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Table S1: Dye and organic pollutant degradation by laccase immobilized on various supports 

Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

Alcaligenes 
faecalis XFI 

Chitosan clay composite beads Methyl Red (MR) 
Remazol Brilliant 
Blue R (RBBR)  
Reactive Black 5 
(RB5)

82 
85 
 
69 

24 h Incubated with the dye 
in the dark 

[1] 

A. faecalis XFI Chitosan beads MR, RBBR, RB5 55-73 24 h Incubated with dye in 
the dark

[1] 

Trametes 
versicolor 

Hallow nanospheres (HNS) NH2-
MIL88(Fe) 

RBBR 92 2 h Incubated while shaking 
at 150 rpm at 30 ˚C

[2] 

- Hydrogel of mixture of sodium alginate 
(SA), acrylamide (AM), and 
hydroxyapatite (HA)

p-chlorophenol 80 24 h Incubated with p-
chlorophenol at 30 ˚C 

[3] 

Micrococcus - CI Acid black 210 96.4  72 h Incubated with dye at [4]
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

luteus CI Acid black 234 92.2  pH 7.0 and 37 °C 
Myceliophthora 
thermophila 

Silica particles Catechol 
Phenol  
p-chlorophenol

95 
76 
60 

2 h 
24 h 
24 h

Incubated at room 
temperature 

[5] 

Pleurotus 
ostreatus 

- Methyl orange 
Trypan blue 
Ramazol brilliant 
red (RBR) 
RBB

50 3 h Incubated at room 
temperature 

[6] 

P. ostreatus  EUPERGIT C 250L RBBR 40 - Continuous fixed bed 
reactor

[7] 

T. versicolor TiO2NPs/polyvinylidene fluoride (PVDF) 
sol-gel membrane Bisphenol A 91.7 96 h

Stainless steel dead-end 
membrane cell [8]

 

Fe3O4@MoS2@PEI

Malachite green 
Bisphenol A 
Bisphenol F

82.7 
87.6  
 
70.6 

Mixed NC with dyes 
with ABTS as a 
mediator while shaking 
at 180 rpm [9]

T. versicolor 
CS-MNPs Chlorpyrifos 99 12 h

Erlenmeyer flask while 
shaking at 150 rpm [10]

T. versicolor 
Cu (II)-chelated chitosan/poly (glycidyl 
methacrylate) nanoparticles Phenol 

82 
96 with 
ABTS 4 h

Stirred batch assay at 
100 rpm at 35 ˚C [11]

T. versicolor 

MNPs/polydopamine (PDA) 4-chlorophenol 86 2 h

Stirred batch assay at 
150 rpm in the dark at 
30 ˚C [12]

T. versicolor 

MNPs/polydopamine

2,4,6-
trichlorophenol 
Triclosan 
Aqueous 
Acetaminophen 
Bisphenol A 
Diclofenac

84.7 
(62.3*) 
 
81.2 
(56.5*) 
88.3 (68.2) 
 
82.8 (70.1) 12 h

Batch assay at room 
temperature [13]
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

86.2 (64.8)
 

MnFe2O4/calcium alginate nanocomposite 
(NC) 

Methylene blue 
 
Indigo  
 
Acid red 14

82.13 
25.09  
20.42 1 h

Stirred batch assay at 30 
˚C and 120 rpm 
Laccase based NC (L) 
were used at pH 7 [14]

T. versicolor 

Fe2O3/copper alginate beads

Triclosan  
Remazol brilliant 
blue R (RBBR)

89.6 
75.8 

8 h 
4 h

For TCS, batch assay 
with 1-
hydroxybenzotriazole 
(HBT) as a mediator 
For RBBR, batch assay 
at room temperature and 
rotation of 50 rpm [15]

T. versicolor PMMA/Fe3O4 electrospun nanofibers 

Tetracycline 100 40 min

Batch assay at pH 5, 
200 rpm, 25 ˚C in 
darkness and for 40 min [16]

Rhus verniciflua 
MNPs/chitosan 

2,4-Dichlorophenol 
4-Chlorophenol 

91.4 
75.5 12 h

Batch assays at room 
temperature [17]

Aspergillus 
oryzae 

CS-MNPs 

2,4-dchlorophenol 
Bisphenol A 
Indole  
Anthracene 

100 
100 
70.5 
93.3 12 h Batch assays at 25 ˚C [18]

T. versicolor 

CS-MNPs Bisphenol A

85 (Cu(ii)-
chelation) 
88 (Mn(II)-
chelation) 12 h

Batch assays with 
shaking at 150 rpm at 
room temperature and 
pH 5 [19]

T. versicolor 

Polyethylenimine (PEI)-MNPs Phenol 72.93

Stabiliz
ed after 
150 
min

Used a fixed bed reactor 
under high-gradient 
magnetic field. 
Continuous treatment 
after 18 h 2.38 times 
higher than batch 
treatment under the [20]
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

same conditions. 
T. versicolor 

MnFe2O4NPs/chitosan Diclofenac 78 
270 
min

Batch assay at room 
temperature with ABTS 
as a mediator [21]

Bacillus sp. 

TiO2NPs/alginate 

Indigo carmine 
Alizarin red 
Trypan blue 
Malachite green

69.3 

61 
96 
100 60 min

Batch assay at 30 ˚C 
under static conditions [22]

T. versicolor poly(4-vinylpyridine) grafted Cu(II) 
chelated magnetic beads 

Reactive Green 19 
Reactive Red 2  
Reactive Brown 10 

77 
 
89 
92 

18 h Incubated 50 mg/L dye 
at 30 ˚C in acetate 
buffer 

[23] 

T. versicolor Mesoporous carbon nanospheres Tetracycline 
hydrochloride 
 
Ciproflaxin 
hydrochloride 

55, (99.4 
with TSA 
and 99.1 
with HBT) 
77 (96.9 
with TSA 
and 94 
with HBT)

3 h Incubated at 30°C and 
150 rpm  

[24] 

M. thermophila methyltrimethoxysilane and 
tetramethoxysilane sol-gel matrix 

Acid Green 27 
 
 
 
Estrone (E1)  
17β-estradiol (E2) 
17α-ethinylestradiol 
(EE2) 

70, 58, 57, 
and 55 
after four 
consecutiv
e cycles 
55 
75 
 
 
60 

 Continuous operation of 
packed bed reactor at 24 
˚C with 30 minutes 
hydraulic retention time 

[25] 

Streptomyces 
psammoticus 

Copper alginate beads

Phenolic compounds 
(gallic acid, tannic 
acid, ferulic acid, 

72 
69.9 

6 h Batch studies in a 
packed bed column 
reactor

[26] 
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

resorcinol, guaiacol, 
catechol, vanillic 
acid and pyrogallol)

P. ostreatus Titania nanoparticles  bisphenol-A 
Carbamazepine

90 
10 

6 h 
48 h

Stirred hybrid 
membrane reactor

[27] 

T. versicolor poly(3,4-ethylenedioxythiophene)-
polypyrrole/Pt (PEDOT-PPy-COOH/Pt) 
micromotors 

Procyon red 
Reactive green 5 
Reactive brown 10 
Reactive green 19 
Cibracon blue F3GA 
Alkali blue 6B 
Brilliant blue 6 

85 
74 
80 
 
85 
76 
 
90 
94 

10 
minutes 

Incubated with laccase 
in presence of 2% of 
H2O2 and 0.2% SDS for 
movement of 
micromotors 

[28] 

T. versicolor 3D chitin scaffolds Tetracycline  80 24 Packed bed reactor for 
continuous removal

[29] 

T. versicolor Zinc oxide nanoarray Tertiary butyl 
alcohol (TBA)

55.1 108 h Dropped glass slides in 
TBA

[30] 

Weissella 
viridescens LB37 

CS-MNPs Direct blue 15 
Evans blue  
Reactive black 5 
Acid red 37

95 
96 
95 
97 

120 
min 

Incubated with lac at 
room temperature in the 
dark 

[31] 

T. versicolor Fe3O4-NH2@MIL-101(Cr) metal organic 
framework 

Reactive black 5 
Alizarin red S

81 
100 

24 h Incubated at 25 ˚C 
while shaking

[32] 

Coprinus 
comatus 

Maple biochar 4-hydroxy-3,5-
dichlorobiphenyl 

71.4 5 h Incubated with lac in 
presence of sodium 
hydroxide

[33] 

M. thermophila Mesoporous amorphous silica (MOF) Bisphenol A 92 60 min Incubated at 21 ºC while 
shaking

[34] 

M. thermophila NH2-MIL-53(Al) MOF Bisphenol A 100 3 min Incubated at 21 ºC while 
shaking

[34] 

T. versicolor Cellulose beads Indole 99.7 18 h Incubated at 30 ˚C [35]
 Magnetic MOFs Methylene blue 91 (96) 20 min Batch incubation with [36]
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

Crystal violet 93 (98) (15 min 
steady 
state

stirring at room 
temperature (continuous 
treatment in parked bed)

S. coelicolor MNPs Phenol 
4-chlorophenol 
4-fluorophenol

100 
100 
100 

2 h Incubated at at 37 °C in 
the dark with gentle 
shaking at 50 rpm

[37] 

Polyporus durus nanoporous Zeolite-X Synthetic 
wastewater solution 
A (100 mg/l RB 19, 
100 mg/l AB 225, 90 
g/l sodium sulfate, 
and 20 g/l sodium 
carbonate)  
Solution B (100 mg/l 
RB 19, 100 mg/l RV 
5 (Sunzol Brilliant 
Violet 5 R) a metal 
complex azo dye, 90 
g/l sodium sulfate, 
and 20 g/l sodium 
carbonate) 
AB 225 
RB 19 

100 
 
 
 
 
 
 
 
 
100 
 
 
 
 
 
 
 
 
 
100 
100 

45 min 
 
 
 
 
 
 
 
 
45 min 
 
 
 
 
 
 
 
 
 
15 min 
45 min

Incubated at 50 ˚C with 
shaking at 150 rpm 

[38] 

P. ostreatus Luffa cylindrica fibers 17a-ethinylestradiol 
(EE2)

75 8 h Incubated at pH5 at 
room temperature

[39] 

Pycnoporus 
sanguineus 

Titania NPs Acetaminophen  
Diclofenac  

90 
68 

2 h 
8 h 

Incubated at room 
temperature, pH 4 in the 
dark

[40] 

T. versicolor Dealuminated sodium zeolite Bisphenol A 86.7 1 h Incubated at 25 ˚C and [41]
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

120 rpm
T. versicolor Polyimide aerogels Carbamazepine in a 

secondary effluent 
from a WWTP

76 24 h Incubated at room 
temperature while 
stirring at 200 rpm

[42] 

R. vernicifera MNPs Bisphenol A 84.9 12 h Incubated at room 
temperature with 
shaking at 100 rpm

[43] 

T. versicolor Silica gel Amoxicillin  
Ciprofloxacin  
Carbamazepine  
Sulfamethoxazole

50 
30 
50 
100 

3 h 
4 h 
4 h 
1.5 h

Incubation at 25 ˚C with 
continuous stirring in 
the dark 

[44] 

T. versicolor polyacrylamide-alginate cryogel phenolic compounds 
in olive mill 
wastewater 
Dyes in textile 
wastewater 
Congo red  
Fast Green FCF 
Sunset Yellow FCF  
Trypan blue 
Chlorazol Black 

70 
 
 
 
