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Abstract 

Nutrient limitations may impact the ecosystem services the savanna biome provides. It 

may lead to degradation and, consequently, reduce the grazing capacity of the 

savannas if the necessary control measures are not implemented in time. The key 

indicator of the growth-limiting nutrients is the Nitrogen to Phosphorus (N:P) ratio. Grass 

foliar phosphorus content had rarely been investigated in African savannas, especially 

with remote sensing. Hence, information on the distribution of nutrient limitation is very 

limited. This study aimed to develop a Sentinel-2-based N:P predicting model and map 

the spatiotemporal variations of the N:P ratio in the Kruger National Park (KNP) area in 

the Northern part of the South African savanna biome. This was achieved by simulating 

the Analytical Spectral Device (ASD) reflectance data from 49 sampling points to 

Sentinel-2 MultiSpectral Instrument (MSI) configuration dataset. Laboratory-based 

chemical analysis was conducted to extract the concentrations of N and P from the 

grass samples.  Partial least squares regression (PLSR) and random forest regression 

(RFR) techniques were used to develop the N:P prediction models from the simulated 

Sentinel-2 datasets. Results show that the best predicting RFR model explained over 

80% of N:P variability with the lowest relative root mean square error (RRMSE) of 14%, 

with a p-value of less than 0.05. The optimal-predicting model was used to map the 

distribution of nutrient limitation using Sentinel-2 images across KNP and surroundings. 

Different parts of the KNP area are either N-limited or co-limited. The observed 

variations may result from varying environmental factors and anthropogenic activities. 

The Sentinel-2 N:P ratio estimation accuracies were then compared to the ratio of N:P 

of data from commercial multispectral (RapidEye and WorldView-2) and hyperspectral 

(Hyperion and EnMap) sensors. There is no vast difference between the estimation 

accuracy of these commercial sensors and that of the freely available Sentinel-2 when 

using RFR.  However, when using PLSR, Sentinel-2 produced improved N:P ratio 

estimation accuracy than the commercial sensors with the highest R2 value of 0.66 and 

an RRMSE of 20.696%. This makes Sentinel-2 a cost-effective means for estimating 

nutrient limitation in a heterogeneous savanna landscape. This study provides decision-

makers with a cost-effective tool for managing, sustaining, and restoring the savanna 

biome. The inclusion of textural information is recommended for future research. 
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CHAPTER 1:  

General introduction  

1.1 Background 

Over 52% of the land globally is covered by the savanna biome playing a crucial 

role in agricultural production, economy, and ecotourism (Ramoelo et al., 2013; Ali et al., 

2016; Askari et al., 2019; Shoko et al., 2016). African savannas support a diverse range of 

wildlife through provision of connection and habitation (Sankaran et al., 2013), and rural 

communities depend on the savannas for livestock grazing. Considering the above factors, 

the role of savannas in the global economy through tourism and food security by providing 

feed for ruminants used for milk and meat production is remarkable (FAO, 2015). 

Moreover, the savanna biome is critical as carbon and groundwater storage. Effective 

functioning and productivity of the savannah biome depend on grass quality as defined by 

the availability of foliar nutrients. 

Regardless of the importance of savannas in several human livelihoods, ecological 

and ecosystem activities mentioned earlier, the worsening land degradation is still a 

significant concern not only to the environment but a socio-economic challenge as well 

(Hammad & Tumeizi, 2012). Land degradation manifestations on dryland, as explained by 

Ponce-Hernandez, (2008), include reduced plant productivity, deteriorations in soil fertility 

and physical properties, unpleasant changes in biomass and ecosystem activities, the 

decline in vegetation’s nutritional status, and reduced species diversity. Major concerns 

are food and energy security, rural economy, biodiversity loss, and land desertification, as 

these are the most threatened aspects (Salih et al., 2017; Ramoelo et al., 2014; Liu et al., 

2008). The literature revealed that the savanna is one of the most devastated biomes due 

to the high sensitivity of these ecosystems to changes in climatic conditions and changes 

in soil properties (Zhao et al., 2017). 

Other factors that contribute to land degradation include rapid population growth 

leading to extensive grazing to meet the increasing food demands and conversion of 

natural grassland to protected farmlands, residential and industrial areas, and the 

introduction of alien species (Xie et al., 2020). The key indicators of land degradation are 

changes in quality, quantity, and distribution of vegetation cover; hence, these changes 
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are used as a proxy to measure the extent to which the land is degraded (Safriel, 2007). 

Assessment and monitoring of vegetation cover are critical steps towards effective 

management and restoration to minimise the effect of land deterioration on biodiversity 

and agricultural and ecosystem services. The United Nations Sustainable Development 

Goal 15, “life on land” of 17 aims “to Protect, restore and promote sustainable use of 

terrestrial ecosystems, sustainably manage forests, combat desertification, halt and 

reverse land degradation as well as the biodiversity loss” by the year 2030, which 

prioritises environmental sustainability as one of its main priorities. This pillar aims to 

restore and protect the earth's balance, ensuring moderate use of natural resources 

without compromising the future. These include land, water, forest resources and 

biodiversity in terrestrial ecosystems. To achieve this goal, near real-time monitoring of the 

terrestrial ecosystem is required to provide regular information. Inclusive of this are natural 

rangelands found within the savannas, Kellner and de Wet., (2021) reported a 25% of 

South African rangelands are degraded. For the sustainability and continuous productivity 

of these rangelands to be ensured and, adequate monitoring, protection, and management 

of the savannas are necessary to inhibit this deterioration. 

All this is possible by assessing the biome’s biophysical and biochemical conditions. 

However, the main challenge is usually the financial costs and unavailability of information 

required by decision-makers and policymakers to formulate risk management and coping 

strategies to mitigate the threatening conditions.  Especially information on the biome’s 

foliar biochemical content, which defines the quality conditions of the savannas. Estimating 

grass quality at a larger scale is essential for management and wildlife conservation, and 

such information provides ecologists and nature conservationists with updated information 

on their conditions. This is a crucial step towards implementing strategic management 

techniques such as adequate fire regimes and rotational grazing which allow pastures to 

recover and minimise degradation. Moreover, assessing grass quality is essential for 

understanding the operational dynamics of rangelands, feeding patterns, distribution, and 

the density of herbivores across savanna biomes (Carlier et al., 2009; Gao et al., 2019; 

Reinermann et al., 2020). For example, several studies report that in South African 

Savannas, large herbivores, such as antelopes and buffalos, dominate in areas with high 

grass quality. 
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Foliar biochemical content nitrogen (N) and phosphorus (P) are the key 

determinants of grass quality status (Ramoelo et al., 2015; Mutanga et al., 2003; Ramoelo 

et al., 2013), and are linked with numerous essential plant processes. N is associated with 

chlorophyll content, carbon fixing enzymes, decomposition (Klodd et al., 2016; Gokkaya et 

al., 2015), and is associated with key nutrients herbivores require, such as protein (Clifton 

et al.,1994). P is essential for significant molecules within cells like the nucleic acids and 

Adenosine triphosphates (ATP) (Ramoelo et al., 2013; Epstein & Bloom, 2004). P is also 

related to other essential plant processes such as metabolism and respiration and is a 

requirement for lactation by animals (Loozen et al., 2019). These nutrients greatly 

influence the productivity of savannas and contribute equally towards the growth of 

vegetation. The ratio of N to P (N:P ratio) is the primary determinant of growth-limiting 

nutrients (Cech et al., 2008; Gusewell, 2004; Koerselman and Meuleman, 1996). The 

balance of N and/or P is evinced by the value of this ratio, which affects vegetations’ 

reproduction and growth at all stages. N:P ratio is linked with species richness and 

composition, productivity, and functionality traits (Cech et al., 2008; Gussewell, 2004), 

playing a significant role in the sustainability, planning, and management of savanna 

ecosystems (Craine et al., 2008; Ramoelo et al., 2013). The application of N:P ratio as a 

proxy of nutrient limitation is supported in the literature (Tessier and Raynal, 2003; 

Guseweel, 2004). Threshold values of the N:P ratio differ in several studies under different 

experimental conditions and methods. Currently, there are no conclusions on the final 

threshold values due to limited research on the N:P ratio (Ramoelo et al., 2013). 

Most of the present knowledge on the N:P ratio in savanna ecosystems is based on 

fertiliser experiments (Craine et al., 2008; Lebauer and Treseder, 2008), use of N:P 

stoichiometry (Gusewell, 2003), and factorial fertilisation (Olde Venterink et al., 2008). 

These include assessing the response of net primary productivity with an increase in the 

supply of a particular nutrient, either N or P, to identify the insufficient nutrient (Vitousek 

and Howarth, 1991). These traditional field-based and laboratory methods for quantifying 

grass foliar biochemical content have long been utilised locally (Ramoelo et al., 2012a; 

Loozen et al., 2019). It is often impossible and challenging to upscale these experiments 

to the regional level due to several constraints, including the unavailability of data covering 

larger areas, as well as time, labour, and financial limitations (Pullangari et al., 2013; 

Shoko et al., 2016; Lu et al., 2016; Karimi et al., 2018; Loozen et al., 2019). 
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1.2  The Remote Sensing of vegetation foliar biochemicals 

The science of collecting information about an object, area, or phenomenon from a 

distance is known as remote sensing (RS) (Fussel et al., 1986). The information is usually 

collected by a sensor mounted on handheld devices, spaceborne satellites, or aircrafts, 

which measures the electromagnetic energy reflected and emitted by these features (Read 

and Torrado, 2009, Prasad et al., 2011). The remotely sensed data is crucial for 

understanding changes occurring in the surface of earth and the atmosphere at spatially 

and spectrally unlimited extents. This makes RS a viable tool for predicting both 

biochemical and biophysical indicators of savanna vegetation cover, density, and biomass. 

(Dube and Mutanga 2015; Naidoo, et al., 2012). The synoptic view of the surface and high 

revisit period offered by different airborne and spaceborne sensors allows for time-

effective and dimensionally unlimited means for environmental observations (Cohen and 

Goward, 2004). RS techniques for grass foliar nutrients estimation and monitoring at a 

regional scale became popular over the last three decades, and this owes to the above-

mentioned RS capabilities providing explicit data for analysis on a near-real time basis at 

reduced labour (Ramoelo et al., 2011; Loozen et al., 2019). Accurate estimation of foliar 

biochemicals provided by RS is pivotal for understanding ecosystem functioning at a 

regional scale. This is due to the relation of foliar biochemical contents to vegetation’s 

chemical processes, including photosynthesis, respiration, evapotranspiration, and 

decomposition (Huber et al., 2008). 

The spectral reflectance and absorption behaviour of electromagnetic energy by 

vegetation leaves is influenced by their biochemical composition. For example, N and 

chlorophyll, starch, proteins, phosphorus, oil, and leaf water content determine reflectance 

characteristics (Usha and Singh, 2013). Absorption of light by N, carotenoids, anthocyanin, 

and chlorophyll, for example, is high in the red (665nm) and blue (490 nm) regions of the 

electromagnetic spectrum (Kganyago et al., 2014; Singh et al., 2017), while water, and 

phosphorus greatly influence absorption in the SWIR (945nm) region (Ramoelo et al., 

2013).  Numerous biochemical constituents including N, protein, and chlorophyll influence 

light reflection at the NIR (865 nm) region. The spectral signature curve of healthy 

vegetation across different wavelengths is illustrated in figure 1 below, indicating the 

vegetation biophysical and biochemical components influencing absorption or reflection at 

particular wavelength regions.  
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Spectroscopy measures these reflectance and absorption features at the field level. 

This is significant for developing spaceborne and airborne RS instruments to understand 

the reflectance of different earth features at different wavelengths (Milton et al., 2009; Qiao 

et al., 2022). Unlike the space-borne sensors, the field spectroscopy instrument is held 

0.5m above the surface. Therefore, it is assumed to detect the maximum energy reflected 

by the earth’s features as the distance between the sensor and the object is minimised. 

Subsequently, the atmospheric effect on the reflected energy is reduced. This basic 

understanding of electromagnetic energy interactions with surface features (i.e., vegetation 

in this case) as influenced by vegetation biochemical and biophysical parameters essential 

for detecting various vegetation compositions from RS datasets. This enables the 

computation of numerical algorithms, for example, vegetation indices (VIs) that are 

essential for accentuating vegetation traits using the highly reflected and highly absorbed 

light. Therefore, identification of N:P ratio responsive wavelength regions from reflectance 

data prior to mapping is essential for identifying N:P ratio sensitive VIs . 

Passive RS utilises the unique spectral signature of vegetation from hyperspectral 

and multispectral sensors to extract meaningful information explaining vegetation's 

physical conditions and biophysical traits (Zhang et al., 2015). The utility of hyperspectral 

and multispectral data for continuous monitoring and estimating grass quality measures 

are well documented in the literature (Askari et al., 2019; Ramoelo et al., 2015; Mutanga & 

Kumar, 2007). Even though the data from spaceborne and airborne hyperspectral datasets 

are known to generate accurate vegetation biochemical predicting models, the application 

of hyperspectral data is restricted by the unavailability of these datasets at a regional 

extent and the expensive costs associated with data them (Tong et al., 2014), especially in 

underdeveloped countries like South Africa (Adjorlolo et al., 2015). Consequently, a 

thorough investigation of the potential of cost-effective multispectral sensors offering large 

volumes of data at a regional scale for the estimation of grass micronutrients is a 

necessity. 

 

 



 

6 

     

 

Figure 1:The spectral signature of vegetation, (source: gsp.humboldt.edu).  

Retrieval of the N: P ratio relies on accurate foliar N and P prediction. However, P 

prediction becomes constrained by several challenges, including a few identified P 

absorption wavelengths (Ramoelo et al., 2013) and the small concentration of P in plants. 

P is 10 times lower than N, making it challenging to detect P from a satellite image. Hence, 

there are few RS studies on P estimation (Knox et al., 2010). The challenges experienced 

during P estimations consequently affect RS-based N:P ratio retrieval. Based on the 

reviewed literature, limited studies, e.g., Ramoelo et al. (2013), investigated the 

applicability of RS datasets in estimate the N:P ratio at a regional scale in South African 

Savannas. In recent times, most vegetation assessment studies utilised hyperspectral data 

owing to the presence of a considerable number of narrow bands, including the red edge 

providing information on even subtle variations in spectral reflectance of vegetation 

possible resulting from changes in vegetation biochemical and biophysical composition. 

However, models developed using hyperspectral data are highly subjected to data 

redundancy and overfitting (Mutanga & Kumar, 2007). In addition, most hyperspectral 

sensors are commercial; hence their availability to the public is limited, especially in 

underdeveloped countries. 

Inclusion of the red-edge bands in broadband sensor like WorldView-2 and 

RapidEye have been proven effective in dealing with the issue of overfitting and presents 

an excellent opportunity for detecting changes in vegetation’s nutrient content (Mutanga et 
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al., 2012; Clevers and Gitelson, 2013; Ramoelo et al., 2012). However, financial 

constraints are still a significant drawback, making Sentinel-2 the only financially viable 

sensor for the remote sensing of vegetation. Sentinel satellites developed by ESA 

Copernicus are meant to ensure the continuity and improvement of satellites assigned for 

earth observation. Sentinel-2 satellite mission contributes significantly to earth surface 

monitoring, and it is equipped with three red edge bands (705 nm, 740nm, and 783 nm) 

known to be effective in determining green vegetation health and status (Drusch et al., 

2012). This satellite comprises a wide swath of 270 km and offers a high spatial resolution 

of 10 m and 20 m, enabling up to regional vegetation monitoring (Duraisamy, 2019). 

Owing to the inclusion of red-edge bands to Sentinel-2 Multispectral Instrument (MSI), 

which were initially available only with the commercial sensors. It can also be argued that 

Sentinel-2 is comparable with commercial sensors and is sufficiently great for assessing 

vegetation quality (Ramoelo et al., 2015). 

Several studies investigated the capability of Sentinel-2 MSI absorption features and 

vegetation indices for estimating biochemical and biophysical traits. For example, Ramoelo 

et al. (2015), Ramoelo and Cho, (2018) successfully investigated the capabilities of 

Sentinel-2 simulated spectral bands in the estimation of leaf nitrogen, and Chabalala et al. 

(2020) used sentinel-2 MSI satellite images to map the spatial distribution of nitrogen. To 

date, the potential of sentinel-2 MSI spectral configuration for estimation of N:P ratio are 

seldomly investigated (Loozen et al., 2019). Sentinel-2 MSI is currently providing large 

volumes of data, which opens research opportunities to investigate the capabilities of 

these datasets in estimating and monitoring the grass N:P ratio. Regression techniques 

mainly used to develop vegetation assessing models are reportedly simple linear and 

parameterized regression techniques. These methods are successfully used to study 

several vegetation parameters with acceptable accuracies. However, their inability to 

handle large and complex datasets and the issue of overfitting is still a significant 

challenge making it difficult to upscale them for regional application. Parametric regression 

techniques perform best with normally distributed data. Their accuracy is limited when the 

case is the opposite (Zaetizadeh et al., 2011). In this regard, to fully exploit the potential of 

non-commercial sensors (like Sentinel-2 MSI) that produce data at high spatiotemporal 

resolution data, there is a necessity to compare its performance on both parametric and 

non-parameterized methods as the latter approach takes advantage of the full spectrum 
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and can handle complex datasets. The main objective of this study was to develop a 

parametric or non-parametric Sentinel-2-based N:P ratio estimation model using simulated 

in situ reflectance data obtained from hyperspectral Analytical Spectroscopy Device (ASD) 

and later invert the developed model to map the distribution of N:P ratio across Kruger 

National Park (KNP) area and surroundings. 

1.3  Problem statement 

Most of the world’s Savanna biome, including South African Savannas, 

manifest signs of degradation in response to overgrazing (Ramoelo et al., 2015). In 

addition to this soil erosion, conversion of open grasslands into crop production 

farms, weed and bush encroachment (Greer et al., 2014; Symeonakis et al., 2016), 

and changing climatic conditions (Palmer & Ainsile, 2005; Zhou et al., 2015) are 

also factors. Symeonakis et al. (2016) reported that millions of hectares of South 

African land are degraded, and 1.1 million hectares is regarded as non-viable. This 

resulted in a 50 % decrease in the grazing capacity of the South African savanna 

in 2016 (Symeonakis et al., 2016). The rapid incline in the degradation rate 

threatens the ability of the savanna to provide the ecosystem services mentioned 

above. When savanna services are disrupted, especially grazing capacity, the poor 

and vulnerable rural communities who rely solely on natural rangelands found 

within the savanna biome are disproportionately more affected (Symeonakis et al., 

2016).  

For decades, farmers lost livestock owing to poor rangeland management 

techniques. This may result from a lack of information that enables farmers to 

implement relevant actions such as rotational grazing to allow pastoral recovery. 

Hence, there is a need for a reliable and financially affordable approach to 

savanna management to ensure its sustainability. The following core problems 

were addressed in this study: a) lack of information on the distribution of the N:P 

ratio across the South African Savannas, b) Lack of information on the potential 

freely available Sentinel-2 datasets for predicting foliar N:P ratio and, c) the 

accuracy of simulated Sentinel-2 datasets derived models for continuously 

mapping the spatiotemporal distribution of N:P ratio in heterogeneous natural 

environments.  
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1.4  Significance of the study 

Monitoring the savanna biome is crucial in the agricultural economy, especially for the 

smallholder farmers in rural areas who depend mainly on natural grasslands for livestock 

grazing and productivity. The information is essential to farmers, ecologists, and nature 

conservationists as a decision-making support tool to manage and sustain protected areas 

such as national parks and farms. Regular information is required to ensure the 

development of risk management and coping strategies to avoid dealing with the 

consequences of nutrient limitation. Moreover, decision-makers and policymakers 

formulate, and update policies related to land management and food security as such 

actionable information that RS techniques provide is critical to them. The use of advancing 

technologies and innovative means for timely monitoring of vegetation is crucial for 

eradicating poverty and ensuring food security and sustainability and restoration of 

savanna biodiversity. 

