Group plc.

λAdmiral = 0.97.

Figure 5.4 illustrates a major difference between the EWMA and the SMA reaction time

using the Admiral Returns in 2012. In May the return dropped significantly, from −2.2%

to −7.4%. The volatility estimate obtained from the EWMA model rapidly indicated this

with an increase from 1.7% to 2.1%. In mid-June, there is a sudden drop in the volatility

estimate obtained by the SMA model from 2.1% to 1.7%. This is not a good representation

of the stock at this time point because there was no sudden or rapid change in the Admiral

return during this time frame. In August the return has a rise to 4.7% followed by a drop to

0.4% in mid-August where it was normalising. The EWMA reflects these shocks promptly

with a gradual decrease from 1.9% to 1.7% while the SMA took longer to show the returns

normalising.
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Figure 5.4: A comparison between the EWMA and SMA volatility: April 2012
- December 2012, Admiral Group plc.

λAdmiral = 0.97.

Figures 5.5 and 5.6 display, respectively, the λs for the stocks for April 2012 to March

2013 and returns for 4imprint from July 2012 to March 2013. The return is generally

unstable over this time, with both positive and negative outliers. The SMA typically does

not represent the spikes and drops of the return properly, but the EWMA more accurately

captures the volatility of the returns.
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56 Chapter 5. Results and Analysis

Figure 5.5: Decay parameters, λ for UK stocks: April 2012 - March 2013.
λPort f olio = 0.93.

Figure 5.6: A comparison between EWMA and SMA volatility: July 2012 -
March 2013, 4imprint Group plc.

λ4imprint = 0.64.
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Consider Figure 5.7. In late January, the SMA shows a sudden drop in volatility from

2.08% to 1.3%, however there is not drastic change daily returns to constitute the drop.

λ4imprint = 0.99 is close to one as a result we see that the two moving averages follow a

relatively similar trend as demonstrated in Chapter 4 (4.20).

Figure 5.7: A comparison between EWMA and SMA volatility: January 2015
- September 2015, 4imprint Group plc.

λ4imprint = 0.99

The volatility of the Covid-19 period is shown in Figure 5.8. When the returns fluctu-

ated rapidly in March, the EWMA reflected in the volatility much faster than the SMA. The

SMA also takes longer to normalise after May as the returns gradually normalise. This is

the ghost effect of the rapid fluctuation of the returns in March.
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Figure 5.8: A comparison between EWMA and SMA volatility: January 2020
- September 2020, 4imprint Group plc.

λ4imprint = 0.73
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5.1.2 RSA Stocks

Consider the investment portfolio consisting of stocks in different industries (developing

economy), e.g. pharmaceutical manufacturing, lodging and mining. Figure 5.9 shows a

time series of λs built using one year of historical data and rolling the sample period for-

ward three months each time to get a new measurement. For the RSA economy, through-

out the 2012 - 2021 time period, the decay factor varies considerably: λP ∈ [0.84, 0.99].

Consider turbulent markets: January 2016 - December 2017, λP ∈ [0.90, 0.98] from λP =

0.96 during the previous time point and January 2019 - December 2021, λP ∈ [0.84, 0.97]

from λP = 0.96 during the previous period. In particular, during the final quarter of 2016,

production in the mining and manufacturing sectors fell during the period of the turbulent

market from January 2016 to December 2017. The pandemic occurred between March

2020 and December 2021, during the turbulent market.

Figure 5.9: RSA λ series measured over quarters from 2012 to 2021.

Figure 5.10 shows λ for the different stocks from January 2012 to December 2012.

Consider the lodging industry as an example to observe the impact of the economy on

stocks, λCity = 0.96. From Figure 5.11, we see the result of the value of λCity being close
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to 1. That is, the EWMA approaches the SMA or greater values of λ and is the SMA for

λ = 1. It is clear to see that the EWMA and the SMA follow a relatively similar path but

both have significantly different values. For instance, in mid-May, the EWMA and SMA

volatilities are 1.9% and 1.7% respectively. The return had fluctuated from −1.7% to 1.6%.

Figure 5.10: Decay parameters, λ for RSA stocks: January 2012 - December
2012. λPort f olio = 0.95

Figure 5.11: A comparison between EWMA and SMA volatility: January 2012
- December 2012, City Lodge Hotels.

λCity = 0.96

Consider λs for the period from July 2012 to June 2013. λAnglo = 0.89. is shown in

Figure 5.12. A very low value, causes the EWMA to deviate completely from the SMA.

Figure 5.13 shows that the returns are more volatile during January, May, and June. In
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mid-January, returns range between 6.1% and 4.9%. While the EWMA reflects this volatil-

ity, the SMA has changed much less. Throughout the month, the EWMA volatility swings

between 1.04% and 2.54%, while the SMA swings between 1.5% and 1.56%. The con-

clusions drawn from Figures 5.10 to 5.13 emphasise the significance of weighting data

exponentially rather than equally. Observations that result in significantly low values for

λ will be completely unrepresented if the SMA is used.

