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Abstract 

The paper presents a comparative study between aluminum fumarate metal–organic framework 
(Al-FumMOF) and a novel coal fly ash derived aluminum MOF (CFA-FumMOF) with their 
respective MOF-derived carbons (MDCs) for electrochemical performance in supercapacitor 
application. In the half-cell configuration, Al-FumMOF possessed the highest specific capacity 
value of 28.62 mAh g−1 and CFA-FumMOF with 9.88 mAh g−1 at a specific current of 0.5 A 
g−1 in 6 M KOH electrolyte. The carbon derivative from CFA-FumMOF possessed the highest 
specific capacitance of 306.59 F g−1 at 0.5 A g−1 as compared to carbon obtained from Al-
FumMOF (111.94 F g−1). Each MOF was prepared with its respective carbon derivative for an 
asymmetrical capacitor device with a specific capacity of 5.09 mAh g−1 at 0.5 A g−1. 
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1 Introduction 

Fossil fuels remain the dominant supplier of electrical energy worldwide [1]. Combustion of 
fossil fuel has proved to be cheap and reliable way for generating electricity. The approach has 
a drawback of being the single largest global greenhouse gas producer with an average of 
1000 g lifecycle CO2 emission per kWh of electricity [2,3,4]. For such a stance, the world has 
encountered social, political, and environmental strain to lower carbon emissions [5,6,7,8]. 
Many countries have endorsed regulations that involve industries with a high carbon footprint 
to acquire carbon allowances to regulate emissions and promote accountability. This has led 
many countries to enter a concord of Kyoto and Paris agreement that aims for the reduction of 
greenhouse gasses emitted by fossil fuels by 2060 [9, 10]. This would require a significant 
change in energy harnessing and a transition toward renewable energy (RE). The world energy 
outlook reported that for a global temperature rise to be limited to 2 °C by 2100, the world 
needs to attain carbon–neutral energy in which RE provides 60% of energy by the end of the 
century and 715 million electric vehicles utilized by 2040 [11,12,13]. This is a clear indication 
that the world is making a transition toward REs. Currently, many countries have amalgamated 
intermittent RE in their electrical power systems having benefits of improved power quality, 
voltage profile, stability, and reliability [14,15,16,17]. However, RE have minor drawbacks 
such as the unpredictable nature of the resources of RE, which gives a variable energy output 
with uncontrollable availability. The REs are also restricted and in most cases situated in a 
distance from load centers [18, 19]. Such REs are known as variable renewable energy sources 
(VRES), which are namely solar and wind [18, 20]. To resolve these issues, grid-compatible 
energy storage systems need to be developed, which consist of high capacity, high energy 
density, long-life cycle, reliability, and cost-effectiveness [11, 21]. Having energy storage 
systems enables efficient economic performances, load leveling, peak shaving, power quality 
improvement, and reliability [21]. Energy storage systems can be categorized as mechanical, 
chemical, thermal, electrical, and electrochemical [22,23,24]. Electrochemical is the most 
common and reliable energy storage systems, which includes Lithium-ion batteries (LIBs) and 
Supercapacitors (SCs) [25,26,27]. LIBs have a drawback in exhibiting high energy density, 
good rate performance, and low power density, whereas SCs have high-rate performance and 
low energy density [28]. Since the main drawback of developing SCs is energy density, it is 
paramount to find new materials that are cost effective and can improve the energy density 
[21]. There have been studies in the use of waste materials such as biomass, polyethylene 
plastic, and unconventional materials, which are converted to porous materials for SCs 
application [29,30,31]. Xu et al. reported on activated carbon from the apricot shell at 6 M 
KOH giving a high double layer capacitance of 339 F g−1 [32]. Rufford et al. reported on 
activated carbon from sugarcane bagasse giving a specific capacitance of 300 F g−1 [33]. Porous 
materials such as Metal Organic Frameworks (MOFs) have also been successfully applied and 
developed for SCs. MOFs are prepared by chemical coordination between metal and organic 
linkers to create an open crystalline framework with permanent porosity [34, 35]. Most have 
been used as electrodes materials providing acceptable electrochemical performance due to 
their tunable porosity. They can also be utilized as sacrificial templates to obtain metal oxides 
and highly porous carbons that can be used in SCs applications [36]. Metal oxides can be 
obtained through calcination under air whereas carbon materials can be obtained through wet 
impregnation or direct carbonization under an inert atmosphere. There are records of specific 
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capacitance as high as 232 F g−1 at 0.1 A g−1 of MOF-derived carbons [37]. In this study, the 
authors reported a comparative SCs study on the use of waste derived MOF, from coal fly ash 
(CFA-FumMOF), with structural properties similar to Aluminum fumarate MOF as candidates 
for electrode material. These materials undergo direct carbonization process to obtain MOF-
derived carbons (MDCs) material. These MDCs are used as negative materials in an 
asymmetrical device in which their respective parent (MOFs) are the positive electrode. It is 
noteworthy to the reader that the morphological, structural, and textural properties of these 
materials have been discussed in a previous report [51] and this report will only cover the 
electrochemical performance of the materials. This communication covers the proof of concept 
in utilizing waste materials obtained from green synthesis of MOFs and derived carbons in the 
application of SCs. 

