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Abstract  

In medical diagnostic research, it is customary to collect multiple continuous biomarker 

measures to improve the accuracy of diagnostic tests. A prevalent practice is to combine the 

measurements of these biomarkers into one single composite score. However, incorporating those 

biomarker measurements into a single score depends on the combination of methods and may lose 

vital information needed to make an effective and accurate decision. Furthermore, a diagnostic 

cut-off is required for such a combined score, and it is difficult to interpret in actual clinical 

practice.  The paper extends the classical biomarkers’ accuracy and predictive values from 

univariate to bivariate markers. Also, we will develop a novel pseudo-measures system to 
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maximize the vital information from multiple biomarkers. We specified these pseudo-and-or 

classifiers for the true positive rate, true negative rate, false-positive rate, and false-negative rate. 

We used them to redefine classical measures such as the Youden index, diagnostics odds ratio, 

likelihood ratios, and predictive values. We provide optimal cut-off point selection based on the 

modified Youden index with numerical illustrations and real data analysis for this paper's newly 

developed pseudo measures. 

 

Keywords: Predictive values; bivariate analysis; likelihood ratios; Youden index; odds ratio  

 

1. Introduction 

For a clinician to provide reliable information about a patient’s health condition and 

suggest a treatment plan for a patient, diagnostic tests (including those for screening) play a vital 

role in health care (Sox, Jr. et al., 1989; McNeil & Adelsten, 1976; Zhou et al., 2009). A good 

diagnostic test is essential to discriminate between diseased and non-diseased subjects. A 

biomarker will be dichotomized with a specific cut-off point to distinguish between diseased and 

non-diseased subjects.  In this case, the diagnostic test and biomarker can be used interchangeably.  

In binary two-stages disease (non-diseased and diseased), the most frequently used by 

clinicians, measures of diagnostic accuracy are true positive rate (TPR or sensitivity), true negative 

rate (TNR or specificity), false-positive rate (FPR), and false-negative rate (FNR), see for example 

Pepe (2003) and Zhou et al. (2009). 

 The Receiver Operating Characteristic (ROC) curve provides a graphical interpretation of 

TPR and FPR pairs over all possible cut-off points. On the other hand, other measures in the 

literature link some or all TPR, TNR, FPR, and FNR as a single index to summarize accuracy. 
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Among those are the area under the ROC curve (AUC), the Youden index, diagnostic odds ratio 

(OR), the overlap measure, and the Kullback–Leibler divergence measure (KL) (see, Samawi et 

al., 2017; Samawi et al., 2020; Yin and Tian 2014a).  

Moreover, post-test accuracy measures such as positive predictive value (PPV, which is 

the likelihood of having the disease of interest in a subject given a positive test result), negative 

predictive value (NPV, which is the probability that a subject receives a negative result yet does 

not have the disease of interest), and diagnostic likelihood ratios (LRs) are the measures that 

provide information about the probability and the odds of disease given the diagnosis. They offer 

significant clinical implications for a diagnostic test (Altman & Bland, 1994; Samawi et al., 2021). 

The predictive values highly depend on the disease prevalence, which cannot be generalized 

among different populations with different disease prevalence. However, although the LRs can 

also provide information about the probability that a subject can be correctly diagnosed, they do 

not depend on the prevalence of the same disease; for example, see Boyko (1994) and Deeks & 

Altman (2004). Furthermore, LRs can be used as indicators for ruling-in/outpatients in a clinical 

setting and KL divergence (Gilbert et al., 2001; Boyko, 1994; Deeks & Altman, 2004; Lee, 1999; 

Samawi et al., 2020).  

Recently, the medical community accepted the intuitive fact that diagnosis based on one 

single biomarker might not provide sufficient accuracy in decision-making (Sidransky, 2002; 

Kumar et al., 2006). Consequently, multiple biomarker tests are expected to be performed on 

everyone. The corresponding measurements are combined into a summary score to help clinicians 

make better diagnostic judgments (Yin and Tian 2014b). However, incorporating those 

biomarkers' measures into one score depends on the methods used to combine them and may lose 

vital information needed to make an effective and accurate decision.  
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Moreover, Bansal and Pepe (2013) pointed out that when a standard marker is not 

sufficiently accurate in classifying diseased and non-diseased subjects on its own, there is a need 

for new markers to achieve a combination of the markers to reach better performance. They found 

out that the vital principle for choosing new biomarkers is that they have decent performance on 

their own, and they preferred to be uncorrelated with the standard biomarker. In the literature, it is 

recommended to use linear combinations. Bansal and Pepe (2013) investigated the increase in 

performance when combining a new continuous marker with a moderately performing standard 

continuous marker under different biologically driven models for their joint distribution. Bansal 

and Pepe (2013) found that when a continuous marker is uncorrelated, a marker with moderate 

performance on its own most likely produces very minimal improvement in diagnostics 

performance. Moreover, they found other combinations of settings that may lead to better 

improvements in medical diagnostics (see Bansal and Pepe, 2013).  

Furthermore, there is little literature on using bivariate biomarkers to improve the 

performance of medical diagnostics accuracy. Wang and Li (2012) extend the ROC function from 

univariate marker to bivariate marker case. They introduced a weighted ROC (WROC) function 

and proposed the area for bivariate biomarkers under the WROC (AUC). They indicated that since 

some biomarkers are identified from various biological sources, combining them using a linear 

combination may not be appropriate. Therefore, instead of combining markers, they propose to 

evaluate two markers in a bivariate setting and explore their respective roles and interaction. For 

analyzing biomarkers in bivariate settings, Baker (2000) and Etzioni et al. (2003) proposed new 

definitions for the ROC curve subject to the “and-or” classifiers. They divided the 

multidimensional marker space into small intervals and defined the true and false positive rates 
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based on the subsets of the divided region. The ROC curve was then defined as the objective 

function of finding the optimal true positive rate for each given false positive rate.  

Instead of combining markers, this paper proposes to evaluate two markers in a bivariate 

setting and explore their respective roles, interaction, and advantages in medical diagnostics 

accuracy measures. Similarly, we divided the Bidimensional marker space into small intervals and 

defined the true and false positive and negative rates based on the subsets of the divided region.  

We determined the pseudo classifiers for the true positive rate (TPR), true negative rate (TNR), 

false-positive rate (FPR), and false-negative rate (FNR) based on those small intervals. We then 

use these newly developed pseudo-classification measures to redefine existing measures such as 

the Youden index, odds ratio, likelihood ratios, and predictive values. We will provide optimal 

cut-off point selection based on the modified pseudo-Youden index.  

 The paper unfolds as follows. Section 2 provides some preliminaries and motivations. 

Section 3 proposes the novel pseudo classifiers and the pseudo diagnostics accuracy measure, and 

the optimal cut-off points selection for the bivariate diagnostics tests or biomarkers. Derivations 

of the empirical estimates of the proposed measures with their variances are provided in Section 

4. Numerical examples are presented in Section 5, with real data illustrations in Section 6. Final 

remarks and discussion are provided in Section 7. 

2. Preliminaries: common diagnostic performance measures  

In general, for clinical decision-making with continuous biomarkers, we are required to 

obtain a diagnostic cut-off point, c, to classify a subject either as diseased or non-diseased. Let 0X  

and 1X denote the marker values for non-diseased and diseased subjects, with cumulative 

distribution function (c.d.f.), 0 (.)F and 1(.)F  respectively. Higher marker values indicate greater 
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disease severity in most circumstances without the loss of generality. This assumption of 

directionality is essential for the Receiver Operating Characteristic curve (ROC) analysis to 

guarantee the validity of the ROC indices. The ROC curve is a graph of true positive rate (TPR or 

sensitivity), which is ( 1 1( ) ( >c)=1 ( )Se c P X F c  ), versus false-positive rate or 1- specificity as a 

measure of diagnostics accuracy ( 01 ( ) 1 ( )FPR Sp c F c    ), for a given cut point. 

