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Abstract: Appropriate asphalt binder selection is dependent on the correct determination of maxi-
mum and minimum pavement temperatures. Temperature prediction models have been developed to
determine pavement design temperatures. Accordingly, accurate temperature prediction is necessary
to ensure the correct design of climate-resilient pavements and for suitable pavement overlay design.
Research has shown that the complexity of the model, input variables, geographical location among
others affect the accuracy of temperature prediction models. Calibration has also proved to improve
the accuracy of the predicted temperature. In this paper, the performance of three pavement tempera-
ture prediction models with a sample of materials, including asphalt, was examined. Furthermore,
the effect of calibration on model accuracy was evaluated. Temperature data sourced from Pretoria
were used to calibrate and test the models. The performance of both the calibrated and uncalibrated
models in a different geographical location was also assessed. Asphalt temperature data from two
locations in Ghana were used. The determination coefficient (R2), Variance Accounted For (VAF),
Maximum Relative Error (MRE) and Root Mean Square Error (RMSE) statistical methods were used in
the analysis. It was observed that the models performed better at predicting maximum temperature,
while minimum temperature predictions were highly variable. The performance of the models varied
for the maximum temperature prediction depending on the material. Calibration improved the
accuracy of the models, but test data relevant to each location ought to be used for calibration to be
effective. There is also a need for the models to be tested with data sourced from other continents.

Keywords: temperature prediction models; asphalt binder; climate resilience; pavement temperature

1. Introduction

It is important that the right asphalt binder is selected to ensure the longevity of the
pavement with low maintenance and repair costs given the high cost of hot mix asphalt. The
performance of asphalt binders on the road is affected by environmental factors such as air
temperature and moisture. While moisture can be controlled through drainage provisions,
the sensitivity of the pavement’s performance to temperature [1] is of particular concern.

Asphalt binders are selected based on their performance under expected pavement
temperature extremes, i.e., the average seven-day maximum pavement temperature and
the minimum pavement temperature, in the location of their intended use. The pavement
temperatures are determined from air temperature. The maximum pavement temperature
is determined at a depth of 20 mm below the pavement surface. Shear stresses arising from
a combination of pavement temperature and traffic loading were determined to be critical
at this depth [2].

At high temperatures, asphalt softens and pavement damage such as rutting will
appear on the pavement, while at low temperatures asphalt stiffens and is subject to thermal
cracking. The penetration grading system of measuring asphalt binder performance ensures
that the asphalt binder used has sufficient stiffness to resist rutting and adequate resistance
to thermal cracking. The correct selection of asphalt binders thus ensures that the asphalt
binder chosen meets both the expected maximum and minimum pavement temperature
requirements for the serviceability of the road under the given environmental conditions.
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Extensive research has been carried out across the world and in different climatolog-
ical regions to formulate pavement temperature prediction models that can be used to
select asphalt binder materials for asphalt roads [3,4]. The models can be categorised as
theoretical—based on the principles of heat transfer—or empirical models—based on statis-
tical analysis of the measured environmental factors to determine pavement temperature.

Theoretical models are widely acceptable, but they are more complex and require
several input variables than the latter. This makes it more difficult to obtain accurate
results when using theoretical models [5]. Empirical models, on the other hand, are
simpler but require calibration. Their accuracy is highly dependent on the database used in
developing the model. Kassem et al. [6] also found that calibration of the models improved
the accuracy of the pavement temperature predicted values. The accuracy of predicted
pavement temperature is also affected by the availability and accuracy of weather data, as
well as variability of thermal properties of pavement materials [7].

According to Qin et al. [8], pavement temperature is mainly affected by air temper-
ature, but other factors such as geographical location play a major role. Asefzadeh et al.
and Dzotepe [9,10] noted that geographical location significantly affects the accuracy of
predicted pavement temperature. The effect of geographical location has been considered
in most models through the inclusion of the latitude of the area under study.

Several studies have been undertaken in different parts of the world (India, Pakistan,
Iraq, Kuwait, Thailand, Egypt, Libya (cited from Tutu et al. [11]), Oman [12], Ghana [11]
and Australia [13]) to determine the applicability of pavement prediction models in perfor-
mance grade selection. Denneman et al. [13] observed good agreement in the predicted
maximum pavement temperature for both internationally and locally developed mod-
els; however, they [13] noted more variability between model predictions for minimum
pavement temperature. Tutu et al. [11] in their study identified the need for locally devel-
oped models. They [11] established that the Strategic Highway Research Program (SHRP)
Superpave model did not perform reliability for performance binder selection in Ghana.