1.5  Hypothesis 

Does the Sentinel-2 MSI offer comparable accuracy as the commercial 

Multispectral and hyperspectral sensors in the estimation of grass N:P ratio? 

1.6  Aim 

The aim of this study was to evaluate the capabilities of simulated Sentinel-2 

models for N:P ratio estimation and assess their transferability to satellite images to map 

grass nutrient limitation.  

1.7  The main objectives of this study were: 

• To determine the optimal Sentinel-2 spectral bands and vegetation indices 

for retrieving foliar N:P ratio, 

• To evaluate the transferability of FieldSpec 3-(ASD) derived N:P models to 

multispectral satellite images for regional mapping, and  

• To compare N:P ratio predictive capability of Sentinel-2 to commercial 

multispectral and hyperspectral sensors. 
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1.8 Research questions 

The research questions that this study addressed were: 

i. What are the optimal Sentinel-2 bands and indices for predicting foliar N:P? 

ii. Can ASD-derived models be transferred to satellite images for mapping the 

N:P ratio? 

iii. Is Sentinel-2 N:P ratio predictive capability comparable to the commercial 

multispectral sensors equipped with the red-edge bands? 

1.9 Scope of the study 

This study explored the capability of simulated multispectral and hyperspectral 

datasets for estimating and mapping grass foliar N:P ratio in the savanna landscape of 

Limpopo province, in the Kruger National area. Simulated sentinel-2 datasets were used to 

develop an N:P ratio predicting model. The potential of sentinel-2 was explored using both 

parametric and non-parametric regression methods, partial least squares regression 

(PSLR), and random forest regression (RFR), respectively. The accuracy of Sentinel-2 

was then compared to commercial multispectral (WorldView-2 and RapidEye) and 

hyperspectral sensors (Enmap and Hyperion). Sentinel-2 images were used to map the 

distribution of the N:P ratio by inverting the best-predicting model derived from the 

simulated Sentinel-2 dataset. 

1.10 Research outline 

This thesis consists of five chapters. The main purpose of this study is to detect grass 

nutrient limitation from simulated Sentinel-2 spectra. It is based on ASD field measurement 

and laboratory chemical analysis to extract grass N:P ratio.  Regression analysis is be 

executed in chapter 3 to measure the relationship between the simulated spectra and the 

laboratory-extracted concentrations and finally investigate the transferability of Simulated 

ASD datasets to Sentinel-2 images for regional mapping of N:P ratio. 

Chapter one 

Chapter one is an introductory chapter outlining the background of the study, and it 

introduces the critical role of grassland in maintaining biodiversity and its role on the 

ecosystem, rural livelihoods, and the economy. It introduces the problem that has been 
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investigated and the importance of remote sensing-based nutrient estimation. This chapter 

presents the objectives to be executed proceeding with the aim of the study and the 

hypothesis to be tested. 

Chapter two 

Chapter two is a review of previous work related to the estimation of grass quality 

using remote sensing. The use of hyperspectral and multispectral data for grass nutrient 

mapping is discussed in this chapter, looking at the challenges and advantages of each 

dataset. It further reviews important predicting variables (i.e., vegetation indices, red-edge 

position (REP), and absorption feature) for the N:P ratio. Parametric and non-parametric 

regression techniques were reviewed, focusing on their pros and cons and their success in 

previous experiments based on obtained estimation accuracies and gaps in the literature 

in relation to N:P ratio estimation is identified in this chapter. 

Chapter three 

Chapter three provides a clear description of the study area, methods, and 

methodology used in this research. The chapter explains the acquisition of all the datasets 

used in this research, the sampling methods, and the procedure used to measure spectral 

reflectance. Lab-based chemical analysis of N:P from the grass samples was described, 

and the spectral resampling of the ASD hyperspectral data to the desired spectra was also 

explained. Chapter three clearly describes regression algorithms (SPLR and RF) used to 

estimate and map the N:P ratio, and the statistical analysis performed on the data is 

further explained. 

Chapter four 

Chapter four is the presentation of obtained results. Results were presented in 

scatter plots and graphs showing the relation between measured and predicted N:P ratio. 

The contributions of bands and VIs were analysed in this chapter. Furthermore, the 

performance of each sensor was analysed based on the estimation accuracies of the 

SMLR and RF models. 

Chapter five 

The results achieved in this study are discussed in chapter 5, the overall summary 

on the achievement of the objects and aim of this research study are also presented. 
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Chapter five also gives a discussion of the contribution of this study to scientific knowledge 

and the recommendation for future research to improve the prediction and mapping of N:P 

ratio to improve the results and the accuracy achieved in this study.  
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CHAPTER 2:  

Literature Review 

2.1  Chapter overview  

This chapter provides review of previous RS applications for predicting and 

mapping grass quality. The drivers of variations in grass quality were reviewed. 

Followed by the applications of Hyperspectral and multispectral datasets in 

estimation of foliar biochemicals in different environments. A further review of 

bands and indices applicable to the prediction of foliar micronutrients, focusing 

mostly on N, P and N:P ratio is provided in this chapter. Lastly, both parametric and 

non-parametric regression algorithms are discussed in this chapter. 

2.2  Background 

Grass quality, as denoted by the concentration of grass biochemicals such as N 

and P is imperative for the health and development of vegetation. Grass N and P are 

associated with several plant processes, including light use efficiency, plant photosynthetic 

capacity and rate, leaf life span, chlorophyll content, and plants’ amino, and nucleic acids 

(Walker et al., 2014; Bakker et al., 2011, Gusewell, 2004; Wright et al., 2004). Availability 

of grass N alters dry matter, and protein production, which is the major nutrient required by 

plants (Prins & Langevelde, 2008), foliar P, on the other hand, is the major nutrient 

requirement for lactating animals (Mutanga & Kumar, 2007). Nutrient limitation is 

demonstrated by the N and P quotient (N:P). This ratio indicates the balance of foliar N 

and P in an ecosystem. Nutrient limitation is known to have implications on the feeding 

patterns of foragers as N and P limitation determines forage productivity and biomass. As 

such inadequate levels of these biochemicals will lead to low quality and reduced plant 

growth (Zhao & Zeng, 2009). 

Different critical N:P ratio values are proposed in the literature. These values 

indicate whether the grass is N, P, or co-limited. Based on short-term fertilised plants, 

Gusewell, (2004) proposed that small N:P values (less than 10) denote N limitation and 

larger N:P values (greater than 20) indicate P limitation, and a condition where both Nand 

P are insufficient is known as co-limitation; this is denoted by any N:P values in between 
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10 and 20.  Gusewell, (2004) further posits that these values are subject to change with 

different plant species.  Koerselman and Meuleman (1996) initially proposed a narrow 

range of values based on a wetland’s ecosystem experiment, with N deficiency indicated 

by N:P ratio < 14 while N:P ratio > 16 indicating P deficiency, and N:P values between 14 

and 16 suggesting co-limitation. However, the later N:P ratio threshold values cannot be 

applied in savanna ecosystems due to differing grass species between the two 

ecosystems, wetlands are mainly made of C3-type grass, whereas grassland is made of 

C4-type (Craine et al., 2008, Ludwig et al., 2001). Among the various factors influencing 

foragers' feeding site selection preferences, the concentration of grass micronutrients 

stands out as a particularly significant factor. In addition to factors like predation risk, water 

availability, grass species type, age, and phenology, the spatial variability of nutrients has 

been found to have a substantial impact on foraging behavior and migration patterns of 

foragers (Prins & van Langevelde, 2008; Ludwig et al., 2008). It is postulated that large 

animals tend to be denser in nutrient-rich areas and less dense in nutrient-limited areas. 

2.3 The influence of environmental factors on the distribution of grass 

quality 

Understanding biotic and abiotic factors influencing the spatio-temporal variations in 

grass quality is of fundamental importance in descerning the feeding trends of animals in 

savanna biomes (Mutanga et al., 2004). Several studies indicated that several 

environmental factors drive variability in grass quality, however, elucidating spatial patterns 

of vegetation health is still a complicated task because the spatial distribution of grass 

quality is not solely explained by one independent factor, but by an array of different 

interacting factors simultaneously (Venter et al., 2003). Evidence of those inter-

relationships is presented by the significant correlations between some of those variables. 

For review, see (Ramoelo et al., 2013). Mutanga et al. (2004) used correlation analysis 

and Analysis of Variance (ANOVA) to examine the correlation of grass quality with 

environmental parameters at a local scale. Their study indicated an important relationship 

between environmental factors, focusing specifically on the percentage of grass cover, soil 

texture, slope, aspect, and altitude. Soil texture and percentage of grass cover was found 

to be crucial in explaining grass quality variability at a local scale. 



 

15 

     

Mutanga et al. (2004) further investigated interactions between biological and azoic 

factors affecting the spatial distribution of grass nutrients using multivariate analysis 

techniques. Noticeable interactions between plant species type with altitude, slope, and 

underlying geology were identified. Tlhone et al. (2018) investigated the importance of 

environmental variables for estimating grass quality (N), focusing mainly on climate, land 

use, slope, aspect, altitude, and geology using the spatial and least squares (Analysis of 

Covariance (ANACOVA)). From the study, the models demonstrated the significance of 

each factor in assessing grass quality variability. Ramoelo et al. (2013) integrated climatic, 

edaphic, and topographic environmental variables with in situ hyperspectral ASD data to 

predict grass quality (N and P) using non-linear partial least squares regression (PLSR). 

The results demonstrated a positive correlation between climate, geology, and topographic 

factors, as shown by positive PLSR weights of these parameters. 

The influence of these environmental parameters on grass quality distribution varies 

with spatial scale. At a regional or continental scale, a noticeable influence on forage 

quality results from climatic conditions, particularly rainfall and temperature. There are no 

vast variations at the local level as climatic differences are not significant over a few 

kilometres except in the mountains (Pearson & Dawson, 2003). These affect the physical 

and chemical traits of the forage as well as the digestive processes of the foraging 

animals. It is understood that rainfall has a positive influence on plants as they require 

water to maintain soil moisture and nutrients. However, excessive rainfall than required 

(flooding) promotes diseases in plants. In the savanna biome, local differences in rainfall 

occur due to rainfall incidents, for example, thunderstorms. Moreover, rainfall varies on 

annual records, and there are no noticeable differences on monthly and daily basis (Venter 

et al., 2003). In a three-year period Ferner et al. (2021) identified precipitation and plant 

processes to be the key factors deriving forage supply. Temperature is another climatic 

factor influencing plants’ physiology. Drought intensity and warming level determine a 

plant’s ecophysiological changes in response to heat stress. Forage quality strongly 

decreases with an extreme increase in heat due to tissue senescence, while average heat 

stress promotes plant maturation, the utmost increase in heat causes an increase in water-

soluble carbohydrates and decreases plant tissues’ water content (Dumont et al., 2017). 

Furthermore, increased heat stress reduces dry matter digestibility and reduces voluntary 

intake by the feeding animals (Baetty et al., 2008). 
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Distribution of grass health status at a local scale affected by several parameters 

such as soil physical and chemical characteristics, topography, underlying geology as well 

as fire frequencies are understood to have an impact (Pearson & Dawson, 2003). Soil’s 

physical and chemical properties affect the nutritional status of vegetation. These 

properties are directly influenced by parent rock material. Soil originating from gabbro is 

more nutritious than basalt originating soils. Subsequently, plants occurring on higher-

nutrient soils, such as basalt, have higher concentrations of leaf nutrients. Growth rates 

and forage quality differs significantly on sandy and clayey soils in response to water 

availability (Kumar et al., 2002). This is due to the varying infiltration capacity of these 

soils; sandy soils are more permeable, allowing more water to pass through to reach 

vegetation roots hence the accelerated growth, whereas on clay soils growth rate is 

hampered by low permeability leading to low infiltration and high surface runoff. However, 

clay soil contains high mineral content and is more nutritious than sandy soil. Run-off in 

steeply sloped areas causes minerals and clay particles to be deposited into the valley 

leading to thinner and coarser texture soil layers, hence low nutrient concentrations. 

Valleys are associated with high nutrient concentrations owing to the high accumulation of 

water and nutrients from the mountainous areas (Grant et al., 2000). 

 Fire frequency is another important factor influencing vegetation quantity as well as 

quality in savannas, resulting in decreased biomass production (Ben-Shahar, 1996), 

accelerated nitrogen mineralization (Giardina & Rhoades, 2001), and an increase in post-

fire growth (Rieske, 2002). Fires remove built-up layers of decaying materials from past 

years and decapitate vying trees and shrubs, allowing grasses to grow in more space and 

with favourable light, water, and nutrient availability. (Bachelet et al., 2000). However, 

increased fire frequency may lead to overgrazing in the unburnt areas, which may result in 

degradation and reduced rangeland quality. At Kruger National Park, the relationship 

between geology and fire frequency is explained by Venter et al. (2003) as follows: “Where 

there is high grass biomass and fires are more intense, such as on the basalt plains, the 

savannas are more open, and where fires are less intense, such as on the granites, they 

are more closed”. Increased and intense fire frequencies stimulated the coalescence of 

shrubs through boscaging of the mopane veld (Bronn et al., 2001). Therefore, leading 

grass condition influencers at KNP are fire frequencies and the parent material. 
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2.4  Foliar quality estimation using remote sensing. 

Passive remote sensing is dependent on radiation from the sun to illuminate 

objects. It is based on detection of the interaction of light with features at a specific 

wavelength by multispectral and hyperspectral to detect and monitor changes occurring on 

the surface of the earth. These include water bodies, built-up and vegetation, the summary 

of passive remote sensing process is shown in figure 2 below and figure 3 demonstrates 

the interaction of these objects at different wavelength regions of the electromagnetic 

spectrum.  Its primary spectral regions of interest are the visible, near infrared, and 

shortwave infrared (Zhang et al., 2015). The RS of vegetation uses the reflected or 

absorbed energy to understand vegetation Physical and biochemical conditions. Multiple 

reflectance values are combined (i.e., computation vegetation indices) from the 

vegetation's distinct spectral reflectance curve to accentuate traits of interest. Both 

vegetation biophysical and biochemical parameters could be mapped using vegetation 

indices (VIs) (Zhang et al., 2012). Developing high spectral resolution satellites with 

additional effective wavelength bands allows for a robust investigation of grass quality 

parameters (Oumar & Mutanga, 2007). The use of vegetation indices in estimating grass 

nitrogen and phosphorus is salient in remote sensing. Several airborne and spaceborne 

hyperspectral and multispectral sensors are used to estimate grass quality. Techniques 

developed using the large number of wavelengths recorded by hyperspectral imaging 

sensors allow for the development of multiple VIs, offering opportunities for exceptional 

investigation of vegetation conditions (Mutanga, 2004). 
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Figure 2: The process of passive remote sensing, . The diagram shows the illumination of 

the target by the source and the recording of the reflected electromagnetic energy by a 

spaceborne sensor mounted on a satellite (source: researchgate.net). 

 

 

Figure 3: The spectral signatures of different objectsThe figure shows the reflection and 

absorption of light by different objects at different wavelengths.  Soil (the brown line), water 

(the blue line) and vegetation (the green line) (Source: seos-project.eu.).  

Regional assessment and mapping of grass nutrients using hyperspectral is 

hampared by the significant costs and unavailability of data at a larger scale (Tong et 
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al.,2014; Ramoelo et al., 2015). In addition, overfitting resulting from the large number of 

wavelengths of hyperspectral images present a challenge to using hyperspectral data 

(Mutanga and Kumar, 2007). Additional effective bands in multispectral sensors such as 

the red edge band and the wide swath make these sensors robust for regional mapping of 

grass biochemical content (Ramoelo et al., 2012, Cho et al., 2006, Oumar & Mutanga, 

2013; Li et al., 2014). Presence of this red edge in the non-commercial sentinel-2 MSI 

makes this satellite comparable with commercial multispectral satellites (Sibanda et 

al.,2015; Loozen et al.,2019, Ramoelo., 2014). Loozen et al., (2019) investigated the 

performance of vegetation indices developed from commercial and non-commercial 

sensors for N and P in estimating the N:P ratio using field spectroscopy datasets. 

Resampled Sentinel-2 derived VIs showed high correlation with the N:P ratio (R2 of 0.72). 

2.5  Grass quality estimation using simulated field spectroscopy data. 

Field spectroscopy has long been utilised as a tool to explain in situ vegetation 

measurements. It contributed significantly to the understanding of vegetation spectral 

signatures and identifying important regions for the detection of vegetation spectral traits. 

This later led to the development of imaging spectroscopy (Goetz, 2009; Milton, 2009). 

The main advantage of these tools is obtaining accurate reflectance of objects as they are 

held at a shorter distance from the surface during spectral measurements, hence the 

impact of the atmosphere on radiation energy is minimal (scattering and absorption of light 

by atmospheric particles), resulting in almost the exact reflection of objects. Since the 

surfacing of field spectroscopy in optical RS, this has played a prominent role in scaling up 

radiation-object interaction from a finer scale of the Earth’s surface to a coarser canopy 

level (Milton, 2009b). Field spectroscopy applications in vegetation remote sensing include 

the detection of nitrogen, biomass estimation, assessment of vegetation health, and 

species classification. A study by Ramoelo et al., (2013) integrated hyperspectral field 

spectroscopy datasets with environmental variables to test the performance of nonlinear 

partial least squares regression (PSLR) for detecting grass N and P in savanna 

ecosystems. High estimation accuracies R2 0.81 and root mean square error (RMSE)= 

0.08 g/m2 for N, R2 = 0.80, and RMSE = 0.03 g/m2 for P) were obtained from the non-

linear PSLR model when integrating in situ hyperspectral and environmental variables 

(climatic, topographic and geology) compared to using spectral data only. This 
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emphasised the influence of different environmental factors on the spectral reflectance 

received at the canopy level. 

Mutanga & Skidmore, (2010) used airborne HyMap image data to test the 

effectiveness of imaging spectroscopy and neural networks to map P concentration in 

savanna grasses. This study further attempted to find the key wavelengths to detect 

phosphorus using hyperspectral remote sensing. Continuum-removed absorption features 

and the red edge position (REP) were used as predictors in a propagation neural network. 

The results showed a significant potential of a best-trained neural network and HyMap 

data to estimate phosphorus distribution (R2 = 0.63 and RMSE = 0.07 g/m2). A similar 

experiment by Ramoelo et al. (2013) investigated the potential of field spectroscopy 

reflectance data and simulated HyMap spectra for measuring the N:P ratio. N:P predicting 

models were developed from original field spectral reflectance data and resampled or 

simulated HyMap data. Spectral transformation techniques were used to minimise the 

effect of other absorbing features in the SWIR region of the electromagnetic spectrum. The 

original field spectra demonstrated high N:P estimation potential when combining water 

removal (WR) and continuum removal (CR) spectra with the PSLR compared to other 

spectral transformation techniques (i.e., log 1/R and first derivative (FD)). RMSE value of 

1.12 was obtained for both CR and WR with the highest R2 values of 0.85 and 0.81, 

respectively. The simulated HyMap data predicted the N:P ratio satisfactorily. However, by 

comparing the obtained RMSE and R2 values, the results show that original reflectance 

data outperformed the HyMap data for all the spectra transformation techniques with 

RMSE ranging from 1.12 to 1.50 for field spectra and 1.40 to 1.70 for HyMap spectra and 

R2 values ranging from 0.69 to 0.85 for field spectra and (0.50 to 0.64) for HyMap spectra. 

WR showed high accuracy for HyMap spectra indicated by the lowest RMSE of 1.40. 

