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Abstract. Let G be a finite group and Irr(G) be the set of irreducible characters of
G. The number cod(χ) = |G: kerχ|/χ(1) is called the character codegree of χ ∈ Irr(G).
In this article, we show that if G has at most two composite character codegrees, then
G is solvable. We also obtain sufficient numerical conditions on the character codegrees
and character degrees for the solvability and supersolvability of a group.

1. Introduction

The study of character degrees of irreducible characters of finite groups has received
much attention as they proved to have strong influence on the structure of finite groups.
Dual to a character degree is the so-called codegree of a character. We shall recall
its definition: Let G be a finite group and p be a prime. Let Irr(G) denote the set
of complex irreducible characters of G. The codegree of χ ∈ Irr(G) is defined as
cod(χ) := |G: kerχ|/χ(1). A different definition of a character codegree was used in
[6, 7] and this was modified to the above definition in [20] to avoid ambiguity. There
has been recent interest on how the structure of a group is affected by the character
degrees and codegrees of irreducible characters of a finite group. Gagola and Lewis
[10] obtained a characterisation of nilpotent groups in terms of character degrees and
codegrees. In particular, they proved that G is nilpotent if and only if χ(1) divides
cod(χ) for all χ ∈ Irr(G). In [4], Berkovich showed that G is a p-group if and only
if cod(χ) = pαχχ(1), for each non-linear irreducible character χ of G, where αχ is a
positive integer depending on χ. Qian [19] obtained a criterion in terms of character
degrees and codegrees of irreducible characters for a finite group to be p-closed and
together with Liang [15], they studied finite groups G such that (χ(1), cod(χ)) = 1 for
each irreducible character χ of G.
A natural question that can be asked is this: What conditions can be imposed on the

codegrees of irreducible characters of G for G to be solvable?
It is known that a finite non-abelian simple group does not have a character codegree

which is a prime power (see [6, Theorem 1]). Recently, the following result was proved
giving a sufficient condition for a group to be solvable:

Theorem 1.1. [2, Theorem 4.6] Let G be a finite group with exactly one composite
character codegree. Then G is solvable.

Our first objective in this article is to extend Theorem 1.1:

Theorem A. Let G be a finite group with at most two composite character codegrees.
Then G is solvable.
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It is known that cod(χ) > χ(1) for any non-principal irreducible character χ of any
finite group (see for example [1, Lemma 2.6]). On the other hand, the result below
shows that a finite group is solvable if an inequality involving character degrees and
codegrees of non-linear irreducible characters is satisfied:

Theorem 1.2. [25] Let G be a finite group. If cod(χ) ⩽ pχχ(1) for all non-linear
χ ∈ Irr(G), where pχ is the largest prime divisor of |G/ kerχ|, then G is solvable.

Our second objective is to improve Theorem 1.2:

Theorem B. Let G be a finite group. If cod(χ) < pχ(χ(1) + 1) for all non-linear
χ ∈ Irr(G), where pχ is the largest prime divisor of |G/ kerχ|, then G is solvable.

Our approach in proving Theorem B is similar to that of Theorem 1.2 with slight
changes. We note that these bounds in both Theorems A and B are best possible since
for G = A5, G has three composite codegrees and there is an irreducible character χ
of degree 3 such that cod(χ) = pχ(χ(1) + 1), where pχ = 5. In [25], the authors did
not give any examples of solvable groups with the property in their theorem (Theorem
1.2), so we shall do that for our result. Note that A4 and S4 are examples of solvable
groups with the property in Theorem B. We also have that the family {D2p}, of dihedral
groups of order 2p for some odd prime has groups with the property in Theorem B.
Obviously the condition in Theorem B cannot characterise solvability. In particular,
solvable groups G of the form Cp ×A4, Cp × S4 or D2pq, where p and q are odd primes
are such that there exists χ ∈ Irr(G) such that cod(χ) ⩾ pχ(χ(1) + 1). In this case Cn

is a cyclic group of order n.
The other objective is to provide a sufficient condition for a group to be supersolvable.

Theorem C. Let G be a finite group. If cod(χ) < χ(1) + 3
χ(1)

for all non-linear

χ ∈ Irr(G), then G is supersolvable.

Examples satisfying the hypothesis in Theorem C are S3, Q8 and D8. In Example
3.1 we give an infinite family of supersolvable groups with the property in Theorem C.
Note that the bound cannot be improved since cod(χ) = χ(1)+ 3

χ(1)
for some χ ∈ Irr(G)

when G = A4.

2. Preliminaries

In this section we shall prove some results needed in proofs of our main results.

Lemma 2.1. Let G be a non-trivial finite group and χ ∈ Irr(G). Then

χ(1)2 + χ(1) ⩽ |G|.

Proof. For χ ∈ Irr(G), we note that χ(1)2 = |G: kerχ| if and only if Irr(G/ ker(χ)) =
{χ} and this holds if and only if χ = 1G. Since |G| ⩾ 2, we have the desired conclusion if
χ(1)2 = |G: kerχ|. Hence we may assume that χ(1)2 < |G: kerχ| and so χ(1)2+k = |G|
for some positive integer k. It follows that χ(1) divides k and the result follows. □

In the next set of results, we will prove some properties of characters of non-solvable
groups. We first show that a simple group has an irreducible character with two good
properties.

Lemma 2.2. Let N be a non-abelian simple group. Then there exists χ ∈ Irr(N) such
that χ is extendible to Aut(N) and χ(1)(χ(1) + 1) ⩽ |N |.
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Proof. Using Lemma 2.1 it is sufficient to showing that every simple group has an
irreducible character extendible to Aut(N). By [18, Lemma 4.2], the result follows.

□

For sporadic simple groups and almost all alternating groups more can be said:

Lemma 2.3. Let N be a sporadic group or an alternating group, An, n ⩾ 5 with
n ̸= 6. Then there exists some non-linear χ ∈ Irr(N) extendible to Aut(N) such that
|N | ⩾ pm · k · (k + 1), where pm is the largest prime divisor of |N | and k = χ(1).

