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Abstract
A theoretical method is empirically illustrated in finding the best time to forsake a loan such that the overall credit
loss is minimised. This is predicated by forecasting the future cash flows of a loan portfolio up to the contractual
term, as a remedy to the inherent right-censoring of real-world ‘incomplete’ portfolios. Two techniques, a simple
probabilistic model as well as an eight-state Markov chain, are used to forecast these cash flows independently. We
train both techniques from different segments within residential mortgage data, provided by a large South African
bank, as part of a comparative experimental framework. As a result, the recovery decision’s implied timing is
empirically illustrated as a multi-period optimisation problem across uncertain cash flows and competing costs.
Using a delinquency measure as a central criterion, our procedure helps to find a loss-optimal threshold at which
loan recovery should ideally occur for a given portfolio. Furthermore, both the portfolio’s historical risk profile and
forecasting thereof are shown to influence the timing of the recovery decision. This work can therefore facilitate the
revision of relevant bank policies or strategies towards optimising the loan collections process, especially that of
secured lending.
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The loss optimisation of loan recovery decision times using forecast cash flows

1 Introduction

Loan delinquency is deeply embedded into most of the credit risk modelling exercises of a lender. It is often the
broad backbone on which banks construe basic credit and pricing decisions, devise debt collection strategies, and
perform overall risk management, in addition to its use within risk modelling. Though it is generally an abstract
concept, we define delinquency as a time-dependent measurable quantity that represents the extent of eroded trust
between bank and borrower. Accordingly, a delinquency measure 𝑔 reflects the degree of non-payment based
on the fundamental idea of a borrower owing 𝐼𝑡 > 0 (the instalment) but only repaying 𝑅𝑡 ≥ 0 (the receipt) at a
specific point in time 𝑡. When 𝑅𝑡 < 𝐼𝑡 , this measure 𝑔 should then quantify the extent 𝐼𝑡 − 𝑅𝑡 of what is essentially
the breakdown of trust in honouring the original credit agreement. In practice, the accountancy-based days past
due (DPD) is a classical precursor to constructing 𝑔, whereby the unpaid portion of an instalment is aged into
increasingly severe bins as each 30-day calendar month lapses: 30 days, 60 days, 90 days, and so forth. This is
more formally defined as 𝑔0(𝑡) = 𝑓 (𝐴𝑡/𝐼), where 𝐴𝑡 is the accumulated arrears amount at time 𝑡, 𝐼 is the fixed
instalment, and 𝑓 is a chosen rounding function that maps the input to the number of payments in arrears as the
output. This methodical manner of measuring risk using 𝑔 was especially made necessary to facilitate the advent of
automated application scoring during the 1960s. Subsequently, the widespread practice of credit scoring is perhaps
the modern bedrock of all mathematical modelling in banking, into which ‘delinquency’ is again embedded.

Accruing delinquency over time will increasingly chafe away at the bank’s confidence in the agreement. This
erosion continues until reaching a certain threshold 𝑑, predicated to exist on the domain of 𝑔, beyond which the
obligor is considered as in ‘default’. That said, these default definitions often contain more qualitative criteria,
other than that of simply breaching 𝑑. Credit risk modelling itself typically uses different definitions given the
portfolio type and, more importantly, the modelling context: quantifying either unexpected or expected credit
losses. However, the international standards that govern these contexts, i.e., Basel II and IFRS 9 respectively, are
enforced to varying degrees by individual regulators. Accordingly, ‘default’ and the value of 𝑑 as imposed by
the regulator may differ across competing jurisdictions, which certainly complicates any related modelling for
multinational banks. Yet even if 𝑑 is made equal and strictly regulated across all nations, there is little objective
evidence for its supposed optimality or suitability. Another challenge presents itself as a consequence of acquiring,
merging, and selling-off loan portfolios (or portions thereof) amongst lenders. So-called ‘legacy’ definitions from
the previous owners can certainly conflict with that of the new owner, which implies the existence of multiple
concurrent definitions in the same portfolio. As a result of all of these difficulties, the very idea of ‘default’ has
become an utterly vague and incoherent concept in trying to serve so many ‘masters’ at once.

However, the original premise of a default definition is that of reaching a so-called "point of no return", beyond
which loan repayment becomes extremely doubtful. In principle, this probabilistic point can be unique to a portfolio
or bank, given the differences in their risk appetites, market conditions, and the element of time. Once breached,
the lender effectively assumes that the obligor’s delinquency will perpetuate beyond recovery, should the agreement
be retained. Therefore, the bank pursues maximal debt recovery within the shortest time possible, based on the
five-phase credit management model of Finlay (2010, pp. 11–13, 147–153). The challenge now becomes to find this
ideal switching point or, put differently, the best time at which the lender should abandon all hope of repayment and
instead pursue debt recovery, including seizing any collateral. Furthermore, finding this point using 𝑔 is convenient
since past loan performance can be projected into scale-invariant delinquency progressions, whilst retaining any
behavioural information that may affect the location of the aforementioned point.
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Fig. 1. Illustrating the LROD-procedure in finding the optimal threshold 𝑑∗ on the domain of a delinquency measure
𝑔, in optimising the recovery decision’s timing.

In fact, our previous work in Botha et al. (2020) explored a more fundamental meaning of ‘default’ as the
risk-based "point of no return" beyond which loan collection, if still pursued, becomes financially sub-optimal.
The ‘default’ state is simply defined as breaching a variable threshold 𝑑 on 𝑔, which deliberately deviates from
current practices and relevant regulations. However, this allows for systematically assessing the "net cost" of
each candidate threshold, as part of the so-called Loss-based Recovery Optimisation across Delinquency (LROD)
procedure. Too strict a threshold will marginalise certain accounts that would have resumed payment (or ‘cured’
from delinquency), had the bank not foreclosed (or charged-off) that soon. Too lenient a threshold will naively
tolerate increasing amounts in arrears at the cost of higher liquidity risk and greater capital buffers, possibly
becoming capital-inefficient. These two extremes are offset against each other using financial loss as basis, thereby
forming a proverbial ‘Goldilocks’-region in which an ideal threshold can theoretically exist. The LROD-procedure’s
output is shown in Fig. 1 as a hypothetical loss curve across candidate thresholds, having attained a global minimum
loss at 𝑑∗. In turn, this minimum informs a portfolio’s ideal tolerance level across the spectrum of 𝑔-measurable
delinquency before initiating debt recovery, as we demonstrated using simulated toy portfolios.

As our main contribution, we explore the application (and refinement) of the LROD-procedure using a
real-world South African mortgage portfolio. This is non-trivial since real-world portfolios are often ‘incomplete’
(or censored) insofar that many constituent loan accounts are not (yet) fully observed up to the contractual term.
This is unsurprising since most portfolios are actively being grown every month. However, a truly uncensored
portfolio, even if ideal for recovery optimisation, may not reflect current market conditions anymore (especially
when considering longer-term loans), which may adversely affect the optimisation. Lastly, the LROD-procedure
itself was originally developed within the context of uncensored portfolios. Therefore, as a secondary contribution,
we demonstrate a more feasible approach wherein available data is first leveraged to forecast the residual cash flows
of each account up to its contractual term, as shown in Fig. 2. Performing this necessary step will then enable the
empirical use of the LROD-procedure.
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Fig. 2. Illustrating the increasing right-censoring effect for newer origination cohorts.

Literature is explored in section 2 on default definitions, regulations, and optimising the loan recovery process
in general. In turn, this review becomes the basis for framing the bank’s recovery decision as an delinquency-based
optimisation problem. The LROD-procedure that implements this optimisation problem is briefly discussed in
section 3. We subsequently outline two receipt forecasting techniques as candidate models in Sections 3.1–3.2.
These candidates include a simple probabilistic technique as well as a more sophisticated eight-state Markov chain.
Each technique is parametrised from 20-year residential mortgage data and assessed on its forecasting quality in
section 4. The LROD-procedure is then applied on the now-completed portfolio in section 5, accompanied by a
discussion of the ensuing results. Lastly, we demonstrate a Monte Carlo-based procedural refinement by which
the variance of the underlying forecasts can be analysed, thereby granting additional assurance on the stability of
any optima. Having concluded in section 6, the timing of a bank’s recovery decision is successfully illustrated as
a delinquency-based optimisation problem using real-world data. The source code accompanying this study is
published in Botha (2020).