Figure 5.12: Decay parameters, λ for RSA stocks: July 2012 - June 2013.
λPort f olio = 0.93

Figure 5.13: A comparison between EWMA and SMA volatility: October 2012
- June 2013, Anglo-American.

λAnglo = 0.89
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Figures 5.14 to 5.15 indicate "ghost effects" resulting from the SMA during the respec-

tive time frames. A "ghost effect" is when the volatility estimates are incorrectly high (or

low) for some periods after the event has passed and the returns have stabilised. In May

and August 2014, the SMA is slow to stabilise as the returns become less volatile. The

SMA is also slow to react to the volatility of the returns in November and December.

Figure 5.14: A comparison between EWMA and SMA volatility: April 2014 -
December 2014, City Lodge Hotels.

λCity = 0.96

The return falls from 3.6% to −2.6% just before June 2015, then begins to stabilise

during the month. As a result, the EWMA gradually falls to stability at 1.4%, while the

SMA remains unchanged at 1.62%.
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Figure 5.15: A comparison between EWMA and SMA volatility: April 2015 -
December 2015, City Lodge Hotels.

λCity = 0.98

Consider Figure 5.16. In 2016, January and February had erratic results, fluctuating

rapidly between −8.3% and 6.1% before they begin to stabilise in March. The EWMA

records this volatility in a more timely way than the SMA, which is slow to react to the

volatility. The EWMA peaks at 3.3% before beginning to stabilise in March, whereas the

SMA gradually oscillates between 2.6% and 2.7% from mid-February to mid-March before

beginning to fall in an attempt to stabilise. From March to the middle of May, the SMA

effectively registers a "ghost effect".

Figure 5.16: A comparison between EWMA and SMA volatility: January 2016
- September 2016, City Lodge Hotels.

λCity = 0.95
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The SMA overestimates the volatility in Figures 5.17 and 5.18. The returns fluctuate

between −3.9% and 3.8% in February 2019. In contrast to the SMA volatility surge from

1.5% to 1.78%, the EWMA volatility jump is from 1.45% to 1.62%. The returns stabilise

in May. While the SMA volatility abruptly decreases from 1.78% to 1.44%, the EWMA

volatility decreases steadily from 1.61% to 1.52%.

Figure 5.17: A comparison between EWMA and SMA volatility: January 2019
- September 2019, City Lodge Hotels.

λCity = 0.99

Consider Figure 5.18. From October through March 2019–2020, returns are largely

stable, with some volatility in early November, mid–December, and February. Between

December 2019 and February 2020, the SMA’s volatility spikes from 1.5% to 8% and stays

high until late April 2020. The returns are erratic starting in March 2020, with a low of

−35.9% and a high of 18.2%. The EWMA volatility rises between 2% and 18.5% at this

time.
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Figure 5.18: A comparison between EWMA and SMA volatility: October 2019
- June 2020, City Lodge Hotels.

λCity = 0.79

The findings in Figure 5.19 are highlighted and expanded in Figure 5.18. In cases

where the returns are erratic, the SMA volatility is either constant or less pronounced

than expected. The returns are erratic in June 2020, peaking at 17.9% and decreasing

to −18.2%. While the SMA volatility progressively declines between 8.3% and 7.5%, the

EWMA volatility spikes from 4.2%to 10.8%. Early in August, when the returns reach their

top of 20%, the EWMA volatility also reaches its peak of 8.9%. The return falls to −34.2%

in the middle of August, and the EWMA volatility reaches a maximum of 14%. The SMA

volatility, in contrast to the EWMA, progressively declines from 7.4% to 6.9% from early to

mid-August before dropping abruptly to 5.5%.
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Figure 5.19: A comparison between EWMA and SMA volatility: January 2020
- September 2020, City Lodge Hotels.

λCity = 0.85
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5.1.3 USA Stocks

Consider the investment portfolio consisting of stocks in different industries (developed

economy), e.g. entertainment, and utilities. Figure 5.20 shows a time series of λs built

using one year of historical data and rolling the sample period forward three months each

time to get a new measurement. For the US economy, throughout the 2012 - 2021 time

period, the decay factor varies considerably: λP ∈ [0.77, 0.99]. Consider turbulent market:

April 2019 - April 2021, λP = [0.80, 0.84] from λP = 0.97 during the previous period. The

2019 Global pandemic was during this time frame.

Figure 5.20: USA λ series measured over quarters from 2012 to 2021.

Figure 5.21 illustrates the AT&T Inc returns’ volatile nature from April to December

2012. The return peaked in April, late July, and mid-November at 3.6%, 2.7%, and 2%,

respectively. In addition, it fell to its lowest levels at −2.1%, −2.4%, and 3.4%, respectively,

in the middle of July, the middle of September, and the beginning of November. The

EWMA volatility consistently responds to these peaks and troughs throughout the period,

reaching its highest recorded value of 2% in late April. The SMA, on the other hand,

exhibits volatility across the whole time frame bounded by [0.6%, 1%].
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Figure 5.21: A comparison between EWMA and SMA volatility: April 2012 -
December 2012, AT&T Inc.

