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ABSTRACT:
The one-up one-down adaptive (staircase or up-down) procedure is often used to estimate the speech recognition

threshold (SRT) in speech-in-noise testing. This article provides a brief historical overview of the one-up one-down

procedure in psychophysics, discussing the groundbreaking early work that is still relevant to clinical audiology and

scientific research. Next, this article focuses on two aspects of the one-up one-down adaptive procedure: first, the

standard error of measurement (SEM) and, second, the fluctuations in the track [i.e., the standard deviation of the

signal-to-noise ratios of the stimuli within the track (SDtrack)]. Simulations of ideal and non-ideal listeners and exper-

imental data are used to determine and evaluate different relationships between the parameters slope of the speech

recognition function, SRT, SEM, and SDtrack. Hearing loss and non-ideal behavior (inattentiveness, fatigue, and giv-

ing up when the task becomes too difficult) slightly increase the average value of SDtrack. SDtrack, however, poorly

discriminates between reliable and unreliable SRT estimates. VC 2022 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1121/10.0014898

(Received 23 March 2022; revised 13 September 2022; accepted 20 September 2022; published online 25 October 2022)
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I. INTRODUCTION

The one-up one-down adaptive (staircase or up-down)

procedure is probably the most common method to estimate

the speech recognition threshold (SRT) in speech-in-noise

testing. The adaptive procedure is used to provide an esti-

mate of the true SRT. The random error in the estimate will

be eliminated if the test is performed an infinite number of

times or if the number of presentations in the test is infinite,

but a systematic error (i.e., bias) can remain. The true SRT

is defined as the signal-to-noise ratio (SNR) where a listener

recognizes 50% of the speech items correctly. It corresponds

to one point on the speech recognition function that relates

the recognition probability to SNR. The speech recognition

function is, in general, an S-shaped function that can be

described by the SRT and a slope parameter and by two

additional parameters if the lower and upper asymptote devi-

ate from 0 and 1, respectively. The one-up one-down adaptive

procedure is implemented in many standard speech-in-noise

tests (e.g., Plomp and Mimpen, 1979; Nilsson et al., 1994;

Cameron and Dillon, 2007; Smits et al., 2013).

As for all outcome measures, an essential requirement of

the SRT is that it be valid and reliable (Mokkink et al.,
2010). The standard error of measurement (SEM, or measure-

ment error) is an agreement parameter and quantifies how

close the results for repeated measurements in one listener

are. The SEM is needed to determine whether two SRTs are

significantly different or whether an SRT is significantly dif-

ferent from a certain value. When using the one-up one-down

adaptive procedure to estimate the SRT for a listener, the

SEM of this estimate depends on several factors. First, a

steeper slope of the speech recognition function yields a

more precise SRT estimate, thus, a smaller SEM, than a shal-

low slope (Theunissen et al., 2009). Ensuring a steep speech

recognition function is one of the most important aspects of

the development of speech-in-noise tests. Second, several

parameters of the measurement procedure, for example, the

step size, number of presentations, and starting level, affect

the SEM (Garc�ıa-P�erez, 1998; Smits and Houtgast, 2006).
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Third, listener factors play a role. The SEM will generally be

larger in listeners with hearing loss than in normal-hearing

listeners (Smits and Festen, 2011). In addition, inattentive-

ness or other non-ideal behavior can negatively affect the

SEM. The present paper focuses on the first and third factor,

where we will pay specific attention to the information con-

tained in the fluctuations in the adaptive track and how this

relates to the SEM.

The SEM can be estimated from the standard deviation

(SD) of the values of repeated measurements of one listener.

When two measurements for each of n listeners are available

(e.g., SRTtest and SRTretest), the average SEM for this group

of listeners can be determined from the distribution of the

differences (diff ¼ SRTtest � SRTretest) between test and

retest values (Plomp and Mimpen, 1979; Smits and

Houtgast, 2005; de Vet et al., 2006),

SEM ¼ SD diffð Þffiffiffi
2
p : (1)

Note that a systematic error is not included in this calcula-

tion. Thus, for example, a systematic learning effect (i.e.,

equal learning effect for each listener) has no effect on the

SEM determined by Eq. (1). When including the systematic

difference in the agreement parameter SEM, the following

equation can be used:

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

diff 2
i

2 � n

s
: (2)

A similar and related difference exists between the intraclass

correlation coefficients (ICCs) ICCagreement and

ICCconsistency (de Vet et al., 2006). Smits et al. (2004) sug-

gested a procedure to estimate the SEM from single SRT

measurements when no test-retest data are available. Their

procedure can be considered as a modified split-half method.

The SEM can be used to generate confidence intervals

around measured SRTs. In general, the SEM is determined

from test and retest measurements in a (large) group of lis-

teners. It means that this SEM is accurate as an average

value for a population, but it may fail to reflect the variabil-

ity of its value. For example, it has been demonstrated that

the SEM is not constant for speech-in-noise measurements

but increases with SRT (Smits and Festen, 2011).

The use of a specific and reliable SEM, based on an

individual measurement, would be preferable to account for

variability in the SEM due to hearing loss or unreliable

responses from the listener. This information is very desir-

able in clinical settings where repeating measurements is

less common than in scientific studies; but also in scientific

studies, it would be helpful to have objective criteria to

exclude unreliable SRT estimates. To the best of our knowl-

edge, Bode and Carhart (1973) were the first to suggest

using the standard error (SE) of the variation in presentation

levels as an estimate of the precision of a single test.

Unfortunately, they did not provide evidence for their sug-

gestion, which has been widely used by clinicians and

researchers without the necessary validation (e.g., Koole

et al., 2016; Jacobi et al., 2017; Sheikh Rashid et al., 2017;

Denys et al., 2018). Its popularity is probably based on the

intuitive belief that SRTs based on tracks with small fluctua-

tions are more reliable than tracks with larger fluctuations.