55.6 
 
99.1 
94.1 
97.9 
 
95.7 
93.3 

 
 
 
 
 
5 h 

Circulated the solution 
through laccase-bound 
cryogel at 25 ◦C at 100 
μL/min flow rate 

[45] 

T. versicolor Nanocellulose aerogel Reactive red X-3B  
2, 4-dichlorophenol 

94.5% 
85.2% 

4 h Incubated at pH 4.5 and 
50 ◦C

[46] 

T. versicolor Geopolymer microspheres (GM) Congo red 94.78 20 h Incubated at 25 ˚C [47]
T. versicolor Magnetic CLEAs Diclofenac 65 48 Incubated at pH 6 [48]
T. versicolor metal-chelated magnetic silica NPs Phenolic compounds 

in apple juice 
34.7 2.5 Continuous clarification 

in a magnetically 
stabilized fluidized bed

[49] 

T. versicolor MNPs Acid fuchsin dye 77.41 16 h Incubated at pH 4.5 and 
40 ˚C while stirring

[50] 

T. versicolor α-Cellulose-Fe3O4-CS Sulfamethoxazole 82 20 h Incubated at 30 ˚C [51]
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

while shaking at 200 
rpm

Escherichia coli magnetic zeolitic imidazolate MOFs Indigo carmine 100 15 min Incubated at 40 ˚C 
while shaking

[52] 

Bacillus subtilis Chitosan beads Indigo carmine 
Malachite green

95.24 
90 

24 h Incubated at 37 ˚C [53] 

 HPD-417 Indigo 
2, 4-dichlorophenol 

65 
 
100 

90 min 
 
70 min

Incubated at 55 °C [54] 

 Diatomite  Indigo 
2, 4-dichlorophenol 

90 
 
100 

60 min 
 
60 min

Incubated at 55 °C [54] 

T. versicolor Glycopolymers microspheres Paracetamol  96 24 h Incubated in the 
presence of ABTS 
mediator at 40 ˚C and 
pH 7

[55] 

 Meso-MIL-53(Al) MOF Triclosan  99.24 120 
min 

Incubated at 30 °C 
while shaking at 150 
rpm in the dark

[56] 

T. versicolor Fe3O4@SiO2@Kit-6 magnetite NPs Phenol 
Lignin in olive 
pomace

76.5 
77.3 

6 h 40 ˚C while shaking at 
150 rpm  

[57] 

T. versicolor Spent grain Methyl orange  
Murexide  
Methylene blue  

70 
100 
100 

150 
min 
150 
min 
72 h

pH 5 and 30 °C in 
presence of ABTS 

[58] 

Aspergillus sp. Microporous starch Atrazine  
Prometryn 

61 7 days Incubated at 25 ˚C [59] 

T. versicolor Fermented tea residues Malachite green 95 2 h Incubated at 25 ˚C 
while shaking at 150 
rpm

[60] 

T. versicolor Micro biochar; pine wood Diclofenac 100 5 h Incubated at room [61]
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

Pig manure 
Almond shell 

temperature, pH 6.5 
while shaking at 750 
rpm

T. versicolor 
Nafion micelles 
 
PANI 
 
Copper alginate beads

Acid orange in a 
microbial fuel cell 
(MCF) 

 
73 
 
75.6 
 
81 

 Used the lac system as a 
cathode and Shewanella 
oneidensis as the 
biocatalyst in the anode 
chamber 

[62] 

T. versicolor PVA hydrogel capsules Saturn Blue L4G 71 (batch) 
48 
continuous

  [63] 

T. versicolor Xylan-PVA hydrogel beads Reactive Black 5 98.45 6 h Incubated at 40 °C [64]
Aspergillus sp. MOF/PVA cryogel Alizarin green  95.86 12 h Incubated at 25 °C 

while shaking at 150 
rpm

[65] 

Aspergillus sp. PVA/HNTs Reactive blue  93.41 8 h Incubated at room 
temperature in presence 
of ABTS

[66] 

Bacillus sp. Cu-alginate beads Textile effluent 60 (colour 
removal)

24 h Used a continuous flow 
packed bed reactor

[67] 

T. versicolor poly(methyl methacrylate) (PMMA)/PANI 
electrospun fibers 

Remazol Brilliant 
Blue R

87 24 h Incubated at 30 ˚C and 
pH 5

[68] 

T. versicolor Eupergit C Pulp bleaching 
effluent

40 18 h Incubated in presence of 
sulphuric acid

[69] 

M. thermophila Eupergit C Estrogen  90 50 min Continuous operation in 
a fluidized bed reactor

[70] 

M. thermophila Eupergit C 250L E1 
E2 
EE2 
Acid green 27

65 
80 
80 
88 

30 min Continuous operation in 
a PBR 

[71] 

Brevibacterium 
halotolerans 

Alginate-gelatin Congo red 85 24 h Incubated at 40 ˚C pH 
5.5

[72] 
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

P. ostreatus MANAE-agarose Bisphenol A 100 1 h Incubated at pH 5 while 
shaking at 120 rpm

[73] 

T. versicolor Chitosan beads Bisphenol A 100 150 
min

Incubated while shaking 
at 30 ˚C in the dark

[74] 

T. versicolor CS-Fe3O4/HNTs Sulfamethoxazole 62 24 h Incubated at 20 ˚C 
while shaking at 200 
rpm in presence of 
syringaldehyde

[75] 

T. pubescens CS/genipin Reactive brilliant 
blue X 
RBBR 
Acid black 127 
Congo red 
Methylene blue 
Neutral red 
Indigo blue 
Naphthol green B 
Crystal violet

60.3 
 
61.4 
77.5 
69.5 
37.3 
48.2 
56.3 
65.4 
40.2 

96 h Incubated at 55 ˚C in 
the dark while shaking 
at 150 rpm 

[76] 

T. versicolor MWCNTs/electrospun fibrous membrane Bisphenol A 90 5 h Incubated at 25 ˚C 
while shaking at 150 
rpm

[77] 

T. versicolor Fe3O4-MWCNTs@SiO2 Eriochrome Black T 
(EBT) 
Acid Red 88 (AR 
88) 
Reactive Black 5 
(RB5)

99 
 
98 
 
66 

3.5 h Incubated at 60 ˚C 
while stirring 

[78] 

A. oryzae Polyssulfone (PSf) membranes blended 
with MWCNTs 

Phenol  
Resorcinol  
4-methoxyphenol 
4-chlorophenol 
Mixture 

90 
94 
100 
41 
90 

1 h 
1 h 
5 min 
1 h 
1 h

Incubated while stirring 
in presence of ABTS 

[79] 

T. versicolor Graphene oxide (GO) Dawood textile 85.69 24 h Incubated at room [80]
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

Rashid textile 
Sitara textile 
Ishaq textile

75.6 
88.65 
71.25

temperature  

B. subtilis Magnetic GO  Malachite green  99 5 h Incubated at 30 ˚C, pH 
6 while shaking at 150 
rpm in presence of 
ABTS

[81] 

T. versicolor Graphene aerogel-Zr-MOF Hydroquinone  79 24 h Incubated at 30 ˚C, pH 
3 while stirring

[82] 

B. subtillis 

Cu-MGO nano-sheets

Congo red  100 5 h Incubated at 60 ˚C, pH 
8 with shaking at 150 
rpm

[83] 

 Zeolite NPs/GO nanocomposites Direct red 23 91 1 h Incubated at 45 ˚C [84]
Phlebia 
brevispora 

Nanoporous alumina Black liquor 40 40 min Incubated at 25 ˚C [85] 

T. hirsuta Light expanded clay aggregate (LECA) Reactive Blue 4 
RBBR 
Acid Blue 129

90 
95 
96 

24 h Incubated at 30 ˚C 
while shaking at 100 
rpm

[86] 

T. hirsuta LECA RBBR 94 24 h Incubated at room 
temperature while 
shaking at 100 rpm

[87] 

T. versicolor Mesoporous bentonite clay  Tetracycline  60 3 h Incubated at room 
temperature in presence 
of 
1hydroxybenzotriazole 
(HBT)

[88] 

T. versicolor Clay-adamantylamine Bromophenol blue  
Bromothymol blue  
Coomassie brilliant 
blue  
Methyl orange 
Phenol red  

24 
 
71 
 
61 
 
60 

48 h Incubated at 30 ˚C, pH 
4.58 while shaking at 
120 rpm 

[89] 
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

25 
T. versicolor Clay-CNTs Bromophenol blue  

Bromothymol blue  
Coomassie brilliant 
blue  
Methyl orange 
Phenol red  

85 
 
74 
 
91 
 
87 
67 

48 h Incubated at 30 ˚C, pH 
4.58 while shaking at 
120 rpm 

[89] 
 

T. versicolor Clay-GO Bromophenol blue  
Bromothymol blue  
Coomassie Brilliant 
blue  
Methyl orange 
Phenol red  

70 
 
75 
 
91 
 
89 
80 

48 h Incubated at 30 ˚C, pH 
4.58 while shaking at 
120 rpm 

[89] 
 

Alcaligenes 
faecalis 

Chitosan-clay composite beads Crude textile 
effluent

78  Used a packed bed 
reactor system

[90] 

T. hirsuta LECA RBBR 99.29 3 h Incubated at 30 ˚C 
while shaking at 100 
rpm

[91] 

T. pubescens Ca-alginate beads Bisphenol A 99 2 h Incubated at 30 ˚C, pH 
5 while shaking at 125 
rpm

[92] 

M. thermophila Silica NPs Lindane 70.5 24 h [93]
T. versicolor Mesoporous silica Bisphenol A 90.1 

81 
8 h 
7.2 
mL/min 

Incubated at room 
temperature while 
stirring at 150 rpm for 
batch and used a 
fluidized bed reactor for 
continuous flow

[94] 

White-rot fungi SBA-15-NH2 2,4-dichlorophenol 89 24 h Incubated at 40 ˚C, pH [95]
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

4
Pleurotus sp. Porous CLEAs Acid violet 

Basic red 
Reactive violet  
Reactive orange

65  
70  
60  
61 

2 h 
2 h 
6 h 
6 h

Incubated at 30 °C in 
complete darkness 

[96] 

T. versicolor CLEAs RBBR 
Crystal violet 
Reactive black 5

94.57 
90.63 
78.72

24 h Incubated at room 
temperature pH 4.5 

[97] 

T. versicolor Entrapped CLEAs in mesoporous silica Phenol  100 40 min Incubated at 25 °C, pH 
4.5 and 100 rpm 
shaking

[98] 
 

Fomes 
fomentarius  

CLEAs Malachite green  
Bromothymol blue  
Methyl red 

90 
90 
95 

10 h Incubated at 22 °C, pH 
4.5 in the dark 

[99] 
 

T. versicolor CLEAs Malachite green  
Bromothymol blue  
Methyl red 

90 
90 
95 

10 h Incubated at 22 °C, pH 
4.5 in the dark 

[99] 
 

T. versicolor Cross linked enzyme crystals (CLECs) Chenab textile 
effluent  
M-tax effluent 
Sitara effluent 
National silk &  
rayon mills effluent

78.6 
 
75.6 
85.5 
63.3 

24 h Incubated at 30 °C, pH 
4.5 while shaking at 150 
rpm 

[100
] 

Aspergillus sp. GO nanosheets Direct red 23 
Acid blue 92 

88.7 
48.7 

1 h 
 

Incubated at 45 °C 
while stirring 

[101
] 