λAT&T = 0.74

Figure 5.22 depicts the erratic nature of the Tesla Inc returns from July 2012 to March

2013. The EWMA follow a relatively similar pathway. The return reached its highest points

at 6.8%, 8.5%, and 5.9% in mid-September, early November, and late February, respectively.

In addition, it reached its lowest points in late September and late February, when it was

−10.3% and −9.2%, respectively. Throughout the period, the EWMA volatility consistently

reacts to these peaks and troughs, reaching its highest recorded value of 3.7% in late

September and its lowest value of 1.95% in mid-February. Similarly, the SMA records a

reactive volatility pathway with its highest value at 3.75% in August and the lowest value

at 1.7% in mid-February.
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Figure 5.22: A comparison between EWMA and SMA volatility: July 2012 -
March 2013, Tesla Inc.

λTesla = 0.97

Consider Figure 5.23, which exhibits Coca-Cola Company’s performance from October

2012 to June 2013. The returns are erratic, peaking at 3.7% and 5.5% respectively in

January and mid-April. The returns fell to −2.8% and −3.2% in mid-February and late

June, respectively. The EWMA volatility peaks in January between 0.81% and 0.95% before

progressively falling over the month to 0.85%. The SMA volatility, on the other hand,

progressively varies in the range [0.9%, 0.93%]. The EWMA peaks at 1.24% in mid-April

and then progressively declines until 1.05% in late May. Before starting to decline to

1.06%, the SMA volatility oscillates within the range [1.18%, 1.21%] for about a month.
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Figure 5.23: A comparison between EWMA and SMA volatility: October 2012
- June 2013, Coca-Cola Company.

λCoke = 0.98

Figure 5.24 demonstrates the steadiness of Netflix Inc’s returns between January and

September 2013. With occasional peaks at 35.2% and 21.9% in late January and April,

the returns are largely consistent. The EWMA volatility peaks from 2.9% to 4.7% in late

January and progressively declines to 4% in late April before increasing to 4.5% in late

January. Early in January, before the return peak, the SMA volatility peaked between

[5.4%, 5.8%]. Between February and May, the returns stabilise, while the SMA volatility

oscillates sharply within the range [4.8%, 5.4%].

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



5.1. Exponentially Weighted Moving Average and Simple Moving Average 71

Figure 5.24: A comparison between EWMA and SMA volatility: January 2013
- September 2013, Netflix Inc.

λNet f lix = 0.99

Consider the United Airlines Holdings Inc returns from Figure 5.25. In general, the

returns fluctuate, with certain peaks and valleys scattered throughout. In the middle of

July, late in November, and in February, respectively, there are maxima of 12%, 8%, and

5.3%. The EWMA peaks at 3.3%, 2.8%, and 2.9%, respectively, during these times, while

the SMA volatility peaks just below each of these levels. From mid-August to October,

"ghost effects" are recorded by the SMA volatility.
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Figure 5.25: A comparison between EWMA and SMA volatility: July 2014 -
March 2015, United Airlines Holdings Inc.

λAirlines = 0.97

According to Figure 5.26, the returns for United Airlines Holdings Inc were somewhat

erratic from April to December 2019. Throughout the period, there are many points where

the returns peak and dip. For instance, the return peaks at 4.7% in mid-April, while the

EWMA volatility rises to 2.89% and the SMA volatility stays at 1.9%. When returns stabilise,

the SMA does not accurately represent this, creating "ghost effects" throughout the period.
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Figure 5.26: A comparison between EWMA and SMA volatility: April 2019 -
December 2019, United Airlines Holdings Inc.

λAirlines = 0.65

Figure 5.27 shows United Airlines Holdings Inc’s spotty returns during the pandemic.

The peak returns are 19%, 17%, 14%, and 17%, respectively, in mid-May, June, July, and

November. In June, the returns fall to −17%. In reaction to these peaks and falls, the

EWMA volatility increases. For instance, the EWMA volatility is recorded at 12.8% in June,

with a return peak of 17% and a drop of −17%. The SMA volatility, however, is listed at

10%.
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Figure 5.27: A comparison between EWMA and SMA volatility: April 2020 -
December 2020, United Airlines Holdings Inc.

λAirlines = 0.78
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5.2 EWMA, GARCH(1,1) and SMA

The EWMA is a special case of the GARCH(1,1), where ω = 0, α = 1 − λ and β = λ,

as demonstrated in Chapter 2, (2.6). The GARCH(1,1) has the mean-reverting whereas

the EWMA does not, since ω = 0 for the EWMA and non-zero for GARCH(1,1). In other

words, if volatility increases too much, it tends to fall back to the long-run variance over

time, and if volatility decreases too much, it tends to climb back to the long-run variance

over time. The value that the variance will typically return to over the long run is known

as the long-run variance.