Here, fluctuations refer to the range of SNRs of the presenta-

tions. The fluctuations in a track can be quantified by the SD

of the SNRs of the stimuli within the track (called SDtrack in

the current paper), and the assumption follows that SDtrack is

related to the reliability of the SRT estimate calculated from

that specific track. It has typically been assumed that SRT

estimates from highly fluctuating tracks are more likely to

deviate from the true SRT or that the SEMs of these SRT

estimates are larger than those from tracks with small fluctu-

ation. The use of SDtrack as a reliability measure is loosely

based on the notion that the SEM is related to the SD of

independent repeated measurements. However, SDtrack is

essentially different because the SNRs within a track are

highly dependent; thus, the use of SDtrack as a reliability

measure should be examined.

In this paper, a description and definitions of the one-up

one-down procedure will be presented, followed by a brief

historical overview. Without striving for completeness, our

goal is to trace the seminal early work that still has rele-

vance to the clinical and research endeavors in speech-in-

noise testing. In the remainder of this paper, we will focus

on the two abovementioned aspects of the one-up one-down

adaptive procedure: (1) the relationship between slope of the

speech recognition function and SEM and (2) the interpreta-

tion and relevance of the SD of the SNRs of the stimuli

within the track, SDtrack, using simulations and experimental

data from listeners.

A. The one-up one-down adaptive procedure

Essentially, in the adaptive procedure, the SNR of each

presentation is based on the correctness of the previous

response. That is, if the presentation is recognized correctly,

the next presentation is presented at a lower SNR, and if the

response is incorrect, the next presentation is presented at a

higher SNR. The levels of the presentations follow a track.

Figure 1 provides an example of a track and overview of the

definitions used to describe the procedure. Three important

parts of the track can be identified: the initial presentation,

FIG. 1. (Color online) Example of an adaptive track and the definitions

used to describe the one-up one-down adaptive procedure.
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the hunting phase, and the measurement phase. First, the

starting level of the initial presentation must be selected. A

level above the expected SRT is commonly chosen. Then

we have the next part, aptly referred to as the hunting phase

in the manual of the speech-in-noise test of the UK Biobank

(2012) study. The main aim is to get close to the true SRT in

this part. It consists of a fixed number of presentations, or,

for example, it ends after the first incorrect response (i.e.,

the first reversal). A secondary aim can be to familiarize the

listener with the task. The last part is the actual measure-

ment phase. The SRT estimate is based on presentation lev-

els in this part. The difference in SNR between two

consecutive presentations is the step size, d, of the proce-

dure. The step size is often constant during the task, and the

SRT is determined by averaging the SNRs of the presented

stimuli, or the SNRs of the reversals, while omitting the ini-

tial presentation and the presentations in the hunting phase.

Sometimes different step sizes are used in this phase.

Advantages of the method compared to, for example,

maximum-likelihood methods are the insensitivity to lapses

(unforced errors due to inattention or accidentally entering

the wrong response) (Smits and Houtgast, 2006), the lack of

necessity to know the exact shape of the speech recognition

function, and the small effect of the choice of step size on

the SRT estimate.

B. Brief historical overview on the staircase
procedure in speech-in-noise testing

The up-down method does not originate from research

of speech-in-noise testing or psychophysics. Dixon and

Mood (1948) introduced the method for obtaining sensitivity

data. They discuss—as an example—the method for an

experiment in which the sensitivity of explosives to shocks

is tested. The first explosive is tested by dropping a weight

from a certain height. If it explodes, the next weight is

dropped from a lower height; otherwise, it will be dropped

from a higher height. Dixon and Mood (1948) provided ana-

lytical, approximate maximum likelihood, estimates for the

mean and SD of the threshold based on test data. Analysis

required that the threshold be normally distributed, the sam-

ple size be large, and the interval between testing levels (the

step size) be approximately equal to the SD of the threshold.

The method became increasingly popular in different areas

like the estimation of the median lethal dose (LD50), fatigue

testing, and psychophysics. Brownlee et al. (1953) proposed

a much easier method to determine the mean. They sug-

gested using the arithmetic mean of the n presentations

used. They also suggested the inclusion of the (nþ 1)st pre-

sentation, which is not presented (a virtual presentation, the

level of which is based on the correctness of the preceding

presentation) in the calculation. The procedure gained popu-

larity in audiological research, starting with the publication

from Levitt and Rabiner (1967) and continuing with Levitt’s

classic paper on the transformed up-down method (Levitt,

1971). The method to estimate the mean, proposed by Levitt

(1971) and Wetherill and Levitt (1965), is different from the

estimators of Dixon and Mood (1948) and Brownlee et al.

(1953), as they suggest averaging the peaks and valleys

(reversals) of the track. This procedure is slightly more pre-

cise than that of Brownlee et al. (1953), in which all presen-

tation levels are averaged (Wetherill et al., 1966). It was

proven that the up-down procedure is highly efficient, but

only when the initial presentation is within a few steps of

the true mean. If the first stimulus is too high or too low, the

responses to the stimuli will be all correct or incorrect until

the track reaches the region of the true mean. Including

these responses in the estimator will give a poor estimate of

the true mean. Brownlee et al. (1953) suggested omitting

the initial run of responses of the same sign in the calcula-

tion of the estimate. That is, the measurement phase starts

with the first reversal.

Whereas in the earlier research (e.g., Dixon and Mood,

1948), the up-down method was presented as a way to cal-

culate the mean and SD of a variate analytically, its use in

the speech-in-noise literature is mainly limited to the deter-

mination of the mean (i.e., the SRT). The SD of the variate

in the context of speech-in-noise testing is, however, an

important parameter because it describes the slope of the

speech recognition function.

To determine and evaluate various relationships

between parameters (track length, slope of the speech recog-

nition function, SRT, SEM and SDtrack), both simulations

and experimental data were used in the present study.