The classification matrix Ρ   in the binary disease setting, given 0 (.)F   and  1(.)F  with threshold 

c, can be expressed as  

                                      

          0          1    0     1  

( ) 1 ( ) 0

1 ( ) ( ) 1

T T T T

Sp c Sp c TNR FPR D

Se c Se c FNR TPR D

   

    
        

Ρ
,                          (1) 

where 0T   and 1T  , respectively, are the negative and positive test results,  0D  and 1D   are 

the disease stage, implying non-disease and disease, respectively.   

In practice, it is common to summarize the ROC curve into a single global value or index, 

such as the area under the curve (AUC). The AUC evaluates the discriminatory ability of a marker, 

where 
1

1 0( ) 1 [ (1 )]ROC q F F q    and 1 ( )q Sp c  . The AUC ranges [0.5, 1] and can be 

interpreted as the probability of the measurement from a random disease subject being greater than 

that from a random non-diseased subject. The AUC is calculated by the integral as the following 

equation: 

1 0 0 1( ) ( )[1 ( )]AUC P X X f x F x dx




    .      (2) 

Moreover, Li and Fine (2010), suggested the weighted area under the receiver operating 

characteristic curve and use it for gene selection. 
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Another frequently used measure that summarizes the sensitivity and specificity is the 

Youden index ( J ), which ranges [0, 1]. Also, J is commonly used as a criterion for optimal 

diagnostic cut-off point selection. For a given cut-off point c, the Youden index is given by

0 1( ( ) ( ) 1) ( ( ) ( ) 1) ( ( ) ( ))
c c c

J TPR c TNR c Se c Sp c F c F cMax Max Max        .   (3) 

Also, as a criterion for optimal diagnostic cut-off points (c) selection, using J, c is obtained as 

follows:  

            0 1( ( ) ( ))arg
c

c F c F cMax  .                            (4) 

However, recently a few popular methods were reviewed for cut-off selection (see Sande et al., 

2021). 

For a given cut-off point c, the diagnostic odds ratio (DOR) (Huang et al. 2018) for a given

c  is given by  

0 1

1 0

( )[1 ( )]( ) ( )

[1 ( )][1 ( )] ( )[1 ( )]

F c F cSe c Sp c
DOR

Se c Sp c F c F c


 

  
,     (5) 

where the range is from 0 to infinity.  Higher values of DOR indicate higher discriminative power 

in diagnostic tests. A test is unsuitable when the value DOR is less than 1. It means more negative 

tests among the diseased population. A value of 1 indicates that a test cannot discriminate between 

patients with the disease and those without the disease (Glas et al., 2003). 

For a given cut-off point c, the after-test performance measures of diagnostic tests, PPV 

and NPV are defined by: 

( )

( ) (1 )(1 ( ))

Se c p
PPV

Se c p p Sp c


  
,                                   (6) 

and  
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( )(1 )

( )(1 ) (1 ( ))

Sp c p
NPV

Sp c p p Se c




  
,                                        (7) 

where ( 1)p P D  , is the prevalence of the disease. Also, the inference procedures for PPV and 

NPV are presented by Li et al. (2007), and the use of NPV in personalized medicine as well to 

select patients with positive (or negative) is noted by Li et al. (2012). 

Finally, for a given cut-off point c, the LRs (the positive likelihood ratio ( LR ) and the negative 

likelihood ratio ( LR ) are other after-test performance measures given by 

 

( )

1 ( )

  
 
1

sensitivity TP

specif

Se c
L

icity P
R

cF Sp  
 


                                                     (8) 

and 

 
1 ( )

( )

1    
 

sensitivity FN

specif
L

icity

Se c
R

Sp cTN


  .                                                      (9) 

3. Pseudo accuracy measures and the optimal cut-off criterion for bivariate diagnostics tests  

With the preliminaries in Section 2, this section is aimed to consider situations when a  

correlated pair of continuous marker variables (X, Y) are available to classify the disease state with 

any logical classifier.  Then based on both markers, we will extend the diagnostic accuracy and 

prediction measures to bivariate marker settings with our newly developed pseudo measures. 

Consequently, we may use any logical classifier based on some biological facts using the and-or 

system similar to that described by Etzioni et al. (2003). For example, Etzioni et al. (2003) used 

the and-or-logical system. They applied it to prostate cancer screening to define the true positive 

and the false-positive rates for constructing the ROC and calculated the AUC. They used some 

logical and biological facts about prostate cancer screening with Prostate-Specific Antigen (PSA). 

They indicated that high PSA levels are more likely to be associated with prostate cancer; however, 
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other benign conditions may also cause PSA elevation. Therefore, using (PSA > 4.0 ng ml−1) 

criterion for a positive result may yield a non-trivial number of false positives, which may then 

require unnecessary biopsies.  However, Stenman et al. (1991) explained that PSA consists of two 

different subtypes, free and complex PSA, and while their sum tends to rise in the presence of a 

malignancy, the proportion of free PSA tends to decline.  Therefore, it might be helpful to combine 

the free-to-total PSA (RPSA) ratio with the total PSA level (TPSA), improving prostate cancer 

screening.  

As discussed by Gann et al. (2002) and Etzioni et al. (2003), a substantial number of the 

literature indicated a potential gain from using RPSA in combination with TPSA. Etzioni et al. 

(2003) used the combination of RPSA and TPSA to form a valid diagnostic test for prostate cancer 

where the diagnosis is positive if (TPSA > c) or ( TPSAd c  and  RPSA < t), and c, d, t are 

determined cut-off points based on some optimization criteria. Therefore, by applying two 

correlated biomarkers through an and-or system, we can reduce false positives and false negatives 

and thus improve diagnostic accuracy.  

 To derive our proposed accuracy measures, let 0 0( , )X Y  and 1 1( , )X Y denote the bivariate 

marker values for non-diseased and diseased subjects, with bivariate density functions, 0 ( , )f x y   

and 1( , )f x y and distribution functions 0 ( , )F x y  and  1( , )F x y respectively. We assume that higher 

marker values indicate greater disease severity in most circumstances without the loss of 

generality.  
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Using the below basic bivariate calculus for given cut-off points, we have  

 

2 4

2 1 1

62 1

4 2

1

6

0 0 0

0 0

0 0

1 ( , ) ( , ) ( , )

                                  ( , ) ( , )

                                  ( , ) (

c c

c c c

cc c

c c

c

c

f x y dxdy f x y dxdy f x y dxdy

f x y dxdy f x y dydx

f x y dydx f x

   

  



 





  

 

 

     

   

 
2 1

, ) ,
c c

y dxdy
 
 

   (10) 

and   

2

2 1 1 5

5 1

1 2 3

3

2

1 1 1

1 1

1 1

1 ( , ) ( , ) ( , )

                                  ( , ) ( , )

                                  ( , ) ( ,

c

c c c c

c c

c c c

c

c

f x y dxdy f x y dxdy f x y dydx

f x y dydxy f x y dxdy

f x y dxdy f x

    

 

 







  

 

 

     

   

 
2 1

)
c c

y dxdy
 
 

     (11) 

where 1 2 3 4 5 6 3 1 4 5 2 6( , , , , , :  c < ; )c c c c c c c c c c c   . 