The returns, EWMA, GARCH, and SMA volatilities for Scottish Mortgage Investment

Trust plc from January to September 2015 are displayed in Figure 5.28. In general, returns

are unpredictable throughout the year and especially so in August. 4.1% is its highest, and

−4.9% is its lowest point. The EWMA and SMA record volatility peaks at 3.09% and 2.2%,

respectively, while the GARCH(1,1) records volatility of 2.2%. The EWMA is more reactive

than the GARCH(1,1) despite following a similar trend throughout, and this is due to the

GARCH’s mean-reversion (1,1) to the long-run variance.

Figure 5.28: A comparison between GARCH(1,1), EWMA and SMA: January
2015 - September 2015, Scottish Mortgage Investment Trust plc.

λScottish = 0.68 and VLR = 1.47%
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Figure 5.29 displays the EWMA and the GARCH(1,1) moving in the pattern with differ-

ent values for volatility. From April to December 2020, the returns are unstable with the

highest value at 11.1% and the lowest value at −13.3% in April. The EWMA, GARCH(1,1)

and SMA record their respective volatility peaks to be 10%, 6.5% and 2.2%.

Figure 5.30 displays Investec’s volatile returns, notably in July, September, and Decem-

ber. For instance, August’s erratic returns are depicted by volatilities measured by EWMA,

GARCH(1,1), and SMA which were 9.5%, 4.8%, and 1.6%, respectively.

Consider the returns in Figure 5.31. The Figure displays Xerox’s unstable financial per-

formance. for April 2020 through December 2020. the returns are quite unpredictable be-

tween April and June and November. The highest returns are 11.9% and 11.5% in Novem-

ber and May, respectively. In April, May, and June, it declines to −9.5% and −10.3%,

respectively. EWMA and Garch(1,1) reported maxima in the volatility of 8.9% and 4.8%

in May, respectively. The SMA’s volatility during this time was 1.8%. As of November,

Volatility maxima were reported by EWMA and Garch(1,1) at 8.26% and 4.4%, respec-

tively. During The SMA had 1.8% volatility throughout this time. The SMA, in this erratic

market, from April 2020 - December 2020, toggles between [1.6%, 2.3%].
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80 Chapter 5. Results and Analysis

5.3 Value at Risk

Consider Figure 5.32, the differences in VaR exceptions observed between the two methods

are explained by the increased volatility in the market during the period considered. The

EWMA method was better able to capture this volatility, resulting in more VaR exceptions

in the orange zone. The SMA method was lower to react to the increased volatility, result-

ing in fewer VaR exceptions in the green zone. However, as the market volatility decreased

towards the end of the period considered, the differences between the two methods be-

came less pronounced, with both methods observing fewer VaR exceptions in the green

zone.

Figure 5.32: VaR exceptions: UK market

Several events occurred during the period considered that could have impacted the

economy and, consequently, affected the VaR of the portfolio. One of the most notable

events was Brexit. The negotiations between the UK and the EU, along with the uncer-

tainty regarding the future relationship between the two entities, led to increased volatility

in the stock market, which affected VaR.
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5.3. Value at Risk 81

In addition to Brexit, the trade tensions between the US and China, began in 2018

and continued to escalate throughout the period considered. These tensions resulted in

increased market volatility and uncertainty. COVID-19 and the subsequent restrictions had

significant impacts on the global economy, with many businesses forced to close or reduce

their operations, leading to increased unemployment and reduced economic activity. The

result was an increase in market volatility and thereby affecting the portfolio VaR.

Figure 5.33: Cumulative Exceptions: UK market

As with the rest of the world, the pandemic had a profound impact on the South African

stock market, with many companies experiencing a decline in revenue and profits. Figure

5.34 shows the VaR exceptions throughout the period of consideration. A significant event

that could have impacted the South African economy is the political turmoil that occurred

during this period. In 2017, South Africa experienced political instability as the then

President faced corruption allegations. Zuma was eventually forced to resign in February

2018, which led to an improvement in market sentiment. However, political instability

remained a concern in South Africa during this period.
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Figure 5.34: VaR exceptions: RSA market

In terms of stock movements, there were several notable movements in the South

African stock market during this period. For example, Sasol, one of the stocks in the

portfolio, experienced significant volatility due to a decline in oil prices and the impact of

the COVID-19 pandemic on demand for oil.

Consider 5.35 which shows the cumulative VaR exceptions for SMA and EWMA during

2013-2020. The observed higher cumulative exceptions for the EWMA method suggest

that the EWMA method captured more of the market’s volatility compared to the SMA

method. Additionally, the gradual tiering of the EWMA cumulative exceptions in the pe-

riods of 2013, 2015, 2016, and 2017 suggests that the method was able to capture the

gradual changes in volatility during those periods. On the other hand, the flat cumulative

exceptions observed using the SMA method in 2013, 2014, 2016, 2017, 2020, and 2021

suggest that the SMA method was not as sensitive to changes in volatility during these

periods. The big jump in cumulative exceptions observed for both methods in 2020 is

attributed to the impact of the COVID-19 pandemic on the global economy, which led to

heightened market volatility. This event had far-reaching impacts on the South African

economy, including disruptions in supply chains, a decline in global demand for commodi-

ties, and a significant reduction in foreign investment. The cumulative exceptions for the
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5.3. Value at Risk 83

SMA show a slightly higher jump before remaining flat until the end of 2021, while the

EWMA cumulative exceptions show a gradual increase up until the end of 2021.