Developing temperature prediction models would require resources in terms of time,
finances and labour. In the absence of local models, published models that are widely used
in pavement design for binder selection have to be used. This paper reviewed pavement
prediction models based on ambient temperatures and latitude as input variables. Most
temperature prediction models have been developed to predict pavement temperature for
use in asphalt binder selection. In this study, the performance of temperature prediction
models with other pavement materials (gravel, concrete, block paving) including asphalt
was examined. The effect of calibration on predicted values, for the different materials,
was also examined. The performance of both the calibrated and uncalibrated models in
different geographical locations was also evaluated. Asphalt pavement temperature data
sourced from two locations in Ghana were used.

2. Materials and Methods
2.1. Literature Review

A review of five location-based temperature prediction models was carried out. These
included the Strategic Highway Research Program (SHRP) Superpave model [2], South
Africa model developed by Viljoen [14], Saudi Arabia model developed by Wahab et al. [15],
United States of America (USA) model developed by Diefenderfer et al. [16] and an Oman
model developed by Hassan et al. [17]. The data collection process and the strengths and
weaknesses of the three models are discussed in the following sections.

2.1.1. SHRP Superpave Model

SHRP developed the first Superpave™ method for asphalt mix design between 1987
and 1993 that included temperature models as part of the design method [2]. Two models
are used to estimate minimum and maximum pavement temperatures, from air tempera-
ture. A theoretical model is used to estimate maximum pavement temperature from the
maximum air temperature and geographical location (latitude). This model was developed
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based on the results of heat-transfer modelling and regression analysis. Huber [18] further
simplified the equations for maximum and minimum pavement temperatures. Pavement
and air temperatures collected at 30 test sites throughout North America were used. Thus,
the model may require verification and calibration for use at other geographical locations.

2.1.2. Viljoen Model

Viljoen [14] used local pavement temperature data to develop temperature prediction
equations for asphalt pavements in South Africa. A difference in the final form of the
equations of Viljoen [14] and Superpave is the inclusion of the zenith angle, in addition to
the latitude. The inclusion of the zenith angle allows for seasonal, and daily, variation in
solar energy potential.

Denneman [19] further validated the model using new pavement temperature data
from outside the datasets with which the model was developed. It was demonstrated that
both Viljoen’s model and the SHRP Superpave model provide accurate predictions of the
maximum surface temperature. The Viljoen model, generally, had less scatter, and therefore
a smaller standard deviation for the error of the maximum surface temperature prediction.
The difference in consistency was attributed to the inclusion of the zenith angle in the Viljoen
model. It was concluded that the Viljoen model provides a pavement temperature prediction
with an accuracy that is acceptable for use in hot mixed asphalt (HMA) design. It is important,
however, to select a nearby weather station in an area that has a very similar climate.

2.1.3. Saudi Arabia Model

Wahab et al. [15] investigated trends in pavement temperature variation in an arid
environment in Saudi Arabia. Pavement temperature variation with pavement depth was
monitored for two years, and a statistically reliable correlation developed between air tem-
perature and pavement temperature at any depth if the surface or air temperature is known.

Measurements were carried out at two test sites, in Riyadh and Dharan. The Riyadh
test site used asphalt concrete slabs of 15, 20 and 30 cm thickness. The Dharan test site used
a 25 cm asphalt-bound layer on top of a compacted aggregate subbase. The asphalt slabs
comprised a 5 cm dense graded wearing course mix and a dense graded base course mix
with variable thickness. Temperature measurements were taken at 2, 4, 8 and 16 cm and at
the bottom of the pavement. The air temperature was measured at a height of 1.5 m above
the pavement surface. A good correlation (R2 = 93%) was established between recorded
air temperature and pavement surface and depth temperature. This model, however, was
developed for Saudi Arabia, which has a desert climate.

2.1.4. Diefenderfer Model

Diefenderfer et al. [16] developed a model to predict daily maximum or minimum
pavement temperatures using daily maximum or minimum ambient temperatures, the
day of the year and the depth of pavement temperature required. The model was further
developed by Diefenderfer et al. [20] to include the daily amount of solar radiation at a
given location, thus enabling the model to predict pavement temperatures at any location.
Data from the Virginia Smart Road were used to develop specific models to predict the
daily maximum and minimum pavement temperature. In addition to using latitude as an
input variable, the model also included the solar declination angle as an input variable, as
in the Viljoen model. Thus, the performance of this model has also been considered.

