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There has been growing interest in building surface realization systems to support the automatic generation
of text in African languages. Such tools focus on converting abstract representations of meaning to a text.
Since African languages are low-resourced, economical use of resources and general maintainability are key
considerations. However, there is no existing surface realizer architecture that possesses most of the maintain-
ability characteristics (e.g., modularity, reusability, and analyzability) that will lead to maintainable software
that can be used for the languages. Moreover, there is no consensus surface realization architecture created
for other languages that can be adapted for the languages in question. In this work, we solve this by creating
a novel surface realizer architecture suitable for low-resourced African languages that abides by the features
of maintainable software. Its design comes after a granular analysis, classification, and comparison of the
architectures used by 77 existing NLG systems. We compare our architecture to existing architectures and
show that it supports the most features of a maintainable software product.
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1 INTRODUCTION

Natural Language Generation (NLG) systems are increasingly being deployed “in the wild” to
support the generation of, among other things, financial reports, data-driven news stories, and
product descriptions [23] in well-resourced languages, such as English and German. In recent
years, we have also seen several efforts in building realization tools for languages that are either
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low-resourced or have a low number of L1 speakers when compared to languages like English and
German. Realization tools are responsible for only “converting abstract representations of sen-
tences into the real text” [86, p. 49], whereas a full NLG system includes that and other modules
that take care of other NLG tasks, such as content determination and sentence planning. For in-
stance, there have been adaptations of the realization tool SimpleNLG [36] to Brazilian Portuguese
[29] and Galician [34]. However, none of the efforts have focused on building support for Niger-
Congo B (NCB) languages, a family of African languages. For those languages, there are a few
attempts at building ad hoc realization components used in ontology verbalizers [16, 48], which
have not made architectural design decisions a central component; hence, their maintainability is
negatively affected. While implementation of the algorithms in software contributes to maintain-
ability, it also depends on the properties of the underlying software architecture. Specifically, if
certain maintainability properties, such as functional suitability [13], are not met, then the imple-
mentation is unlikely to be easy to maintain.

The languages in question are distinguished by a complex verb structure, noun classification,
and an agreement system via morphemes. We will demonstrate these features using Byamugisha’s
[15] isiXhosa template for verbalizing the axiom Teacher T dteaches.Subject. Their template
produces the text Wonke utishala nganye ufundisa isifundo nokuba sinye, “Each teacher teaches
at least one subject” The noun Utishala, “Teacher,” belongs to class 1a of the 16 possible noun
classes in isiXhosa. Noun class membership is governed by a variety of features [47]. The noun
also governs the form of the verb ufundisa, “teaches,” based on its class. If the plural form of it
was used instead of the current form, then the verb would take the form bafundisa, “they teach”;
if a dog (noun class 9) teaches its puppy, then the verb takes the form ifundisa; when relegating
teaching to the computer (ikhompyutha, noun class 5), it is lifundisa. The prefix of the verb—u-,
ba-, i-, and li- in the examples, respectively—is called the subject concord and is determined by
the noun class of its governing noun. When forming the final verb, it is subject to phonological
conditioning rules [64]. Similarly, the prefix of sinye, “one,” the final word in Byamugisha’s text,
is governed by the noun isifundo, “subject.” More details regarding verb structure can be found in,
among others, [49, 52].

Similar to English, the noun-verb agreement can be managed in a “hacky” way: use (u/ba)fundisa,
“teach(es),” where the brackets with divider are used to denote a choice between the two values for
isiXhosa and an optional segment in the case of the English text. This becomes impractical when
one must cater for some double-digit noun classes and even more so for transitive verbs where one
must account for the verb’s agreement with both its subject and object. Consider the same axiom
not with “teaches” but the object property -thanda, “loves”: the resulting verb in the generated text
would be rendered as (ndifsiju/bali|lila/si|zi[lu/bulku)(m[balwulyi|lilwa/si|zi[lu|bulku/d )thanda, where
the brackets sections are the possible values for the subject and object concords, respectively
(@ denotes the empty string). Of course, a computer can process this easily, but this cannot be
given to humans as generated text to read. There are multiple such other grammatical complexities.
Therefore, the NLG systems for generating NCB languages must combine template and grammar
rules into so-called “grammar-infused templates” [65], such as [15, 66].

If there were a consensus architecture on what tasks should be in the surface realization mod-
ule and how they should be organized, it possibly could be used as is or in an adapted form for
Niger-Congo B languages, but no such architecture exists. The closest thing to a consensus is Re-
iter and Dale’s three-step pipeline architecture [84, 86]. However, the Reference Architecture
for Generation Systems (RAGS) [76] project showed that, in practice, researchers who choose
the three-step architecture do not agree on where to place tasks between the modules [77]. For
instance, while Reiter and Dale present the surface realization module as only being responsible
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for ordering, several NLG systems also make lexicalization the module’s responsibility. From an
overview perspective, this means that the following gaps exist:

e Existing African language NLG systems do not use an architecture that yields realizers that
are easy to maintain.

e There is no consensus on a maintainable surface realizer architecture within NLG that can
be tweaked for NCB languages.

In this work, we fill the gaps found in existing work, with a direct focus on NCB African lan-
guages, by first conducting an extensive literature review and comparison of 77 contemporary
surface realization systems. Instead of using the low-level tasks listed in [77, 86], we focus on five
aspects: tactical decisions, structure encoding, structure induction, structure linearization, and can-
didate ranking. We chose to focus on these tasks based on our experience with the control issues
and tight coupling of linearization rules by systems that we evaluated, including isiZulu verbalizer
[51] and KPML [7]. The benefit of our approach vs. alternative approaches is that it emphasizes
the use of formal specifications to improve the detection of inconsistencies and allow integration;
it also emphasizes the reuse of the few limited resources and encourages modularity. We will elab-
orate on these decisions in Section 4. Our tasks differ from the ones used by [77, 86] in that they
are more detailed and therefore enable a fine-grained analysis of surface realization.

Using this comparison of existing surface realizer modules, we identify their limitations for
NCB languages and then proceed to the creation of a new architecture for surface realizers to
support low-resourced languages, with particular emphasis on NCB languages that possess most
of the maintainability characteristics specified in the software product quality model presented
in [13] (namely modularity, componential re-usability, and analyzability). A maintainable surface
realization architecture is important for any natural language but is amplified for low-resourced
languages.

We compare our architecture against the 12 architectures used by the 77 reviewed NLG sys-
tems and demonstrate that our architecture supports the most maintainability features. Our ar-
chitecture differs from existing ones as it introduces a pre-processing module that operates on
sentential structures in order to introduce context-specific grammatical information; places the
ranking module prior to linearization so that it can have access to explicit grammatical knowledge/
annotations; uses an ontology to formalize templates and therewith allows analyzability; offers de-
tection of logical inconsistencies in templates, sharing, and comparison of templates; and moves
tactical decisions outside the realizer.

The remainder of the article is structured as follows: Section 2 discusses the current state of
NLG for African languages, Section 3 discusses research that focuses on NLG system architectures,
Section 4 zooms into surface realization to discuss our analysis of the current architectures used,
Section 5 presents the new architecture, Section 6 compares the new architecture with existing
architecture, Section 7 discusses the utility of using an ontology to capture template knowledge,
Section 8 discusses a partial implementation of the architecture, and Section 9 concludes.