M. thermophila Epoxy- silica Acid orange 156 
acid red 52 
Coomassie brilliant 
blue 
Methyl violet 
Malachite green

98 
99 
97 
 
78 
100 

4 h Incubated at 40 °C, pH 
4.5 

[102
] 

T. hirsuta Polyvinylidene  fluoride (PVDF)- Carbamazepine 27 48 h Incubated at 25 °C [103
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

 MWCNT Diclofenac 95 4 h ]
T. versicolor Gelatin ceramic membranes Tetracycline 30 24 h Carried out in an 

enzymatic membrane 
reactor at 25 °C at flow 
rate of 0.07 m/s

[104
] 

Trichoderma 
harzianum 

 Paper industry 
effluent; 
Color  
Turbidity Total 
suspended solids  
Total dissolved 
solids  
BOD  
COD  
Residual chlorine

 
 
76.74 
83.91 
71.37 
51.49 
91.16 
88.07 
81.08 

10 days  
 
Incubated under aerobic 
conditions 

[105
] 

P. florida  Reactive blue 198 96 10 min Incubated at 60 °C pH 
4.5

[106
]

T. versicolor Magnetic biochar NPs Bisphenol A 100 75 min Incubated at room 
temperature while 
shaking at 100 rpm

[107
] 

T. versicolor Microbiochar  Diclofenac spiked in 
waste water effluent 

100 2 h Incubated at room 
temperature, pH 6.5 in 
waste water effluent

[108
] 

Sphingobacteriu
m ksn-11 

sodium alginate-SiO2-PVA beads Diclofenac  81 90 min Incubated at 40 °C, pH 
4.5 in presence of 
ABTS mediator

[109
] 

T. versicolor Sepharose-linked antibody Phenol red 80 6 h Incubated at 50 °C 
while stirring

[110
]

 Nanocellulose  Malachite green  
Congo red  

98 
60 

30 min Incubated at 50 °C in 
presence of ABTS 
mediator

[111
] 

P. ostreatus Ca-alginate beads Reactive red 80 
Reactive blue 21

67.2 
88.05

11 days Incubated ta room 
temperature pH 5.5

[112
]
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

T. villosa Fe3O4/SiO2 NPs Procion Red MX-5B  
Azophloxine

80 
80 

20 min Incubated at room 
temperature pH 7

[113
]

Paraconiothyriu
m variabile 

Porous silica beads Acid Blue 25  
Acid Orange 7

76 
64 

65 min Incubated at 40 °C 
while shaking at 50 rpm

[114
]

T. versicolor Hollow CLEAs Trypan blue 100 270 
min

Incubated at 20 °C, pH 
10

[115
]

T. versicolor polyacrylonitrile/montmorillonite/graphen
e oxide (PAN/MMT/GO) nanofibers 

Catechol  39  Used the fiber as a 
filtration membrane in a 
membrane reactor

[116
] 

T. versicolor PAN-biochar composite nanofibrous 
membrane 

Chlortetracycline 58.3  Carried out n 
continuous mode in a 
membrane reactor at a 
flux-rate of 1 mL/h.cm2

[117
] 

P. ostreatus Perlite (porous silica) RBBR 71 50 min Continuously operated 
fluidized bed reactor at 
pH 4.5

[118
] 

Coriolopsis 
polyzona 

Mesoporous silica particles Bisphenol A 90 1.85 h Continuous stirred-tank 
membrane reactor (was 
efficient for 30 reactor 
volumes)

[119
] 

T. versicolor Ca-alginate beads Reactive T Blue dye 92 72 h Incubated at 30 °C, pH 
4.5 while shaking at 150 
rpm

[120
] 

T. versicolor Functionalized GO (fGO) Pinacyanol chloride 
Anthracene  

100 
 
98.6 

300 
min 
 
3 days

Incubated at 30 °C, pH 
4.58 and stirring of 800 
rpm in the dark 

[121
] 

T. versicolor CS/PVA nanofibrous membranes  2,4-dichlorophenol  87.6 6 h Incubated at 50 °C and 
pH 6

[122
]

Cerrena sp. Magnetic CLEAs Tetracycline  
Oxytetracycline 
Ampicillin 
Sulfamethoxazole

68 
60 
55 
30 

48 h Incubated at 45 °C, pH 
6. For tetracycline and 
oxytetracycline, ABTS 
was used as a mediator

[123
] 
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

Erythromycin   
25 

T. versicolor Alumina  Melanoidins in 
industrial molasses 
effluents

71 48 h Incubated at 30 ° and 
pH 8 on a rotating mixer

[124
] 

T. versicolor Controlled pore glass Melanoidins in 
industrial molasses 
effluents

 
74 

48 h Incubated at 30 ° and 
pH 8 on a rotating mixer

[124
] 

Cyathus bulleri PVA beads Acid red 27 95 5 days Incubated at room 
temperature in presence 
of HOBT mediator

[125
] 

Shewanella 
putrefaciens 

CLEAs Malachite green 90 24 h Incubated at room 
temperature in the dark 

[126
] 

P. florida poly(lactic-co-glycolic acid) (PLGA) 
nanofiber 

Diclofenac  100 5 h Incubated at 30 °C in 
the dark while shaking 
at 100 rpm

[127
] 

T. versicolor Cu(II)-chelated chitosan NPs Phenol  96 12 h Incubated at 35 °C 
while shaking at 100 
rpm in presence of 
ABTS

[11] 

T. versicolor Chitosan/CeO2 microspheres Methyl red 
Orange (II)

83.3 
92.6 

9 days Incubated at room 
temperature

[128
]

T. versicolor PVA/CS/MWCNTs Diclofenac  100 6 h Incubated at 60 °C, pH 
6

[129
]

T. versicolor Fullerene  
MWNTs  
Oxidized-MWNTs  
GO 

Bisphenol A 23 
97.7 
98.9 
74.6 

24 h Incubated at room 
temperature in presence 
of ABTS at 160 rpm 

[130
] 

T. versicolor Fullerene  
MWNTs  
Oxidized-MWNTs  
GO 

Catechol  33 
99.9 
99.5 
87.1 

24 h Incubated at room 
temperature in presence 
of ABTS at 160 rpm 

[130
] 
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

Cerrena sp. CLEAs RBBR 90 40 min Incubated at 25 °C, pH 
5

[131
]

T. versicolor Poly(methyl methacrylate-co-glycidyl 
methacrylate) (poly(MMA-co-GMA)) 
cryogels 

Procion Red 
Reactive Green 5  
Reactive Brown 10  
Reactive Green 19  
Cibacron Blue 
F3GA  
Alkali Blue 6B  
Brilliant Blue 6 

81.53  
59.81  
 
73.59  
 
66.33  
 
62.95  
 
59.71 
61.68

10 min Passed through a 
cryogel column using a 
peristaltic pump at a 
flow rate of 0.5 mL/min 

[132
] 

ascomycete 
Paraconiothyriu
m variabile 

Chitosan NPs on glass beads Congo red  100 15 min Incubated at 40 °C in 
presence of HOBT 
mediator 

[133
] 

T. versicolor Magnetic GO Crystal violet 
Malachite green  
Brilliant green 

94.7 
95.6 
91.4 

180 
min 

Incubated at 35 °C 
while shaking at 250 
rpm in the dark

[134
] 

T. versicolor Fe3O4@C NPs o-phenylenediamine 
(OPD)  

88 10 h Incubated at room 
temperature and 150 
rpm

[135
] 

P. florida Cellulose nanofiber simulated dye 
effluent containing 
RBBR, RB5, RO16, 
RR120, and RV5R, 
NaCl, Na2CO3, 
NaOH and acetic 
acid 

99 36 h Incubated at 30 °C, pH 
5 while shaking at 50 
rpm, in the dark and in 
presence of HOBT 

[136
] 

T. versicolor Fe3O4-silica NPs 2,4-dichlorophenol 
4-chlorophenol  

80.9 
64.2 

12 h Incubated at 30 °C, pH 
7.9 and while shaking at 
150 rpm

[137
] 

 Polyuria microspheres RBBR 64.1 300 Incubated at room [138
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

min temperature ]
Fungi MNPs Reactive green 19A 100 6 h Incubated at 25 °C, pH 

6
[139
]

Echinodontium 
taxodii 

Concanavalin A-MNPs Sulfadiazine 
Sulfamethazine 
Sulfamethoxazole  

100 
100 
100 

5 min Incubated at room 
temperature with mild 
shaking in presence of 
mediators syringic acid, 
syringaldehyde and 
acetosyringone 
respectively

[140
] 

 EDTA-TMS-MNPs Indigo carmine 
Congo red

28 
44 

4 h Incubated at 40 °C 
while shaking at 80 rpm

[141
]

Aspergillus sp. Green coconut fiber Reactive black 5  
Reactive blue 114  
Reactive yellow 15  
Reactive yellow 176  
Reactive red 239  
Reactive red 180 

90 
90 
 
70 
 
2 
 
30 
28 

24 h Incubated at 35 °C, pH 
7 while stirring at 240 
rpm 

[142
] 

Cerrena sp  CLEAs  
M-CLEAs  
Alginate  
Chitosan 

Malachite green 90 3 h Incubated at 30 °C and 
60 °C 

[143
] 

Coriolopsis 
gallica 

Mesoporous silica spheres Bisphenol A 
Diclofenac  
Mixture 

95 
70 
90 

 Used a continuously 
stirred membrane 
reactor, pH 5

[144
] 

T. versicolor ZnONPs 
MnO2NPs 

Alizarin S 95 
85 

60 min Incubated at pH 7 under 
sunlight

[145
]

T. versicolor Polyethersulfone beads Acid red 88 15 days Incubated at room 
temperature

[146
]

T. versicolor Pine wood nanobiochar  Carbamazepine in 86 24 h Incubated at 25 °C and [147
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

secondary effluent 200 rpm ]
 Polymerr/graphene hydrogels RBBR 100 3.5 h Incubated at room 

temperature 
[148
]

T. versicolor Dopamine HNTs 2,4-dichlorophenol 94.6 24 h Incubated at room 
temperature

[149
]

T. versicolor hydrogels Malachite green 100 3 h Incubated at 25 °C, pH 
5 while stirring in 
presence of HOBT 
mediator

[150
] 

Coriolopsis 
gallica 

Ca-alginate beads RBBR  
Reactive Black 5 
Bismark Brown R  
Lanaset Grey G  

90.3 
78.2 
52.8 
 
86.5 

90 min 
24 h 
24 h 
 
24 h

Incubated at 30 °C in 
the dark in presence of 
HOBT mediator except 
for RBBR 

[151
] 

T. versicolor Layer-by-Layer-Assembled membranes 2,4,6-
trichlorophenol 

80 36 s Used a pressure cell 
housing membrane 

[152
] 

P. florida Agarose gel Reactive Blue 172  83  10 min Incubated at 30 °C [153
]

P. ostreatus poly(methacrylate) beads Phenol in juice 45 30 min Incubated at room 
temperature

[154
]

 Cu2+-chelated silica particles Pentachlorophenol  82.89 30 min Incubated at 25 ° C at 
100 rpm in the dark

[155
]

T. versicolor Porous silica beads Sulfathiazole  
Sulfamethoxazole 

85 
80 

60 min Incubated at 40 °C, pH 
5 and 50 rpm in 
presence of HOBT 
mediator

[156
] 