2.1.5. Oman Model

Research was undertaken in Oman [17] to develop models to predict maximum and
minimum asphalt pavement temperatures. A pavement monitoring station was set up at
the Sultan Qaboos University campus to monitor air, pavement temperatures and solar
radiation. Data were collected for 445 days. Daily minimum and maximum temperatures
were recorded. Regression analysis was used to develop the minimum and maximum
pavement temperature models, using air temperature, solar radiation and duration of solar
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radiation as independent variables. The maximum temperature prediction depth, however,
is limited to the top 20 mm of the pavement.

Hassan et al. [17] also noted that solar radiation can be estimated using the relationship
described in Diefenderfer et al. [20], which estimates solar radiation using the geographical
latitude of any given location and day of the year.

2.2. Selection of Models

Of the five reviewed models, the SHRP Superpave model used in LTTPBind soft-
ware, the Viljoen model used in Pavement Analysis and Design Software (PADS) and the
Diefenderfer model, which includes the solar declination angle as an input variable as
in the Viljoen model, were carried forward for evaluation of their performance. These
were found to be applicable to different geographical locations and are not limited by the
ambient temperatures like the Saudi Arabia model or the test depth as in the Oman model.

2.3. Data Collection

Empirical temperature data for air and asphalt, gravel, concrete and block paving materi-
als were collected from Pretoria (South Africa) to determine the application of the temperature
prediction models to different materials, including asphalt. Half of the data were used for
calibrating the models, while the other half were used for validating the calibrated models.

Pavement temperature and air temperature data from two sites in Ghana were also
obtained to evaluate the performance of the models in predicting pavement temperature
at other geographical locations. This section describes the data collection process at the
different locations.

2.3.1. Pretoria Data Collection

Temperature data for air, asphalt, gravel, concrete and block paving materials were
measured over six months, from April 2021 to September 2021, in Pretoria. The temperature,
for each of the different materials, was measured within the top 20 mm of the material. The
sections were located within a radius of 500 m of one another. Data were collected every
15 min, using thermocouples installed in the pavement that were linked via a LoRAWAN
network to a central hub. The temperature data from Pretoria were cleaned to remove any
missing values.

2.3.2. Ghana Data Collection

Maximum ambient and asphalt pavement temperature data measured at two test
sites in Ghana were obtained from Koranteng-Yorke [21] and used to validate the models.
The temperature data were measured at Akumadan, on the Kumasi-Akumadan-Techiman
national road, and Sogakope, on the Tema-Sogakope-Aflao national road. The ambient
temperature was measured using a thermometer and the pavement temperature was
measured using a thermocouple placed 1 m across an HMA wearing course at 20 mm
depth for one year. Hourly temperature data measured over 24 h were used to validate
the models.

2.4. Analysis
2.4.1. Pavement Temperature Prediction

The ambient temperature measured at the test sections was used to predict the temper-
ature at 20 mm within the different materials. The predicted temperatures were determined
using formulas presented in Huber [18] for the SHRP Superpave model; Viljoen [14] for
the Viljoen model; and Diefenderfer et al. [20] for the Diefenderfer model; Microsoft Excel
was used.

2.4.2. Data Randomization

The measured temperature and the corresponding predicted temperature were ran-
domised for each of the three models, using the random function in Microsoft Excel.
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Random numbers were generated in a column beside the pavement temperatures. The
random numbers were copied and pasted in an adjacent empty column. The pasted values
were then dragged to replace the random numbers generated in the previous step. The
dataset, including pavement temperature data and random numbers, was sorted in ascend-
ing order. This ensured that the data were randomised to avoid bias likely to arise from
effects of using data from one season.

2.4.3. Calibration

After randomisation of the temperature data, scatter plots were plotted with one half of
the data. The predicted pavement temperature was plotted on the y-axis and the measured
temperature on the x-axis. The line of best fit for the plotted points was determined. To
calibrate the models for each of the materials, adjustments were applied to the intercept
and slope of the line of best fit to reduce the error between measured and predicted values
until the predicted pavement temperatures plotted closer to the line y = x. The adjusted
equation was taken as the calibrated equation for the respective model and used to predict
pavement temperature for the remaining half of the dataset.

The predicted pavement temperature using the calibrated equation was compared
with the model predicted pavement temperature to evaluate the effect of calibration on
model accuracy.