Proof. Suppose that N is a sporadic simple group. Using Table 1 in [25] and the Atlas
[8], it can be shown that the result follows.

Suppose that N is an alternating group An, n ⩾ 5. Consider n = 5. Then N has
χ ∈ Irr(G) such that χ(1) = 3 and |N | = 60 ⩾ 5 · 3 · 4 = pm · χ(1) · (χ(1) + 1).

If n > 6, then An has an irreducible character of degree n − 1 that is extendible to

Sn. Now pm ⩽ n and (n−2)!
2

> n. Then |An| = n · (n − 1) · (n−2)!
2

> n · (n − 1) · n ⩾
pm · χ(1) · (χ(1) + 1). □

The alternating group A6 is indeed an exception since there is no irreducible character
of A6 that extends Aut(A6) and which satisfy the numerical condition in Lemma 2.3.
However, since A6

∼= A1(9), we obtain a result on A6 in Lemma 2.4(i) below.
For most of the simple groups of Lie type, instead of an extendible character with

the right properties, we show that the corresponding result of [25, Lemma 2.4] holds.
We use this new result to prove Theorem B.

Let Φr(q) denote the r-th cyclotomic polynomial evaulated at q, or Φr for short. Note
that Φr(q) is a polynomial with integer coefficients, so Φr is an integer.

Lemma 2.4. Let N be a finite simple group of Lie type or the Tits group 2F4(2)
′. Let

pm be the largest prime divisor of |N |.
(a) There exists some non-linear θ ∈ Irr(N) such that |N | ⩾ pm · θ(1) · (θ(1) + 1).
(b) If N is not one of the following groups: A1(q), A2(q),

2A2(q
2) with (3, q+1) = 3,

2B2(q
2), or 2G2(q

2), then there exists some non-linear θ ∈ Irr(N) such that

|N | ⩾ p2m · θ(1) · (θ(1) + 1).

The respective bounds for pm and values of θ(1) are in Tables 2.1 and 2.2.

Proof. We shall first prove (a) for the following groups: A1(q), A2(q),
2A2(q

2) with
(3, q + 1) = 3, 2B2(q

2) and 2G2(q
2). Let p be a prime such that q is a power of p.

Suppose that N ∼= A1(q). If p = 2, then cd(N) = {1, q − 1, q, q + 1}. Let θ ∈ Irr(N)
be such that θ(1) = q − 1. Since pm ⩽ q + 1, it follows that |N | = q(q − 1)(q + 1) =
(q + 1)(q − 1)q ⩾ pm · θ(1) · (θ(1) + 1).

Suppose that p > 2. Using Lemma 2.3, we may assume that q ⩾ 7. Now cd(N) =

{1, q− 1, q, q+1, q+ϵ
2
}, where ϵ = (−1)

q−1
2 . Consider θ ∈ Irr(N) such that θ(1) =

q + ϵ

2
.

Then since pm ⩽ q + 1 and q(q − 1) > (q+1)(q+3)
2

, we have that

|N | = q(q2 − 1)

2
> (q + 1)

(q + 1)

2

(q + 3)

2
⩾ pm · θ(1) · (θ(1) + 1).

Suppose that N ∼= A2(q), q > 2 since A2(2) ∼= A1(7). Consider θ ∈ Irr(N) such that
θ(1) = q(q + 1). Then since pm ⩽ q2 + q + 1,

|N |
pm · θ(1) · (θ(1) + 1)

⩾
q3(q2 − 1)(q3 − 1)

gcd(3, q − 1)(q2 + q + 1)2(q(q + 1))
⩾

q2(q − 1)

q2 + q + 1
> 1.
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Suppose that N ∼=2A2(q
2), gcd(3, q+1) = 3 and q2 is a power of p. Note that |2A2(q

2)| =
1
3
q3(q3+1)(q2−1). Consider θ ∈ Irr(N) such that θ(1) = q(q−1). Since pm ⩽ q2−q+1,

we have that

|N |
pm · θ(1) · (θ(1) + 1)

⩾
q3(q2 − 1)(q3 + 1)

3(q2 − q + 1)2(q(q − 1))
⩾

q2(q + 1)2

3(q2 − q + 1)
> 1.

Suppose that N ∼=2B2(q
2), q2 = 22m+1. Then |2B2(q

2)| = q4(q4 +1)(q2 − 1). Consider a
unipotent character θ ∈ Irr(N) such that θ(1) = 1√

2
q(q2 − 1).

Since pm ⩽ q2 +
√
2q + 1, we have that

|N |
pm · θ(1) · (θ(1) + 1)

⩾
|N |

2pm · θ(1)2
⩾

q2(q4 + 1))

(q2 +
√
2q + 1)(q2 − 1)

> 1.

Suppose that N ∼=2G2(q
2), q2 = 32m+1, q2 ̸= 3 since 2G2(3)

′ ∼= A1(8). Consider a
unipotent character θ ∈ Irr(N) such that θ(1) = 1√

3
q(q4 − 1). Since pm ⩽ q4 − q2 + 1,

we have that

|N |
pm · θ(1) · (θ(1) + 1)

⩾
|N |

2pm · θ(1)2
⩾

q6(q4 − q2 + 1)(q4 − 1)
2
3
(q4 − q2 + 1)q2(q4 − 1)2

=
3q4

2(q4 − 1)
> 1.

Let N ∼= 2F4(2)
′. Then

|N | = 211 · 33 · 52 · 13 > 132 · (26)(27) = p2m · θ(1) · (θ(1) + 1).

For the rest of the groups of Lie type, we shall prove that (b) holds. This is sufficient
to prove that (a) also holds since |N | ⩾ p2m · θ(1) · (θ(1) + 1) ⩾ pm · θ(1) · (θ(1) + 1).