2 Opportune loan recovery as a delinquency-based optimisation problem

To collect on a distressed loan is to have breached a certain "point of no return" in the relationship between bank and
borrower. This notion is arguably similar to that underlying a default definition, which suggests a valuable starting
point for a discussion ultimately centred on when to abandon a troubled loan. To this end, various regulations and
standards are examined in subsection 2.1, followed by surveying the relevant literature in subsection 2.2.
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2.1. A regulatory overview of default definitions

The Basel II Capital Accords regulate the manner in which banks calculate capital buffers against unexpected losses,
which is predicated by first quantifying the expected loss. Essentially, credit risk is expressed as the product of three
particular risk parameters: 1) default risk, or the probability of default (PD); 2) loss risk, or the loss given default
(LGD); 3) and exposure risk, or the exposure-at-default (EAD). For a thorough treatise on this topic, refer to Thomas
(2009, pp. 289–293), Van Gestel and Baesens (2009, chap. 4, 6), and Baesens et al. (2016, chap. 5–11). Clearly,
the notion of ‘default’ is again embedded within in all three components. However, the manner in which ‘default’
is defined generally varies by product, customer type, and bank. Some definitions include filing for bankruptcy,
unfulfilled claims, negative net present values, becoming and remaining overdrawn for a period, as well as being
three payments in arrears, i.e., 𝑑 = 3. This last definition, or similarly, 90 DPD, is perhaps most commonly used in
amortising consumer loans. In fact, its use predated the introduction of Basel II, which merely standardised using
90 DPD as one of two possible default criteria. The other criterion still leaves some discretion to the lender, subject
to regulatory approval. This is evident from paragraph 452 of BCBS (2006, pp. 100), which defines ‘default’ as the
point at which the bank considers, in its opinion, that the obligor is unlikely to repay its obligations in full, without
the necessary intervention of the bank, e.g., liquidating any collateral. Basel II also lists six reasonable indicators of
"unlikeliness to pay" (or low repayment probability) in paragraph 453, e.g., having partially sold off the debt at a
loss; or having restructured the agreement in such a way that the overall financial obligation is reduced.

After its introduction, many regulators adopted Basel II almost verbatim, e.g., Regulation 67 of the Banks
Act of South Africa (2012, pp. 1201–1202). Additionally, this Act indirectly describes ‘default’ when defining
non-performing debt as having reached a point when it is "no longer prudent to credit interest receivable to the
income statement" of a bank. This definition is similar to the probabilistic idea of reaching some "point of no
return", i.e., low repayment probability. In contrast, the recent guidelines (D403 of 2017) published by BCBS (2017)
intends to harmonise default definitions globally by proposing that 90 DPD be used as a universal definition of a
non-performing loan. This was perhaps prompted by the European Banking Authority (EBA) having recently issued
stricter guidelines on interpreting and applying Basel’s default definition within the EU jurisdiction. These stricter
versions of Basel’s six default indicators are found in EBA (2016), which amends Article 178 of EU Regulation No
575/2013, also known as the Capital Requirements Regulation (CRR).

Capital aside, by forfeiting a portion of monthly income to cover expected credit losses over the long run, the
lender effectively caters for "business-as-usual" write-offs in principle, as explained in Van Gestel and Baesens
(2009, pp. 38–44) and Finlay (2010, pp. 167–169). However, the recently introduced IFRS 9 (2014) accounting
standard outlines additional principles specific to modelling these expected losses. IFRS 9 made this provisioning
process generally more comprehensive and challenging when compared to its predecessor (IAS 39), as discussed in
Skoglund (2017) and Cohen, Edwards Jr et al. (2017). Regardless, IFRS 9 does not rigidly prescribe a single default
definition. Instead, paragraph B.5.5.37 simply requires that a particular definition be consistently used throughout
the relevant risk models and overall risk management. This requirement was recently enforced in EBA (2016, § 2.6)
for capital modelling in EU markets. The guidelines generally seek to align reaching Stage 3 credit impairment
under IFRS 9 as a broader sign of ‘default’, in harmonising some modelling elements between IFRS 9 and Basel.
However, the guidelines concede that some differences in default definitions may be unavoidable, e.g., different
legal entities within the same banking group, or different jurisdictions entirely.

IFRS 9 allows for a rebuttable presumption of 90 DPD as a default definition, provided that an alternative
definition be "reasonably" demonstrated. In fact, Basel II previously allowed using default criteria of up to 180
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DPD for retail and public sector exposures in paragraph 452, regulator-willing. This concession, as enshrined in
Article 178(1)(b) of the CRR for EU markets, recognises that the quantum of this particular default criterion may
differ amongst banks, presumably in line with each bank’s risk tolerances amidst competition and market conditions.
However, the EBA recently announced withdrawing this concession, primarily since only a small number of UK
banks (and one French institution) are currently using it. The 2017/17 opinion piece of the EBA (2017b), annexed
in EBA (2017a), argued that this withdrawal will harmonise reporting and remove "unwarranted" variability in
risk-weighted assets (RWA) across EU banks. Its analysis was mainly based on implied changes in RWA when
using 90 DPD instead of 180 DPD as the default criterion. Using highly aggregated data from affected institutions,
the EBA found that capital will likely increase for two thirds of these institutions. However, the analysis assumed all
other factors will remain equal and largely ignored any fundamental opportunity costs and benefits at play when
varying the ‘default’ point, outside of RWA-centric capital modelling. Regardless, the UK regulator enforced this
opinion recently in PRA (2019) starting 31 December 2020.

The recent regulatory drive for standardising default definitions across jurisdictions is sensible from a
compliance and comparability perspective. However, in doing so, regulators remove the rather probabilistic element
within the original premise of a default definition, i.e., low repayment probability. They do this by decreeing
certain criteria, most notably the 90 DPD threshold, to be risk ‘absolutes’ beyond reproach. Instead of finding
this threshold statistically using decision theory for each portfolio, a standardised default threshold devolves into
little more than a static hurdle. In contrast hereof, consider an operational perspective wherein reaching ‘default’,
which is fundamentally defined as the probabilistic "point of no return", is impetus for the lender to act, e.g.,
initiating stringent debt recovery proceedings and abandoning the credit relationship. Surely there must be varying
consequences associated with the lender’s action in this regard and, more importantly, its exact timing. If this is
remotely true, then modelling any aspect of the ‘default’ event using potentially stale definitions thereof will likely
be sub-optimal. As paraphrased from Hand (2001), it is reasonable to question the pursuit of modelling excellence
when the constructed outcome variable itself, as constrained by the default definition, is inherently quite arbitrary.

2.2. Delinquency and default definitions: a servant of many masters

Default definitions serve a few other masters beyond that of modelling regulatory capital or provisions for unexpected
and expected losses respectively. They are also used when building application credit scorecards, which are
automated decision-making models rendering consistent approve/decline credit decisions based on estimated default
risk, as discussed in Hand and Henley (1997), Hand (2001), Thomas et al. (2002, chap 1, 8), Siddiqi (2005),
Thomas (2009, chap 1), Van Gestel and Baesens (2009, chap 4), Thomas (2010), and Louzada et al. (2016). Banks
generally prefer a decent risk-ranking ability over attaining maximal predictive accuracy in scorecards, which is
perhaps characteristically pragmatic. To this end, finding a suitable definition is a largely subjective and iterative
exercise, wherein a few qualitative factors are balanced. When setting 𝑑 itself, the type of security/collateral is
important given the different workout experiences in debt recovery, e.g., mortgages versus personal loans. Moreover,
𝑑 cannot sensibly exceed the maximum contractual loan term, which is especially relevant for very short term
products such as payday loans. However, the bank’s risk appetite is perhaps the most important factor: the higher
the appetite for arrears (compensated by higher interest income), the greater 𝑑 will be, and vice versa, as an intuitive
principle.

Lenders conduct a form of statistical analysis, called a roll rate analysis, in providing quantitative assurance on
a chosen 𝑑, as outlined in Siddiqi (2005, pp. 41–42). This is a cross-tabulation of observed transition rates across a
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length of time amongst increasingly severe arrears categories (30 days, 60 days, etc.), including the newly-chosen
"default state" as imposed via 𝑑. The principle is based on back-solving for stability in that accounts identified as
‘lost’ should stay lost at the end of the outcome period. Having found this point, the resulting default definition
using 𝑑 should ideally remain stable over time, with only a minimum of accounts recovering from default. However,
this approach ignores the competing financial/opportunity costs that may be in play when varying 𝑑 itself, e.g.,
legal and administration costs, loss provision changes, salaries, and collection efforts. Instead, the direct loss
implications associated with any 𝑑 may be a better criterion than stability. Another source of variation is the chosen
epoch of time from which loan performance is sampled, which can shroud the ‘true’ transition rates, and definitely
influence the choice of 𝑑. However, perhaps the greatest uncertainty is that of the chosen outcome period, which
can obscure certain idiosyncratic risk characteristics of a portfolio – and therefore the ‘best’ choice of 𝑑 – simply
due to choosing an inappropriate outcome period.

