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ABSTRACT 
 

Abnormal vehicle loads pose significant detrimental effects when crossing bridges. By 
characterising the traffic load effects experienced on bridges caused by abnormal vehicles, 
allows for more reliable bridge design practices. This paper presents an innovative 
approach to identify and characterise subclasses of abnormal vehicle types from  
weigh-in-motion (WIM) data, by employing Gaussian Mixture Modelling to the load effects. 
Each subclass of abnormal vehicles has unique statistical properties and Gaussian 
distributions are utilised to determine characteristic load effects and reliability-based partial 
factors for each subclass. The aim of this paper is to characterise abnormal vehicles, and 
how this information can aid codified bridge design practises in the industry. 
 
1. INTRODUCTION AND MOTIVATION 
 
Technical Methods for Highways 7 (TMH7) is the current code of practice for the design of 
highway bridges in South Africa. The traffic load models were extracted from research 
done by Liebenberg in 1974 prior to the first publication in 1981. The code is based on 
CEB FIP Model Code for Concrete Structures of 1978, the British Code BS5400 and the 
National Building Code of Canada (Committee of State Road Authorities, 1981).  
 
Information regarding the development of the code is limited and the incorporation of the 
abovementioned codes is thus unclear (Van der Spuy, 2020). After the initial publication in 
1981, revisions were made to the code in 1988 which included the amendment of normal 
(NA) loading by increasing the distributed load by 6 kN/m and 20% axle load increase. 
However, Ullman (1988) and Oosthuizen et al. (1991) still found shortcomings in the traffic 
load model with specific reference to normal traffic on narrow and short span bridges, 
where TMH7 underestimates bending moments for spans between 4 m and 9 m, as well 
as shear forces for span lengths of up to 23 m. This led to further amendments including a 
25% axle load increase. 
 
In 1996, the South African National Department of Transport increased the legal limits of 
the gross vehicle weight (GVW) and the axle loads to 56 ton and 9 ton per axle, 
respectively. These changes were not implemented either. According to Van der Spuy 
(2020), the current TMH7 normal traffic load model is complicated to apply, which causes 
inconsistencies in the application thereof in practice. The TMH7 traffic load model 
therefore requires careful revision to represent current traffic characteristics. Research by 
Van der Spuy (2020) indicates that simply recalibrating the current TMH7 traffic load 
model would not be feasible. A possible alternative solution is to adopt the Eurocode  
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(EN 1991-2) load models in South Africa; however, Lenner et al. (2017) warned against 
the direct adoption, as vehicle characteristics in South Africa and Europe differ 
considerably.  
  
In light of the complications highlighted above, Van der Spuy (2020) derived a new traffic 
load model using modern and novel techniques, based on current, real time traffic 
measurements obtained from site-specific permanent weigh-in-motion (WIM) data. Heavy 
vehicle traffic data recorded at the Roosboom permanent WIM station was used to 
calibrate the load model. The calibration was done using the characteristic load effects 
(LEs) derived from WIM data to determine a uniformly distributed load that is required to 
counter the truck point loads. These characteristic LEs are evaluated at a 975 year return 
period, which is based on a 5% probability of exceedance. Because of being within the 
port corridor with lots of commercial cargo, Roosboom, located on the N3 in KwaZulu-
Natal, is reported to record the heaviest loaded vehicles in South Africa. The Roosboom 
WIM station is known to transport heavy freight between Durban ports to inland industrial 
locations such as the landlocked Gauteng Province, and especially the economic hub of 
Johannesburg. The newly derived traffic load model reduces the complexity of TMH7, but 
fails to recognise the difference in uncertainties between normal and abnormal traffic as 
Van der Spuy (2020) uses a mixture of vehicle types and characteristics when modelling 
the extreme load effects in the tail of the vehicle load statistical distribution. Therefore, 
whether these extreme LEs result from normal vehicles, illegally overloaded vehicles, or 
abnormal sized/loaded vehicles is unknown. Distinguishing between the LEs caused by 
normal and abnormal loaded vehicles is important as abnormal vehicles have different 
statistical properties that should potentially be treated in a separate abnormal load model.  
 
The physical characteristics (dictating the statistical properties) of abnormal vehicles 
differs to normal vehicles and hence the LEs, will be distributed incompatibly. The 
interpretation of the magnitude of the LEs therefore differ between those associated with 
normal versus non-categorised abnormal vehicles. The statistical methods for determining 
the characteristic LEs differ fundamentally between normal and abnormal vehicles, 
primarily due to the considerable vehicle-specific properties, which directly influence the 
statistical parameters and their probability distributions.  
 