All supplementary material can be downloaded at https://github.com/AdeebNqo/ToCT/tree/
main/OWLSIZ.

2 NLG FOR AFRICAN LANGUAGES

There are only two approaches that have been pursued for encoding the ordering structure in
African language generation: the use of computational grammar rules (CGRs) and templates
that may be combined with computational grammar rules to form what is called grammar-infused
templates [65]. Grammar-infused templates differ from traditional templates in that they also in-
clude grammatical knowledge. A detailed description can be found in [65]. The grammar-only
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approach has been pursued in the creation of a grammar engine for Arabic [1], but at the time
of writing, it has not been used to create an NLG system. The templates, most of which are used
together with CGRs, have been used for isiZulu language learning exercises [37] and ontology
verbalization in Runyankore [16], isiZulu [50], and Afrikaans [87]. There are a few applications
that support Southern African languages, but their surface realization approach, and their corre-
sponding architectures, cannot be classified with certainty. For instance, AwezaMed relies on a
controlled language,! but how they do this is not publicly available for inspection, only a general
view of the system’s architecture described in [69, 70].

NCB languages are a subset of African languages that are low-resourced. This refers to both
the primary sources and the computational resources, as also demonstrated by the recent audit of
South African NCB language resources [79]. As such, the development of computational grammar
resources for the languages must be preceded by, or done in tandem with, linguistic documentation
and analysis of the language’s grammar. This is a labor-intensive task that is further complicated
by the complexity of the language’s grammar [17, 49, 64]. From a practical perspective, it is sensible
to consider other techniques for the generation of text in these languages. Templates, on their own,
have already been shown to be inadequate for these languages as a result of their complex agree-
ment system (e.g., [50]), and unlike Machine Translation where researchers have mostly relied on
religious, government, and phrasebook parallel corpora (e.g., [72, 82]), there has been no work that
pursues fully data-driven solutions for NCB languages owing to a lack of training data. In general,
the computational grammar rules, data-driven approaches, and templates on their own are not
viable for generating text in Niger-Congo B languages since the languages are low-resourced and
have complex grammar.

Grammar-infused templates can be created by hand in the same vein as simple templates, but
they do not suffer the same limitations at handling grammatical complexity. In particular, the
isiZulu and Runyankore verbalizers’ [16, 48] patterns can capture some of the morphological
agreement relations that exist between words in isiZulu and Runyankore. The patterns used in
those verbalizers differ from simple templates with respect to two aspects: rules for specifying the
source of a concord’s value and rules for forming words from an ordered sequence of affixes. They
are still limited because they only support a subset of the possible concords and duplicate the same
morphological agreement rules across different templates, and their linearization algorithms are
tightly coupled with the application domain (in casu, the verbalization of axioms). One cannot
use them in a new NLG system that needs to generate a language whose features go beyond what
they currently support.

The possible rise of the aforementioned grammar-infused templates, as is or otherwise, as a
means for generating text in NCB languages raises questions about how best to organize the com-
ponents of the realizer in order to prevent the tight coupling of grammar rules with the generation
algorithm to allow resource reuse, to remove duplication of rules and hence lessen the manual ef-
fort, and to offer an explicit declaration of template concepts, relations, and constraints to ensure
their analyzability.

3 EXISTING NLG ARCHITECTURES

Current work examining architectures in NLG focuses on entire systems and gives little attention
to surface realizers. The names of the architectures, resulting from such work, are given in Table 1.

Existing architectures differ in modularization and organization of those modules, if they
are present. For instance, systems that lack modules dedicated to specific tasks are called inte-
grated systems, of which there are three types: planning-based, end-to-end, and classifier cascade

Thttps://repo.sadilar.org/handle/20.500.12185/536.
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Table 1. Classification of Architectures Used by
Complete NLG Systems (Based on [35, 88])

Integrated Modular

End-to-end Interleaved Unidirectional
Interactive What and How

Classifier cascades Blackboard Three-step pipeline

Planning based Revision-based | Four-step pipeline

- - Generate and select

architectures. Planning-based architectures were mostly used by dated systems that viewed gener-
ation as a problem of searching for a sequence of actions, in some action-space, that can transform
the initial state (i.e., the input) to some goal state (i.e., the output); end-to-end ones are very popular
with extant deep learning systems (e.g., [32]); and classifier cascades are used in the uncommon
NLG systems that treat generation as a classification task (e.g., [71]). While the planning-based
methods and classifier cascades may have multiple parts, they are not modular in the same sense
as NLG modularity as introduced in [86]: their actions or classifiers can “cut across the boundaries
of many of the tasks that are normally encapsulated in the classic pipeline architecture, combining
both tactical and strategic elements by viewing the problems of [‘what to say’] and [‘*how to say
it’] as part and parcel of the same set of operations” [35, p. 86]. Those two architectures, unlike end-
to-end systems, are not black boxes, as it is possible to interpret the actions or classifiers. None of
these three architectures have a separate module that transforms their internal specifications into
natural language text; hence, it is impossible to isolate and analyze such a module’s architecture
and to reuse a module in another system. For instance, a modular approach allows the identifica-
tion and resolution of problems pertaining to referring expression generation while keeping the
other identifiable modules frozen, and that piece can be reused elsewhere as needed. Also, a mod-
ular approach reduces complexity by making the various dependencies between an NLG system’s
tasks visible (cf. a black-box approach that is not controllable).

Systems that use modular architectures are either interleaved or unidirectional and the only
difference between them is the direction of data flow. Interleaved systems allow for a back and forth
between modules to communicate errors detected by a downstream module back to the upstream
module that caused them. These types of systems are rare, possibly due to the engineering difficulty
associated with building them [88].

Modular architectures have an identifiable component that is responsible for surface realization.
Such architectures can either have two (e.g., [57]), three (e.g., [86]), or four (e.g., [85]) modules. The
two-step architecture starts by transforming the “input into a forest of possible expressions” [57],
which are then fed into a ranking module. The widely used three-step pipeline architecture has
document planning, micro-planning, and realization modules. The four-step architecture extends
that by introducing a signal analysis and data interpretation module. The extent to which knowl-
edge gained from one architecture can be transferred to other types of architectures is unknown,
as there has been no examination and comparison of said components across the different archi-
tectures. To the best of our knowledge, the only architectural discussion surrounding the realizer
is the distinction made between a tactical realizer vs. a grammar engine [36] and demonstration
that there is no agreement on what low-level tasks should be in the surface realizer [77] for sys-
tems that use the three-step pipeline architecture. The difference between tactical generators and
grammar engines is that the former “mak([e] appropriate linguistic choices given the semantic in-
put [and] once tactical decisions have been taken, [they build] a syntactic representation, [apply]
the right morphological operations, and [linearize] the sentence as a string” [36] while the latter
focus “on the second of the two tasks, making no commitments as to how semantic inputs are
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mapped to syntactic outputs” [36]. Both architectural analyses are limited because while Gatt and
Reiter argue for a realizer that is responsible for “spell[ing] out the syntactic constraints of the
language in which an utterance is to be generated” [91, p. 58], they do not make explicit what
tasks are required to do so. Moreover, the architecture comparison by [77] only considers three-
step architectures and it is high level with respect to the tasks it considers. For instance, there is
no breakdown of the ordering task (i.e., “the choice of linear ordering of the elements of the text”
[77, p. 4]) in order to identify differences in how realizers achieve it.

