Dynamics of Fractional Chaotic Systems with Chebyshev
Spectral Approximation Method

Kolade M. Owolabil( - Edson PindzaZ

!Department of Mathematical Sciences, Federal University of Technology, Akure, PMB 704,
Ondo State, Nigeria

2Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 002,
South Africa

*Correspondence to Kolade M. Owolabi. Email: kmowolabi@futa.edu.ng

Abstract

The dynamical behavior ol chaotic processes with a noninleger-order operalor is considered
in this work. A lot of scientific reports have justified that modeling of physical scenarios via
non-integer order derivatives is more reliable and accurate than integer-order cases. Motivated
by this fact, the standard time derivatives in the model equations are formulated with the novel
Caputo fractional-order operator. The choice of using the Caputo derivative among several
existing [ractional derivatives has o do with the lact that it gives way for both the initial
conditions and boundary conditions to be incorporated in the development of the chaotic
model. Numerical approximation of fractional derivatives has been the major challenge of
many scholars in different arcas of engineering and applied sciences. Hence, we developed
a numerical approximation technique, which is based on the Chebyshev spectral method
for solving the integer-order and non-integer-order chaotic systems which are largely found
in physics, finance, biology, engineering, and other arcas of applied sciences. The proposed
numerical method used here is easy to implement on a digital computer, and capable of solving
higher-order problems without reduction to the system ol lower-order ordinary dillerential
cquations with limited computational costs. Experimental results are presented for different
instances of fractional-order parameters.
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Introduction

Nowadays, the study ol nonlinear dynamics ol chaotlic models has generated a lot ol allention
due to their usefulness when describing the evolution of more complex phenomena. Chaos
theory is successfully applied to formulate many physical phenomena in areas of biology,
robolics electrical circuits, lasers, oscillators, memristors, [inance, chemical reactions, neural
networks, ecology, weather systems, image and sound encryptions, cryptosystems, sccure
communication devices [3, 11, 18, 24, 42, 50, 53], among several others.

Recently, the idea of fractional calculus which is known to be an extension meaning from
classical to fractional differentiation and integration has been known for over three hundred
(300) years [44]. Its applicalions lo engineering, physics, and biology remain the most aclive
arca of rescarch in rccent years. Rescarchers have shown that many mathematical problems
involving interdisciplinary research and other physical scenanos are adequately formulated
by using the concept of fractional derivatives. Many nonlinear dynamics are known to give rise
to fractional-order phenomena, like electrode-electrolyte polarization, viscoelastic systems,
quantitative (inance, dielectric polarization, electromagnetlic waves, groundwaler systems,
Geo-hydrology, and dynamics of complex evolution, see [5-7, 22, 25, 37, 44]. In addition,
fractional order idea has been used in no small measure to model a number of non-Markovian
processes or spalial or temporal cases. For inslance, the reaction-diflusion advection models
which include, the Fisher and Fokker-Planck equations [37, 38, 52], the Gray-Scott, Burggers
and Ginzburg-Landau models [33, 43], and many other real-life dynamics that are classified
in [17, 21, 38-40, 44].

In this paper, the general chaotic fractional equations is considered in the form

Cgfet) == flgt), 1),

(1)
g =g, s=0,1,...,m—1,

where © %’}H denote the Caputo fractional derivative of order g for function f(g, 1) : RxR? —
R?, with dimension d = 1. The chaotic dynamics with fractional-order models has began (o
generate a lot of research attentions in recent years duc to the fact that such models are less
complicated to implement on digital computer [45]. Chaotic systems are highly sensitive to
the variation of the initial conditions or perturbation of the key parameters which make them
be required for many applications, there is a need to talk about the coupling of two or more
dissipative-chaolic models which is being referred (o as synchronization. Synchronization of
the chaotic model has been used in various ficlds of engineering, ecology, biology, finance,
and physical systems [30, 41].