2.4.4. Statistical Analysis

Statistical analysis methods, including the determination coefficient (R2), Variance
Accounted For (VAF), Maximum Relative Error (MRE) and Root Mean Square Error (RMSE)
were used to evaluate model performance for the different materials, for both calibrated
and uncalibrated data, as well as model performance at the Akumadan and Sogakope test
sites in Ghana.

• R2 measures goodness of fit, i.e., how well a linear regression model fits the measured

data, where R2 =

 ∑N
i=1

(
x−−x

)(
y−−y

)
∑N

i=1

(
x−−x

)2

∑N
i=1

(
y−−y

)2


2

. R2 varies between 0 and 1; the closer it

is to 1, the better the model, i.e., 100% of the variation in the model can be explained
by the predictor variables;

• VAF measures the variance accounted for between measured values and predicted

values, where VAF = 100
[
1− var(x−y)

var(x)

]
. The closer the VAF is to 100, the better

the model;
• MRE is defined as the ratio of the absolute error of the predicted value to the measured

value, where MRE = max
(

100 |x−y|
x

)
. This provides a measure of how large the

error is relative to measured values, so that the closer the value is to zero, the better
the model;

• RMSE measures the extent to which predicted values deviate from measured/actual

values, on average, where RMSE =
√

1
N ∑N

i=1(x− y)2. RMSE decreases as the error
in the predicted values decreases, so that the closer the value is to zero, the better
the model.

Here, x and y are measured values and predicted values, respectively;
−
x and

−
y are

average measured values and average predicted values, respectively; var(.) is the variance.
The statistical results for R2 were expressed as a percentage and plotted on graphs

alongside the VAF (%) and MRE (%). The RMSE was not converted to percentage to avoid
vertical scale exaggeration. The plots are presented in Figures 1–3. The closer the R2 (%)
and VAF (%) are to 100, the more accurate the model predictions, while the closer the MRE
(%) and RMSE are to zero, the more accurate the model predictions.
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Figure 1. Comparison of statistical analysis results for uncalibrated and calibrated predicted maxi-
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Figure 3. Statistical analysis results of the effect of geographical location on both calibrated and
uncalibrated models.

3. Results

The performance of the models for maximum and minimum temperature prediction
was evaluated using the statistical methods discussed above. The performance of the
models with different pavement materials (asphalt, concrete, block paving and gravel),
the effect of calibration on the accuracy of the models’ predicted values and the effect of
geographical location on both the calibrated and uncalibrated models were examined.

3.1. Performance of Pavement Temperature Prediction Models for Different Pavement Materials,
before Calibration
3.1.1. Predicted Maximum Temperature

The results of the different statistical tests were examined and compared to identify
the best model for predicting the maximum temperature for the different materials. A
summary of the predicted maximum temperature for both the calibrated and uncalibrated
models is presented in Figure 1. The detailed results are presented in Table 1.

The lower the MRE and RMSE of the model predicted maximum temperature, the
more accurate the model is. For the different materials evaluated, the Viljoen model had
the lowest MRE and low RMSE for asphalt and gravel, and the Diefenderfer model had the
lowest MRE and RMSE for concrete as shown in Figure 1. The performance of the models
for block paving was highly variable and thus inconclusive. For predicted maximum
temperature in block paving, the Viljoen model had the lowest MRE but the lowest VAF;
the Diefenderfer model had the lowest RMSE but a higher MRE than the Viljoen model;
while the SHRP Superpave model had the highest VAF but the highest MRE. The SHRP
Superpave model performed best with gravel.
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Table 1. Analysis of uncalibrated and calibrated predicted maximum temperatures.

Analysis Material

Viljoen Model SHRP Superpave Model Diefenderfer Model

Before
Calibration

After
Calibration

Before
Calibration

After
Calibration

Before
Calibration

After
Calibration

R2

Asphalt 0.8313 0.8313 0.6694 0.6694 0.8338 0.8338
Gravel 0.9411 0.9411 0.8536 0.8536 0.9126 0.9126
Concrete 0.9031 0.9031 0.8842 0.8842 0.8858 0.8858
Block paving 0.8017 0.8017 0.7998 0.7998 0.7598 0.7598

RMSE

Asphalt 11.0132 3.1463 11.6609 5.0166 8.5995 3.3905
Gravel 10.6601 1.7083 10.7882 2.3293 8.8178 1.5449
Concrete 9.4748 1.5738 9.9504 1.7175 7.2553 1.9641
Block paving 7.0864 2.4441 6.8919 2.1166 4.9582 3.0033