2 Experimental 

2.1 Material 

Polyvinylidene fluoride (PVDF), Sulfuric acid (98%), and Hydrochloric acid (37%) were 
obtained from the Associated Chemical Enterprise (ACE) in South Africa. A deionized water 
was used for all the experiments. Argon (99%) was supplied from Afrox. 

2.2 Preparation of activated carbon from cocoa 

Preparation and characterization methods of CFA-FumMOF, Al-FumMOF and their carbon 
derivatives (CFA-MDC and Al-MDC) have been described in our previous report [51]. AC-
Cocoa was prepared as follows: The cocoa pod husks (CPH) waste was collected from a 
dumping site in farmland and adopted as raw material. The CPH was repeatedly washed with 
acetone and distilled water to remove all the dirt and dried at 60 °C for 24 h in an electric oven. 
The cleaned and dried CPH was sliced into smaller pieces, 10 g of the sliced material was 
soaked in 100 mL of distilled water containing 10 mL of 0.5 M sulfuric acid and transferred 
into a 120 mL stainless steel autoclave unit which was then sealed and heated up at 160 °C for 
12 h. The product was filtered and dried at 80 °C for another 48 h. The dried product was mixed 
together in an agate mortar with potassium hydroxide pellet in a mass ratio of 1:1 before being 
carefully placed in a horizontal tube furnace for carbonization at a ramping rate of 5 °C min−1 
to 700 °C under a continuous flow of argon (300 sccm) for 60 min. Afterward, the carbonized 
material was washed with 3 M hydrochloric acid and distilled water until a neutral pH value 
was reached. The final product was dried at 60 °C for 24 h in an electric oven, producing 
activated carbon named AC-Cocoa. 

2.3 Electrochemical investigation 

Three and two-electrode configuration systems were used to conduct the electrochemical 
measurements. The electrodes were prepared by mixing 80% of the active material, 10% of 
conductive carbon acetylene black (CB), and 10% of Polyvinylidene fluoride (PVDF) as a 
binder and using a few drops of 1-methyl 2-pyrrolidone (NMP) to make a homogenous slurry. 
A clean nickel foam was used as a current collector and the slurry was pasted on an area of 
1.0 × 1.0 cm2 and dried at 60 °C for 12 h. Their capacitive performance was performed with 
the aid of a Bio-Logic VMP300 potentiostat (Knoxville TN 37,930, USA) controlled by EC-
Lab V1.40 software in a three-electrode set-up. A glassy carbon was used as a counter 
electrode, Ag/AgCl as a reference electrode and working electrode consisting of the active 
material. The cyclic voltammetry (CV) of the as-prepared samples was performed at different 
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scan rates ranging from 5 to 100 mV s−1 at a potential window ranging from 0.0 to 0.4 V vs. 
Ag/AgCl. The galvanostatic charge–discharge (GCD) was performed at specific current range 
of 0.5 to 10 A g−1 at a potential window range of 0.0 to 0.4 V vs. Ag/AgCl. The specific capacity 
of a single electrode was calculated via a GCD profile using Eq. (1) below [50] 

           (1)  

where Qs is the specific capacity, Id as specific current (A g−1) and ∆t is the discharge time (s). 
The specific capacitance Cs was calculated as follows [52]: 

           (2)  

With Δt as change in discharge time and ΔV is a potential difference. The coulombic efficiency 
(CE) was calculated using the equation below: 

           (3)  

where tc is the charging time and td is the discharging time. 