From (10) and (11), we can redefine the accuracy measures (TPR, TNR, FPR, FNR) by 

what we call pseudo accuracy measurers as follow:  

*
1 1 1 2 1 1 5 1 2 3 1 1 1 2

*
0 1 0 2 1 0 4 0 2 0 1 2 0 6

*
0 1 0 2 0 4 0 2 0 1 0 6

*
1 1 1 2 1 1 1 5

( , ) ( , ) ( , ),

( , ) ( , ) ( , ),

( , ) ( , ) ( , ),

( , ) ( , ) (

TPR P X c Y c P X c c Y c P c X c Y c

TNR P X c Y c P c X c Y c P X c c Y c

FPR P X c Y c P X c Y c P X c Y c

FNR P X c Y c P X c Y c P X

          

          

        

       1 3 1 2

* *

* *

, ),

1 ,

1 .

c Y c

FPR TNR

FNR TPR

 

 

 

  (12) 

Therefore, as we explained above, using the PSA test, for example, *TPR is the true positive 

rate denoted as { 1 1 1 2( ) and ( )X c Y c  } or { 1 1 5 1 2( ) and ( )X c c Y c   } or when { 1 2( )Y c , while 

3 1 1( )c X c  }. Similarly, we can interpret the other rates.  
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Clearly, from (10) and (11),  * * 1TPR FNR  ,  and * * 1TNR FPR  .  Therefore, the 

maximum value that *TPR or *TNR could reach 1 where the minimum value is 0, and hence, the 

pseudo Youden index has a range of [0, 1], and it is defined as  

 
1 2 3 4 5 6

* * *
1 2 3 4 5 6 1 2 3 4 5 6

, , , , ,
( ( , , , , , ) ( , , , , , ) 1)

c c c c c c
J TPR c c c c c c TNR c c c c c cMax   ,            (13) 

where  

            
1 2 3 4 5 6

* *
1 2 3 4 5 6

, , , , ,
( , , , , , ) arg ( 1)

c c c c c c
c c c c c c TPR TNRMax   .                          (14) 

Consequently, the pseudo Youden index ( *J ) can be treated as a measure that summarizes 

the pseudo correct classification rates in (12) and used it as a criterion for selecting the optimal 

diagnostic’s cut-off points 1 2 3 4 5 6( , , , , , )c c c c c c , among other methods, given the constraints  

( 3 1 4 5 2 6c < ;c c c c c   ), using any available optimal rules with constraints. Note that when using 

the optimization rules, one needs to restrict the lower range of 3 5and c c and the upper range of 

4 6 and c c  to the empirical range and the biological range of the biomarker if possible. Finding the 

diagnostic’s cut-off points 1 2 3 4 5 6( , , , , , )c c c c c c  is challenging, therefore we propose using the 

following approach: A simple and logical approach to finding the optimal cut-points is first to find 

the optimal cut-point for each biomarker separately ( 1 2,c c ), (using any appropriate criterion such 

as the Youden index). Then fix 1 2,c c and define 3 4 5 6( , , , , , )a b c c c c   as follows: 

3 1 4 1 5 2 6 2, ; ,c c a c c a c c b c c b        , where a and b are increments parameters to control 

for the areas for false negative and false positive. Finally use optimal arguments  

* *

,
( , ) arg ( ( , ) ( , ) 1)

a b
a b TPR a b TNR a bMax     to find the optimal cut-points (a, b) under the 

restrictions 3 1 4 5 2 6c < ;c c c c c   .   
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For the pseudo-PPV and NPV, which are the after-test performance measures of diagnostic 

tests based on bivariate biomarkers, we propose the following: 

*
*

* *

( )

( ) (1 )( )

p TPR
PPV

p TPR p FPR


 
,                                   (15) 

and  

*
*

* *

(1 )( )

(1 )( ) ( )

p TNR
NPV

p TNR p FNR




 
,                                           (16) 

where, ( 1),p P D  is the prevalence of the disease.  

Like the *PPV and *NPV , we propose the pseudo-likelihood ratios (LRs) as after-test 

performance measures as follows: The pseudo-likelihood ratio positive as  

*
*

*  
 
TP

L
R

R
R

FP                                                            (17) 

and the pseudo-likelihood ratio negative as  

*
*

*

 
 . 

FNR
L

TNR
R                                                               (18) 

Finally, the pseudo-odds-ratio that measures the diagnostic test accuracy at the threshold 

1 2( , )c c can be defined as   

* * *
*

* * *

( )( )

( )( )

LR TPR TNR
DOR

LR FPR FNR




  ,       (19) 

Similarly, the range *DOR is from 0 to infinity, with higher values indicating higher discriminative 

power in diagnostic tests.  
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4. Estimation using the empirical distributions    

The next logical step is to estimate these measures from observed data with the newly 

developed pseudo measures. This section presents a method of estimation based on the empirical 

distributions for the proposed pseudo-diagnostic measures in bivariate biomarkers. 

Let 
10,1 0,1 0,2 0,2 0, 0,( , ),( , ),...,( , )n nX Y X Y X Y  and 

2 21,1 1,1 1,2 1,2 1, 1,( , ), ( , ),..., ( , )n nX Y X Y X Y denote the 

two independent random samples from the bivariate markers’ values for non-diseased and diseased 

subjects, with c.d.f. 0 ( , )F x y   and  1( , )F x y  respectively. Let the estimated cut-off points

1 2 3 4 5 6 3 1 4 5 2 6
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , , , :  c < ; )c c c c c c c c c c c    be determined by, for example, the pseudo-Youden 

index; we estimate first the classification rates as follows: 

 

2

1

1

*
1 1 1 2 1 1 5 1 2 3 1 1 1 2

12

*
0 1 0 2 1 0 4 0 2 0 1 2 0 6

11

*
0 1 0 2

11

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( , ) ( , ) ( , )],

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( , ) ( , ) ( , )],

1ˆ ˆ ˆ[ ( , )

n

i i i i i i
i

n

i i i i i i
i

n

i i
i

TPR I X c Y c I X c c Y c I c X c Y c
n

TNR I X c Y c I c X c Y c I X c c Y c
n

FPR I X c Y c I
n







          

          

   






2

0 4 0 2 0 1 0 6

*
1 1 1 2 1 1 1 5 1 3 1 2

12

ˆ ˆ ˆ ˆ( , ) ( , )],

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( , ) ( , ) ( , )],

i i i i

n

i i i i i i
i

X c Y c I X c Y c

FNR I X c Y c I X c Y c I X c Y c
n 

    

        

,  (20) 

where  

1        if 
( ) .

0    otherwiseA

x A
I x


 


 

Note that ( *ˆTPR , ˆTNR , *ˆFPR , and *ˆFNR ) are all unbiased estimators for ( *TPR , *TNR , 

*FPR , and *FNR ) in (12). Also, by using the WLLN, we have ( *ˆTPR , ˆTNR , *ˆFPR , and *ˆFNR ) 

are consistent estimators for ( *TPR , *TNR , *FPR , and *FNR ), provided that 

ˆ ; 1, 2,...,6p
j jc c j  using Slutsky’s Theorem. Also, the asymptotic normality distributions of those (
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*ˆTPR , ˆTNR , *ˆFPR , and *ˆFNR ) estimators are straightforward for large samples using the Central Limit 

Theorem.  Furthermore, the empirical distribution converges uniformly as shown by Glivenko-Cantelli 

Theorem.  Thus, all the above pseudo diagnostics measures of accuracy and prediction of accuracy 

can be estimated directly by substituting the results in (20) in their formulas.   