MRE (%)

Asphalt 98.86 65.99 113.74 55.13 148.75 45.57
Gravel 56.34 17.62 73.71 25.20 66.27 24.54
Concrete 84.51 39.55 106.91 22.34 63.91 23.65
Block paving 53.62 29.65 77.22 29.42 66.42 41.99

VAF (%)

Asphalt 83.01 82.06 63.23 48.17 79.30 78.34
Gravel 78.63 94.08 84.92 81.74 91.13 90.47
Concrete 69.56 89.92 88.06 86.25 88.25 87.81
Block paving 41.45 73.76 79.39 79.89 73.08 65.31

3.1.2. Predicted Minimum Temperature

A summary of results for the minimum predicted temperature for both the calibrated
and uncalibrated models is presented in Figure 2. The detailed results are presented
in Table 2.

The model predictions for minimum temperature were variable and inconsistent as
shown by the low VAF values. The lower the MRE and RMSE of the model-predicted
minimum temperature, the more accurate the model is. For the different materials exam-
ined, the Diefenderfer model performed best for minimum temperature prediction for all
the materials tested. The Diefenderfer model, however, had the least goodness of fit and
VAF for asphalt. Thus, the accuracy of the models for minimum predicted temperature in
asphalt was inconsistent.

Table 2. Analysis of predicted minimum temperatures.

Analysis Material

Viljoen Model SHRP Superpave Model Diefenderfer Model

Before
Calibration

After
Calibration

Before
Calibration

After
Calibration

Before
Calibration

After
Calibration

R2

Asphalt 0.6137 0.6137 0.4674 0.4674 0.3776 0.3776
Gravel 0.6702 0.6702 0.7321 0.7321 0.8471 0.8471
Concrete 0.6766 0.6766 0.7572 0.7572 0.8794 0.8794
Block paving 0.6678 0.6678 0.6962 0.6962 0.8939 0.8939

RMSE

Asphalt 4.8524 4.8316 8.0644 5.3390 4.6242 4.5878
Gravel 5.1873 2.6673 7.6755 2.5906 2.9683 1.7031
Concrete 5.5343 2.7527 8.6976 0.7572 3.8005 1.8192
Block paving 6.1729 2.7966 8.7745 2.2907 3.7749 2.0786

MRE (%)

Asphalt 219.06 271.73 309.69 290.59 83.69 84.40
Gravel 174.83 71.08 231.78 77.86 63.62 48.65
Concrete 102.98 58.36 214.77 2.3315 95.46 47.58
Block paving 118.74 54.72 208.96 48.36 81.19 46.59

VAF (%)

Asphalt 51.30 −3.30 35.43 −13.29 30.48 24.20
Gravel 47.47 55.87 59.09 60.00 78.04 82.43
Concrete 47.49 57.30 64.26 73.15 75.33 79.50
Block paving 28.01 37.49 47.22 57.89 68.25 68.25
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3.2. Performance of Calibrated Models

The R2 value for the maximum and minimum temperature calibrated models was
equal to that of the uncalibrated models; therefore, the variation in the models was the
same for both the calibrated and uncalibrated models.

3.2.1. Calibrated Maximum Temperature Models

Calibration of the maximum temperature prediction models improved the accuracy of
predicted temperatures. This is shown in Figure 1 by the reduction in RMSE and MRE for all
the models. The greatest improvement in the accuracy of predicted maximum temperature
values after calibration was observed with the Viljoen model for gravel, concrete and block
paving. Increment in the VAF of the calibrated model was observed for the Viljoen model
in gravel, concrete and block paving, while the VAF of the other models did not increase
after calibration. For asphalt, the Diefenderfer model showed the greatest improvement for
predicted maximum temperature values after calibration.

3.2.2. Calibrated Minimum Temperature Models

Higher variability was observed for minimum predicted temperatures, as shown by
the lower VAF percentages. Calibration was effective at improving the accuracy of the
models for the minimum predicted temperature of gravel, concrete and block paving. This
is shown by the increase in VAF and reduced MRE and RMSE between the uncalibrated
and calibrated models as shown in Figure 2. The greatest improvement in the accuracy
of predicted minimum temperatures was observed with the SHRP Superpave model for
gravel, concrete and block paving. Calibration was not effective for improving the accuracy
of the Viljoen and Diefenderfer minimum temperature predictions for asphalt. The accuracy
of the SHRP Superpave model was only slightly improved for asphalt. This is shown by
the reduced RMSE and MRE, but lower VAF for asphalt in Figure 2.