The electrochemical impedance spectroscopy was measured using an open circuit potential of 
frequency range from 10 mHz—100 kHz. The asymmetric hybrid device was assembled using 
the as-prepared Al-fumMOF or CFA-FumMOF as a positive electrode and their respective 
MDCs (Al-MDC and CFA-MDC) as a negative electrode with a thickness and diameter of 0.2 
and 16 mm, respectively, in a standard 2032 grade coin cell using Watman Celgard paper-
based separator and 6 M KOH as electrolyte. The charge balance Q+  = Q- was used to balance 
the mass of each electrode. The MOF materials exhibited Faradic behavior with specific 
capacity (Qs) calculated by using the GCD curve as shown in Eq. (1) above. The charge 
balancing equation was written as follows [50]: 

       (4)  

where, Q+ and Q- is stored charge in positive and negative electrodes, respectively. Qs+ and Cs- 
are the specific capacity and capacitance for the positive and negative electrodes, respectively. 
ΔV_ is the potential window for the negative electrode and masses of the positive and negative 
electrodes are represented as m+ and m-, respectively. The prepared cell operated at a potential 
window of 0.0 to 1.5 V as influenced by the operating potential of the prepared electrodes. The 
specific capacity (Qs) of the asymmetric device was calculated using Eq. (1). 

The specific energy (Ed) and specific power (Pd) of the device were calculated as follows [50]: 

           (5)  
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           (6)  
 

 
 
Fig. 1. a CV curves at a scan rate of 20 mV s-1. b GCD curves at a specific current of 0.5 A g-1. c Specific 
capacity against specific current. d Cycling performance. e EIS Nyquist plot for Al-FumMOF and CFA-
FumMOF, respectively, in 6 M KOH in a positive potential window. f, g EIS Nyquist plot experimental and 
fitting, and its equivalent circuit for Al-FumMOF 
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3 Results and discussion 

3.1 Three electrode measurements of prepared MOFs and their derived carbons 

The electrochemical performance of the synthesized MOF materials was evaluated using a 
three-electrode configuration in 6 M KOH electrolyte. Figure 1a represents the cyclic 
voltammetry (CV) curves at a scan rate of 20 mV s−1 in the positive potential window range of 
0.0 to 0.4 V vs. Ag/AgCl for Al-FumMOF and the novel CFA-FumMOF. The CV curves 
exhibit two redox peaks, which are attributed to the electrochemical redox reaction of the 
metallic Al (with numerous valence states) and the concentration of KOH electrolyte, which 
consists of the OH− group with the highest ionic conductivity among anions. The depicted 
redox peaks from the CV curves are associated with the Faradic nature of the Al-FumMOF. 
The novel CFA-FumMOF also exhibited the Faradic behavior observed from the pristine 
material. The oxidation peaks were observed at 0.34 V and 0.35 V, and reduction peaks at 
0.24 V and 0.20 V for Al-FumMOF and CFA-FumMOF, respectively. The galvanostatic 
charge/discharge (GCD) curves in Fig. 1b at a specific current of 0.5 A g−1 exhibit a non-linear 
curve with a potential plateau, which corresponds with the CV curves indicating battery-type 
SCs. By observation of both CV and GCD curves, it can be seen that the current response and 
discharge time of Al-FumMOF are higher than the novel CFA-FumMOF. This can be due to 
the presence of Fe3+ metal embedded within the CFA-FumMOF structure. Our group reported 
on the structural properties of CFA-FumMOF and speculated on the isomorphic substitution 
of Fe toward Al in the MOF structure [51]. It is expected that the presence of Fe would increase 
conductivity and stability as previous reports indicate [53, 54]; however, in this instance the 
opposite is true. The concept of bimetallic MOFs to enhance electrochemical performance 
relies on various principles: (i) quantity of the dopant or new metal introduced; (ii) the 
structural and morphological changes of the MOF after the introduction of the new metal; and 
(iii) synergy of the two metals within the structure [38,39,40,41]. 