4 REVIEW OF SURFACE REALIZER ARCHITECTURES

We review existing surface realizers as they are found in multiple domains and eras in order to
identify current and past architectural trends in finer detail. This is done to uncover knowledge
that is useful for building maintainable architectures for NCB languages.

We compiled a list of 77 NLG systems and tools in preparation for the architecture analysis
by extending the 54 verbalizers and tactical realizers found in [65] with 21 additional systems
for a more comprehensive list. We added 9 grammar engines (SimpleNLG variations, GenDR [58],
and JSrealB [78]), 12 data-driven NLG systems (10 of which are recent and 2 are dated), and 2
recent systems that use augmented template tools. The new systems were found by analyzing the
work cited by the publications described in [65] and retrieving recent and relevant publications
using Google Scholar. From this initial list, we manually read all the papers and then we removed
systems whose paper(s) have insufficient details about the surface realizer’s architecture to be
able to determine how it works (e.g., because the paper’s scope was different) and then manually
determined the architectures used by the remaining systems.

4.1 Comparison Criteria and Results

The comparison focused on the following aspects:

e Structure selection: This is the tactical decisions component, which connects the surface real-
izer to the prior modules. It is responsible for making linguistic decisions given the semantic
input (e.g., deciding on syntactical structure to use for a certain event type) [36]. We use
the term “structure selection” instead of tactical decisions in order to improve clarity regard-
ing the relationship of this task with the following three aspects (i.e., Structure encoding,
induction, and linearization). Moreover, this task can be thought of as a kind of “structure
determination”; however, we prefer to use the term “selection” to make clear that it involves
the selection from an existing set of structures. Using SimpleNLG [36] as an example, the
term “determination” may suggest that the NLG engineer is responsible for creating the
English grammar rules for encoding sentential structure and using them at the same time.
However, SimpleNLG already provides such rules, and the engineer is only selecting which
ones are appropriate for certain semantic input to their system.

e Structure encoding: This is the method used to capture the sentential structure, which
(1) captures the elements and position(s) of elements that will be inserted in order to form
the final surface text and (2) specifies how the elements are to be ordered. For instance, some
realizers use a template, while others may use a phrase structure tree.

e Structure induction: This refers to the method used to create the structures used for cap-
turing sentences. These structures come in many forms. For instance, they could be phrase-
structure trees or templates, among the many possible options. In some cases, the structures
may be induced from examples, but they can also be induced/created manually by the NLG
engineer based on their domain expertise.

e Structure linearization: This is the formation of text from some ordering structure. In the
case of simple templates, it is equivalent to slot filling. In the case of grammar-infused
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templates and grammar-only approaches, it may also include forming words from lemmas
and traversing a tree in order to form the final surface texts.

e Ranking: The candidate filtering mechanism is responsible for selecting one sentence/
structure out of many candidates’ output sentences or sentential structures.

We have chosen the above tasks for analysis to zoom into overlooked issues and avoid limi-
tations seen in architectures of previous generation systems. For instance, structure selection is
important because analysis of the connection between the preceding module and the realizer pro-
vides us with an understanding for how to avoid the control issues present in dated wide-coverage
tactical generators [36]. More precisely, such systems require a specialized input form since they
make tactical decisions the responsibility of the realizer. As such, they offer no direct way for
control over how “phrases are built and combined, inflectional morphological operations, and lin-
earisation” [36, p. 91]. In addition, they allow us to scrutinize the placing of the linearization algo-
rithm, and its combination with other aspects, to avoid the need to create an algorithm each time
a new template is created (e.g., [16, 48]). Our analysis of the method used to encode the sentential
structures is also important because some techniques (e.g., use of large-scale grammars) are not
suitable for low-resourced languages. Lastly, we include the ranking task because it is intertwined
with linearization in some NLG systems.

The aforementioned analysis, and an abstracting away of some details, resulted in 12 surface
realizer architectures. The list of all systems considered for examination, excluding the ones fil-
tered out, and their respective architectures are given in Table 2. The 12 architectures differ in the
organization of the various modules and methods employed for structure induction, encoding, and
linearization. We group these architectures into categories based on similarities in their organiza-
tion of modules, which resulted in six categories that are illustrated in Figure 1. We have listed the
architectures according to their categories in Table 3. The same table also lists the methods used
for induction and linearization. While our use of the term “architecture” is in the usual sense, the
term “architecture category” is not commonplace and we therefore will illustrate how to interpret
Table 3 and Figure 1 using the system described by Lavoie and Rainbow [59]. It uses architecture
10 and, looking that up in column 2 of Table 3, it belongs to category AC4. Then, using Figure 1, it
can be seen that its surface realizers only contain sentential structures and a structure linearization
module. Table 3 also shows us that, unlike other architectures in the same category (e.g., arch. id
9), it relies on hand-coded sentential structures and uses grammar rules for linearization.

Categories AC2 and AC3 have modules labeled A and B. These represent the different ways that
the two categories combine structure, linearization, and ranking and the various modules are listed
in detail in Figure 2. To demonstrate, in category AC3 there is no ranking, and linearization either
can be combined with selection in one module (A) or done separately (in A and B, respectively).
In category AC2, structure linearization is either combined with selection in module A or with
ranking in module B. Technically, we could have split these into separate architecture categories;
however, doing so adds no explanatory value.

4.2 Architectures and Categories

In the following paragraphs, we discuss the architecture categories and provide examples of sys-
tems whose surface realizers belong to each of the categories. Our examples do not put emphasis
on categories AC1-2 because they are only prevalent in dated NLG systems.

The AC1 category is used by so-called tactical generators; surface realizers are responsible
for making linguistic decisions given semantic representations and applying linguistic rules to
convert decided-upon syntactic structures to obtain surface text. This category of text generator
was first identified by Gatt and Reiter [36] when they contrasted it to the notion of a grammar
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Table 2. List of All Systems Whose Surface Realizers Were Classified and Their Corresponding
Architecture Identifiers

Architecture id Reference(s) to System

0 Aguado et al. [2], Bateman [7], Coch [22], Bouayad-Agha et al.,
Bouayad-Agha et al., [10, 11], Dongilli and Franconi [30],

Lareau et al. [58]

Cimiano et al. [21]

Bohnet et al. [8]

Busemann [14]

Knight and Hatzivassiloglou [53], Langkilde [56]

Nakanishi et al. [81], White [95]

Angeli et al. [6], Kondadadi et al. [54]

Byamugisha et al. [16], Keet et al. [51], Lyudovyk and Weng [63]
Androutsopoulos et al. [4], Ang et al. [5], Camilleri et al. [18],
Casteleiro et al. [19], Dannélls, Dannélls et al. [24, 25], Davis et al.
[26], Davis et al. [28], Elhadad and Robin [33], Gruzitis et al. [39],
Hewlett et al. [41], Hossain et al. [44], Jarrar et al. [45], Kaljurand and
Fuchs [46], Liang et al. [60], Liang et al. [61], Lim and Halpin [62],
McRoy et al. [75], Sanby et al. [87], Stenzhorn [89], Stevens et al. [90],
Weal et al. [94]