II. METHODS

We simulated ideal listeners and captured inattentive-

ness and other human factors in simulated non-ideal listen-

ers. Additionally, we analyzed experimental data to verify

some of the results from simulations. In the simulations, a

brute force calculation model was used for relatively short

track lengths, whereas for longer track lengths, Monte Carlo

simulations were used. Three datasets from previously pub-

lished studies (Smits and Houtgast, 2005; Smits et al., 2013;

Smits et al., 2016) were reanalyzed.

A. Simulations

The brute force calculation model of Smits and

Houtgast (2006) was used to perform exact calculations for

speech-in-noise tests with 13 presentations per track. We

decided to use this number of presentations because the sim-

ple adaptive up-down method with a step size of 2 dB and

using 13 presentations has been very common in speech-in-

noise tests since it was first proposed by Plomp and Mimpen

(1979). Including the virtual 14th presentation and omitting

the first four presentations (the initial presentation and the

presentations in the hunting phase) yields a total of ten pre-

sentations in the measurement phase (n¼ 10). Brute force

means that systematically all possible tracks are investi-

gated, and the SRT, SDtrack, and associated probability for

each track are calculated. Then the weighted average SRT,

SEM, and SDtrack can be calculated. The advantage of this

method is that the outcomes are error-free; the disadvantage

is the exponential increase in number of tracks with track

J. Acoust. Soc. Am. 152 (4), October 2022 Smits et al. 2359

https://doi.org/10.1121/10.0014898

 21 August 2023 07:21:07

https://doi.org/10.1121/10.0014898


length, which makes the method less suitable for longer

track length due to the computational impact of the

calculations.

For longer tracks (i.e., more than 13 presentations per

track) Monte Carlo simulations were used with 10 000 runs for

each set of parameters. Tests with 23 presentations per track

were simulated except when exploring the effect of track length.

The SRT estimate was calculated by averaging the SNRs of

presentation 5 to the virtual 24th presentation (n¼ 20).

The speech recognition function, U(SNR), can be any

arbitrary S-shaped function, but traditionally a cumulative

normal distribution is used. With a lower asymptote (i.e.,

the guess rate), c, and upper asymptote 1 � k, defined by the

lapse rate (or miss rate), k, this function (Green, 1995) is

described by

U SNRð Þ ¼ cþ 1� c� kð Þ

� 1

r
ffiffiffiffiffiffi
2p
p

ðSNR

�1
e� f�SRTð Þ2=2r2

df: (3)

When c ¼ k ¼ 0, the slope of the function is maximal at

SNR ¼ SRT, and this slope value, S50, expressed in %/dB,

can be derived from r by

S50 ¼
100

r
ffiffiffiffiffiffi
2p
p : (4)

See, for example, Smits and Houtgast (2006) for further

details and the effect of guess rate and lapse rate on slope

values.

We simulated ideal normal-hearing listeners, ideal lis-

teners with hearing loss, and non-ideal listeners. Although it

seems unrealistic to assume that human listeners show very

specific and isolated non-ideal behavior, we decided to use

such an approach in our simulations. This allows us first to

separate the effects of different forms of non-ideal behavior.

Second, we can ascertain if, given a certain SRT and value

of SDtrack, non-ideal behavior could potentially be identi-

fied. Note that the downside of this approach is that, for

example, it is likely more realistic that fatigued listeners

will also experience lapses in addition to the steady shift in

SRT. Figure 2 describes how different groups of listeners

were modeled. The true SRT of the normal-hearing listeners

was �10 dB SNR. The parameters for the other groups were

chosen to yield average SRTs of �7 dB SNR for each group.

We modeled the speech recognition function with a cumula-

tive normal distribution [Eq. (3)]. To avoid relevant effects

of the starting SNR on the SRT estimate (Smits and

Houtgast, 2006), a starting SNR equal to the SRT of

normal-hearing listeners was selected. This value is near to

the SRT of all listeners given the four presentations in the

hunting phase. Speech recognition functions for hearing-

impaired listeners are shallower than for normal-hearing lis-

teners. This can be understood when one realizes that, for

hearing-impaired listeners, part of the signal is inaudible

and/or contains less useful speech information because of

the suprathreshold deficits these listeners may have. Then a

1-dB change in SNR will result in a smaller change in avail-

able speech information than for normal-hearing listeners.

Therefore, the slope of the hearing-impaired speech recogni-

tion function can be predicted from the slope of the normal-

hearing speech recognition function (Smits and Festen,

2011). The off-route listeners represent listeners who, for

example, do not get close to the SRT before the presenta-

tions are given in the measurement phase (i.e., during the

hunting phase) or do not respond correctly at all during a

successive series of presentations (high lapse rate for some

period). If the starting SNR is too far from the SRT or the

listener unintentionally responds incorrectly to a few presen-

tations, the SNRs of the following presentations are rela-

tively favorable, and a sequence of correct responses may

follow. This could result in a bias in the SRT estimate

(Smits and Houtgast, 2006).

B. Experimental data

The dataset from the Dutch National Hearing test con-

tains 39 968 SRTs. These are data from callers to the Dutch

National Hearing Test. This test measured the SRT by tele-

phone using digit triplets as speech material. Series of 23

FIG. 2. Summary of how the different groups of listeners are modeled.

Simulated listeners are ideal normal-hearing listeners, ideal listeners with

hearing loss, and non-ideal listeners.
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triplets were used per SRT estimate (n¼ 20). Details have

been reported (Smits and Houtgast, 2005, 2006).

Smits et al. (2013) describe the development of the

Dutch Digits-In-Noise (DIN) test. In one of the experiments,

they assessed a possible learning effect in the DIN test by

measuring 25 SRTs for each of ten normal-hearing partici-

pants. When omitting the first SRT, no further learning

effects were observed in 24 subsequent SRT measurements.