It is, therefore, wise to distinguish between normal and abnormal vehicles when modelling 
traffic loads for the calibration of the bridge load models used in practice for codified 
designs. Although Van der Spuy (2020) reduces many complexities of the TMH7, it fails to 
recognise the difference in uncertainties between normal and abnormal traffic. By 
thoroughly investigating the characteristics of a pool consisting of different sub-populations 
of distinctive abnormal vehicles, i.e., pronounced vehicle-related properties that are 
inconsistent to normal vehicles, these uncertainties can be addressed. Consequently, by 
using vehicle-specific information (GVW, axle weights and configurations; and dimensional 
properties) to define a set of rules which identify abnormal vehicles from a WIM data set 
(i.e., by distinguishing these vehicles from normal vehicles), allows for abnormal vehicles 
to be properly characterised.  
 
Characterising abnormal vehicles into unique abnormal vehicle types (sub-populations) is 
the primary requirement to effectively analyse abnormal vehicles, and hence, determine 
the characteristic LEs and reliability-based partial factors (PFs). This enables a thorough 
understanding of abnormal vehicles and the various types of abnormal vehicles, and their 
impact on bridges. A clear traffic loading description can be developed once abnormal 
vehicles are properly characterised, which increases the understanding of the LEs 
associated with them and leads to reduced uncertainties. This improved abnormal traffic 



description and deeper understanding of their statistical properties enables for more 
advanced probabilistic LE modelling, increasing the resulting characteristic Les, and 
reliability-based PFs for the calibration of traffic load models. 
 
2. STATISTICAL BACKGROUND 
 
2.1 Relevant Probability Theory 
 
A random variable, 𝑋, represents all the outcomes of a random experiment. The value 𝑥 is 
unknown prior to the realisation of the event. A sample space, 𝑆, is a set which contains all 
the possible outcomes of 𝑋, which has only one value 𝑥. Random variables are either 
discrete or continuous. The sample space of discrete random variables is limited to a finite 
number of distinct values, whereas continuous random variables can take on any real 
value in a given interval (Holicky, 2009). 
 
The continuity makes it impossible to assign meaningful probabilities to all the possible 
values within the interval of a continuous random variable. Probability distributions are 
specified instead. A distribution is defined by the cumulative distribution function (CDF), 
𝐹(𝑥), where 𝑥 can take on any value within 𝑋, which for a given value of 𝑋 will give a value 
smaller than or equal to 𝑥 as illustrated in Equation 1. 
 

𝑭(𝒙)  =  𝑷(𝑿 ≤  𝒙)       (1)  
 
The probability density function (PDF), 𝑓(𝑥), is equal to the first derivative of the probability 
distribution function given that it is differentiable. The probability that 𝑋 attains a value in a 
given interval [𝑥1;  𝑥2] is formulated in Equation 2. 
 

𝒇(𝒙) = 𝒅𝑭(𝒙)
𝒅(𝒙)

             (2)  
 
2.2 Gaussian Distribution 
 
The Gaussian distribution is a symmetrical distribution and the sample space of the 
random variable 𝑋 is valid on the interval −∞ <  𝑥 <  ∞ (Coles, 2001). The distribution is 
described by two parameters, namely the mean (𝜇) and standard deviation (𝜎), with an 
infinite range for 𝜇 and 𝜎 >  0. As this is a symmetrical distribution, the skewness is zero, 
with the mean located at the centre and the dispersion dictated by the standard deviation.  
 
2.3 Fundamental Concepts of Reliability 
 
Structural reliability ultimately refers to the ability of a structure to safely resist an applied 
action and is based on the probability of structural failure over a specified period. ISO 
(2015) formally defines reliability as the ability of a structural system or element to satisfy 
the design requirements (limit states) that are specified for its design period, where limit 
states refer to the conditions that a structure must meet to fulfil its purpose. The two 
relevant limit states are the Serviceability Limit State (SLS) and Ultimate Limit State (ULS), 
respectively (Coles, 2001; Holicky, 2009).  
 
Structural reliability is based on the requirement that the LE on a structure 𝐸 does not 
exceed the structural resistance 𝑅, or 𝐸 <  𝑅. The inequality 𝑅 ≤  𝐸 thus defines a failure 
mode. The limit state function, 𝑍, is formulated as 𝑍 = 𝑅 − 𝐸 where 𝑅 and 𝐸 denote the 
modelled resistance and LE, respectively. The boundary between the safe and unsafe 



domain is denoted by the limit state 𝑍 =  0, and failure of the particular limit  
state is denoted 𝑍 ≤  0. The probability of failure 𝑝𝑓 is mathematically expressed as 
 𝑝𝑓 =  𝑃(𝐸 >  𝑅)  =  𝑃(𝑍 <  0), and the random variables 𝐸 and 𝑅 can be described by 
probability distributions (Holicky, 2009). 
 