Pang et al. (2022) used enhanced ASD spectrometer reflectance data to develop 

PLSR models for C, N, and P estimation in an open grassland, the models attained over 

0.75 R2 for all the biochemicals. The study further compared the results with raw Sentinel-

2 images, and the RMSE of the models improved significantly. Qiao et al. (2022) used the 

ASD spectrometer data to identify P sensitive bands and develop P prediction in maize 

leaves to monitor growth under different P fertiliser levels. The study applied back 

propagation neural networks to develop predictive models, and identified P sensitive 

wavelengths at 763 nm, 815 nm, and 900–1000 nm. Sibanda et al., (2015) assessed the 
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utility of in situ hyperspectral grass reflectance data and multivariate techniques in 

distinguishing the effect of different fertilisers on grass quality. Specifically, 12 complex 

ammonium nitrate, ammonium sulphate, lime, and phosphorus fertiliser combinations were 

investigated. Partial least squares regression discriminant analysis (PLSR-DA) and 

discriminant analysis (DA) were used to assess grass quality under fertilised and 

unfertilized plots. In situ hyperspectral data demonstrated great potential in detecting 

different fertilisers. Four effective bands were identified within the red edge (731 and 737 

nm) and the shortwave infrared (1310 and 1777 nm). 

Loozen et al. (2019) investigated the applicability of vegetation indices (VIs) 

developed for canopy N or P detection in estimating canopy N:P detection using in situ 

hyperspectral. To investigate the impact of band composition and bandwidth 60 VIs 

developed from the original in situ hyperspectral data and simulated the data to band 

characteristics of six multispectral satellites: sentinel-2 MSI, Sentinel-3 Ocean and Land 

Color Instrument (OLCI), RapidEye, Worldview-4, Moderate Resolution Imaging 

Spectrometer (MODIS)- Terra, and Aqua, and Landsat-8. Out of the 60 VIs, some were 

the existing VIs, others explicitly optimised for this study. Both VIs were significant for N:P 

detection, (R2 = 0.16 – 0.48 and R2 = 0.59 -0.72) for existing and optimised VIs 

respectively. Sentinel-2 MSI and Landsat-8 Operational Land Imager (OLI)-derived VIs 

yielded a high correlation with N:P for existing VIs; sensor parameters did not influence the 

optimisation. The capability of simulated Hyperspectral and multispectral datasets, 

particularly Hyperion and Sentinel-2 with PLSR is presented by Ferner et al. (2021). Their 

study further assessed the transferability of the models to satellite images, even though 

Sentinel-2 obtained lower accuracies than Hyperion, it produced more realistic maps. 

Accuracy of ASD data derived nutrients prediction models is affected by different 

vegetation phenological stages (Amaral et al., 2022). Their study estimated leaf P, K, Ca, 

and Zn at three different growth stages using spectrometer reflectance data, the results 

revealed that the accuracy of the models was varying with different stages. 

2.6 Grass quality estimation using absorption features. 

Absorption features for nitrogen, protein, chlorophyll, and starch were identified in 

several studies. Remote sensing of phosphorus mapping is lagging compared to nitrogen, 

subsequently, known absorption features sensitive to P are limited and phosphorus 
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estimation is still a challenging venture (Loozen et al., 2019). Since phosphorus is 

essential in metabolism processes responsible for producing sugar, absorption sensitive to 

starch is used to detect phosphorus. Knox et al. (2006) used sugar absorption features to 

estimate P and obtained accurate results. The shortwave infrared (SWIR) capability for P 

estimation was demonstrated in RS studies, for example (Mutanga & Kumar, 2007). 

Mutanga and Kumar, (2007) identified absorption features located in the shortwave 

infrared (R2015 - R2199) to be robust for mapping phosphorus distribution. This region 

received little attention before in spectroscopic-based phosphorus experiments compared 

to the visible region. The reason for this was due to the interference of absorption radiation 

by several compounds in this region, for example, absorption by leaf water content is 

strong in this region thus making it difficult to interpret the SWIR absorption (Mutanga & 

Kumar, 2007). SWIR absorption features are enhanced with spectral transformation 

techniques such as water-removed spectra, see (Ramoelo et al., 2011) and continuum 

removal technique (Mutanga & Kumar, 2007) to accentuate vegetation biochemicals in this 

wavelength region. For P estimation, Gao et al. (2019) indicated that first derivative (FD) 

and continuum removal (CR) spectral transformation techniques retrieve more absorption 

features located in the NIR and SWIR compared to log-transformed and Raw spectra. In 

multispectral sensors, the use of SWIR was restricted by a few bands in this region 

(Ramoelo et al., 2013). 

N and P estimation using RS was used to derive N:P, However, this approach is 

likely prone to errors. For instance, errors that occurred in N and P measurements are 

automatically carried to N:P measurements; therefore, identification of N:P absorption 

features is necessary for RS of nutrient limitation. Ramoelo et al. (2013) utilised protein, 

sugar, and nitrogen absorption features to estimate N:P ratio and attained meaningful 

results. The Blue region is sensitive to N:P; however, Raleigh scattering is challenging for 

satellite sensors. The position of absorption features changes with seasons. For instance, 

in the wet season, nitrogen features are in the visible, NIR, and SWIR and are found in the 

SWIR only in the dry season (Asner et al.,1998). Known absorption features sensitive to 

both N and P are listed in Table 1 below, these are the central wavelengths in which the 

absorption features are situated. Absorption of light in these wavelength regions indicate 

the presence of either N or P in the observed sample. 
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Table 1: N and P known absorption features. 

 

2.7  Grass quality parameters using vegetation indices. 

The oldest and most common technique used to study vegetation traits involves a 

combination of reflectance values from two or more wavelengths into a single numerical 

variable, i.e., computation of VIs enhancing spectral features sensitive to vegetation 

(Clevers, 2014). Application of VIs originated with the use of broadband sensors. 

Normalised difference vegetation index (NDVI) (Rouse et al., 1974) and simple ratio (SR) 

(Jordan et al., 1969) are one of the oldest optical VIs and the most used vegetation indices 

to study vegetation biochemical as well as biophysical traits for decades. The oldest 

technique of deriving these indices was based on the strongly absorbed red band and the 

highly reflected near the infra-red band. Net primary production is strongly associated with 

NDVI; therefore, in remote sensing, NDVI was widely used as the key measure of 

vegetation variations (Vlek., et al., 2010; Field et al., 1995). Bio-indicators such as nitrogen 

and chlorophyll were extracted using the NDVI derived from narrowband hyperspectral 

and broadband multispectral satellites. However, broadbands derived VIs, which include 

indices derived from the broad NIR like NDVI are affected by soil brightness, illumination, 

viewing atmospheric geometry conditions as well as the leaf canopy (Huete et al.,1992), 

and therefore broad wavebands multispectral sensors are unsuitable for quantification of 

plant biochemicals (Cho et al.,2006; Chabalala et al.,2020). Consequently, Vis derived 

from broadbands is suitable for noticeable mapping differences, such as differentiating 

between the healthy green vegetation and yellow stressed vegetation. 

2.8  Sensitivity of the red edge bands to vegetation parameters 

The use of the red edge position for the detection of plant biochemicals became 

popular in the early 1980s (Guyot & Barret, 1988). The advent of new wavebands 

extremely sensitive to chemical changes in vegetation was motivated by the response of 

Foliar biochemical Absorption features/ wavelengths (nm) 

N and P 

430 nm, 460nm, 640 nm, 660nm, 910 nm, 1510 nm, 1690 nm, 

1940 nm, 1950 nm, 2060 nm, 2180 nm, 2300 nm, 2350 nm, 

2270 nm 
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plants’ reflectance to changes in nitrogen and chlorophyll contents (Main et al., 2011). 

Since then, several multispectral and hyperspectral satellite sensors with the red edge 

band were developed. The red-edge bands, firstly available with the RapidEye sensor are 

proved to be significant in quantifying the biochemical constituents of plants. The red-edge 

position located between 670 nm and 780 nm is presented by a sudden rise in the 

reflectance of vegetation, due to the combination of strong chlorophyll absorption in the 

red band and high reflection in the NIR band (Horler et al., 1983). Leaf structure and 

chlorophyll content alter the shape and position of the red-edge. Mutanga et al. (2003) 

stated that increased chlorophyll and leaf water content results in expanded red band 

absorption, causing the red-edge to move towards the longer wavelengths. Whereas 

reduced leaf water content and chlorophyll cause a shift of the red edge towards a shorter 

wavelength (Rock et al.,1988). Horler et al. (1983) were one of the first studies to prove 

the significance of the position of the red-edge inflection point for detecting plant stress. 

Since these first publications, the red-edge position (REP) has become trendy for 

estimating chlorophyll content. 

Estimating chlorophyll and nitrogen simple ratio and normalised difference 

vegetation indices derived from the REP perform better than the traditional VIs computed 

from the NIR and the visible region of the electromagnetic spectrum (Curran, 1989; 

Clevers et al., 2001). Due to the saturation effect resulting from the strong absorption of 

chlorophyll in the red band, chlorophyll and nitrogen absorption are minimal in the red-

edge region. Thus, reducing the saturation effect. Hence REP is sensitive to nitrogen and 

chlorophyll (Gitelson and Merzlyak, 1996). The efficacy of red-edge indices for grass 

quality and quantity were demonstrated as reported by Ramoelo et al. (2014). Red-edge 

derived VIs were found to be important predictors for leaf N. Both visible and red edge 

were crucial for biomass. A recent study by Gao et al. (2020) utilised Sentinel-2 MSI 

images to investigate the capabilities of Sentinel-2 red-edge position in predicting grass 

N:P ratio in alpine grasslands using a random forest regression method. The results 

revealed the promising potential of spaceborne Sentinel-2 data with fare estimation 

accuracies. R2 values of 0.49 and 0.59 were obtained for vigorous growth and senescence 

stage consecutively. VIs derived from Sentinel-2 B5 and B8A had an outstanding 

contribution to N:P estimation. In addition, Sentinel-2 B9 and B12 were found to be 

effective. 
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Parametric regression techniques for grass quality estimation 

Parametric regression techniques have long been the most prevalent in remote 

sensing. These methods assume a normal distribution of the datasets or datasets that can 

be satisfactorily modeled by a probability distribution with a constant set of parameters. 

Regression is based on systematically deriving specified formulas linking restricted 

spectral bands with the bio-geophysical parameter of interest (Verrelst et al., 2015). 

Modest spectral characteristics are employed to minimise undesirable impacts, which are 

frequently linked to changes in leaf structure, soil reflectance, luminance, viewing 

geometry, and weather systems (Verrelst, 2010). The oldest and simplest approach 

employed by these regression algorithms to map vegetation parameters is vegetation 

indices (Glen et al., 2008). Linear and non-linear fitting functions regress and express the 

relationship between vegetation indices and traits of interest. Parametric regression 

models are sensitive to environmental changes and lose their predictive power when 

sensor configuration is changed (Verrelst et al., 2015). As such, the utility of this approach 

is only suitable for mapping vegetation traits at a smaller scale under fixed conditions. 

Moreover, parametric regression is limited to massive data with non-linear relationships 

(Zaetizadeh et al., 2011). Attempts to mitigate these challenges were made by using large 

datasets created by leaf canopy radiative transfer models. Nevertheless, the challenge 

remains, data simulated from limited discontinuous bands do not represent a detailed 

reflection of ground variations, and some spectral information is left out when computing 

vegetation indices from simulated data. 

Simple linear regression techniques present reliable estimation performance. Even 

though that is the case, curse dimensionality was incurred when samples are fewer than 

the predictors as these models depend on the estimation of co-variances (Hughes, 1968). 

Minimising dimensionality improves linear models’ accuracy. Stepwise multiple linear 

regression (SMLR) and partial least square regression (PLSR are the most used linear 

regression techniques in mapping vegetation traits. SMLR is commonly used to select 

bands carrying the most important information (Dorigo et al., 2007). The dominant 

application of these models includes estimating forage quality and quantity. Ramoelo et al. 

(2011) combined later models with a continuum removal spectral transformation technique 

to estimate grass nitrogen. PLSRs have proven to overcome the effect of multicollinearity 

and model overfitting encountered by the SMLR. 
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2.9 Nonparametric regression methods for grass quality estimation 

Non- parametric regression methods are more robust than parametric methods. 

This approach does not rely on the prior selection of specific bands, and it applies the 

learning phase of training datasets to select highly performing bands taking advantage of 

the full spectrum (Verrelst et al., 2015). Adjusted coefficients were used to minimise 

estimation errors. The flexibility of these methods allows them to handle complex datasets 

with non-linear structures. However, over-flexible models are subjected to overfitting 

training data (Verrelst et al., 2015). Machine learning regression algorithms (MLRAs) were 

categorised as non-linear nonparametric regression models. These later methods 

outperform the linear models by applying non-linear transformations assuming that the 

relationship between datasets is unknown. Another superiority of non-linear models is their 

ability to detect non-linear relationships within datasets without knowledge about the data 

distribution (Verrelst et al., 2015). MLRAs include but are not limited to Artificial Neural 

Networks (ANN) (Abdipour et al., 2019), Support Vector Machines (SVM) (Avitabile et al., 

2012), and Random Forest (RF) (Dube & Mutanga, 2015) regression models have long 

been utilised in remote sensing to map vegetation biophysical parameters. 

Non-parametric methods have proven to be more accurate for vegetation 

assessment than parametric regression methods. For instance, the RF regression method 

outperformed all other non-parametric and simple regression models together with 

physical model retrieval methods with the R2 value of 0.79 and an RMSE of 0.33 g/m2 for 

nitrogen retrieval in a comparative model assessment study by Zheng et al. (2018). RF 

method utilises the full spectrum without overfitting or underfitting and can process large 

datasets faster (Zheng et al., 2018). The physical model, particularly the lookup table-

based radiative transfer models (RTM), showed low estimation accuracy with 0.46 g/m2 

and 0.62 RMSE and R2 values, respectively, and low processing speed. RF regression 

has been used in optical-based vegetation remote sensing and demonstrated a compelling 

potential for grass quality estimation due to the ability of this technique to handle the 

randomness and complexity of data. The use of random forest classification and 

regression models are extensively reported in the literature. RF applications include 

aboveground biomass (AGB), leaf water content (LWC), leaf area index (LAI) (Srinet et al., 

2019), and in the classification of wetlands species. Recent studies demonstrated the 

potential of random forest regression models in mapping grass quality and quantity. For 
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example, the estimation of leaf nitrogen content (LNC) (Liang et al., 2018), N:P ratio (Gao 

et al., 2020), grassland nutrients content (Singh et al., 2017), grass nutrients and biomass 

(Ramoelo et al., 2014) and light extinction coefficient (Srinet et al., 2019). A time-series 

study using the RF regression and VIs by Ramoelo et al. (2014) explained over 89% of 

leaf N concentration and over 84% of above-ground biomass variability in both dry and wet 

seasons. 

De Peppo et al. (2021) compared estimation accuracies of parametric and non-

parametric regression methods for retrieving leaf area index (LAI) of three different crops 

(maize, wheat, and alfalfa) from sentinel-2 MSI images. Overall results showed high 

estimation accuracy on MLRAs, with Gaussian Process regression showing the highest r-

square value of 0.80 for all the crops. An integrated modeling approach combining red-

edge position, machine learning (artificial neural networks), and continuum-removed 

absorption features is developed by (Mutanga & Skidmore, 2004) to map grass nitrogen in 

savanna rangeland from hyperspectral imaging spectroscopy data. Acceptable accuracy 

with RMSE of 0.13 g/m2 was better than results obtained from multiple linear regression 

(RMSE = 0.16 g/m2). Zhou et al. (2019) compared the performance of parametric and non-

parametric mathematical approaches to estimate forage crop quality based on nitrogen 

uptake (Nup), crude protein (CP), and dry matter yield in legume and grass mixtures during 

the development stage and harvest period. Support vector machine (SVM) and PLSR 

prediction models are also used to estimate Nup, CP, and dry matter yield using canopy 

spectra. Results indicated that SVM is more accurate compared to PLSR, with a mean 

absolute error (MAE) of 2.8% for PLSR and 1.8% for the SVM model for both the 

development and harvest stages. A combination of appropriate VIs, and machine learning 

algorithms could improve the estimation accuracies of Leaf N, P, and Potassium (K) 

content Peng et al., (2022) derived VIs from UAV multispectral imagery to predict N, P, 

and K contents in grapes leaves, and the study used parametric and non-parametric 

algorithms, particularly the extreme learning machine (ELM), PLS, RF, and SVM prediction 

models. Based on R2 and RRMSE% values, all the MLA outperformed the PLS, where the 

supreme model obtained an R2 value over 0.65 and an RRMSE% less than 20%. 
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CHAPTER 3:  

 Methods and methodology 

3.1  Introduction 

This chapter describes the methods used in proceeding with the objectives to achieve the 

aim of this study. Data collection techniques and analysis processes are explained. Figure 

6 presented at the end of chapter 3 is a flow chart diagram outlining a step-by-step 

summary of methods used in this research. 

3.2  Description of the study area 

 

Figure 4: The study area map showing the location of the KNP and the biome in which it is 

located. The sample points were taken inside the central parts of the KNP and the 

surrounding communal areas (Source: http://download.geofabrik.de.). 

http://download.geofabrik.de/
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The study area mapped in Fig 4 above is in the Lowveld in the northeastern part of 

Southern Africa. The lowveld savanna is connected to a low-lying area extending from the 

lower slope of the Drakensberg Great Escarpment to the west and the Mozambique 

coastal plain to the east (Venter et al., 2003). The study area comprises land use types 

ranging from the state-owned KNP, the privately owned Sabi Sands Game Reserve 

(SSGR), and the communal Bushbuckridge region. Ecosystem functionalities are 

controlled by several variables, including topography, climate, geomorphology, water 

resources, and soil types as determined by the parent material (geology). In KNP, 

dominating geology is basalt on the eastern side of the park and granite on the western 

side of the park. Local intrusions of gabbro are also present (Venter et al., 2003). The 

Lebombo mountain is the eastern border between Mozambique and the park, which is 

made of a thin band of rhyolite. Sand and shale deposits are relatively dispersed north and 

south of KNP (Siyabonga Africa, 2021). Dominant vegetation types are the granitic 

Lowveld and gabbro grassy bushveld (Musina et al., 2006). At the crest of gabbro patches, 

dominant grass species include Setaria sphacelata, while Urochloa mosambicensis grass 

species dominate the valleys (Ramoelo et al., 2015). 

Varying soil moisture and soil nutrients result from the different geology types. The 

granitic western side of the park was dominated by less fertile, acidic soil; this is also due 

to the high rainfall (800 mm/ year) experienced by this side, leaching away all fine 

nutritious clay particles from the soil (Musina et al., 2006). Whereas the gabbro-derived 

soil on the Eastern side receives a low average annual rainfall of 580 mm/year; hence it is 

more fertile. The average temperature range is from 47 degrees Celsius in summer to 35 

degrees Celsius in winter (Venter et al., 2023, Siyabonga Africa, 2021). Consequently, the 

gabbro patches comprise more productive grass species (for example, Urochloa 

mosambicensis) compared to the species (Eragrostis rigidior and Pagonorthria squarrosa) 

dominating the granitic side. Fine-leaved tree species, such as Acacia are found on 

gabbro-derived soil, and broad-leaved tree species, such as the Combretum are dominant 

in granitic soils (Ramoelo et al., 2015). Water resources include the Crocodile River 

flowing through the south of KNP, the Sabie River rising from the Drakensberg Mountain, 

and the Letaba and Olifants river flowing through the centre of the park (Siyabonga Africa, 

2021). 
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3.3  Data acquisition 

3.3.1 N and P Field measurements 

Field data used in this study is from Ramoelo et al., (2013). Measurements were 

taken in 2008 towards the end of the wet season when biomass productivity peaked.  