1. Lemma 2.4(b) holds for N ∼= An(q), n ⩾ 3.
Let N ∼= A3(q), where q ⩾ 3 since A3(2) ∼= A8. Then

|N |
p2m · θ(1) · (θ(1) + 1)

⩾
q4(q2 − 1)2(q − 1)

gcd(4, q − 1)(q2 + q + 1)(q4 + q2 + 1)
> 1,

since q4(q − 1) > q4 + q + 1 and (q2 − 1)(q + 1) > q2 + q + 1. From here going forward
we will take advantage of the fact that

|N |
p2m · θ(1) · (θ(1) + 1)

⩾
|N |

2 · p2m · θ(1)2
.

Let N ∼= A4(q). Then

|N |
2 · p2m · θ(1)2

⩾
q10(q2 − 1)(q3 − 1)(q4 − 1)(q5 − 1)

2 · (5, q − 1)(q5 − 1)2q2(q + 1)2(q2 + 1)2
>

q8(q − 1)2

2 · (q5 − 1)
> 1.

Let N ∼= An(q) with n ⩾ 5. Then

|N |
2 · p2m · θ(1)2

⩾
q

n(n+1)
2 (q2 − 1)(q3 − 1) · · · (qn+1 − 1)(q − 1)2(q2 − 1)2

2 · (n+ 1, q − 1)(qn+1 − 1)2q6(qn−1 − 1)2(qn − 1)2
>

(q3 − 1)(q − 1)3

2 · (n+ 1, q − 1)q3
> 1

if q ⩾ 3. If q = 2, then since n ⩾ 5,

|N |
2 · p2m · θ(1)2

⩾
9 · 2 1

2
(n2−5n)−6(22 − 1)(23 − 1)

2
> 1.
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2. Lemma 2.4(b) holds for N ∼= Bn(q), n ⩾ 2 and N ∼= Cn(q), n ⩾ 3.

Let n = 2. If 2 ⩽ q ⩽ 4, then the result follows by direct calculation. Suppose that
q ⩾ 5. Then

|N |
2 · p2m · θ(1)2

⩾
q4(q2 − 1)(q4 − 1)

2 · (2, q − 1)(q2 + 1)2(1
4
q2(q − 1)4)

⩾
q2

q2 − 1
· (q + 1)2

q2 + 1
> 1.

Let N ∼= B3(q). If 2 ⩽ q ⩽ 3, then the result follows from character tables in the Atlas
[8]. Suppose that N ∼= B3(q), q ⩾ 4 or N ∼= Bn(q), n ⩾ 4. If q is odd, then it was
shown in [25, Lemma 2.4] that

|N |
p2m · θ(1)2

⩾
|N |

(qn + 1)2 · θ(1)2
> 1.

We note that pm ⩽ qn+1
2

. So

|N |
2 · p2m · θ(1)2

⩾
|N |

2 · ( qn+1
2

)2 · θ(1)2
=

2|N |
(qn + 1)2 · θ(1)2

> 2.

If q is even, then Bn(q) ∼= Cn(q). It is sufficient to consider Cn(q) to conclude our
proof. For C3(2) and C3(3), the character tables in the Atlas [8] shows that the result
is true.

If N ∼= C3(q), q ⩾ 4, then

|N |
2 · p2m · θ(1)2

⩾
q9(q2 − 1)(q4 − 1)(q6 − 1)(q2 − 1)4

2 · (q3 + 1)2(q2 − 1)2q6(q6 − 1)2
⩾

q3(q − 1)2(q4 − 1)

2 · (q2 − q + 1)3(q2 + q + 1)
⩾ 1

since (q4 − 1)(q − 1)2 > (q2 − q + 1)3 and q3 > 2 · (q2 + q + 1).
If N ∼= Cn(q), with n ⩾ 4 and q ⩾ 4, then

|N |
2 · p2m · θ(1)2

⩾
qn

2
(q2 − 1) · · · (q2(n−2) − 1)(q2(n−1) − 1)(q2n − 1)(q2 − 1)4

2 · (qn + 1)2q6(q2(n−2) − 1)2(q2n − 1)2
⩾

qn
2
(q2 − 1)5

2 · (qn + 1)(q2n − 1)
> 1

2
qn

2−4n−6(q2 − 1)5 > 1.

3. Lemma 2.4(b) holds for N ∼= Dn(q), n ⩾ 4, N ∼=2An(q
2), n ⩾ 2 and N ∼=2Dn(q

2),
n ⩾ 4.

Let N ∼= D4(q). For D4(2) and D4(3), the result easily follows from calculations using
the character tables in the Atlas [8]. Suppose that q ⩾ 4. Since q2 + q + 1 > q2 + 1 >
q2 − q + 1,

|N |
2 · p2m · θ(1)2

⩾
q12(q4 − 1)(q2 − 1)(q4 − 1)(q6 − 1)

2 · (4, qn − 1)(q2 − q + 1)2 1
4
q6(q + 1)8(q2 − q + 1)2

⩾
q4(q − 1)4

2 · (q + 1)4
> 1.

Let N ∼= D5(q). Then

|N |
2 · p2m · θ(1)2

>
q5(q4 + 1)

8 · (q4 + q2 + 1)(q − 1)4
> 1.

Suppose that N ∼= Dn(q), n ⩾ 6. Then
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|N |
2 · p2m · θ(1)2

>

qn(n−1)(qn − 1)(q2 − 1)5 · · · (q2(n−4) − 1)(q2(n−3) − 1)(q2(n−2) − 1)(q2(n−1) − 1)(q4 − 1)2

2 · (4, qn − 1)(qn − 1)2(qn−4 + 1)2q12(q2(n−3) − 1)2(q2(n−1) − 1)2(qn − 1)2
⩾

1
8
· qn(n−1)−5n+10 · (q2 − 1)4(q4 − 1) · (q2−1)(qn−4−1)

qn−4+1
> 1.