T. versicolor ZnO/SiO2 nanocomposite Remazol Brilliant 
Blue B 
Acid Blue 25 

93 
82 

2 h Incubated at 25 °C and 
pH 5.5 

[157
] 

T. versicolor FeCl3-pecan nutshell Acid orange 7 70 48 h Incubated at 30 °C, pH 
6 and agitation of 150 
rpm

[158
] 
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

T. versicolor MNPs Acid Blue 225 
Direct Blue 78 
Phenol Red Reactive 
Red 195 
Acid Blue 74 

83.93 
46.2 
24.5 
8.2 
 
0.0 

120 
min 

Incubated at pH 5 room 
temperature  

[159
] 

T. versicolor Magnetic microplates Acid Blue 225 
Direct Blue 78 
Phenol Red Reactive 
Red 195 
Acid Blue 74 

40.49 
100 
9.3 
20.47 
 
4.34 

120 
min 

Incubated at pH 5 room 
temperature  

[159
] 
 

T. versicolor  Acid Blue 225 
Direct Blue 78 
Phenol Red Reactive 
Red 195 
Acid Blue 74 

100 
90.15 
57.96 
52.27 
 
97.04

60 min Incubated at pH 5 room 
temperature  

[159
] 
 

Papaya  Chitosan beads  Indigo carmine 100 8 h Incubated at 37 °C [160
]

T. versicolor Chitosan macro beds Anthracene  60 24 h Incubated at pH 5 in 
presence of ABTS

[161
]

C. unicolor Porous silica beads Bisphenol A 
Nonylphenol, 
Triclosan

80  
40  
60  

60 min Incubated at 30 °C with 
gentle agitation 

[162
] 

T. versicolor Poly(2-chloroethyl acrylate), p(CEA) 
grafted zeolite particles 

Reactive red 100 120 
min 

Incubated at 35 °C 
while shaking at 150 
rpm

[163
] 

Aspergillus sp. Magnetic silica NPs Guaiacol  100 30 min Incubated at 40 °C, pH 
3.5 while stirring 

[164
]

 Cu2+-chelated silica particles 2,4-dichlorophenol 91.4 12 h  Incubated at 25 °C, pH 
5 in the dark while 
rotating at 100 rpm

[165
] 
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

T. versicolor Poly(MA-alt-MVE)- g -PLA/ODA-MMT 
nanocomposite 

Reactive red 3 65 90 min Incubated at 20 °C, pH 
5

[166
]

P. ostreatus Fe3O4/SiO2 NPs Procion Red MX-5B 96 1 h Incubated at 25 °C, pH 
7

[167
]

M. thermophilia MWCNTs-cellulose membrane Reactive black 5 84.26 24 h Incubated at 25 °C, pH 
5 while shaking at 100 
rpm in presence of 
HOBT mediator

[168
] 

T. versicolor CS-epichlorohydrin (CHX)-itaconic acid 
(CHX-g-p(IA))-Cu2+ membranes 

Reactive black 5 
Cibacron blue F3GA  
Methyl Orange 

43 
69 
 
87 

8 h Incubated at 35 ◦C, pH 
5.5 while shaking at 150 
rpm in presence of 
acetosyringone mediator

[169
] 

Trichoderma 
harzianum 

Sol-gel matrix Malachite green 
Methylene blue  
Congo red  

100 
90 
60 

16 h 
18 h 
20 h 

Incubated at 30 °C, pH 
6 while shaking at 150 
rpm in presence of 
HOBT mediator

[170
] 
 

T. versicolor PAN−biochar nanofibrous membrane Chlortetracycline 
Carbamazepine   
Diclofenac

63.3 
48.6 
72.7 

8 h Incubated at room 
temperature 

[171
] 

T. versicolor poly(glycidylmethacrylate)-grafted 
polypropylene film (PP-g-pGMA) 

Procion Green H4G  
Brilliant Blue G 
Crystal Violet 

90 
 
100 
99 

120 
min 
 
60 min 
30 min

Incubated at 30 °C, pH 
5.5 while shaking at 150 
rpm 

[172
] 
 

T. versicolor CS grafted polyacrylamide hydrogel Malachite Green 100 4 h Incubated at 25 °C, pH 
5 while stirring

[173
]

 Alginate beads  Direct Blue 2 86 25 h Incubated at 45 °C [174
]

Pycnoporus 
sanguineus 

Immobead-150  
lentikats 

m-cresol 88 
85 

24 h Incubated at room 
temperature, pH 3.5 
while shaking

[175
] 

Paraconiothyriu
m variabile 

Alginate-gelatin gel Amido black 10B   
Bromothymol blue 

86.9 
 

20 min Incubated at 45 °C [176
]
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

Coomassie blue G-
250  
Crystal violet  
Eosin  
Malachite green  
Methyl green  
Methyl red  

53.8 
 
71.4 
 
58.1 
32.8 
76.3 
77.5 
52.1 

T. versicolor Bimodal carbon-based mesoporous 
magnetic composites (CMMC) 

Phenol  
p-chlorophenol 

78 
84 

12 h Incubated at 25 °C, pH 
6 while shaking at 100 
rpm

[177
] 

T. pubescens Chitosan beads Reactive Blue 4 
Reactive Blue 19 
Direct Red 28 
Acid Black 172 
Basic Blue 9 
Basic Red 5 
Vat Blue 1 
Acid Green 1 
Direct Blue 199 
Basic Violet 3

52.26 
48.23 
54.24 
68.84 
25.39 
44.58 
45.12 
37.18 
56.28 
20.81

48 h Incubated at 50 °C, pH 
5 while rotating at 150 
rpm in the dark 

[178
] 

T. versicolor Green coconut fiber Apple juice 61% colour 
29% 
turbidity

 Used a continuous 
packed bed reactor at 38 
°C

[179
] 

 Titania NPs Direct Red 31  
Acid Blue 92  
Direct Green 6

80 
60 
85 

60 min Incubated at 45 °C, pH 
3 

[180
] 

 Mesoporous silica Alizarin red 
indigo 

73 
90 

3.5 h 
15 min 

Incubated at 40 °C, pH 
3.4 hile shaking at 180 
rpm in presence of 
ABTS mediator

[181
] 

T. pubescens Alumina pellets RBBR 44 42 h Incubated at room [182
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

temperature in the dark ]
T. versicolor Chitosan  Triclosan  100 6 h  Incubated at room 

temperature pH 5
[183
]

Coriolopsis 
polyzona 

CLEAs 

Nonylphenol 
Bisphenol A 
Triclosan 

90 
90 
90 

40 min 
130min 
40 min

Used a fixed bed reactor 
at room temperature and 
pH 5

[184
] 

T. versicolor SBA-15 Anthracene  88 48 h Incubated at 37 °C, pH 
7 while shaking at 150 
rpm in the presence of 
ABTS mediator

[185
] 

White-rot fungi Sol-gel silica  2,4-Dichlorophenol  
2,4,6-
trichlorophenol

87.3 
99.6 

3 h Incubated at room 
temperature 

[186
] 

T. versicolor 

poly(D,L-lactide) (PDLLA)/ PEO–PPO–
PEO (F108) electrospun microfibers

Crystal violet 88 5 h Incubated at 30 °C, pH 
6 while shaking at 100 
rpm in presence of 
ABTS 

[187
] 

P. ostreatus Chitosan membrane 
PVDF membrane 

Acid black 10 BX 98.2 
99.3 

120 
min 

Incubated at 30 °C, pH 
6 while shaking at 100 
rpm in the dark

[188
] 

T. versicolor Poly(vinylamine) microbeads Direct Blue 1 
Direct Red 128

73 
87 

18 h Incubated at 30 °C, pH 
5.5

[189
]

T. versicolor Poly(acrylamide-N-
isopropylacrylamide)/alginate semi-IPNs 

Acid orange  75 6 h Incubated at 30 °C, pH 
4.5 while stirring at 90 
rpm in presence of 
ABTS

[190
] 
 

T. versicolor Silica beads Reactive blue 19 97 3 h Used a recirculating 
packed bed reactor at 23 
°C, pH 5

[191
] 

C. unicolor Silica gel Indigo carmine 100 
 
 
96-98

50 h 
 
 
9.7 min 

Incubated at 25 °C, pH 
5.3 while shaking at 100 
rpm 
For packed bed reactor

[192
] 
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

residen
ce time

T. versicolor PAN beads Bisphenol A 
Bisphenol B 
Bisphenol F  
Tetrachlorobispheno
l A

100 
100 
100 
96 

90 min Used a fluidized bed 
reactor at 25 °C 

[193
] 

 alginate/gelatin beads/PEG Reactive Red B-3BF 95 60 min  Incubated at 60 °C and 
pH 5

[194
]

C. versicolor Chitosan  2,4-DCP 88.5 6 h Incubated at room 
temperature and pH 6

[195
]

T. versicolor Porous glass beads Reactive blue 19 
Dispersed blue 3 
Acid blue 74 
Acid red 27  
Reactive black 5

82.4 
76.2 
85.2 
27.8 
10.3 

 Used a recirculating 
packed bed reactor 

[196
] 

T. versicolor SBA-15 Naphthalene  39 5 h Incubated at room 
temperature pH 4.5

[197
]

T. versicolor Magnetic chitosan beads Reactive yellow 2 
Reactive blue 4

82 
59 

18 h Incubated at 30 °C and 
pH 5.5

[198
]

M. thermophila Sepabeads EC-EP3 Reactive Black 5 
Acid Blue 25 
Methyl Orange 
RBBB  
Methyl green 
Acid Green 27

60 
30 
45 
60 
75 
75 

24 h Incubated at 30 °C, pH 
4.5 while shaking at 90 
rpm 

[199
] 

C. unicolor Mesostructured cellular forms Indigo carmine 80 5 h Incubated at 25 °C, pH 
5.3 while shaking at 125 
rpm

[200
] 

Aspergillus sp. Green coconut fiber Reactive black 5 
Reactive Blue 114 
Reactive Yellow 15  
Reactive Red 180 

90 
90 
80 
 

24 h Incubated at 35 °C, pH 
7 

[201
] 
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

Reactive Red 239 30 
30 

R. vernificera Non-porous poly(GMA/EGDMA) beads Reactive red 120 91 10 h Incubated at 30 °C and 
pH 5.5

[202
]

T. versicolor Semi-IPN gels Methyl orange 70 62 h Incubated at 30 °C, pH 
4.5 in presence of 
ABTS

[203
] 

T. versicolor Poly(glycidylmethacrylate) brush grafted 
poly(hydroxyethylmethacrylate) films 

Phenol  
p-chlorophenol 
Aniline

72 
81 
58 

10 h Incubated ta 30 °C 
while stirring 

[204
] 

 Alginate/chitosan microcapsules Alizarin red 66 1 h Incubated at 40 °C, pH 
4.2 while shaking at 120 
rpm in presence of 
ABTS 

[205
] 

M. thermophila  Direct Red 28 
Acid Blue 74 
Acid Blue 2 
Acid Green 27 
Reactive Blue 19

9.6 
15.2 
5 53.3 
67.0 
31.2 

16 h Incubated at 30 °C 
while shaking at 100 
rpm 

[206
] 

Polyporus 
pinisitus 

 Direct Red 28 
Acid Blue 74 
Acid Blue 2 
Acid Green 27 
Reactive Blue 19

46.9 
90.4 
59.8 
71.0 
58.5 

16 h Incubated at 30 °C 
while shaking at 100 
rpm 

[206
] 

