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ABSTRACT 

Grass quality as measured by leaf nitrogen (P) and phosphorus (N) plays a major role in 

understanding the distribution, densities and population dynamics of herbivores including 

livestock and wild herbivores. The aim of this study was to estimate and monitor grass N and 

P using Sentinel-2 derived spectral information and vegetation indices during the wet season 

for the selected period between 2017 and 2022 spanning a savanna ecosystem in the Kruger 

National Park area. Sentinel-2 satellite images were used as they provide images with high 

spatial, spectral and temporal resolutions. Field data were used where grass samples were 

collected, and spectral reflectance measurements (400 and 2350 nm) were undertaken. Three 

analysis scenarios were employed to estimate grass N and P in conjunction with classical 

regression and machine learning techniques. The scenarios included: (i) specific spectral bands, 

(ii) conventional and red edge-based vegetation indices (VIs) and (iii) a combination of VIs 

and spectral bands using the Stepwise Multiple Linear Regression (SMLR), Random Forest 

(RF) and Support Vector Machine (SVM) statistical models. Results showed that SMLR 

yielded the highest estimation accuracy based on a combination of bands and VIs for leaf N 

(i.e. Coefficient of determination (R2) = 0.69 and Root Mean Square Error (RMSE) = 0.14%, 

Relative Root Mean Square Error (RRMSE) = 6.73%, Mean Absolute Error (MAE) = 0.11) 

and for P based on a combination of VIs only (i.e. R2= 0.40 and RMSE= 0.04%, RRMSE = 

34.322% and MAE = 0.04). This study confirms that the combination of red edge bands and 

VIs of Sentinel-2 data are crucial for accurately estimating biochemical concentrations in a 

savanna ecosystem. This study has significant implications for mapping and monitoring grass 

quality over large spatial extents. 
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CHAPTER 1: INTRODUCTION 

1.1. Background 

Terrestrial ecosystems are land-based population of species whose role is to sustain life and 

fuels ecosystem processes. Nitrogen (N) and phosphorus (P) are nutrients that are known to 

limit the growth of plants in terrestrial ecosystems (Güsewell, 2004). For example, leaf N 

concentration plays a key role in the physiological processes   of the leaf such as photosynthesis, 

transpiration and respiration (Wang et al. 2016). Furthermore, it is important for 

understanding vegetation health and quality as it also relates to the protein content (Wang et 

al. 2004), which is a very important nutrient required by herbivores (Prins and Beekman, 1989). 

Phosphorus is a non-renewable resource that plays a major role in crop production        and plant 

growth (Shen et al. 2011). It also plays a key role in different metabolic processes in plants 

such as respiration, protein formation, energy storage, photosynthesis and nutrient movement 

within the plant (Shen et al. 2011; Siedliska et al. 2021). 

 

Livestock production is the dominating primary activity in most rural areas and it is dependent 

on    grass quality (Shackleton et al. 2002). Several studies postulated that high-nutrient areas 

such as sodic sites, termite mount, valleys, underneath trees, and bottom lands have higher 

herbivore densities (Ferwerda et al. 2005; Grant and Scholes, 2006). Other factors which 

affect the distribution of herbivores include biomass availability (Bergman et al. 2001), soil 

and foliar nutrient status (McNoughton, 1990), the distance from water sources as well as 

threats to predation (Redfern et al. 2003). Consequently,  leaf N plays a major role in planning 

and managing grazing areas by determining the carrying capacity, spatial zoning and grazing 

camps (Ramoelo et al. 2015). Nutrient-rich areas are characterized by the presence of large 

herbivores, and understanding the factors that affect the distribution of these animals will 

assist in implementing conservation strategies that will sustainably manage the ecosystems 

(Grant and Scholes, 2006). 

 

There is a need to sustainably manage grazing camps to ensure an increase in livestock 

production and the development of rural communities (Ramoelo et al. 2015). This can be 

done by predicting the total number of animals that can be supported by the area using 
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management tools such as stocking rate and carrying capacity and developing monitoring 

programs for nutrient rich areas (Grant and Scholes, 2006). However, very few studies were 

carried out on understanding the factors that lead to spatial distribution of herbivores, because 

of the unavailability of the spatially explicit resource and quality indicators. Traditional 

methods of estimating grass nutrients were previously carried out by sampling leaves, drying 

them and weighing them to calculate the concentration of leaf N (Clevers et al. 2007; Mutanga 

et al. 2015). This is however a tedious, costly and time-consuming process at large spatial 

scales (Clevers et al. 2007).  