III. RESULTS

A. The SEM

1. Relationship between slope of the speech
recognition function and SEM

To the best of our knowledge, there is no mathemati-

cally derived equation that describes the relationship

between SEM, the parameters of the up-down procedure,

and the speech recognition function. The exception is an up-

down procedure where the speech recognition function can

be described by a cumulative normal distribution with slope,

S50 (i.e., the slope at 50% correct). Then for large values of

the number of presentations, n, the dependence of SEM on

S50 equals (Brownlee et al., 1953; Wetherill, 1963)

SEM ¼ G

S50

ffiffiffiffiffiffiffi
n�p
p ; (5)

with G¼ 1 when the step size, d, is related to S50 by

d ¼ 1

S50

ffiffiffiffiffiffi
2p
p : (6)

This step size was suggested by Dixon and Mood (1948) for

their procedure.

Thus, the SEM is inversely proportional to the slope of

the speech recognition function and the square root of the

number of presentations. It is interesting to compare this

value to the theoretically minimum SEM (Wetherill, 1963;

Taylor, 1971),

SEMmin ¼
1

2 � S50

ffiffiffi
n
p : (7)

Thus, SEM � 1.13 � SEMmin for this step size, which illus-

trates how precise the one-up one-down adaptive procedure is.

In practice, often the chosen step size does not follow

Eq. (6) but is smaller. The recommended step size for the

one-up one-down adaptive procedure is related to the (often

unknown) slope of the speech recognition function and is

between 0.5 and 1 times 1= S50

ffiffiffiffiffiffi
2p
p� �

(Wetherill, 1963).

When the step size does not exactly fulfill Eq. (6), then G in

Eq. (5) is not exactly equal to 1 (Dixon and Mood, 1948;

Wetherill, 1963). We ran Monte Carlo simulations with

varying step sizes and numbers of presentations to deter-

mine the value of G. Figure 3 shows G as a function of

d� S50 for three different numbers of presentations per test.

G clearly depends on d � S50, but most values are between

0.9 and 1.1. Thus, it can be concluded that the SEM is

inversely proportional to the square root of the number of

stimuli in the track and the slope of the speech recognition

function. The exact value can be calculated with Eq. (5)

when knowing G, the value of which depends on the product

of step size and slope of the speech recognition function.

2. Use of a modified split-half method to estimate
the SEM

Smits et al. (2004) suggested a procedure to estimate

the SEM from a single SRT measurement. Their procedure

can be considered as a modified split-half method. The pre-

sentations from the measurement phase are split in two.

Then the first and second half are used as independent SRT

estimates. However, these SRT estimates are not fully inde-

pendent, and the calculated SEM is smaller than the true

SEM. To make this clear: If the SRT estimate based on the

first half is higher than the true SRT, then the probability

that the SRT estimate based on the second half is also higher

than the true SRT is over 50%. The main reason is that it is

likely that the starting level of the second half will be above

the true SRT, resulting in a bias in the SRT estimate. Thus,

it must be concluded that the suggested procedure systemati-

cally underestimates the true SEM, and test-retest measure-

ments are needed to determine the exact value of the SEM.

Note that this is a “small sample effect,” which diminishes

with the number of presentations. We ran Monte Carlo sim-

ulations, and the results show that for a set of realistic

parameters (24 presentations of which 4 are in the hunting

phase, S50 ¼ 14%/dB and step size¼ 2 dB), the true SEM is

approximately 12% higher than the SEM calculated from

the modified split-half method (0.84 vs 0.75 dB). The exact

factor depends on the parameters used; thus, it is not possi-

ble to estimate SEM in an unbiased manner using any single

correction factor.

FIG. 3. (Color online) The value of G as a function of d � S50 for the one-

up one-down adaptive procedures with n¼ 100 (blue circles), n¼ 20 (red

squares), and n¼ 10 (black triangles). G represents the correction factor

needed to calculate SEM from Eq. (5) when the step size and slope of the

speech recognition function do not fulfill Eq. (6).
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3. Use of SDtrack to estimate the SEM

When a measurement is repeated n times in one listener,

and those measurements are independent of each other, the

SEM can be estimated as SD/
ffiffiffi
n
p

. Cameron and Dillon

(2007) noted that the individual presentation levels of an

adaptive track are not independent but proposed (and used)

SDtrack to estimate the SEM with a multiplier of 2.0 to allow

for the lack of independence. Thus, SEM¼ 2�SDtrack/
ffiffiffi
n
p

.

The choice of multiplier was based on Monte Carlo simula-

tions performed with a slope of the speech recognition func-

tion of 15%/dB and a step size of 2 dB. To examine the

accuracy of this method of estimating SEM in the standard

one-up, one-down procedure, we carried out Monte Carlo

simulations with the slope ranging from 5%/dB to 25%/dB,

n¼ 20, and a step size of 2 dB. Figure 4 shows that, when

the slope is 15%/dB, the average value of the estimated

SEM (0.84 dB) is, not surprisingly, very close to the true

value of 0.85 dB, obtained by calculating the SD of the

SRTs of each run. Note that for this slope value, 2�SDtrack

equals 1/(S50�
ffiffiffi
p
p

) from Eq. (5); both values are approxi-

mately 3.76. As would be expected, lower true slopes (i.e.,

S50) result, on average, in a larger estimated SEM. However,

for such slopes, which are precisely those that result in

poorer measurement accuracy, the procedure systematically

underestimates the SEM. The reason that SEM values calcu-

lated from SDtrack using the procedure from Cameron and

Dillon (2007) deviate from the true SEM is that they pro-

pose a constant factor of 2 in their calculation. Monte Carlo

simulations showed that this factor should vary with slope

(Keidser et al., 2013), but they choose a constant factor

because the underlying slope is unknown. Further, even

when the slope is around the expected value of 15%/dB, the

SD of the estimated SEM, represented by the error bars in

Fig. 4, is relatively large. The dashed red line in Fig. 4 repre-

sents Eq. (5) with G¼ 1. The true SEM deviates from this

line because the step size is 2 dB for all slope values. Then

G should vary with S50 to compensate for this (see Fig. 3).