The aim of this paper is to model some existing chaotic phenomena arising from science,
engineering, and finance using the concept of fractional calculus [27, 29, 34-36]. Since the
analytical solutions ol such nonlinear [ractional dynamical systems are almosl nonexistent,
therefore we require to seck an appropriate and reliable numerical method to study the chaotic
systems. In this paper, we introduce the Chebyshev-spectral method. Spectral methods are

known o have an advantage over other classical approaches like [inile difference approxima-
tion and finite clement family of schemes [8, 9, 14, 33, 43]. Some of the proposcd methods are
accurate but have high computational costs. Thus, spectral algorithms have the edge of being



fast-converging methods, because the inherent truncation error decays so fast as the global
smooth solution allows [31]. The definite integrals in spectral methods are computed via the
quadrature method, see [ 15, 16, 47-49] for delails on speciral methods of approximation.

The rest of this work is categorized into sections as follows. Some useful definitions and
preliminaries of fractional calculus in relation to the Caputo fractional operator are given
in Sect. 2. Formulation of an approximate method using the Chebyshev spectral methods is
given in Sect. 3. In Sect. 4, some chaotic dynamics arising from engineering, finance, and
biology are introduced and analyzed. We present the numerical results which revealed the
behavior of cach dynamics with response to fractional order parameter. Finally, we conclude
with the last section.

Some Useful Properties Regarding the Caputo Fractional Operator

There are different types of definitions given to fractional derivatives in the literature, the most
notable ones are the Riemann-Liouville (R-L), and the Caputo fractional derivatives which
have been used (o model a lol of applications in area ol engineering and applied sciences.
The Risez fractional operator is a lincar representation of both left- and right Riemann—
Liouville fractional derivatives. A close relationship/connection exists between the Caputo
and Riemann-Liouville fractional operators [44]. The R-L operator can be written as the
Caputo derivative under certain regularity and assumptions of the function [44]. In both
fractional ordinary- and partial-differential equations, the fractional-in-time derivatives are
often represented by the Caputo derivatives. The reason is due to the fact that the R-L
technique requires initial conditions that contain its limit values at the origin when 1 = (),
which till date gives no physical meaning interpretation. On the other hand, [or the [ractional-
in-time Caputo derivative, the initial condition takes the same form as that for classical order
case, such as the initial values of standard derivatives of functions at the origin of time 1 = 0.
Readers are referred to [44] for details. A briel account of some definitions of the Caputo
derivative and its general properties are highlighted here.
Let B = 0,1 > a, B, a,t € R. The Capulo derivative of order « is defined by

' 3
8@
F(p—8) Ja (1 —T)PF1-P
As a remark, the Caputo derivative of order 0 < f# < 1 lor g = g(t) is delined by
! 1 dg
i 8@ .
ra-gJs ¢ —0f dr
The Caputo operator based on the above definition has the following propertics.

(i) (Linearity [10, 12]). Let u(1), v(1) : |a, b] € R so that g@,ﬂu[r} and Eﬂ‘fu(f) exist, and
assume &1, & € R. Then E‘%ﬁf (&1u(r) + & (1)) exists almost every everywhere, and

Cafe) = p—1<p<pel

Cala) =

Cof Eu) + &) = 5D u) + £ v0).

(i) (The derivative of a constant in terms of the Caputo operator [44]). That is, u(t) = ¢ in
the sense ol Capulto is zero. Thalt is,

CHPu(r) = 0.



Based on the general idea of [ractional differential equations, g* being a constant which stands
for an equilibrium state of the Caputo fractional dynamic model (1), provided f(g*, 1) = 0.

By following Matignon stability results [28], an equilibrium state g* of the Caputo frac-
tional chaotic dynamical system (1) is locally-asymptotically-stable if all the eigenvalues of
arising from the Jacobian or community matrix of (1), which one evaluates at g*, satisfies
the condition

|arg()| > Br/2.
It should also be noted that when g € (0, 1), system (1) has the same steady state as the
standard case

dg(t)
dt

In what follows, we give a known results as reported in [13] based on the Lyapunov direct
technique for the Caputo fractional-order equations.

S (g0, ). (2)

Theorem 2.1 (Asymplotic stability result [13]). Let g* be an equilibrium point for chaotic
fractional-order differential equation described in (1) and Q@ c R™ be the domain that
contains g*. Also, assume M : [0, 00) x & — R] be continuously differentiable function,
such that

Fi(g) = M(g(), 1) = Fa(g),

CaM(g(t), 1) = —F3(g),

Jorall B € (0, 1) and ¥ g € 2, where Fi(g), F2(g) and F5(g) are positive definite functions
on §2. Then the point g* of (1) is uniformly-asymptotically-stable.