 

Recent studies focus on relating remotely sensed data with vegetation leaf chemistry in 

predicting grass nutrients using the indices derived from a combination of bands from the red 

edge and infrared part of the electromagnetic spectrum (Ferwerda et al. 2005). Hyperspectral 

remote sensing has been instrumental in estimating Leaf N and P because of the full spectrum 

and the red edge inflection point (REP) (Knox et al. 2011; Tian et al. 2011). The REP is known   

to relate to chlorophyll and N (Knox et al. 2011). Today, satellites such as Sentinel-2 carry 

on-board a multispectral instrument that has the red edge band (among other bands) known 

to   be critical for mapping chlorophyll and N (Wang et al. 2016). This satellite provides 

remotely-sensed data that is crucial for a wide range of applications related to e.g., land 

management, disaster control and agricultural purposes (food security) (Aschbacher and 

Milagro-Pérez, 2012). Statistical methods and machine learning techniques have been 

previously used to estimate leaf N and P (Curran, 1989; Mutanga et al. 2012; Manyashi, 2015; 

Ramoelo et al. 2015). Machine learning techniques have been widely used in remote sensing 

to estimate grass quality, however is it limited by the availability of ground truth data to reach 

its full potential. This is mainly because ground truth data collection is tedious, time 

consuming and has financial implications (Moghimi et al. 2020).   

 

Accurate estimations of grass biomass offer crucial information about the functioning and 

productivity of rangelands (Cho et al. 2007; Ramoelo et al. 2015). Spectral bands of Sentinel-

2 satellite imagery, traditional VIs and red edge based VIs were used to test the applicability 

of estimating the concentration of grass N and P. This study intends to use both statistical and 

machine learning approaches to predict leaf N and P. Furthermore, employed Sentinel-2 



 
 

3 
 
 

 

 

satellite imagery to map the distribution of these two variables over time, and such 

information is limited. 

 

1.2. Problem Statement 

Leaf N is an important factor that relates to protein content and it is an important nutrient 

required for herbivores, it is postulated that leaf nutrient affects the feeding and movement of 

herbivores (La Pierre  and Smith, 2016). It is therefore important to map the spatial distribution 

of leaf N content to understand the feeding patterns of animals. Estimating leaf N 

concentration could assist in understanding the feeding and movement patterns of herbivores, 

which will contribute greatly to the environmental management of the rangeland. There are 

numerous multispectral satellite remote sensing data sets that have been used to estimate leaf 

N concentration, notwithstanding their diverse inherent limitations such as the absence of a 

red-edge band (Cho and Skidmore, 2006). 

 

On the other hand, P is crucial for crop production and plant growth, it also plays a key role 

in different metabolic processes in plants such as respiration, protein formation, energy 

storage, photosynthesis and nutrient movement within the plant (Shen et al. 2011; Siedliska 

et al. 2021). Poor management of P is detrimental to plants and the environment with cost 

implications (Siedliska et al. 2021). Appropriate P management plays a major role in precision 

agriculture (Siedliska et al. 2021). The lack of P negatively affects the production of 

chlorophyll in plants (Choi and Lee, 2012). It is therefore important to manage the distribution 

of P. For example, Siedliska et al. (2021) conducted a study where P content was measured 

using visual inspection and chemical analysis   but these methods are somewhat tedious, costly 

and time-consuming. 

 

Previously mapping grass nutrients have been a challenge due to the lack of freely available 

high spatio-temporal resolution satellite data that incorporate the red edge band(s), known to 

be sensitive to chlorophyll and N (Ramoelo et al. 2011). However, the launch of satellite 

sensors such      as RapidEye, SumbandilaSat and Multispectral Instrument (MSI) on-board 

Sentinel-2 allows for the regional mapping of leaf N (Ramoelo et al. 2011; Chabalala et al. 
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2020). Hyperspectral remote sensing provides   a great tool for predicting leaf N due to the 

presence of red-edge bands (700 – 750 nm). Few studies have shown the potential of red edge 

bands in estimating leaf N at      a large scale (Haung et al. 2004; Cho and Skidmore, 2006). 