9 Anmith et al. [3], Bollmann [9], de Oliveira and Sripada [29], Dusek
[31], Gatt and Reiter [36], Hielkema et al. [42], Kuanzhuo et al. [55],
Mazzei et al. [73], Mazzei et al. [74], Molins and Lapalme [78],
Ramos-Soto et al. [83], Vaudry and Lapalme [93]

RN |V DN

10 Lavoie and Rainbow [59]
11 Mairesse et al. [68], Moryossef et al. [80], Wong [96]
12 Castro Ferreira et al’s [20], Gubbala et al. [40], KnowledgeGraph

Person verbaliser?

engine. In such an architecture, tactical decisions are conducted via rules and sentential structure
encoding, and linearization is conducted via a large grammar. structure The grammar formalism
varies across the various systems. An example of such a tactical generator, though it has other
components such as an environment for creating grammars, is the KPML system [7] and other ex-
amples of surface realizers that rely on stratified theories such as Meaning-Text Theory (MTT)
(e.g., [10, 58]). Such realizers take in some semantic structure and map them to some syntactic
dependency using a variety of methods, and then said structures are converted, possibly through
multiple steps, into the final surface form.

The AC2 category is like AC1 in that it makes use of a grammar for encoding sentential structure.
However, it differs because it has a sentence ranking module. The AC2 architectures differ since
some use a data-driven module and others use rules for structure linearization (see Table 3). An
example is the generator in [56], which takes semantic input and uses it to create a forest via
rules (a generation forest is a context-free representation that specifies all the possible sentences
that can be generated). The forest’s sub-trees are ranked and then linearized to produce the final
sentence.

The AC3 category is like AC2, since one of its architectures (i.e., arch id 6) includes a ranking
module. The category differs from AC2 as it relies on templates for structure encoding. An example

Zhttps://github.com/m477301/KnowledgeGraphVerbalizer.
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Architecture category 1 Architecture category 2 Architecture category 3

Structure Structure Structure
Input [ induction ] Input [induction ] Input [induction]
| | |
Preprocessing| Preprocessing Preprocessing
(optional) (optional) (optional)
e ps? e
Y Y Y Y Y Y
Structure
| selection ](— Structures [ A ](— Structures [ A ](— Structures

— "

Architecture category 4

Architecture category 5

Structure
linearisation B B
v v L 7
Text Text Text

Architecture category 6

Structure Structure
Inpm [ induction ] InpUt InPUt [ induction
Preprocessing Preprocessing|
(optional) L (optional)
\ 4
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Legend
| Grammar | | Realiser | |Template (possibly grammar-infused)l

Fig. 1. Surface realizer architecture categories. The modules labeled A and B represent different combina-
tions of structure selection, linearization, and ranking. For instance, in architecture 4 we have A = structure
selection and B = structure linearization and ranking. The arrows symbolize the flow of data.

of such an NLG system is the template-based OWL verbalizer for Afrikaans [87], where the tactical
decisions component maps the various axiom types that are supported to templates. For instance,
axioms of the type SubClassOf(C1C2) (in OWL functional syntax style), where C1 and C2 are classes,
are mapped to a single template. This mapping is encoded via a Java rule that selects the following
template whenever it encounters a subsumption axiom?:

3Taken from https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2015/sanby_todd.zip/index.html.
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Architecture category 2 Architecture category 3

Structure Structure
. . Module options . N
InPUt [lnductlon rrrrrrrrrrrrrrrrrrrrrrrr InpUt induction
: )
i Struc. select. | : i
Module options & ranking y
Preprocessing| : H Preprocessing|
Structure | (optional) : S;ggf'& e (optional)
selection linearisation J |
o : ! isone of
ST )| somear| — R Y Y
linearisation — A Structures \ selection . A }(— Structures
Linearisation l
& ranking is one of B
— : ;!
Ranking v : :
Text Text

Fig. 2. A detailed view of the surface realizer architecture categories AC2 and AC3. The modules labeled A
and B represent different combinations of structure selection (struc. sel.), linearization, and ranking. We use
the symbol 0 to denote a module that does not exist.

Table 3. Surface Realizer Architectures, Their Associated Categories, and the Methods They Use
for Structure Induction and Linearization

Architecture | Architec- | Structure Structure Module A Module B
Category tureid | Induction Linearization
AC1 0 Hand Coded Grammar - -
AC1 1 Data driven Rule-based - -
AC1 2 Data driven Data driven - -
AC1 3 Hand Coded | Rule-based - -
AC2 4 Hybrid Data driven Structure sel. Structure lin. + rank.
AC2 5 Hand Coded | Rule-based Structure sel. + lin. rank.
AC3 6 Data driven Rule-based Structure sel. + rank. | Structure lin.
AC3 7 Hand Coded | Rule-based Structure sel. + lin. 0
AC3 8 Hand Coded | Rule-based Structure sel. Structure lin.
AC4 9 Hand Coded Rule-based - -
AC4 10 Hand Coded Grammar - -
[ ACS EEE - - - |

‘ AC6 ‘ 12 Hand Coded ‘ Rule-based ‘ - ‘ - ‘

Abbreviations: Structure ind. = Structure induction; structure lin. = Structure linearisation; rank. = Ranking.

<Constraint type="OWLSubClassOfAxiom">
<Text>Elke</Text>

<Object index="0@"/>

<Text>is 'n</Text>

<Object index="1"/>

</Constraint>

QN U R W N
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When given SubClassOf(DOG, ANIMAL), the verbalizer will produce Elke hond is 'n dier (“Each
dog is an animal”). The linearization of each template is done within Java; it involves filling in
slot values and doing minor clean-up such as removing trailing spaces. The system described by
[54] also uses this architecture, but it uses a data-driven module for ranking and selecting the
best template to use for any provided input. The chosen template and processed input are then
linearized using a rule-based module.

The AC4 category is used by most contemporary NLG systems. These systems rely on grammar
engines such as SimpleNLG [36] or its adaptations for other languages such as Tibetan [55]. The
engine provides reusable language-specific rules for creating syntactic structures and linearizing
them to obtain well-formed text. These rules are either taken from an existing system (e.g., [36])
or developed from scratch (e.g., [55]) and stored within the realizer. The choice of which syntactic
structure to use given the semantic input is not made by the realizer. Instead, it is left to the
discretion of the engineer; i.e., the realizer makes no tactical decisions. Hence, Figure 1 shows
structure selection as existing outside the realizer by using structures within the system. The input
to such systems is a sentence plan (i.e., an underspecified syntactic structure) or the intermediate
representation and a choice of syntactic structure that is to be created by the realization engine.
Based on the input, control is given to the engine to create the final syntactic structure and apply all
necessary linguistic rules. An example of a system that follows this architecture is [74], who feed
Content MathML (CMML) expressions to the sentence planner, and it detects which expression
categories are found in the input. For instance, when provided with the CMML expression for
{x | x < 0}, the planner detects that it is made up of the relational, (arithmetic, algebraic, set),
and conditional set. Using the predefined rules for mapping each category to a syntactic structure,
it creates a structure for the complex category (i.e., the conditional set) where the internal nodes
capture the simple categories (i.e., the relational and (arithmetic, algebraic, set)), the child nodes
capture lemmas, and edges capture dependency relations between the various nodes. This sentence
plan is passed to the system’s coordinator, which then builds a constituency-based syntactical
structure using SimpleNLG-it [73] that corresponds to the input and then linearizes the tree to
obtain text.