B. The (near) ideal listener: Fluctuations in the track,
SDtrack

1. Relationship between SDtrack and SRT estimates

Many people feel that a perfect staircase (i.e., alternat-

ing correct and incorrect response) gives a better estimate of

the true SRT than a strongly fluctuating track, even in an

ideal listener. They might consider a retest for strongly fluc-

tuating tracks and accept results from less fluctuating tracks.

In this section, we evaluate whether high values of SDtrack

are related to either poorer SRTs on average or less accurate

estimates of SRT. The evaluation is in the context of all lis-

teners having identical (for the simulation) or very similar

(for experimental data) speech recognition function slopes.

a. Simulations. The brute force calculation model was

used to calculate the distribution of SDtrack values for

repeated measurements in an ideal listener. Typical parame-

ters for the speech recognition function (cumulative normal

distribution with a slope of 14%/dB), step size of 2 dB, and

a true SRT of �10 dB SNR were used in the simulations.

These parameters were fixed, thus, simulating an ideal lis-

tener or homogeneous group of listeners. The SRT estimates

were ranked according to the value of SDtrack. Then ten per-

centile groups were created such that the sum of the proba-

bilities of all tracks in each group equaled 0.1. Next, the

weighted average SRT, the SD of the SRTs (i.e., the SEM),

and the weighted average SDtrack values were calculated for

each group. The results are shown in Fig. 5(A). They clearly

demonstrate that there is no relationship between SDtrack

and the average SRT or the SD of the SRTs. The average

SRT and variance in SRT for the “perfect” tracks (i.e., alter-

nating between correct and incorrect responses; the low

number groups) are equal to these values for the highly fluc-

tuating tracks (the high number groups). Thus, the tracks

with a larger SDtrack do not provide less accurate SRT esti-

mates than the tracks with a smaller SDtrack, and, therefore,

it can be concluded that SDtrack cannot be used as a measure

of inaccurate SRT estimates, at least when all estimates

come from tracks that were formed using the same underly-

ing speech recognition function.

b. Experimental data. Smits et al. (2013) reported no

significant differences between 24 subsequent SRT mea-

surements in ten listeners. We calculated SDtrack for each

SRT estimate and ranked the 24 SRTs for each listener

according to SDtrack. Figure 5(B) shows the mean and SD of

the SRTs across listeners for each rank number. Also shown

are the mean values of SDtrack for each rank number. The

results show a clear increase in SDtrack, but the mean SRTs

are all around the average value of �10.0 dB SNR. Linear

regression analysis was used to assess the relationship

between rank number and mean SRT in greater detail. The

slope of the regression line did not significantly differ from

FIG. 4. (Color online) True SEM and estimated SEM vs the slope of the

underlying speech recognition function. Black circles show the mean, and

error bars the SD, of the SEM calculated using 2�SDtrack/�n, where n is the

number of presentations. The red circles show the true SEM, calculated as

the SD of the SRTs obtained from each run. The dashed red line represents

the calculated SEM using Eq. (5) with G¼ 1.
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0 (b ¼ �0.365, p¼ 0.08). Analyses of a different dataset

(Smits et al., 2016) confirm this finding (see supplementary

material1).

2. Relationship between SDtrack and slope
of the speech recognition function

The probability that SNRs of the presentations within a

track deviate from the true SRT is higher for shallow speech

recognition functions than for steep speech recognition func-

tions. This implies that the average SDtrack will be higher for

shallower speech recognition functions. Consequently, misin-

terpretation of highly fluctuating tracks can easily happen.

a. Simulations. The brute force calculation model was

used to determine the relationship between SDtrack and

slope, S50, of the speech recognition function for the adap-

tive procedure with 13 presentations (n¼ 10) and a step size

of 2 dB. The relationship was also determined for tracks

with 23 presentations (n¼ 20) with Monte Carlo simula-

tions. Both for the brute force method and the Monte Carlo

simulations, the slope value, S50, was systematically

changed between 1 and 25%/dB in steps of 1%/dB. The

results are shown in Fig. 6(A), and they demonstrate the

non-linear relationship between SDtrack and S50.

b. Experimental data. Smits and Houtgast (2006)

explored the effect of SRT on the slope of the speech recog-

nition function for a set of almost 40 000 SRTs. Groups

were created for a grid of rounded SRTs and age (6 SRT

groups� 8 age groups). Average speech recognition func-

tions were constructed for each group based on approxi-

mately 15 000 presentations per group. It was concluded

that the slope of the speech recognition function decreases

with increasing SRT, independent of age. We calculated the

average SDtrack for each group. Figure 6(B) shows the slope

of the speech recognition against SDtrack. Each color repre-

sents groups with equal SRTs. It demonstrates that listeners

with poorer SRTs have shallower speech recognition func-

tions and higher values for SDtrack. This result is as expected

because the slope of the speech recognition function is

related to the SRT, with shallower slopes for poorer SRTs

(Smits and Festen, 2011). Note that, because the data were

corrected for interindividual differences in SRT, the calcu-

lated slope values are greater than the true slope values

(Smits and Houtgast, 2006). The experimental data confirm

FIG. 5. (Color online) (A) Results from brute force calculations. Shown are mean and SD of SRT estimates (lower panel) and mean SDtrack (upper panel)

for groups based on SDtrack values. (B) Results from 24 repeated measurements in ten normal-hearing listeners. For each listener, SRTs were ranked accord-

ing to the SDtrack. In black, the mean and SD of SRT estimates for each of these groups are ranked from lowest SDtrack to highest SDtrack. In red is shown the

mean value of SDtrack for each group.