Due to these reasons, there are no free holes created that improved the electrical conductivity 
instead, the Fe ion operates as in any Fe-based MOF, which has poor electrochemical 
performance. As a result, the presence of Fe ions inhibits the flow of electrons. Figure 1c 
depicts the specific capacity against specific current evaluated using Eq. (1) whereby both 
materials indicate good rate capability with a gradual decrease in specific capacity due to 
inability of the electrolyte ions to access the pores. Al-FumMOF possesses the highest specific 
capacity value of 28.62 mAh g−1 compared to that of CFA-FumMOF with 9.88 mAh g−1 at a 
specific current of 0.5 A g−1. The electrochemical performance of Al-FumMOF and the novel 
CFA-FumMOF is relatively better when compared to other reported Al-based MOFs [46, 48, 
49]. Previous reports on aluminum-based MOF known as MIL-53(Al) indicated the specific 
capacitance of 6.5 F g−1 at 0.5 A g−1; this can also be attributed to its agglomerated morphology 
as opposed to the laminar structure possessed by both Al-FumMOF and CFA-FumMOF, which 
enables ease transportation of electrolyte ions. Figure 1d shows the coulombic efficiency for 
Al-FumMOF and CFA-FumMOF in 2000 cycles at 2 A g−1. The half-cell configuration 
maintained efficiency of 99.31% for Al-FumMOF and 98.52% for CFA-FumMOF. Al-
FumMOF has high cycling stability as compared to the novel CFA-FumMOF. It is also 
noteworthy that the synthesized MOFs in this paper are achieved through green chemistry as 
opposed to other Al-based MOFs. Figure 1e presents the EIS Nyquist plot of Al-FumMOF and 
CFA-FumMOF. It can be observed from the figure that Al-FumMOF exhibits a short diffusion 
length stipulating a fast charge transport as compared to CFA-FumMOF. The EIS was used to 
obtain Equivalent series resistance (ESR), which is the total resistance of the ionic resistance 
of the electrolyte, the electrolyte/electrode interface resistance and electrode/current collector 
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interface resistance [52]. The ESR values were obtained from Z ‘ axis intersect and are 0.21 Ω 
and 0.44 Ω for Al-FumMOF and CFA-FumMOF, respectively. The ESR value of Al-FumMOF 
corroborates the good electrochemical performance as compared to CFA-FumMOF. The 
charge transfer resistance (Rct) is associated with the charge transfer between the interfaces and 
was obtained from the semi-circle at high-frequency region with the values of 0.08 and 0.12 
for Al-FumMOF and CFA-FumMOF, respectively. The EIS Nyquist plot of Al-FumMOF was 
fitted with the circuit presented in Fig. 1g.The ESR value from the circuit is represented by R1 
at a high-frequency region with charge transfer resistance (Rct) represented by R2. R3 is 
associated with leakage resistance (Rl), with Q2 and Q3 associated with real capacity. The 
fitted ESR value is 0.28 Ω and Rct value is 0.10 Ω, which corresponds to experimental values. 
The MOF-derived carbons (MDCs) were also analyzed for their electrochemical properties 
using a three-electrode configuration in 6 M KOH in a negative potential window range of -
1.0 to 0.0 V vs. Ag/AgCl. 