Although literature from Thomas et al. (2002, pp. 99) and Van Gestel and Baesens (2009, pp. 101–102)
suggests a typical range of 6–24 months, the effects of various outcome periods were more rigorously explored in
Kennedy et al. (2013) and Mushava and Murray (2018). The authors predicted default risk across a few differing
time spans using Irish and South African data respectively. Too short a window of time may be insufficient to
capture the various transition rates due to a lack of maturity and/or seasonal effects. Conversely, too long a window
may no longer represent either the current market conditions or the portfolio’s current risk composition, and was
shown to yield decreasingly accurate models. Too long a window may also ignore rapid movements amongst
delinquency states, e.g., oscillating instances between defaulting and curing, as argued in Kelly and O’Malley
(2016), which may especially affect monthly loss provisioning. Clearly, the outcome period and the sample window
are significant factors that complicate choosing 𝑑. As an example, it would be difficult to decide if a particularly
low curing rate given 𝑑 is artificially due to an overly short outcome period, testament of ‘true’ risk, or shifting
market conditions – without conducting additional analysis. For these reasons, a roll rate-based approach is deemed
unfit for finding 𝑑 dynamically in this study.

A basic Markov chain can be considered as a more advanced form of a roll rate analysis. This was first explored
in Cyert et al. (1962) for loss provisioning, and later refined in Corcoran (1978) and Van Kuelen et al. (1981),
wherein a time-homogeneous discrete-space Markov chain modelled the transitions amongst arrears categories.
The bankruptcy process of firms was modelled in Jarrow et al. (1997) as a Markov chain across various credit
rating states and an absorbing default state. Specifically, the time distribution of the chain first entering default was
explicitly modelled, from which a PD was estimated over a certain term structure. A non-stationary forecasting
model with a Markovian structure was developed in Smith and Lawrence (1995) using US mortgage loans. This
was extended in Grimshaw and Alexander (2011) using US subprime mortgages, wherein new empirical Bayes
estimators for non-stationary and heterogeneous transition matrices were proposed. This heterogeneity recognises
that certain segments within a loan portfolio may have fundamentally different transition rates, from which we draw
some inspiration in the present study. A four-state non-homogeneous Markov chain was built as part of a larger
suite of intensity models in Leow and Crook (2014) for credit card delinquencies. Clearly, Markov models are quite
prolific in modelling credit risk, especially evident from the rich review given thereof in Hao et al. (2010).

The mere possibility of an account recovering from ‘default’ (as fixed via 𝑑) inherently introduces uncertainty
in any chosen 𝑑 as the supposed "point of no return". Anecdotal experience corroborates this in that multi-period
‘episodes’ of delinquency are more widespread in practice than one would otherwise believe. In fact, the work of
Thomas et al. (2016) demonstrated this oscillating regime-switching effect between payment and non-payment,
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having modelled the collections process of defaulted UK loans using both a four-state homogeneous Markov
chain and a time-sensitive hazard rate model. These models may be indirectly used to test write-off policies by
incorporating them as boundary conditions for loan duration, though the authors admitted this is not really an
appropriate solution. Instead, Mitchner and Peterson (1957) investigated the optimal pursuit duration of loan
recovery based on maximising the net profit of a collections department. Using US personal loans, they found that
loan recovery should cease whenever the one-period expected repayment equals the cost of pursuing recovery itself,
which is quite intuitive. However, the authors admitted that their results depend critically on the assumption that a
defaulted borrower is forever absorbed into a paying regime, once entered, which contrasts Thomas et al. (2016).

In optimising the collections process, De Almeida Filho et al. (2010) devised a dynamic programming model
wherein both the ideal type of recovery action and its pursuit duration are found every month for the "average"
debtor. Using unsecured European loans, their objective was to maximise the net recovery rate by pursuing a
particular action for a set period, including telephonic calls, various letters, house visits, threats, legal redress, and
write-off. However, the state space formulation excludes cash flows themselves from previous periods or indeed
those from the future. Their work was later extended in So et al. (2019) wherein a Bayesian approach was followed
to obtain similarly optimised outputs, though on the individual debtor-level. Within the same context, the work of
Liu et al. (2019) devised a Markov-based decision process wherein the optimal collection action is theoretically
found across both delinquency state progressions and time, using designed data. A schedule of optimal collection
actions is then calculated accordingly, which was shown to supersede a static policy based on maximising the
expected net present value. However, the authors made some strong simplifying assumptions when designing both
their ‘data’ and elements within their method, which may have implications for their end-results when trying to use
their method on real data. In addition, they impose explicit write-off criteria exogenously within the state space of
their Markov chain, instead of structuring it as a candidate collection action.

Another extension is that of Duman et al. (2017) wherein outputs similar to that of De Almeida Filho et al.
(2010) were sought using Turkish data, though on a finer time scale using days. The authors posited that each
recovery action may have unintended consequences on subsequent customer loyalty, which they incorporated into
their optimisation along with collection capacity constraints. Chehrazi et al. (2019) examined the same collection
problem and formulated repayments as a complex self-exciting point process in continuous time. As a stochastic
control problem, the authors allowed both the size and the timings of receipts to influence each other, which in
turn are perturbed by pursuing a particular recovery action. Another relevant contribution is that of Matuszyk
et al. (2010) wherein a decision tree-based approach was developed to help inform the optimal collection strategy.
Candidate choices included collecting in-house, outsourcing collection efforts externally, or selling the debt. Their
work formed part of subsequently modelling the LGD using a two-stage approach and unsecured personal loans.
Lastly, Han and Jang (2013) extended this by showing the positive effects of including collection action history
within LGD models, using Korean data.

The present study is closest in form to that of De Almeida Filho et al. (2010) and Liu et al. (2019), though we
follow a different and more general approach based on delinquency measures that leverages the entire portfolio
instead of only defaulted loans. Moreover, we focus more fundamentally on if and when to forsake a loan based on
delinquency progression over time, instead of attempting to compile a menu of collection actions. The idea of
varying thresholds 𝑑 within a scorecard’s default definition was actually first investigated in Harris (2013a) and
Harris (2013b), in which the effects on classifier accuracy (using support vector machines) were studied. However,
those findings – while proving that 𝑑 significantly influences model accuracy – ignore the direct loss implications
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associated with a particular 𝑑. Amongst other things, our work attempts to bridge some gaps between the collection
and credit risk modelling literatures. This is demonstrated by loss-optimising the recovery decision’s timing as the
"point of no return" in line with the original notion underlying a default definition.

3 Two forecasting techniques for loss-optimising the recovery decision based on
measured delinquency

Three delinquency measures were formulated in our previous work in Botha et al. (2020): the commonly-used
Contractual Delinquency 𝑔1 as the weighted number of monthly payments in arrears, which is also the main
measure used in this study; the Macaulay Duration-based 𝑔2 as an index of the weighted average time to recover
the capital portion; and the Degree of Delinquency 𝑔3 as a modified variant of 𝑔2 that incorporates the sizes of
disrupted cash flows in assessing delinquency. Constructing 𝑔1 relies on calculating the repayment ratio between a
receipt and an instalment at a particular period 𝑡, denoted as ℎ𝑡 . Delinquency only increases if ℎ𝑡 is below a given
level, which is set to 90% as in our previous work. Finally, the LROD-procedure requires three preparatory steps:

1. Delinquency must be measured for every account across its history using a measure 𝑔 ∈ {𝑔1, 𝑔2, 𝑔3};

2. Select appropriate thresholds 𝑑 ∈ D𝑔 on the domain of a particular 𝑔 for optimisation;

3. A portfolio loss model 𝐿𝑔 must be applied at every chosen threshold 𝑑 ∈ D𝑔 of 𝑔.

Given a threshold 𝑑 ≥ 0 on the domain of 𝑔, denoted henceforth as (𝑔, 𝑑), the main optimisation problem
is effectively divided into smaller (𝑔, 𝑑)-based sub-problems by storing each loss estimate 𝐿𝑔 (𝑑) into a central
collection. A threshold 𝑑 ′ ∈ D𝑔 is then sought such that 𝐿𝑔 (𝑑 ′) ≤ 𝐿𝑔 (𝑑) for all chosen 𝑑 ∈ D𝑔. Finally, a global
minimum loss 𝑚 (𝑔) may exist at a threshold 𝑑 (𝑔) for a measure 𝑔, which is formally expressed as

𝑚 (𝑔) = min
𝑑∈D𝑔

𝐿𝑔 (𝑑) and (1)

𝑑 (𝑔) = arg𝑑 min
𝑑∈D𝑔

𝐿𝑔 (𝑑) . (2)

If competing measures are used, then the optimal measure 𝑔∗ is the function 𝑔 that yielded the lowest losses amongst[
𝑚 (𝑔1) , 𝑚 (𝑔2) , 𝑚 (𝑔3)

]
, thereby making delinquency measures comparable to one another in the aggregate. This

concludes the LROD-procedure itself.