T. versicolor  Direct Red 28 
Acid Blue 74 
Acid Blue 2 
Acid Green 27 
Reactive Blue 19

11.9  
88.4  
66.0  
76.0  
64.5 

16 h Incubated at 30 °C 
while shaking at 100 
rpm 

[206
] 

T. versicolor Alginate beads Indigo carmine  
Phenol red 

96 
69 

24 h Incubated at room 
temperature, pH 5 in 
presence of HOBT 
mediator

[207
] 
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

Lentinula edodes Eupergit® C Olive mill waste 
phenolics

78 2 h Used a packed bed 
column at 35 °C

[208
]

C. versicolor Celite R-637 2,4,6-
trichlorophenol 

100 24 h Incubated at 50 °C, pH 
7 in presence of 2,2,6,6-
Tetramethylpiperidine-
N-oxyl (TEMPO)

[209
] 

T. hirsuta Alumina  Reactive Blue 221  
Reactive Black 5  
Direct Blue 71  
Basic Red 9 Base 
Reactive Blue 19  
Acid Blue 225   
Acid Blue 74  

4.1   
11.4    
39.0   
 62.26  
84.4  
78.0  
53.7 

10 h Incubated at 30 °C, pH 
5 on a rotary shaker 

[210
] 

T. villosa Alumina  Reactive black 5 83  24 h Incubated at 45 °C, pH 
5 on a rotary shaker

[211
]

Bacillus SF Alumina pellets Mordant Black 9 
Mordant Brown 96 
Mordant Brown 15 
Acid Blue 74

100 
100 
100 
100 

90 min Incubated at 60 °C 
while shaking at 40 rpm 

[212
] 

T. versicolor Kaolinite  Anthracene 
Benzo[a]pyrene 

80 
80 

24 h Incubated at 30 °C, pH 
4.5 in presence of 
ABTS

[213
] 

Panus conchatus PVA 2,4,6-
trichlorophenol

72.5 3 h Used a recirculating 
glass column reactor

[214
]

P. ostreatus Eupergit®C 2,6-
dimethoxyphenol 

100  Used a packed bed 
reactor at pH 7 and 
room temperature

[215
] 

T. versicolor Silica  RBBR 
Remazol Black B 
Reactive Orange 122 
Reactive Red 251 

45 
10 
30 
 
50 

30 min Incubated in presence of 
HOBT 

[216
] 

T. versicolor PVDF microfiltration membrane N’,N’-(dimethyl)-N- 98 2 h [217
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Laccase source Immobilization support Pollutant  Removal 
efficiency 
(%) 

Time  Mode of action  Ref  

(2-
hydroxyphenyl)urea 
(2-HF)

] 

Polyporus 
versicolor 

Cu2+-chelated sepharose Phenols 
Flavanols  

39 
48 

 Passed through enzyme 
carrier at a flow rate of 
40 mL/h at 22 °C

[218
] 

Lentinula edodes Chitosan  Phenols  
Ortho-phenols  
(in olive mill waste)

67 
72 

24 h Used a recirculating 
glass column 

[219
] 

C. versicolor Activated carbon Colour in pulp mill 
bleach effluent 
Colour in cotton 
cleaning mill 
effluent

57 
 
34.7 

72 h 
 
7 h 

Incubated at pH 5 [220
] 
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Table S2: Storage stability, reusability and kinetic parameters of laccase enzyme immobilized on various supports 

Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

T. versicolor CLEAs  85 8.58 
0.999* 

 80% at pH>6 from 
pH 3 
t1/2 increased from 
40 to 420 min at 
50 ˚C

82% after 7 
cycles 

[221] 

Alcaligenes 
faecalis XFI 

Chitosan clay 
composite beads 
(CCB) 

88.4 75.5 0.5 
0.48* 

96 U/mL/min 
111* 

Increased 
optimum pH from 
to a range of 7-10 
Retained 65% 
after 20 days 
storage

64% and 
42% after 9th 
and 15th 
cycles 

[1] 

Alcaligenes 
faecalis XFI 

Chitosan beads 
(CB) 

83.6 70 0.663 
0.48* 

86 U/mL/min 
111* 

Increased 
optimum pH from 
to a range of 7-10 
Retained 50% 
after 20 days 
storage

Sharp 
decrease in 
activity after 
5th cycle 

[1] 

T. versicolor Hallow 
nanospheres (HNS) 
NH2-MIL88(Fe) 

- 75 0.71 
0.46* 

1.51 times 
higher than 
free lac 

t1/2 increased by 
300% at 40 ˚C and 
148% at 80 ˚C 

Maintained 
>75% 
activity in 
range of 30-
60 ˚C, 73.8% 
after 30 days 
storage at 4 
˚C and 89.2% 
after 6 cycles

[2] 

T. versicolor Mesoporous carbon 
nanospheres 

- 88 - - 74% after 180 
minutes at 60 ˚C

80% after 8 
cycles

[24] 

 Hydrogel of 
mixture of sodium 

100 - 665.39 
116.95*

- 80% after 72 
hours of storage

 [3] 
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

alginate (SA), 
acrylamide (AM), 
and hydroxyapatite 
(HA) 

(21*). 

 Microencapsulated 
n-docosane with a 
SiO2 shell (SiO2-
MEPCM) 

92.4 80 - - Retained 83% 
after 15 days 
storage (38%), 
70% at 65 ˚C 
(opt=40˚C) (30%)

81% and 
62% after 6 
and 10 cycles 
respectively 

[222] 

M. thermophila Silica particles - - 0.0253 
0.024* 

1.56 
U/mL/min 
10* 

96% after 1 h at 
35 ˚C (35%*) 

93% and 
65% after 3 
and 5 cycles 
respectively

[5] 

T. versicolor poly(4-
vinylpyridine) 
grafted Cu(II) 
chelated magnetic 
beads 

56.4 mg 
enzyme/g beads 

936 U/g 0.41  
0.32* 

17.8 U/mg 
23.1* 

Retained 74% 
after 120 minutes 
incubation at 55 
˚C (optimum is 30 
˚C) and 59% after 
5 weeks of storage 
at 4 ˚C

93% after 7 
cycles 

[23] 

M. thermophila methyltrimethoxysi
lane and 
tetramethoxysilane 
sol-gel matrix 

82.92  0.645 
0.056* 

 98.5% after 3 
months storage at 
4 ˚C (95%*) 

80% after 10 
cycles 

[25] 

S. psammoticus Copper alginate 
beads 

 61    50% after 8 
cycles

[26] 

P. ostreatus Titania 
nanoparticles  

80 125.8 0.0373 
~0.0373 

 85% after 
incubation for 2 h 
at 50 ˚C (50%*) 
(optimum 
temperature is 25 
˚C)

75% after 30 
days storage 
(0%* after 23 
days for free 
enzyme) 

[27] 
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

T. versicolor Chitosan (CS) 
coated MNPs 

94.36  11.41 
5.69* 

14.11 
U/mL/min 
7.7* 

Over 70% in pH 
range of 3-5 (55% 
of free enzyme at 
pH 5)

81% after 30 
cycles 

[223] 

T. versicolor Titania 
nanoparticles 

51 79 22.3 92.7 
U/mL/min 

 50% after 6 
days storage 
at 25 ˚C

[224] 

T. versicolor TiO2 blended 
polyethersulfone 
(PES) membranes 

 7.4 22.3 60 U/mL/min  75% after 5 
days of 
storage at 25 
˚C

[224] 

T. versicolor 

Metal ion chelated 
CS-MNPs; Cu(II) 
Mn(II) 

100 mg/g 
105 mg/g 

  
205 
215 
98* 

 
578 
U/mL/min 
293 
337* 

99% (Cu(II)) and 
89% (Mn(II))  
after 14 days (17% 
for free lac) 

 [19] 

A. oryzae 

Cu chelated ionic 
liquid CS-MNPs 

62.6 165.6   70.1% after 7h of 
incubation at 60 
˚C (7% for free 
lac). 95 % after 30 
days storage 
(<10% for free 
lac)

93.2% after 6 
cycles 

[18] 

R. verniciflua 

MNPs/chitosan 

 51.8 30.1 
26.3* 

112.4 
U/mL/min 
216.8* 

75.2% after 4 
weeks storage 
(40.2% for free 
lac)

72% after 10 
cycles 

[17] 

T. versicolor 

Magnetic 
polydopamine NPs 

81 69 0.546 
0.604* 

97.85 
U/mL/min 
204.08* 

75% activity in 
high urea 
concentrations 
(0% for free lac). 
87% after 6 weeks 

77% after 8 
cycles 

[13] 
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

storage (23% free 
lac)

T. versicolor 

MNPs/polydopami
ne (PDA) 

 88.17 0.161 
0.157* 

0.989 
(mM/min) 
1.185* 

60% after 6 h 
incubation at 50 
˚C. 89% after 40 
days storage (48% 
for free lac)

70% after 10 
cycles (23% 
for free lac) 

[12] 

T. versicolor Cu (II)-chelated 
chitosan/poly 
(glycidyl 
methacrylate) 
nanoparticles 

 52.6 0.07 
0.055* 

0.14 U/mg 
0.19* 
 

 50% after 8 
cycles 

[11] 

T. versicolor 
CS-MNPs 

 70 0.58 
0.25*

0.25 mM/min 
0.9* 

 95%after 5 
cycles

[10] 

 Fe3O4@MoS2@PEI  90 0.05843 
0.05815* 

0.03031 
mM/min 
0.03175* 

68% after 18 days 
storage(18% for 
free lac) 

80% and 
64% after 8 
and 10 cycles 
respectively

[9] 

T. versicolor poly(3,4-
ethylenedioxythiop
hene)-
polypyrrole/Pt 
(PEDOT-PPy-
COOH/Pt) 
micromotors 

 82.4 0.888 
0.401* 

0.191 
µM/min 
0.199* 

Increased 
optimum 
temperature from 
45 to 75 ˚C. 85% 
after 30 days 
storage (25% for 
free lac)

90% and 
81% after 5 
and 10 cycles 
respectively 

[28] 

T. versicolor 3D chitin scaffolds 91 89 0.113 
0.093* 

2.7 mM/min 
2.88* 

93% and 85% 
after 15 and 30 
days storage at 25 
˚C (80% and 50% 
for free laccase)

90% after 10 
cycles 

[29] 

 CS-MNPs 28  0.1406 
0.0311*

 85% after 10 
cycles

85% after 4 
weeks of 

[225] 



32 
 

Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

storage (30% 
for free 
laccase)

T. versicolor Magnetic 
mesoporous silica 
nanoparticles 
(MMSNPs) 

 92.5 3.28 
1.26* 

 86.6% after 10 
cycles. 
95% over pH 
range of 4-5.5

92% after 7 
weeks of 
storage (o% 
for free lac)

[226] 

T. versicolor CS-manganese-
ferrite 
nanoparticles 

49    100% after 20 
days (28% for free 
enzyme)

50% after 4 
cycles 

[21] 

Trichoderma 
asperellum 

CS-Fe3O4@SiO2 92.41 91.23 0.05992 9.18 
µM/min/mg

 70% after 8 
cycles

[227] 

T. versicolor Zinc oxide 
nanoarray 

88.6 91.3 0.916 
0.452* 

0.506 
µM/min 
0.331* 

 89.2% after 3 
cycles 

[30] 