2.4 Partial Factors (PFs) 
 
PFs are applied to the load and resistance, respectively, to ensure an adequate margin (𝛽) 
by which structural resistance exceeds the applied loads (Schneider, 1997). The design 
load effects are determined by multiplying the characteristic LEs by PFs and are done for 
both SLS and ULS. The fib Bulletin 80 (Fib, 2016) describes the PF format as 
 γ𝐸 = γ𝐸𝑑,𝑀γ𝑒, where 𝛾𝐸 and 𝛾𝐸𝑑,𝑀 are the PFs for the applied load and model uncertainty, 
respectively. The reliability-based PF 𝛾𝑒 accounts for traffic load variability and model-
related uncertainties. Model uncertainty accounts for neglected effects when calculating 
LEs or simplifying assumptions in mathematical relations. The reliability-based PF 𝛾𝑒 is 
expressed as a ratio of the design LE and the characteristic LE denoted as 𝐸𝑑 and 𝐸𝑐, 
respectively (γ𝑒 = 𝐸𝑑

𝐸𝑐
). 

 
3. SEQUENCIAL METHODOLOGY DEVELOPMENT 
 
The statistical methodology approach followed to characterise abnormal vehicles into 
subclasses is based on a framework developed by Lenner and Sykora (2016), which 
investigates Special Vehicles. The framework is based on research by Lenner (2014), 
which investigated LEs that result from the passage of military vehicles over bridges in 
European and allied countries. Similarly to well-defined military vehicles being analogous 
to Special Vehicles, enabling the calibration of Lenner and Sykora (2016) by using the 
data from Lenner (2014), abnormal vehicles in this study are assumed analogous to 
Special Vehicles which allows for the framework by Lenner and Sykora (2016) to 
employed in this work.  
 
3.1 Discussion of the Framework for Special Vehicles 
 
It is common practice that civilian bridges in European and allied countries are occupied by 
military traffic. The use of these bridges is regulated according to the standards governed 
by the Standardised Agreement 21 (STANAG 21), and it is argued by Lenner (2014) that it 
lacks a defined safety concept and PFs to ensure reliable crossings of military vehicles 
over existing civilian bridges. To account for these shortcomings, Lenner (2014) 
investigates military loads to develop a suitable safety concept for the military assessment 
of existing bridges by establishing a framework to derive PFs and LEs for special vehicles 
on bridges.  
 
The framework is based on the correlation between reduced uncertainties associated with 
well-defined heavy vehicles (Special Vehicles) and the PFs for these vehicles, which 
should be reduced accordingly. It suggests that the LEs due to the passage of a single 
well-defined vehicle (Special Vehicle) can be described with a higher degree of accuracy 
because there is less uncertainty than the LEs associated with a generalised traffic stream 
with a high degree of uncertainty. Military vehicles are examples of well-defined vehicles. 
The static LEs 𝑄𝑠𝑡𝑎𝑡, which includes measurement uncertainties due to the passage of 
special vehicles 𝑄𝑠𝑝𝑒𝑐 is determined from the expression 𝑄𝑠𝑝𝑒𝑐 = 𝜃𝛿𝑄𝑠𝑡𝑎𝑡, where 𝜃 and 𝛿 
denote the model uncertainty associated with estimating the LEs and the dynamic 
amplification factor, respectively. The characteristic LEs for special vehicles 𝑄𝑘,𝑠𝑝𝑒𝑐 is 



determined as the product of the static LEs 𝑄𝑠𝑡𝑎𝑡 and the random variables 𝜃 and 𝛿, which 
are equal to their mean values as per Equation 3. The design LE for a special vehicle is 
proportional to the product of the characteristic LE 𝑄𝑘,𝑠𝑝𝑒𝑐 and a relevant partial factor 
𝛾𝑄𝑠𝑝𝑒𝑐 as expressed in Equation 4. 
 

𝑸𝒌,𝒔𝒑𝒆𝒄 = 𝝁𝑸𝒔𝒑𝒆𝒄 = 𝝁𝜽𝝁𝜹𝝁𝑸𝒔𝒕𝒂𝒕               (3) 
 

Qd,spec = γQspecQk,spec      (4)  

 
The formulation of Equation 4 results from the assumption that 𝛾𝑄𝑠𝑝𝑒𝑐, 𝜃 and 𝛿 are 
distributed lognormally. A lognormal distribution is suitable for 𝑄𝑠𝑝𝑒𝑐, regardless of a 
normally distributed 𝑄𝑠𝑡𝑎𝑡, due to the large variability associated with the random variables 
𝜃 and 𝛿. The parameters 𝛼𝐸 and 𝛽 denote the FORM sensitivity factor for the load and 
target reliability index, respectively. Equation 5 is used to estimate the coefficient  
of variation (COV) of 𝑄𝑠𝑝𝑒𝑐, denoted 𝑉𝑄𝑠𝑝𝑒𝑐. The parameter 𝑉𝑄𝑠𝑝𝑒𝑐 is calculated as per  
Equation 6. 
 