Sentinel-2 satellite is a new addition to the already existing remote sensing satellites and in 

particular, one of the new generations of terrestrial observing satellites which consist of the 

red edge spectral bands (705 nm and 740 nm) (Baillarin et al. 2012). Therefore, this study 

evaluated the use of various red edge based indices, and spectral bands to estimate grass N 

and P during the wet season spanning the period 2017 and 2022 over the savanna ecosystem 

in Kruger National Park (KNP) area. Furthermore, conventional statistical and machine 

learning techniques were tested in estimating grass N and P and to establish whether the 

spectral bands and vegetation indices (VIs) found to be critical in estimating grass N, are 

similar to those of grass P. 

 

1.3. Research Aim and Objectives 

The aim of this study was to estimate and monitor grass N and P using Sentinel-2 derived 

spectral information and vegetation indices during the wet season for the selected period 

between 2017 and 2022 spanning a savanna ecosystem (KNP). 

The objectives of this research study were to:  

(1) Estimate grass N and P using Sentinel-2 spectral bands coupled with statistical and machine 

learning methods, 

 (2) Estimate grass N and P using Sentinel-2 derived traditional and red-edge based vegetation 

indices coupled with statistical and machine learning methods, 

(3) Estimate grass N and P using a combination of spectral bands and vegetation indices 

coupled with statistical and machine learning methods, and  

(4) Use the optimal grass N and P estimation models to map and monitor the respective spatial 

distributions of these grass nutrients during the wet season of the period 2017 and 2022 over 

the savanna ecosystem in KNP.   
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CHAPTER 2: LITERATURE REVIEW 

2.1.The importance of leaf N and P and the impact on the feeding and movement of herbivores 

Nitrogen (N) plays a key role in the physiological processes of the leaf such as respiration, 

photosynthesis and transpiration (Wang et al. 2016). It is linked to the chlorophyll content as 

well as the net primary productivity. Nitrogen is one of the nutrients in plants that affect the 

ecosystem processes such as grazing behavior (Ferwerda   et al. 2005). The disadvantage of 

leaf N is that its excess limits the growth of the plant (Tian et al. 2011; Ollinger and Smith, 

2005). It is therefore important to manage the amount of N. The combination of chlorophyll 

and leaf area index (LAI) provides a good estimation for the canopy N concentration (Baret et 

al. 2007). Several       studies have determined leaf N concentration in forests using satellite data 

(Coops et al. 2003, Chabalala et al. 2020). 

 

Phosphorus is a non-renewable resource that plays a major role in crop yield (Shen et al. 2011).  

Phosphorus is crucial for crop production and plant growth, it also plays a key role in different 

metabolic processes in plants such as respiration, protein formation, energy storage, 

photosynthesis and nutrient movement within the plant (Shen et al. 2011; Siedliska et al. 

2021). Poor management of P fertilizer is detrimental to plants and the environment with cost 

implications (Siedliska et al. 2021). It was previously shown that  the relationship between P 

content and chlorophyll is inversely proportional (Siedliska et al. 2021). 

 

The shift in plant tissue chemistry affects the availability of nutrients as a result herbivores are 

unable to meet their nutritional needs (La Pierre and Smith, 2016). This therefore affects the 

feeding of secondary consumers. A study conducted by Ben-Shahar and Coe (1992) showed 

that areas with a high diversity of grass have high nutrient levels. 

 

2.2.The application of remote sensing in estimating grass nutrients 

Remote sensing provides as opportunity to observe objects on the earth's surface without being 

in physical contact with them (Hall et al. 2002). These objects are observed using satellites 

or aircraft-mounted sensors which record the amount of electromagnetic energy reflected by 

the surface of the objects. Traditional methods of predicting leaf N are tedious and costly. 
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Remote sensing, therefore, serves as the most  efficient way to predict leaf N over large scales 

(Ramoelo et al. 2015). 

 

The ability of the sensor to detect these objects is dependent on the sensor’s spectral, spatial, 

temporal and radiometric resolution. The size and number of spectral bands a sensor 

possesses across the electromagnetic spectrum affect the spectral resolution (Clark et al. 