Similar to our previous work, the portfolio of 𝑁 loans is segmented into two subsets of accounts, denoted as
S𝐷 and S𝑃, for a particular (𝑔, 𝑑)-configuration. Each account 𝑖 ∈ S𝐷 is considered as (𝑔, 𝑑)-defaulting if and
only if 𝑔(𝑖, 𝑡) ≥ 𝑑 at any particular time 𝑡 = 0, . . . , 𝑡𝑐 during its history, where 𝑡𝑐 is that loan’s full contractual
term. If this condition does not hold, then the account is logically considered as (𝑔, 𝑑)-performing and contained
within the other set S𝑃 . Every (𝑔, 𝑑)-defaulting account has an earliest moment 𝑡 (𝑔,𝑑)

𝑖
of entering the ‘default’ state,

depending on the particular (𝑔, 𝑑)-configuration. Note that ‘default’ is a contrived and more fundamental state
in this study, which is best interpreted as one possible end point of debt recovery, given (𝑔, 𝑑). The same model
𝐿𝑔 is used, i.e., the segmented sum of all discounted account-level losses 𝑙 (𝑖, 𝑡𝑖) is calculated across all accounts
𝑖 = 1, . . . , 𝑁 , as assessed from a particular time point 𝑡𝑖 of the loan. This sum is split between (𝑔, 𝑑)-defaulting and
(𝑔, 𝑑)-performing loans that are either assessed back from 𝑡

(𝑔,𝑑)
𝑖

or from the contractual loan term 𝑡𝑐𝑖 , formally
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defined as
𝐿𝑔 =

∑︁
𝑖∈ S𝐷

𝑙

(
𝑖, 𝑡

(𝑔,𝑑)
𝑖

)
+

∑︁
𝑖∈ S𝑃

𝑙
(
𝑖, 𝑡𝑐𝑖

)
. (3)

The discounted loss itself 𝑙 (𝑖, 𝑡𝑖) is the weighted sum of the expected outstanding balance and the arrears amount,
both observed at a given time 𝑡𝑖 and weighted respectively by the loss rates 𝑟𝐸 = 40% and 𝑟𝐴 = 70%. These
quantities are discounted using a risk-free rate of 7%, which is realistic for the South African market. Using two
different loss rates recognises that the recovery success may differ between these two components. These rates
are chosen arbitrarily such that losses on arrears ought to be penalised more than losses on expected balances in
principle. They are intended as placeholders for the output from more sophisticated loss models, which presumably
includes all other costs.

However, differing from the previous study, the receipt vector 𝑹 =
[
𝑅1, 𝑅2, . . . , 𝑅𝑡0 , 𝑅𝑡1 , . . . , 𝑅𝑡𝑐

]
of a real

loan is only observable from data up to time 𝑡0 ≤ 𝑡𝑐, owing to the right-censoring effect that is inherent to most
credit portfolios in practice. The smaller the difference 𝑡𝑐 − 𝑡0, the less treatment such a loan would need in
completing its history up to contractual maturity, and vice versa. Not treating a loan portfolio in this way will
likely lead to unusable and unsatisfying results when applying the LROD-procedure (see appendix). As such, two
techniques are devised for treating an empirical loan portfolio by forecasting the receipts 𝑅𝑡1 , . . . , 𝑅𝑡𝑐 up to the
contractual term 𝑡𝑐 for each loan account, using its observed receipt history 𝑅1, . . . , 𝑅𝑡0 . These include a simple
probabilistic technique called random defaults as well as a more sophisticated eight-state Markov chain-based
technique called Markovian defaults.

3.1. Random defaults with empirical truncation

Let 𝑢𝑡 ∈ [0, 1] be a randomly generated number at every loan period 𝑡 = 𝑡1, . . . , 𝑡𝑐 to be forecast and let 𝑏 be an
estimable probability of payment, i.e., 𝑃(𝑅𝑡 = 𝐼𝑐) = 𝑏 with 𝐼𝑐 denoting the calculated level instalment. Note that
𝐼𝑐 is the instalment that amortises the outstanding balance at time 𝑡0 to zero at time 𝑡𝑐, using the latest observed
client interest rate. The receipt is then iteratively forecast at each future 𝑡 as

𝑅𝑡 =


𝐼𝑐 if 𝑢𝑡 < 𝑏

0 otherwise
. (4)

A randomised truncation effect is introduced (similar to our previous work) via a structural break in the forecast
receipt vector at a certain point (if at all) and replacing elements thereafter with zeros. Tempering the forecast
receipts in this way mimics the fact that some loan accounts will simply never resume payment in reality. This
is similar to Thomas et al. (2016) wherein the parameters controlling the payment and non-payment sequences
were fixed after reaching some point in the process. More formally, consider all periods 𝑗 = 𝑡0 , . . . , 𝑡𝑐 within the
now-forecast receipt vector 𝑹 of a particular account, with the measure 𝑔1 applied accordingly across all periods.
Let 𝑘 ≥ 0 be a truncation parameter above which the receipts are truncated. The starting period of this truncation,
denoted as 𝑡𝑘 ≥ 0, may then exist if the account has experienced sufficient delinquency 𝑔1( 𝑗) ≥ 𝑘 at some 𝑗 , i.e.,
𝑡𝑘 = min

(
𝑗 : 𝑔1( 𝑗) ≥ 𝑘

)
. Conversely, if delinquency has not breached 𝑘 , then this time point 𝑡𝑘 does not exist. A
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process called (𝑘, 𝑔1)-truncation then changes 𝑹 to 𝑹′ by

𝑹′ =


[
𝑅𝑡1 , . . . , 𝑅𝑡𝑘 , 0 , . . . , 0

]
if 𝑡𝑘 exists

𝑹 otherwise
. (5)

In estimating this truncation parameter 𝑘 , consider that the maximum delinquency across time can be obtained
for each account in a loan portfolio, using 𝑔1 for simplicity’s sake. In turn, the histogram of these maxima is
plotted, followed by fitting statistical distributions to these maxima. One can then draw a random sample 𝑘𝑖 from
an appropriately fitted distribution for each account and finally (𝑘𝑖 , 𝑔1)-truncate the initially forecast receipt vector.
This introduces a bit of realistic variance to the overall truncation effect.

Lastly, consider an indicator function I (𝑖)
𝑡 that signals payment using the receipt 𝑅 (𝑖)

𝑡 and instalment 𝐼 (𝑖)
𝑡 of

the 𝑖th account at historical periods 𝑡 = 1, . . . , 𝑡0(𝑖) where 𝑡0(𝑖) denotes the most recently observed loan period for
this account. This is then formally defined as

I (𝑖)
𝑡 =


1 if 𝑅 (𝑖)

𝑡 ≥ 𝐼
(𝑖)
𝑡

0 otherwise
𝑡 = 1, . . . , 𝑡0(𝑖) . (6)

Accordingly, the probability of payment 𝑏 is estimable by 𝑏, defined as

𝑏 =
1

𝑁

∑︁
𝑖

1

𝑡0(𝑖)
∑︁
𝑡

I (𝑖)
𝑡 ∀ 𝑖 = 1, . . . , 𝑁 accounts and 𝑡 = 1, . . . , 𝑡0(𝑖) periods . (7)

3.2. Markovian defaults

Let 𝑋𝑡 ∈ {𝑥0, . . . , 𝑥7} be a random vector that can assume one of eight increasingly-severe delinquency states
derived from 𝑔1, across all historical periods 𝑡 = 1, . . . , 𝑡0 of an account. The states 𝑥0 , . . . , 𝑥5 correspond to 𝑔1(𝑡)
having the respective values 0, . . . , 5 at any 𝑡. State 𝑥6 is semi-absorbing such that 𝑔1(𝑡) ≥ 6 at any 𝑡 and the state 𝑥7
denotes write-off (fully-absorbing). The sequence 𝑋1, . . . , 𝑋𝑡0 then forms a discrete-time first-order Markov chain
from which receipts can be forecast, based on the predicted states 𝑋𝑡1 , . . . , 𝑋𝑡𝑐 at future periods 𝑡 = 𝑡1, . . . , 𝑡𝑐 . Note
that 𝑔1 can only ever increase in value by one delinquency level, while it can decrease by several levels depending
on the magnitude of the overpayment 𝑅𝑡 > 𝐼𝑡 .