 Furthermore, to find the variances of the proposed estimators, we notice the following 

cross-tabulations as presented in Tables 1 and 2. 

Table 1. Cross classification for the disease sample of a bivariate marker 
X\Y 1 2ˆY c  5 1 2ˆ ˆc Y c   2 1 6ˆ ˆc Y c   1 2ˆY c  

1 1̂X c  111n  112n (overlap with 111n ) 113n (overlap with 114n ) 114n  

3 1 1ˆ ˆc X c   121n  122n  (overlap with 121n ) 123n  (overlap with 124n ) 124n  

1 1 4ˆ ˆc X c   131n  132n  (overlap with 131n ) 133n (overlap with 134n ) 134n  

1 1̂X c  141n  142n (overlap with 141n ) 143n  (overlap with 144n ) 144n  

 
 
Table 2. Cross classification for a non-disease sample of the bivariate marker 
X\Y 0 2ˆY c  5 0 2ˆ ˆc Y c   2 0 6ˆ ˆc Y c   0 2ˆY c  

0 1̂X c  011n  012n  (overlap with 011n ) 013n  (overlap with 014n ) 014n  

3 0 1ˆ ˆc X c   021n  022n  (overlap with 021n ) 023n  (overlap with 024n ) 024n  

1 0 4ˆ ˆc X c   031n  032n (overlap with 031n ) 033n (overlap with 034n ) 034n  

0 1̂X c  041n  042n (overlap with 041n ) 043n (overlap with 044n ) 044n  

 
From Table 1, it is clear that 114n , 142n and 124n are mutually independent since they do not 

overlap, then provided that ˆ ; 1, 2,...,6p
j jc c j  , we can show that the asymptotic variance is 

given by   

*
144 1 1 1 2 1 1 1 22

2

142 1 1 1 2 1 1 5 1 2

124 3 1 1 1 2 3 1 1 1 2

1ˆ( ) { ( , )[1 ( , )],

                      ( , 5 )[1 ( , )],

                      ( , )[1 ( , )]}.

Var TPR n P X c Y c P X c Y c
n

n P X c c Y c P X c c Y c

n P c X c Y c P c X c Y c

     

       

       
             (21) 
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Similarly, we can obtain the variance for the other pseudo classifiers as follows: 

011 0 1 0 2 0 1, 0 2

*
031 1 0 4 0 2 1 0 4 0 22

1
013 0 1 2 0 6 0 1 2 0 6

( , )[1 ( )]
1ˆ( ) ( , )[1 ( , )]

( , )[1 ( , )]

n P X c Y c P X c Y c

Var TNR n P c X c Y c P c X c Y c
n

n P X c c Y c P X c c Y c

     
          
         

,                (22) 

044 0 1 0 2 0 1 0 2

*
041 031 0 4 0 2 0 4 0 22

1
014 013 0 1 0 6 0 1 0 6

( , )[1 ( , )]
1ˆ( ) ( ) ( , )[1 ( , )]

( ) ( , )[1 ( , )]

n P X c Y c P X c Y c

Var FPR n n P X c Y c P X c Y c
n

n n P X c Y c P X c Y c

     
         
        

,                 (23) 

and 

111 1 1 1 2 1 1 1 2

*
141 141 1 1 1 5 1 1 1 52

2
114 124 1 3 1 2 1 3 1 2

( , )[1 ( , )
1ˆ( ) ( ) ( , )[1 ( , )] .

( ) ( , )[1 ( , )]
i

n P X c Y c P X c Y c

Var FNR n n P X c Y c P X c Y c
n

n n P X c Y c P X c Y c

     
         
        

                             (24) 

We can obtain consistent estimators of the above variances by substituting the data values 

from Table 1 and Table 2 and the estimates of the pseudo classification rates.   

Moreover, for fixed cut-off points ( 1c , 2 , ,c a b ), the estimate of pseudo Youden index is 

given by * * *
1 2 1 2

ˆ ˆ ˆ( ( , ) ( , ) 1)J TPR c c TNR c c   , and its variance is given by: 

* * *ˆ ˆ ˆ( ) ( ) ( ),Var J Var TPR Var TNR                                                             (25) 

and it is easy to show that *Ĵ has asymptotic normal distribution.  

Also, the pseudo-LRs as after-test performance measures can be estimated by 

*
*

*

 
ˆ

ˆ
ˆ

 
TPR

L
F R

R
P

  , and the approximate variance by Delta-method of the log of *ˆLR  (Asymptotically 

normally distributed) is given by   
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* *

*
* *

ˆ ˆ( ) ( )ˆ[log( )]
Var TPR Var FPR

Var LR
TPR FPR                        (26)                            

and *
*

*

 
ˆ

ˆ
ˆ

 
FNR

L
T R

R
N

   while an approximate variance by Delta-method for the log of  *ˆLR  

(Asymptotically normally distributed) is given by                                              

* *
*

ˆ ˆ( ) ( )ˆ[ ( )]
* *

Var FNR Var TNR
Var Log LR

FNR TNR                                 (27) 

Finally, the estimator of the pseudo-odds ratio that measures the diagnostic test accuracy 

at the threshold 1 2( , )c c is given by 
* *

*

* *

ˆ ˆ( )( )ˆ
ˆ ˆ( )( )

TPR TNR
DOR

FPR FNR
 (Asymptotically normally distributed), 

with an approximate variance by Delta-method, by using (26) and (27), is provided by  

* * * *
*

* * * *

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )ˆ[ ( )] .
Var TPR Var TNR Var FPR Var FNR

Var Log DOR
TPR TNR FPR FNR

                       (28) 

5. Numerical examples and simulations 

5.1 Numerical examples 

We provide numerical examples for a disease with two stages (non-disease, disease).  We 

used two underlying bivariate distributions (the bivariate normal and bivariate Gamma 

distributions). The bivariate Gamma distribution used in this numerical example is from Sumen et 

al. (2014) as follows: 

1 2 1 2 2

1 2

1 1
( )1 2

, 1 2 1 2
1 2

( , ) , 0, 0, , 0, , 0.
( ) ( )

x xy
X Y

x y
f x y e x y

    
      

 

  
     

 
  (29) 

Also, the correlation between X and Y is then given by,  
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2 2

2 1 1

2
1 2 1 1 2 1 2 1 2
2 2 2 2

1 2 1 1 1 1

( 1) ( 1)
.

( 1) ( 1)
( 1) ( 2) ( 1) ( 2)

 
  

        
     

 
 

 
       
           

                                      (30) 

As presented in Tables 5 and 6, we use the Youden index and the newly developed pseudo-

Youden index to find the cut-off points 1 2 3 4 5 6 3 1 4 5 2 6( , , , , , :  c < ; )c c c c c c c c c c c   .  

 Tables 3 and 4, provided the scenarios of different Parmenter’s settings for bivariate normal 

and bivariate Gamma distribution respectively.  Tables 5 and 6 show some numerical results from 

the bivariate normal distributions and bivariate Gamma distributions.   