FIG. 6. (Color online) Relationship between the slope of the speech recog-

nition function and SDtrack. (A) Results based on simulations for 13 and 23

presentations and a step size of 2 dB. (B) Results from experimental data.

Each circle represents data from a group of listeners with similar age and

rounded SRT.
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the conclusion from the simulations that, on average, SDtrack

is a measure of the slope of the speech recognition.

C. Non-ideal listeners: The effect of unstable
or unreliable responses

The simulations in Sec. III B for (near) ideal listeners

showed that fluctuations in the adaptive track, represented by

SDtrack, are of no value to determine whether an SRT estimate

is likely to be near the true SRT, when all SDtrack values orig-

inate from the same speech recognition function. The SRT

estimates from highly fluctuating tracks were as reliable as

SRT estimates from little fluctuating tracks. The experimental

data confirmed these findings for several studies with adult

participants. However, it cannot be ruled out that the results

are different for special populations like young children,

where, for example, procedural learning, attention, task diffi-

culty, and the presence or absence of an experimenter may

play a larger role. We therefore identified several “groups of

listeners” that represent a typical non-ideal behavior, modeled

this behavior, and used Monte Carlo simulations to explore

the effect on the SRT and SDtrack. The results were compared

to Monte Carlo simulations for ideal listeners with normal

hearing or hearing loss. The model parameters for each group

were chosen to ensure that the mean SRT for the group was

3 dB poorer than that of the normal-hearing group (see Sec.

II A and Fig. 2 for details).

1. Simulations

The panels in Fig. 7(A) show the distributions of SRTs

and SDtrack for the different groups. For clarity, only 200

datapoints are shown in each panel, and a small jitter

(between 60.1 dB) was applied to avoid too much overlap

of datapoints. The gray areas represent the mean 6 2SD for

the normal-hearing listeners’ SRTs, thus, covering 95% of

these listeners. The mean SRTs for the hearing-impaired lis-

teners and the other groups of listeners are all approximately

�7 dB SNR (ranging from �7.1 dB SNR for the hearing-

impaired listeners to �6.8 dB SNR for the off-route listen-

ers). The vertical dashed line represents a cutoff value for

SDtrack of 3.1 dB. This is a somewhat arbitrarily selected

value, but it means that approximately 5% of the SRTs of

the hearing-impaired listeners are incorrectly classified as

unreliable. Note that the mean of these “unreliable” SRTs

equals �7.1 dB SNR as well. The panels representing results

from normal-hearing listeners with unstable or unreliable

responses (upper four panels) show that the effect on SDtrack

is relatively small except for the off-route listeners (top

panel). Most of these listeners have elevated SRTs but

SDtrack values below the cutoff value. This is quantified in

Fig. 7(B), which shows the percentage of SRT estimates that

would pass a certain cutoff value for SDtrack (i.e., the pass

rate). Ideally, the pass rate would be 100% for the ideal

normal-hearing and hearing-impaired listeners (lower two

panels) and 0% for the non-ideal listeners (upper four pan-

els). The panels in Fig. 7(B) clearly show that no reasonable

compromise is available between accepting reliable SRT

estimates and rejecting unreliable SRT estimates. The only

exceptions are the off-route listeners, who can be identified

by using a cutoff SDtrack of approximately 3.5 dB for this

track length, slope of the speech recognition function, and

step size.

FIG. 7. (Color online) Results from different simulated listeners. The top

four rows represent non-ideal listeners, the fifth row represents ideal

hearing-impaired listeners, and the bottom row represents ideal normal-

hearing listeners. The parameters were chosen such that the average SRT

for normal-hearing listeners equals �10 dB SNR, and that for the other

groups of listeners is �7 dB SNR. (A) SRT against SDtrack. Only 200 data-

points from 10 000 simulations are shown per panel. A small amount of jit-

ter (between 60.1 dB) was applied to the datapoints to avoid too much

overlap. The gray areas represent the mean 6 2SD for the normal-hearing

listeners. (B) Percentage of SRT estimates that would pass a certain cutoff

value for SDtrack (i.e., the pass rate). Ideally, the pass rate would be 100%

for the ideal normal-hearing and hearing-impaired listeners (lower two pan-

els) and 0% for the non-ideal listeners (upper four panels).
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IV. DISCUSSION

The simple one-up one-down adaptive procedure has

been popular in psychophysical research for many decades.

It is probably the most widely used procedure in both tone

and speech-in-noise testing. The elegance of the procedure

lies in the simplicity of test administration and calculation

of the threshold; no assumptions have to be made about the

underlying speech recognition function, except that it

increases monotonically.

A. Aspects of the SEM

The SEM is inversely proportional to both the slope of

the speech recognition function and the square root of the

number of presentations as shown in Eq. (5). It emphasizes

the importance of a steep speech recognition function for

the stimuli used in a speech-in-noise test. A prerequisite for

this is that the recognition probabilities of the individual

stimuli are equal, that is, the speech material should be

homogeneous. According to the probabilistic model of

Kollmeier (see, e.g., Zokoll et al., 2012), the slope of the

average speech recognition function of all stimuli in the test

can be derived from the variance between recognition prob-

abilities of the individual stimuli. It emphasizes the impor-

tance of equalizing recognition probabilities of stimuli in a

speech-in-noise test (Dillon, 1983).

The current paper shows that the modified split-half

method as suggested by Smits et al. (2004) and used in sev-

eral studies (e.g., Smits and Houtgast, 2005; Denys et al.,
2018) cannot be used to accurately determine the SEM

because it underestimates the true SEM. A correction factor

could improve the accuracy of the modified split-half

method, but a within-subjects (repeated measures) design is

a preferable, unbiased method to determine the SEM of a

test. It then remains to be decided whether to include a pos-

sible learning effect in the calculation of the SEM [Eq. (2)]

or to exclude the systematic differences and use Eq. (1).