Again, in the following lemma we present the result of quadratic Lyapunov functions for
some fractional-order systems by Aguila-Camacho et al. [2, 51].

Lemma 2.2 Let g(1) € R be continuously differentiable. Then, for 1 = iy

1o
5 Cof ) < Cafg™,

forall B € (0, 1). This shows that

. . s (t * v *
Cqf [g(f) —g*—g*In gg* ] = (1 - ﬁ) Cafer), g* R, VBe(0,1).

Next, we give a remark by considering the quadratic Lyapunov function
M(glﬁgzi‘Tgm}:z_j(gj(r)_gj) s jzl,Z,“.,m,

P

where £; = 0. By using above lemma, we obtain



L
CAM@r g2, gm) = Y 659, (5,0 —g}), i), gf R, Be1).
j=1
The Chebyshev polynomial defined on [—1, 1] is determined by [1, 20, 23, 46]
Tyii(x) =2xTy(x) — T3 q1(x), To(x) = 1, Ti(x) = x,forg = 1,2, ....
The analytic form of T, (x) is given by

L]

—k—1)
T, (x) ={;E(—l)*2q_2k_lﬁxq_2k, g=2.3, ..., (3)
k=0 ’ ;

where L%J is the integer case of ¢/2. The orthogonality property is defined as

w fork =5 =10,

U T () Ts(x)
———dx = { T fork =5 #£0, (4)
f—' V1 —x? 0 fork #s,

In order to apply the Chebyshev polynomial, we introduce x = 2r — 1 and follow [20] to
deline the shilted Chebyshev polynomial in the form

T*(1) = T, 2t — 1) = Tag (V1)
which has the analytic form

r{Q+r_I}
f{r)—gZ( D kg ot =2 (5)

Approximate Method Based on Chebyshev Polynomials

It should be recalled from elementary mathematics that the Chebyshev polynomial (denoted
as T,,(x)) of the first kind over x € [—1, 1] is expressed as

Tm(x) =cosmb, x = cos#,

which implies that 7,,(x) = cos(m cos 1 x). The corresponding Chebyshev polynomial of
sccond kind is expressed by the relation, say U, (x) = sin(m cos~! x). By using the shift
mapping @ : x — wix) = bz_‘ﬂ ﬁ"'“ one can extend the definition of the Chebyshev
polynomial to any interval of interest |a, k], where a, b are constants. From the knowledge

of trigonometric identities, we have the following useful relation

cos(mf) + cos(m — 2)8 = 2 cos O cos(m — 1), (6)
50 Lthat
To(x) = 1, Ti(x) =x, Tu(x) =2xTp 1(x) — Tp2(x), m =2.3,... (7

which further translates to matrix



To(x)

—2x 1 x
I —2x | het 1o | ®)
o I (x): :
1 —2x1) \Tm®) 0
and the zeros of T, arc given in terms of the points
G —3)
j = —COS8 v J=12,3,...,m.
Xj cos — J m

The set of Chebyshev points of the first kind, which are also referred to as the collocation
points is denoled by {x;} ;. So, [or any x, the set {Ty(x), 71(x), ...} 1s an orthogonal basis in
accordance to the inner-product given by

1
(u, v) =f wVE) 4

1 v/ —x2

valid for any # and v defined in interval [—1, 1]. This shows that for any given polynomial
with degree m = 0, Jasetof e; for j = 1,2, ..., m such that

m
n(x) =Y ajTj.
j=0
For the fact that a sct of Chebyshev polynomials is complete and polynomials are dense
in C(|—1, 1]), we provide the following result.
Theorem 3.1 Let g be Lipschitz and continuous in [—1, 1]. Then g has a unique representa-
tion
on i
g = — + _Z;a;- Tj(x).
I

where T;(x) are the usual Chebyshev polynomials, and

2 (1
@j = — ————g(x)T;(x)dx, j=0,1,2,...
7 T f] l_ng( } j( ] * j LR et | *
which converges absolutely and uniformly.