1990). By calculating the smallest object or feature that the sensor can detect at that specific 

place, spatial resolution establishes the sensor's position in relation to distance from the object 

or area of interest (Hall et al. 2002). Temporal resolution, commonly referred to as the revisit 

time, is the length of time it takes a sensor to collect data from a single item (Clark et al. 

1990). A characteristic of radiometric resolution is the number of divisions that a sensor can 

divide or separate data derived from reflected irradiation, the higher the divisions the better 

the sensors (King, 1992). Remote sensing satellite tools are improved yearly to improve the 

above-mentioned four resolutions (Hall et al. 2002). Remote sensing plays a critical role in 

assessing the condition of the vegetation over large spatial scales and aids in analyzing 

ecological issues over the areas (Serrano et al. 2002). Optical remote sensing techniques 

provide an approach to studying different phenomena on the earth through the acquisition of 

images at different spatial and temporal scales (Yu et al. 2014). 

 

2.2.1.Hyperspectral sensors 

Hyperspectral sensors are extremely spectrally advanced as they cover visible, near-infrared 

(IR) and short-wave infrared (SWIR) in many narrowly defined spectral channels of the 

electromagnetic spectrum (Campbell, 2007; Oldeland et al. 2010). Hyperspectral sensors 

provide 200 or more spectral channels (Campbell, 2007). 

 

The ability of hyperspectral data to detect small changes in the biochemical content of  the 

vegetation gives it an advantage in estimating foliar N concentration (Abdel- Rahman et al. 

2013). Hyperspectral sensors can detect the narrow absorption features    of N. This is due to the 

narrow spectral band information which provides an effective method for estimating leaf N 

(Wang et al. 2016). For example, Cho and Skidmore (2006) reported that WorldView-2 and 



 
 

7 
 
 

 

 

Rapid Eye are amongst the first satellite sensors with a red edge band and they have been 

used to estimate leaf N due to the   relationship of a red edge band with N and chlorophyll. A 

study conducted by Chabalala et al. (2020) showed that the red edge bands and VIs derived from 

Sentinel-2 provides a greater potential for predicting leaf N as compared to Rapid Eye. 

 

Phosphorus content can be predicted indirectly by predicting the content of a substance that 

relates to P such as chlorophyll, alternately P content can be estimated by combining     different 

spectral bands (Siedliska et al. 2021). Hyperspectral remote sensing allows for the collection 

of canopy images which provides reflectance information that is crucial for the estimation of 

P in plants (Siedliska et al. 2021). 

 

Studies have shown success in using hyperspectral datasets to estimate leaf N using  VIs, full 

spectral, absorption features and the integrated method (Huang   et al. 2004; Ramoelo et al. 

2011; Ramoelo et al. 2013). Siedliska et al. (2021) employed hyperspectral imagery to detect 

leaf P in crops. Previous studies conducted     by Christensen et al. (2004) showed high accuracy 

(74%) in predicting P content based on spectral canopy reflectance. 

 

The drawback of using hyperspectral data is that it provides imagery that is redundant due to 

the large number of bands that are adjacent to each other, and therefore there  is a need to 

select only the relevant spectral bands (Cho et al. 2010). In order to reduce the redundancy, 

principal component analysis (PCA) can be used (Kalacska et al. 2007) and feature selection 

techniques (Jackson, 2005). Another disadvantage of using hyperspectral data is that it is 

expensive and available on a small scale (Goetz, 2009; Knox et al. 2011). The different 

technologies that have been used to estimate nutrients in plants from are explained below: 

 

2.2.1.1.Estimating grass nutrients using hyperspectral vegetation indices 

The vegetation index (VI) (simple ratio) describes the greenness in vegetation and hence the 

indicating vegetation health (Tucker, 1979). Vegetation indices provide the easiest way of 

estimating leaf biochemicals including N content (Wang et al. 2016). Chlorophyll and N have 
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been correlated among different species in previous studies (Evans, 1989; Homolova et al. 

2013; Wang et al. 2015). As a result, vegetation indices used for chlorophyll and are also used 

to estimate N concentration (Wang et al. 2016). 