Let N ∼=2A2(q
2), with (3, q − 1) = 1. Then

|N |
p2m · θ(1) · (θ(1) + 1)

⩾
q3(q2 − 1)(q3 + 1)

(q2 − q + 1)3(q(q − 1))
⩾

q2(q + 1)2

(q2 − q + 1)2
> 1.

Suppose that N ∼=2A3(q
2). Then

|N |
2 · p2m · θ(1)2

⩾
q6(q − 1)2(q + 1)2(q3 + 1)(q2 + 1)

2 · (4, q + 1)q4(q2 + 1)4
⩾
q2(q − 1)2(q + 1)2(q3 + 1)

2 · (4, q + 1)(q2 + 1)3
> 1.

Suppose that N ∼=2An(q
2), n ⩾ 4. Then

|N |
2 · p2m · θ(1)2

⩾

q
n(n+1)

2 (q2 − 1) · · · (qn−1 − (−1)n−1)(qn − (−1)n)(qn+1 − (−1)n+1)(q + 1)2(q2 − 1)2

2 · (n+ 1, q + 1)(qn+1 − (−1)n+1)2q6(qn−1 − (−1)n−1)2(qn − (−1)n)2
⩾

q
1
2
(n2+n)−3n−4(q2 − 1)3(q − 1)2 > 1.

Let N ∼=2D4(q
2). Since q3 − q − 1 ⩾ 5,

|N |
2 · p2m · θ(1)2

⩾
q12(q4 + 1)(q2 − 1)(q4 − 1)(q6 − 1)(q + 1)2

2 · (4, q4 + 1)(q4 + 1)4 1
4
q6(q3 + 1)2

=

(q4 − 1)(q4 + q3 − q − 1)

(q4 + 1)2
· 2q4

q4 + 1
· q

2(q − 1)(q + 1)2

(4, qn + 1)(q3 + 1)
> 1.

Let N ∼=2D5(q
2). If q = 2, then the result follows from the character table in Atlas

[8]. Suppose q ⩾ 3. Then

|N |
2 · p2m · θ(1)2

⩾
q20(q5 + 1)(q2 − 1)(q4 − 1)(q6 − 1)(q8 − 1) · 4 · (q2 + 1)2(q − 1)4

2 · (4, q4 + 1)(q5 + 1)4q6(q2 − 1)2(q3 + 1)2(q4 − 1)2
=

q15(q − 1)3

(q5 + 1)3
· 2(q

3 − 1)(q4 + 1)(q2 + 1)2

(4, q5 + 1)q(q + 1)(q3 + 1)
> 1.

Let N ∼=2Dn(q
2), n ⩾ 6. Then

|N |
2 · p2m · θ(1)2

⩾

4qn(n−1)(qn + 1)(q2 − 1) · · · (q2(n−3) − 1)(q2(n−2) − 1)(q2(n−1) − 1)(q2 + 1)2(q − 1)4

2 · (4, qn + 1)(qn+1 + 1)4q6(qn−3 − 1)2(qn−2 + 1)2(qn−1 + 1)2
⩾

2 · (qn−2 − 1)

(qn−2 + 1)
· (q

n+1)3(q2 − 1)(q2 + 1)2

(4, qn + 1)(qn + 1)3
· qn2−4n−9 > 1.

4. Lemma 2.4(b) holds for exceptional simple groups with the exception of 2B2(q
2)

and 2G2(q
2).

This easily follows using the values in Table 2.2. □



SOLVABILITY AND SUPERSOLVABILITY CRITERIA 7

Table 2.1 Character degrees and pm of classical groups of Lie type
N pm ⩽ Labels Degrees
A2(q) q2 + q + 1 θ(1) = q(q + 1)

A3(q) q2 + q + 1 (1, 3) θ(1) = q(q2 + q + 1)
St q6

(2, 2) q2(q2 + 1)

A4(q) q5 − 1 (1, 4) θ(1) = q(q + 1)(q2 + 1)
St q10

(2, 3) q2(q4 + q3 + q2 + q + 1)

An(q), n ⩾ 5 qn+1 − 1 (1, 1, n− 1) θ(1) = q3(qn−1−1)(qn−1)
(q−1)(q2−1)

St q
n(n+1)

2

(1, n) q(qn−1)
q−1

B2(q) ∼= C2(q) q2 + 1

(
0 1 2

−

)
θ(1) = 1

2
q(q − 1)2

St q4(
0 2
1

)
q(q+1)2

2

Bn(q), n ⩾ 3 qn + 1 θ(1) = q4(qn−2−1)(qn−1−1)qn−1+1)(qn+1)
2(q2−1)2

St qn
2(

1 n
0

)
q(qn+1)(qn−1−1)

2(q−1)(
0 n
1

)
q(qn−1)(qn−1+1)

2(q−1)

Cn(q), n ⩾ 3 qn + 1 θ(1) = q3(q2(n−2)−1)(q2n−1)
(q2−1)2

St qn
2(

1 n
0

)
q(qn+1)(qn−1−1)

2(q−1)(
0 n
1

)
q(qn−1)(qn−1+1)

2(q−1)

D4(q), q > 3 q2 + q + 1 θ(1) = 1
2
q3(q + 1)4(q2 − q + 1)

St q12(
3
1

)
q(q2 + 1)2(

0 3
1 2

)
1
2
q3(q2 + 1)2(q2 + q + 1)
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Table 2.1 continued
N pm ⩽ Labels Degrees
D5(q) q5 − 1 θ(1) = (q − 1)2(q4 − 1)(q5 − 1)(q6 − 1)

St q20(
4
1

)
q(q3+1)(q5−1)

q2−1(
0 4
1 2

)
q3(q5−1)(q2+1)2(q3+1)

2(q2−1)2

Dn(q), n ⩾ 6 qn − 1 θ(1) = q6(qn−4+1)(q2(n−3)−1)(q2(n−1)−1)(qn−1)
(q2−1)2(q4−1)

St qn(n−1)(
n− 1
1

)
q(qn−2+1)(qn−1)

q2−1(
0 2 n
0 1 2

)
q6(q2(n−2)−1)(q2(n−1)−1)