The ACS5 category does not have a distinct module for making tactical decisions to determine
a natural language’s syntactic constraints; it has no explicit sentential structure encoding and
linearization module. Instead, it makes use of a data-driven model (most contemporary systems
use a deep neural network) to map some intermediate representation to natural language text. The
first group of systems that belong to this category do not have an identifiable surface realization
component, even though they are modular. For instance, Moryossef et al. [80] train a sequence-
to-sequence model with attention for converting text plans to surface text using the OpenNMT
toolkit. A text plan is a list of sentence plans where each sentence plan is a labeled directed graph
where the nodes represent concepts and direction edges represent predicates. So, when the trained
neural network is given the sentence plan [(John, residence, London), (England, capital, London)], it may
generate “John lives in London, the capital of England” [80].

The only neural NLG system that has an identifiable surface realizer can be found in [20]. How-
ever, its surface realizer is not data driven. Instead, it is fed templates with abstract representations
of verb phrases and noun phrases. These templates are produced by the preceding modules. Its ar-
chitecture belongs to category AC6 and we will now introduce that category.

The AC6 architecture category is used by a few systems. The realizers of such systems are
responsible for a single task, i.e., the linearization of structures. For instance, Castro Ferreira
et al’s [20] realizer takes a template with underspecified verb and noun phrases. These templates
look like the following [20, p. 554]:
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Massimo Drago VP[...] play for DT[...] the club SSD Potenza Calcio and
his own club VP[...] be Calcio Catania . He VP[...] be currently VP
[...] manage AC Cesena

Listing 1. Example of a template found in Castro Ferreira et al’s [20] pipeline neural system.

The realizer then uses rules* to resolve the verb and noun phrase values in order to generate the
final string. Another system whose realizer abides by the organization seen in AC6 can be seen in
Gubbala et al’s [40] work.’ Unlike Castro Ferreira et als neural pipeline system, this one is not
preceded by neural modules but it uses the RosaeNLG® library to generate text.

4.3 Appropriateness for NCB Languages

Architectures that belong to categories AC1/2 are inappropriate for, at least, NCB languages (and
possibly others as well). The architectures are often used by domain-independent realizers that
require the creation of an input specification for purposes of limiting the realizer’s semantic space,
since they make tactical decisions the responsibility of the realizer. Therefore, they require detailed
input, hence making them difficult to easily accommodate in a new system [35, p.80]. This is af-
firmed by the low adoption of large-scale grammar-based realizers that use architectures AC1/2
(e.g., KPML and AlethGen/GL) in modern NLG systems.

Contemporary NLG systems use architectures that belong to categories AC3/4/5/6. AC3 archi-
tectures have been used by several NLG systems that support low-resourced languages, especially
African languages. Most domain-specific systems designed for well-resourced languages make use
of AC4 architectures when reliability is of concern. Recently, there has been an uptake in NLG sys-
tems that follow ACS5 architectures for such languages. However, such systems are rarely used
in areas where reliability is important since they sometimes exhibit hallucinations, incoherency,
and degenerative repetitions [43]. These four architecture categories have various strengths; for
instance, AC4 and AC6 move tactical decisions out of the realizer and leave minimal tasks; hence,
they do not require restrictive input specifications. In addition, it has been demonstrated that it is
possible to bootstrap an existing system for a related language if they use AC4 (see [16]).

Despite the benefits, architectures that belong in categories AC3/4/5/6 are currently also unsuit-
able for NCB languages with respect to maintainability, for the following reasons:

e ACH4 relies solely on grammar engines for structure realization, but there is limited doc-
umented grammar for languages that are low-resourced; hence, AC4 is unsuitable. Once
a full-scale grammar engine exists for such languages, it should be viable and possibly
appropriate.

e The use of AC5 architectures is only appropriate for languages and domains where there
exist parallel data-to-text resources to train statistical/neural models. However, this is also
not available for isiXhosa and isiZulu—nor most other NCB languages—and therefore also
not appropriate.

e The existing approaches that belong to category AC6 suffer from both the issues mentioned
above.

The only categories that are promising for the NCB languages, in that the categories can form
a basis for more suitable architectures, are AC3/4/6. This is partially motivated by the observation
that all existing NLG systems for Nguni languages have used category AC3 architectures due to
their practicality. The only limitation with AC3, for instance, is that it does not yield maintainable

4https://github.com/ThiagoCF05/DeepNLG/blob/master/realization.py.
Shttps://github.com/Alihussainladiwala/Citizen-Friendly-Report-of-diversitydatakids.org/.
®https://rosaenlg.org/.
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and reusable software as it tightly couples the linearization rules with the actual templates and
makes tactical decisions the responsibility of the realizer. For instance, consider the algorithm
implementation’ for the pattern that verbalizes negated simple existential quantification, given in
Listing 2 (discussed afterward).

1 def nexist_zu(sub,op, super):

2 nclm = find_nc(sub)

3 nc2m = find_nc(super)

4 nc2 = strip_m(nc2m)

5 pl = plural_zu(sub,ncim)

6 ncp = look_ncp(ncim)

7 qca = look_qca(ncp)

8 rc = look_relc(nc2)

9 qc = look_qce(nc2)

10 rt = find_rt(op)

11 negsc = look_negsc(ncp)

12 if rt[0] in 'aeiou':

13 negconjrt = negsc_vowel_vroot(rt,negsc)
14 else:

15 negconjrt = negsc + rt

16 return qca + ' ' + pl + ' ' + negconjrt + 'i' + ' ' + super + ' '

+ rc + qc + 'dwa'

Listing 2. Python implementation for verbalizing simple existential quantification in isiZulu (Source:

[51]).

When the verbalizer is given the input Umuntu T —3feza.umsebenziOnqunyiwe, it detects
that the relevant lexical items are umuntu, “person”; feza, “achieve”; and umsebenzi onqunyiwe,
“task” and invokes nexist_zu (line 1). It then identifies and processes the noun classes of the nouns
associated with the sub and super classes (lines 2—-4) and pluralizes the sub’s noun and identifies
the plural’s noun class (lines 5-6). It then uses the retrieved noun classes to select the relevant
quantitative and relative concords (lines 7-9). Subsequently, a negated verb is formed for the verb
(lines 10-15). Finally, the algorithm combines them to form the sentence (line 16), in this case gen-
erating Bonke abantu abafezi umsebenzi onquyiwe oyedwa, “All humans do not achieve some task”
Here, the grammar-infused template and the linearization rules used to generate text are interwo-
ven in the parent function nexist_zu. In addition, the decision to choose an appropriate template
given some input is also the responsibility of the realizer. This means that it is impossible to
isolate the templates for re-use. This is a general problem of this approach and does not speed up
progress for tools for NCB languages.