3.3. Performance of Models at Different Geographical Locations

The R2 value was the same for both calibrated and uncalibrated models, thus the
goodness of fit remained unchanged. A summary of the results of statistical analysis is
presented in Figure 3, with the detailed results in Table 3.

The uncalibrated models performed better than the calibrated models, as shown by
the higher RMSE and MSE values for the calibrated models. The Viljoen model had the
lowest RMSE and MRE values at both sites and thus performed best. This was followed by
the Diefenderfer model and then the SHRP Superpave model. Thus, calibration should be
carried out for each location, using data obtained from the respective location to improve
prediction accuracy.

Table 3. Results of statistical analysis of predicted temperature values at other locations.

Analysis Location

Viljoen Model SHRP Superpave Model Diefenderfer Model

Before
Calibration

After
Calibration

Before
Calibration

After
Calibration

Before
Calibration

After
Calibration

R2 Akumadan 0.9772 0.9772 0.9772 0.9772 0.9567 0.9567
Sogakope 0.9971 0.9971 0.9971 0.9971 0.9976 0.9976

RMSE
Akumadan 3.38 12.60 17.76 22.76 8.95 20.22
Sogakope 2.18 11.26 18.96 21.91 11.20 16.69

MRE (%)
Akumadan 15.14 37.59 73.09 77.03 45.12 60.27
Sogakope 14.38 42.21 74.56 82.87 47.60 58.39

VAF (%)
Akumadan 80.30 83.47 81.71 94.17 66.04 45.68
Sogakope 34.63 36.78 35.57 63.33 26.91 17.32
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4. Discussion

The performance of three temperature prediction models with different materials, and
at different geographical locations, was evaluated using statistical analysis. The effect of
calibration on model accuracy was also examined.

4.1. Materials Performance

The performance of the models varied based on the material tested. The results showed
that all three models performed better at predicting maximum pavement temperature than
minimum pavement temperature.

For maximum temperature prediction, the Viljoen model performed best for asphalt
and gravel, while the Diefenderfer model performed best for concrete. The SHRP Superpave
model performed best at predicting maximum temperature in gravel; while it is not the
best for predicting maximum temperature for gravel, it could be used as an alternative.
High variability was observed in model performance for predicting maximum temperature
for block paving.

Higher variability was observed for the minimum predicted temperatures. This
is in agreement with what was observed in Australia by Denneman [19]. Nonetheless,
the Diefenderfer model performed best for all the materials examined. The minimum
temperature prediction models, however, would require revising to improve their accuracy
for reliable use in pavement design.

4.2. Calibration

Calibration does not affect the goodness of fit of the models (R2), thus the variance
attributable to the models remains the same even after calibration. The accuracy of the
predicted temperature for all the models improved with calibration, particularly for pre-
dicted maximum temperature. This was similar to the observations made by Kassem [6].
Calibration was most effective in improving the accuracy of the predicted maximum tem-
perature of the Viljoen model in gravel, concrete and block paving, and the Diefenderfer
model in asphalt. For minimum predicted temperature, calibration was mostly effective for
the SHRP Superpave model in gravel, concrete and block paving.

While the accuracy of predicted temperature improved when a model was calibrated
with part of the data from the dataset, it did not improve when the same calibrated model
was used to predict data from a different geographical location. It is important, therefore,
to acquire sufficient empirical data from the geographical location where the model is to be
applied to calibrate the models and thereby improve their prediction accuracy. Ideally, this
should be performed for each material.

4.3. Effect of Geographical Location

The Viljoen model performed best followed by the Diefenderfer model and then
the SHRP Superpave model for the predicted maximum temperature in asphalt at the
two locations (Akumadan and Sogakope) in Ghana. It was noted from the literature review
that the prediction accuracy of the models is highly dependent on the geographical location.
The Viljoen model was developed in South Africa and the temperature data of the materials
were also sourced from South Africa. In addition, the effect of geographical location has
been tested with data sourced from Ghana, on the African continent. Thus, it would be
necessary to test the models with data sourced from other continents. There is also a need
to have locally developed models for use in pavement design.

5. Conclusions

Accurate temperature prediction is important in choosing a suitable asphalt binder for
the respective climate to ensure the design of climate-resilient pavements. Maximum and
minimum temperature prediction models have been developed for use in asphalt pavement
design. These have proven to perform reliably well for maximum temperature prediction
with other materials such as gravel, concrete and block paving. The performance of all the
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three models, though, was highly variable for minimum temperature prediction. Thus, the
assumptions made in building the minimum temperature models would require revision
to improve the accuracy of the models.