To generate receipts at these future periods, temporarily ignore write-off (𝑥7) and consider the one-period
delinquency difference 𝛿𝑡 , defined as 𝛿𝑡 = 𝑔1(𝑡) − 𝑔1(𝑡 − 1). A positive difference 𝛿𝑡 > 0 implies 𝑅𝑡 < ℎ𝑡 𝐼𝑐

since delinquency has increased and 𝑅𝑡 is therefore simply zeroed. Secondly, 𝛿𝑡 = 0 implies 𝑅𝑡 = 𝐼𝑐 since the
delinquency level remained unchanged. Finally, 𝛿𝑡 < 0 implies 𝑅𝑡 ≥ 2𝐼𝑐 since 𝛿 − 1 extra payments are needed
to decrease the delinquency level beyond the instalment normally due at the time. When 𝑋𝑡 = 𝑥6, the account
remains semi-absorbed as long as 𝑔1(𝑡) ≥ 6, which implies either increasing or constant delinquency. For the sake
of prudence, the former case is assumed (i.e., 𝛿𝑡 > 0) and 𝑅𝑡 is zeroed accordingly. These ideas (barring 𝑥7) are
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combined into forecasting the receipt as

𝑅𝑡 =


−𝐼𝑐 (𝛿𝑡 − 1) if 𝛿𝑡 < 0

𝐼𝑐 if 𝛿𝑡 = 0

0 if 𝛿𝑡 > 0

. (8)

Note that truncation is effectively incorporated whenever an account transitions to the write-off state 𝑥7 at a supposed
time point 𝑡𝑤 that only exists when 𝑋𝑡𝑤 = 𝑥7 with 𝑡1 ≤ 𝑡𝑤 ≤ 𝑡𝑐. This implies zeroed receipts from that point
forward, i.e., 𝑅𝑡 = 0 for 𝑡 = 𝑡𝑤 , . . . , 𝑡𝑐 if 𝑡𝑤 exists.

Regarding the transition matrix of this Markov chain, note that the receipt history of each loan account
signifies a repeated observation of the underlying chain, as discussed in Anderson and Goodman (1957). Assuming
stationarity, the maximum likelihood estimates (MLEs) for the transition probabilities 𝑝𝑖 𝑗 from state 𝑖 to state 𝑗 are
then 𝑝𝑖 𝑗 = 𝑛𝑖 𝑗/𝑛∗𝑖 where 𝑛𝑖 𝑗 is the number of observed transitions across all time periods from state 𝑖 to 𝑗 and 𝑛∗

𝑖
is

the observed number of total transitions starting in state 𝑖. It is not necessary to estimate initial state probabilities
since the starting delinquency state is simply observed from the last available time point 𝑡0 of an account.

4 Calibrating the forecasting techniques to mortgage data

Short term matured loans would be ideal for this study, though only mortgage data was available; specifically, a
rich portfolio of ordinary home loans granted to the lower-income segment of the South African market. This
longitudinal dataset has monthly loan performance observations over time 𝑡 = 1, . . . , 𝑡0(𝑖) for account 𝑖 = 1, . . . , 𝑁

with 𝑁 = 61, 648 single-advance 20-year mortgage accounts. Mortgages originated from April 2004 (and beyond)
are extracted and observed up to December 2017, thereby yielding 3, 271, 534 raw monthly observations of loan
performance. The data itself includes actual cash flows (receipts), expected instalments (including credit life
insurance add-ons and fees, or special arrangements), variable interest rates, original loan principals, month-end
balances, write-off amounts, asset sale proceeds, and early settlement indicators.

Similar to Fig. 2, the difference between the maximum theoretical loan tenure and the remainder of the
contractual term is shown in Fig. 3 at every historical monthly loan cohort, with aggregates overlaid. The fact that
these aggregates are below the theoretical maximum for most cohorts demonstrates some additional right-censoring.
In particular, mortgage loans can exit the portfolio pre-maturely either via write-off or via early settlement, e.g.,
private sales, bond cancellations, or transfers. The volatility in both aggregates at earlier times attests to low sample
sizes, which is unsurprising for a fledgling loan portfolio at the time. This volatility gradually subsides until both
aggregates approach the theoretical maximum. This is sensible as more recently originated mortgages have less
time available to develop write-off/settlement outcomes than their older counterparts.

In estimating the various parameters of the forecasting techniques, the data is partitioned to form three specific
samples: 𝑆1 as the full dataset, 𝑆2 as the delinquents-only sample (all accounts that had at least one payment
in arrears historically, or were eventually written-off), and 𝑆3 as the write-offs sample. These samples and the
relationships amongst them are illustrated with a Venn diagram shown in Fig. 4. Some accounts will simply never
experience any delinquency and their exclusion in 𝑆2 and 𝑆3 removes an optimism bias during model training.
There is little practical benefit to finding the best time for loan recovery on a near risk-less portfolio. Furthermore,
recovery optimisation is only sensible for loans likely to become delinquent in the first place, which is predicated
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Fig. 3. The difference between the theoretically observable loan tenure (as measured at December 2017 in retrospect)
and the remaining contractual term across monthly loan cohorts. The mean and median loan ages per monthly
cohort are overlaid.

upon forecasting them as such. Likewise, it would be pointless to forecast cash flows of closed accounts, though
their repayment histories are retained for optimisation purposes. Lastly, this particular partitioning scheme is an
experimental proxy for risk compositions that differ across both product and risk appetites in reality. As an example,
mortgages typically have a much lower default rate than unsecured personal loans, which is catered for in our setup.

4.1. Calibrating the random defaults technique

The aforementioned probability of payment 𝑏 used in this technique is estimated from samples {𝑆1, 𝑆2, 𝑆3}
respectively as 𝑏1 = 87%, 𝑏2 = 81%, and 𝑏3 = 45%. The descending values are plausible given that each successive
sample contains a greater proportion of delinquency by design. Note that the random truncation of forecasts is
only sensibly performed for delinquent cases, which implies 𝑘 > 0. Therefore, ignoring 𝑆1, the distribution of the
maximum delinquency level per account, i.e., max 𝑔1(𝑡) across all historically observed periods 𝑡 = 1, . . . , 𝑡0, is
given in Fig. 5 for both samples 𝑆2 and 𝑆3. A few statistical distributions were tested against the data (see appendix),
though the exponential and two-parameter Weibull distributions are chosen for 𝑆2 and 𝑆3 respectively, denoted
as Exp(𝜆) and Weibull(𝜆, 𝜙). The MLEs of these parameters are 𝜆 = 0.1378555 for the exponential distribution,
scale 𝜆 = 24.449566 and shape 𝜙 = 1.688026 for the Weibull distribution. The truncation parameter then follows
either one of these distributions, i.e., 𝑘 ∼ Exp(𝜆) for both 𝑆1 and 𝑆2, as well as 𝑘 ∼ Weibull(𝜆, 𝜙) for 𝑆3, as part of
a comparative study. Note that the exponentially-distributed 𝑘 has a stronger truncation effect since it generally
yields lower values of 𝑘 than those yielded by its Weibull-distributed counterpart. This is also evidenced by the
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Fig. 4. A Venn diagram showing the relative sizes and overlaps amongst the three main samples of mortgage
accounts: 𝑆1 (full sample), 𝑆2 (delinquents), and 𝑆3 (write-offs). These samples are used both in training the
forecasting techniques and during the subsequent loss optimisation.

sample mean of 𝑘 estimated from 𝑆2 being 7.25 versus that from 𝑆3 being 21.58.

Fig. 5. A histogram and empirical density curve of the maximum delinquency level observed per account, drawn
for the samples 𝑆2 (delinquents) and 𝑆3 (write-offs). A theoretical distribution is then fit on each sample (see
appendix), from which the truncation parameter 𝑘 is drawn randomly for each loan account prior forecasting.
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4.2. Calibrating the Markovian defaults technique

The MLEs for the transition matrix used in this technique are estimated only from the samples 𝑆2 and 𝑆3, shown
respectively in Tables 1–2. Note that the estimates using 𝑆1 differ from those yielded by using 𝑆2 only in the first
row, which is sensible since 𝑆1 contains the same delinquent accounts (and therefore the same transitions) as 𝑆2 by
design. The estimates are realistic in that an account in any given delinquency state (barring write-off) can increase
its delinquency only by one level within a monthly period. Additionally, these estimates reflect the fact that an
account can significantly overpay and thereby recover either partially or entirely from distress. The probability
of staying within a starting state is greatest, though it decreases gradually as the delinquency level increases, at
least for states 𝑥0, . . . , 𝑥5. Simultaneously, the probability of becoming even more delinquent increases as the
starting delinquency level increases, which agrees with anecdotal experience. This is corroborated by the increasing
probability of write-off, effectively representing an increasing probability of truncation.

Ending state
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7

St
ar

tin
g

sta
te

𝑥0 0.9477 0.0521 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
𝑥1 0.0942 0.8074 0.0980 0.0000 0.0000 0.0000 0.0000 0.0004
𝑥2 0.0138 0.0502 0.7735 0.1621 0.0000 0.0000 0.0000 0.0004
𝑥3 0.0064 0.0084 0.0481 0.7372 0.1993 0.0000 0.0000 0.0006
𝑥4 0.0064 0.0030 0.0082 0.0488 0.6957 0.2371 0.0000 0.0007
𝑥5 0.0051 0.0020 0.0029 0.0081 0.0469 0.6846 0.2496 0.0009
𝑥6 0.0044 0.0006 0.0007 0.0009 0.0021 0.0095 0.9756 0.0061
𝑥7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table 1: Maximum likelihood estimates for the transition matrix of the multi-state Markov chain, estimated from
the delinquents sample 𝑆2. States 𝑥0, . . . , 𝑥5 correspond to 𝑔1 having the respective values 0, . . . , 5 (weighted
payments in arrears). States 𝑥6 (semi-absorbing) and 𝑥7 (absorbing) indicate 𝑔1 ≥ 6 and write-off respectively.