 𝛾𝑄𝑠𝑝𝑒𝑐 = 𝑄𝑑,𝑠𝑝𝑒𝑐

𝑄𝑘,𝑠𝑝𝑒𝑐
=

[𝜇𝑄𝑠𝑝𝑒𝑐exp (−𝛼𝐸𝛽𝑉𝑄𝑠𝑝𝑒𝑐)]

𝜇𝑄𝑠𝑝𝑒𝑐
= exp (−𝛼𝐸𝛽𝑉𝑄𝑠𝑝𝑒𝑐)  (5) 

 
 

𝑽𝑸𝒔𝒑𝒆𝒄 ≅ �𝑽𝜽𝟐 + 𝑽𝜹𝟐 + 𝑽𝑸𝒔𝒑𝒆𝒄
𝟐        (6) 

 
3.2 Evaluation of the Framework for Abnormal Vehicles 
 
The framework is based on well-defined military vehicles, which are associated with low 
uncertainty. This low uncertainty directly affects the shape of the LE PDFs, which in turn 
dictates the ’distance’ (measured as the ’number of standard deviations from the mean’) 
between 𝜇 and the right-most position of the tail 3𝜎. A short distance between the 
statistical parameters 𝜇 and 3𝜎, i.e., narrow LE PDFs (which are clustered closely around 
the mean as shown by the dashed PDF in Figure 1), is a fundamental requirement of the 
framework and validates the primary assumption that 𝑄𝑘,𝑠𝑝𝑒𝑐 = 𝜇𝑄𝑠𝑝𝑒𝑐 , which is inherently 
related to γ𝑄𝑠𝑝𝑒𝑐, 𝑄𝑑,𝑠𝑝𝑒𝑐 and 𝑄𝑘,𝑠𝑝𝑒𝑐. 
 
The assumption that 𝑄𝑘,𝑠𝑝𝑒𝑐 = 𝜇𝑄𝑠𝑝𝑒𝑐 is dependent on the definition of Special Vehicles, 
defined as ”Authorised [permit] vehicles transporting heavy freight” or ”A military vehicle in 
an emergency or crisis situation when responding to a threat is necessary”. Special 
Vehicle crossings are therefore rare events, i.e., not a general phenomenon. The 
assumption that 𝑄𝑘,𝑠𝑝𝑒𝑐 = 𝜇𝑄𝑠𝑝𝑒𝑐 suggests that 50% of vehicles will exceed the 
characteristic load 𝑄𝑘,𝑠𝑝𝑒𝑐. The assumption that 𝑄𝑘,𝑠𝑝𝑒𝑐 = 𝜇𝑄𝑠𝑝𝑒𝑐 can be argued to be 
reliable and safe due to the rare occurrence of single, Special Vehicle crossings (50% 
chance of exceeding SLS limits). However, this is not true for general traffic flow conditions 
consisting of a mixture of normal and abnormal vehicles. The dashed PDF in Figure 1 
represents single crossing events of well-defined special vehicles as per the above 
definition and is associated with low uncertainty. The PDF will have a low COV 
proportional to the low degree of dispersion around the mean 𝜇, and hence low PFs given 
that the PFs are directly related to the COV as per Equations 5 and 6. 
 



The primary difference between abnormal vehicles and Special Vehicles is that abnormal 
vehicles have a considerably higher frequency of occurrence. When considering the PDF 
representing abnormal LEs (depicted by the solid line in Figure 1), there is significant 
dispersion around the mean 𝜇. The high standard deviation 𝜎 suggests that abnormal 
vehicles are expected to have an increased COV, ranging between the upper-medium 
(best case, rare) to high (worst case, most likely) density. 
 
In comparison to the case of Special Vehicles, the distance between the mean 𝜇 and the 
extreme right tail at 3𝜎 is significantly inflated, in contrast to the short distance between μ 
and 3𝜎 for Special Vehicles. The assumption that 𝑄𝑘,𝑠𝑝𝑒𝑐 = 𝜇𝑄𝑠𝑝𝑒𝑐 is thus not valid for 
abnormal vehicles due to the high frequency of abnormal vehicle crossings and the high 
degree of dispersion, which significantly increases the likelihood that the characteristic LE 
is exceeded. 
 

 
Figure 1: Difference in PDF shape of European military data (dashed line) 

versus South African data (solid line) 
 
4. METHODOLOGY  
 
4.1 Abnormal Vehicle Subsets 
 
Abnormal vehicle subclasses are identified in a two-step process. The primary step 
considers abnormal vehicles holistically, by which abnormal vehicles are assigned to 
subclasses based solely on the number of axles. In this step, subclasses are established 
based solely on the number of axles, with the assumption that abnormal vehicles have 
more than seven axles. Vehicles with fewer than seven axles (axles≤ 7) are considered 
normal vehicles. This assumption is based on the proportion of vehicles that occur on the 
South African national roads and the relevant legislation as per the National Road Traffic 
Regulation (NRTR, 1999). Hence subclasses of eight and nine-axle vehicles are 
considered. Furthermore, it is argued that there exist abnormal vehicles (having more than 
seven axles) having gross vehicle weight (GVW) less than the legal limits (56 ton) in South 
Africa and therefore, in the primary step, hence the subclasses have no upper and lower 
bounds for the GVW limitations and thus containing all abnormal vehicles from all valid 
GVW groups (1kN+). The absence of GVW limits when subclasses are established relates 
to the fact that vehicle abnormality is related to both, weight abnormalities (extremely 