(q2−1)(q4−1)

2A2(q
2) q2 − q + 1 θ(1) = q(q − 1)

St q3

2A3(q
2) q2 + 1 (2, 2) q2(q2 + 1)

St q6

(1, n) q(q2 − q + 1)

2An(q
2), n ⩾ 4 qn+1 − (−1)n+1 (1, 1, n− 1) θ(1) = q3(qn−1−(−1)n−1)(qn−(−1)n)

(q+1)(q2−1)

St q
n(n+1)

2

(1, n) q(qn−(−1)n)
q+1

2D4(q
2) q4 + 1 θ(1) = 1

2
q3(q4 + 1)(q2 − q + 1)

St q12(
1 3

−

)
q(q4 + 1)(

0 2 3
1

)
q3(q4+1)(q2−q+1)(q2+1)

2(q+1)

2Dn(q
2), n ⩾ 5 qn + 1

(
0 2 n− 1

1

)
θ(1) = q3(qn−3−1)(qn−2+1)(qn−1−1)(qn+1)

2(q2+1)(q−1)2

St q12(
1 n− 1

−

)
q(qn−2−1)(qn+1)

q2−1

We note that that the character degree of 2D4(q
2) is 1

2
q3(q4 + 1)(q2 − q + 1) and not

1
2
q3(q + 1)4(q2 − q + 1) as in [25, Table 4].
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Table 2.2 Character degrees and pm of exceptional groups of Lie type
N pm ⩽ Labels Degrees
G2(q), q > 2 q2 + q + 1 G2[1] θ(1) = 1

6
qΦ2

1Φ6

µ1,6 q6

µ2,2
1
2
qΦ2

2Φ6

F4(q) q4 + 1 µ9,2 θ(1) = q2Φ2
3Φ

2
6Φ12

µ1,24 q24

µ9,10 q10Φ2
3Φ

2
6Φ12

E6(q) q8 + q4 + 1 µ6,1 θ(1) = qΦ8Φ9

µ1,36 q36

µ20,2 q2Φ4Φ5Φ8Φ12

E7(q) q7 + 1 µ7,1 θ(1) = qΦ7Φ12Φ14

µ1,63 q63

µ21,3 q3Φ7Φ9Φ14Φ18

E8(q) q10 + q5 + 1 µ8,1 θ(1) = qΦ2
4Φ8Φ12Φ20Φ24

µ1,120 q120

µ8,91 q91Φ2
4Φ8Φ12Φ20Φ24

3D4(q
3) q8 + q4 + 1 µ′

1,3 θ(1) = qΦ12

µ1,6 q12

µ2,1
1
2
q3Φ2

2Φ
2
6

2E6(q
2) q8 + q4 + 1 µ′

2,4 θ(1) = qΦ8Φ18

µ1,24 q36

µ4,1 q2Φ4Φ8Φ10Φ12

2F4(q
2), q2 > 2 q8 − q4 + 1 2B2[a], 1 θ(1) = 1√

2
qΦ1Φ2Φ

2
4Φ6

ε q24

ε′ q2Φ12Φ24

2B2(q
2) q2 +

√
2q + 1 θ(1) = 1√

2
qΦ1Φ2

2G2(q
2), q2 ̸= 3 q4 − q2 + 1 cusp θ(1) = 1√

3
qΦ1Φ2Φ4

ε q6

cusp 1
2
√
3
qΦ1Φ2Φ

′
12

Theorem 2.5. Let N be a non-abelian simple group other than A1(q). Then there
exist non-trivial characters χ, φ ∈ Irr(N) such that both χ and φ extend to Aut(N) and
χ(1) ̸= φ(1).

Proof. This follows from [16, Proposition 3.3]. □

In the next theorem we prove that almost simple groups have at least three composite
character codegrees:
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Theorem 2.6. Let G be an almost simple group with socle N . Then G has at least
three composite character codegrees

Proof. Suppose that G is simple. Then |cd(G)| ⩾ 4 by [14, Theorem 12.15]. Note
that G has at least three non-linear irreducible characters whose degrees are pairwise
distinct. Note that these characters are faithful. Hence for each non-trivial χ ∈ Irr(G),

cod(χ) = |G|
χ(1)

is composite by [2, Theorem 4.1]. Hence we may assume that N < G ⩽
Aut(N).

If N is a sporadic simple group, then from the Atlas [8] we have our result. We may
assume that N is an alternating group, An, n ⩾ 5. If 5 ⩽ n ⩽ 14, then using the Atlas
[8] and GAP [11], we can verify that G has at least three composite character codegrees.
If n ⩾ 15, then by [23, Corollary 5], the first four minimal character degrees of N are
extendible to G and hence our result follows.

Let N be a simple group of Lie type. Then by Tables 2.1 and 2.2, with some excep-
tions, N has at least three unipotent characters which are extendible to Aut(N). By
[3, Lemma 5], all these characters are extendible to G. We are only left to consider
A1(q),A2(q),

2A2(q
2), 2B2(q

2), G2(2),
2F4(2)

′ and 2G2(3).
Suppose that N ∼= A1(q), q ⩾ 5. The character degrees of G are known by [24,

Theorem A]. In particular, G has a character of degree q and has at least two more
irreducible characters of degrees which are multiples of character degrees of N . Since
N is the only minimal normal subgroup of G, we have that G has three non-linear
irreducible faithful characters of distinct degrees. Thus G has three composite character
codegrees.