Figure 5.35: Cumulative VaR Exceptions: RSA market

Consider Figure 5.36 showing the VaR exceptions in the USA market. From 2013 to

2016, the EWMA VaR exceptions were observed to be predominantly in the orange zone

while the SMA VaR exceptions were in the green zone in 2014 and 2015 and in the or-

ange zone in 2016. The green SMA VaR exceptions in 2014 and 2015 could have been

influenced by the economy’s recovery from the 2008 financial crisis. On the other hand,

the orange EWMA VaR exceptions during the same period indicate that the financial mar-

kets were still volatile as influenced by the Federal Reserve starting a policy of gradually

raising interest rates in 2015, which could have impacted the performance of the stocks in

the portfolio. Higher interest rates can make it more expensive for companies to borrow

money, which can lead to decreased profits and a decline in stock prices. This decline in

stock prices could have led to increased VaR exceptions, particularly in the SMA method

which is more sensitive to short-term fluctuations in stock prices.

Similarly, the EWMA VaR exceptions being fairly distributed in the green and orange

zones in 2017-2018 could reflect a period of relative stability in the market, but the sudden

rapid jump of the SMA to the red zone in early 2019 might suggest a sudden surge in
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market volatility. It’s worth noting that this period coincided with the US-China trade

war, which could have played a role in the market instability. Additionally, the increased

uncertainty and volatility in financial markets resulting from the pandemic could have

also impacted the performance of the portfolio. In 2020, the EWMA and the SMA VaR

exceptions rose to the middle of the red zone after which the EWMA gradually starts to

fall while the SMA VaR exceptions remain in the mid-red zone.

Figure 5.36: VaR exceptions: USA market

When plotting the cumulative exceptions for this market, Figure 5.37, the EWMA is

observed to predominantly have higher cumulative exceptions throughout the period. The

tiering on the EWMA cumulative exceptions is more gradual than that of the SMA. In par-

ticular, the SMA observes flat cumulative exceptions in 2020 and 2021 while the EWMA

observes gradual tiering of the cumulative exceptions in these periods. Both methods ob-

served a big jump in cumulative exceptions in 2020. However, the SMA has a significantly

bigger jump before it stays flat until the end of 2021, while the EWMA cumulative excep-

tions gradually increase until the end of 2021.

From 2013 to 2016, the EWMA VaR exceptions were observed to be predominantly in

the orange zone, while the SMA VaR exceptions were in the green zone in 2014 and 2015
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and in the orange zone in 2016. From 2017 to 2018, both methods observed VaR excep-

tions that were fairly distributed in both the green zone and the orange zone. However,

the SMA VaR exceptions were in the lower region of the green zone and the high region of

the orange zone, which demonstrates a sudden rapid jump of the SMA as it goes on to the

red zone in early 2019. At the end of 2019, SMA VaR exceptions were observed to fall from

the mid-orange zone to the green zone while EWMA fell from the floor of the red zone to

the middle of the orange zone. This reduction could be attributed to the easing of trade

tensions between the USA and China during this period. However, in 2020, both methods

observed a significant rise in VaR exceptions due to the COVID-19 pandemic, which led to

unprecedented levels of market volatility.

Figure 5.37: Cumulative VaR Exceptions: USA market

Figure 5.39 shows the VaR exceptions for the single stock Admiral, calculated from

the three volatility methods SMA, EWMA and GARCH(1,1). The results indicate that

GARCH(1,1) VaR exceptions were less conservative compared to SMA and EWMA, thereby

observing more exceptions in volatile times and periods of gradually increasing volatility.
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Figure 5.38: VaR exceptions: UK market - Admiral

Furthermore, the cumulative exceptions for Admiral stock show that the GARCH(1,1)

and EWMA methods exhibit higher cumulative exceptions compared to the SMA method.

The tiering on the EWMA and GARCH(1,1) cumulative exceptions is more gradual than

that of the SMA as shown in Figure 5.39.

Figure 5.39: Cumulative VaR Exceptions: UK Market - Admiral
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Chapter 6

Conclusion

This study focused on investigating the decay parameter of the EWMA model and com-

paring it to other techniques of determining volatility. (Metrics, 1996) addresses the use

of standard deviation forecasts in VaR estimates. This is because the volatility of finan-

cial returns is predictable. As a result, estimating volatility accurately is critical. This

paper’s findings imply that EWMA represents stock price volatility better than SMA. This

is corroborated by data collected, particularly during volatile market moments. Where

SMA appears to be unresponsive, EWMA appears to be more responsive to the volatility of

stock price returns. The model’s reliability is consistent in both developing and developed

markets, as well as in both quiet and violent markets. The SMA yields noticeable "ghost

effects," and EWMA is used to eliminate this shortcoming, as evidenced by the paper’s

results.