 

Table 3. Simulations scenarios for Bivariate normal distributions 

0X
0Y 1X  

1Y
0

2
X  

0

2
Y  

1

2
X  

1

2
Y  Scenarios  

0 0 1 1 1 1 1 1 
1S  

0 0 1 2 1 1 1 1 
2S  

0 0 2 1 1 1 2 1 
3S  

0 0 2 1 2 1 1 1 
4S  

 
 
 
Table 4. Simulations scenarios for Bivariate Gamma distributions 

0X
0Y 1X  

1Y
0X  

0Y  
1X  

1Y  Scenarios  

3 3 4 4 1 1 0.7 0.7 
1G  

3 3 4 4 1 1 0.5 0.5 
2G  

3 3 4 4 1 1 0.5 0.7 
3G  

3 3 4 4 1 1 0.3 0.3 
4G  

2 2 3 3 1 1 0.7 0.7 
5G  

2 2 3 3 1 1 0.5 0.5 
6G  

2 2 3 3 1 1 0.5 0.7 
7G  

2 2 3 3 1 1 0.3 0.3 
8G  
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Table 5. A numerical example of all proposed utilizes measures for Bivariate distributions  

Optimal 1 2, ( , )c c a b  *( , )X YJ J J  *PPV *NPV *LR  *LR  *DOR  

(P=0.1, 0.1   ) 

1S  0.500, 0.500 (4.837,4.837) 0.785 (0.383, 0.383) 0.479 0.987 8.280 0.121 68.56 

2S  0.500, 1.000 (5.383, 4.558) 0.885 (0.383, 0.683) 0.645 0.993 16.336 0.061 266.86 

3S  1.000, 1.181 (4.062, 7.271) 0.882 (0.683, 0.345) 0.808 0.989 37.832 0.096 392.24 

4S  0.762, 0.500 (6.703, 5.057) 0.912 (0.541, 0.383) 0.517 0.995 9.632 0.042 229.10 

(P=0.1, 0.5   ) 

1S  0.500, 0.500 (4.983, 4.983) 0.673 (0.383, 0.383) 0.363 0.979 5.123 0.195 26.24 

2S  0.500, 1.000 (5.025, 4.311) 0.805 (0.383, 0.683) 0.507 0.988 9.259 0.108 85.73 

3S  1.000, 1.181 (4.560, 8.610) 0.829 (0.683, 0.345) 0.659 0.986 17.386 0.127 137.09 

4S  0.762, 0.500 (6.631, 4.815) 0.856 (0.541, 0.383) 0.430 0.992 6.800 0.076 89.00 

(P=0.1, 0.9   ) 

1S  0.500, 0.500 (2.244, 2.244) 0.509(0.383, 0.383) 0.255 0.965 3.076 0.325 9.463 

2S  0.500, 1.000 (2.709, 1.832) 0.701(0.383, 0.683) 0.387 0.981 5.681 0.176 32.28 

3S  1.000, 1.181 (3.663, 9.623) 0.759 (0.683, 0.345) 0.497 0.983 8.880 0.160 55.53 

4S  0.762, 0.500 (5.506, 7.162)  0.804 (0.541, 0.383) 0.356 0.987 4.963 0.116 42.807 

(P=0.4, 0.1   ) 

1S  0.500, 0.500 (4.837,4.837) 0.785 (0.383, 0.383) 0.847 0.926 8.280 0.121 68.56 

2S  0.500, 1.000 (5.383, 4.558) 0.885 (0.383, 0.683) 0.916 0.961 16.336 0.061 266.86 

3S  1.000, 1.181 (4.062, 7.271) 0.882 (0.683, 0.345) 0.962 0.940 37.832 0.096 392.24 

4S  0.762, 0.500 (6.703, 5.057) 0.912 (0.541, 0.383) 0.865 0.973 9.632 0.042 229.10 

(P=0.4, 0.5   ) 

1S  0.500, 0.500 (4.983, 4.983) 0.673 (0.383, 0.383) 0.774 0.885 5.123 0.195 26.24 

2S  0.500, 1.000 (5.025, 4.311) 0.805 (0.383, 0.683) 0.861 0.933 9.259 0.108 85.73 

3S  1.000, 1.181 (4.560, 8.610) 0.829 (0.683, 0.345) 0.921 0.922 17.386 0.127 137.09 

4S  0.762, 0.500 (6.631, 4.815) 0.856 (0.541, 0.383) 0.819 0.952 6.800 0.076 89.00 

(P=0.4, 0.9  ) 

1S  0.500, 0.500 (2.244, 2.244) 0.509(0.383, 0.383) 0.672 0.822 3.076 0.325 9.463 

2S  0.500, 1.000 (2.709, 1.832) 0.701(0.383, 0.683) 0.791 0.895 5.681 0.176 32.28 

3S  1.000, 1.181 (3.663, 9.623) 0.759 (0.683, 0.345) 0.856 0.904 8.880 0.160 55.53 

4S  0.762, 0.500 (5.506, 7.162)  0.804 (0.541, 0.383) 0.768 0.928 4.963 0.116 42.807 

 
 
 



19 
 

Table 6. A numerical example of all proposed utilizes measures for Gamma distributions 
Scenarios Optimal 1 2, ( , )c c a b  *( , )X YJ J J  *PPV *NPV *LR  *LR  *DOR

(P=0.1, 0.447    ) 

1G  3.890, 3.890(3.800, 3.800) 0.716 (0.454, 0.454) 0.742 0.972 25.809 0.263 98.11 

2G  4.663, 4.663 (4.600,4.600) 0.801 (0.637, 0.637) 0.874 0.979 62.674 0.189 332.28 

3G  4.663, 3.890 (4.600, 3.800) 0.785 (0.637, 0.454) 0.834 0.978 45.170 0.201 224.53 

4G  5.911, 5.911 (5.900, 5.900) 0.901 (0.829, 0.829) 0.954 0.990 187.949 0.095 1987.48

(P=0.1, 0   ) 

5G  2.641, 2.641 (2.600, 2.600) 0.728 (0.458, 0.458) 0.475 0.979 8.136 0.189 43.00 

6G  3.212, 3.212 (3.100, 3.100) 0.787 (0.612, 0.612) 0.597 0.983 13.305 0.159 83.803 

7G  3.212, 2.641 (3.100, 2.600) 0.760 (0.612, 0.458) 0.534 0.981 10.293 0.172 60.018 

8G  4.126, 4.126 (4.100, 4.100) 0.881(0.788, 0.788) 0.745 0.990 26.255 0.087 300.69 

(P=0.4, 0.447    ) 

1G  3.890, 3.890(3.800, 3.800) 0.716 (0.454, 0.454) 0.945 0.851 25.809 0.263 98.11 

2G  4.663, 4.663 (4.600,4.600) 0.801 (0.637, 0.637) 0.977 0.888 62.674 0.189 332.28 

3G  4.663, 3.890 (4.600, 3.800) 0.785 (0.637, 0.454) 0.968 0.882 45.170 0.201 224.53 

4G  5.911, 5.911 (5.900, 5.900) 0.901 (0.829, 0.829) 0.992 0.941 187.949 0.095 1987.48

(P=0.4, 0   ) 

5G  2.641, 2.641 (2.600, 2.600) 0.728 (0.458, 0.458) 0.844 0.888 8.136 0.189 43.00 

6G  3.212, 3.212 (3.100, 3.100) 0.787 (0.612, 0.612) 0.899 0.904 13.305 0.159 83.803 

7G  3.212, 2.641 (3.100, 2.600) 0.760 (0.612, 0.458) 0.873 0.897 10.293 0.172 60.018 

8G  4.126, 4.126 (4.100, 4.100) 0.881(0.788, 0.788) 0.946 0.945 26.255 0.087 300.69 

 
 
All provided measures were affected when increasing the location shift and any change in the 

variations in the diseased group and the increase in the absolute value of the correlation between 

markers. Table 5 provided the optimal cut-off points 1 2( , , , )c c a b as well as the proposed 

measures.   