Figure 2a shows the comparative CV curves of Al-MDC and CFA-MDC, which suggest EDLC 
behavior corroborated with the relatively rectangular shape of the curve. It can also be observed 
that the CFA-FumMOF consisted of the longest discharge time compared to Al-MDC at 0.5 A 
g−1, indicating better electrochemical performance (Fig. 2b). Generally, the electrochemical 
performance of carbon materials is dependent on its surface area. The surface area of both 
carbons are relatively the same (2438 m2 g−1 for Al-MDC and 2017 m2 g−1 for CFA-MDC) 
[51]. However, CFA-MDC appears to have high specific capacitance of 306.59 F g−1 at 0.5 A 
g−1 as compared to Al-MDC with the value of 111.94 F g−1 as evaluated using Eq. (2). These 
values are consistent with other reports of MOF-derived carbons from aluminum-based MOFs. 
Zhang et al. reported on MDC obtained from MIL-53(Al) giving a specific capacitance of 298 
F g−1 at 1 mV s−1 in 1 M H2SO4 [42]. Yan et al. reported on MDC from Al(OH)(1.4-
NDC)0.2H2O, which reached a specific capacitance of 232.8 F g−1 at a specific current of 0.1 
A g−1 [37]. Also, the specific capacitance of the MDCs may differ due to the pore sizes of the 
parent MOFs. On the other hand, the metal node (Al) maybe similar, but the porous structure 
of the MOF may differ due to the organic linkers used for coordination, which result in similar 
MOFs with different pore sizes and as a result, the MDCs porous structure may differ. The as-
prepared carbons (Al-MDC and CFA-MDC) had the presence of narrower polymodal 
micropore distribution centered at 1.2 nm and 1.5 nm with CFA-MDC possessing wider 
mesopores. The mesoporous structure enabled free and easy access of electrolyte ions [5]. The 
GCD curve in Fig. 2b for CFA-MDC also assume a near symmetrical triangular shape 
associated with good columbic efficiency as depicted in Fig. 2d. CFA-MDC has columbic 
efficiency of 99.62% and Al-MDC of 98.79% indicating good cyclability. Figure 2e represents 
the EIS Nyquist plot of Al-MDC and CFA-MDC. CFA-MDC is exhibiting short diffusion 
length which already corresponds to the specific capacitance. The experimental ESR values 
were 1.16 Ω and 0.26 Ω for Al-MDC and CFA-MDC, respectively. The small ESR value of 
CFA-MDC is associated with good wettability. The fitting of CFA-MDC is depicted in Fig. 2f 
with the circuit in Fig. 2g. The ESR value is represented by R1 and charge transfer resistance 
(RCt) represented by R2, leakage resistance (Rl) is represented by R3 and R4, with Q2 and Q3 
associated with real capacity. From the fitting of CFA-MDC, the ESR value is 0.31 Ω and Rct 
value is 0.27 Ω, which corresponds well to the experimental values of 0.38 and 0.24 Ω, 
respectively. The small Rct values indicates good charge transfer kinetics and hence reflect the 
performance observed for CFA-MDC electrode. This explain the linked attribute of CFA-MDC 
as a capacitive material [52]. 
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Fig. 2. a CV curves at a scan rate of 20 mV s-1. b GCD curves at a specific current of 0.5 A g-1. c Specific 
capacitance against specific current. d Cycling performance. e EIS Nyquist plot for Al-MDC and CFA-MDC, 
respectively, in 6 M KOH in a negative potential window. f, g EIS Nyquist plot experimental and fitting, and its 
equivalent circuit for CFA-MDC 