Suppose that N ∼= A2(q), q ⩾ 2. Observe that N ∼= PSL3(2) ∼= PSL2(7) and this has
been considered above. If q = 3, then by the Atlas [8], G has more than three composite
character codegrees. If q = 4, then by the Atlas [8], Out(N) ∼= D12. Using the Atlas [8]
and GAP [11], G has more than three character composite codegrees. We may assume
q ⩾ 5. Note that |Out(N)| = 2df with q = pf and d = gcd(3, q − 1). Also note that
N has two irreducible characters of degrees q3 and q(q + 1) which are extendible to
G. We want to find a third irreducible character of G. By [22, Table 2], N has an
irreducible character φ of degree (q+1)(q2+ q+1). Let χ be an irreducible constituent
of φG. Then χ(1) = aφ(1), where a divides 2df . Clearly, this is distinct from the first
two degrees. Since all these characters are faithful, we have that G has at least three
composite character codegrees.

Suppose that N ∼=2A2(q
2), q ⩾ 3. By the Atlas [8] and GAP [11], we may assume that

q ⩾ 5. Then N has irreducible characters of degrees q3 and q(q − 1) extendible to G.
Using [22, Table 2], we have that N has an irreducible character of degree (q− 1)(q2 −
q+ 1). Arguing as above, G has an irreducible character of degree b(q− 1)(q2 − q+ 1),
where b divides 2df . Hence the result follows.
Suppose that N ∼=2B2(q

2), q = 22n+1, n > 1. By [5, Section 13.9], N has unipo-
tent characters of degrees q√

1
Φ1Φ2 and q4 which are extendible to Aut(N) using [17,

Theorems 2.4 and 2.5]. Hence G has two composite character codegrees since these
characters are faithful. We want to show that G has another composite character code-
gree. Consider φ ∈ Irr(N) such that φ(1) = Φ8. Then its inertia group I is such that
N ⩽ I ⩽ G ⩽ Aut(N) and so G has an irreducible character of degree |G:I|Φ8. This is
different from the two above and this character is also faithful. Hence the result follows.
For N ∼=2B2(8), we use the Atlas [8] to verify our result.
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If N isomorphic to one of G2(2)
′, 2F4(2)

′ and 2G2(3), then the result follows by
checking the Atlas [8]. □

We shall need the following result by W. Gaschutz to prove Theorem C.

Theorem 2.7. [12] Let G be a finite group and S be the socle of G. Then G has a
faithful irreducible character if and only if S is generated by the G-conjugates of a single
element of S.

3. Proof of Main Results

In this section we prove Theorems A, B and C.

Proof of Theorem A. Suppose the theorem is not true and let G be a minimal coun-
terexample. Using Theorem 2.6, we have that G is not simple. We first claim that G
has a unique non-abelian minimal normal subgroup. If G has minimal normal sub-
groups N1 and N2, then G/Ni is solvable by the minimality of |G|, where i = 1, 2. So
G/(N1 ∩ N2) ∼= G is solvable since the class of finite solvable groups is a formation, a
contradiction.

Let N be the unique minimal normal subgroup of G which is non-abelian. Then
N = T1×T2×· · ·×Tk, where Ti ∼= T , T is a non-abelian simple group for i = 1, 2, . . . , k.
Since CG(N) = 1, we have that G ≤ Aut(N) ∼= Aut(T ) ≀Sk := Γ. Let B = Aut(T )k∩G.
We have that G/B is a permutation group of Ω = {1, 2, . . . , k}. We want to show that
k = 1. We may assume that k ⩾ 2.

Assume first that T is a simple group other than A1(q), q ⩾ 5. By Theorem 2.5,
T has non-linear irreducible characters φ and ψ which are extendible to Aut(T ) and
φ(1) ̸= ψ(1). Consider the characters

ϕ1 = φ× φ× · · · × φ, ϕ2 = ψ × ψ × · · · × ψ and ϕ3 = 1T × φ× · · · × φ.

By [3, Lemma 5], ϕ1 and ϕ2 are irreducible characters of N that extend to G and so
ϕ1(1)

k and ϕ2(1)
k are character degrees of G. For ϕ3, we have that ϕ3 extends to its

inertia group I = IΓ(ϕ3) in Γ by [13, Lemma 25.5]. Since I ∩G is the inertia group of
ϕ3 in G, we have that

|G:I ∩G|ϕ3(1) ∈ cd(G)

by Clifford’s theorem [14, Theorem 6.11]. Note that kernels of the three characters of
G are trivial. Hence G has three composite character codegrees, a contradiction.
We may assume that T ∼= A1(q), q ⩾ 5 and k ⩾ 3. Let φ, ψ ∈ Irr(T ) be such that

φ(1) = q and ψ(1) = q−1. Note that φ is extendible to Aut(T ). Consider the following
irreducible characters of N :

ϕ1 = φ× φ× · · · × φ, ϕ2 = ψ × 1T × · · · × 1T and ϕ3 = 1T × ψ × · · · × ψ.

Clearly, ϕ1(1) = φ(1)k ∈ cd(G). Now both ϕ2 and ϕ3 extend to I = IΓ(ϕ2) = IΓ(ϕ3). It
follows by Clifford’s theorem [14, Theorem 6.11] that the character degrees

|G:I ∩G|ψ(1), |G:I ∩G|ψ(1)m−1 ∈ cd(G).

Since |G:I∩G|ψ(1) ̸= |G:I∩G|ψ(1)m−1, G has three distinct character degrees. But the
kernels of the respective characters are trivial and so G has three composite character
codegrees, a contradiction.

We may assume that T ∼= A1(q), q ⩾ 5 and k = 2. Note that |G/B| = 2. Let us
consider
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ϕ1 = φ× φ, ϕ2 = φ× 1T and ϕ3 = φ× ψ,

where φ, ψ ∈ Irr(T ) such that φ(1) = q and ψ(1) = q−1. Then q2, 2q, |G:I∩G|q(q−1) ∈
cd(G), where I = IΓ(ϕ3) is the inertia group in Γ. Obviously these character degrees are
pairwise distinct. Note that the kernels of the respective characters are trivial. Thus G
has three composite character codegrees, a contradiction.