During this period, the interaction effect of N, P, and biomass is minimal (Skidmore et al., 

2010). Data was collected using the transect sampling method (Fewster et al., 2005). To 

cover nutrient variability across the study area, eight sites were located along the land-use 

gradient from granitic to high gabbro-derived soils. The sites covered a total area of 35,000 

hectares and were distributed as follows: two sites in KNP, two sites in SGR (L3 granite, 

L4 gabbro), and the other four (L5-6 gabbro, L7-8 granite) is in communal areas. A 

geology map with a 1:250000 scale was used to demarcate the sites and was further 

refined using 2008 SPOT-5 images (Wessel et al., 2011). Measurements were taken from 

49 plots sized 30 m x 30 m. Variations within each plot were measured by randomly 

selecting three to four smaller plots (0.5 m x 0.5 m) from each plot. Measurements of the 

dominant grass species and grass samples were collected from each sub-plot utilising the 

Leica® 's GS20 differential geographic positioning system (DGPS). Grass samples were 

dried at 80 °C for 24 hours, and measurements were averaged at plot level. Post-

processing of DGPS points was implemented with the Leica’s GeoPro software and GPS 

reference from Nelspruit to produce positional accuracy of less than 1 m. see (Ramoelo et 

al. 2013) for a detailed field data collection of the datasets used in the study. 

3.3.2  Chemical analysis 

According to Ramoelo et al. (2013), the chemical analysis of dried grass samples 

was done at the South African Agricultural Research Council-Institute for Tropical and 

Subtropical Crops (ARC-ITSC) lab in Nelspruit. The acid digestion methods used for 

chemical analysis in this study were successfully used by Mutanga et al. (2004a, b), 

Ramoelo et al. (2011), and Ramoelo et al. (2013). Phosphorus concentrations were 

retrieved using perchloric and nitric acid, and nitrogen was retrieved using sulphuric acid. 

The auto analyzer measured Foliar N and P using the colorimetric method (Technicon 

Indus-trial Method 329-74W; Technicon Industrial Systems, Farrytown, New York). The 
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chemical reaction of sodium nitroprusside, sodium salicylate, ammonia, and sodium 

hypochlorite for foliar N measurement was done to produce an ammonia-salicylate 

complex. Chemical measurement of phosphorus was achieved by the reaction of ortho-

phosphate and the molybdate ion to produce phosphomolybdenum complex. 

3.3.3  Spectral measurements 

a) Analytical Spectral Device (ASD) spectroradiometer 

An ASD FieldSpec spectroradiometer is a portable device with a wavelength range 

of 350 nm - 2500 nm (ASD Inc., 2010). The device remotely acquires data at the visible 

and near infrared (VNIR) and short-wave infrared (SWIR) region of the electromagnetic 

spectrum with a rapid acquisition period of 0.1 seconds per spectrum. Spectroradiometer 

is a unique type of spectrometer that can measure radiance, irradiance, transmitted, and 

reflected light. The fieldSpec spectroradiometer device offers high accuracy and precision 

because of its high signal-to-noise ratio and superlative repeatability of results for the 

detailed analysis of objects (ASD Inc., 2010).  For this study, reflectance data collected by 

Ramoelo et al (2013) was used. An ASD spectroradiometer, Fieldspec 3®, consisting of a 

fibre optic with a field of view (FOV) of 25° was used to measure the spectral reflectance of 

grass from the 3-4 randomly selected subplots of 1 m x 1 m size. An example of FieldSpec 

3 is shown in figure 5 below, the device has a spectral range of 350 nm – 2500 nm and a 

sampling interval of 1.4 nm from 350 nm - 1000 nm, 2 nm from 1000 nm – 2500 nm. The 

spectral resolution (FWHM) of FieldSpec 3 ranges from 3 nm at 700 nm, 10 nm at 1400 

nm and 2100 nm (ASD Inc., 2010) The device was held at a nadir position, 1 m above the 

ground, creating a FOV covering the entire subplot.  To rationalise the effect of 

illumination, structural differences in leaf canopy and bidirectional effect, the reflectance 

spectra for each subplot measurement were taken five times and then averaged, and the 

mean values were used as the representation of reflectance at each subplot (Mutanga et 

al.,2003; Wang et al.,2009). The sensor was calibrated before and after each subplot 

measurement using a spectral (a white reference panel), and the spectral radiance was 

then transformed to reflectance. All the spectral measurements were taken on cloud-free 

days between 10h00 am to 15h00 pm to reduce the atmospheric effect and ensure 

maximum radiant energy (Abdel-Rahman et al.,2010). 
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Figure 5: Fieldspec3; a device used to collect reflectance data, (Source: ASD Inc 2010).   

3.4 Descriptive statistics 

Descriptive statistics is a crucial element of quantitative research to organise and 

simplify the datasets and identify the relationships within the data. These statistics are also 

important to organise large datasets to few variables that provide meaningful information 

about the entire dataset.  The following descriptive statistics were formulated to (1): 

measure the central tendency of the data, and summarise the mean, minimum, and 

maximum values of N:P concentrations, (2) compute variance and standard deviation to 

measure the dispersion of the data, and 3) calculate the Shapiro-wilk normality test to 

determine whether the data is normally distributed or not. 

3.5  Data processing and analysis 

3.5.1  Reflectance spectra pre-processing and spectral simulation. 

The noisy bands outside the range of 400 nm to 2500 nm were removed prior to 

data analysis. Further noise removal was carried out to remove the noisy wavelength 

between 400 nm and 2350 nm, and we were left with a total of 1697 Wavelengths. The 

noise-free spectra were then projected to a Savitzky-Golay filter for further smoothing 

(Golay, 1964). The Savitzky-Golay filter fits a set of points to a polynomial in the least 

squares.  This filter applies a digital filter with a length of 2m+1 to the input data computing 

convolution coefficient for all points in the dataset, A second-order polynomial (p = 3) and 

a window size of 13 was used in this research. The general mathematical algorithm 

applied by the filter is as follows:                                                                             
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𝑯𝑷∗ =
𝟏

𝑵
∑ 𝑽𝑳𝑯𝑷

𝒕
𝑳=−𝒕 + 𝑳  (1) 

                                                                                                                                                             

Where, Hp* = new value, N = normalising coefficient, t = number of neighbour 

values from each side of p and VL = precomputed coefficients, as determined by the 

polynomial order and degree used. The fundamental interest of this study was to 

assess the spectral capabilities of Sentinel-2 datasets for estimating the foliar N:P 

ratio. The field spectra consisting of 1690 wavelength points were simulated to 

Sentinel-2 spectral configuration (see Table 2).  The same field spectra data was 

then simulated to RapidEye, Worldview-2, EnMap and Hyperion configurations.  

Spectral simulation refers to the process of generating synthetic spectral 

data that resembles the reflectance characteristics of real-world objects or scenes. 

This simulation is typically performed to study and understand the interaction of 

electromagnetic radiation with different materials or to model the behaviour of 

remote sensing instruments (Somers et al., 2013; Schott et al., 1999). The 

simulation process involves defining the properties of the materials or objects of 

interest, such as their spectral signatures or reflectance properties across different 

wavelengths. This process is used to develop new wavelength bands from available 

observed bands, it considers factors such as the composition, geometry, and 

surface characteristics of the objects (Peddle et al., 2001). Various techniques can 

be used for spectral simulation, including physics-based models, empirical or 

statistical models, and machine learning algorithms. These methods aim to 

accurately reproduce the spectral response of materials based on their physical 

properties (Adjorlolo et al., 2013).  

Spectral simulation has several applications, including the definition of future 

Earth Observation systems, the development and evaluation of instrument 

specifications, developing and testing new algorithms for image processing and 

classification, and the generation of synthetic datasets for training and validation 

purposes (Guanter et al., 2009). The simulation of Hyperspectral ASD data to 

various Hyperspectral and multispectral datasets considered in this study was 

implemented using the “hsdar” package in R programming software. The package 

focuses on hyperspectral remote sensing data, allowing users to simulate spectra 
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and perform various spectral analysis tasks. The target multispectral and 

hyperspectral sensors considered in this study were Sentinel-2, RapidEye, 

WorldView-2, EnMap, and Hyperion. The spectral response function of each sensor 

available within R programming was used to resample the reflectance spectra to 

different sensor configurations. The hsdar package allows further analyses and 

processing of the simulated spectra, such as applying spectral indices, performing 

classification, etc. 

 RapidEye and WorldView-2 sensor specifications are presented in Table 3 

and Table 4 respectively. For the Hyperspectral sensors, EnMap and Hyperion 

sensor specifications are not tabulated because of the very large number of bands 

these sensors have (up to hundreds of narrow bands). EnMap consists of 244 

bands ranging from 420 nm to 2440 nm wavelengths with a spatial resolution of 30 

m. The FWHM of EnMap is 6.5 nm from 420 nm to 999 nm and 10 nm from 900 nm 

to 2240 nm. Hyperion has a total of 242 bands ranging from 350 nm to 2582 nm 

and an FWHM ranging between 10 nm-12 nm.  The ‘hsdar’ package in R statistical 

software was used for spectral resampling based on the Gaussian spectral 

response function using the full-width half maximum (FWHM) technique (band 

centre and bandwidth). 

Table 2: Sentinel-2 MSI sensor specifications. 

Band 

name Spectral regions (nm) 

Central wavelength 

(nm) 

FWHM 

(nm) Spat.Res (m) 

B1 433 - 453 (Coastal) 443 20 60 

B2 458 - 522 (Blue) 490 65 10 

B3 543 - 577 (Green) 560 35 10 

B4 650 - 680 (Red) 665 30 10 

B5 698 - 712 (Red edge) 705 15 20 

B6 733 - 747 (Red edge) 740 15 20 
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B7 773 - 793 (Red edge 783 20 20 

B8 785 - 899 (NIR) 842 115 10 

B8a 855 - 875 (NIR narrow) 865 20 20 

B9 985 - 955 (Water vapour) 945 20 60 

B10 1360 - 1390 (SWIR-cirrus) 1375 30 60 

B11 1565 - 1655 (SWIR) 1610 90 20 

B12 2100 - 2280 (SWIR) 2190 180 20 

 

Table 3: RapidEye sensor specifications. 

band name  spectral range (nm) central wavelength (nm) FWHM (nm) spat. Res (m) 

B1 440 -510 (Blue) 475 70   5 

B2 520 -590 (green) 555 70   5 

B3 630 -685 (red) 658 55   5 

B4 690 -730 (Red edge) 710 40   5 

B5 760 - 850 (NIR) 805 90   5 

 

Table 4: WorldView-2 Sensor specifications. 

band name  spectral range (nm) 

central wavelength 

(nm) 

FWHM 

(nm) spat. Res (m) 

B1 450-800 (Pan) 625 350 0.46 

B2 400 - 450 (coastal) 425 50 0.52 
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B3 450 - 510 (blue) 480 60 0.52 

B4 520 -600 (green) 560 80 0.52 

B5 585 - 625 (yellow) 605 40 0.52 

B6 620 - 700 (red) 660 80 0.52 

B7 705 - 745 (Red edge) 725 40 0.52 

B8 770 - 850 (NIR1) 810 80 0.52 

B9 860 - 104 (NIR2) 950 180 0.52 

 

Model development 

To develop an N:P ratio predicting model, five modelling scenarios were developed 

from the simulated Sentinel-2 spectra to assess the predictive potential of Sentinel-2 

bands and VIs. The VIs were divided into two categories, the traditional vegetation indices 

(TVIs) and the red-edge indices (REIs). The normalised difference (NDVI) and simple ratio 

(SR) vegetation indices were computed using the red-edge and the traditional bands. Both 

red-edge and traditional vegetation indices that are proven to be robust for N and P 

estimation were used to develop foliar N:P predicting models (Abdel-Rahman et al., 2010 

and Ramoelo et al., 2018). In total, eighteen known and optimised indices from the red-

edge (RE), red (R), near-infrared (NIR), and narrow infrared (NIR2) were used together 

with Sentinel-2 bands. The construction of the optimized VIs was motivated by the lack of 

known indices optimal for the prediction of N:P ratios, such possible band combinations 

from the known N and P absorption features was tested. The used known indices are 

either ideal for or P estimations. A list of Sentinel-2 indices is presented in Table 5 below. 

Table 5: List of VIs used in this study. 

Traditional Vegetation Indices 

 Vegetation index formular Reference 
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 NDVI (NIR - R) / (NIR + R) Rouse et al., (1974) 

 NDVI1 (NIR2 - R) / (NIR + R)  

 SR NIR/R Jordan, (1969) 

 SR1 NIR2/R  

Red-edge Vegetation Indices 

 RRI NIR2/RE1 Barnes et al., (2000) 

 RRI1 RE3/RE1 Optimised 

 RRI2 RE2/RE1 Optimised 

 RRI3 RE1/R Optimised 

 RRI4 NIR/RE1 Optimised 

 RRI5 NIR/RE2 Optimised 

 RRI6 NIR2/ RE2 Optimised 

 NDRE (NIR2 – RE1)/ (NIR2 + RE1) Barnes et al., (2000) 

 NDRE2 (RE3 – RE1) / (RE3 + RE1) Barnes et al., (2000) 

 NDRE1 (RE2 - RE1) / (RE2 + RE1) Sims & Gamons, (2002) 

 NDRE3 (RE1 - R) / (RE1 + R) OptimiSed 

 NDRE4 (NIR -RE1) / (NIR +RE1) Optimised 

 NDRE5 (NIR - RE2) / (NIR+ RE2) Optimised 

 NDRE6 (NIR2 - RE2) / (NIR2+RE2) Optimised 

 

The following modelling combinations were developed for the study: 
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❖ Traditional vegetation indices, Red-edge indices, and bands (TVIs + REIs + band) 

❖ Traditional vegetation indices and bands (TVIs + bands) 

❖ Red-edge indices and bands (REIs + bands) 

❖ Bands only 

❖ Traditional vegetation indices and red-edge indices (TVIs +REIs) 

3.6  Linear Partial Least Squares Regression and Leave one out cross 

validation. 

The linear multivariate PLSR effectively analyses high dimensional, collinear, and 

noisy datasets (Wold et al., 2001). Similarly, to the components analysis (PCA) method, A 

linear PLSR extracts non-correlated features to explain the relationship between two 

variables. In the first set of data an N-dimensional vector of variables is denoted by x ∈ X 

⊂ RN, and a RM vector of variables of the second dataset is denoted by y ∈ Y ⊂. Scores 

vectors are used to model the relationship between these two datasets. The number of 

samples for both datasets is indicated by n, so mean-centred data matrices of X and Y are 

(n*N and n*M) sampled at X-space and Y-space, respectively. The PLS decomposes the 

X and Y matrices into the form: 

𝑋 = 𝑇𝑃𝑇 + 𝐸         (1) 

Y=𝑈𝑄𝑇 + 𝐸         (2) 

In equations (1) and (2) X and Y are projected into low-dimensional matrices 

indicated by U and T for X and Y respectively. T and U represent the (n*p) matrices of the 

p extricated latent vectors. Matrices of loading are denoted by matrix (N*p) P and (M*p) Q, 

matrix (n*N) E, and matrix (n*M) F are the matrices of residuals. The PLS algorithm is 

originally founded on the iterative PSL (NIPALS) approach (Wold, 1975) acquires 

component vectors w, c such that, 

[𝑐𝑜𝑣(𝑡, 𝑢)]2 = 𝑐𝑜𝑣(𝑋𝑤, 𝑌𝑐)]2 = 𝑚𝑎𝑥|𝑟|=|𝑠|=1[𝑐𝑜𝑣(𝑋𝑟, 𝑌𝑠]2    (3) 

where cov (t, u) = tT u/n is the sample covariance between the score vectors t and u. The 

first step of the NIPALS algorithm is randomly initialising the Y-space score vector u and 

repeating a sequence of the following steps until convergence. 
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a. 𝑊 = 𝑋𝑇𝑈/(𝑈)𝑇𝑈 

b. ||𝑤|| → 1 

c. 𝑡 = 𝑋𝑤 

d. 𝑐 = 𝑌𝑇𝑡/(𝑡𝑇𝑡) 

e. ||c||→ 1 

f. 𝑢 = 𝑌𝑐                                                                              (4) 

where ||.|| → 1 is the transformation of a vector to a unit norm. After extracting the score 

vectors t and u, X and Y are regressed on t and u respectively and loading matrices p and 

q are reckoned through the regression process. 

𝑝 = 𝑋𝑇𝑡/(𝑡𝑡𝑡)   and 𝑞 = 𝑌𝑇𝑢/(𝑢𝑇𝑢)      (5) 

After extracting the score vectors t and u, rank-one matrix approximations of X and Y 

matrices are subtracted to deprecate X and Y. There are diverse ways of deprecating, see 

Rosipal and Kramer (2006) for review. The mostly used PSL technique is based on the 

following assumptions: 

a) The score vectors {ti}p
i =1 are good predictors of Y and 

b) there is a linear relationship between t and u such that, 

𝑈 = 𝑇𝐷 + 𝐻         (6) 

D represents the (p × p) diagonal matrix and the matrix of residuals is indicated by H.  The 

asymmetric (predictor–predicted) variables relationship is transformed into a deflation 

scheme where the input space score vectors {ti}p
i = 1 are good predictors of Y. at each 

iteration of the PLS, Y is deflated using the score vectors removing a regression 

component of Y on t 

The score vectors are then used to deflate Y; that is, a component of the regression of Y 

on t is removed from Y at each iteration of PLS: 

𝑋 ← 𝑋 − 𝑡𝑡𝑇𝑋/(𝑡𝑇𝑡) and 𝑌 ← 𝑌 − 𝑡𝑡𝑇𝑌/(𝑡𝑇𝑡) = 𝑌 − 𝑡𝑐𝑇 

Based on the assumption of a linear relation between the scores’ vectors t and u in 

equation (6), the decomposition of the Y matrix in equation (1) is written as: 

𝑌 = 𝑇𝐷𝑄𝑇 + (𝐻𝑄𝑇 + 𝐹 
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and the linear PLS regression model is: 

𝑌 = 𝑇𝐶𝑇 + 𝐹∗           (8) 

CT = DQT represents the (p × M) matrix of regression coefficients and F* = HQT + F 

denotes 

the residual matrix. 

3.6.1 PLSR variable importance 

Contribution of each band and index in the development N:P estimation model was 

determined by calculating variable importance for prediction (VIP), using PLSR weights in 

R statistical software. The PLSR weights uses the following formula to determine the 

contribution of each predicting variable to the entire model: 

𝑉𝐼𝑃𝐾(𝑎) = 𝐾 ∑ 𝑎 𝑤2𝑎𝑘 (𝑆𝑆𝑌𝑡)                                                                          (9) 

Where VIPk(a) is the importance of the kth predictor variable based on a model with 

factors. 

Wak correlates to the loading weight of the kth variable in the ath PLSR factor, SSYa is 

the explained sum of squares of y by a PLSR model with factors, SSYt is the total sum of 

squares of y, and K is the total number of predictor variables (Viscara & Rossel 2008). 

3.6.2  Leave-One-Out-Cross-Validation (LOOCV) 

Due to the fewer collected samples, the data were not divided to train and test data. 

Instead, the leave-one-out-cross-validation (LOOCV) was used; this is a special kind of K-

folds cross-validation where K=N. This type of cross-validation repeatedly fits a model to a 

data set that contains an N-1 number of samples. As such, the measure of test MSE is 

less biassed. The LOOCV is suitable for small sample sizes as it maximises the number of 

training samples. The PLSR was implanted in the R statistical environment using ‘pls’ and 

‘caret ‘packages’ (Bjorn-Helge et al., 2015, Kuhn et al., 2015). 