A Chebyshev approximation of a function g of order m = () on continuous interval [—1, 1]
is given by

Lm(x) = giT;(x)
J-ZU 11 (9)

=w-1(x)



where @ = [wg, @), @, ..., ®y] denotes the coefficients vector associated with gy,. For
brevity, we usually write g(x) to represent g, to stand for the Chebyshev approximation of
g of order m at x.

On collocation point, one can write

fx)=Tx)-a, (10)
S0 &, ees fm)) = [ D ajTj(xo), D ajTjx), -, ) ajTi(xm) [ (11)
=0 j=0 =0

where

To(xo) Ti(xp) ... Tpixg)
To(xy) Ti(xy) ... Tpixg)
7 — | Tolx2) Ti(x2) ... Tu(x2)

To(im) TiCom) - . Tyn Cim)

It should be noted that g is represented by a vector f onthe grids X = [xg, X1, X2, . . ., X |,that
is f = [g(x0), g(x1), g(x2), ..., g(xmm)], which implies that f is the physical state of g. Since
f = Ta, it means that @ = T~ f. The nature of matrix T is often sparse, we apply the Fast
Fourier transform in matlab to obtain 7'

Next, we define g(t) in terms of the shifted-chebyshev polynomials in space [0, 1] as
oo
gty =) a;T} @), (12)
j=0

where o is the coefficient written as
2 1 1
mhj Jo i —12

In practice, it is habitual to consider just (x -+ 1) terms of the shifted-Chebyshev polynomials
[32]. In such a way that

@ = gOTFWdL, ho =2, hj =1, j=1,2,.... (13)

ge(t) = a;TH(1). (14)
j=0

The approximation of the Caputo operator with order 0 < § < 1 via the Chebyshev polyno-
mials takes the form

x J
D (g = D D a;fi P, (15)
J=1g1 r=[§1
where
2 j(j+r—DIT(r+1)
(j —m@AIT(r+1—p)

[P =i



The expression for the Caputo derivative via the shifted Chebyshev polynomials is written
as

i r=Ipl
DirrmI= > Y xirsTEO, (16)
r=[g] s=0
where
T2 (4 r—D(r—B+1
Xjrs = D724 e —F+3) fors =0,1,2,....

hT(r+3)(j =T —B—s+ DT (r+s—p+1)

The error |E, (x)| is computed as [DPg(1) — DF g, (1)| when DPg(r) is approximated by
Dlﬁgx (1), is bound by

o0 i r=Ifl
|E;(x)] = Z o; Z E Xjr.s
J=x+1 r=[f#] =0

readers are referred to [46] for details.

Since we are considering a three species chaotic dynamics with components xp, x2, x3,
we require lo give a solution guideline [or the Capulo [ractional-order chaotic models by
approximating these components as

q q q
=) xTin, xjm =) yTr@, x{® =) z;T ®. (17)
i=0 Jj=0 j=0
From (21) and (13) we have

if i q g
DD DI ATl DIETY OB IS 0N B
j=0

=181 =161 par
q i - g q q
YN i Pt — aa Y yimro+ [ Y nmro | | Y 1o
i=IE1r=[g1 j=0 j=0 j=0
3
g
el DIEATHO)
J=0
g v , S
SN G0t = @y o+ | Y srro | [ yiTro
J=TA r=TP1 =0 =0 i
q 2
tas | 34T | - (18)
j=0



By collocating (18) at (g + 1 — [B]) points t;(n =0, 1,2, ..., m + 1 — [B]) we obtain

q q q

> Ex;ffﬁ"' = | YT =Y yiT ) )

J=[B1r=[p1 j=0 =0

q fﬁ] q q q

> Er Ft P = —a Yy T + | YT | | D4 )
J=I81 =181 =0 =0 =0

3

n
22T} )
j=0

3

q

Z Z 2 {010 P = almZzJT(!,,)+ Zxﬂ DT HD

J=[B1r=[g] j=0 j=0 j=0
2

q
PR HON S (19)

To get accurate collocation points. We apply the roots of the shifted-Chebyshev polynomials

T;itF i g (). By putting (17) into initial conditions
x1(0 =0) =¥, x2(t = 0) = 22, and x3(1 = 0) = xJ,
one gels

q q q
Y Dk =x) 3Dy =03, ) (D=, (20)
J=0 j=0 j=0

Obviously, the above (19) and (20) lead to algebraic equations which can be advanced with
any time-solver. In this paper, we utilize the Matlab ode45 code for the time integration.