 

Hyperspectral remote sensing has been instrumental in estimating leaf N because of the full 

spectrum and also because of the red edge infliction point (REP) (Tian et al. 2011). A study 

conducted by Haboudane et al. (2002) employed the ratio TCARI/OSAVI to predict 

chlorophyll content using a hyperspectral Compact Airborne Spectrographic Imager (CASI). 

The Normalized Difference Vegetation Index (NDVI) represents the ratio between NIR and 

the red part of the electromagnetic spectrum (Meer et al. 2001). Several studies used     

hyperspectral data to estimate biochemical content (Curran et al. 2001, Mutanga et al. 2004). 

Tian et al. (2011) employed Hyperion image hyperspectral to estimate leaf N concentration 

using VIs. VIs have been proven to be successful in estimating vegetation parameters 

(Ramoelo et al. 2012; Manyashi, 2015). However, conventional VIs such as NDVI or simple 

ratio uses the visible and near-IR red bands; they do not include the SWIR and the red-edge 

bands (Ramoelo et al. 2015). 

 

2.2.1.2.Estimating grass nutrients using absorption features 

There are three main sections on the electromagnetic spectrum that relate to the estimation of 

chlorophyll and N content, namely the red edge (700-750 nm), red (630- 690 nm) and the 

green band (500-580 nm) (Tian et al. 2011). The electromagnetic spectrum consists of 

absorption features that are associated with physical bond vibrations or electron transition of 

certain biochemical content (Darvishzadeh et al. 2008). For example, the red edge region of 

the electromagnetic spectrum is characterized by the concentration of chlorophyll (Lamb et 

al. 2002). Knox et al. (2010) showed that the following wavelengths in Table 1 are associated 

with N. 

 

Table 1 Absorption features that have been identified in previous studies (Curran, 1992, Cho 

and Skidmore, 2006, Mutanga et al. 2004, Knox et al. 2010.  
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Wavelength (nm) Bond variations Biochemical 

430 electron transition chl a 

460 electron transition chl b 

640 electron transition chl b 

660 electron transition chl a 

910a C–H stretch, third overtone protein 

1020a C–H stretch, second overtone protein 

1420 C–H stretch, C–H deformation protein, lignin 

1510a N–H stretch, first overtone protein, nitrogen 

1520a  protein 

1690a C–H stretch, first overtone protein, nitrogen, lignin, 

starch 

1730a C–H stretch protein, cellulose, lignin 

1940 O–H stretch, O–H deformation protein, nitrogen, lignin, 

starch, water, cellulose 

1950 O–H stretch, O–H deformation protein, nitrogen, lignin, 

starch, water, cellulose 

1960 O–H stretch, O–H bend protein, sugar, starch 

1980a N–H asymmetry protein, lignin 

2060a N–H bend, N–H stretch, second 

overtone 

protein, nitrogen 

2130a N–H stretch protein 

2180a N–H bend, second overtone, C–H 

stretch, C–O stretch, C–N stretch 

protein, nitrogen 
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2200a  protein 

2240a C–H stretch protein 

2270 C–H stretch, O–H stretch, CH2 bend, 

CH2 stretch 

protein, nitrogen, lignin, 

starch, sugar, cellulose 

2290a  protein 

2300a N–H bend, C–O stretch, C–H bend, 

second overtone 

protein, nitrogen, cellulose 

2350a CH2 bend, second overtone, C–H 

deformation, second overtone 

protein, nitrogen, cellulose 

aWavelength shown to relate to nitrogen in fresh material (Cho and Skidmore, 2006, Mutanga, 

2004, Huang et al. 2004) 

 

The concentration of N is correlated with chlorophyll content, consequently   the high 

concentration of N in plants results in chlorosis (yellowing) which is characteristic of the lack 

of chlorophyll (Lamb et al. 2002). Nitrogen concentration can be estimated using reflectance 

spectroscopy since reflectance in the visible near-IR is influenced by the pigmentation of 

chlorophyll and the leaf structure (Lamb  et al. 2002). Ramoelo et al. (2011) used the known 

absorption features for chlorophyll,  protein and N to predict leaf N. The advantage of using 

this method is that it avoids redundancy in the data (Ramoelo et al. 2012). Mapping grass 

nutrients using NIR and  SWIR may not yield accurate results due to water absorption (Gao 

and Goetz, 1994). 