On the other hand, Table 6 provides the skewed bivariate Gamma distribution results. 

Clearly, from (30), the association between the markers is always negative. In general, as the rates 

of the distributions decrease (means increase) for fixed shape parameters, the provided measures 

of test accuracy values are increased.   Also, when the absolute value of the association increases, 
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all provided accuracy pseudo measures increase. Tables 5 and 6 showed that using our proposed 

measures provided a higher pseudo-Youden Index than the individual Youden Index which 

indicates higher correct classification rates.  Finally, as expected, with higher disease prevalence, 

only pseudo-PPV and NPV will be affected. 

5.2 Simulations 

We conducted a simulation study to investigate the behavior of the asymptotic variances of our 

proposed pseudo-measures of medical diagnostics accuracy. We selected the parameters setting in 

Table 3 for the bivariate normal distribution for different values of the correlation coefficient 

between the two biomarkers. We simulate 5000 bivariate samples from the bivariate normal 

distributions of small, moderate, and large sample sizes 1 2( 5 0 ,1 0 0 , 5 0 0 )n n  . The 

prevalence of the assumed underlying disease is selected to be p=0.1. The results of our simulations 

are provided in Table 7. In Table 7 we calculated the empirical variances presented in section 4 

and compared them with the simulated counterpart variances.  Clearly from Table 7, the empirical 

variances of all presented measures decrease as the sample sizes increase for the same set of 

parameters. This indicates that as expected that empirical estimators of the asymptotic variances 

presented in section 4 are consistent estimators. Similarly, we observed the same behavior of the 

simulated variances for the proposed measures.   

 Moreover, Table 7 indicates that the empirical variances decrease slightly as the correlation 

coefficient between the two biomarkers increases. Also, variances of Log( *LR ), Log( *LR ) and 

Log( *DOR ) increase as the values of these parameters increase by comparing scenarios 1S and 2S

when fixing all other parameters. Finally, the empirical and the simulated variances are compatible 

even for small sample sizes.   
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Table 7. Results of the simulation of the proposed accuracy measures variances for Bivariate 
distributions (Simulated variance) 

Var( *TPR ) Var( *TNR ) Var( *J ) Var( *PPV ) Var( *NPV
)

Var(Ln *LR ) Var(Ln *LR ) Var(Ln *DOR )

(P=0.1, 0.1  , 1 2 50n n   ) 

1S  0.0035 
(0.0073) 

0.0037 
(0.0021) 

0.0072 
(0.0056)

 
(0.0281)

 
(0.00008)

0.0807 
(0.3614)

0.0385 
(0.0053) 

0.1211 
(0.4900)

3S  0.0037 
(0.0045) 

0.0036 
(0.0012) 

0.0073 
(0.0037)

 
(0.0269)

 
(0.00005)

0.1047 
(0.3376)

0.0525 
(0.0035) 

0.1624 
(0.5518)

(P=0.1, 0.5  , 1 2 50n n   ) 

1S  0.0033 
(0.0085) 

0.0035 
(0.0033) 

0.0068 
(0.0061)

 
(0.0229)

 
(0.00010)

0.0529 
(0.3255)

0.0265 
(0.0057) 

0.0800 
(0.4157)

3S  0.0036 
(0.0048) 

0.0034 
(0.0020) 

0.0070 
(0.0040)

 
(0.0270)

 
(0.00006)

0.0713 
(0.3651)

0.0409 
(0.0037) 

0.1137 
(0.5057)

(P=0.1, 0.9  , 1 2 50n n  ) 

1S  0.0030 
(0.0112) 

0.0031 
(0.0055) 

0.0061 
(0.0080)

 
(0.0159)

 
(0.00013)

0.0304 
(0.2508)

0.0172 
(0.0067) 

0.0477 
(0.3415)

3S  0.0034 
(0.0056) 

0.00030 
(0.0034) 

0.0064 
(0.0047)

 
(0.0231)

 
(0.00006)

0.0437 
(0.3370)

0.0307 
(0.0042) 

0.0747 
(0.4354)

(P=0.1, 0.1  , 1 2 100n n   ) 

1S  0.0018 
(0.0036) 

0.0019 
(0.0017) 

0.0037 
(0.0023)

 
(0.0154)

 
(0.00004)

0.0345 
(0.2846)

0.0187 
(0.0027) 

0.0533 
0.2725

3S  0.0019 
(0.0020) 

0.0019 
(0.0008) 

0.0038 
(0.0016)

 
(0.0155)

 
(0.00002)

0.0575 
(0.3741)

0.0241 
(0.0016) 

0.0812 
(0.3928)

(P=0.1, 0.5  , 1 2 100n n   ) 

1S  0.00168 
(0.00442) 

0.00175 
(0.00246) 

0.00343 
(0.00284)

 
(0.0101)

 
(0.00005)

0.0200 
(0.1759)

0.0128 
(0.0031) 

0.0327 
(0.1923)

3S  0.0018 
(0.0025) 

0.0017 
(0.0014) 

0.0035 
(0.0019) 

 
(0.0136) 

 
(0.00003) 

0.0315 
(0.2685) 

0.0183 
(0.0020) 

0.0499 
(0.2803) 

(P=0.1, 0.9  , 1 2 100n n  ) 

1S  0.00153 
(0.00641) 

0.00156 
(0.00416) 

0.00308 
(0.00710)

 
(0.0056)

 
(0.00007)

0.0119 
(0.1119)

0.0085 
(0.0039) 

0.0203 
(0.1524)

3S  0.0017 
(0.0030) 

0.0016 
(0.0024) 

0.0033 
(0.0025)

 
(0.0101)

 
(0.00004)

0.0180 
(0.1844)

0.0140 
(0.0023) 

0.0319 
(0.2183)

(P=0.1, 0.1  , 1 2 500n n   ) 

1S  0.00037 
(0.00110) 

0.00038 
(0.00083) 

0.00074 
(0.00045)

 
(0.00403)

 
(0.00001)

0.00437 
(0.06670)

(0.00376 
0.00087) 

0.00813 
(0.0447)

3S  0.00038 
(0.00060) 

0.00039 
(0.00030) 

0.00077 
(0.00034)

 
(0.00462)

 
(0.000007)

0.00845 
(0.09790)

0.00428 
(0.00049) 

0.01273 
(0.0684)

(P=0.1, 0.5  , 1 2 500n n   ) 

1S  0.00034 
(0.00142) 

0.00035 
(0.00113) 

0.00069  
(0.00216)

 
(0.00002)

0.00286 
(0.03838)

0.00256 
(0.00102) 

0.00542 
(0.03137)

3S  0.00036 
(0.00072) 

0.00037 
(0.00047) 

0.00073 
(0.00043)

 
(0.00339)

 
(0.000009)

0.00494 
(0.05679)

0.00329 
(0.00087) 

0.00823 
(0.04810)

(P=0.1, 0.9  , 1 2 500n n  ) 

1S  0.00031 
(0.00207) 

0.00031 
(0.00173) 

0.00062 
(0.00091)

 
(0.00091)

 
(0.00002)

0.00186 
(0.02229)

0.00171 
(0.00125) 

0.00358 
(0.02837)

3S  0.00034 
(0.00088) 

0.00034 
(0.00083) 

0.00068 
(0.00071)

 
(0.00244)

 
(0.00001)

0.0031 
(0.0415)

0.0025 
(0.0007) 

0.0057 
(0.0479)
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6. Illustration using WBCD data 

This section applies the proposed measures to the Diagnostic Wisconsin Breast Cancer 

Database (WBCD) created by the University of Wisconsin 

(http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29). For 

diagnosing breast cancer, summary features of digitized images of a fine needle aspirate (FNA) of 

a breast mass are considered biomarkers for diagnosing purposes. This section aims to use WBCD 

data to investigate how using bivariate markers would improve those biomarkers' diagnostic 

abilities and select the proper biomarkers for breast cancer diagnosis. The WBCD data set contains 

569 observations and 30 features as candidate univariate biomarkers for selection. The 

reference/gold standard is indicated as the "Diagnosis" variable in the data, and it has two values: 

B = benign ( 1 357n  ) or M = malignant ( 2 212n  ).  