Ending state
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7

St
ar

tin
g

sta
te

𝑥0 0.8820 0.1126 0.0000 0.0000 0.0000 0.0000 0.0000 0.0054
𝑥1 0.0962 0.5387 0.3534 0.0000 0.0000 0.0000 0.0000 0.0117
𝑥2 0.0254 0.0453 0.4607 0.4600 0.0000 0.0000 0.0000 0.0086
𝑥3 0.0136 0.0103 0.0430 0.3824 0.5393 0.0000 0.0000 0.0114
𝑥4 0.0117 0.0032 0.0093 0.0412 0.3187 0.6048 0.0000 0.0112
𝑥5 0.0079 0.0037 0.0037 0.0053 0.0293 0.3181 0.6194 0.0127
𝑥6 0.0076 0.0006 0.0005 0.0007 0.0012 0.0035 0.9474 0.0385
𝑥7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table 2: Maximum likelihood estimates for the transition matrix of the multi-state Markov chain, estimated
from the write-offs sample 𝑆3. States 𝑥0, . . . , 𝑥5 correspond to 𝑔1 having the respective values 0, . . . , 5 (weighted
payments in arrears). States 𝑥6 (semi-absorbing) and 𝑥7 (absorbing) indicate 𝑔1 ≥ 6 and write-off respectively.

4.3. Assessing the quality of forecasts

Although forecasts are trained specifically on {𝑆1, 𝑆2, 𝑆3}, the forecast quality itself is examined herein by following
a more general 𝑘-fold cross-validation approach as additional assurance. However, our particular mortgage portfolio
did not have a single completed 20-year loan, against which the receipt forecasts could be validated across all
periods. Nonetheless, available loan data up to 𝑡0(𝑖) is still used within a 𝑘 = 5 setup, despite the censoring-related
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bias this likely introduces into measuring the forecast error. Moreover, our main objective is not to produce the
most accurate or robust forecasting model on the account-level, although that is certainly a worthwhile endeavour.
Instead, we focus on the more fundamental effect of using different forecasts when optimising the timing of loan
recovery, which by implication agrees with using multiple forecasting techniques.

Metric Random defaults (𝑇𝑎) Markovian defaults (𝑇𝑏)

Portfolio Arrears Rate (PAR) 6.715% 0.695%
Mean parameter %-difference 0.00012% -0.0068%

Table 3: The results of a few measures, calculated and averaged across a 5-fold cross-validation setup. The receipt
forecasts are compared against the actual receipts within the 𝑘 th subset per technique, having trained the technique
on the rest of the data. The PAR-metric expresses the sum of discounted shortfalls (essentially ‘arrears’) between
instalments and forecasts as a proportion of all gross advances, using 7% as the discounting rate. The actual
PAR-value is -1.64% on average, which is negatively signed due to large historical overpayments at earlier periods.

We experimented with a few measures that span forecast error, portfolio impact, and overall parameter stability,
with some of the results thereof given in Table 3. One of these measures is the PAR-metric, which reflects the
portfolio-wide arrears rate as implied when replacing historical receipts with each technique’s forecasts. The PAR of
the Markovian technique (𝑇𝑏) is much closer to the actual rate than that of the simpler technique (𝑇𝑎), which attests
to at least two advantages of the former. 𝑇𝑏 incorporates the possibility of curing and produces forecasts based on
the level of accrued delinquency, both of which are ignored by 𝑇𝑏. The forecast accuracy was initially assessed on
the account-level as well (using Mean Absolute Error), though was later deemed too onerous a measure for our
particular context. Regarding parameter stability, the mean %-difference in parameter estimates is reassuringly
close to 0, as calculated between using all data versus using each training fold in our cross-validation setup.

5 Loss-optimising recovery decision times: an empirical illustration

The parameters of each forecasting technique were previously estimated from three progressively worse samples,
thereby recognising that a portfolio’s historical risk composition itself will bias the forecast receipts. Naturally, the
LROD-procedure itself can be applied once onto each of these subsequent samples. The recovery threshold-locations
at which losses are minimised (if found) are expected to differ significantly, given the different risk profiles. That
said, this procedure is imagined to be applied on the entire loan portfolio when loss-optimising a bank’s recovery
decision in practice. It is, however, iteratively applied in this study as an experimental and artificial proxy for
various risk compositions found in reality, as if each sample is a stand-alone portfolio. Moreover, the sample
𝑆𝑖 from which a forecasting technique is parametrised (or trained) may differ from the sample 𝑆 𝑗 on which the
LROD-procedure is applied, where both 𝑖 and 𝑗 are indexes that denote samples {𝑆1, 𝑆2, 𝑆3}. Apart from using data
more efficiently, this approach approximates the reality of a portfolio’s historical risk composition changing in the
future. As an example, training a forecasting technique on 𝑆3 but optimising recovery thresholds on 𝑆1 simulates
the context of a proportionally lower-risk portfolio (𝑆1) undergoing heavy financial strain in the future (by using
forecasts trained from 𝑆3). Additionally, this proposed setup aligns with the IFRS 9 accounting standard, which
requires expected credit losses to be estimated based on various macroeconomic scenarios, as stated in IFRS 9
(2014, par. 5.5). Therefore, the experimental setup is illustrated as a 3 × 3 matrix in Table 4 wherein each cell 𝑠𝑖 𝑗
represents the results from a specific scenario. Greater values of 𝑗 denote riskier portfolios, while greater values of
𝑖 represent more pessimistic forecasts.
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𝑗

𝑆1 𝑆2 𝑆3

𝑖

𝑆1 𝑠11 𝑠12 𝑠13
𝑆2 𝑠21 𝑠22 𝑠23
𝑆3 𝑠31 𝑠32 𝑠33

Table 4: The experimental setup containing nine scenarios wherein row 𝑖 represents the sample used for
parametrising a forecasting technique, and column 𝑗 denotes the sample on which optimisation is performed.

On interpreting the following results, the LROD-procedure’s particular loss model assumes that a portion of the
expected balance and arrears amount are immediately lost when entering (𝑔, 𝑑)-default. In effect, this equates the
actual default and write-off events to a single point, which implies that a loss-optimised threshold is not necessarily
the supposed starting point of legal proceedings, but rather the optimal ending point thereof. For that matter, finding
the optimal starting point suggests that the length of the subsequent workout period will vary. Other than data
challenges, there are a few operational and legal factors that may influence the workout length, which could require
a more comprehensive loss model than the one used in this study. Therefore, finding the best starting point of legal
proceedings is left as an avenue of future investigation.

5.1. Optimisation results using 𝑆1, 𝑆2, and 𝑆3 respectively

The first set of results are presented in Fig. 6 wherein all loss curves exhibit minima at certain thresholds 𝑑∗ when
loss-optimising the recovery decision on the full sample 𝑆1, i.e., results based on the first column in Table 4.
Optimising on 𝑆1 represents a historically lower-risk portfolio, while training forecasts from {𝑆1, 𝑆2, 𝑆3} represents
increasingly dire credit risk scenarios in future. Specifically, the loss minimum increases both in value as well
as occur at decreasing thresholds as the forecast scenario worsens, i.e., progressing from 𝑠11 → 𝑠21 → 𝑠31 when
parametrising the forecasting technique. Furthermore, overall losses across all thresholds increase as the forecast
scenario deteriorates, which is evidenced by the steeper slope of the loss curve after having reached its minimum at
𝑑∗. This agrees with the intuition of cutting losses sooner rather than later when facing increasingly higher credit
risk on future cash flows. Moreover, the 𝑠31-results yielded the lowest thresholds 𝑑∗ = {4, 6} respective to each
technique, whose values seem close to the current practice of using 𝑑 = 3 with the 𝑔0-measure as a default definition.
Therefore, training forecast models from 𝑆3 may serve as a conservative ‘boundary’ case, thereby deliberately
introducing risk aversion when optimising the recovery decision itself.