While the EWMA is more adaptable and can accommodate shifting volatilities and

covariances over time, it has some limitations that are related to computational issues. In

this study, the number of distinct λ values for various periods was determined. This differs

from the single λ = 0.94 used by RiskMetrics in their approach to estimating the variance-

covariance matrix of daily returns. There are many data to deal with, and they must return

a positive definite estimate of the variance-covariance matrix. As a result, computational

challenges in the form of long run-time emerge. This opens up future research options on

how to execute the model in a time-efficient manner.

The use of a constant λ value reduces the accuracy of the model. This fact is high-

lighted by the results of sequential periods with various λ values. An incorrect value of λ
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completely skews the assessment of volatility. Such inaccurate results would subsequently

have an impact on the accuracy of the VaR calculation, thus undermining an institution’s

financial stability. The model considers the specific market conditions in those periods

rather than having an umbrella view over all periods with different market conditions

when optimising the RMSE for distinct periods independently.

GARCH models are typically thought to be superior to EWMA models. While this is

true, GARCH models face higher computing challenges because there are more parame-

ters to calculate. This suggests another research avenue to pursue to improve computa-

tional practicality and run-time efficiency. Using GARCH(1,1) as a prototype, this research

demonstrates that EWMA outperforms SMA. With a few small exceptions, the results re-

veal that the EWMA and the GARCH(1,1) follow the same route. The distinction between

the two is the latter’s mean reversion feature. While GARCH models are generally better, it

is also crucial to remember that there is no guarantee that a stock price will always revert

to its average. The stock price is unlikely to recover to its average in extreme conditions,

such as the risk of liquidation.

For each of the three economies, a λ time series was constructed. To get a new measure-

ment, the sample period was shifted forward three months each time, employing historical

data dating back one year. The time series revealed that λ’s value changed from 2012 to

2021. The λ value was much lower in volatile markets than in quieter environments. This

is especially true for stocks that were significantly impacted by market volatility.

In contrast to the EWMA volatility, the SMA volatility requires a time window for the

data to be determined. This is a drawback of the SMA that necessitated the need to re-

calibrate the data for illustration purposes. The SMA period was substituted with a cutoff

to make the two volatility metrics comparable. The optimisation was employed to find the

decay factor with the lowest RMSE across a range of λ values to select the optimum decay

factor in practice. The best value of λ is determined in this paper by using mathematical

optimisation to reduce the RMSE.
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The examples in Chapter 5 support the interpretation of λ discussed in Chapter 4.

Lower values produce dramatically distinct EWMA and SMA courses, with the latter record-

ing less volatility in some circumstances. This lack of responsiveness reflects the SMA’s

insensitivity to more recent data rather than equal weighting. The former’s exponential

weighting allows for a faster reaction to changes in returns. The predicted volatility allows

for more precise VaR calculations.

This paper analysed the performance of SMA, EWMA, and GARCH(1,1) - in the context

of Basel’s traffic light system for VaR exceptions. The analysis was conducted for three dif-

ferent economies (South Africa, the United States, and the United Kingdom) using stock

market data. The GARCH(1,1) and EWMA methods predominantly observed higher cu-

mulative exceptions throughout the period, while the tiering on the EWMA cumulative

exceptions is more gradual than that of SMA. The findings reveal that GARCH(1,1) con-

sistently produces less conservative VaR estimates than SMA and EWMA. This means that

GARCH(1,1) is more likely to identify exceptions in volatile times and during periods when

volatility gradually becomes steady. In contrast, SMA and EWMA tend to produce more

conservative VaR estimates, resulting in fewer exceptions.

The observed differences in performance between the three methods can be attributed

to how they calculate volatility. SMA is a simple method that calculates volatility as the

average of past observations, giving equal weight to all observations. In contrast, EWMA

gives more weight to recent observations and less weight to older observations. Finally,

GARCH(1,1) is a more complex method that models volatility as a function of past obser-

vations and the residuals of the model. The balance in the trade-off between complexity

and accuracy lead to EWMA being preferred. The choice of volatility calculation method

can significantly impact the VaR estimates and the number of exceptions identified. Hence,

careful consideration must be given to the method used in any given application, taking

into account the specific characteristics of the data and the requirements of the analysis.
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Appendix A

Statistical Models of Financial Time

Series

A.1 Definitions

(Franke, Härdle, and Hafner, 2004)

Stochastic Process

A stochastic process Xt, t ∈ Z, is a family of random variables, defined in a probability

space (Ω,F , P).

Xt is a random variable at time t, with a specific density function. For a unique ω ∈ Ω,

X(ω) = {Xt(ω), t ∈ Z} is a realisation or a path of the process.

CDF of a Stochastic Process

The joint cumulative distribution (cdf) of a stochastic process Xt is defined as

Ft1,...,tn(x1, ..., xn) = P(Xt1 ≤ x1, ..., Xtn ≤ xn).

The underlying stochastic process is uniquely determined if the joint distribution func-

tion Ft1,...,tn(x1, ..., xn) is known ∀ t1, ..., tn ∈ Z.