 

2.2.2. Multispectral sensors 

2.2.2.1.  Estimating grass nutrients using specific bands  

Fernandez-Habas et al. (2022) showed the importance of bands located in the red edge and 

NIR (700, 710, 1160 and 1170 nm) in predicting grass nutrients, whereas the bands from the 

SWIR showed low stability. Previous studies have shown that the 440, 445, 730 and 930 nm 

in the VNIR region play a crucial role in predicting phosphorus (Osborne et al. 2002; Knox 
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et al. 2011). A study conducted by Singh et al. (2017) investigated known absorption 

wavebands for detecting grassland nutrients     in KwaZulu-Natal and the results showed that 

the spectral bands located within the blue, red and SWIR play a crucial role in determining 

forage quality. 

 

2.2.2.2. Estimating grass nutrient using conventional and red edge based indices 

Vegetation indices are commonly used as the predictors for grass variables in a statistical 

way (Clevers et al. 2007). Conventional and red edge based vegetation indices such as 

the NDVI and simple ratio (SR) can be used to estimate the concentration of N in the 

grass (Ramoelo et al. 2013; Mutanga et al. 2015). NDVI depicts  areas of high photosynthetic 

activity and measures the greenness on the surface of the earth (Lück et al. 2010). Equation 1 

below shows the equation for NDVI. The NDVI is the commonly used index, where the red 

reflectance and the NIR reflectance are used to estimate the concentration of N, chlorophyll 

as well as other crop variables (Hansen and Schjoerring, 2003). 

𝑁𝐷𝑉𝐼 =
𝑝𝑁𝐼𝑅−𝑝𝑅𝑒𝑑 

𝑝𝑁𝐼𝑅+𝑝𝑅𝑒𝑑
                                                 (Equation 1) (Campbell, 2007) 

Where: 𝑝𝑁𝐼𝑅 is the reflectance value in the near-IR on the EMS and 𝑝𝑅𝑒𝑑 is the reflectance 

value in the red region of the electromagnetic spectrum. 

NDVI values range from -1 to +1, the values below 0.1 correspond to water bodies whereas 

higher values correspond to vegetation (Menses-Tovar, 2011). 

This vegetation index is often used because it utilizes the red-edge effect to reduce 

background reflectance (Haung et al. 2004). The drawback of this method is that it only 

accommodates the NIR and the red bands which are only sensitive to leaf pigmentation 

(Haung et al. 2004). Ramoelo et al. (2014) also used several band combinations of NDVI 

which corresponded to a different combination of SR, the vegetation indices were then 

correlated to leaf N. The disadvantage of using NDVI is that it saturates at high biomass and 

it is prone to soil background effects (Bausch, 1993). NDVI uses only two bands of 

hyperspectral data and this could be a limitation to the amount of information that can be 

extracted (Cho et al. 2007). 
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Normalized Difference Nitrogen Index (NDNI) is calculated from the SWIR, it has a strong 

correlation with N concentration and therefore indicates N content (Yu et al. 2014). NDNI 

values range from 0-1 and the green vegetation NDNI is 0.02-0.15 (Yu et al. 2014). The 

normalized difference Nitrogen index (NDNI) was used at shrub ecosystems to estimate foliar 

N  (Serrano et al. 2002).  Ferwerda    et al. (2005) conducted a study of comparing different band 

combinations across 300  to 2500 nm of normalized ratio indices (NRI) shown by equation 2 

below.   

                                                𝑁𝑅𝐼 =  
𝑅𝑏𝑎𝑛𝑑1−𝑅𝑏𝑎𝑛𝑑2

𝑅𝑏𝑎𝑛𝑑1+𝑅𝑏𝑎𝑛𝑑2
                                            (Equation 2) 

where  the wavelength of band 1 is greater than band 2, correlation of N and NIR was proven 

to be high when band two was chosen between 500 and 750 nm (Ferwerda et al. 2005). 

 

Very often, vegetation indices combine near-IR and visible spectral bands. The disadvantage 

of this combination is that these indices have less sensitivity due to the   strong absorption by 

chlorophyll (Clevers and Gitelson, 2013). To avoid this problem, the red edge region is used 

to reduce the saturation effect as there is lower absorption of chlorophyll in the red edge. Red 

edge based NDVIs has been proven to show high accuracy in estimating foliar N as compared 

to conventional NDVIs derived from the visible and NIR (Zengeya et al. 2013). 