Fractional-Order Chaotic Systems

Three notable examples ol chaotic [ractional models which are largely encounter in engineer-
ing, science and finance, and which are of current and recurring interests are presented here.
In each of the cases, we require to examine the linear-stability analysis, give the dynamics of
Lyapunov exponents of the chaolic system, and finally carry out the simulation experiments
for some instances of fractional order.

Chaotic Problem in Engineering

The dynamic of fractional order chaotic model which has a lot of applications in engineering
has been considered by many authors [3, 4] in the form of circuit synchronizations. In the
present case, we consider a three component chaotic model described by the Capulo [ractional
derivative is given as



Cryfx,(,:) = flx1,x2,x3) = p1(x1(f) — x2(1)),
C‘éﬁfxz(f] = g(x1, X2, x3) = —4p1x2(1) + X1 (1)x3(2) + 2x7 (1),
Cf x3(t) = h(x1, x2, x3) = —p1yvaxa(t) + x; ()x2(t) + y3x3(0), (21)

where x1, x2 and x3 are the variables, y; = 0 for7 = 1(1)4 are parameters.

Before examining system (21) for linear stability analysis, we require to show that the
Caputo fractional order dynamics satisfy the existence and uniqueness of solutions. This can
be achieved by adopling the [undamental theorem ol calculus to (21) as

X1(0) — x1(0) = r(ﬁ}f (11 (61 (0) — xa(2) (¢ — )Fd,

x2(1) — x2(0) = T (ﬁ}f (—4y1x2(1) + x1(D)x3(1) + Y217 {r)} (t — 1) ldr,

x3(0) = x3(0) = Fos f (—Mran@) +x (00 + e ) ¢ —0f dr (22)

Let %, » be compact set, so that
Cap = dy(lo) X By(E)
where
% = min{x; (0), x2(0), x3(0)}
and
dy(to) = to —a,to +al, %Bo(€) =€ —b,¢+b]
From (21) we know that

J(x1,x2, x3, 1) = yi(x (1) — x2(1)),
g(x1, %2, x3, 1) = —4yx2(1) + x1(D)x3(1) + 2% (0),
h(x1, X2, X3, 1) = —y1yax3(t) + x5 (0x2(1) + y3x3(1). (23)

We let

M—gﬂ EUPIIIIII t-upllfall buPIIf*;II
€a.

and apply the infinite norm, to have

IElloo = sup [IEQ)].

rea’y
Next, we create a function,
I':%ap — Cap

in such a way that

TL(t) = Lo + (ﬁ}f Fxy, x2,x3, )t — 1) ldv (24)

10



where

xq(1)
L(t) = | x2(1)
x3(r)

and

f(‘rlﬁ'x:Z! X3, T)
Flu,v,w,1) = | g(x1,x2,x3,1)
h(xy,x2,x3,1)

To show that our operator is well-defined, we evaluate the condition

b

ITL(t) — Lolloo < | £,
b

where

(Tx1 (1) — x1 (Moo < b,
IT2x2(1) — x2(0) || oo < b,
[[1"3x3(t) — x3(0) ||l o < b

By cxamining first the variable x|, we get

[Ty x1(8) — x1(0)]l o =

| 11(1ﬁ) _[[] fi(xl’ X2, X3, T)(I —_ T)Jﬁ—ldr

L
r(8)

M I
mfﬂ {f —I)df
Mat

rB+1)

g

I
fﬂ"f(-flpx2113,f)||m(f ¥ ldr

[A

(25)

where

M

with similar expression for variables xo and x3.

- /g
- (w) , (26)

Therefor, we say

Maf

T L) — S,
T L) £"||°°El‘{,ﬂ+l)’

I' is well-defined provided the condition (26) holds.