heavy vehicles) and dimensional abnormalities (unusual axle configurations and vehicle 
dimensions). These eight- and nine-axle vehicles comprise different underlying abnormal 
vehicle types, which are unique and have vehicle-specific characteristics which separate 
them from the other groups. The characterisation is based on the Gaussian mixture 
modelling (GMM) (Steenbergen & Morales Napoles, 2012; Zhang & Huang, 2015). 
 
Abnormal vehicle subclasses are not limited to eight and nine-axle vehicles (as in this 
paper) and can extend beyond nine axles. However, eight and nine-axle vehicles are the 
most common abnormal vehicles recorded at the WIM station used in this study and thus 
dominate in occurrence frequency on the South African highways. Sufficient data points 
are available for these vehicles, allowing reliable statistical analyses and a high degree of 
confidence in the results. Vehicles with more than nine axles fall beyond the scope of this 
study. 
 
The characterisation of abnormal vehicle subclasses is explained as follows: consider the 
hogging moments resulting from eight axle abnormal vehicles on a 30 m span in the 
Limpopo province, which is graphically depicted by the histogram in Figure 2. The 
histogram is trimodal as three modes exist (’peaks’). Each mode represents a unique, 
abnormal vehicle subclass type that exists within the eight-axle subclass. These modes, 
each representing an abnormal vehicle type (in the general case, either eight axle or nine 
axle vehicles, or more than nine axles), are individually isolated and statistically analysed 
by fitting a normal distribution to each of the individual modes. This is done by employing 
the GMM, a statistical method by which independent normal distributions are fit to each 
mode, as shown by the blue, green, and red PDFs on the respective modes of the LE 
histogram in Figure 2.  
 

 
Figure 2: Trimodal histogram of abnormal vehicle LEs and respective GMM PDFs 

 
4.2 Deriving LEs and PFs for Abnormal Vehicles 
 
An increased standard deviation of the LEs is associated with abnormal vehicles, which 
correlates with the higher variability of abnormal vehicles (as opposed to well-defined and 
managed military or special vehicles). The increased standard deviation invalidates the 
assumption that 𝑄𝑘,𝑎𝑏 = 𝜇𝑄𝑎𝑏 and must therefore be modified to account for the dispersed 
data points not being concentrated about the mean (µ).  
 



The characteristic LEs for abnormal vehicles are evaluated at the 95th percentile value, 
which is positioned at 1.645 standard deviations (1.645𝜎) away from the mean 𝜇 (within 
the right tail region of the normal distribution) as per Equation 7. This is per the 
discussions in Section 3.1 where the issue was raised regarding the increased adverse 
influence of 50% of the abnormal vehicles that exceed the magnitude of characteristic LEs 
(as opposed to Special Vehicles) when evaluated according to 𝑄𝑘,𝑎𝑏 = 𝜇𝑄𝑎𝑏 (which is not a 
valid assumption when analysing abnormal vehicles).  
 

𝑄𝑘,𝑎𝑏 = µ𝑄𝑎𝑏 + 1.645       (7)  
 
Consider the red PDF in Figure 2, which shows the isolated normal distribution of the third 
mode of the histogram after employing GMM. The isolated normal distribution is 
independent of the normal distributions associated with the other modes (green and blue 
PDFs). The characteristic LE, e.g., hogging moment 𝑀𝐶, associated with each mode is 
individually evaluated at the 95th percentile using Equation 7 as 𝑀𝐶,95 = µ𝑀,𝑎𝑏 + 1.645. The 
same is true for sagging moments and shear forces. The parameter 𝜇𝑀𝑎𝑏 is the mean and 
𝜎 is the standard deviation of the static hogging moments, respectively. The PF is a ratio 
between the design LE (𝐸𝑑) and the characteristic LE (𝐸𝑐), where the design LE is the 
inverse CDF of the static LEs 𝑄𝑠𝑡𝑎𝑡 associated with the isolated mode and is calculated 
using Equation 8. 
 