Alternatively, the SEM can be estimated from Eq. (5) when

the slope of the speech recognition function, for the popula-

tion in question, is known. Whatever the choice, it is impor-

tant to indicate the rationale behind it and to clarify how the

SEM was calculated when publishing.

B. Fluctuations in the track

We showed that the fluctuations in a track represented

by SDtrack are not related to the mean or SD of the SRT esti-

mates for ideal listeners who share the same speech recogni-

tion function for the test. Dingemanse and Goedegebure

(2019) similarly showed that SDtrack is not useful to detect

unreliable measurements. Analyses of experimental data

confirmed this finding for adult listeners. This is contrary to

the general belief that SDtrack is a reliable way to detect

unreliable results. In many studies, SRTs with large SDtrack

values are classified as unreliable (e.g., Koole et al., 2016;

Jacobi et al., 2017; Sheikh Rashid et al., 2017; Denys et al.,
2018). Although some unreliable SRT measurements may

have large values of SDtrack, even reliable adaptive tracks

can have values 50% larger than the median values. For

such an approach not to incorrectly classify reliable results

as unreliable, the criterion for the maximum acceptable

SDtrack value must be set very high. If the test population

includes listeners with both normal hearing and hearing

impairment, the maximum acceptable SDtrack value must be

near the upper edge of the distribution of SDtrack values that

commonly occur for listeners with the flattest speech recog-

nition functions among the test recipients. In general, these

are listeners with the most severe hearing loss. While inat-

tention or lack of understanding of the test can then cause

even flatter speech recognition functions in listeners whose

results we would like to classify as unreliable, the large

spread of SDtrack values possible for any value of slope

means that SDtrack will not reliably detect those cases. How

many it detects depends on how shallow the slope actually

was during the test. The risk of using a too strict criterion

for the maximum acceptable SDtrack value is the introduc-

tion of a systematic error because the likelihood of exclud-

ing test results increases with SRT.

C. Stopping rules

Keidser et al. (2013) described an algorithm (or

“stopping rule”), proposed by Cameron and Dillon (2007) to

control the adaptive procedure in speech-in-noise testing.

They calculate a SE after each presentation, and an addi-

tional presentation is given until the maximum number of

presentations is reached or SE is below a certain criterion.

SE is defined as the SD of the presentation levels (i.e.,

SDtrack from the current study) divided by the square root of

the number of presentations and multiplied by a correction

factor [Eq. (1) in Keidser et al. (2013)]. Note that the square

root is missing for the factor [1/(n � 1)] in their equation for

std(x). The proposed algorithm has been used in various

papers (e.g., Westermann and Buchholz, 2015; Dillon et al.,
2016). The hypothesis is that the SEM for each test is more

equal when using a stopping rule than when using a fixed

number of presentations. This stopping rule, however, seems

to contradict the results of the present study because in our

simulations and experimental data, SDtrack is only weakly

related to S50 and hence to SEM. We performed additional

Monte Carlo simulations to gain more insight into this

apparent contradiction. First, the same underlying speech

recognition function was used in all the simulations. The

results show that the stopping rule introduces differences in

track length, but the relationship between SEM and track length

is essentially identical to the relationship between SEM and

track length for fixed-length procedures. Second, a wide variety

of slope values for the underlying speech recognition function

were used in the Monte Carlo simulations. Then tracks based

on shallow speech recognition functions have, on average,

larger values of SDtrack and, thus, are more likely to fail the cri-

terion of the stopping rule. These tracks will become longer

(additional presentations), which reduces the SEM of the asso-

ciated SRT estimates. It was found that applying the stopping

rule to such a heterogeneous group of simulated listeners
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yielded a smaller average SEM than for a fixed-length proce-

dure with the same number of presentations as the average

number of presentations from the stopping rule procedure. The

difference between average SEM values from both procedures,

however, was relatively small. The use of various stopping rules

in Bayesian adaptive threshold estimation was extensively stud-

ied by Alcal�a-Quintana and Garc�ıa-P�erez (2005). They reported

that none of the stopping rules considered outperformed fixed-

length procedures for these Bayesian procedures.

D. Non-ideal listeners

The results from our simulations demonstrate that

SDtrack does not reliably discriminate between poor SRTs

due to the non-ideal behavior simulated and SRTs from

ideal normal-hearing and hearing-impaired listeners. The

characteristics of the underlying population affect the abso-

lute number of rejected SRTs, the percentage of these SRTs

that are incorrectly rejected, and the optimal cutoff SDtrack.

If, for example, the percentage of hearing-impaired listeners

is very low and the percentage of inattentive listeners is

high, a slightly stricter criterion could be used to reject, for

example, 50% of the inattentive listeners. Of course, this is

at the expense of the rejection of a relatively high percent-

age of the hearing-impaired listeners and thus still not rec-

ommended for most applications.

We did not simulate a typical characteristic noted by

Wightman et al. (1989) when measuring temporal resolution

in children. They reported substantial variation from day to

day despite stable performance on each individual measure-

ment: Many of the children seemed to perform at different

“levels” on different days (Wightman et al., 1989). It is

clearly impossible to identify such an aberrant pattern from

the track. Denys et al. (2022) administered digits-in-noise

tests either as a self-test or as an (adult) administrator-

controlled test in a group of normal-hearing children. Our

simulations (Fig. 7) seem in line with their experimental

results. They did not include children with hearing loss, so a

stricter criterion for SDtrack could be applied to their data.

However, applying a cutoff value for SDtrack of 2.6 dB, cor-

responding to the 95th percentile for normal-hearing listen-

ers in our simulations (Sec. III C), left a considerable

overlap of reliable and unreliable SRTs. In addition, such a

strict criterion would exclude too many reliable SRTs from

listeners with hearing loss. The individual tracks reported as

supplementary material to Denys et al. (2022) suggest that

at least some of the unreliable SRTs in their study were due

to off-route listeners.