Secondly, we require to verify that the Caputo fractional system (21) satisfy a Lipshitz
condition, that is,

11



ITLy = Tlallee < @ 1£1 — L2l

f
|}r]x?—r,xf'|} _ f FiG8 x0, x5, T — 1P dr

-l

f fiexel, xo, x3, )t — 0)P dre (27)

F{ﬁ)

oo

f ( (xf,xz,xg,r}—j(x:’,xz,xr;,r))(f—r}"‘ 'dr“

(o]

IA

T(8) f ("r[x' X1, X2, T) — [y, %2, %3, r))l}m(f —o)f ldr

e [l sei) 007

|.-"\.

le] a
=T )y 1M ] oo e

|EI a b ﬂﬁ
<@ I ‘*'|m G

|e||}x1 — X || a b
< XFE < @y [x¢ —x! ”m (28)

where
 fela?
rg+1)

By following a similar process for the remaining components, we have

1 4 B
["2x5 szgum—}l%[} glxy, x5, x3, T)(t r}lJEF ldr

t
_ﬁf §(I|..x§',x3‘ (1t — I)'ﬂ_]dt
0

< @s)|x§ — xJ 0o (29)

(s 4]

and

l I
r r "N _ —fh 0. x0. )t — )P d
3x3 — 33 . Hr(ﬁ) ; (x1,x2,x3, T)(t —T) T

1 fr B 1
e hixy, x2, x5, Tt r)ﬁ dt
re) Jo ’

og

_ (zllixg —x51) o”
T T+
< ®slx§ — x5 || (30)

12



where

(Il +lglla Ol a |plaf
TB+1) T T

So, I is a contraction provided

Py =

&, 1
Pl <= |1] =0, (3D
Dy 1

for

(F(,B+ 1))"”5‘ (r(ﬁ+1))”ﬁ ( rB+1 )'fﬁ
= | — , a=| — , 4= .
b Jd I+ Iglllx1 (£ ]

So to obtain a contraction

) (T‘(ﬁ } n)'”’ (F{ﬁ | ,))w ( I+ 1) )‘”"
g <mn4{a < | ————— , a4 =|—- ., =< .
b Pl lie| + 1g 111 () oo

With this condition, I" has a unique solution.
To examine the linear stability of (21), we let C@;ﬁ x; =0,i =1, 2, 3 and the local kinetics
fx1,x2,x3) =0, g(xy, x2, x3) = 0 and h(xy, x2, x3) = 0. So that,

yi(xy(t) — x2(1)) =0,
—dy1xa(t) + x1(Dx3 () + yax; (1) = 0,
—yiyaxs(t) + x7 ()x2(t) + y3x3(t) = 0. (32)

With this in place, we can easily verify that model (21) has four equilibrium states, denoted
her as E? = (0, 0, 0) which correspond to extinction of chemical or biological species. The
second state E' = (0, 0, ﬂwﬂ} has both x; and x; being washed out with just component
x3 exists. The last two equilibrium is nontrivial, its more feasible since all the three species
exist. These points are

ot ‘j4y, — x} \/4};1 —x} vi(yav; +8) + Vnn,/rfm2+ 164 — 64y3
a ?

¥2 v 2}{;}@2 +2
and
4 ¥ £y r2+8)+rm\/}'2w2+16r — 64y3
g A-xy 4y —x3 AN C 2] 1 4 4
v v o 2p3v3 +2
where

, Ny +3}+ﬂrz\frfn2+ 16y — 643
Xq = .
? 2Aysvs + 1)

13



The corresponding Jacobian matrix of (21) is

g ' 0
At = | 3] + %3 —4n x| : (33)

3xfxy  x 2y —niw

With det(r! — A(0, 0, 0)) = 0, we get the characteristic equation
M+ Or 4 Lh— G, (34)

where £;,i = 1,2,3 = (1.80, 1.61, 35), respectively. On simplification, we have to be
A1 = 1.BO, Ay = —2.7 and A3 = —7.2. Obviously, one of the three real roots is nonneg-
ative, having opposite sign, then the equilibrium state E” is saddle and unstable. Applying
similar process, the corresponding eigenvalues for point E' are 4| = 6.77, 42 = —12.17
and A3 = 2.70, respectively. This implies that E' is saddle and unstable. For nontrivial
states E¥ and E; , we have the corresponding cigenvalues as (&) = 0.83 — 383,42 =
0.83 + 3.83j, A3 = —10.75) and (A = 0.83 — 3.83j, Ao = 0.83 + 3.83j, A3 = —10.75),
respectively. The presence of opposite signs in the eigenvalues shows that both interior equi-
librium states are unstable. At 1 = 1000, we compute the Lyapunov exponent dynamics to
obtain (—2.697921, —2.699263, —8.101339). Since the sum of these exponents is negative,
the possibility of obtaining chaotic attractors is evident.