𝛾𝑒 = 𝑀𝑑
𝑀𝐶,95

           (8) 

 
𝑀𝑑 = 𝐹𝑋,𝑡𝑟𝑒𝑓

−1 �Φ(𝛼𝛽), 𝑡𝑟𝑒𝑓�     (9) 
 
𝐹𝑋,𝑡𝑟𝑒𝑓
−1  is the inverse standard normal distribution of the static LEs 𝑄𝑠𝑡𝑎𝑡 over a reference 

period 𝑡𝑟𝑒𝑓. This is true for all LEs (hogging moments, sagging moments, and shear 
forces) for any mode. This study is limited to ULS PFs, and therefore 𝛽𝑇,𝑈𝐿𝑆 = 3.5, as 
recommended in Van der Spuy (2020). The FORM sensitivity factor is 𝛼𝐸  =  −0.7, as 
recommended for the dominant variables in EN 1990 (CEN, 2002) and IS02394 (ISO, 
2015). The return period for ULS, 𝑇𝑈𝐿𝑆 is thus calculated as: 
 

𝑇𝑈𝐿𝑆 = 𝑡𝑟𝑒𝑓
𝑝

= 𝑡𝑟𝑒𝑓
ϕ�α𝐸β𝑇,𝑈𝐿𝑆�

= 100
ϕ(−0.7×3.5)

= 5040 years         (10) 
 
The ULS probability of non-exceedance 𝑝𝑈𝐿𝑆 is calculated to evaluate the design quantiles:  
 

𝑝𝑈𝐿𝑆 = 1 − 1
𝑇𝑈𝐿𝑆

= 1 − 1
5040

= 0.9998           (11) 
 
By substituting the above values into Equation 9, the design quantile is then calculated as: 
 

𝑀𝑑 = 𝐹𝑋,𝑡𝑟𝑒𝑓
−1 [Φ(−0.7 × 3.5),𝑝𝑈𝐿𝑆 = 0.9998]              (12) 

 
5. APPLICATION TO SOUTH AFRICAN DATA 
 
5.1 Calculating the Load Effects 
 
The LE data used in the methodology discussed above is the result of processed WIM 
data as per Van Der Spuy (2020). Firstly, raw WIM data recorded in the nine South African 



provinces is cleaned and calibrated. Filtering techniques are employed to omit all eight and 
nine axle vehicles (as per the primary subclass based only on the number of axles, 
discussed in Section 4.1). The cleaned and calibrated data records of these eight- and 
nine axle vehicles contain information including time stamps, vehicle speed, axle weights, 
and spacing.  
 
The time stamps and speeds are used to calculate the distance between vehicles and to 
assemble a convoy of vehicles. The distance between the rear axle of the front vehicle and 
the front axle on the following vehicle is calculated by using time difference and speed.  
Simplified studies utilise a single-vehicle analysis (Nowak & Hong, 1991; Nowak, 1994; 
Anderson, 2006), but the South African data has satisfactory accuracy for continuous 
convoys. According to De Wet (2010b), WIM errors in South Africa are generally less than 
10%. The vehicle convoys are a series of point loads and distances, which represent 
actual vehicles, are incrementally passed over varying span lengths between 5 m and  
30 m to calculate the different LEs (sagging moments, hogging moments and shear 
forces) using simple principles of statics and influence lines. The maximum values for each 
LE and span length are recorded for the abnormal vehicles. 
 
5.2 Abnormal Vehicle Characterisation 
 
By investigating the static LEs, which are caused by the subsets of abnormal vehicles 
(eight-axle and nine-axle vehicles), it is found that the modality of the datasets, and hence 
the number of abnormal vehicle types, vary in the nature of the LEs (sagging moments, 
hogging moments and shear forces) based on the number of axles.  
 
For example, the LEs caused by the eight-axle vehicle subset in Mpumalanga is trimodal 
(i.e., three abnormal vehicle types), whereas the LEs caused by the nine-axle vehicle 
subset, also in Mpumalanga, has only one mode (i.e., one abnormal vehicle type). 
Although the modality of the LEs vary for the respective subsets, it remains consistent with 
the nature of the LEs. In Mpumalanga, the LEs of eight-axle vehicles is trimodal for 
sagging moments, hogging moments and shear forces. The LEs of nine-axle vehicles 
have one mode for sagging moments, hogging moments, and shear forces, which is 
prevalent at all the WIM stations studied.  
 
As a result, the characteristic LEs are determined for each abnormal vehicle type within 
the eight and nine-axle vehicle subsets based on the modality of the respective subsets. 
Table 1 provides a summary of the number of abnormal vehicle types associated with 
eight- and nine-axle abnormal vehicles, respectively. Hence, the characteristic LEs and 
reliability-based PFs will be determined for each abnormal vehicle type, based on the 
association with abnormal vehicles with eight- and nine-axles, respectively. 
 