 

The estimation of leaf N by using the red edge band and computing vegetation indices   has been 

widely used during the wet season (Cho and Skidmore, 2006). A study conducted    by Ramoelo 

et al. (2015) on monitoring grass nutrients using WorldView-2 showed that red-edge band 

indices play a pivotal role in predicting leaf N. A study focusing on the potential of sentinel-2 

and sentinel-3 in estimating crop and grass chlorophyll and  N content was conducted by 

Clevers and Gitelson (2013). This study confirmed the reliability of using the red-edge bands 

of Sentinel-2 for agricultural applications. 

 

There is a large number of indices that are used to estimate chlorophyll, however only a 

limited number of indices are specifically for estimating N concentration (Wang et al. 2016). 

Chlorophyll determines the amount of reflection in the visible region of the    electromagnetic 
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spectrum and therefore allows for the estimation of the chlorophyll and N content (Clevers 

and Gitelson, 2013). 

Horler et al. (1983) were the first to show the significance of the REP in identifying plant 

stress; the REP was then used to estimate chlorophyll and N concentration. Equation 3 below 

shows the REP which is the maximum slope in the red-near IR region and has  been 

successfully used to estimate grass biomass (Mutanga and Skidmore, 2004).  

                                    (𝑅𝐸𝑃 = 705 + 35 
(R665+R783)/2−R705

R740−R705 
)                      (Equation 3) 

Where R665 is the red band with a wavelength of 665nm whereas R783, R705 and R740 are 

is the red edge bands at wavelengths of 783nm, 705nm and 740nm respectively.  

 

REP index was also studied for estimating chlorophyll content (Guyot and Baret, 1988). The 

CIred-edge and CIgreen index was regarded as the best for estimating both the chlorophyll and N 

content (Clevers and Gitelson, 2013). In contrast to the normalized NDVI, the REP is less 

likely to be affected by different soil and atmospheric conditions (Cho and Skidmore, 2006; 

Clevers et al. 2001). 

 

2.3. Statistical and machine learning techniques for estimating grass nutrients 

2.3.1. Univariate (simple linear regression) 

Simple linear regression (SLR) (shown by equation 4 below) is a statistical method that is 

used to study the relationship between two variables (x and y), where x is an independent 

(predictor) variable and y is a dependent (response) variable (Dowdy et al. 2011). If there is 

a relationship between x and y, a model can be developed to predict new observations   of y 

from x (Dowdy et al. 2011, He et al. 2021).      

                                                𝑦 = 𝛽0 + 𝛽1𝑥1                                                        (Equation 4) 

Where β0 is the y intercept and β1 is the slope.  

Sudalaimuthu and Sudalayandi (2019) successfully used a linear regression model to  predict 

ground elevation measurements from satellite elevation using Cartosat-1 imagery. Hihi et al. 

(2019) also employed linear regression to predict spatial differences in soil salinity using 
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multispectral Sentinel-2 satellite imagery. This analytical technique has the following 

advantages; it is relatively easy to understand, use and interpret. For data samples where the 

absolute value of the Pearson correlation coefficient, r is high (further from zero, and closer to 

1 or -1) linear regression      tends to have predictive results with high accuracy (Nicolic et al. 

2012, Sudalaimuthu                    and Sudalayandi, 2019). Some of the disadvantages are; selecting the 

correct feature to yield optimum results is not always easy, and since it uses a single 

dependent variable, some problems may require parameterization, which is also not always 

easy (Dowdy et al. 2011, Kuchibhotla et al. 2019). 

 

2.3.2. Multivariate regression 

2.3.2.1 Stepwise Multiple Linear Regression (SMLR) 

Stepwise Multiple Linear Regression (SMLR) is a generalization of Simple Linear Regression 

into multiple or higher dimensional spaces (Kuchibhotla, et al. 2019, He et al. 2021). It 

generalizes Equation 5 as: 

                                                𝑦 = 𝛽0 + 𝛽1𝑥1  + 𝛽2𝑥2 + ⋯ +  𝛽𝑛𝑥𝑛                         (Equation 5) 

Where у is the response variable, β0 is the constant variable and β1, β2 and βn are the coefficient 

of the control variables, x1, x2 and xn are the controlled variables. 