- Nano-zeolite 
carbon nanotubes 

 145   80% after 8 days. 
Reserved 84% at 
80 ˚C incubation 

95% and 
69% after 5 
and 10 cycles 
respectively

[228] 

Weissella 
viridescens 
LB37 

CS-MNPs   0.91 
1.05* 

62.57 
µM/min 
77.9* 

85% after 7 days 
storage 

47% after 10 
cycles 

[31] 

T. versicolor Fe3O4-NH2@MIL-
101(Cr) metal 
organic framework 

93.9  0.7 
0.1* 

1.2 µM/min 
1.9* 

95% and 88% 
after 10 and 28 
days respectively 
(80% and 61% for 
free lac). 49% 
with incubation at 
85 ˚C for 6 h

92% after 5 
cycles 

[32] 

C. comatus Maple biochar 64.23 66.5 2.68 
0.223*

  39.8% after 7 
cycles

[33] 

Aspergillus sp. Fe-BTC  100 0.035 0.17 16% after 8 days 18.2% after [229]
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

0.013* µmol/min/mg 
7.7* 

10 cycles 

Aspergillus sp. ZIF-zni 99  0.022 
0.013* 

1.32 
µmol/min/mg 
7.7* 

82% and 50% 
after 8 and 30 days 
respectively

6.2% after 3 
cycles 

[229] 

T. versicolor Cellulose beads     96% after 100 
days 

91.9% and 
86.3% after 5 
and 10 cycles 
respectively

[35] 

Polyporus 
durus 

nanoporous 
Zeolite-X 

83  2.3 
mg/mL 
1.7* 

 100% and 80% 
after 1 and 2 
months 
respectively (80% 
and 40% for free 
lac)

100% and 
52% after 7 
and 11 cycles 
respectively 

[38] 

 Magnetic MOFs 95 95 0.74 
mg/mL 
0.49* 

43.48 
µmol/min 
29.85* 

100% and 95% 
after 25 and 30 
days respectively 

100% and 
89% after 4 
and 10 cycles 
respectively

[36] 

P. ostreatus Luffa cylindrica 
fibers 

    39% after 30 days  24.9% after 4 
cycles

[39] 

T. versicolor Dealuminated 
sodium zeolite 

81.12 98.56 0.26 
1.01* 

1.11 
µmol/min 
0.24* 

82.56% and 
73.23% after 14 
and 20 days 
respectively at 4 
˚C 
67.55% and 
58.55% after 14 
and 20 days at 
room temperature

91.2% after 
10 cycles 

[41] 

T. versicolor Polyimide aerogels 17.2    80% and 20% 
after 5 and 20 days 

22% after 7 
cycles

[42] 
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

(42% and 4% for 
free lac)

R. vernicifera MNPs 81.4 84.3 1.84 
1.69* 

61.7 
µmole/min/m
g 
68.1* 

 82.9% after 
10 cycles 

[43] 

T. versicolor Silica gel 35.4    72% and 47% 
after 1 and 2 
months (44% and 
0% for free lac)

 [44] 

T. versicolor polyacrylamide-
alginate cryogel 

  0.234 
0.0071*

0.0072 U/mg 
3.546* 

70% after 50 days  [45] 

Bacillus sp. Iron MNPs  99   80% after 100 h 
(30% for free lac)

 [230] 

T. versicolor Nanocellulose 
aerogel 

  1.37 
0.78* 

301.5 μmol/ 
mg•min 
403.60* 

60.3% after 20 
days 

76% after 5 
cycles 

[46] 

T. versicolor Copper ferrite NPs  94.68 3.61 
3.63* 

34.77 U/mL 
33.59* 

Increased half-life 
by 5.7 times 
70% after 20 days

70% after 6 
cycles 

[231] 

T. versicolor Magnetic CLEAs 51  3.95 
5.34* 

714.29 U/g 
8333.33* 

90% and 62% 
after 14 and 60 
days storage

50% after 4 
cycles 

[48] 

T. versicolor Metal-chelated 
magnetic silica NPs 

  3.17 
1.22* 

 95.1% after 10 
weeks (0% for 
free lac)

90.3% after 
10 cycles 

[49] 

Ganoderma 
Lucidum 

Electrospun 
nanofiber 
membrane 

  1.84 
0.78* 

286.5 
µmol/mg/min 
403.6* 

25% after 20 days 
storage (64.6% for 
free lac)

83% and 
47% after 3 
and 10 cycles

[232] 

T. versicolor α-Cellulose-Fe3O4-
CS 

93.28 99.16   83%, 76% and 
68% after 10, 20 
and 30 days 

80.65% after 
10 cycles 

[51] 
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

storage
M. thermophila Poly(glycidyl 

methacrylate) 
microspheres 

  7.3 
5.7* 

395.1 
µmol/min/mg 
676.4* 

80% after 25 days 
storage  

60% after 6 
cycles 

[233] 

T. versicolor 
 

Poly(glycidyl 
methacrylate) 
microspheres 

  2.5 
2.3* 

110.2 
µmol/min/mg 
355.6* 

75% after 25 days 
storage 

60% after 6 
cycles 

[233] 

Aspergillus sp. Poly(glycidyl 
methacrylate) 
microspheres 

  5.4 
8.3* 

165.1 
µmol/min/mg 
614.1* 

75% after 25 days 
storage 

60% after 6 
cycles 

[233] 

E. coli magnetic zeolitic 
imidazolate MOF 

 75.7% 0.306 
0.436* 

 87.1% after 10 
days (50% for free 
lac)

100% after 5 
cycles 

[52] 

T. versicolor Glycopolymers 
microspheres 

 77.1 1.802   63% and 
40% after 6 
and 10 cycles

[55] 

 Meso-MIL-53(Al) 
MOF 

 93.8 0.490 
mmol/g 
0.415*

297.4 
mmol/g/min 
325.8* 

87.5% after 30 
days storage 

60% after 8 
cycles 

[56] 

T. versicolor Fe3O4@SiO2@Kit-
6 magnetite NPs 

  0.345  
0.211* 

39.59 
mmol/g/min 
121.25* 

70% after 20 days 
storage 

70% after 11 
cycles 

[57] 

T. versicolor PMMA/Fe3O4 
electrospun 
nanofibers 

79 88 0.134 
0.059* 

0.032 mM/s 
0.043* 

80% after 40 days 
storage 

80% after 5 
cycles 

[16] 

T. versicolor Spent grain 37 4 0.079 
0.041*

4.2 µM/min  42% after 4 
cycles

[234] 

T. versicolor Spent grain 33 6.22 0.022 
0.041*

3.57 μM/min 100% after 1 
month

84% after 7 
cycles

[58] 

Aspergillus sp. Microporous starch 64.8    90% after 8 days 
storage (30% for 
free lac)

 [59] 
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

T. versicolor Fermented tea 
residues 

     81.3% after 6 
cycles.

[60] 

T. versicolor Micro biochar; pine 
wood 
Pig manure 
Almond shell 

14.58 
31.4 
24.3 

   76% 
79% 
68% after 60 days 
storage

 [61] 

T. maxima Chicken feathers 74.24 93   94.32% after 3 
weeks

95% after 8 
cycles

[235] 

T. versicolor Egg shell 
membrane 

 57    45% after 6 
cycles

[236] 

T. versicolor Xylan-PVA 
hydrogel beads 

 16.1   97.48% after 6 
days

55% after 8 
cycles

[64] 

T. versicolor PVA-alginate 
beads 

 76.4 0.012 
0.07*

962 U/mL 
720* 

90% after 28 days  [237] 

Aspergillus sp. MOF/PVA cryogel   0.063 
0.022* 

0.536 
µM/min 
2.191* 

 68% after 6 
cycles 

[65] 

Aspergillus sp. PVA/HNTs  79.15   81.17% after 5 
weeks (60% for 
free lac)

80% and 
60% after 3 
and 6 cycles

[66] 

T. versicolor PVA microspheres     86.3% after 100 
days

 [238] 

Bacillus sp. Cu-alginate beads 80 120   95% after 15 days 100% after 4 
cycles

[67] 

T. versicolor Poly(methyl 
methacrylate) 
(PMMA)/PANI 
electrospun fibers 

 82 0.098 
0.059* 

0.029 U/mg 
0.045* 

86% after 30 days 66% after 10 
cycles 

[68] 

T. versicolor Eupergit C 51 100    90% after 5 
cycles

[69] 

M. thermophila Eupergit C 250L 99 88.4 0.15 
0.056*

0.693 
mM/min 

98.5%  and 98% 
after 1 and 2 

65% after 10 
cycles

[71] 
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

3.33* months
P. ostreatus MANAE-agarose 100 138 0.15 

0.091* 
0.017 
mM/min 
0.0107* 

80% and 70% 
after 40 ad 170 
days storage (40% 
for free lac on 40 
days)

90% after 15 
cycles 

[73] 

T. versicolor Chitosan beads  84.7   90% after 28 days 71.24% after 
10 cycles

[74] 

T. versicolor CS-Fe3O4/HNT  95.13   70% after 30 days 60% after 10 
cycles

[75] 

T. pubescens CS/genipin 49.34  0.128 
0.105*

 84.43% after 30 
days

55% after 11 
cycles

[76] 

T. versicolor MWCNTs/electros
pun fibrous 
membrane 

 85.3 0.063 
0.016* 

 80% after 60 days 90% after 10 
cycles 

[77] 

T. versicolor Fe3O4-
MWCNTs@SiO2 

  0.447 
0.502* 

20.785 
mM/min 
8.663* 

79% after 30 days 
(48% for free lac) 

87% after 10 
cycles 

[78] 

T. versicolor Graphene oxide  96.87 74.18 0.053 
0.062*

932.7 U/mL 
765.1* 

 40% after 7 
cycles

[80] 

B. subtilis Magnetic GO    0.404 
0.237* 

1.76 mM/min 
1.54* 

80% after 30 days 90% and 
75% after 5 
and 10 cycles 
respectively

[81] 

B. subtillis 
Cu-MGO nano-
sheets 

 114 1.62 
1.57* 

9.7 
µmol/min.mg 
5.99* 

80.7% after 32 
days storage 
(9.8% for free lac)

89.4% after 
10 cycles 

[83] 

 Zeolite NPs/GO 
nanocomposites 

    80% after 8 days 95% after 5 
cycles

[84] 

T. versicolor Fe3O4/GO 
nanocomposite  

 86 0.073 
0.045*

1.4 mM/min 
2.9* 

88% after 20 days 
storage

85% after 8 
cycles

[239] 

T. versicolor Fe3O4/GO 88 1.8 26 mM/min 83% after 30 days 80% after 10 [240]
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

nanocomposite  1.3* 56* storage (45% for 
free lac)

cycles 

T. versicolor Mesoporous 
alumina 

 60 0.11 
0.18* 

84.03 
µmol/min 
26.95* 

65% after 30 days 80% and 
60% after 8 
and 10 cycles 
respectively

[241] 

Phlebia 
brevispora 

Nanoporous 
alumina 

18.1     95.6% after 4 
cycles

[85] 

T. versicolor Clay-
adamantylamine 

73  0.06 
0.13* 

0.23 
μM/min.μg 
9.31 

 58.6% after 6 
cycles 

[89] 

T. versicolor Clay-CNTs 69  0.15 
0.13* 

1.62 
μM/min.μg 
9.31 

 56.5% after 6 
cycles 

[89] 