Regarding the techniques, the base scenario 𝑠11 clearly gives two very different loss minima at 𝑑∗ = 5 for
random defaults versus 𝑑∗ = 13 for Markovian defaults. Incidentally, the latter also yielded lower loss rates at less
stringent (higher) values of 𝑑∗ in general, when compared to those given by random defaults across all scenarios 𝑠𝑖1.
Moreover, the difference between 𝑑∗ yielded by each technique becomes smaller as the forecast scenario worsens.
In fact, Markovian defaults for 𝑠31 gives a loss curve that is similarly shaped to those produced by random defaults
irrespective of forecast scenario, which suggests some connection. Consider that the underlying transition matrix
in Table 2 is generally much more transient than the one in Table 1, with far greater conditional probabilities of
transiting to worse states. As the possibility of curing back to a better state declines, the Markovian technique
increasingly resembles the simpler technique in effect. The latter provides inherently less realistic forecasts since it
deliberately ignores curing, which means the larger cash flows associated with curing events are not generated.
Since the Markovian forecasts are demonstrably more accurate, they are therefore clearly preferable, though the
random forecasts are kept for expositional purposes, including model risk.
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Fig. 6. Loss rates across recovery thresholds 𝑑 for measure 𝑔1 on the full sample 𝑆1 across various forecasting
scenarios, using the random defaults technique with 𝑘 ∼ Exp(𝜆) truncation, and using the Markovian defaults
technique independently. Solid lines indicate a base scenario wherein both optimisation and training forecasts use
the same sample. Zoomed plot and encircled points show global minima for each loss curve, also bracketed in the
legend.

The same trends hold true in Figs. 7–8 when optimising on samples 𝑆2 and 𝑆3 instead, i.e., scenarios from the
second/third columns in Table 4. As the main result, optima are still obtained (though at different locations) across
all techniques and forecast scenarios, thereby demonstrating the LROD-procedure’s sensitivity to the inherent risk
profile of a portfolio. In particular, optimising across increasingly riskier portfolios (𝑆1 → 𝑆2 → 𝑆3) remains viable,
even if the loss curves become somewhat vertically compressed relative to lower-risk samples. Moreover, 𝑑∗ seem
to increase across riskier samples. The base scenarios {𝑠11, 𝑠22, 𝑠33}, i.e., the diagonal in Table 4, demonstrate this
phenomenon with loss minima found at 𝑑∗ = {5, 10, 35} for random defaults and 𝑑∗ = {13, 23, 35} for Markovian
defaults. That said, the recoveries realised from selling the underlying asset largely explains this phenomenon.
Since these recoveries are generally recognised only at the write-off point after a typically long workout period,
the suddenly large receipt will dramatically decrease the delinquency level at the last period. Therefore, when
optimising on 𝑆3, it is indeed statistically better to wait strategically and collect some of these large cash flows. This
is evidenced by the relatively high threshold 𝑑∗ = 35, which indicates the optimal ending point of legal proceedings.
The fact that both loss minima and their thresholds change when optimising on 𝑆3 → 𝑆2 → 𝑆1 merely attests to the
dilution of written-off cases as a proportion of the overall portfolio.

While the CD-measure 𝑔1 is primarily used in this study, loss-optimality was also found for the other two
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Fig. 7. Loss rates across recovery thresholds 𝑑 for measure 𝑔1 on the delinquents sample 𝑆2 across various
forecasting scenarios, using the random defaults technique with 𝑘 ∼ Exp(𝜆) truncation, and using the Markovian
defaults technique independently. Graphical formatting follows that of Fig. 6.

measures 𝑔2 and 𝑔3 across the experimental setup for both forecasting techniques. Interestingly, the 𝑑∗ yielded by
𝑔2 and 𝑔3 are much less varied than those yielded by 𝑔1, which suggests these measures are not as sensitive as 𝑔1 to
the choice of technique, risk level, or forecast scenario. Specifically, the loss minima for 𝑔2 and 𝑔3 occur within the
threshold ranges [1.2, 1.9], [1.3, 2.3], and [3.2, 6] when optimising respectively across {𝑆1, 𝑆2, 𝑆3}. However, the
loss minima themselves are greater than those yielded by 𝑔1 with the percentage difference thereof averaging at
3.6%. Evidently, the LROD-procedure suggests that the 𝑔1 measure is objectively the best delinquency measure for
signalling loan recovery – at least for this particular mortgage portfolio.

5.2. A Monte Carlo-based refinement for analysing the variance of optima

Given that forecast receipts are inherently probabilistic, their subsequent use within a delinquency measure injects
uncertainty into the latter’s output as well as into the optimisation itself. Therefore, any loss minimum that is found
at a certain threshold may, in fact, be spurious. As an example, a random but systemic perturbation at some time
point in the underlying forecasts can produce an alternative minimum at an entirely different threshold, which has
implications for the overall precision of the optimisation. Confidence in this supposed minimum can be enhanced
by conducting a variance study of sorts on the loss curve. One approach to this problem is to produce multiple
sets of forecasts of the portfolio’s future cash flows using simple Monte Carlo simulation and the laws of large
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Fig. 8. Loss rates across recovery thresholds 𝑑 for measure 𝑔1 on the write-offs sample 𝑆3 across various forecasting
scenarios, using the random defaults technique with 𝑘 ∼ Weibull(𝜆, 𝜙) truncation, and using the Markovian defaults
technique independently. Graphical formatting follows that of Fig. 6.

numbers. Each iteration thereof will have its own independent loss curve using a particular set of random forecasts
generated from a specific technique. As an example, consider 𝑛 such Monte Carlo trials, thereby resulting in 𝑛

loss rate estimates at each threshold 𝑑, from which a sample mean 𝜇𝑑 is calculated at each 𝑑. The corresponding
sample variance 𝑠2

𝑑
is estimated, which is finally used in constructing a standard 99% confidence interval for the

mean as 𝜇𝑑 ± 2.58 𝑠𝑑/
√
𝑛.

Monte Carlo simulation is illustrated in Fig. 9 for both forecasting techniques using the 𝑠11 base scenario
after 500 runs. The forecasts yielded by the simpler technique appear to be quite robust since the resulting loss
rates had relatively little variation and retained the overall shape of the original loss curve in Fig. 6. These results,
particularly the difference in the widths of the confidence intervals per technique, attest to the bias-variance trade-off
phenomenon in statistical learning, as the model’s complexity varies. More specifically, the simpler technique
with its relatively invariant forecasts is also much less accurate than the Markovian technique. Reassuringly, the
lowest sample mean still occurs at 𝑑∗ = 5 as it did previously. However, the same cannot be said for the Markovian
forecasts since the minimum now occurs at 𝑑∗ = 10 (down from the previous 𝑑∗ = 13). While the overall shape of
the Markovian loss curve is still the same, the loss rate estimates exhibit greater variance than those of the simpler
technique. Moreover, the loss curve is relatively flat in the region near 𝑑∗ = 10 (as in Fig. 6), which helps explains
the ‘ease’ at which the minimum shifted in this particular scenario.
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Fig. 9. Average loss rates (solid lines) across thresholds 𝑑 for measure 𝑔1, estimated from 𝑛 = 500 Monte Carlo
trials, for scenario 𝑠11. Forecasts are iteratively and independently made using the random defaults technique with
𝑘 ∼ Exp(𝜆) truncation, and the Markovian defaults technique. The averages are accompanied by a 99% shaded
confidence band with error bars. Zoomed plots show global minima for each loss curve, also bracketed in the
legend. Box-and-whiskers mini-plots within the zoomed plots summarise the overlaid loss estimates at each 𝑑.

Conducting these Monte Carlo simulations clearly refines the LROD-procedure one step further by controlling
for the uncertainty within forecasts. That said, it is not necessarily true that the average minimum loss will always
occur at a different threshold, as it did in Fig. 9. In fact, the average minima remained at the same thresholds as they
did in Figs. 7–8, when running these Monte Carlo simulations for the other base scenarios 𝑠22 and 𝑠33 in Fig. 10,
regardless of forecasting technique. Moreover, the general shape of each loss curve Fig. 10 remained the same, all
of which provides combined assurance on the precision of the optimisation results. Lastly, the practitioner may
consider a smaller and more focused range of thresholds, especially within the general region of optima, when
conducting these Monte Carlo simulations in practice. In contrast, we chose a larger range to demonstrate the
LROD-procedure (and its viability) in a principled manner as a "proof of concept".

6 Conclusion

The timing of the recovery/foreclosure decision is empirically illustrated as a delinquency-based optimisation
problem, such that loans are forsaken neither too early nor too late, if at all. The present study refines and extends
our previous simulation-based work in Botha et al. (2020), though using a real-world mortgage portfolio from the
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(a) Scenario 𝑠22 (delinquents)

(b) Scenario 𝑠33 (write-offs)

Fig. 10. Average loss rates (solid lines) across thresholds 𝑑 for measure 𝑔1, estimated from 𝑛 = 500 Monte Carlo
trials, for scenarios 𝑠22 and 𝑠33. Forecasts are iteratively and independently made using the random defaults
technique with 𝑘 ∼ Exp(𝜆) truncation in (a) and with 𝑘 ∼ Weibull(𝜆, 𝜙) truncation in (b), with Markovian forecasts
provided in both panels. Graphical formatting follows that of Fig. 9.
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South African market. However, real-world datasets are often right-censored such that many accounts have not
yet reached contractual maturity, which poses an additional and non-trivial challenge. In fact, experimentation
shows that not treating a portfolio for censoring leads to uninteresting and unintuitive results during optimisation.
While an uncensored portfolio would be ideal, the paucity of both data and lenders willing to avail sufficiently rich
data makes this difficult. Moreover, most portfolios are actively grown by banks, which causes right-censoring
and implies that recovery optimisation will likely remain problematic in practice. We demonstrate a more feasible
remedy wherein available data is first used to forecast the residual cash flows of each account up to its contractual
maturity. This step ‘completes’ the portfolio and enables the practical use of the LROD-procedure for optimising
the bank’s recovery decision.