Table 1: Number of abnormal vehicle types (sub-populations) associated with eight-and 
nine axle abnormal vehicles, consistent for each LE (hogging, sagging and shear) per axle 

group (eight, nine axle abnormals) 

                                    Province → 
Vehicle type ↓  

WC EC FS GP KZN LP MP NC NW 

8-axle abnormal vehicle 3 3 2 2 2 3 3 2 2 
9-axle abnormal vehicle 2 1 2 3 2 1 1 2 3 
Legend: WC = Western Cape; EC = Eastern Cape; FS = Free State; GP = Gauteng Province; KZN = 
KwaZulu-Natal; LP = Limpopo Province; MP = Mpumalanga; NC = Northern Cape; NW = North West  

 
 



5.3 Characteristic LEs and PFs due to South African Abnormal Vehicles 
 
The approach to computing characteristic LEs and reliability-based PFs from static LEs is 
demonstrated in this section with an example that utilises static LEs 𝑄𝑠𝑡𝑎𝑡 (hogging 
moments in this case), which result from incrementally moving eight-axle abnormal 
vehicles on a 20 m span length in Limpopo. Figure 2 presented earlier in this paper shows 
a histogram LEs. Given the tri-modality of the dataset and 𝑄𝑠𝑡𝑎𝑡 distributed normally, 
isolating each of the three modes by employing GMM permits statistical computations of 
the three independent normal distributions individually. Each of the three individual normal 
distributions represents unique types of abnormal vehicles (each type unique to eight-axle 
abnormal vehicles). The vehicles associated with the LEs in the first mode in Figure 2 are 
statistically analysed by the normal distribution associated with the blue PDF. They are 
characterised as Type 1 vehicles. The same process is followed for the first and second 
modes. The isolated normal distribution for Type 1 vehicles has statistical parameters 
 𝜇 = 339.86 kNm and 𝜎 = 39.39 kNm, with a COV = 0.092. The characteristic hogging 
moment 𝑀𝐶 for the abnormal vehicle subset is: 
 

𝑀𝐶 = µ𝑄𝑎𝑏 + 1.645σ = 340 + 1.645 × 39 = 404kNm         (13) 
 
The design value 𝑀𝑑 is then calculated using Equation 9. 
 

𝑀𝑑 = 𝐹𝑋,𝑡𝑟𝑒𝑓
−1 [Φ(−0.7 × 3.5),𝑝𝑈𝐿𝑆 = 0.9998] = 479kNm          (14) 

 
This leads to computing the reliability-based PF as the ratio between the design and 
characteristic hogging moments, γ𝑒 = 𝑀𝑑

𝑀𝐶
= 479

404
= 1.2.  

 
6. RESULTS AND DISCUSSION  
 
The procedure discussed in the previous section was followed to determine the LEs 
(hogging moments, sagging moments, and shear forces) and the associated reliability-
based PFs for the characterised eight- and nine axle abnormal vehicles subclasses  
(Type 1, Type 2, and Type 3) in each province. Abnormal vehicles comprising the first 
peak of bi-modal and tri-modal (Type 1 vehicles) result from unloaded abnormal or a 
mixed traffic stream of normal and abnormal vehicles. These vehicles are typically not 
well-defined and have larger PFs, which is related to increased uncertainty in the vehicle 
and statistical properties and hence, the LEs. 
 
Type 1 abnormal vehicles are likely to form part of the threshold between normal and 
abnormal vehicles, referred to as threshold vehicles. Threshold vehicles are not as well-
defined as normal and abnormal vehicles, which further explains the inconsistent loading 
and underlying distributions. Type 2 abnormal vehicles exhibit similar behaviour but to a 
lesser extent than Type 1 abnormal vehicles. Opposite to Type 1 abnormal vehicles, which 
may be associated with empty trucks, Type 3 abnormal vehicles may be subject to the 
same rationale by representing fully laden vehicles.   
 
For sagging moments resulting from eight-axle trucks with tri-modal properties, it was 
found that the second mode (Type 2 vehicles) often has the largest PFs and typically 
exhibits a high degree of inter-provincial variation. This phenomenon is analogous to the 
principle of threshold vehicles. Here, the second mode comprises vehicles with significant 
vehicular differences (such as axle configuration, less advanced levelling, etc.); hence, the 
LEs are statistically inconsistent and nonconforming to a particular statistical distribution. 



Like threshold vehicles (neither normal nor abnormal), these vehicles are neither Type 1 
nor Type 2, and hence, a significant degree of variation exists among the vehicle types 
responsible for the LEs of the second mode. 
 
In light of the above, consider the sagging moments by eight-axle abnormal vehicles in 
Limpopo, which has a tri-model LE histogram and hence, three abnormal vehicle sub-
classes. The largest PFs are associated with Type 2 abnormal vehicles and the lowest 
PFs with Type 3 abnormal vehicles. Consider Figure 2, showing the multimodal histogram 
and normal distributions for each mode for sagging moments on a 20 m span length in 
Limpopo. It shows how the blue and red Gaussian distributions (Type 1 and Type 3 
subclasses) have a narrower shape than the green Gaussian distribution (Type 2 
subclass).  
 