When 39 = 1.8, = 0.12,33 = —0.07 and ¥4 = 1.5 with initial conditions
(x1, x2,x3) = (2.6, 1.8, 2.5), we oblain chaolic attractor [or system (21). The simulation
results reported in Figs. 1 and 2 correspond to 8 = 0.54 and 8 = 0.99, respectively. All
simulations run for time 1 = 1000.

Chaotic Problem in Finance

The chaotic finance model is a three parameter dynamics which is govern by nonlinear
[ractional dillTerential equations [26, 31, 42|

Cfxi(t) = flx1.x2,x3) = (x2(8) — )1 (1),
CHf xa(t) = g(x1, x2,x3) = 1 — @xa(t) — x3(1) (35)
€GP x3(t) = h(x1, x2,x3) = —x1(1) — ¥x3(0)

where C‘-’éﬂ‘f is the Caputo fractional derivative of order g satisfying 0 <= g < 1, variables

x1(1), x2(r) and x3(r) represents the intlerest rale, investment demand and price index ol
stock,respectively. The parameter ¢ stands for the savings, ¢ is the per-investment cost,
and ¥ denotes the elasticity demand. Following the procedure for obtaining linear stability
analysis, model (35) has three steady states

I
E° — (0, —,0),
@
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Fig. 1 Chaotic attractors and time-series plot for fractional model (21) with § = 0.54

The associated Jacobian is

x3—¢ x|
Ay = | —201 —¢ 0 |. (36)
1 0 —¢
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Fig. 2 Chaolic allraclors and lime-series plol [or [ractional model (21) with g = 0.99
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and the corresponding characteristic equation becomes

puu)zr-*—(}d—qﬂ—m—w)ﬂ—(%—w—w—w)k—w-m—wm. (38)

By following the Routh—Hurwitz stability criterion, for a polynomial of degree three, the
following inequalities must be satisfied:

(1 b—o afr) -0,
@
— (W — @ —dey) =0, (39)

(5-¢-0—v)(L—vo-—v—vt)tw—v-som >0

Obviously, if & = —g in (38), we have negative real part for ¢ = 0. If for instance, we sclect
g = 0.1, ¥ = 1 arbitrarily and keep ¢ as control parameter, the conditions in (39) becomes
¢ = 8.9, ¢ > 9and (¢ — 8.9) (% — 22~ (, respectively. This implies that, for
¢ > 9 all the cigenvalues arc negative and real. Hence, we say that the equilibrium point E°
1s asymptotically stable.

At equilibrium state E', the Jacobian is defined by

1 —bo_ ¥
! 1—¢p—% 1
Ap=|-2/1-¢p-% —@ 0
I

0 ¥
which has characleristic polynomial

1 3
p{A}=A*+(¢:+¢r— E)f+ (l +@i&—2¢w—%)l+2(¢r—w—¢w}- (40)

In accordance, the eigenvalues have the negative real parts il the [ollowing conditions hold:

200 —p — ¢py) = 0, (41)
1 3
(mw—ﬁ)(ww—zw—f)—2(w—@—¢w>>0.
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Arbitrarily, we let ¢ = 0.1 and v = 1, with ¢ as free parameter, the first two conditions
in (41) indicate that ¢ < 9, ¢ = 9, which implies that E' is unstable regardless the value
ol ¢». The same analysis can be [ollowed lo examine the slabilily of the equilibrium point
E?. The dynamics of Lyapunov cxponents for ¢ = 0.9,¢ = 0.2, ¥ = 1, and initials
x1(0) = x2(0) = x3(0) = 0.1 for different instances of time is computed as:

t=200.0000 0.064181 0.002846 -0.692949 t=655.0000 0.080138

-0.000850 -0.696358 t=500.0000 0.076418 -0.002402 -0.694733
t=1000.0000 0.079907 -0.000838 -0.697682

It is obvious that the sum of Lyapunov exponents at any value of f is negative, this means
that system (35) is dissipative, and hyper-chaotic for two of the exponents having the same
plus(+) or minus(—) signs. The behaviour of the system is given in Fig. 3 for f = 200 and
t = 1000.