Hyuna et al. (2021) provided an update on the global cancer burden using the GLOBOCAN 

2020 estimates of cancer incidence and mortality produced by the International Agency for 

Research on Cancer. They reported that female breast cancer had surpassed lung cancer as the 

most diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung 

(11.4%). So, we will use 0.117 as the prevalence of breast cancer in this application.   

 Tables 8 and 9 present the results of analyzing WBCD data for all 30 biomarkers using the 

Youden Index (J) to select the optimal cut-off points. Table 8 is sorted in ascending order 

concerning the objective function J.  Also, Figure1 shows selected biomarkers from Table 8 plots 

of their distributions. From Figure 1 some of the plots show the symmetry and the skewness of the 

underlying distribution of those biomarkers.  
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Table 8. Results of univariate data analysis WBCD using Youden Index for selecting the cut-
off point for each of the markers listed.  
Markers  Cut-off 

points
J TPR TNR PPV NPV DOR 

perimeter_worst (M1) 106.000 0.839 0.920 0.919 0.60 0.99 130.48 
concave.points_mean (M2) 0.049 0.828 0.915 0.913 0.58 0.99 112.97 
radius_worst (M3) 16.820 0.814 0.844 0.969 0.78 0.98 169.11 
concave.points_worst (M4) 0.136 0.812 0.868 0.944 0.67 0.98 110.85 
area_worst (M5) 739.300 0.811 0.948 0.863 0.48 0.99 114.84 
concavity_mean (M6) 0.090 0.761 0.868 0.894 0.52 0.98 55.46 
perimeter_mean (M7) 90.430 0.758 0.887 0.871 0.48 0.98 53.00 
area_mean (M8) 698.800 0.736 0.764 0.972 0.78 0.97 112.38 
area_se (M9) 31.330 0.732 0.830 0.902 0.53 0.98 44.94 
radius_mean (M10) 15.050 0.729 0.759 0.969 0.76 0.97 98.44 
concavity_worst (M11) 0.261 0.728 0.896 0.832 0.41 0.98 42.67 
perimeter_se (M12) 2.765 0.616 0.745 0.871 0.43 0.96 19.73 
radius_se (M13) 0.386 0.614 0.759 0.854 0.41 0.96 18.42 
compactness_mean (M14) 0.102 0.607 0.825 0.782 0.33 0.97 16.91 
compactness_worst (M15) 0.267 0.566 0.717 0.849 0.39 0.96 14.25 
concavity_se (M16) 0.021 0.502 0.892 0.611 0.23 0.98 12.97 
texture_mean (M17) 19.320 0.472 0.755 0.717 0.26 0.96 7.81 
concave.points_se (M18) 0.011 0.470 0.807 0.664 0.24 0.96 8.26 
texture_worst (M19) 24.890 0.463 0.830 0.633 0.23 0.97 8.42 
smoothness_worst (M20) 0.136 0.420 0.689 0.731 0.25 0.95 6.02 
compactness_se (M21) 0.022 0.391 0.708 0.683 0.23 0.95 5.22 
symmetry_worst (M22) 0.299 0.360 0.604 0.756 0.25 0.94 4.73 
smoothness_mean (M23) 0.090 0.344 0.868 0.476 0.18 0.96 5.97 
symmetry_mean (M24) 0.172 0.310 0.797 0.513 0.18 0.95 4.14 
fractal_dimension_worst 
(M25) 

0.082 0.305 0.627 0.678 0.21 0.93 3.54 

fractal_dimension_se (M26) 0.003 0.225 0.651 0.574 0.17 0.93 2.51 
texture_se (M27) 0.821 0.099 0.830 0.269 0.13 0.92 1.80 
fractal_dimension_mean 
(M28) 

0.067 0.080 0.288 0.793 0.16 0.89 1.55 

smoothness_se (M29) 0.004 0.054 0.906 0.148 0.12 0.92 1.67 
symmetry_se (M30) 0.045 0.054 0.057 0.997 0.72 0.89 20.09 
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Figure 1. Probability density function plot of selective biomarkers from Table 7. 

 
Table 8 provides the cut-off points of each marker independently along with some tests' 

accuracy and prediction ability. In contrast, Table 8 provides the bivariate analysis and the estimate 

of pseudo accuracy measures. To reduce the number of tables, we chose perimeter_worst (M1), 

which has the highest value of J, as a good marker and associated it with all other markers. Also, 

to further demonstrate the improvement of overall diagnostic accuracy through the proposed 

measures, we chose two markers with relatively less satisfying diagnostic performance in terms of 

the J value, namely, smoothness_mean (M23) and symmetry_se (M30), with J values of 0.344 and 

0.054, respectively. The results from combining M23 and M30 are listed at the end of Table 9.  

From Table 9, we can see that the bivariate analysis of (M1 with M2), (M1 with M28), (M1 

with M22), (M1 with M4), (M1 with M19), and (M1 with M23) have the highest pseudo Youden 
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index values.  However, (M30 with M23) has the highest *DOR . Also, this combination improved 

the TPR of M23 0.868 and of M30 0.057 to 0.869 for (M23 with M30). Similarly, the TRN of 

M23 0.476 and M30 0.997 improved to 0.997 for (M23 with M30). This combination brought the 

best of both markers. The other pseudo-measure values depend on the pseudo-TPR and TNR and 

the balance between them.   

We can also see that the DOR* values rise steeply when combining those markers. This 

behavior of DOR is commonly observed in the univariate case (Yin and Vogel 2017). We can 

see such behavior as more evident for the bivariate analysis. So, in this sense, we recommend 

using bounded pseudo accuracy measures such as J*, PPV*, or NPV* as they are within [0,1] 

over unbounded measures such as DOR* or LR* for bivariate biomarker evaluations.  

From the end of Table 8, combining two weak markers; namely, smoothness_mean (M23) 

and symmetry_se (M30), with J values are 0.344 and 0.054, has the advantage over using these 

markers separately. Consequently, other accuracy measures will also be changed and will 

balance between rule-out and rule-in of patients. Using M23 alone indicates that this marker has 

more rule-out ability and a high negative predictive value of the disease. In comparison, M30 

alone has more rule-in ability and closely balances predictive positive and negative values. 

However, using the proposed bivariate approach has much higher accuracy based on the J value 

than using each marker separately. Also, using the bivariate approach provided a more balanced 

rule-out and rule-in ability, higher negative predicted value, and above-average positive 

predicted value. 

Tables 8 and 9 indicate that using two markers in bivariate analysis through the and-or system 

improved the diagnostic accuracy of individual makers alone. It seems that the proposed measures 
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have the potential of helping clinicians to decide more accurately, especially when using a single 

biomarker that could put a healthy person in the gray area of false positives. 