3.7 Random forest regression 

The random forest regression (RFR) method was initially developed to improve the 

classification and regression trees (CART) by (Breiman et al., 1984). The RFR method is 

associated with bragging and bootstrapping (Breiman, 1996), which are essential for 
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minimising predictive variance (Hadi, 2015.) This technique generates multiple trees using 

a deterministic method to randomly select important variables from the calibration data 

while assuming no normal of the dataset. It stratifies the explanatory data into numerous 

decision trees. The single decision tree is then projected to bagging based on unanimity 

modeling, which averages prediction from the “forest” (many trees developed by 

bootstrapping the entire datasets). Random forest regression is practical when dealing 

with data that contains an enormous number of predictor variables for a few samples. 

According to Cutler et al. (2009), the great advantage of RFR is its ability to fit non-linear 

relationships and handle outliers in the explanatory variables. To improve the bagging, all 

the explanatory variables that make similar trees are removed by randomly sampling the 

regressors in each split to differentiate the trees (Hadi, 2015). A summarised description of 

the RF regression proposed by Breiman, (2001) is as follows: 

I. Randomly draw ntree bootstrap samples Xi (i is the bootstrap iterations and X is the 

calibration datasets) from the calibration datasets. Each bootstrap sample contains 

one-third of the original datasets. Variables that are not incorporated at each 

bootstrap sample are called out-of-bag (OOB). 

II. Grows an unpruned regression tree for each bootstrap sample such that it randomly 

selects one-third of the predicting variables and chooses the best split among those 

variables at each node. 

III. The OOB response value is predicted and averaged at each bootstrap iteration for 

ntree. 

IV. A percent increase in the root means square error is then calculated to measure the 

importance of each predictor. The relationship between the predictors and the 

dependent variables is ranked based on the value of variable importance. 

Predictors with higher variable importance values are regarded as the critical 

variables for the model. 

In a random forest algorithm, two parameters ought to be adjusted, the number of trees 

(n) and the number of regressor variables randomly selected from each split (mtry). For 

this research, a “10 folds 2 repeats” cross-validation was used to tune these parameters. 

The data contained only 49 sample points, so the data could not be split to train and test 

data cross-validation was used instead. The number of folds and repeats was chosen 
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based on commonly used values in previous studies with a small number of samples (Han 

& Kim et al., 2021). The RFR was executed in R statistical software using the ‘random 

forest’ and ‘caret’ packages (Kuhn et al., 2015). 

3.7.1 Selection of significant variables 

The importance of each variable is weighed based on the out-of-bag (OOB) error or 

permutation. For each bootstrapped split (70% of the training dataset), the remaining 30% 

that is not used in the training of the model is projected to the tree for prediction. The value 

of each variable is then randomly permuted while the explanatory variable remains 

constant. The modified OOB is passed through the tree to compute another set of 

predictions. Finally, the importance of the variables is calculated by computing the 

difference in OOB error between the permuted and non-permuted datasets throughout the 

random trees (Parasad et al., 2006). In this study, important RFR variables were selected 

using the Vsurf function in R statistical software. Vsurf algorithm creates nested and 

predictive models and evaluates each explanatory variable's importance by ranking them 

using an RF permutation-based score of importance. The nested models include variables 

with some redundancy. In the final predictive model, the algorithm tries to avoid 

redundancy and leave only unique best-predicting variables (Genuer et al., 2015) and 

ensure that the final model is significant with P-value less than 0.05. 

3.7.2  Calibration and validation of the RFR models 

Single random training-test partitioning might result in validation biases. In this 

research, such bias is dealt with by applying a systematic hierarchical 10-folds cross-

validation (Kohavi, 1995) and two repeats to all the modeling scenarios to evaluate their 

maximum predictive accuracy. The data could not be divided into a train (70%) and test 

(30%) due to the fewer number of samples (n = 49) which could result in biased the 

validation. 

3.8  Accuracy assessment and model comparison 

The performance of each modeling scenario was determined using the following 

statistical metrics, coefficient of determination (R-squared), root mean square error 

(RMSE), and the relative root mean square error (RRMSE). The coefficient of 

determination (R2) measures the strength at which an independent variable explains a 
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dependent variable in a model. In simple terms, R2 measures how well a predicted value fit 

the measured values in a model, and this coefficient ranges 0 to 1, with values closer to 

one indicating a perfect fit model: R2 is calculated as follows: 

R2 = 1 −
∑(𝑦𝑖−𝑦)

2
∑(𝑦𝑖−𝑦̂𝑖)2

                                                                                                                (1) 

Where, 

The sum of the residual squares (RSS) is indicated by: ∑(𝑦𝑖 − 𝑦̂𝑖)2 

𝑦𝑖      =  ith value of the variable to be predicted 

𝑦̂𝑖 = predicted value of yi 

n = upper limit of summation 

And, 

the total sum of squares (TSS) is given by: ∑ (𝑦𝑖 − 𝑦)
2

 

𝑦𝑖 = value in a sample 

𝑦 = mean value of a sample 

RMSE is the measure of the standard deviation of the residuals from the mean, it 

measures the error rate by the square root of the MSE, calculated as follows: 

MSE = 
1

𝑛
∑ (𝑌 − 𝑌̂𝑖)

2
                                                                                                             

𝑛

𝑖=1
(2) 

Then, 

RMSE =  
√∑ (𝑌𝑖−𝑌̂𝑖)2𝑛

𝑖=1

𝑛
                                                                                                                    (3)  

Where Yi   are the observed values at n data points 

estimated values are indicated by 𝑌̂𝑖 

Lower RMSE and MAE values indicate high accuracy in a regression model. 

Relative Root Mean Square Error (RRMSE) is the root mean squared error normalised by 

the root mean square value where each residual is scaled against the actual value, it 

expresses the error in percentage form where values less than 10% indicate high accuracy 
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and values greater than 30% indicating the poor performance of a model (Khan & Noor, 

2019). RRMSE is expressed as: 

RRMSE =√
1

𝑛
∑ (𝑦𝑙̇−𝑦̂𝑖)

2𝑛

𝑙=1

∑ (𝑦̂𝑖)2
𝑙=1

                                                                                                            (4) 

3.9 Mapping the distribution of foliar N:P ratio 

The present study further investigated the possibilities of mapping the spatial 

distribution and variations of N:P ratio from simulated ASD datasets. That was achieved by 

inverting the most accurate model to Sentinel-2 MSI. Sentinel-2 Level-1C and Level-2C 

that perfectly match the season of data collection (end of wet season), model inversion 

was implemented for 4 years (2018 – 2021) to observe nutrient limitation spatiotemporal 

variations over the study area and to assess the possibility of continuously transferring a 

once off trained model over time. The varying pre-processing levels were due to the 

unavailability of Level-2C data for some years. The data acquisition and the necessary 

pre-processed was executed in Google Earth Engine. The best-predicting indices, NDRE2 

and RRI were selected in the RFR variables importance, the indices were calculated in 

Google Earth Engine and then transferred to the R statistical environment for model 

inversion using the ‘random Forest’ and ‘raster’ packages. 
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Figure 6: The methodology flow chart diagram summarising the overall methods executed 

this study. 
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CHAPTER 4:  

Results 

4.1  CHAPTER OVERVIEW 

The results presented in this chapter are arranged into three sections: Firstly, we 

evaluated the potential simulated Sentinel-2 bands and indices to estimate nutrient 

limitation in a savanna environment and determined Sentinel-2 significant bands and 

indices for estimating foliar N:P ratio using the linear parametric PLSR and non-parametric 

RFR. Secondly, transferability of ASD models to spaceborne satellite images was 

investigated. Lastly, the predictive capabilities of the Sentinel-2 datasets were compared to 

commercial multispectral and hyperspectral sensors to assess the influence of different 

spatial and spectral configurations for retrieving foliar biochemical contents and further 

assessed the consistency of bands and indices selected in all sensors to understand N:P 

sensitive wavelengths. The scatter plots showing the regression between the observed 

N:P ratios and all the different modeling scenarios are presented in Appendix A of this 

thesis.  

4.2 Descriptive statistics 

The foliar N:P ratio is normally distributed across the study area as confirmed by the 

Shapiro-Wilk normality test (W=0.977, p=0.45) (Royston,1982); see Table 6 for a 

summarised descriptive statistic of N:P distribution. Based on the calculated low standard 

deviation (SD) and the variance (var) the datasets are clustered closer to the mean and 

the N:P ratio values are more identical with no outliers. Diagrams A and B in Fig 7 below 

are the visual demonstrations of the normality distribution of data.  A is the quantile–

quantile (Q-Q) plot, and all points lie closely, forming a diagonal line indicating the normal 

distribution of the data. Furthermore, the box plot B, the whiskers are closely symmetrical. 
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Figure 7: The normality test diagrams. 

Table 6: N:P ratio descriptive statistics 

4.3 Spectral Simulation 

Figure 8 below outlines the field spectra data pre-processing and spectral 

simulation from ASD hyperspectral datasets to the configuration of the desired 

multispectral and hyperspectral datasets. The simulation resampled the hyperspectral data 

by average narrow wavelength to produce the 13 broad Sentinel-2 bands. The Savitzky-

Golay-Filter smoothied the spectral curve while ensuring that the original shape was 

retained. This resampling procedure was applied to all the sensors used in this study. 

 

 

 

 

BIO min median mean max SD var 

N:P 2.683 7.987 7.863 13.699 2.353 5.538 

 

B A B 
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Figure 8: Spectral resampling sequence, where, A is the original spectra, B is filtered 

spectra, C is the original, min, and maximum spectra, D is the resampled Sentinel-2 

spectra. 

4.4 Modeling N:P ratio from Sentinel-2 datasets using PLSR. 

The results presented in Table 7 is the Sentinel-2 N:P ratio estimation accuracy 

obtained from both parametric (PLSR) and non-parametric (RFR) algorithms. The 

accuracy of each modeling scenario is measured based on RMSE, RRMSE, and R2 

values. When using PLSR, the combination of TVIs, REIs, and Sentinel-2 bands explained 

66% of N:P ratio variability (R2 = 0.662), with the lowest RRMSE and RMSE values of 

15.35% and 1.21, respectively. Sentinel-2 bands produced the poorest estimation 

accuracy with the lowest R2 value of 0.26, the highest RMSE of 1.99, and the highest 

RRMSE of 25.42%. Higher N:P ratio estimation accuracy was obtained when the RFR was 

used. There are no significant differences in the R2 values of all the RFR models. The best 

predicting RF model was selected based on RRMSE and RMSE. For this study these 

 

A 
B 
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accuracy parameters were interpreted as follows: RMSE measures the deviation of the 

residuals from the mean. A low RMSE value indicates that the predicted and observed 

data are close to each other indicating a better accuracy. As explained in chapter three of 

this thesis, RRMSE is the root mean squared error normalised by the root mean square 

value where each residual is scaled against the actual value. Measured in percentage, a 

lower RRMSE (≤ 10) signifies a smaller discrepancy relative to the predicted value. 

Therefore, the lower the RMSE the better is model performance. The RRMSE The 

combination TVIs and REIs produced high accuracy, as indicated by the lowest RRMSE 

value of 13.482%, and RMSE of 1.07 while explaining 89% of N:P variability. Sentinel-2 

bands derived model produced high error terms, the RMSE, and RRMSE of the model are 

the highest compared to other models, with RMSE and RRMSE of 1.16 and 14.79%, 

respectively. The accuracy of the models could not be concluded based on the R2 value 

only since the difference is not significant (less than 1 in all the models), and the R2 value 

is influenced by the addition and removal of explanatory variables. 

Vsurf variable selection was used to select the best predictor variables in each 

model, and the Vsurf-selected variables were then used to re-run random forest regression 

models. Results in Table 7 indicate that the accuracy of the random forest regression 

models improved the RRMSE decreased when using only Vsurf selected variables. The 

error term of the best-predicting model is slightly lower, with an RRMSE of 13.09% (a 

difference of 0.74% from the original RFR model), explaining 86% of N:P ratio variability at 

P<= 0.05. the selected optimal variables are the NDRE2 (R745nm vs. R705nm) and the 

RRI (R865 nm vs. R705 nm) (where R stands for the reflectance at a particular 

wavelength). In Table 7 below, RMSECV is the root mean square error for cross-

validation, and ncomp is the number of components used for each PLSR model. P-value is 

defined to less than or equal to 0.05 for this study.  The VSurf algorithms reduces the 

number of predicting variables while increasing the efficiency of the model and results in a 

statistically significant model (p-value less than 0.05) (Jiang et al., 202). 

Table 7: Sentinel-2 regression accuracy. 

PLSR Accuracy 

Modeling scenario  RMSECV RMSE RRMSE% R2 ncomp P-value ≤ 0.05 
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TVIs +REIs +Bands 2.218 1.706 20.696 0.662 30 No 

TVIs + Bands 2.396 1.973 25.088 0.337 16 No 

REIs +Bands 2.155 1.714 21.803 0.653 27 No 

Bands 2.365 1.998 25.416 0.264 13 No 

REIs +TVIs 2.424 2.244 28.54 0.465 17 No 

RFR Accuracy 

Modeling scenario RMSECV RMSE RRMSE% R2                                        p-value ≤ 0.05 

TVIs + REIs + bands 2.414 1.138 14.467 0.927                       No                                                                           

TVIs + bands 2.486 1.13 14.371 0.924                                                    No 

REIs + bands 2.433 1.117 14.209 0.938                No     

Bands 2.489 1.181 15.017 0.915               No  

REIs + TVIs 2.344 1.107 14.073 0.901              No  

RFR VSURF Accuracy 

Modeling scenario RMSECV RMSE RRMSE% R2 Selected                          p-value ≤ 0.05 

TVIs + REIs + bands 2.21 1.1 13.85 0.86 B2, B5, NDRE, NDRE2, RRI5            Yes 

TVIs + bands 2.32 1.16 14.72 0.86 B2, B4, SR                                          Yes 

REIs + Bands 2.32 1.12 14.19 0.87 NDRE2, NDRE, RI5, B2, B4, NDRE4     Yes  

bands 2.38 1.09 13.99 0.88 B2, B4, B5                                           Yes 

REIs + TVIs 2.22 1.09 13.10 0.86 NDRE2, RRI                                       Yes 
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4.4.1   Comparing the N:P prediction accuracy of PLSR and RFR 

The Figure 9 below is a comparison of PLSR and RFR accuracies for all the 

modelling scenarios. PLSR has higher RRMSE and RMSE in the models with lower R2 

relative to the RFR. The combination of REIs and bands attained higher predictive 

accuracy for both PLSR and RFR compared to other modelling scenarios. 

 

  

Figure 9: A bar graph showing PLSR and RFR N:P ratio estimation accuracy for all 

Sentinel-2 models for each modeling scenario. 
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Figure 10: 1:1 regression plots for best PLSR (A) and RFR (B) models. The RFR final 

model improves N:P ratio estimation accuracy, with a noticeable decrease of 4.35% in 

RRMSE and a 0.21 increase in the R2 value.  

4.5 Mapping the spatial distribution Foliar N:P ratio 

RFR algorithm predicts foliar N:P with higher accuracies than PLSR. There were no 

significant differences between the accuracies of all the RFR models. Therefore, any 

model could be used to map the distribution of nutrient limitation. Since there is a slight 

improvement in accuracy with the NDRE and RRI models, we used those two indices for 

model inversion. The distribution of foliar N:P value and their interpretation in terms of 

nutrient limitation status are presented in Figure 10 and Figure 11, respectively. Figure 10 

shows the distribution of N:P ratio values across the central parts of KNP and 

surroundings from 2018 to 2021. From the maps, the N:P ratio values range from 4 to 12. 

In 2018 the dominating N:P values from 4 to 10, with a very small portion of the area on 

the south-western and north-eastern corners of the map showing high N:P ratio values 

above 10. There is a change in the range of N:P ratio values in the 2019, with a larger 

area covered by N:P values above 10 in the north-eastern and eastern sides of the map. 

In 2020, there is a drastic increase in N:P ratio values across the study area, the area is 

covered mostly by N:P values above 10. The N:P ratio values above 10 disappear 

completely in 2021, the entire area is mainly dominated by N:P ratio values ranging from 4 

to 10 with very small patches of values ranging from 10 to12. Most of the areas with N:P 

ratio values above 11 and below 6 are gullies and bare soil with no vegetation cover, 

including roads, water bodies, and built-up areas. The vegetation density of the mapped 

area from 2018 to 2021 is shown in the false colour composite maps in Figure 12.    
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Figure 11: N:P ratio values from 2018-2021 at central parts KNP and surroundings 

mapped by inverting the best predicting RFR model to Sentinel-2 images acquired 

between April and May.    

The maps in figure 11 are an interpretation of the nutrient limitation status of the 

KNP based on the N:P ratio critical values using Gusewell’s thresholding. Recap: 

Gusewell, (2004) suggests that N:P ratio values from 0 to 10 indicates N-limitation, values 

from 10 to 20 suggest co-limitation, and lastly, P limitation is presented by N:P values from 

20 and above.  The highest distribution of co-limitation was observed in 2019 and 2020. 

From all these years, the central part of KNP and surroundings is affected by either N 

limitation or co-limitation, with N limitation being the most prevalent. There are no areas 

solely affected by P limitation (no N:P ratio values above 20). Nutrient co-limitation 

affected larger areas in the north and eastern parts of the park between 2019 and 2020, 

especially in 2020. However, as stated above, most of the areas affected by co-limitation 

(with N:P ratio values greater 10) are non-vegetated (either bare soil, roads, gullies, and 

rivers). Due to the unavailability of a cloud-free image between March and April 2020, a 

satellite image acquired in May was used instead. Even though it was outside the scope of 
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our study, the extensive distribution of nutrient co-limitation in 2020 could be associated 

with leaf dryness, as the co-limitation completely disappears in the 2021. In May, most 

vegetation is parched with smaller leaves, i.e., low leaf area index (LAI). The distribution of 

nutrients limitation is not uniform in the study area. In the savanna environment, a 10m 

area (Sentinel-2 spatial resolution) can contain various vegetation types, including different 

grass species, shrubs, and other leafy vegetation with different N and P concentrations or 

requirements. Vegetation type stratification was delimited in this study; however, it might 

have an impact on the foliar N:P ratio maps. 

 

Figure 12: Nutrient limitation status based on the interpretation of the above N:P ratio 

threshold values. 



 

55 

     

 

Figure 13: False-color composite of 2018 -2021 Sentinel-2 images RGB (843) showing 

vegetation density in the mapped area, where the red colour indicate areas with 

vegetation.  

4.6 Comparing Sentinel-2 with Multispectral and Hyperspectral sensors 

4.6.1 Estimating N:P ratio from RapidEye 

A summary of RapidEye regression accuracy is presented in Table 8 below. When 

using the PLSR algorithm, RapidEye shows low accuracy in all the scenarios. A 

combination of TVIs, REIs, and RapidEye bands explained 20% of N:P variation with the 

lowest RRMSE of 26.397%. Poorest accuracy was observed when estimating the N:P ratio 

using RapidEye bands only, with the highest RRMSE of 28.03%. The estimation accuracy 

of RapidEye improved significantly when using the RF regression method as there are no 

significant differences in all the RapidEye RF models. A slightly low error term is produced 

by the REIs and bands model (RRMSE = 14.028 %). The accuracy of the RapidEye 
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decreased (i.e., increased RRMSE in all models) after selecting important variables using 

the VSURF method. 