When ¢ = 0.9, ¢ = 0.2 and ¥ = 1, Capulo [ractional finance system (35) has a chaolic
attractor. In the simulation experiments, we only vary the fractional derivative order £ and
the control parameter ¢, the remaining model parameters are fixed. Simulation results in
Figs. 4 and 5 correspond o parameler pairs (£, ¢) = (0.92, 0.90) and (8, ¢) = (0.78, 1.00),
respectively, with initial conditions x((0) = x2(0) = x3(0) = 0.1.

Diynamics of Lyapunoy sxponenis for i= 200
¥ 4 ¥ y T

Dynamice of Lyspunoy sxpananis for t=1000
¥ T ¥ v ¥

0 A 4 B0 @ M 10 14 1ED 180 X0 ThowWe 20 3N &0 S0 B0 00 B0 S0 1000
Tima Time

Fig.3 Lyapunov exponents ol syslem (35) lor [ = 200 and { = 1000
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Chaotic Problem in Biology

For this example, we consider a three-dimensional chaotic cancer model | 19] in the sense of
Caputo to obtain the system of equations

Cqfxi(t) = x1()(1 — x1(1)) — prx1 (D)x2(t) — paxy (Dx3(1),
€ xa(t) = Tixa(1 — x(2)) — p3x1 (Dx2(0),

x1(Dx3(1)
BRETORT

(42)
Copf — paxi(x3(r) — o2x3(1),

20



where variable x1 (¢), x2(¢) and x3(f) are used Lo represent the lotal population of tumor tissue
cclls, healthy tissue cells and recovery or those cells that are not affected by tumor at time 1.
All parameters are assumed positive. Linear stability analysis of the classical case (42) can
be found in [19]. With x;(f) = 0.1, x2(r) = 0.1, x3(t) = 0.1 and 1) = 0.6, 12 = 4.5, p; =
Lo = 1.5, p3 = 1.5, p10 = 09,00 = 1.0, 00 = 0.5, we obtain the phase plots of the
chaolic cancer allractors as displayed in Fig. 6 lor dillerent instances ol [ractional order .
Also, we let py = 1.5 and vary £ to get the 3-D surface plots and their corresponding time
series results in Fig. 7.

(a)

—==R=090

- = pa70
B=080 nEr
——p=100

OB or o o1 02 03 o4 05 11] or e o9

0 0

Fig. 8 Chaotic attractors for fractional cancer model (42) with f = 0.61
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Fig.7 3-D attractors and corresponding lime-series plots showing chaotic evolution of system (42) for p; =
1.00. Rows 1-3 correspond to # = 0.56, 0.73, 0.99 at ¢ = 1000

Conclusion

This paper considers the dynamics of fractional chaotic systems that are of current and
recurring interest in application areas of engineering, science, and finance. The standard time
derivative is modeled by the Capulo [ractional operatlor ol order 8 < (0, 1]. To provide a guide
in the appropriate choice of parameters, we examine the dynamics for linear stability analysis
and calculate their Lyapunov exponents. We adopt the novel Chebyshev spectral method to
numerically approximate the [ractional operator, and integrate the resulling system with the
help of inbuilt Ode45 in Matlab. The proposed method is casy to implement on a digital
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computer and capable of solving higher-order problems without reducing to the system of
lower-order ordinary differential equations. Some numerical experiments which show chaotic
behaviors are given for some instances of fractional order. Based on a comparison of results,
it is obvious that chaotic palterns observed [or 0 < 8 < 1 are almost similar to the ones
obtained when § = 1. The idea presented in this paper can be extended to any reaction-
diffusion problems with limited computational costs.
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