Calibration can also improve temperature models’ accuracy. It is important, however,
that calibration is undertaken using data sourced from the test location to improve the
accuracy of predicted values. Consequently, sufficient empirical data should be collected at
each location if the advantages of calibration are to be utilised.

The Viljoen model developed in South Africa had the best performance of the three
models when examined using asphalt temperature data sourced from Ghana and Pretoria.
However, this has been evaluated using data sourced from Africa. There is a need therefore
to evaluate the performance of the models using data sourced from other continents. It
is recommended that temperature data, such as those presented in Picado-Santos [22] for
Portugal, Europe, and models developed on the European continent, for example Minhoto
et al. [23], be considered for further assessment in future work.

Author Contributions: Conceptualization and methodology, W.J.v.S.; formal analysis, A.L.; investi-
gation, W.J.v.S.; data curation, A.L.; writing—original draft preparation, A.L.; writing—review and
editing, W.J.v.S. All authors have read and agreed to the published version of the manuscript.

Funding: The funding for the analysis of the data collected and the time taken to author the paper
was obtained through the High Volume Transport research programme, funding number HVT050,
managed by DT Global, and financed by the Foreign, Commonwealth, and Development Office
(FCDO) of the United Kingdom. The data used were collected as part of the Digital Twining project
of the Department of Civil Engineering with funding from the University of Pretoria. The views
expressed in this paper are not necessarily those of the FCDO or the UK Government.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
co-author. The data are not publicly available in line with University of Pretoria policy.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Sun, L.; Qin, J. Prediction model on temperature field in asphalt pavement. J. Tongji Univ. (Nat. Sci.) 2006, 34, 480–483.
2. Kennedy, T.; Huber, G.; Harringan, T.; Cominsky, R.; Hughes, C.; Von Quintis, H.; Moultrop, J. Superior Performing Asphalt

Pavements (SUPERPAVE): The Product of the SHRP Asphalt Research Program; Report No: SHRP-A-410; Strategic Highway Research
Program, National Research Council: Washington, DC, USA, 1994.

3. Adwan, I.; Milad, A.; Memon, Z.A.; Widyatmoko, I.; Zanuri, N.A.; Memon, N.A.; Yusoff, N.I.M. Asphalt pavement tem-perature
prediction models: A review. Appl. Sci. 2021, 11, 3794. [CrossRef]

4. Mokoena, R.; Mturi, G.; Maritz, J.; Mateyisi, M.; Klein, P. African Case Studies: Developing Pavement Temperature Maps for
Performance-Graded Asphalt Bitumen Selection. Sustainability 2022, 14, 1048. [CrossRef]

5. Chao, J.; Jinxi, Z. Prediction Model for Asphalt Pavement Temperature in High-Temperature Season in Beijing. Adv. Civ. Eng.
2018, 2018, 1837952. [CrossRef]

6. Kassem, E.; Bayomy, F.; Williams, C.; Saasita, E.; Lamichane, S.; Permadi, D.D. Development of Pavement Temperature Prediction
Model (No. FHWA-ID-20-279); Idaho Transportation Department: Moscow, ID, USA, 2020.

7. Chen, J.; Wang, H.; Xie, P. Pavement temperature prediction: Theoretical models and critical affecting factors. Appl. Therm. Eng.
2019, 158, 113755. [CrossRef]

8. Qin, Y.; Zhang, X.; Tan, K.; Wang, J. A review on the influencing factors of pavement surface temperature. Environ. Sci. Pollut. Res.
2022, 29, 67659–67674. [CrossRef]

9. Asefzadeh, A.; Hashemian, L.; Bayat, A. Development of statistical temperature prediction models for a test road in Edmonton,
Alberta, Canada. Int. J. Pavement Res. Technol. 2017, 10, 369–382. [CrossRef]

10. Dzotepe, G.A. The Effect of Environmental Factors on the Implementation of the Mechanistic-Empirical Pavement Design Guide (Mepdg);
University of Wyoming: Laramie, WY, USA, 2011.