Technically, such systems can be re-designed into an AC6 architecture. The templates may be
captured via a separate language (a la RosaeNLG’s pug templates) and the choice of an appropriate
template would be carried out by a separate module. The code in Listing 2 must be split into a
template and linearization algorithm. A hypothetical template might be like the one shown in
Listing 3, where concateList is a hypothetical extension of the pugjs® template language, which
would order plain-text elements and intelligently introduce spaces between some special elements,
and the value mixin is from RosaeNLG (lines 2—4, 6) but with parameters that are currently not

"https://github.com/mkeet/GENIproject/blob/master/isiZuluVerbaliser/OntologyVerbaliser_Zu/zulurulespw.py.
8https://pugjs.org/language/.
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supported. Line 2 invokes value so that the template engine will generate the appropriate form of
onke, “all,” which depends on the noun class of the noun it is associated with, generating, e.g., the
Bonke in the example above.

1 concatelist

2 | +value('onke', {nc: getNC(sub)})
3 | +value(sub, {number: PLURAL})

4 | +value(op, {marker: NEGATIVE})

5 | #{super}

6 | +value('dwa', {nc: getNC(super)})

Listing 3. Hypothetical RosaeNLG template for simple existential quantification in isiZulu (summa-
rized).

The hypothetical RosaeNLG is still a summarized version, however, because RosaeNLG is also
not capable of processing the phonological conditioning required in line 2 to make the full word
and it does not deal with the relative and quantitative concord in line 6 to complete the verbaliza-
tion of the existential quantification (to generate the oyedwa in the example sentence from the dwa
in the template). That is, an extended RosaeNLG or a new template language for NCB languages
is needed to realize this.

The rules for linearizing the template can be moved to a separate module and invoked by some
linearization code, like the hypothetical JavaScript code shown in Listing 4. It has a function for
choosing the appropriate template when given an axiom (lines 3-7), a function for retrieving the
template from a file and passing the lexical items for the axiom’s elements (lines 9-17), and a
reusable function for linearizing templates that use RosaeNLG’s engine (lines 19-22).

1 const rosaenlgPug = require('rosaenlg');

2

3 function verbalise(axiom):

4

5 if nExistAxiomMustBeUsed:

6 vals = getlLexicalValues(axioms)

7 nexist_zu(vals[0], vals[1], vals[1])
8

9 function nexist_zu(someSubVar, someOpVar, someSuperVar):
10 return lineariseTemplate(

11 'template.pug',

12 {

13 language: 'zu',

14 sub: someSubVar,

15 op: someOpVar,

16 super: someSuperVar

17 B) s

18

19 function lineariseTemplate(templateName, params)
20 return rosaenlgPug.renderFile(

21 templateName ,

22 params);

Listing 4. Hypothetical JavaScript code for using a RosaeNLG template to verbalize simple existential
quantification in isiZulu.
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The use of a declarative template language results in templates that are separate from the lin-
earization rules, and they can be reused without the need to disentangle code and recreate the
relevant rules.

A downside of such a declarative template language is the challenge of constraint checking
to ensure that the template is well formed. This is also a challenge if one uses a task ontology to
capture simple or grammar-infused templates [67]. In both ways of declaring templates, words and
slots must be ordered and there must be at least one slot, and one is free to introduce additional
constraints. However, since the template file will only specify the “what” and not the “how” (since
it is declarative), this permits the use and reuse of invalid templates, which affects the viability of
template re-use. This issue may be solved through the following methods:

o Best practice guidelines: one can collect pitfalls seen in template reuse over an extended
period and create methodologies for template reuse that ensure that NLG engineers avoid
those pitfalls. The disadvantage with this approach is that it can only lead to a solution after
one has spent an extended amount of time observing pitfalls.

e Safeguards in system architecture: use the presented analysis of existing NLG architectures
to introduce changes that ensure that the architecture has robust means for template con-
straint violation detection upfront. The challenge with this approach is that it requires some
innovation regarding how to realize the error detection module and where in the architec-
ture such a module must be added.

We choose the second option and introduce our architecture in the next section.

5 KNOWLEDGE-GUIDED ARCHITECTURE

We develop a new architecture by first specifying requirements, creating an architecture that meets
the requirements, and then evaluating the result through a manual feature comparison.

5.1 Requirements

The requirements phase focuses on determining the high-level characteristics that should be in
the architecture. These requirements were decided upon by the authors based on observations we
have made on the evolution of realizer architectures in NLG, as discussed in the previous section,
and the needs of the languages in question. The high-level design requirements are as follows:

e The sentential structure must be encoded via templates, which may be grammar infused, in
order to support low-resourced languages. When necessary, it must be possible to enrich the
grammar-infused templates with task/context-specific grammatical knowledge.

e Knowledge regarding grammar-infused templates must be incorporated via application on-
tologies as it allows use of semantic technologies for template creation, automated reasoning
to detect inconsistencies, and comparison of template features. At first glance, it may seem
like the approach of capturing templates is separate from a surface realizer, but it is not. The
use of grammar-infused templates requires a principled approach to encoding the neces-
sary grammatical and template knowledge. Just like there are formal theories for specifying
grammars, a theory of templates is required in order to make the combination sound.

o Tactical decisions should not be the responsibility of the surface realizer. Like the proposal by
SimpleNLG [36], tactical decisions should be left to the discretion of each NLG engineer. The
advantage of this is that it avoids the control issues and restrictive input formalisms found in
dated wide-coverage tactical generators. From an engineering perspective, this separation
of concerns maximizes the reusability of the realizer while minimizing the complexity of its
input.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 22, No. 3, Article 84. Publication date: March 2023.



84:16 Z. Mahlaza and C. M. Keet

Structure Input
induction Linearisation Text
Preprocessing IN Rank
+ p (optional) (optional)
Structures |  Structure Error detection Error(s)
selection

Fig. 3. Functional view of the knowledge-guided architecture to generate text from grammar-infused tem-
plates. The arrows symbolize the flow of data.

e Maintainability must be a key feature guiding the design of the architecture since template-
based systems have been criticized in the past for being difficult to maintain. We are inter-
ested in modularity, componential re-usability, and analyzability.

e Statistical models should be usable as a means for the creation and selection of templates
when generating text. It must be possible to also make use of the grammatical features af-
forded by grammar-infused templates to rank possible templates (cf. only using surface text).
Moreover, the component for selecting a template given some input must not be necessar-
ily data driven since the language for which one is building an NLG system may not have
sufficient corpora to build a data-driven template selector.

It may seem counter-intuitive to rely on templates when building an architecture for reusable
realizers, especially to individuals who are well versed in NLG for a language such as English. In
line with van Deemter et al’s argument, it is a viable option because while the adaptation of an
existing system to a new domain may require template edits or the creation of new ones, “the
underlying generation mechanism, [in the architecture] generally requires little or no modifica-
tion” [92]. Moreover, the maintainability of templates must be weighed with the maintainability
of CGRs in a case where there is little to no up-to-date grammar documentation or data driven
in cases where training data is hard to come by. The goal of this approach is to rely on templates
for generating task-specific text. However, these templates are used with limited, but possibly
growing, CGRs that are designed to cater to general linguistic knowledge. Using a CGR-only ap-
proach would not be viable since there is none with large coverage. In addition, using templates
with no additional grammar rules would also not suffice for the generation of human-friendly text,
as demonstrated by the isiXhosa template(s) introduced in Section 1 for verbalizing the axiom
Teacher T dteaches.Subject.