 
Table 9. Results of bivariate data analysis WBCD using Pseudo Youden Index for cut-off points  
(a, b).  

Markers  r Optimal Cut-
off points 

*J  
(Var)

*TPR  
*TNR  *PPV *NPV  *DOR  

(95% C.I)
M1 & M2 0.856 106.00, 0.049  

(22, 0.04) 
0.954 
(0.00085)

0.976 0.978 0.852 0.997 1806.08 
(1233.85, 2643.70) 

M1& M3 0.994 106.00, 16.82 
(9, 2) 

0.884 
(0.00075)

0.915 0.961 0.756 0.988 264.06 
(212.57, 328.01)

M1 & M4 0.816 106.00, 0.136 
(11, 0.09) 

0.932 
(0.00092)

0.962 0.966 0.791 0.995 733.13 
(533.13, 1006.70)

M1 & M5 0.978 106.00, 739.30 
(9, 102) 

0.880 
(0.00068)

0.953 0.927 0.634 0.993 257.16 
(206.03, 320.98)

M1 & M6 0.730 106.00, 0.09 
(10, 0.07) 

0.918 
(0.00098)

0.958 0.961 0.764 0.994 552.61 
(405.69, 752.74)

M1 & M7 0.970 106.00, 90.43 
(9, 6) 

0.843 
(0.00079)

0.925 0.919 0.601 0.989 138.55 
(112.78, 170.21)

M1 & M8 0.959 106.00, 698.80 
(9, 180) 

0881 
(0.00094)

0.906 0.975 0.826 0.987 371.20 
(287.95, 478.53)

M1 & M9 0.761 106.00, 31.33 
(10, 14) 

0.890 
0.00097

0.929 0.961 0.758 0.990 321.77 
(246.66, 419.75)

M1& M10 0.965 106.00, 15.05 
(9, 3.3) 

0.890 
(0.00097)

0.915 0.975 0.828 0.989 416.74 
(320.05, 542.64)

M1& M11 0.618 106.00, 0.261 
(10, 0.12) 

0.909 
(0.0010)

0.962 0.922 0.619 0.995 299.63 
(223.84, 401.07)

M1& M12 0.721 106.00,2.765 
(12, 1.6) 

0.903 
(0.0012)

0.934 0.969 0.801 0.991 444.86 
(323.70, 611.36)

M1& M13 0.720 106.00, 0.386 
(12, 0.26) 

0.908 
(0.0012)

0.939 0.969 0.802 0.992 481.50 
(347.31, 667.53)

M1& M14 0.590 106.00, 0.102 
(10, 0.04) 

0.861 
(0.0012)

0.948 0.913 0.591 0.993 192.16 
(144.96, 254.72)

M1& M15 0.529 106.00, 0.267 
(10, 0.13) 

0.881 
(0.0013)

0.948 0.933 0.651 0.993 253.53 
(186.10, 345.41)

M1& M16 0.227 106.000, 0.021 
(10, 0.02) 

0.758 
(0.0011)

0.962 0.796 0.384 0.994 99.21 
(45.38, 130.56)

M1& M17 0.358 106.00, 19.32 
(12, 12) 

0.934 
(0.0015)

0.962 0.972 0.820 0.995 884.85 
(583.90, 1340.91)

M1& M18 0.395 (106.00, 0.011) 
(12, 0.01) 

0.877 
(0.0014)

0.967 0.910 0.588 0.995 297.43 
(208.20, 424.92)

M1&M19 0.365 106.00, 24.89 
(10, 14) 

0.928 
(0.0014)

0.967 0.961 0.766 0.996 717.50 
(483.29, 1065.21)

M1& M20 0.237 106.00, 0.136 
(11, 0.1) 

0.447 
(0.0011)

0.811 0.636 0.228 0.962 7.51 
(6.44, 8.76)

M1& M21 0.261 106.00, 0.022 
(10, 0.01) 

0.840 0.958 0.882 0.519 0.994 169.17 
(121.70, 235.15)
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Table 9 (Continue). Results of bivariate data analysis WBCD using Pseudo Youden Index for 
cut-off points (a, b).  

M1 with M22 0.270 106.00, 0.299 
(10, 0.14) 

0.934 
(0.0016)

0.962 0.972 0.820 0.995 884.85 
(574.65, 1362.50)

M1 with M23 0.239 106.00, 0.090 
(11, 0.05) 

0.922 
(0.0013)

0.967 0.955 0.741 0.995 624.15 
(428.31, 909.55)

M1 with M24 0.219 106.00, 0.172 
(10 0.171) 

0.914 
(0.0015)

0.967 0.947 0.707 0.995 520.98 
(353.79, 767.18)

M1 with M25 0.139 106.00, 0.082 
(9, 0.02) 

0.915 
(0.0016)

0.962 0.952 0.728 0.995 510.00 
(341.98, 760.58)

M1 with M26 -0.001 106.00, 0.003 
(10, 0.0029) 

0.823 
(0.0016)

0.958 0.980 0.486 0.994 145.2 
(103.86, 203.00)

M1 with M27 -0.102 106.00, 0.821 
(11, 0.82) 

0.748 
(0.0013)

0.972 0.776 0.365 0.995 118.88 
(83.91, 168343)

M1 with M28 -0.205 106.00, 0.067 
(10, 0.05) 

0.936 
(0.0013)

0.953 0.983 0.883 0.994 1181.70 
(767.56, 1819.29)

M1 with M29 -0.217 106.00, 0.004 
(11, 0.0039) 

0.611 
(0.0009)

0.967 0.644 0.265 0.993 53.04 
(41.16, 68.34)

M1 with M30 -0.104 106.00, 0.045 
(10, 0.044) 

0.911 
(0.0007)

0.920 0.992 0.936 0.989 1353.53 
(960.05, 1908.29)

M23 with M30 0.200 0.090, 0.045 
(0.089, 0.044)

0.865 
(0.0013)

0.868 0.997 0.976 0.983 2339.43 
(870.27, 6288.76)

 
 

7. Final remarks and discussion 

It is customary, in medical research, to collect information on multiple continuous 

biomarkers to improve the effectiveness of diagnostics tests (markers) in clinical decisions and the 

diagnostic tests' accuracy. Recently, the trend in practice has been to combine the measurements 

of these biomarkers into one single score. However, incorporating those biomarkers' measures into 

one score depends on the methods used to combine them and may lose vital information needed 

to make an effective and accurate decision.  

We provided extensions to some accuracy measures and predictive values from univariate 

to bivariate markers and named them pseudo measures in the paper. We defined pseudo-and-or 

classifiers for the true positive rate, true negative rate, false-positive rate, and false-negative rate. 

Then we use them to redefine some existing measures such as the Youden index, odds ratio, 

likelihood ratios, and predictive values. We provided optimal cut-off points selection based on the 
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modified Youden index. Also, we offered the derivation for the empirical estimators and their 

variances.    

Our numerical examples and the real data analysis indicated that the new pseudo 

classification measures, including *J , *TPR , *TNR , *PPV , *NPV , and *DOR , using bivariate 

markers, preserve the quality information provided by each marker separately. Consequently, 

using bivariate markers will increase the effectiveness, accuracy, and predictive values for rule-in 

and rule-out patients. We, therefore, recommend using the developed pseudo measures in this 

paper for diagnostics whenever bivariate biomarkers are available.    
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