Table 8: RapidEye regression accuracy 

PLSR accuracy   

Modeling scenario RMSECV RMSE RRMSE R2 ncomp p-value ≤ 0.05    

TVIs +REIs + bands 2.36 2.08 26.39 0.21    10  No     

TVIs + bands 2.33 2.16 27.48 0.14    6   No    

REIs + bands 2.43 2.09 26.56 0.19    7   No    

Bands 2.35 2.21 28.04 0.10    5   No    

REIs + TVIs 2.43 2.09 26.56 0.20     7                      No      

RFR Accuracy    

Modeling scenario RMSECV RMSE RRMSE R2 p-value ≤ 0.05     

REIs + TVIs + bands 2.24 1.11 14.12 0.89 No     

TVIs + bands 2.33 1.08 13.69 0.89 No     

REIs + bands 2.34 1.11 14.17 0.88 No     

Bands 2.35 1.14 14.46 0.91 No     

REIs + TVIs 2.25 1.25 15.88 0.80 No     

Vsurf Accuracy    

Modeling scenario RMSECV RMSE RRMSE R2 selected variables  p-value ≤ 0.05 

TVIs + REIs + bands 2.31 1.11 14.08 0.86 B2, B3, RRI Yes   

TVIS + bands 2.28 1.09 13.09 0.88 B2, B3, SR Yes   

REIs +bands 2.28 1.10 14.03 0.87 B2, B3, NDRE Yes   

Bands 2.36 1.36 14.44 0.87 B4,32 Yes   
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TVIs + REIs + bands 2.28 1.29 16.50 0.73 NDRE Yes   

4.6.2 Estimating N:P ratio from WorldView-2 

Table 9 shows N:P ratio estimation accuracy obtained from WorldView-2 datasets. 

The models explained a maximum of 30% of N:P ratio variation when modeling the N:P 

ratio from REIs +TVIs + bands, with the lowest RRMSE of 24.65% and RMSE of 1.939. 

The lowest estimation accuracy was obtained when explaining N:P variabilities with 

WorldView-2 bands only, with the highest RRMSE of 28.033%, RMSE of 2.204, and the 

lowest R2 value of 0.104. The estimation accuracy of WorldView-2 increased significantly 

when using RFR. The combination of REIs, TVIs, and bands modeling scenario improved 

to an RRMSE of 13.95% (i.e., an improvement of 10.69%). There are no significant 

differences in the accuracy of WorldView-2 after variable selection. The difference in 

RRMSE is less than 0.1%. The selected important variables from the best performing 

model are the NDRE, B6, B4, and B3. 

Table 9: Regression accuracy for Worldview-2 

PLSR Accuracy 

Modeling scenario RMSECV RMSE RRMSE R2 ncomp P-value ≤ 0.05   

TVIs +REIs + bands 2.33 1.94 24.65 0.31 14 No   

TVIS +bands 2.37 2.09 26.52 0.19 10 No   

REIS +bands 2.33 2.00 25.44 0.26 12 No   

Bands 2.44 2.20 28.03 0.10 7 No   

TVIs +REIs 2.17 2.00 25.49 0.26 6 Yes    

RFR accuracy    

Modeling scenario RMSECV RMSE RRMSE R2  P-value ≤ 0.05   

TVIs + REIs + bands 2.20 1.91 13.96 0.91  No    

TVIs + bands 2.24 1.06 13.53 0.90       No   
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REIs +bands 2.19 1.90 13.89 0.90  No   

Bands 2.40 1.13 13.39 0.90      No    

TVIs + REIs 2.35 1.22 15.57 0.81                       No     

Vsurf Accuracy 

Modeling scenario RMSECV RMSE RRMSE% R2 Selected variables p-value ≤ 0.05 

TVIs + REIs + bands 2.28 1.09 13.88 0.88 NDRE, B6, B4, B3 Yes  

TVIs +bands 2.29 1.12 14.27 0.87 B4+B3+SR Yes  

REIs + Bands 2.26 1.09 13.94 0.87 NDRE, B4, B6 Yes  

Bands 2.29 1.44 14.54 0.86 B3, B4, B6 Yes  

TVIs +REIs 2.28 1.19 15.23 0.81 NDRE, SR, RRI1 Yes  

 

Estimating foliar N:P ratio from EnMap 

The overall PLSR results for EnMap in Table 10 indicate that a combination of TVI, 

REI and EnMap absorption features (all variables) explained 67% of N:P ratio variability 

with an RRMSE of 17%. The estimation accuracy of EnMap improved significantly when 

using the random Forest Regression. This is indicated by the notable decrease in the 

RRMS in all the scenarios. There are no significant differences in models’ accuracy after 

selecting important variables. The absorption features at 637 nm, 1945 nm, and 2345nm 

and the SR are significant for N:P ratio retrieval from EnMap datasets. 

Table 10: EnMap regression accuracy. 

PLSR Accuracy 

modeling scenario RMSECV RMSE RRMSE% R2 ncomp P-value ≤ 0.05  

TVIs + REIs + AF 2.34 1.34 17.02 0.67 32 No   
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1 

 

1 From Table 10 above the bands indicate the location of the absorption features, B34 at 638 nm, B37 at 657 nm, B194 

at 1945 nm, and B234 at 2345 nm central wavelengths. 

TVIs + AF 2.10 1.42 18.71 0.60 24 No   

REIs + AF 2.13 1.56 19.77 0.55 22 No   

AF 2.08 1.73 22.04 0.45 14 yes  

REIs + TVIs 2.16 1.69 21.48 0.47 18 No  

EnMap RFR Accuracy  

modeling scenario RMSECV RMSE RRMSE% R2 P-value ≤ 0.05   

TVIs + REIs +AF 2.18 0.99 12.69 0.92 No    

AF 2.23 1.09 13.85 0.89 No   

TVIs + REIs 2.17 1.03 13.08 0.88    No   

REIs + AF 2.27 1.11 14.08 0.90    No    

TVIs + AF 2.24 1.02 12.95 0.93                 No   

RF VSURF Accuracy 

modeling scenario RMSECV RMSE RRMSE% R2 selected variables                  P-value ≤ 0.05 

TVIs + REIs + AF 2.05 0.99 12.76 0.91 B34, B194, B234, SR                 Yes 

AF 2.27 1.06 13.44 0.87 B34, B194                                  Yes  

TVIs + REIs 2.05 1.02 12.98 0.88 NDVI, SR, SR3, RRI                  Yes     

REIs + AF 2.09 1.00 12.53 0.89 B37, B193, B194, B234              Yes 

TVIs + AF 2.11 1.05 13.34 0.89 B34, B194, B234, SR                 Yes 
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4.6.3 Estimating Foliar N:P ratio using Hyperion datasets 

Results in Table 11 below show that Hyperion performs improves N:P predictions 

when using PLSR; it explains a maximum of 62% N:P variability with an RRMSE of 18% 

and an RMSE value of 1.43.  The TVIs and absorption features produced higher 

accuracies than all other models; the model explained over 90% of N:P variability with the 

lowest RRMSE of 13%. The selected RF significant variables are NDVI4 (R1095 vs R671), 

SR (R803 vs R702), B29 (R640), B191(2062 nm) and B220(2355nm). 

Table 11: Hyperion regression accuracy. 

PLSR Accuracy 

Modeling scenario RMSECV RMSE RRMSE% R2 ncomp P-value ≤ 0.05  

TVIs + REIs + AF 2.23 1.43 18.11 0.63 28 No  

TVIs + AF 2.08 1.55 19.65 0.56 21 No  

REIs + AF 2.48 1.88 23.88 0.35 20 No  

AF 2.31 1.98 25.18 0.23 12 No  

REIs + TVIs 2.24 1.78 22.64 0.42 17 No  

RFR Accuracy 

Modeling scenario RMSECV RMSE RRMSE% R2 P-value ≤ 0.05   

TVIs + REIs + AF 2.31 1.13 14.38 0.91 No   

AF 2.28 1.16 14.78 0.89 No   

REIs + TVIs 2.24 1.07 13.57 0.90 No   

REIs + AF 2.32 1.12 14.22 0.89 No   

TVIs + AF 2.24 1.08 13.68 0.88 No   

VSURF accuracy 

Modelling scenario RMSECV RMSE RRMSE% R2 selected variables              P-value ≤ 0.05 
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TVI + REI +AF 2.12 1.09 13.88 0.89 B29, B191, B220, SR, RRI1           Yes 

AF 2.28 1.09 13.93 0.88 B29, B191                                      Yes 

TVIs + REIs 1.98 1.05 13.47 0.83 NDVI4                                             Yes 

REIs + AF 2.21 1.08 13.67 0.90 B29, B191, RRI1, NDRE               Yes 

TVIs + AF 2.24 1.06 13.82 0.90 B29, B191, B220, NDVI4, SR2      Yes 

1 

A summary of all the sensor comparisons for both PLSR and RFR are presented in 

figures 13 and 14 respectively. In the figures below only the best modeling scenarios are 

selected for each sensor, regression plots for other scenarios are presented in Appendix A 

at the end of this document.  

 

1 The bands in Table 11 indicate the location of absorption features, B29 at 640 nm, B191 at 2063 nm, and B220 at 

2355 nm central wavelengths. 
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Figure 14: Final PLSR models for all the multispectral and hyperspectral sensors. A is 

Sentinel-2, B is WorldView-2, C is RapidEye, D is EnMap and E is Hyperion. 
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Figure 15: RF regression plots for all the multispectral and hyperspectral sensors.  A is 

Sentinel-2, B is RapidEye, C is EnMap, D is WorldView-2, and E is Hyperion. 
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CHAPTER 5:   

Discussion  

5.1 The potential of Sentinel-2 for predicting variability of N:P ratio 

ESA Copernicus Sentinel-2 missions have long been tested and validated for 

quantifying vegetation’s biophysical and biochemical content and demonstrated a 

propitious opportunity for remote sensing of vegetation. This study evaluated the 

capabilities of simulated Sentinel-2 datasets for predicting and mapping the spatiotemporal 

distribution of foliar N:P ratio in a heterogeneous savanna system using PLSR and RFR. 

The PLSR and RFR showed different N:P ratio predictive capabilities; overall results 

indicated high prediction accuracies when using the RFR, which explained 87% of the N:P 

ratio variability with an error term of 13.8%. While the PLSR explained 67% of N:P ratio 

variability with a higher error of 21%, see Table 7 for reference. This work suggests that 

non-parametric regression techniques are more optimum for modeling foliar biochemical 

content than parametric regression algorithms, which corresponds to the findings of 

previous studies. For example, Ramoelo et al. (2015) demonstrated that random forest 

regression accurately predicts foliar N in a savanna landscape. The potential of 

multispectral data and RF for estimating nutrient limitation in an Alpine grassland is 

reported in Gao et al. (2020). 

The results of the present study revealed that in a heterogenous savanna 

environment, Sentinel-2 bands located in the visible, red-edge, and NIR regions are 

significant for N:P ratio estimation at the end of the wet season. Gao et al. (2020) found a 

similar response in an alpine grassland during the senescence stage. However, their study 

also highlighted the importance of bands in the SWIR, which is not the case in our study. 

This might be the result of the different seasons in which the field measurements were 

taken which determines leaf water content of vegetation, the water content is highly 

associated with this region. In addition, most of the REIs, including the ones optimised for 

this study, demonstrated good potential for estimating the N:P ratio; some of these red-

edge based VIs were reported to be ideal for N content in leaves (Ramoelo et al., 2015). 

The high correlation between foliar N and the red-edge and NIR wavelengths is well 

presented in the literature see (Lepine et al., 2016; Ramoelo et al., 2014). Foliar P 
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correlates significantly with NIR and SWIR regions (Mutanga & Kumar, 2007). Overall 

variable importance of this work indicated that Sentinel-2 spectral wavelengths at 490 nm, 

665nm, and 705 nm are significant for N:P ratio prediction. 

Normalised difference and simple ratio indices derived from the red-edge bands 

were consistently selected as important variables in all Sentinel-2 indices-based models, 

some conventional VIs were also selected in some scenarios. The consistent significance 

of red-edge derived indices reveals the importance of the red-edge region for the 

estimation of micronutrients. The combination of significant bands and indices further 

improves the prediction accuracy of the foliar N:P ratio. Past studies also demonstrated 

the effectiveness of combining Sentinel-2 MSI spectral and vegetation indices for 

predicting foliar biochemical content (Gao et al., 2020). The overall results of this research 

validate the applicability of Sentinel-2 spectral bands and indices to retrieve foliar N:P 

ratio. 

This study further demonstrated the transferability of ASD-derived models to 

satellite images. When the RF robust performing model was inverted to Sentinel-2 satellite 

images, it produced meaningful N:P ratio distribution maps with values falling within the 

observed N:P ratio range. The heterogeneous nature of the study area resulted in a slight 

over-prediction of the N:P ratio in the satellite images. The data used to calibrate the 

models was collected from grass samples. However, the satellite images also mapped the 

tree canopies. Trees have different biochemical concentrations than grass, thus could 

affect model transferability and hence the course texture of N:P ratio distribution maps in 

Fig 10 and 11 in chapter 4. 

Based on Gusewell, (2003) N:P threshold values, it is evident that the study area is 

experiencing N-limitation and co-limitation with a foliar N:P ratio ranging from 4 to 12. 

Nutrient limitation is not consistent in the area, i.e., some areas are N-limited, and some 

are co-limited. The observed spatiotemporal dynamics in the N:P ratio could also result 

from environmental factors, such as geology, soil properties, and climatic conditions. 

Venter et al. (2003) highlighted that the gabbro and granite-derived soils covering different 

parts of the study area as explained in chapter 3 differ in their physical and chemical 

composition; therefore, their nutrient content differs. According to Ludwing et al. (2001), an 

average N:P ratio of six in an open grassland depicts N limitation in an open grassland. 

Craine et al. (2008) used a factorial fertilisation experiment to evaluate the use of the N:P 
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ratio as an indicator of nutrient limitation. Their study reported that at the KNP, unfertilized 

areas had an average N:P ratio of 5.8. Both these values correspond with the foliar N:P 

ratio average value of 7.86 observed in this study. Therefore, there is evidence of 

continuous nutrient limitation at KNP, and an incline in N limitation is observed from 2018 

to 2021 (see fig 1, chapter 4). It was reported in the previous literature that the range of 

N:P ratio values is influenced by variation in grass species. Gao et al. (2020) found an N:P 

ratio range of 8.06 to 18.95 in alpine grassland, while Loozen et al. (2019) reported that 

the N:P ratio values of a Holcus lanatus L. (commonly known as Yorkshire fog) range from 

6.1 to 75. 

5.2 The Sentinel-2 N:P ratio Predictive capabilities compared to other 

sensors. 

The statistical accuracy from this study indicates that there are no significant 

differences in accuracy for all the sensors when using RFR. However, when using the 

PLSR, the accuracy of the multispectral sensors is low compared to the hyperspectral 

sensors. The final accuracy is measured based on the RRMSE instead of the R2 because 

the R2 values, specifically for the RFR models are exaggerative. This could be associated 

with the low number of sampling points which led to the use of cross-validation instead of 

dividing the datasets to train and test datasets. Sentinel-2 accuracy is greater than that of 

all other multispectral sensors, however, the difference is marginal between the PLSR 

accuracy of hyperspectral datasets and Sentinel-2 datasets. All these sensors have 

varying spatial resolutions, and Sentinel-2 has the lowest resolution of 10 m. This could 

imply that the spatial resolution does not necessarily influence the capabilities of a sensor 

to retrieve foliar biochemicals, but the spectral resolution is influential. Even though the 

hyperspectral and the commercial multispectral sensors performed better than Sentinel-2 

in PLSR models, their applicability is still limited by their financial costs. 

Moreover, the limited area coverage and multicollinearity experienced with the 

hyperspectral sensors hinder their utility (Adjorlolo et al., 2015). The RFR used in this 

study demonstrated the comparability of the freely available Sentinel-2 MSI, which 

provides regional coverage with commercial sensors. The narrow intervals of 1.4 nm from 

350-1000 nm and 2 nm from 1000-2500 nm of the hyperspectral sensors are possibly the 

cause of the high prediction accuracies achieved by these sensors (Sibanda et al., 2015; 
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Abdel-Rahman et al., 2014). Comparability of Sentinel-2 with the commercial multispectral 

and hyperspectral sensors demonstrates an immense potential for the remote sensing of 

foliar biochemicals, especially in developing countries where the accessibility of 

commercial sensors by the public is still a hitch. 

 

Figure 16:  A bar graph showing a comparison of PLSR and RFR accuracies for each 

sensor. 

From figure 13 above, we note that the estimation accuracy of the Sentinel-2 

datasets is higher than the commercial sensors for both parametric and non-parametric 

regression algorithms. Sentinel-2 accuracy is closely the same as the accuracy of the 

hyperspectral sensors (i.e., EnMap and Hyperion). This emphasises the influence of 

spectral configuration and bandwidth for estimating biochemical content. 

For the parametric algorithm, highest prediction accuracy (closest to the measure 

N:P values) is attained when using Hyperion datasets. Sentinel-2 PLSR predicted values 

are relatively close to the Hyperspectral predicted values. RapidEye predicted values, on 

the other hand, are much lower than all the sensors, and this could be associated the 

influence number of predictors used in the PLSR model, RapidEye has the lowest number 

of bands compared to all other sensors used. Therefore, few VIs could be optimized 

resulting in few input variables for modelling, the number of predictors greatly influence the 

accuracy of parametric regression algorithms. A comparison of PLSR predicted N:P ratio 

versus the measured values is presented in Fig 14 for all the sensors. There are no 

noticeable differences in all the predicted values when using RFR, see Fig 15.  
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Figure 17: A box and whisker plot showing a comparison between field measured and the 

PLSR predicted N:P ratio values for all the simulated datasets from best predicting 

scenarios. 

 

 Figure 18: A box and whisker plot showing a comparison between field measured N:P 

ratio and the RFR predicted values for all the simulated datasets from best predicting 

scenarios.  

5.3  Ideal bands and indices for N:P ratio estimation 

The RFR significant variable selection indicated that N:P ratio sensitive bands are in 

the Visible, SWIR, and Red-edge regions. Even though the Sentinel-2 NIR band (B8) was 
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not selected in RF variable importance, it achieved a higher PLSR weight than all Sentinel-

2 bands when using the parametric technique. The selected significant bands for all the 

sensors are associated with the known N and P absorption features, for example, 460 nm 

and 660 nm for WorldView-2, Sentinel-2, and RapidEye, and absorption features at 640 

nm, 1940nm, 1950 nm, and 2060nm for Enmap and Hyperion. This may be attributed to 

the high correlation between the N:P ratio to N and P (Gao et al., 2020). These absorption 

features and the Sentinel-2 red-edge band at 705 nm portray a potential for remote 

sensing-based N:P ratio retrieval. Surprisingly, in this study, the bands associated with the 

SWIR region reported to be sensitive to the foliar N:P ratio in the literature showed no 

significance in all the multispectral sensors when using the RFR. This could be linked to 

the broadness of the SWIR in Sentinel-2 MSI, the studies that indicated the importance of 

the SWIR were based on the use of hyperspectral datasets, for example, Ramoelo et al., 

(2013). The results showed the consistency of the blue bands in the multispectral sensors. 

Loozen et al. (2019) also observed a consistent relationship between the foliar N:P ratio 

and the blue region. However, the concern is the misinterpretation that might result from 

the effect of Rayleigh scattering when using satellite images.  

The combination of conventional and red-edge-based indices yielded higher 

estimation accuracy for Sentinel-2 and Hyperion models, whereas, for other sensors, 

higher estimation accuracy was attained by the models derived from REIs and bands/ or 

absorption features.  The combination of NIR and RE1 (705 nm) indices selected in this 

study were also identified significant for N:P ratio estimation from Sentinel-2 by Gao et al. 

(2020). The performance of bands and indices varied for each sensor. The estimation 

uncertainty of indices was observed in Pacheco-Labrador et al. (2014); their study 

revealed that most known vegetation indices were not correlated with canopy N content in 

Holm oak leaves. This inconsistency of indices indicates the impact of sensor 

configurations in foliar micronutrient prediction accuracies. Regardless of the unavailability 

of specific N:P absorption features, the selected N and P absorption features and their 

associated indices demonstrate a promising potential for estimating nutrient limitation in a 

heterogeneous savanna landscape. A summary of RFR and PLSR selected variables is 

presented in Table 12, Table 13, and figure 16 respectively. 

Table 12: RF selected significant VIs. 
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Table 13: RF selected important bands. 