5.2 Architecture Creation

Based on the above requirements and our analysis of existing architectures, we have created the ar-
chitecture shown in Figure 3. The tactical decisions are moved out of the realizer like AC4. Structure
creation is achieved via templates, possibly grammar infused. Moreover, for a faithful implemen-
tation of this architecture, template knowledge (i.e., concepts, relationships, and constraints) must
be formalized in an ontology. Lastly, there is no prescription for the methods that can be used
for structure induction so rules or statistical models can be used. Further, when generating text
using an implementation of this architecture, there might be multiple candidate grammar-infused
templates, as a result of needing variety for text to be generated. The ranking component selects
an appropriate template from the candidates, which can be rule based or data driven. The selected
template and its associated input are then passed to the linearization module for slot value inser-
tion, application of the necessary grammar rules, and finally producing surface text.

The preprocessing and ranking modules are introduced and placed in a location that differs
from the architectures presented in Table 2 and categorized in Table 3. This is done to satisfy the
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requirements pertaining to adding task-specific grammatical information and using it to rank the
possible templates. To demonstrate the usefulness of such features, we use Braun et al’s [12] Safer-
Drive system. The system was originally created to generate reports to make drivers aware and
change their behavior of negative driving habits. One could extend the system for use by insurance
companies so that they may offer their version of reports to drivers or to report to actuaries who
set prices depending on driver behavior. The same templates could be used, but the grammatical
voice would be different. For instance, templates for when a driver accesses the reports directly
can be annotated in the active voice through the pre-processing module, but for the insurance
company it would be annotated with passive voice. Consequently, when given multiple templates
for verbalizing the message, say, drivingPeriod(distance, time), then the ranking module would
select the appropriate template given the context; e.g., when generating text for the driver, it may
generate “You drove 390 miles in 10 hours and 50 minutes during the last week” [12, p. 576] and
for the insurance company it would then be “390 miles were driven in 10 hours and 50 minutes
during the last week by X,” where X is the name of the driver.

The error detection module is introduced to satisfy the requirement for detecting inconsistencies
pertaining to template knowledge. To demonstrate this, consider the following Latvian template
taken from [39] for parsing and verbalizing text for the axiom Professor T Teacher: Visi profesori ir
(pasniedzéji | skolotaji), “All professors are lecturers/teachers” In the template, the words pasniedzéji
and skolotaji are specified to be synonyms. If one would create grammar-infused templates and use
invalid synonymy relations in the templates, then the error detection module would detect such
errors. Knowledge regarding the validity of such relations could be extracted from the Latvian
Wordnet.” The error detection module is conceptualized to be useful for all grammar rules that are
incorporated into templates, not just synonymy relations.

6 MAINTAINABILITY AND COMPARISON TO EXISTING WORK

In this article, we advance an a priori justification for maintainability. We are interested in the
absence/presence of the following features: support for economical resource use (componential re-
usability), well-defined template concepts and relationships between the concepts (analyzability),
and separation of surface realization tasks (modularity). We do not include the other two maintain-
ability characteristics of [13], namely, modifiability and testability, since they require a posteriori
justification and there is no implementation of the architecture that has been used over an extended
period. Henceforth, we use the symbol C to refer to our operationalization of Componential re-
usability, O to analyzability of the knowledge formalized in an Ontology, and S to modularization
of the Surface realization tasks.

Table 4 shows each architecture’s support of the maintainability features. We demonstrate them
with the isiZulu verbalizer [51]. Analysis of the verbalizer’s architecture (Arch. 7, Category AC3)
shows that it supports reusable grammar rules for pluralization and other rules can be added in
the same fashion (yes to C). However, the algorithms used to generate text encode the selection
of a specific template for each quantifier and their corresponding linearization rules. The verbal-
izer has a clear notion of what template concepts are allowed and how they relate to each other,
even though the constraints are not explicitly declared. Moreover, the concepts can be extended
when needed (e.g., [48]). Nonetheless, they are not formalized via an ontology (hence, no to O and
S). Capturing the verbalizer’s concepts and relations using existing resources is possible and an
ontology need not be created from scratch, since the Task ontology for CNL Templates (ToCT)
[67] already exists.

“https://wordnet.ailab.lv/.
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Table 4. Comparison of the New Architecture
to AC5 and AC3

Architecture id(s) Category |C O S
Proposed architecture | - e 0 o
0,1,3 AC1 ®e - O
2 AC1 ®e - O
4 AC2 e - e
5 AC2 e - e
7 AC3 o o o
8,6 AC3 o e o
9,10 AC4 e - o
[11 | AC5 - - -]
[12 | AC6 [0 @ o]

Abbreviations: C = Computational grammar rule(s) reuse, O =
Ontology formalised concepts and relationships, S = Separation of
surface realisation tasks. Legend: Green = supported, Black = not
supported, and Dash = not applicable.

Our architecture combines the strengths of categories AC1-6, as stated via our architecture re-
quirements, and supports the most maintainability features. It is the best option for NCB languages
since it supports the specified requirements and most of the maintainability requirements (our op-
erationalization of [13]’s maintainability characteristics to ensure that they are sensitive to the
needs of NCB languages). It is not necessarily the best choice for other languages, especially well-
resourced languages, since it enforces the use of templates. In cases where one wants to avoid the
use of templates, then architectures belonging to AC4/5/6 may be best. This is subject to availability
of a grammar engine (AC4) and the toleration of degradation in textual coherence and correctness
associated with probabilistic NLG models (AC5). If grammatical complexity is limited and hence
either template without rules suffices or the complexity can be managed by introducing a handful
of rules that are easy to manage, then AC6 may be appropriate. Given all that information, our
architecture may still be used for such languages as it has no prescript regarding structure induc-
tion. This is meant to tackle the challenge of template creation and maintenance. As such, one can
pursue data-driven techniques in the same vein as [54] for template creation.

As can be seen in Table 4, it is not possible to mix and match features from architectures in each
category to satisfy all the maintainability features. For instance, using AC1 as an example, one
cannot combine the best features of architectures 0, 1, 2, and 3 in order to satisfy C, O, and S.

Compared to other architecture categories, excluding our proposed architecture, categories
AC3/4/6 support the most features; hence, systems that abide by the architectures are somewhat
easy to maintain. Our architecture, unlike all other existing architectures, supports all the features
identified in Table 4 and this is primarily because none of the architectures support the use of
ontologies to capture template knowledge.

7 SIGNIFICANCE OF TEMPLATE ONTOLOGY

We will demonstrate the utility of the ontology for grammar-infused templates as a means of
facilitating detecting logical inconsistencies in templates, sharing, and comparison of templates cf.
ad hoc approaches. We will use the demonstrative soccer templates and slot fillers given below
and Sanby et al’s two systems to demonstrate these benefits.
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(a) Slot[player] Phrase[scored the third goall].