11. Tutu, K.A.; Ntramah, S.; Tuffour, Y.A. Superpave performance graded asphalt binder selection for asphalt mixture design in
Ghana. Sci. Afr. 2022, 17, e01348. [CrossRef]

http://doi.org/10.3390/app11093794
http://doi.org/10.3390/su14031048
http://doi.org/10.1155/2018/1837952
http://doi.org/10.1016/j.applthermaleng.2019.113755
http://doi.org/10.1007/s11356-022-22295-3
http://doi.org/10.1016/j.ijprt.2017.05.004
http://doi.org/10.1016/j.sciaf.2022.e01348


Appl. Sci. 2023, 13, 4164 12 of 12

12. Abo-Hashema, M.A.; Mousa, R.M.; Al-Zedjali, S.A.; Abdullah, Q.; Al Balushi, M.M.; Al-Rashdi, M.H. Development of Oman
performance grade paving map for superpave asphalt mix design. Int. J. Pavement Eng. Asph. Technol. 2016, 2016, 1–21. [CrossRef]

13. Denneman, E.; Edmunds, A.; Alex, P.; Wilson, G. Application of pavement temperature prediction algorithms in per-formance
grade (PG) binder selection for Australia. Aust. J. Civ. Eng. 2022, 2022, 2082632. [CrossRef]

14. Viljoen, A. Estimating Asphalt Temperatures from Air Temperatures and Basic Sky Parameters; Internal Report; Transportek, CSIR:
Pretoria, South Africa, 2001.

15. Wahab, H.; Asia, I.; Ramadhan, R. Modelling resilient modulus and temperature correction for Saudi roads. J. Mater. Civ. Eng.
2001, 13, 298–305. [CrossRef]

16. Diefenderfer, B.; Al-Qadi, I.; Diefenderfer, S. Model to predict pavement temperature profile: Development and validation.
J. Transp. Eng. 2006, 132, 162–167. [CrossRef]

17. Hassan, H.; Al-Nuaimi, A.; Taha, R.; Jafar, T. Development of Asphalt Pavement Temperature Models for Oman. J. Eng. Res.
[TJER] 2005, 2, 32–42. [CrossRef]

18. Huber, G. Weather Data Base for the Superpave Mix Design System; Report No. SHRP-A-648A; Strategic Highway Research Program,
National Research Council: Washington, DC, USA, 1994.

19. Denneman, E. The application of locally developed pavement temperature prediction algorithms in performance grade binder
selection. In Proceedings of the 26th Southern African Transport Conference, CSIR International Convention Centre, Pretoria,
South Africa, 9–12 July 2007.

20. Diefenderfer, B.; Al-Qadi, I.; Reubush, S.; Freeman, E. Development and validation of a model to predict pavement tempera-
ture profile. In Proceedings of the TRB 2003 Annual Meeting, Transportation Research Board, Washington, DC, USA, 12–16
January 2003.

21. Koranteng-Yorke, J.B. A Proposed Framework for Asphaltic Concrete Pavement Design for Tropical Soils—Case Study of Ghana.
Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2012.

22. de Picado-Santos, L. Design Temperature on Flexible Pavements. Road Mater. Pavement Des. 2000, 1, 355–371. [CrossRef]
23. Minhoto, M.J.; Pais, J.C.; Pereira, P.A.; Picado-Santos, L.G. Predicting asphalt pavement temperature with a three-dimensional

finite element method. Transp. Res. Rec. 2005, 1919, 96–110. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1515/ijpeat-2016-0033
http://doi.org/10.1080/14488353.2022.2082632
http://doi.org/10.1061/(ASCE)0899-1561(2001)13:4(298)
http://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(162)
http://doi.org/10.24200/tjer.vol2iss1pp32-42
http://doi.org/10.1080/14680629.2000.12067148
http://doi.org/10.1177/0361198105191900111

	Introduction 
	Materials and Methods 
	Literature Review 
	SHRP Superpave Model 
	Viljoen Model 
	Saudi Arabia Model 
	Diefenderfer Model 
	Oman Model 

	Selection of Models 
	Data Collection 
	Pretoria Data Collection 
	Ghana Data Collection 

	Analysis 
	Pavement Temperature Prediction 
	Data Randomization 
	Calibration 
	Statistical Analysis 


	Results 
	Performance of Pavement Temperature Prediction Models for Different Pavement Materials, before Calibration 
	Predicted Maximum Temperature 
	Predicted Minimum Temperature 

	Performance of Calibrated Models 
	Calibrated Maximum Temperature Models 
	Calibrated Minimum Temperature Models 

	Performance of Models at Different Geographical Locations 

	Discussion 
	Materials Performance 
	Calibration 
	Effect of Geographical Location 

	Conclusions 
	References