Conditional CDF

The conditional CDF of a stochastic process Xt ∀ t1, ..., tn ∈ Z with t1 < t2 < ... < tn is

defined as
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Ftn|tn−1,...,t1
(xn|xn−1, ..., x1) = P(Xtn ≤ xn|Xtn−1 = xn−1, ..., Xt1 = x1).

Mean Function

The mean function µt of a stochastic process Xt is defined as

µt = E[Xt] =
∫

R
xdFt(x)

Auto-covariance Function

The auto-covariance function of a stochastic process X is defined as

γ(t, τ) = E[(Xt − µt)(Xt − τ − µt − τ)] =
∫

R2
(x1 − x2)(x2 − µt − τ)dFt, t − τ(x1, x2)

for τ ∈ Z.
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Stationary

A stochastic process X is covariance stationary if

1. µt = µ,

2. γ(t, τ) = γτ

A stochastic process Xt is strictly stationary if ∀ t1, ..., tn and ∀ n, s ∈ Z

Ft1,...,tn(x1, ..., xn) = Ft1+s,...,tn+s(x1, ..., xn).

Auto-correlation function

The auto-correlation function ρ of a covariance stationary stochastic process is defined as

ρτ =
γτ

γ0

where ρ ∈ [−1, 1].

White Noise

The stochastic process Xt is white noise if

1. µt = 0

2. γτ =

 σ2 , x = 0

0 , x = 0

where σ2 is the variance.

Random Walk

The stochastic process Xt follows a random walk if it can be represented as

Xt = c + Xt − 1 = c + ϵt

where c is a constant and ϵt is a white noise.

If c is non-zero, the variables Zt = Xt − Xt − 1 = c + ϵt have a non-zero mean. This is

known as a random walk with drift.
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Markov Process

A stochastic process has the Markov property if ∀ t ∈ Z and k ≥ 1

Ft|t−1,...,t−k(xt|xt−1, ..., xt−k) = Ft|t−1(xt|xt−1).

That is, the conditional distribution of a Markov process at time t is determined by the

condition of the process at time t − 1. An example of a Markov process is the random walk

with independent variables.

Martingale

The stochastic process Xt is a martingale if

E[Xt|Xt−1 = xt−1, ..., Xt−k = xt−k] = xt−1

∀ k > 0.

An example of a Martingale is the random walk without a drift.

Log Return

The log return rt is defined as

rt = ln(
Pt

Pt−1
) = ln(1 + Rt).

The log return is defined for the case of continuous compounding.

Linear Process

If the process Xt has the form

Xt = µ +
∞

∑
i=−∞

aiϵt−i

with white noise ϵt and absolute summability of the filter (ai) : ∑∞
i=−∞ |ai| < ∞, then it is

a linear process.

Moving Average Processes

The moving average process of order q, MA(q), is defined as
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Xt = β1ϵt−1 + ... + βqϵt−q + ϵt

with white noise ϵt.

Auto-regressive Process

The linear autoregressive process order p, (AR(p)), is defined as

Xt = υ + α1Xt−1 + ... + αpXt−p + ϵt.

ARMA Models

The ARMA(p, q) model is defined as

Xt = υ + α1Xt−1 + ... + αpXt−p + β1ϵt−1 + ... + βqϵt−q + ϵt.

A.2 ARCH and GARCH Models

(Franke, Härdle, and Hafner, 2004)

Definitions

(Franke, Härdle, and Hafner, 2004)

ARCH(q)

The process ϵt, t ∈ Z is ARCH(q), if E[ϵt|Ft−1] = 0,

σ2
t = ω + α1ϵ2

t−1 + ... + αqϵ2
t−q

with ω > 0, α1, ..., αq ≥ 0 and

• Var(ϵt|Ft−1) = σ2
t and Zt =

ϵt
σt

is i.i.d. (strong ARCH)

• Var(ϵt|Ft−1) = σ2
t (semi-strong ARCH)

• P(ϵ2
t |1, ϵt−1, ϵt−2, ..., ϵ2

t−1, ϵ2
t−2, ...) = σ2

t (weak ARCH),

where P is the best linear projection.
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A.2. ARCH and GARCH Models 95

GARCH(p,q)

The process ϵt, t ∈ Z is GARCH(p, q), if E[ϵt|Ft−1] = 0,

σ2
t = ω +

q

∑
i=1

αiϵ
2
t−i +

p

∑
j=1

β jϵ
2
t−j

and

• Var(ϵt|Ft−1) = σ2
t and Zt =

ϵt
σt

is i.i.d. (strong GARCH)

• Var(ϵt|Ft−1) = σ2
t (semi-strong GARCH)

• P(ϵ2
t |1, ϵt−1, ϵt−2, ..., ϵ2

t−1, ϵ2
t−2, ...) = σ2

t (weak GARCH).
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Appendix B

Basic Properties of Covariance and

Correlation Matrices

(Freund and Walpole, 1986)

A covariance matrix is a square, symmetric m × m matrix of variances and co-variances

of a set of m returns:

A =



σ2
1 σ12 ... ... σ1m

σ21 σ2
2 ... ... σ2m

σ31 σ2
3 σ2

3 ... σ3m

... ... ... ... ...