(b) Phrase[The goal at the 20th minute was] AltPhrasing(Phrase([not
offside]), Word([onsidel)).

(c) Phrase[The winning goal was the result of a header by] Slot[player].

(d) Key[playerl, Valuel[Aardvarkis]}

The templates above could be used to generate messages associated with the meaning repre-
sentation goalEvent(scorer, time, goalLineStatus, goalNumber) in some system. In such a scenario, the
ontology is used to declare the concepts to be used when creating a template (4 la schema), for in-
stance, to declare concepts such as Slot, Phrase, Value, and AltPhrasing. The ontology can also be
used to specify constraints, for instance, to specify that templates must have at least one slot, i.e.,
Template C > 1 hasPart.Slot. It is the responsibility of the NLG engineer to create the templates
such as (a), (b), and (c) together with the key and value pair (d) to be inserted in the templates. The
templates can then be serialized using any number of formats (e.g., RDF/XML) and stored in a file.

7.1 Inconsistencies

The benefit of using an ontology instead of an XML schema definition language (or similar lan-
guage) is automated reasoning. That is, the knowledge in the ontology (the TBox) can be combined
with the templates (encoded as instances in the ABox) to create a knowledge graph that then can
be sent to an automated reasoner (e.g., HermiT OWL Reasoner [38]). In the case of the soccer tem-
plates and their associated ontology, they can be loaded into the reasoner and checked if they are
consistent. If the ontology includes the axiom restricting the number of slots in a template, then
it will detect that template (b) is not a valid template, because it does not contain any slots. While
automated reasoning is not a novel concept in general, it is novel within surface realization.

7.2 Template Comparison

Use of an ontology also facilitates sharing and comparing templates. For instance, the two systems
found in [87] verbalize OWL’s disjoint classes axioms via an XML template and a Grammatical
Framework (GF) concrete grammar rule. The XML template is shown on the left and the GF
grammar rule is given on the right:

1 <Constraint type="Disjoint"> DisjointClasses x y = 1
2 <Text>'n</Text> {s=""'n " 2
3 <Object index="0"/> ++Xx.s 3
4 <Text>is nie 'n</Text> ++"is nie 'n" 4
5 <Object index="1"/> ++y.s 5
6 <Text>nie</Text> ++"nie" 6
7 </Constraint> 3 7

We can use a template ontology (e.g., Mahlaza and Keet’s ToCT [67]) to show that the two
templates given above are equivalent even though they use different methods for serialization.
To demonstrate this equivalence, let us first explain the elements of the two templates; the XML
template’s Text object and the strings in the GF grammar rule are used to capture fixed texts only.
The difference (and similarities) between the two templates can be seen in line 4 of both listings
when they capture the fixed string is nie 'n, “is not.” These portions from templates can be captured
via ToCT’s Phrase concept. The XML template’s Object and GF’s variables x and y are used as place-
holders for different values that can be used. For instance, line 3 in both listings marks the position
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Fig. 4. Representation of the concepts used in the GF and XML templates and how they relate to each other.

that will be occupied by the name associated with first the class that participates in the Disjoint
axiom. If the input is the axiom Disjoint(Animal Computer), then the position might be occupied
by the noun “animal.”

Analysis of the concepts used in the two types of templates shows that they have the same
meaning and function, as demonstrated in Figure 4. Specifically, the XML’s Object and GF’s vari-
ables both refer to ToCT’s Slot concept. The Text and GF’s string literals are used to refer to ToCT’s
Unimorphic word and a special case of the Phrase concept.

In this example, when bells and whistles are removed, we are only left with fixed phrases and
slots that are the same for both types of verbalizers. Thus, they can share the template, map it to
one’s preferred serialization, and avoid resource duplication. These capabilities are not possible in
the other NLG/surface realizer architectures because they either do not use templates or use ad
hoc template specifications.

8 REDESIGNING A TEXT GENERATOR

Since the proposed architecture is designed to be most!'? beneficial for NCB languages, we selected
the most recent paper describing an NLG system that generates such a language and redesigned
the architecture of its surface realizer. To the best of our knowledge, a system that fits this criterion
is OWLSIZ [66]. It is built to generate questions from an OWL ontology.

The original system parses an ontology and feeds the supported axioms to a realizer that is
responsible for structure selection, lexicalization, and linearization. The redesigned OWLSIZ uses
the architecture shown in Figure 5.

After reading in the supported axioms, it selects the appropriate template(s) and chooses lexical
items for the concepts found in the axiom. For instance, when generating a question from the
axiom dog T animal, OWLSIZ’s template 1 is chosen and the noun classes (NCs) of injanco,
“dog,” and isilwanenc7, “animal,” are resolved. The template is loaded from a file and, together
with its associated slot fillers, sent to the surface realizer to produce Ingabe yonke inja iyisilwane?,
“Is every dog an animal?”

10F g, its reliance on templates that are used with grammar are a great benefit for low-resourced languages with complex
grammar.
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Fig. 5. Updated architecture used by OWLSIZ.

We developed an ontology for template specification that is used for the implementation-
independent specification of the templates, thus enjoying the advantages of consistency check-
ing. The redesigned verbalizer’s error detection module was used to check the consistency of the
templates and no inconsistencies were found. The updated realizer is not responsible for tacti-
cal decisions. Consequently, the realizer is reusable in other systems because system/area-specific
tasks such as template selection are no longer its responsibility. Other existing isiZulu text gener-
ators (e.g., [48, 50]) could use the same realizer, provided their templates rely on the ontology. The
redesigned architecture also ensures a separation of realization tasks cf. the original version, and
therefore a change in one task can only introduce minimal disruption to other components. The
code of the forked redesign is available as supplementary material.

9 CONCLUSIONS AND FUTURE WORK

We have presented a novel surface realizer architecture that moves tactical decisions out of the re-
alizer; relies on templates (possibly grammar-infused) for encoding sentential structure; enforces
the use of an ontology to formalize the templates’ concepts, relations, and associated constraints;
and supports candidate ranking via a possibly data-driven module. Unlike existing architectures,
especially those used by NCB language generation systems, our architecture is designed to result
in surface realizers that are easily maintainable since it supports our operationalization of com-
ponential re-usability, analyzability, and modularity. Specifically, by re-usability we refer to the
architecture’s support for economical resource use of grammar rules, by analyzability we refer to
an architecture that relies on well-defined template concepts and relationships between the con-
cepts, and by modularity we refer to its separation of the considered surface realization tasks. In
summary, this article has the following findings when compared to existing work:

(1) The architecture supports the most features of a maintainable software system.

(2) It supports the detection of inconsistencies in the templates and allows integration across
different template types.

(3) An existing tool’s architecture can easily be updated to abide by the new architecture.

Our proposed architecture champions the use of an ontology for specifying the templates,
for theoretically grounded reasons. However, some NLG engineers may not be familiar with
ontologies, and this may negatively affect the adoption of our architecture. We plan to conduct
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an empirical study to compare the ease and speed at which NLG engineers of different experience
levels can specify templates using an ontology instead of using a framework such as Grammatical
Framework or SimpleNLG for the same task. Future work is thus focused on ease of creation for
engineers with different levels of expertise to increase chances of adoption, dovetailing with the
currently presented work that is focused on maintainability.
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