The prepared MOFs were used as the positive electrode and their respective carbon derivatives 
were used as a negative electrode for a full cell device. The asymmetric device of Al-
FumMOF//Al-MDC was assembled with mass balancing using Eq. (4) giving a ratio of 3.0:1.0 
and working with a total mass electrode of 7.1 mg cm−2. The assembly was done with a 
standard 2032 grade coin cell sandwiched with a filter paper as separator and 6 M KOH as 
electrolyte. Figure 3a displays the CV curve at a scan rate of 40 mV s−1 of Al-FumMOF at a 
positive potential window of 0.0–0.4 V vs. Ag/AgCl and Al-MDC at a negative potential 
window of -1.0–0.0 V vs. Ag/AgCl. The curve gives an illustration of EDLC and Faradic 
behavior, with EDLC contribution visible in both positive and negative currents; however, 
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Faradic contributions show dominance with a much higher positive current. Subsequently, the 
combination of the two responses is expected to create a battery-like behavior in the device. 
The CV curves of the device are represented in Fig. 3b at different scan rates of 5 to 
100 mV s−1. The curves illustrate a merger between EDLC and Faradic contribution associated 
with hybrid asymmetric supercapacitors. The GCD curves at different specific currents ranging 
from 0.5 to 10 A g−1 are depicted in Fig. 3c and show the potential steps confirming the Faradic 
behavior from the CV curves. As a result, the specific capacity of the device was calculated 
using Eq. (1) obtaining a value of 5.09 mAh g−1 at a specific current of 0.5 A g−1 (Fig. 3d). The 
capacities dropped as the specific current increased due to the limited ion migration associated 
with diffusion on the outer surface of the material for charge storage at a higher specific current 
[43]. It can be observed that there is a drop from the specific capacities in the device as 
compared to the three-electrode system, which is due to an increase in an electronic field in the 
cell configuration working at a high potential window, which is subsequently increased by the 
increase in specific current. This result in an overall interruption in the collaboration of Faradic 
and EDLC processes [44]. The specific energy and power of the device evaluated using Eq. (5) 
and Eq. (6) at 1 A g−1 was 10.12 Wh kg−1 and 552.09 W kg−1, respectively. This is expected as 
an indication of low specific capacity. Figure 3e illustrates the coulombic efficiency of 99.10%, 
indicating good cyclability after 5000 cycles. Figure 3f illustrates the Nyquist plot showing 
fitting and experimental data. The circuit (Fig. 3h) consists of R1, R2, and R3 that represent 
equivalent series resistance (ESR), charge transfer resistance (Rct) and leakage resistance, 
respectively. Q2 and Q3 are associated with real capacity and with the Warburg (W) element 
in series with the circuit. R2 and Q2 is associated with the resistance rate and Faradaic 
electrochemical activity occurring between the electrode and electrolyte. The experimental 
ESR values are 3.00 Ω and 3.06 Ω and Rct values are 0.64 Ω and 1.69 Ω for before and after 
cycling stability. The values correspond with the fitted ESR value of 3.14 Ω and 3.17 Ω with 
Rct values of 0.99 Ω and 1.23 Ω. It is noteworthy that the Rct value before cycling is small 
compared to after cycling. This indicates that the material becomes more resistive after 5000 
cycles and hence gives poor performance. 
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Fig. 3. Al-FumMOF//Al-MDC asymmetric device: a CV of positive and negative electrodes at scan rate of 
20 mV s-1. b CV curves at different scan rates. c GCD curves at different specific currents. d Specific capacity 
versus specific current. e Cycling stability versus cycle number for the device. f, g EIS Nyquist plot and Fitting 
of EIS Nyquist plot before and after cycling and (h) Equivalent circuit from the fitting 
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The asymmetric device of CFA-FumMOF//CFA-MDC was assembled with mass balancing 
using Eq. (5) giving a ratio of 5.0:1.0 and working with a total mass electrode of 6.8 mg cm−2. 
The cell was assembled under the same conditions mentioned prior. Figure 4a is illustrating 
the CV curves for CFA-FumMOF in the potential window of 0.0–0.4 V vs. Ag/AgCl and CFA-
MDC at -1.0–0.0 V vs. Ag/AgCl. The CFA-FumMOF electrode shows the Faradic behavior 
corroborated by redox peaks with CFA-MDC demonstrating the pseudocapacitive behavior 
demonstrated by a relatively rectangular shape, indicating a reversible capacitive behavior 
[45,46,47]. The CV curves of the asymmetrical device of CFA-FumMOF//CFA-MDC are 
shown in Fig. 4b at scan rates from 5 to 100 mV s−1. The curves illustrate the non-linear 
pseudocapacitive behavior, which operated from a potential window of 0.0–1.45 V. The GCD 
profiles represented by Fig. 4c at different specific currents from 0.5 to 10 A g−1 illustrates a 
quasi-linear curve with Faradic contribution, which corresponds well to the CV curves. The 
specific capacity recorded is 4.0 mAh g-1 at 0.5 A g−1 (Fig. 4d). The device obtained a good 
coulombic efficiency of 98.90% after 5000 cycles as depicted in Fig. 4e. The specific energy 
and power of the device calculated using Eq. (5) and Eq. (6) at 1 A g−1 are 2.48 Wh kg−1 and 
625 W kg−1, respectively. There are no known reports on the use of pristine aluminum-based 
MOF as a supercapacitor device. However, there is a single report on the use of an optimized 
aluminum MOF, which is involved the integration of the MOF structure with reduced graphene 
oxide (rGO) [46]. This study reported the energy density of 6.66 Wh kg−1 and power density 
of 3655 W kg−1. The rGO assisted in reducing agglomeration of the MOF creating more active 
sites interacting with electrolytes and increasing charge storage. It can therefore be stipulated 
that an optimization process of CFA-FumMOF and Al-FumMOF could yield an improved 
electrochemical performance and energy density. In three-electrode configurations, the 
prepared MOFs illustrated a faradic behavior and their derived carbons illustrated a typical 
EDLC behavior as expected. Their electrochemical performance was relatively improved as 
compared to other reported aluminum-based MOFs [46, 48, 49]. Therefore, the specific 
capacity and capacitance reported herein are the highest in record. 