 

 

 

Sensor Known VIs Optimised VIs 

Sentinel-2 NDRE, NDRE2, RRI RRI5, NDRE4 

RapidEye SR NDRE, RRI 

WorldView-2 SR NDRE 

EnMap SR, NDVI RRI 

Hyperion SR RRI1, NDVI4, NDRE 

Spectral region (nm) selected bands sensor 

BLUE B2 Sentinel-2 

 B3 WorldView-2 

Green B4 WorldView-2 

 B2 RapidEye 

Red B4 Sentinel-2 

 B6 WorldView-2 

 B3 RapidEye 

 B29 Hyperion 

 B34 EnMap 

Red edge B5 Sentinel-2 

SWIR B194, B234 EnMap 

 B191 Hyperion 
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Figure 19: PLSR weights for the variables used in each sensor. The weights denotes the 

importance of each variable in the best modeling scenarios for each sensor.  
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CHAPTER 6: CONCLUSION 

6.1  General Summary 

Nutrient limitation is consistent in the central parts of the KNP area; prolonged 

limitation of nutrients poses a severe threat to ecosystem functioning, biodiversity, and 

ecotourism services rendered by the park. N seems to be more limited compared to P in 

the central to southern savanna landscape of KNP. Exploring the potential of freely 

available sensors for predicting and mapping foliar N:P ratio is necessary to monitor the 

nutritional status of the savanna environment on a near-real-time basis. This is a crucial 

step towards the implementation of ideal management and nutrient recovery strategies. 

The main aim of this study was to develop a Sentinel-2 N:P ratio prediction model and 

assess the transferability of simulated ASD datasets derived models to satellite images for 

regional mapping of nutrient limitation in the northern parts of the South African Savanna 

landscape. To achieve this aim, the following objectives were executed: identify N:P ratio 

sensitive bands and indices, develop an ideal model, and invert the model to satellite 

images. 

The results of this study depict that the vegetation indices derived from Sentinel-2 

red-edge and narrow NIR bands have the potential to detect foliar N:P ratio in a 

heterogeneous savanna system when using a suitable regression algorithm. Models 

derived from ASD datasets can be inverted to satellite images to upscale the prediction 

and mapping of nutrient limitation. Moreover, the study determined the prospective of 

simulated multispectral datasets for addressing the lack of remote sensing variables 

significant for estimating the foliar N:P, consequently attributed to the neglect of the 

distribution of nutrient limitation in natural environments. The transferability of these 

models to regional maps is critical for managing the savanna ecosystem. It can be 

concluded that the freely available Sentinel-2 MSI is compatible with high-resolution 

commercial sensors. Therefore Sentinel-2 can be adopted as an accurate, cost-effective 

approach to decision-makers and policymakers to address the issue of natural grassland 

degradation through the implementation of scientifically supported policies to ensure the 

management, sustainability, and restoration of savanna biodiversity. 
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6.2 Contribution to scientific knowledge for determining and mapping 

foliar N:P ratio. 

The RF variable selection (Vsurf) in chapter 4 selected 3 optimal bands for 

predicting the N:P ratio from simulated Sentinel-2 r reflectance data. The ideal bands are 

located at the visible (490nm and 665nm) and red-edge (705 nm) regions of the 

electromagnetic spectrum. Red-edge derived vegetation indices; the RF also selected 

NDRE, NDRE2, NDRE4, RRI, and RRI5 based on Vsurf of all the modeling scenarios. An 

additional band in the NIR (B8) region and two additional REIs indices, NDRE6, and RRI3, 

were also selected as significant based on the PLSR weight. As part of our analysis in 

chapter 4, important N:P prediction bands and indices were also identified from the 

simulated reflectance data for other sensors for WorldView-2, bands located in the visible 

region (480 nm, 560 nm, and 660 nm together with SR and NDRE VIs were selected by 

VSurf. While the PLSR weights selected bands at visible and NIR regions, 425 nm and 

810 nm, respectively, and the NDRE and NDRE1. Also, for the RapidEye, only bands at 

the visible region (555 nm and 658 nm) were selected, and the SR, NDRE, and RRI VIs. 

The RapidEye Vsurf and PLSR weight significant variables were similar. Only the RRI1 

was selected by PLSR weight but not by the Vsurf.   

For the hyperspectral datasets, Vsurf selected absorption features are in the visible, 

and the SWIR. Absorption features allocated at 638nm, 1945 nm, 2345 nm for EnMap; 

640 nm, and 2063 nm for Hyperion. Vsurf-selected EnMap indices are SR, NDVI, and RRI, 

and Vsurf-selected indices for Hyperion are SR, RRI1, and NDRE. The PLSR weight 

selected only VIs, NDVI4, NDRE, RRI3, SR4 and NDVI1 for EnMap; and NDRE1, NDRE2, 

NDVI1, SR1 and RRI for Hyperion.  Based on both Vsurf and PLSR selection, a general 

conclusion can be drawn that reliable N:P ratio estimation bands are in the visible, red-

edge, and NIR for multispectral reflectance datasets, and for the hyperspectral datasets, 

some bands in the SWIR region are significant. Moreover, the narrower Sentinel-2 red-

edge bands (705 nm) are more sensitive to the N:P ratio compared to the broad red-edge 

bands of WorldView-2 and RapidEye. Lastly, both red-edge based, and traditional indices 

normalised difference and simple ratio, are optimal for N:P ratio retrieval. 
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6.3  Recommendations for future research 

The heterogeneity of the savanna system might cause inconsistencies in the 

wavelength sensitivity of different sensors to the N:P ratio, which could affect the 

transferability of ASD-derived models. To account for the different structural factors in 

future research, we recommend the following: 

▪ The inclusion of textural information is recommended for future research. This could 

be achieved by integrating data from passive optical sensors with datasets from 

structurally sensitive sensors such as radio detection and ranging (RADAR) and 

light detection and ranging (LIDAR). Active sensors provide information on height, 

density, texture, and structure. As such, they are essential for developing stratified 

prediction models, which seems necessary in natural, non-uniform environments. 

▪ The use of radiative transfer models (RTMs) originally developed to detect 

heterogeneous canopy structures in N:P ratio estimation models should be 

investigated. 

▪ Lastly, to understand the observed spatio-temporal variations in nutrient limitation, 

the influence of ancillary variables such as soil physical and chemical properties, 

climatic conditions, underlying geology, and fire frequencies should be investigated.  

Moreover, grass species should also be included when modeling foliar N:P ratio, as 

the literature suggests varying N:P threshold values amongst grass species. 
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APPENDIX A:   

 

Fig 1A: Sentinel-2 RF regression plots depicting the relationship between the 

measured N:P ratio and the RF predicting.  
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Fig 2A: Sentinel-2 PLSR plots depicting the relationship between the PLSR 

estimated and observed N:P ratio.  
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Fig 3A: RapidEye PLSR plots. Showing the relationship between the PLSR estimated and 

the observed N:P ratio.  

 

 

 

  



 

79 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4A: RapidEye RF regression plots showing the relationship between the predicting and 

the field measured N:P ratio.  
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 Fig 5A: WorldView-2 PLSR regression depicting the relationship between the observed 

and predicted N:P ratio. 
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Fig 6A: WorldView-2 RF regression plots showing the relationship predicted and measured 

N:P ratio.  
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Fig 7A: Regression plots showing the relationship between the measured and the 

predicted N:P ratio from Hyperion datasets using PLSR. 
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Fig 8A: The regression plots showing the relationship between the measured and the RFR 

estimated N:P ratio using Hyperion datasets.  

 

 

 

 

 

 

 



 

84 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9A:  The 1:1 regression plots showing EnMap PLSR predicted N:P ratio against the 

measured N:P ratio.  

 

 

 

 

 



 

85 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10A: EnMap PLSR regression plots depicting the relationship between the observed 

and the estimated N:P ratio. 



 

86 

     

References  

 

1. Abdel-Rahman, E.M., Ahmed, F.B. and Van den Berg, M., 2010. Estimation 

of sugarcane leaf nitrogen concentration using in situ spectroscopy. 

International Journal of Applied Earth Observation and Geoinformation, 12, 

pp. S52-S57. 

2. Abdipour, M., Younessi-Hmazekhanlu, M. and Ramazani, S.H.R., 2019. 

Artificial neural networks and multiple linear regression as potential methods 

for modeling seed yield of safflower (Carthamus tinctorius L.). Industrial 

crops and products, 127, pp.185-194. 

3. Adjorlolo, C., Mutanga, O. and Cho, M.A., 2015. Predicting C3 and C4 grass 

nutrient variability using in situ canopy reflectance and partial least squares 

regression. International Journal of Remote Sensing, 36(6), pp.1743-1761. 

4. Ali I., Cawkwe F., Dwyer E., Barrett B., Green S., 2016, Satellite remote 

sensing of grasslands: from observation to management. Oxford journals. 

5. Askari M.S., McCarthy T., Magee A., Murphy D.J., 2019. Evaluation of 

Grass Quality under Different Soil Management Scenarios Using Remote 

Sensing Techniques. MDPI remote sensing 

6. Asner, G.P., 1998. Biophysical and biochemical sources of variability in 

canopy reflectance. Remote sensing of Environment, 64(3), pp.234-253. 

7. Avitabile, V., Baccini, A., Friedl, M.A. and Schmullius, C., 2012. Capabilities 

and limitations of Landsat and land cover data for aboveground woody 

biomass estimation of Uganda. Remote Sensing of Environment, 117, 

pp.366-380. 

8. Bachelet, D., Lenihan, J.M., Daly, C. and Neilson, R.P., 2000. Interactions 

between fire, grazing and climate change at Wind Cave National Park, SD. 

Ecological modelling, 134(2-3), pp.229-244. 

9. Beatty, D.T., Barnes, A., Taylor, E., and Maloney, S.K., 2008. Do changes in 

feed intake or ambient temperature cause changes in cattle rumen 

temperature relative to core temperature? Journal of Thermal Biology, 33(1), 

pp.12-19. 



 

87 

     

10. Bakker, M.A., Carreño‐Rocabado, G. and Poorter, L., 2011. Leaf economics 

traits predict litter decomposition of tropical plants and differ among land use 

types. Functional Ecology, 25(3), pp.473-483. 

11. Ben-Shahar, R., 1996. Woodland dynamics under the influence of elephants 

and fire in northern Botswana. Vegetation, 123(2), pp.153-163. 

12. Mevik, B.H. and Wehrens, R., 2015. Introduction to the pls Package. Help 

Section of the “Pls” Package of R Studio Software, pp.1-23. 

13. Breiman, L. and Ihaka, R., 1984. Nonlinear discriminant analysis via scaling 

and ACE. Davis One Shields Avenue Davis, CA, USA: Department of 

Statistics, University of California. 

14. Breiman, L., 2001. Random forests. Machine learning, 45(1), pp.5-32. 

15. Breiman, L., 1996. Bagging predictors. Machine learning, 24(2), pp.123-140. 

16. Bronn, A. v. Z., Lombard, P. J. L. & Potgeiter, A. L. F. (2001). The effect of 

long-term fire regime and herbivory on the Colophospermum mopane shrub 

veld in the Kruger National Park. Poster presented at 36th Annual Congress 

of the Grassland Society of Southern Africa, Aldam, South Africa. Reported 

in Venter et al. (2003). 

17. Carlier, L., Rotar, I., Vlahova, M. & Vidican, R., 2009, ‘Importance and 

functions of grasslands’, Notulae Botanicae Horti Agrobotanici Cluj-Napoca 

37(1), 25–30. 

18. Carlier, L., Rotar, I., Vlahova, M. & Vidican, R., 2009, ‘Importance and 

functions of grasslands’, Notulae Botanicae Horti Agrobotanici Cluj-Napoca 

37(1), 25–30. 

19. Chabalala, Y., Adam, E., Oumar, Z. and Ramoelo, A., 2020. Exploiting the 

capabilities of Sentinel-2 and RapidEye for predicting grass nitrogen across 

different grass communities in a protected area. Applied Geomatics, 12(4), 

pp.379-395. 

20. Cho, M.A., and Skidmore, A.K., 2006. A new technique for extracting the red 

edge position from hyperspectral data: The linear extrapolation method. 

Remote sensing of environment, 101(2), pp.181-193. 

21. Clevers, J.G. and Gitelson, A.A., 2013. Remote estimation of crop and grass 

chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3. 



 

88 

     

International Journal of Applied Earth Observation and Geoinformation, 23, 

pp.344-351. 

22. Clevers, J.G.P.W., 2014. Beyond NDVI: extraction of biophysical variables 

from remote sensing imagery. In Land use and land cover mapping in 

Europe (pp. 363-381). Springer, Dordrecht. 

23. Clifton, K.E., Bradbury, J.W. and Vehrencamp, S.L., 1994. The fine‐scale 

mapping of grassland protein densities. Grass and Forage Science, 49(1), 

pp.1-8. 

24. Cohen, W.B. and Goward, S.N., 2004. Landsat's role in ecological 

applications of remote sensing. Bioscience, 54(6), pp.535-545. 

25. Craine, J.M., Morrow, C., and Stock, W.D., 2008. Nutrient concentration 

ratios and co‐limitation in South African grasslands. New Phytologist, 

179(3), pp.829-836. 

26. Curran, P.J., 1989. Remote sensing of foliar chemistry. Remote sensing of 

environment, 30(3), pp.271-278. 

27. Cutler, A., Cutler, D.R. and Stevens, J.R., 2009. Tree-based methods. In 

High-Dimensional Data Analysis in Cancer Research (pp. 1-19). Springer, 

New York, NY. 

28. De Peppo, M., Taramelli, A., Boschetti, M., Mantino, A., Volpi, I., Filipponi, 

F., Tornado, A., Valentini, E. and Ragaglini, G., 2021. Non-Parametric 

statistical approaches for leaf area index estimation from Sentinel-2 Data: A 

multi-crop assessment. Remote Sensing, 13(14), p.2841. 

29. Dorigo, W.A., Zurita-Milla, R., de Wit, A.J., Brazile, J., Singh, R. and 

Schaepman, M.E., 2007. A review on reflective remote sensing and data 

assimilation techniques for enhanced agroecosystem modeling. 

International journal of applied earth observation and geoinformation, 9(2), 

pp.165-193. 

30. Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., 

Hoersch, B., Isola, C., Laberinti, P., Martimort, P. and Meygret, A., 2012. 

Sentinel-2: ESA's optical high-resolution mission for GMES operational 

services. Remote sensing of Environment, 120, pp.25-36. 



 

89 

     

31. Dube T., Mutanga O., 2015. Evaluating the utility of the medium-spatial 

resolution Landsat 8 OLI multispectral sensor in quantifying above-ground 

biomass in uMngeni catchment, South Africa. ISPRS journal of 

photogrammetry and remote sensing. 

32. Martre, P., Reynolds, M.P., Asseng, S., Ewert, F., Alderman, P., 

Cammarano, D., Maiorano, A., Ruane, A.C., Aggarwal, P.K., Anothai, J. and 

Basso, B., 2017. The International Heat Stress Genotype Experiment for 

modeling wheat response to heat: field experiments and AgMIP-Wheat 

multi-model simulations. 

33. Epstein, E., and Bloom, A.J., 2005. Mineral nutrition of plants: principles and 

perspectives, 2nd eds. Sunderland, Mass Sinaur, pp.292-305. 

34. Ferner, J., Linstädter, A., Rogass, C., Südekum, K.H. and Schmidtlein, S., 

2021. Towards Forage Resource Monitoring in subtropical Savanna 

Grasslands: going multispectral or hyperspectral? European Journal of 

Remote Sensing, 54(1), pp.364-384. 

35. Fewster, R.M., Laake, J.L. and Buckland, S.T., 2005. Line transect sampling 

in small and large regions. Biometrics, 61(3), pp.856-859. 

36. Gamon, J.A., Field, C.B., Goulden, M.L., Griffin, K.L., Hartley, A.E., Joel, G., 

Penuelas, J. and Valentini, R., 1995. Relationships between NDVI, canopy 

structure, and photosynthesis in three Californian vegetation 

types. Ecological applications, 5(1), pp.28-41. 

37. Gao, J., Meng, B., Liang, T., Feng, Q., Ge, J., Yin, J., Wu, C., Cui, X., Hou, 

M., Liu, J. and Xie, H., 2019. Modeling alpine grassland forage phosphorus 

based on hyperspectral remote sensing and a multi-factor machine learning 

algorithm in the east of Tibetan Plateau, China. ISPRS Journal of 

38. Gao, L., Zhang, C., Yun, W., Ji, W., Ma, J., Wang, H., Li, C. and Zhu, D., 

2022. Mapping crop residue cover using Adjust Normalized Difference 

Residue Index based on Sentinel-2 MSI data. Soil and Tillage 

Research, 220, p.105374. 

39. Genuer, R., Poggi, J.M. and Tuleau-Malot, C., 2015. VSURF: an R package 

for variable selection using random forests. The R Journal, 7(2), pp.19-33. 



 

90 

     

40. Giardina, C.P. and Rhoades, C.C., 2001. Clear cutting and burning affect 

nitrogen supply, phosphorus fractions and seedling growth in soils from a 

Wyoming lodgepole pine forest. Forest Ecology and Management, 140(1), 

pp.19-28. 

41. Gitelson, A.A. and Merzlyak, M.N., 1996. Signature analysis of leaf 

reflectance spectra: algorithm development for remote sensing of 

chlorophyll. Journal of plant physiology, 148(3-4), pp.494-500. 

42. Glen, A.S., 2008. Population attributes of the spotted-tailed quoll (Dasyurus 

maculatus) in north-eastern New South Wales. Australian Journal of 

Zoology, 56(2), pp.137-142. 

43. Goetz, A.F., 2009. Three decades of hyperspectral remote sensing of the 

Earth: A personal view. Remote sensing of environment, 113, pp. S5-S16. 

44. Milton, E.J., Schaepman, M.E., Anderson, K., Kneubühler, M. and Fox, N., 

2009. 

45. Gökkaya, K., Thomas, V., Noland, T.L., McCaughey, H., Morrison, I. and 

Treitz, P., 2015. Prediction of macronutrients at the canopy level using 

spaceborne imaging spectroscopy and LiDAR data in a mixedwood boreal 

forest. Remote Sensing, 7(7), pp.9045-9069. 

46. Golay, M.J.E., 1964. Normalised equations of the regenerative oscillator—

Noise, phase-locking, and pulling. Proceedings of the IEEE, 52(11), 

pp.1311-1330. 

47. Grant, C.C., Peel, M.J.S. and Van Ryssen, J.B.J., 2000. Nitrogen and 

phosphorus concentration in faeces: an indicator of range quality as a 

practical adjunct to existing range evaluation methods. African Journal of 

Range and Forage Science, 17(1-3), pp.81-92. 

48. Güsewell, S., Koerselman, W. and Verhoeven, J.T., 2003. Biomass N: P 

ratios as indicators of nutrient limitation for plant populations in 

wetlands. Ecological Applications, 13(2), pp.372-384. 

49. Güsewell, S., 2004. N: P ratios in terrestrial plants: variation and functional 

significance. New phytologist, 164(2), pp.243-266. 

50. Guyot, G., 1988. Evolution of research orientation in the domain of spectral 

signatures. 



 

91 

     

51. Guanter, L., Segl, K., Kaufmann, H. (2009): Simulation of Optical Remote-

Sensing ScenesWith Application to the EnMAP Hyperspectral Mission. - 

IEEE Transactions on Geoscienceand Remote Sensing. 

52. Hadi, H., 2015. Multivariate statistical analysis for estimating grassland leaf 

area index and chlorophyll content using hyperspectral data (Master's 

thesis, University of Twente). 

53. Hammad, A. and Tumeizi, A., 2012. Land degradation: socioeconomic and 

environmental causes and consequences in the eastern 

Mediterranean. Land Degradation & Development, 23(3), pp.216-226. 