Focusing on the second and third modes in Figure 2, it is hard to define a clear boundary 
(or threshold) between the right tail of the second mode and the left tail of the third mode. 
This ambiguity significantly affects the PFs as the Gaussian PDFs are influenced by this 
overlapping, decreasing the goodness of fit. This phenomenon is true for three of the four 
provinces (Mpumalanga, Eastern Cape, Western Cape, and Limpopo) that have tri-modal 
sagging moment histograms. The exception is Mpumalanga, and the largest PFs are 
associated with the Type 1 subclass. Mpumalanga also has the largest PF of 1.279 for 
sagging moments at a span length of 10 m. This is also true for hogging moments and 
shear forces for eight-axle abnormal vehicles as the modality is the same for all LEs 
(hogging moments, sagging moments and shear forces) of a specific abnormal vehicle 
subclass (eight- and nine-axle abnormal vehicles). 
 
Figure 3 shows the multimodal histogram for sagging moments in the Eastern Cape. The 
narrow-shaped red PDF, isolated by employing GMM, agrees with the above discussions 
about the correlation between narrow shaped PDFs and low PFs for well-defined vehicles. 
The difference here is that the first mode (Type 1 abnormal vehicles) is indeed well-
defined, suggesting a predominant occurrence of either empty, well-defined abnormal 
vehicles, or a mixture of normal and abnormal vehicles with similar properties. The same 
explanation holds for the Western Cape.  
 

 
Figure 3: Histogram of sagging moments in the Eastern Cape showing a  

narrow-shaped Gaussian distribution fit to the first mode 



Figure 4 holistically shows the reliability-based PFs for the LEs that result from eight- axle 
vehicles with three modes for all nine provinces. PFs associated with sagging moments 
are considerably lower than those of hogging moments and shear forces. The largest top 
10% of all the PFs are associated with Type 1 vehicles in Mpumalanga and Type 2 
vehicles in the Western Cape, with Mpumalanga governing the PFs overall. The PFs in the 
lowest 10% of all the PFs are primarily associated with Type 3 vehicles (78% Type 3 and 
22% Type 1). 
 

 
Figure 4: Reliability-based PFs for tri-modal LEs of eight-axle  

vehicles in each of the nine provinces 
 
The characteristic sagging moments that result from eight-axle vehicles have negligible 
inter-provincial variation, with the LE magnitudes being almost similar for each span 
length. The magnitudes increase at the same trend as the span length increases. This is 
not the case considering the sagging moments resulting from nine-axle vehicles showing 
significant inter-provincial variation for all span lengths. A notable finding is that the 
variation between characteristic LEs and design LEs is also more significant for nine-axle 
vehicles than for eight-axle vehicles. This is true for hogging moments and shear forces.  
 
The hogging moments that result from eight-axle vehicles show minor inter-provincial 
variation as opposed to those resulting from nine-axle vehicles. Hogging moments 
resulting from eight-axle vehicles are consistent between span lengths of 5 m and 15 m 
and exhibit less consistency for span lengths greater than 15 m. This is because entire 
vehicles able to occupy the bridge at longer, and therefore the GVW starts governing. 
Western Cape experiences considerably larger hogging moments resulting from nine-axle 
vehicles, whereas Mpumalanga and the Eastern Cape experience hogging moment LEs 
well below the other provinces, which is depicted in Figure 5. A possible explanation may 
be related to the abnormal vehicle subclasses, as the LE histograms associated with the 
nine-axle vehicles are unimodal in both Mpumalanga and in the Eastern Cape and relates 
to the earlier discussions of Type 1 vehicles needing better definition. 
 



 
Figure 5: Maximum characteristic hogging moments resulting 

from nine-axle vehicles 
 
7. CONCLUSION 
 
This paper revealed the existence of different abnormal vehicle subclasses and showed 
that these vehicles influence the characteristic LEs and PFs. The characteristic LEs 
resulting from these subclasses show a considerably higher degree of inter-provincial 
variation associated with nine-axle vehicles than eight-axle vehicles. The scope of this 
study was limited to eight and nine-axle vehicles, and the influence of vehicles with more 
than nine axles is therefore unknown. The differences between the LEs that result from 
eight-axle vehicles compared to nine-axle vehicles could not be extended to vehicles with 
more than nine axles and are subject to further investigation.  
 
The results from investigating the subclasses of eight and nine-axle vehicles suggest the 
possibility that characteristic LEs caused by abnormal vehicles are better treated 
individually when designing bridges in South Africa. In the context of this study, it implies 
that if abnormal vehicles are to be treated separately, it should be done on a case-specific 
basis by considering parameters such as average daily truck traffic, typical abnormal 
vehicle characteristics, and the holistic governing traffic flow characteristics that show 
dominance in specific regions. This research contributes to practice by introducing a novel 
methodology which can be applied to distinguish between the LEs induced by normal 
vehicles as opposed to those by abnormal vehicles. These characterised LEs assist in 
developing well-defined load models for the structural design of highway bridges in South 
Africa. The methodology developed in this work further contributes significantly to the 
technical realm by introducing a novel technique of analysing LEs experienced on bridges, 
which can be replicated in other countries and regions. 
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