3.2 Asymmetric supercapacitor device MOFs and activated carbon from cocoa 

However, on the electrochemical device there is poor performance and to observe the 
compatibility of the prepared MOFs with other carbon materials, an asymmetrical device with 
the MOFs as a positive electrode and activated carbon from cocoa as a negative electrode was 
fabricated. The activated carbon possessed obvious EDLC behavior with a specific capacitance 
of 123.78 F g−1 at 0.5 A g−1 as shown in Fig. 5. Both Al-FumMOF//AC-Cocoa and CFA-
FumMOF//AC-Cocoa devices had a potential window of 0.0 to 1.5 V and exhibited battery-
type behavior corroborated with redox peaks. Al-FumMOF//AC-Cocoa possessed a specific 
capacity of 5.02 mAh g−1 and CFA-FumMOF possessed 4.74 mAh g−1 as presented in Figs. 6 
and 7, respectively. Despite the change in the negative electrode, the devices did not improve 
in performance. Al-FumMOF//AC-Cocoa had coulombic efficiency of 99.00% and 98.23% for 
CFA-FumMOF//AC-Cocoa indicating good cyclability after 5000 cycles. This is an indication 
that both Al-FumMOF and CFA-FumMOF struggle with synergy with a negative electrode. 
The prepared asymmetric devices did not exhibit good electrochemical performance in 
practical instances. It is noteworthy to the reader that there are no known reports on the 
utilization of aluminum fumarate MOF (Al-FumMOF) as a positive electrode for the use of 
SCs. In addition, CFA-FumMOF is a novel MOF obtained through green synthesis and was 
prepared as a mimic of aluminum fumarate MOF as means of cutting costs in MOF synthesis 
industry. This study is a proof of concept on the use of green prepared materials for SCs 
application. The improved performance of the three-electrode measurements of the MOFs 
shows that if optimization processes such as preparing a composite are achieved, the materials 
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have the potential to outperform the most known MOF. With different activated carbon 
materials utilized as negative electrodes, the device can also have improved energy and power 
density. 

 

 
 
Fig. 4. CFA-FumMOF//CFA-MDC asymmetric device: a CV of positive and negative electrodes at 
scan rate 20 mV s-1. b CV curves at different scan rates. c GCD curves at different specific currents. d 
Specific capacity versus specific current. e Cycling stability versus cycle number for the device. f EIS 
Nyquist plot before and after cycling 
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Fig. 5. a CV curves at different scan rates and b GCD curves at different specific currents for AC-Cocoa in 6 M 
KOH in a negative potential window 
 

 
 
Fig. 6. Al-FumMOF//AC-Cocoa asymmetric device: a CV curve of positive and negative electrodes at 20 mV s-
1 scan rate. b CV curves at different scan rates. c GCD curves at different specific currents. d Cycling stability 
versus cycle number 
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Fig. 7. CFA-FumMOF//AC-Cocoa asymmetric device: a CV of positive and negative electrodes at scan rate20 
mV s-1. b CV curves at different scan rates. c GCD curves at different specific currents. d Cycling stability versus 
cycle number 

4 Conclusion 

The three-electrode measurements of Al-FumMOF and novel CFA-FumMOF were 
successfully prepared with a specific capacity of 28.62 mAh g−1 and 9.88 mAh g−1, 
respectively, at a specific current of 0.5 A g−1. Their respective MDCs, Al-MDC and CFA-
MDC obtained a specific capacitance of 111.94 F g−1 and 306.59 F g−1, respectively, at 0.5 A 
g−1. There are no known records on the use Al-FumMOF as an electrode or on carbonization 
in attempts to obtain, a porous carbon used as a negative electrode in SCs. The asymmetric 
device did not provide good electrochemical performance. However, this study still serves as 
an entry point in the utilization of cheap waste materials to obtain exceptional MOF materials 
that can in turn be used as parent materials to obtain porous carbons and used for SCs 
application. The high surface area and exceptional porosity of the MOFs and their carbon 
derivative enables them to be used also in other energy storage applications. 
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