T. versicolor Clay-GO 72  0.09 
0.13* 

2.39 
μM/min.μg 
9.31* 

 47.6% after 6 
cycles 

[89] 

T. hirsuta LECA  78.78 384 mg/L 
500*

218.2 mg/L/h 
195.2* 

 79.67% after 
6 cycles

[91] 

T. pubescens Ca-alginate beads 80.4  0.325 
0.0951* 

1.296 
mM/min 
9.921* 

90% after 35 days 
storage 

70% after 10 
cycles 

[92] 

M. thermophila Silica NPs 68.3     70% after 7 
cycles

[93] 

T. villosa Functionalized 
ionic liquid SBA-
15 (FIL-SBA-15) 

85    100% and 85% 
after 5 nd 30 days 
storage at 25 ˚C

85% after 4 
cycles 

[242] 

T. versicolor Mesoporous silica 30.3 12.1 0.032 
0.020* 

0.023 
µM/min 
0.045* 

 50% after 6 
cycles 

[94] 

White-rot fungi SBA-15-NH2  59.6 47.3 
32.9*

  56% after 5 
cycles

[95] 
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

T. versicolor Single enzyme 
nanoparticles 
(SEN) 

 66.33 0.3955 
0.5765* 

1.451 U/mg 
2.404* 

90% after 15 days  [243] 

Pleurotus sp. Porous CLEAs  185 0.67 
0.93* 

0.0248 
mM/min 
0.0122* 

100%, 92.8% and 
82% after 2, 3 and 
4 moths 
respectively 

60% after 15 
cycles 

[96] 

T. versicolor CLEAs 78.18 72.85 0.122 
0.168*

516.8 U/mL 
452.7* 

 60% after 8 
cycles

[97] 

T. versicolor Entrapped CLEAs 
in mesoporous 
silica 

 87.7   100% and 50% 
after 5 and 21 days 
storage

79% after 20 
cycles 

[98] 

Fomes 
fomentarius  

CLEAs   0.39 
0.087*

0.4 U/mg 
0.029* 

74% after 70 days 50% after 6 
cycles

[99] 

T. versicolor CLEAs   0.8 
1.9*

0.3 U/mg 
0.027* 

80% after 70 days 50% after 8 
cycles

[99] 

T. versicolor Cross linked 
enzyme crystals 
(CLECs) 

  0.0552 
0.0586* 

934.41 U/mL 
840.3* 

 70% and 
50% after 3 
and 5 cycles 
respectively

[100] 

Aspergillus sp. GO nanosheets 64.6  1.16 
0.71* 

0.0459 
mM/min 
0.0621* 

 75% after 6 
cycles 

[101] 

M. thermophila Epoxy- silica   5.3 
1.5* 

0.6 IU/mg 
9.4* 

 78% and 
61% after 6 
and 8 cycles 
respectively

[102] 
 

T. hirsuta Polyvinylidene  
fluoride (PVDF)-
MWCNT 

 38.31    45% and 
10% after 3 
and 8 cycles 
respectively

[103] 

T. versicolor Magnetic biochar 81.8% after 30 85% after 7 [107]
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

NPs days storage cycles
Trametes sp Magnetic bacterial 

cellulose 
70  0.94 

0.03*
7.24 µM/min 
11.39* 

 65% after 8 
cycles

[244] 

T. versicolor Microbiochar      80% after 5 weeks 
storage

46% after 5 
cycles

[108] 

Sphingobacteri
um ksn-11 

sodium alginate-
SiO2-PVA beads 

  2.12* 33.33 U/mg* 100% after 20 
days storage

70% after 3 
cycles

[109] 

T. versicolor Sepharose-linked 
antibody 

83.4  0.055 
0.0439* 

4.098 
mM/min 
4.938* 

75% after 30 days 
(36% for free lac) 

44% after 10 
cycles 

[110]  

T. versicolor PAN-biochar 
composite 
nanofibrous 
membrane 

    71% after 1 month 
storage 

50% after 7 
cycles 

[117] 
 

Ganoderma 
lucidum 

Cu-chelated 
amidoxime PAN 
(Cu-AOPAN) 

  0.84 
0.114* 

 65% after 20 days  49.17% after 
10 cycles 

[245] 

T. versicolor Fe3O4-HNTs 90.2  0.09 
0.08* 

 87% after 30 days 
storage (50% for 
free lac)

80.49% after 
9 cycles 

[246] 

Agaricus 
bisporus 

Semi-
interpenetrating 
polymer networks 
(semi-IPNs) of 
polyacrylamide/κ-
carragennan 

  0.131 
0.088* 

0.00497 
mM/min 
0.00283* 

80% and 68% 
after 27 and 60 
days storage 

67.5% after 
35 cycles 

[247] 

T. versicolor Ca-alginate beads 89  0.0775 
0.0799* 

0.8764 
mM/min 
0.7207* 

72.8% after 28 
days (46.5% for 
free lac)

68% after 3 
cycles 

[120] 

T. versicolor Poly(amido amine) 
(PAMAM) 
Dendrimers 

  2.97 
0.2* 

0.25 µmol 
ABTS/min/m
g

100%, 75%, 60% 
and 50% after 30, 
60, 90 and 120 

 [248] 
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

6.32* days storage 
respectively

T. versicolor CS/PVA 
nanofibrous 
membranes  

 69.1 0.019 
0.014* 

 60% after 10 days 
(0% for free lac) 

54% after 7 
cycles 

[122] 
 

Ganoderma 
lucidum 

PVA membrane   65.71 3.82 
6.08* 

0.617 
mM/min 
0.323* 

100% after 15 
days 

 [249] 

T. versicolor Alumina  87.5 97 0.00313 
0.00345* 

0.0662 
mM/min 
0.022* 

 75% after 7 
cycles 

[124] 
 

T. versicolor Controlled pore 
glass 

69 92 0.0069 
0.00345* 

0.00134 
mM/min 
0.022* 

 65% after 5 
cycles 

[124] 
 

Cyathus bulleri PVA beads 90  65 
37* 

 80% and 70% 
after 4 and 5 
months 

90% after 20 
cycles 

[125] 
 

Shewanella 
putrefaciens 

CLEAs   0.55 
0.75*

  60% after 5 
cycles

[126] 

P. florida poly(lactic-co-
glycolic acid) 
(PLGA) nanofiber 

 82 0.809 
0.422* 

2.1 U/mg 
3.4* 

100% after 6 
weeks (50% for 
free lac)

100% after 3 
cycles 

[127] 
 

T. versicolor Cu(II)-chelated 
chitosan NPs 

 52.6 0.07 
0.055*

0.14 U/mg 
0.19* 

 50% after 8 
cycles

[11] 

White-rot fungi Cu-MOF  95.2 0.157 
0.29* 

0.058 
mM/min 
0.068* 

18.8% fater 3 
weeks storage 

48.45 after 7 
cycles 

[250] 

T. versicolor Bacterial 
nanocellulose 

42.3 8.6    69% after 7 
cycles

[251] 

T. versicolor Chitosan/CeO2 
microspheres 

 66.9 0.101 
0.028* 

0.226 
mmol/mg/mi
n

 60% after 10 
cycles 

[128] 
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

0.38* 
T. versicolor PVA/CS/MWCNTs  76.7   80% after 30 days 62.7% after 7 

cycles
[129] 

T. versicolor Fullerene  
MWNTs  
Oxidized-MWNTs  
GO 

  0.51 
0.08 
0.12 
0.14 
0.055*

    

T. versicolor Poly(methyl 
methacrylate-co-
glycidyl 
methacrylate) 
(poly(MMA-co-
GMA)) cryogels 

  11.11 
5.26* 

0.013 
µM/min 
0.016* 

85.5% after 30 
days (52.8% for 
free lac) 

90% after 10 
cycles 

[132] 
 

ascomycete 
Paraconiothyri
um variabile 

Chitosan NPs on 
glass beads 

68.6 32.2    98% after 25 
cycles 

[133] 
 

T. versicolor Magnetic GO  97.9    59.8 after 10 
cycles

[134] 

T. versicolor Fe3O4@C NPs   0.117 
0.0737* 

0.344 
mmol/mg.mi
n 
0.417* 

70% after 30 days 
storage (0% for 
free lac) 

60% after 10 
cycles 

[135] 

P. florida Cellulose nanofiber  88 0.343 
0.161*

2.76 U/mg 
2.93* 

 67% after 10 
cycles

[136] 

T. versicolor PGMA 
microspheres 

  12.31 
13.88* 

49.12 
mg/L.min 
127.7* 

81.8% after 20 
days (60% for free 
lac)

73.3% after 5 
cycles 

[252] 

T. versicolor Fe3O4-silica NPs   5.32 
1.86* 

 62.5% after 28 
days (41.1% for 
free lac)

70.4% after 
11 cycles 

[137] 

Alternaria Ca2+(AlgChG) 93 4.375 1250 84% after 42 days 68% after 19 [253]
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

tenuissima beads 0.666 U/mL/min 
1110* 

cycles 

 Polyuria 
microspheres 

95    60% and 40% 
after 10 and 30 
days storage at 
room temperature

92% and 
65% after 3 
and 7 cycles 

[138] 

T. versicolor Cu2+ chelated PEI-
Fe3O4 NPs 

 107.41 0.598 
0.527* 

2.22 
µmol/min.mg 
12.37* 

95.45% after 1 
month storage 

58.89% after 
5 cycles 

[254] 

Fungi MNPs 97.6 65.32   70% after 25 days 80% and 
45% after 5 
and 10 cycles 
respectively

[139] 

Echinodontium 
taxodii 

Concanavalin A-
MNPs 

82.4 60.7 0.0352 
0.0414*

4.3 µM/min 
5.9* 

 85% after 10 
cycles

[140] 

Echinodontium 
taxodii 

MNPs 93.8 98.0 0.0427 
0.0414*

7.0 µM/min 
5.9* 

 60.1% after 
10 cycles

[140] 

 EDTA-TMS-MNPs  97 0.0375 
0.0234* 

0.00612 
mM/min 
0.0376* 

 73% after 5 
cycles 

[141] 

 TiO2-
Montmorillonite 
Complexes 

 88.46 1.303 
0.257* 

7.01 
µmole/mg/mi
n 
62.112* 

 80% and 
45% after 5 
and 20 days 

[255] 

Aspergillus sp. Green coconut fiber 70  0.7651 
0.0044*

0.24 mM/min 
0.024* 

60% after 1 day 
storage

120% after 
10 cycles

[142] 

C. sp  CLEAs  68.1 0.0375 
0.0259* 

171.4 
mM/min.mg 
123* 

  [143] 

C. sp M-CLEAs  46.8 0.0524 
0.0259* 

111.2 
mM/min.mg 
123* 

  [143] 
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

C. sp Alginate   29.8 0.0425 
0.0259* 

16.9 
mM/min.mg 
123* 

  [143] 
 

C. sp Chitosan   50.1 0.0525 
0.0259* 

8.3 
mM/min.mg 
123* 

  [143] 

T. versicolor Polyethersulfone 
beads 

 78 0.196 
0.0495* 

2.15 
µmol/min 
2.75* 

100% after 20 
days 

 [146] 

T. versicolor Pine wood 
nanobiochar   

    69% and 15% 
after 5 and 30 days 
at room 
temperature (42% 
and 0% for free 
lac)

70% after 3 
cycles 

[147] 