Hence N is simple and so G is almost simple. Our result then follows from Theorem
2.6. □

Proof of Theorem B. Suppose the theorem is not true and let G be a minimal coun-
terexample. By Lemmas 2.3 and 2.4, G is not a simple group. Clearly, G has a unique
minimal normal subgroup N and N is non-abelian. Since CG(N) = 1, G ≤ Aut(N).
Our next claim is that N is simple. Let N = T1 × T2 × · · · × Tk, where Ti ∼= T ,

T is a non-abelian simple group for i = 1, 2, . . . , k and k ⩾ 2. By Lemmas 2.3 and
2.4, there exists a non-linear θ ∈ Irr(T ) such that |T | ⩾ pm · θ(1) · (θ(1) + 1). Let
ϕ = θ×θ×· · ·×θ ∈ Irr(N). We have that |N | ⩾ pkmθ(1)

k(θ(1)+1)k > pkmϕ(1)(ϕ(1)+1).
Let χ be an irreducible constituent of ϕG. By Clifford’s theory, χN = e

∑t
j=1 ϕj, where

ϕj = ϕ and χ(1)
ϕ(1)

= et | |G:N | and so et ⩽ |G:N |. By Lemma 2.2, there exists ψ ∈ Irr(G)

such that ψN = φ ∈ Irr(N) and φ(1)(φ(1) + 1) ⩽ N . Since N is the unique minimal
normal subgroup of G and N ̸⊆ ker(χ), N ̸⊆ ker(ψ), we see that ker(χ) = ker(ψ) = 1,
and so pχ = pψ, where pχ and pψ are largest prime divisors of |G/ ker(χ)| = |G| and
|G/ ker(ψ)| = |G|, respectively. If pχ ⩽ |G:N |, we conclude that

|G| = |G:N ||N | ⩾ pχφ(1)(φ(1) + 1) = pψ · ψ(1) · (ψ(1) + 1).

Hence cod(ψ) ⩾ pψ(ψ(1) + 1), contradicting our hypothesis. Thus et ⩽ |G:N | < pχ.
Since k ⩾ 2, |N | > p2mϕ(1)(ϕ(1) + 1) and so

|G| = |G:N ||N | > etp2mϕ(1)(ϕ(1) + 1) > pme
2t2ϕ(1)(ϕ(1) + 1) > pχχ(1)(χ(1) + 1),

contradicting our hypothesis, which says cod(ψ) < pψ(ψ(1) + 1). Therefore k = 1 and
G is an almost simple group with N < G.

We now show that N is isomorphic to A1(q), A2(q),
2A2(q

2) with (3, q + 1) = 3,
2B2(q

2) or 2G2(q
2).

Suppose that N ∼= An, where n ⩾ 5. Let n = 5. Then N has an irreducible character
θ of degree 4 which is extendible to G. Let χN = θ for some χ ∈ Irr(G).

|G| = 120 > 5 · 4 · 5 = pmθ(1)(θ(1) + 1).

Let n = 6. Then N has an irreducible character θ of degree 9 that is extendible to G.
So

|G| ⩾ 2 · 360 > 5 · 9 · 10 = pχθ(1)(θ(1) + 1).

Suppose that N is isomorphic to a sporadic simple group or An, n ⩾ 7. It follows that

|G| ⩾ 2|N | > pmθ(1)(θ(1) + 1) = pmχ(1)(χ(1) + 1).

for some θ ∈ Irr(N) and χ ∈ Irr(G) such that χN = θ using Lemma 2.3.
Let N be the Tits group 2F4(2)

′ or a simple group of Lie type with the following
exceptions: A1(q), A2(q),

2A2(q
2) with (3, q+1) = 3, 2B2(q

2), or 2G2(q
2). Using Lemma

2.4(b), there exists some non-linear θ ∈ Irr(N) such that |N | ⩾ p2mθ(1)(θ(1) + 1).
Suppose that χN = e1

∑t1
j=1 θj with θj = θ for some χ ∈ Irr(G). It follows that

χ(1) = e1t1θ(1) and e1t1 ⩽ |G:N | < pχ. It follows that
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|G| = |G:N ||N | > e1t1p
2
mθ(1)(θ(1) + 1) > pχe

2
1t

2
1θ(1)(θ(1) + 1) > pχχ(1)(χ(1) + 1).

This is obviously a contradiction. Hence our claim is true. We are left with the cases
mentioned above.

Suppose that N ∼= A1(q), q = pr ⩾ 7 for some prime p, with q ̸= 9(since A6
∼= A1(9)).

Note that pm ⩽ q + 1. Let q > p. This means that (2, q − 1)pm ⩽ q + 1. Since
|A1(q)| = 1

(2,q−1)
q(q + 1)(q − 1),

|G| ⩾ 2|N | = 2q(q + 1)(q − 1)

(2, q − 1)
⩾ pm · 2q(q − 1) > pmχ(1)(χ(1) + 1),

where χ ∈ Irr(G) is such that χN = θ, where θ is the Steinberg character θ of N of
degree q.

We may assume that q = p and p is an odd prime. Using [24, Lemma 4.5], N has an
irreducible character θ of degree p− 1 which is extendible to G. Hence

|G| = 2|N | = (p+ 1)(p− 1)p ⩾ pmθ(1)(θ(1) + 1),

a contradiction.
Suppose that N ∼= A2(q), q = pr for some prime p. Using the character tables in

the Atlas [8], we may assume that q ⩾ 11. Let |G:N | ⩽ 8. There exists θ ∈ Irr(N)
such that θ(1) = q(q + 1). Let χ ∈ Irr(G) be an irreducible constituent of θG. Since
χ(1) ⩽ |G:N |θ(1) and pm ⩽ q2 + q + 1, we have

|G|
pmχ(1)(χ(1) + 1)

⩾
q3(q3 − 1)(q2 − 1)

(3, q − 1) · 8 · (q2 + q + 1)2q(q + 1)
=

3(q − 1)

24
·

q2(q−1)
3

q2 + q + 1
,

since q ⩾ 11 and q−1
3
q2 > 3q2 > q2 + q + 1.