σm1 ... ... ... σ2
m


.

Since correlation is given by

ρij =
σ12

σ1σ2
∈ [−1, 1]

and
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Appendix B. Basic Properties of Covariance and Correlation Matrices 97



σ2
1 σ12 ... ... σ1m

σ21 σ2
2 ... ... σ2m

σ31 σ2
3 σ2

3 ... σ3m

... ... ... ... ...

σm1 ... ... ... σ2
m


=



σ2
1 ρ12σ1σ2 ... ... ρ1mσ1σm

ρ21σ2σ1 σ2
2 ... ... ρ2mσ2σm

ρ31σ3σ1 ρ32σ3σ2 σ2
3 ... ρ3mσ3σm

... ... ... ... ...

ρm1σmσ1 ... ... ... σ2
m


,

the covariance matrix can be represented as

A = DCD

where D is a diagonal matrix containing the standard deviations of the returns and C

is the correlation matrix of the returns.



σ2
1 σ12 ... ... σ1m

σ21 σ2
2 ... ... σ2m

σ31 σ2
3 σ2

3 ... σ3m

... ... ... ... ...

σm1 ... ... ... σ2
m



=



σ1 0 ... ... 0

0 σ2 0 ... 0

0 0 ... ... ...

... ... ... ... 0

0 ... ... 0 σm


×



1 ρ12 ... ... ρ1n

ρ12 1 ... ... ρ2m

... ... ... ... ...

... ... ... ... ...

ρ1m ρ2m ... ... 1


×



σ1 0 ... ... 0

0 σ2 0 ... 0

0 0 ... ... ...

... ... ... ... 0

0 ... ... 0 σm


The covariance matrix is mathematically convenient for expressing the asset volatilities

and their correlations. A is positive semi-definite. This is true if and only if C is positive

semi-definite. D will always be positive definite.
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Definition

Positive Semi-definite

A square symmetric matrix C ∈ Rm×m is positive semi-definite if

v⃗TCv⃗ ≥ 0, ∀v⃗ ∈ Rm (B.1)

and positive definite if the inequality holds with equality only for vectors v⃗ = 0.

Corollary

A symmetric matrix is positive semi-definite ⇐⇒ all eigenvalues are non-negative.
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Appendix C

Basics of Mathematical Optimisation

Concept

Minimise or maximise a given objective function of several decision variables that satisfy

constraints.

(Yang, 2008)

Optimisation Problem

Given f (x⃗) : Rn −→ R and a set S ⊂ Rn, find x⃗∗ ∈ Rn that solves

(OP)


minx⃗ f (x⃗)

s.t.

x⃗ ∈ S

where S is a feasible region.

S = {x⃗ : gi(x⃗) ≤ 0, i ∈ I and hj(x⃗) = 0, j ∈ ϵ}

where ϵ and I are index sets for equality and inequality constraints:

(OP)



minx⃗ f (x⃗)

s.t.

gi(x⃗) ≤ 0; i ∈ I

hj(x⃗) = 0; j ∈ ϵ
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Appendix D

Unbiased Estimator

In statistics, one of the qualities of an estimator is unbiasedness.

Definition

The statistic θ̂ is an unbiased estimator of θ ⇐⇒ E[θ̂] = θ (Voinov, n.d.).

Now let θ̂ = σ̂2 and θ = σ2. Consider estimator used in the SMA

σ̂2
t =

1
n − 1

n

∑
i=1

(rt−i − r̄)2. (D.1)

where rt is the portfolio return in month t, T is the sample period length, r̄ = ∑n
i=1 ri
n is

the mean return across the sample period. Show that σ̂2 is an unbiased estimator of σ2.

Note: consider this outside the time series space, so discard the time parameter t for this

proof. It holds true for the time series as well.

Proof

Let r1, r2, ..., rn to be i.i.d random variables, each with the expected value µ and variance

σ2. For the whole population, σ2 = E[(ri − µ)2].

For a sample from this population, we want a statistic s.t E[σ̂2] = σ2.
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E[σ̂2] = E[∑
n
i=1(ri − r̄)2

n − 1
]

=
1

n − 1
E[

n

∑
i=1

(ri − r̄)2]

=
1

n − 1
E[

n

∑
i=1

(ri − µ)2 − (r̄ − µ))2]

=
1

n − 1
E[

n

∑
i=1

(ri − µ)2 − 2
n

∑
i=1

(ri − µ)(r̄ − µ) +
n

∑
i=1

(r̄ − µ))2]

=
1

n − 1
[

n

∑
i=1

E(ri − µ)2 − nE(r̄ − µ))2]

Then substituting σ2 = E(ri − µ)2 and Var(r̄) = E(r̄ − µ)2 = σ2

n by the Central limit

theorem:

E[σ̂2] =
1

n − 1
(

n

∑
i=1

σ2 − n
σ2

n
)

=
1

n − 1
(nσ2 − σ2)

=
1

n − 1
(σ2(n − 1))

= σ2

Therefore since E(σ̂2) = σ2, σ̂2 is an unbiased estimator of σ2.
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