The effect of wandering too far away from the SRT

estimate (off-route listeners) is strong for relatively short

tracks; if the number of presentations is much longer, the

effect will become negligible. A likely cause of this type of

non-ideal behavior is that the listener does not initially

understand the task required of them but then suddenly

understands it after several presentations. For the parameters

used in our Monte Carlo simulations, a cutoff value of

3.1 dB is sufficient to reject nearly 100% of these cases.

Other measures can be used and may be just as helpful, such

as the percentage of correct responses, the number of con-

secutive correct/incorrect responses, or the number of

reversals.

It is important to emphasize that the results of our

Monte Carlo simulations only apply to the specific parame-

ters we used in the simulations. The slope and SRT of the

normal-hearing speech recognition function and the step

size influence the SDtrack and the pass rate shown in Fig.

7(B). In addition, SRT estimates of listeners with hearing

loss can be unreliable as well. We performed additional

Monte Carlo simulations, which suggested that using differ-

ent parameters do not significantly alter the conclusions.

E. Using SDtrack to estimate the slope of the speech
recognition function or to detect unreliable
measurements

We have demonstrated that SDtrack is related to the

slope of the speech recognition function. However, it serves

as a poor estimator of the true slope. This conclusion is

mainly based on Monte Carlo simulations, but also the

experimental data from Fig. 5(B) confirm this conclusion.

Average SDtrack values range from 1.4 to 2.7 dB, which cor-

respond to slope values from >25%/dB to 4%/dB [Fig.

6(A)], although the average SRT and underlying speech rec-

ognition function are the same. Our results are in line with

expectations because the adaptive procedure ensures that the

SNRs of the presentations are close to the SRT. It has been

previously indicated in seminal papers that it is important to

include presentation levels sufficiently far from the SRT

when estimating the slope (Dixon and Mood, 1948; Levitt,

1971). There is a lot of literature on possible estimates of

both the SRT and the slope. Without striving for complete-

ness, we mention the use of two transformed adaptive proce-

dures (Levitt, 1971): the procedure proposed by Brand and

Kollmeier (2002) and a Baysian adaptive estimation (Doire

et al., 2017). An extensive overview of different procedures

can be found in Doire et al. (2017).

Our results show that measures other than SDtrack are

required to determine the reliability of a single measure-

ment. Several listener-related factors could negatively affect

the accuracy of a measurement. These factors are, among

others, a training or learning effect and lapses (unforced

errors) due to fatigue, inattentiveness, misunderstanding of

the response by the experimenter, or incorrectly entering the

response. These factors are difficult to control, and it is often

unclear whether they are present or not. Because inattention

is probably a leading cause of lapses, a measure of attention

could be a valuable addition. Moore et al. (2010) studied

auditory processing disorder in a large group of normal-

hearing children. They reported that intrinsic measures of

attention, derived from tracking variable responses, did

relate in general to non-speech auditory performance, but

not to speech-in-noise [vowel-consonant-vowel (VCV)] rec-

ognition. Similarly, Denys et al. (2022) did not find signifi-

cant differences in attentional abilities between groups of

children who had stable SRTs and those who showed
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differences between repeatedly measured SRTs. They also

reported that SRTs from children with poorer attention skills

were not significantly worse than SRTs from children with

better attention skills. Different forms of attentional abilities

were measured: selective attention, sustained attention, and

attention switching. In addition, a teacher questionnaire was

used. On the other hand, Riccio et al. (2005) reported a

moderate correlation between a measure of sustained atten-

tion and speech-in-noise test scores.

We are currently considering two measures that could

potentially be used to identify unreliable measurements.

First, we consider response time. We hypothesize that inat-

tentiveness may be reflected in longer response times to

stimuli or may lead to erratic response time patterns during

a track. Second are relationships between recognition proba-

bilities. On average, due to the nature of the adaptive proce-

dure, 50% of the presentations are recognized correctly and

50% incorrectly. For digits-in-noise tests with three inde-

pendent digits per presentation, the probability to recognize

zero, one, two, or three (i.e., the entire digit triplet) digits

correctly should follow a binomial distribution. It seems

likely that, for inattentive listeners, these relationships are

different. For example, if they easily give up when they can-

not understand all the digits, then more often a response

with none of the digits recognized correctly will be

expected. The value of these measures in identifying unreli-

able measurements is still highly speculative. Studies are

needed to investigate these and other potential measures.

V. CONCLUSIONS

The one-up one-down adaptive (staircase) procedure is

a relatively simple and accurate procedure to estimate the

SRT in speech-in-noise testing. It has been one of the most

popular psychophysical methods for decades. Advantages

are the insensitivity to lapses, the lack of necessity to know

the exact shape of the speech recognition function, and the

small effect of the choice of step size on the SRT estimate.

Original findings from early studies that are sometimes

overlooked are the following:

• The SEM is inversely proportional to the slope of the

speech recognition function and square root of the number

of presentations;
• A within-subjects (repeated measures) design should be

used to determine the SEM of a test accurately.

The major findings of the current study can be summa-

rized as follows:

• The fluctuations in an adaptive track (represented by

SDtrack) do not provide information about the SEM or

how near the SRT estimate is to the true SRT for (near)

ideal listeners with the same underlying speech recogni-

tion function;
• Hearing loss and non-ideal behavior (inattentiveness,

fatigue, and giving up when the task becomes too diffi-

cult) slightly increase the average value of SDtrack.

SDtrack, however, poorly discriminates between reliable

and unreliable SRT estimates;
• Large fluctuations in the track and large systematic errors

in SRT estimates are found for listeners who uninten-

tionally respond incorrectly to a few consecutive presen-

tations and need a substantial number of presentations to

reach SNRs near the true SRT. Although values of

SDtrack will increase for these listeners, there is still a

considerable overlap with SDtrack values from reliable

SRT estimates.
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