We may assume that |G:N | ⩾ 9 and let θ ∈ Irr(N) be the Steinberg character. Then
there exists χ ∈ Irr(G) such that χN = θ. Now |G| ⩾ 9|N | ⩾ 3q3(q3 − 1)(q2 − 1) and

|G|
pmχ(1)(χ(1) + 1)

⩾
3q3(q3 − 1)(q2 − 1)

(q2 + q + 1)q3(q3 + 1)
>

3(q − 1)2

q2 − q + 1
>

3(q − 1)2

(q + 1)2
> 1.

Suppose that N ∼=2A2(q
2), where (3, q + 1) = 3, q = pr for some prime p. Using the

character tables in the Atlas [8], we may assume that q ⩾ 11. Let θ ∈ Irr(N) be the
Steinberg character with χN = θ for some χ ∈ Irr(G). Then

|G|
pmχ(1)(χ(1) + 1)

⩾
3q3(q3 + 1)(q2 − 1)

(3, q + 1)(q2 − q + 1)q3(q3 + 1)
⩾

3(q2 − 1)

(3, q + 1)(q2 − q + 1)
> 1.

We may assume that |G:N | = 2. Let θ ∈ Irr(N) be such that θ(1) = q(q − 1) and χ be
an irreducible constituent of θG. Then χ(1) ⩽ 2θ(1) = 2q(q − 1). Thus

|G|
2pmχ(1)2

⩾
2|N |

2 · 3 · 4pmθ(1)2
=
q(q + 1)2

12(q − 1)
> 1,

since q ⩾ 11.
Suppose that N ∼=2B2(q

2) (or N ∼=2G2(q
2)). Since Out(N) is cyclic, let θ ∈ Irr(N)

be such that

θ(1) = 1√
2
q(q2 − 1) (respectively, θ(1) = 1√

3
q(q4 − 1)).

Since (θ(1),Out(N)) = 1 and θ is invariant in G, θ is extendible to G by [14, Corollary
11.22]. Suppose that χN = θ for some χ ∈ Irr(G). Then
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|G|
2pmχ(1)2

⩾
2q4(q4 + 1)(q2 − 1)

(q2 +
√
2q + 1)q2(q2 − 1)2

>
2q2(q2 − 1)

q2 +
√
2q + 1

> 1

(and respectively,

|G|
2pmχ(1)2

⩾
2q6(q6 + 1)(q2 − 1)

2(q4 − q2 + 1)1
3
q2(q4 − 1)2

>
3q4

(q2 + 1)2
> 1).

This final contradiction concludes our proof. □

Proof of Theorem C. Suppose G is non-trivial. We prove the result by induction
on |G|. If N is a non-trivial minimal normal subgroup of G, then G/N satisfies the hy-
pothesis and so G/N is supersolvable. If there exists another minimal normal subgroup
M of G, then G/(N ∩M) ∼= G is also supersolvable. We may assume that N is the
unique minimal normal subgroup of G.

Suppose that kerχ = 1 for some χ. Then by hypothesis, |G/ kerχ| = |G| ⩽ χ(1)2+2.
This means that |G| = χ(1)2+2. Since G is non-abelian and χ is the only one non-linear
irreducible character. By [21], G is an extra-special 2-group or a Frobenius group of
order m(m − 1) with an abelian kernel of order m where m is a power of a prime. In
the first case G is supersolvable and in the latter case G ∼= S3 since |G/G′| = 2. Hence
G is supersolvable.

We may assume that kerχ ̸= 1 (for all non-linear χ ∈ Irr(G)). Note that |G: kerχ| ⩽
χ(1)2 + 2 ⩽ |G| by Lemma 2.1. If |G: kerχ| = χ(1)2, then χ(1) vanishes on G \ kerχ
using [14, Lemma 2.30], a contradiction. Suppose that |G: kerχ| = χ(1)2 + 1. Since
χ(1) | χ(1)2 + 1, we have another contradiction. We may assume that |G: kerχ| =
χ(1)2 + 2. It follows that χ(1) = 2. Hence cd(G) = {1, 2}. By [14, Theorem 12.5],
either G has an abelian normal subgroup of index 2 or G is a direct product of a 2-group
and an abelian group. Now G cannot be the latter case because it will have at least
two minimal normal subgroups. Note that G has a normal abelian 2-complement by
Thompson’s theorem [14, Corollary 12.2]. SinceN is a unique minimal normal subgroup
of G, the abelian 2-complement is a p-group for some p. Moreover |G: kerχ| ⩽ 6, that
is, G/ kerχ is isomorphic to S3. Hence p = 3.

Since kerχ ̸= 1, N cannot be generated by the G-conjugates of any single element
of N by Theorem 2.7. Consider x ∈ N an element of order 3 and y an involution.
Consider ⟨x, y⟩ = N1⟨y⟩, where N1 is a normal 3-subgroup of G. Since N is unique a
minimal subgroup of G, N1 = N . This means that N1 is generated by conjugates of y,
a contradiction. That concludes our proof. □

Example 3.1. Consider Gn = [C3 ×C3 × · · · ×C3]⋊C2, the semidirect product of the
direct product of n copies of C3 and C2, where C2 acts on [C3 ×C3 × · · · ×C3] without
non-trivial fixed points. For n ⩾ 2, Gn has no faithful irreducible characters using
Theorem 2.7. Note that cd(Gn) = {1, 2}. We prove that |Gn: kerχ| = 6 = χ(1)2+2 for
all non-linear irreducible characters of Gn by induction on |Gn|. For G1, G2, G3 and G4,
the result is true since these are the following groups respectively, S3, SmallGroup(18,4),
SmallGroup(54,14), SmallGroup(162,54) using GAP [11] notation. If χ ∈ Irr(Gn) in
non-linear, then kerχ ̸= 1 and so χ is a faithful character of G/ kerχ ∼= Gn−k for
some positive integer k. Since G1 is the only one with a faithful non-linear character,
G/ kerχ ∼= S3 and the result follows.
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