As a secondary contribution, two forecasting techniques are proposed, parametrised, and applied on the
portfolio before optimisation. This includes a simple probabilistic technique and a more sophisticated eight-state
Markov chain, both of which are subsequently used in forecasting cash flows independently. However, the manner
in which receipts are forecast will greatly affect the portfolio’s subsequent credit risk profile, which influences
the timing of loan recovery at which the minimum loss is subsequently attained. Accordingly, forecasts are
artificially differentiated by training them from different account subsets (or samples), where each sample contains a
progressively greater proportion of delinquent accounts by design. Effectively, each sample approximates a different
risk composition typically found in reality, e.g., mortgages vs. unsecured loans, as if each sample is a stand-alone
portfolio. Furthermore, the sample on which we optimise may differ from the sample from which forecasts are
trained. This simulates the reality of a portfolio’s historical risk composition changing in the future by forecasting
receipts accordingly, while also making more efficient use of data. Additionally, this setup aligns with IFRS 9 by
using various macroeconomic scenarios when estimating expected losses.

Within each scenario of this experimental setup, we find a so-called ‘Goldilocks’-region that contains an ideal
delinquency threshold at which the portfolio loss is minimised. This setup demonstrates that the LROD-procedure
is sensitive to the historical risk profile of a portfolio. Moreover, riskier forecasts yield smaller (or more stringent)
optimal delinquency thresholds, which agrees intuitively with cutting losses sooner rather than later as risk
expectations deteriorate. In addition, we contribute a Monte Carlo-based procedural refinement that can provide
additional assurance on the stability of optima, especially given the uncertainty underlying all forecasts. To
this point, the choice of forecasting technique itself affects recovery optimisation, which is demonstrated by the
significant differences between each technique’s optima. By design, the Markovian technique is much more realistic
since it allows for curing backwards to lower delinquency levels, which affects the size of forecasts. Conducting a
5-fold cross-validation further verified the superior quality of Markovian forecasts. However, the simpler technique
is retained for expositional purposes since it clearly demonstrates the dangers of model risk when forecasting.
That said, an ensemble of forecasting techniques suggests that a meta-learning approach may be viable, which can
certainly be further examined in future work. For example, optima can be averaged across technique and forecast
scenario using a weighting scheme of sorts. Besides optimisation, there is also practical value for developing these
forecast models within an IFRS 9-compliant loss provisioning context.

Regarding limitations, historical cash flows are surely affected by past collection strategies (and their subsequent
success or failure) that were employed by the bank at the time. Therefore, training a forecast model from the same
data carries the unavoidable risk of embedding the effects of previous strategies into the optimisation, as additional
data ‘noise’. Future research can perhaps focus on controlling for the bank’s strategic influence on these cash flows
over time when forecasting receipts. Another avenue of future study is to explore a finer-grained segmentation
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scheme during the optimisation step. Partitioning data into three increasingly riskier samples (as we did) correctly
assumes homogeneity within each sample. However, recovery decision times can surely be further optimised
within certain segments of the portfolio, instead of yielding a portfolio-wide criterion. This may attenuate the
LROD-procedure further to the idiosyncrasies of a portfolio, though one will have balance greater segmentation
against too little data within a segment. Furthermore, future work can certainly explore a less censored (and
therefore richer) portfolio of shorter-term loans, which can reduce the necessary forecasting extent as well as
improve the forecasting ability. Lastly, future studies can expand upon the current loss model by incorporating
dynamic cost components more explicitly, e.g., funding costs. The static loss rates 𝑟𝐸 and 𝑟𝐴 may be converted into
proper LGD-models instead such that loss rates are estimated from the time of entering our particular (𝑔, 𝑑)-default
state. Pursuing this particular avenue will likely intersect with the literature on credit risk modelling and IFRS 9,
which can enhance model sophistication given that the field itself is currently in vogue.
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Appendix

6.1. Failing to forecast before recovery time optimisation

A real-world loan portfolio typically has immature accounts, i.e., the receipt vector 𝑹 =
[
𝑅1, 𝑅2, . . . , 𝑅𝑡0

]
of

an immature account only contains observed elements from data up to the most recent time point 𝑡0 < 𝑡𝑐. The
remaining future elements 𝑡1, . . . , 𝑡𝑐 are unobservable and deliberately ignored in this exercise to demonstrate
the absence of forecasting in the results of the LROD-procedure. Furthermore, the balances of each account are
observed at relevant time periods and simply multiplied with a static loss rate 𝑙𝛼 ∈ [0, 1], as a simpler loss model.
More specifically, the most recent balance at time 𝑡0 is used for a (𝑔, 𝑑)-performing account whilst the balance at
the default time 𝜏 ≤ 𝑡0 is used for a (𝑔, 𝑑)-defaulting account, as signalled by a particular (𝑔, 𝑑)-configuration. In
both cases, the observed balance is simply discounted back to time 𝑡 = 1 (loan origination) using the same 7%
risk-free rate. Selecting a range of loss rates at will, the LROD-procedure is then iteratively applied on the entire
portfolio. The resulting loss curves are presented in Fig. 11 using the CD-measure 𝑔1. There are no significant
differences in the shapes of loss curves for loss rates exceeding 50%.

No global minima in losses exist at any particular threshold, regardless of the chosen loss rate. Instead, all
losses tend toward a certain asymptote that is influenced by the loss rate, which renders the optimisation of the
recovery threshold a moot point. Moreover, the resulting loss curves suggest that one should simply ignore any
accrued delinquency, except for very low thresholds 𝑑 ≤ 2, which coincide with the greatest losses. Although
unusual, consider that the majority of the portfolio’s receipts are still pending. The LROD-procedure’s particular
loss model recognises this and logically suggests never to recover a single account. Regardless, ignoring accrued
delinquency at large is intuitively false and ill-advised for a credit risk-based business like a bank. Instead, this
result rather attests to the breakdown of the LROD-procedure itself when foregoing the necessary forecasting of a
loan portfolio’s cash flows.

6.2. Fitting statistical distributions to the truncation parameter 𝑘

In calibrating the random defaults technique to forecast cash flows, a truncation effect simulates the reality that
some accounts will simply never resume payment. This is achieved when the forecast receipts are zero-valued
after a certain point 𝑡𝑘 coinciding with reaching a certain 𝑘-threshold in measured delinquency. In estimating
this 𝑘 truncation parameter, the maximum observed delinquency (using 𝑔1) per account is calculated with the
resulting empirical distributions of these maxima shown in Fig. 5, respective to each sample 𝑆2 (delinquents) and
𝑆3 (write-offs). Several candidate statistical distributions are then fit using maximum likelihood on each respective
sample, with the fitted probability density function overlaid on the histogram, as shown in Fig. 12 for some of these
candidates.

In selecting the best fit, both Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests are conducted
for each candidate distribution against the standard 5% significance level. However, all of the null hypotheses are
rejected for both 𝑆2 and 𝑆3, presumably due to the heavily right-skewed distributions of maxima in both cases.
Secondly, the Akaike Information Criterion (AIC) reveals that the Dagum, log-normal, Pareto, Weibull, exponential,
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Fig. 11. Losses (expressed as a % of the summed principals) across default thresholds 𝑑 for the CD-measure 𝑔1,
using a range of static loss rates 𝑙𝛼 ∈ [0, 1] and an untreated real-world loan portfolio.

and gamma distributions were amongst the best fitting candidates for 𝑆2. Though the Dagum distribution had
the best AIC, the exponential distribution is chosen owing to its simplicity and its somewhat greater popularity
in statistical literature. Furthermore, the exponential distribution is strictly decreasing for 𝑥, which is deemed
more appropriate given the histogram’s shape. Similarly, the AIC for 𝑆3 suggests that the Dagum, Burr (Type 12),
Weibull, Gumbel, Gamma, and Logistic distributions were the better-fitting candidates. Of these, the Weibull
distribution is chosen since it best approximates the histogram visually without lending too much credence to the
left-tail though still yielding a sufficiently heavy right-tail.
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(a) Using the delinquents sample 𝑆2

(b) Using the write-offs sample 𝑆3

Fig. 12. Candidate statistical distributions that are fit on the maximum of the weighted payments in arrears
max 𝑔1(𝑡) observed per account across historical periods 𝑡 = 1, . . . , 𝑡0. These maxima are respectively calculated
from the 𝑆2 sample (delinquents) in (a) and 𝑆3 (write-offs) in (b), with a histogram of maxima given in each case.
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