54. Horler, D.N.H., Dockray, M., Barber, J. and Barringer, A.R., 1983. Red edge 

measurements for remotely sensing plant chlorophyll content. Advances in 

Space Research, 3(2), pp.273-277. 

55. Huber, S., Kneubühler, M., Psomas, A., Itten, K. and Zimmermann, N.E., 

2008. Estimating foliar biochemistry from hyperspectral data in mixed forest 

canopy. Forest ecology and management, 256(3), pp.491-501. 

56. Huete, A.R., Hua, G., Qi, J., Chehbouni, A. and Van Leeuwen, W.J.D., 

1992. Normalisation of multidirectional red and NIR reflectances with the 

SAVI. Remote Sensing of Environment, 41(2-3), pp.143-154. 

57. Hughes, G., 1968. On the mean accuracy of statistical pattern 

recognizers. IEEE transactions on information theory, 14(1), pp.55-63. 

58. Jiang, F., Kutia, M., Sarkissian, A.J., Lin, H., Long, J., Sun, H. and Wang, 

G., 2020. Estimating the growing stem volume of coniferous plantations 

based on random forest using an optimized variable selection 

method. Sensors, 20(24), p.7248. 

59. Jordan, C.F., 1969. Derivation of leaf‐area index from quality of light on the 

forest floor. Ecology, 50(4), pp.663-666. 

60. Karimi, M. and Moradi, K., 2018. The response of Stevia (Stevia rebaudiana 

Bertoni) to nitrogen supply under greenhouse conditions. Journal of Plant 

Nutrition, 41(13), pp.1695-1704. 

61. Klodd, A.E., Nippert, J.B., Ratajczak, Z., Waring, H., and Phoenix, G.K., 

2016. Tight coupling of leaf area index to canopy nitrogen and phosphorus 



 

92 

     

across heterogeneous tallgrass prairie communities. Oecologia, 182, 

pp.889-898 

62. Kganyago, M.L., 2015. An evaluation of hyperspectral and multispectral 

data for mapping invasive species in an African Savanna (Masters 

dissertation). 

63. Knox, A.S., Kaplan, D.I. and Paller, M.H., 2006. Phosphate sources and 

their suitability for remediation of contaminated soils. Science of the Total 

Environment, 357(1-3), pp.271-279. 

64. Koerselman, W. and Meuleman, AFM, 1995. The N:P ratio: a simple tool for 

ecological management of water catchment areas. H2O, 28, pp.94-7. 

65. Kohavi, R. and John, G.H., 1995. Automatic parameter selection by 

minimising estimated error. In Machine Learning Proceedings 1995 (pp. 

304-312). Morgan Kaufmann. 

66. https://www.krugerpark.co.za/Maps_of_Kruger_Park-travel/kruger-geo-

map.html 

67. Williams, C.K., Engelhardt, A., Cooper, T., Mayer, Z., Ziem, A., Scrucca, L., 

Tang, Y., Candan, C., Hunt, T. and Kuhn, M.M., 2015. Package ‘caret’. 

68. LeBauer, D.S. and Treseder, K.K., 2008. Nitrogen limitation of net primary 

productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2), 

pp.371-379. 

69. Li, Z.L., Tang, H., Li, Z.L., and Tang, H., 2014. Estimation and validation of 

evapotranspiration from thermal infrared remote sensing data. Quantitative 

Remote Sensing in Thermal Infrared: Theory and Applications, pp.145-201. 

70. Liang, L., Di, L., Huang, T., Wang, J., Lin, L., Wang, L. and Yang, M., 2018. 

Estimation of leaf nitrogen content in wheat using new hyperspectral indices 

and a random forest regression algorithm. Remote Sensing, 10(12), p.1940. 

71. Liu, J., Xu, X. and Shao, Q., 2008. Grassland degradation in the “three-river 

headwaters” region, Qinghai province. Journal of Geographical 

Sciences, 18, pp.259-273. 

72. Loozen, Y., Karssenberg, D., de Jong, S.M., Wang, S., van Dijk, J., 

Wassen, M.J. and Rebel, K.T., 2019. Exploring the use of vegetation indices 



 

93 

     

to sense canopy nitrogen to phosphorus ratio in grasses. International 

Journal of Applied Earth Observation and Geoinformation, 75, pp.1-14. 

73. Lü, X.T., Reed, S.C., Yu, Q., and Han, X.G., 2016. Nutrient resorption helps 

drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-

enriched conditions. Plant and soil, 398, pp.111-120. 

74. Ludwig, D., Mangel, M. and Haddad, B., 2001. Ecology, conservation, and 

public policy. Annual review of ecology and systematics, 32(1), pp.481-517. 

75. Ludwig, F., De Kroon, H. and Prins, H.H., 2008. Impacts of savanna trees 

on forage quality for a large African herbivore. Oecologia, 155, pp.487-496. 

76. Main, R., Cho, M.A., Mathieu, R., O’Kennedy, M.M., Ramoelo, A. and Koch, 

S., 2011. An investigation into robust spectral indices for leaf chlorophyll 

estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), 

pp.751-761. 

77. Milton, E.J., Schaepman, M.E., Anderson, K., Kneubühler, M. and Fox, N., 

2009. Progress in field spectroscopy. Remote Sensing of Environment, 113, 

pp. S92-S109. 

78. Musina, L., Rutherford, M.C., Powrie, L.W., van Niekerk, A. and van der 

Merwe, J.H., 2006. Strelitzia. 

79. Grant, R., 2006. Sappi Tree Spotting: Lowveld, Including Kruger National 

Park. Jacana Media. 

80. Mutanga, O. and Kumar, L., 2007. Estimating and mapping grass 

phosphorus concentration in an African savanna using hyperspectral image 

data. International Journal of Remote Sensing, 28(21), pp.4897-4911. 

81. Mutanga, O., Ismail, R., Ahmed, F. and Kumar, L., 2007, November. Using 

in situ hyperspectral remote sensing to discriminate pest attacked pine 

forests in South Africa. In Proceedings of the 28th Asian Conference on 

Remote Sensing, Kuala Lumpur, Malaysia (pp. 12-16). 

82. Mutanga, O. and Skidmore, A.K., 2004. Narrow band vegetation indices 

overcome the saturation problem in biomass estimation. International 

journal of remote sensing, 25(19), pp.3999-4014. 

83. Mutanga, O., Skidmore, A.K. and Prins, H.H.T., 2004. Predicting in situ 

pasture quality in the Kruger National Park, South Africa, using continuum-



 

94 

     

removed absorption features. Remote sensing of Environment, 89(3), 

pp.393-408 

84. Skidmore, A.K., Ferwerda, J.G., Mutanga, O., Van Wieren, S.E., Peel, M., 

Grant, R.C., Prins, H.H., Balcik, F.B. and Venus, V., 2010. Forage quality of 

savannas—Simultaneously mapping foliar protein and polyphenols for trees 

and grass using hyperspectral imagery. Remote sensing of 

environment, 114(1), pp.64-72. 

85. Mutanga, O., Skidmore, A.K. and Van Wieren, S., 2003. Discriminating 

tropical grass (Cenchrus ciliaris) canopies grown under different nitrogen 

treatments using spectroradiometry. ISPRS Journal of Photogrammetry and 

Remote Sensing, 57(4), pp.263-272. 

86. Mutanga, O., Prins, H.H., Skidmore, A.K., Van Wieren, S., Huizing, H., 

Grant, R., Peel, M. and Biggs, H., 2004. Explaining grass‐nutrient patterns 

in a savanna rangeland of southern Africa. Journal of biogeography, 31(5), 

pp.819-829. 

87. Mutanga, O., Adam, E. and Cho, M.A., 2012. High density biomass 

estimation for wetland vegetation using WorldView-2 imagery and random 

forest regression algorithm. International Journal of Applied Earth 

Observation and Geoinformation, 18, pp.399-406. 

88. Naidoo, L., Cho, M.A., Mathieu, R. and Asner, G., 2012. Classification of 

savanna tree species, in the Greater Kruger National Park region, by 

integrating hyperspectral and LiDAR data in a Random Forest data mining 

environment. ISPRS journal of Photogrammetry and Remote Sensing, 69, 

pp.167-179. 

89. Olde Venterink, H., Cech, P.G., Kuster, T., and Edwards, P.J., 2008. Effects 

of herbivory, fire, and N 2-fixation on nutrient limitation in a humid African 

savanna. Ecosystems, 11, pp.991-1004. 

90. Oumar, Z. and Mutanga, O., 2013. Using WorldView-2 bands and indices to 

predict bronze bug (Thaumastocoris peregrinus) damage in plantation 

forests. International Journal of Remote Sensing, 34(6), pp.2236-2249. 



 

95 

     

91. Pacheco-Labrador, J., Ferrero, A., and Martín, M.P., 2014. Characterising 

integration time and gray-level-related nonlinearities in a NMOS 

sensor. Applied Optics, 53(32), pp.7778-7786. 

92. Palmer, A.R. and Ainslie, A.M., 2005. Grasslands of South 

Africa. Grasslands of the World, 34, p.77. 

93. Peddle, D.R., White, H.P., Soffer, R.J., Miller, J.R. and Ledrew, E.F., 2001. 

Reflectance processing of remote sensing spectroradiometer 

data. Computers & geosciences, 27(2), pp.203-213. 

94. Schott, J.R., Brown, S.D., Raqueno, R.V., Gross, H.N. and Robinson, G., 

1999. An advanced synthetic image generation model and its application to 

multi/hyperspectral algorithm development. Canadian Journal of Remote 

Sensing, 25(2), pp.99-111. 

95. Somers, B., Tits, L. and Coppin, P., 2013. Quantifying nonlinear spectral 

mixing in vegetated areas: Computer simulation model validation and first 

results. IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, 7(6), pp.1956-1965. 

96. Schwartz, M.W., Iverson, L.R., Prasad, A.M., Matthews, S.N. and O'Connor, 

R.J., 2006. Predicting extinctions as a result of climate 

change. Ecology, 87(7), pp.1611-1615. 

97. Berry, P.M., Dawson, T.P., Harrison, P.A., Pearson, R. and Butt, N., 2003. 

The sensitivity and vulnerability of terrestrial habitats and species in Britain 

and Ireland to climate change. Journal for Nature Conservation, 11(1), 

pp.15-23. 

98. Prins, H.H. and Van Langevelde, F. eds., 2008. Resource ecology: spatial 

and temporal dynamics of foraging (Vol. 23). Springer Science & Business 

Media. 

99. Ramoelo, A. and Cho, M.A., 2018. Explaining leaf nitrogen distribution in a 

semi-arid environment predicted on Sentinel-2 imagery using a field 

spectroscopy derived model. Remote Sensing, 10(2), p.269. 

100. Ramoelo, A., Skidmore, A.K., Cho, M.A., Mathieu, R., Heitkönig, 

I.M.A., Dudeni-Tlhone, N., Schlerf, M., and Prins, H.H.T., 2013. Non-linear 

partial least square regression increases the estimation accuracy of grass 



 

96 

     

nitrogen and phosphorus using in situ hyperspectral and environmental 

data. ISPRS journal of photogrammetry and remote sensing, 82, pp.27-40. 

101. Ramoelo, A., Stolter, C., Joubert, D., Cho, M.A., Groengroeft, A., 

Madibela, O.R., Zimmermann, I. and Pringle, H., 2018. Rangeland 

monitoring and assessment: a review. 

102. Ramoelo, A., Skidmore, A.K., Schlerf, M., Mathieu, R. and Heitkönig, 

I.M., 2011. Water-removed spectra increase the retrieval accuracy when 

estimating savanna grass nitrogen and phosphorus concentrations. ISPRS 

journal of photogrammetry and remote sensing, 66(4), pp.408-417. 

103. Ramoelo, A., Skidmore, A.K., Cho, M.A., Schlerf, M., Mathieu, R. and 

Heitkönig, I.M., 2012. Regional estimation of savanna grass nitrogen using 

the red-edge band of the spaceborne RapidEye sensor. International 

Journal of Applied Earth Observation and Geoinformation, 19, pp.151-162. 

104. Ramoelo, A., Cho, M.A., Mathieu, R.S., Skidmore, A.K., Schlerf, M. 

and Heitkönig, I.M.A., 2012. Estimating grass nutrients and biomass as an 

indicator of rangeland (forage) quality and quantity using remote sensing in 

Savanna ecosystems. 

105. Ramoelo, A., Cho, M., Mathieu, R., and Skidmore, A.K., 2014, 

November. The potential of Sentinel-2 spectral configuration to assess 

rangeland quality. In Remote Sensing for Agriculture, Ecosystems, and 

Hydrology XVI (Vol. 9239, pp. 108-118). SPIE. 

106. Ramoelo, A., Cho, M.A., Mathieu, R., Madonsela, S., Van De 

Kerchove, R., Kaszta, Z. and Wolff, E., 2015. Monitoring grass nutrients and 

biomass as indicators of rangeland quality and quantity using random forest 

modelling and WorldView-2 data. International journal of applied earth 

observation and geoinformation, 43, pp.43-54. 

107. Read, J.M., Torrado, m., 2009 in International Encyclopedia of Human 

Geography 

108. Reed, S.C., Cleveland, C.C., and Townsend, A.R., 2011. Functional 

ecology of free-living nitrogen fixation: a contemporary perspective. Annual 

review of ecology, evolution, and systematics, 42, pp.489-512. 



 

97 

     

109. Reinermann, S., Asam, S. and Kuenzer, C., 2020. Remote sensing of 

grassland production and management. A review. Remote Sensing, 12(12), 

p.1949. 

110. Rieske, L.K., 2002. Wildfire alters oak growth, foliar chemistry, and 

herbivory. Forest Ecology and Management, 168(1-3), pp.91-99. 

111. Rouse Jr, J.W., Haas, R.H., Deering, D.W., Schell, J.A. and Harlan, 

J.C., 1974. Monitoring the vernal advancement and retrogradation (green 

wave effect) of natural vegetation (No. E75-10354). 

112. Rossel, R.V. and McBratney, A.B., 2008. Diffuse reflectance spectroscopy as 

a tool for digital soil mapping. Digital soil mapping with limited data, pp.165-172. 

113. Salih, A.A., Ganawa, E.T. and Elmahl, A.A., 2017. Spectral mixture 

analysis (SMA) and change vector analysis (CVA) methods for monitoring 

and mapping land degradation/desertification in arid and semiarid areas 

(Sudan), using Landsat imagery. The Egyptian Journal of Remote Sensing 

and Space Science, 20, pp. S21-S29. 

114. Sankaran, M., Augustine, D.J. and Ratnam, J., 2013. Native 

ungulates of diverse body sizes collectively regulate long‐term woody plant 

demography and structure of a semi‐arid savanna. Journal of 

Ecology, 101(6), pp.1389-1399. 

115. Shoko, C., Mutanga, O. and Dube, T., 2016. Progress in the remote 

sensing of C3 and C4 grass species aboveground biomass over time and 

space. ISPRS Journal of Photogrammetry and Remote Sensing, 120, pp.13-

24. 

116. Sibanda, M., Mutanga, O. and Rouget, M., 2015. Examining the 

potential of Sentinel-2 MSI spectral resolution in quantifying above ground 

biomass across different fertiliser treatments. ISPRS Journal of 

Photogrammetry and Remote Sensing, 110, pp.55-65. 

117. Singh, H.V., Kumar, S., Roy, A.K. and Singh, K.A., 2017. Growth and 

biomass production of fodder trees and grasses in a silvipasture system on 

non-arable land of semi-arid India. Range Management and 

Agroforestry, 38(1), pp.43-47 



 

98 

     

118. Skidmore, A.K., Ferwerda, J.G., Mutanga, O., Van Wieren, S.E., 

Peel, M., Grant, R.C., Prins, H.H., Balcik, F.B. and Venus, V., 2010. Forage 

quality of savannas—Simultaneously mapping foliar protein and polyphenols 

for trees and grass using hyperspectral imagery. Remote sensing of 

environment, 114(1), pp.64-72. 

119. Srinet, R., Nandy, S., and Patel, N.R., 2019. Estimating leaf area 

index and light extinction coefficient using Random Forest regression 

algorithm in a tropical moist deciduous forest, India. Ecological 

Informatics, 52, pp.94-102. 

120. Symeonakis, E., Petroulaki, K. and Higginbottom, T., 2016. Landsat-

based woody vegetation cover monitoring in southern African 

savannahs. The International Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences, 41, pp.563-567 

121. Usha, K. and Singh, B., 2013. Potential applications of remote 

sensing in horticulture—A review. Scientia horticulturae, 153, pp.71-83. 

122. Venter, F., Randall, R., Hanekom, N. and Ruselli, I., 2003. RIVER, 

COASTAL. In South African National Parks: A Celebration Commemorating the 

Fifth World Parks Congress 2003 (p. 122). Horst Klemm Publications. 

123. Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J.P., 

Veroustraete, F., Clevers, J.G. and Moreno, J., 2015. Optical remote 

sensing and the retrieval of terrestrial vegetation bio-geophysical 

properties–A review. ISPRS Journal of Photogrammetry and Remote 

Sensing, 108, pp.273-290. 

124. Verrelst, J., Schaepman, M.E., Malenovský, Z. and Clevers, J.G., 

2010. Effects of woody elements on simulated canopy reflectance: 

Implications for forest chlorophyll content retrieval. Remote Sensing of 

Environment, 114(3), pp.647-656.Verrelst,2010) 

125. Vitousek, P.M. and Howarth, R.W., 1991. Nitrogen limitation on land 

and in the sea: how can it occur? Biogeochemistry, 13, pp.87-115. 

126. Vlek, P.L., Le, Q.B. and Tamene, L., 2010. Assessment of land 

degradation, it possible causes and threat to food security in Sub-Saharan 



 

99 

     

Africa. Food Security and Soil Quality. CRC Press, Boca Raton, Florida, 

pp.57-86. 

127. Walker, A.P., Beckerman, A.P., Gu, L., Kattge, J., Cernusak, L.A., 

Domingues, T.F., Scales, J.C., Wohlfahrt, G., Wullschleger, S.D. and 

Woodward, F.I., 2014. The relationship of leaf photosynthetic traits–Vcmax 

and Jmax–to leaf nitrogen, leaf phosphorus, and specific leaf area: a 

meta‐analysis and modeling study. Ecology and evolution, 4(16), pp.3218-

3235. 

128. Wang, Z., Zhao, C., Yu, L., Zhou, W. and Li, K., 2009. Regional 

metabolic changes in the hippocampus and posterior cingulate area 

detected with 3-Tesla magnetic resonance spectroscopy in patients with 

mild cognitive impairment and Alzheimer disease. Acta Radiologica, 50(3), 

pp.312-319. 

129. Wessels, K.J., Mathieu, R., Erasmus, B.F.N., Asner, G.P., Smit, 

I.P.J., Van Aardt, J.A.N., Main, R., Fisher, J., Marais, W., Kennedy-Bowdoin, 

T., and Knapp, D.E., 2011. Impact of communal land use and conservation 

on woody vegetation structure in the Lowveld savannas of South 

Africa. Forest Ecology and Management, 261(1), pp.19-29. 

130. Wold, S., Trygg, J., Berglund, A. and Antti, H., 2001. Some recent 

developments in PLS modeling. Chemometrics and intelligent laboratory 

systems, 58(2), pp.131-150. 

131. Wright, A.L., Hons, F.M. and Rouquette Jr, F.M., 2004. Long-term 

management impacts on soil carbon and nitrogen dynamics of grazed 

bermudagrass pastures. Soil Biology and Biochemistry, 36(11), pp.1809-

1816. 

132. Zhang, L., Zhang, L., Tao, D., Huang, X. and Du, B., 2015. 

Compression of hyperspectral remote sensing images by tensor 

approach. Neurocomputing, 147, pp.358-363. 

 



 

1 

   

  

1 



 

2 

     

2 

 