T. versicolor Amberlite IR-120 
H beads 

 78.7 4.7 
0.051* 

5.27 µM/s 
27.7* 

98.6% after 7 days 
(81.5% for free 
lac)

30% after 7 
cycles 

[256] 

T. versicolor Dopamine HNTs  92   90% after 30 days 
(32.31% for free 
lac)

70% after 10 
cycles 

[149] 

Coriolopsis 
gallica 

Ca-alginate beads 90 83   82.7% after 20 
days storage

70% after 3 
cycles

[151] 

T. versicolor Layer-by-Layer-
Assembled 
membranes 

  0.088 
0.0138* 

 95% after 25 days 
storage 

86% after 4 
cycles 

[152] 

P. florida Agarose gel 88  0.0025 
 

1.65 µM/min 96%, 93%, 90%, 
85%, 81% and 
65% after 7, 14, 
21, 28, 35 and 61 
days storage

 [153] 

P. ostreatus poly(methacrylate) 98 0.032 95% and 90% 67% after 10 [154]
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

beads 0.16* after 4 and 6 
months storage

cycles 

T. versicolor Fe3O4‑rGO 91.1 112 0.0303 
0.2933*

 90.1% after 30 
days storage

92.6% after 
10 cycles

[257] 

T. versicolor Porous silica beads   0.056 
0.082* 

190 
mM/min.mg 
240* 

65.3% after 14 
days storage at 25 
°C (5% for free 
lac)

82.6% after 
10 cycles 

[156] 

T. versicolor ZnO/SiO2 
nanocomposite 

    80% after 100 
days storage at 25 
°C

42% after 10 
cycles 

[157] 

T. versicolor MNPs 62.9 2.82 9.02 
10.55*

  55% after 9 
cycles

[159] 

T. versicolor Magnetic 
microplates 

48.7 2.81 11.14 
10.55*

  47% after 9 
cycles

[159] 

 Polyacrylonitrile 
(PAN) nanofibrous 
membrane 

    60% after 20days 70% and 
30% after 3 
and 10 cycles

[258] 

Papaya  Chitosan beads  100 98 0.14 
0.04*

0.02 mM/min 
0.04* 

80% after 30 days  44% after 3 
cycles

[160] 

T. versicolor Poly(2-chloroethyl 
acrylate), p(CEA) 
grafted zeolite 
particles 

  0.47 
0.36* 

21.9 U/mg 
15.5* 

78% after 8 weeks 
storage 

79% and 
67% after 5 
and 8 cycles 

[163] 

Aspergillus sp. Magnetic silica 
NPs 

 53.4   90%, 79.25% and 
60.35% after 9, 18 
and 30 days 
storage (60%, 0% 
and 0% for free 
lac)

60% after 5 
cycles 

[164] 

 MNPs   40 0.0062 
0.0015*

0.062 
mM/min 

87% after 35 days 
storage

75% after 6 
cycles

[259] 
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

0.315* 
Aspergillus sp.  Spent grain 94 75 0.355 

0.028*
 100% after 35 

days storage
95% after 10 
cycles 

[260] 

T. versicolor Poly(MA-alt-
MVE)- g -
PLA/ODA-MMT 
nanocomposite 

    65% after 30 days 
storage (18% for 
free lac) 

77% after 10 
cycles 

[166] 

A. oryzae MWCNTs 98  0.192 
0.0068* 

0.586 
mM/min 
1.416* 

90% after 34 days 
storage (60 % for 
free lac)

70% after 10 
cycles 

[261] 

P. ostreatus Fe3O4/SiO2 NPs   0.74 
0.13* 

0.051 
mM/min 
0.022* 

96% after 5 
months storage 

80% and 
50% after20 
and 50 cycles 
respectively

[167] 

M. thermophila MWCNTs-
cellulose 
membrane 

    49% after 6 h of 
incubation in 
acetone (21% for 
free lac). 

95% after 10 
cycles 

[168] 

T. villosa SBA-15 
mesoporous silica 

     78% after 4 
cycles

[262] 

T. versicolor CS-epichlorohydrin 
(CHX)-itaconic 
acid (CHX-g-
p(IA))-Cu2+ 
membranes 

9.7  41.6 
19.7* 

16.5 U/mg 
20.4* 

63% after 8 weeks 
(0% for free lac 
afte r5 weeks) 

81% after 30 
cycles 

[169] 

Trichoderma 
harzianum 

Sol-gel matrix  93 2 
0.5*

500 U/mg 
285* 

98% after 8 days 
of storage

82% after 6 
cycles

[170] 

T. versicolor PAN−biochar 
nanofibrous 
membrane 

    94% after 30 days 
storage (32% for 
free lac)

17% after 10 
cycles 

[171] 

T. versicolor 
 

PEI-CS films   0.51 
0.23*

71.2 U/mg 
96.4* 

64% after 7 weeks  [263] 
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

White-rot fungi Mesoporous Zr-
MOF 

 95.9 0.217 
0.33* 

0.072 
mM/min 
0.08* 

55.4% after 3 
weeks storage 

50% after 10 
cycles 

[264] 

T. versicolor poly(glycidylmetha
crylate)-grafted 
polypropylene film 
(PP-g-pGMA) 

 72.3 0.53 
0.38* 

17.5 U/mg 
23.4*  

91% and 57% 
after 15 and 30 
days storage (0% 
for free lac)

53% after 8 
cycles 

[172] 

M. thermophila Bacterial cellulose  49.3   78% and 54% 
after 7 and 42 days 
storage (90% and 
94% for free lac)

86% after 7 
cycles 

[265] 

T. versicolor CS grafted 
polyacrylamide 
hydrogel 

 40.8 1.68 
0.156* 

3.91 µM/min 
2.15* 

 40% after 6 
cycles 

[173] 

 Alginate beads   94   80.83% after 10 
days storage

80% after 4 
cycles

[174] 

Pycnoporus 
sanguineus 

Immobead-150  97.1     86% after 5 
cycles

[175] 

Pycnoporus 
sanguineus 

Eupergit-C 83.2     89% after 5 
cycles

[175] 

Pycnoporus 
sanguineus 

LentiKats 89     90% after 5 
cycles

[175] 

T. pubescens Chitosan beads     50% and 40% 
after 10 and 30 
days storage

60% after 6 
cycles 

[178] 

T. versicolor Green coconut fiber 98 59    100% after 
10 cycles

[179] 

T. versicolor Silica NPs 75.8 92.9 0.0456 
0.0293* 

1.63 
mmol/min.m
g 
1.89* 

 82.6% after 
10 cycles 

[266] 

T. versicolor Chitosan  94 96% and [183]
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

92% after 5 
and 10 cycles

Trametes sp. PEI microcapsules 
printed on paper 
substrate 

94    70% after 5 
months storage 

 [267] 

 PEG-g-F68 
hydrogels 

99.6 100   90% after 3 
months

 [268] 

T. villosa Aluminium 
hydroxide  

  0.15 
0.18* 

12.77 mmol 
O2/min 
14.35* 

80% after 7 days  [269] 

White-rot fungi Sol-gel silica  99.1 70 9.91 5 mM/h 72.1% after 6 
weeks storage

 [186] 

T. versicolor poly(D,L-lactide) 
(PDLLA)/ PEO–
PPO–PEO (F108) 
electrospun 
microfibers 

 67   75% and 50% 
after 1 and 2 
weeks storage 

53% after 10 
cycles 

[187] 

Pycnoporus 
sanguineus 

ZnTAPc-Fe3O4 
nanocomposite 

25  0.0201 
0.0126*

 85% after 1 month 
(30% for free lac)

80% after 5 
cycles

[270] 

R. vernicifera Chitosan 
microspheres 

56 45   90% after 3 
months 

85% after 15 
cycles

[271] 

T. versicolor Poly(vinylamine) 
microbeads 

76 76 4.65 
0.276*

15.8 U/mg 
20.7* 

74% after 8 weeks 37% after 5 
cycles

[189] 

T. versicolor Poly(acrylamide-N-
isopropylacrylamid
e)/alginate semi-
IPNs 

 90 18 
6.7* 

0.0061 
mM/min 
0.0018 

86% after 56 days 
storage 

84% after 10 
cycles 

[190] 

T. versicolor PAN beads   0.23 
0.18* 

0.97 
µmole/min/m
g 
11.94* 

85% after 30 days 
with everyday 
reuse for 90 min 

 [193] 
 

T, versicolor Nanoporous gold 100% after 1 65% after 8 [272]
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

(NPG) month (70% for 
free lac)

cycles 

T. versicolor Magnetic 
mesoporous silica 

 79.4    70% after 10 
cycles

[273] 

T. versicolor Magnetic chitosan 
beads 

 79.6 0.0197 
0.0094*

15.6 U/mg 
21.7* 

80% after 8 weeks 87% after 10 
cycles

[198] 

M. thermophila Sepabeads EC-EP3 32.6    97.5% and 96.2% 
after 2 and 4 
months storage

84% after 17 
cycles 

[199] 

C. unicolor Mesostructured 
cellular forms 

45.5 48.8 0.1334 
0.0394*

 74.2% after 1 
month storage

 [200] 

T. versicolor Ceramic 
honeycomb 

    57% after 3.5 
months storage

41% after 21 
cycles

[274] 

Aspergillus sp. Green coconut fiber 13 45.7 0.0501 
0.0044* 

0.133 
mM/min 
0.024* 

 70% and 
55% after 5 
and 13 cycles

[201] 

R. vernificera Non-porous 
poly(GMA/EGDM
A) beads 

88  0.47 
0.23* 

77.6 U/min 
96.4* 

52% after 8 weeks 
storage (0% for 
free lac)

50% after 6 
cycles 

[202] 

C. unicolor DEAE-Granocel 
500 

42.7 92.7   98% after 4 
months

 [275] 

T. versicolor Semi-IPN gels 94  10.8 
0.0067* 

0.0044 
mM/min 
0.0018* 

80% after 42 days 
storage 

50% after 10 
cycles 

[203] 

T. versicolor Poly(glycidylmetha
crylate) brush 
grafted 
poly(hydroxyethyl
methacrylate) films 

71  23 
10* 

15.4 U/mg 
21.7* 

74% after 10 
weeks storage 

98% after 5 
cycles 

[204] 

 Alginate/chitosan 
microcapsules 

88.12  0.187 
0.068*

  35.73% after 
3 cycles

[205] 

Pycnoporus Magnetic CS 0.171 5.9 mM/min 70% after 1 month 80% after 10 [276]
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Laccase source Support matrix Immobilization 
yield (%) 

Retained 
enzyme 
activity 
(%) 

Kinetic parameters Storage stability Reusability Ref 
Km (mM) Vmax 

(U/mL/min) 

sanguineus microspheres 0.0368* 6.6* storage cycles
Lentinula 
edodes 

Chitosan  60 35 0.256 
0.077*

 60% after 6 
months storage

80% after 30 
cycles

[219] 

R. vernicifera p-benzoquinone-
activated agarose 

27 150   95% after 14 
months storage

 [277] 

Coriolopsis 
gallica 

Agarose      70% after 3 
months

85% after 10 
cycles

[278] 

Phlebia radiata Controlled porosity 
glass 

98 96   100% after 2 
weeks storage at 
4°C and 95% after 
2 weeks storage at 
25 °C

 [279] 

C. versicolor Activated carbon     62% and 50% 
after 4 and 126 
days

30% after 7 
cycles 

[220] 

 
*corresponds to a value for free laccase 
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