This SMLR technique is commonly used in remote sensing for predicting grass nutrients 

(Clevers et al. 2007, Ramoelo, 2012, Askari et al. 2019). For high dimensional data, a feature 

selection process is usually essential, which allows for the selection of the optimum set of 

spectral bands for predicting vegetation variables (Clevers et al. 2007). Variable selection 

was previously performed using the lowest Akaike Information Criterion (AIC) (Sakamoto 

et al. 1986). ( Empirical techniques have been widely used in deriving the variables of 

vegetation such as N from remote sensing (Wang et al. 2016). Kokaly and  Clark (1999) and 

Serrano et al. (2002) used SMLR, while  Martin et al. (2008) used partial least squares 

regression (PSLR) to determine leaf biochemistry. 

 

Several studies have used the SMLR statistical method to estimate leaf N (Johnson et al. 

1994; Martin and Aber, 1997; Ramoelo et al. 2012). The problem of the number of wavebands 

being greater than the number of samples (multi-collinearity) is likely to be encountered when 
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using multiple regression with hyperspectral data (De Jong et al. 2003). The principal 

component analysis method (PCA) can be employed to reduce multi-collinearity by 

decomposing independent variables into uncorrelated components (Jain et al. 2007). 

Alternatively, the PLSR can    also be used to avoid multi-collinearity because it is a full-

spectrum method in contrast  to SMLR (Kooistra et al. 2004; Darvishzadeh et al. 2008). 

 

2.3.2.2. Support Vector Machines (SVMs) 

The SVM requires a labeled training dataset with the correct categories (Steeb, 2015). New 

examples are classified into the identified data classes, making SVM classification a non-

probabilistic task. Previously it has been shown that datasets of different classes tend to 

overlap, as a result, non-linear decision boundaries are used to map datasets into a three-

dimensional space, called the feature space (Wang, 2005). This adjustment on the data vectors 

is usually applied, lifting each into a higher  dimensional space N+1, which often leads to 

better separability (Steeb 2015). 

 

A study conducted by Clevers et al. (2007) employed SVM band shaving to select the best 

spectral bands as predictors in estimating grassland biomass using hyperspectral    data. Hsu and 

Lin (2002) have shown that the directed acyclic graph SVM and the one-against-one 

procedure are suitable for multiclass classification. Another study conducted by Mashao 

(2003) compared the use of gaussian mixture modes (GMM) and SVM in response to spectral 

compression in the feature sets and it was evident that SVM performs better. Pal et al. (2005) 

compared SVM, maximum likelihood and ANNs in classifying multispectral and 

hyperspectral data, the results have shown that SVM yields a higher accuracy with small 

training datasets as compared to other classification methods. The advantage of using SVM 

is that it can easily classify data with a high number of dimensions. Moreover, it is relatively 

easy to implement and interpret (Wang, 2005). The disadvantages of using SVM involve low-

performance accuracy on larger  datasets and the inability to operate with classes that are not 

distinct or labeled (Mashao, 2003). 

 

2.3.2.3. Random Forest (RF) 
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The RF algorithm is an ensemble learning algorithm built using multiple decision trees, each 

trained on a subset of the feature space with a randomized selection to maximize     variance, and 

the bagging technique for aggregation of solutions per subtree for optimal performance (Ho, 

1998). It has shown great success over traditional decision trees, with reduced overfitting and 

an ability to train on high dimensional data with improved accuracy (Ho, 1998, Belgiu and 

Dragut, 2016). Given a dataset D with feature vectors xi, for each feature vector, a subset of 

feature is used, selected at random, to populate a decision tree classifier. Classification then 

follows the traditional decision tree algorithm for each partial or subtree. At the end of  the 

training time, the results of each training subtree or partial tree are aggregated, and the 

aggregation which yields maximal accuracy is then selected. The randomized selection allows 

for a degree of parallel computation on the feature space by using multiple decision trees for 

the same feature vector, however, with a possible overlap of features per tree (Breiman, 2001, 

Belgiu and Dragut, 2016). 

 

For classification problems, the dataset is split into training and validation sets, with the 

training set usually larger than the validation set. The more frequent ratio is a 70:30 split for 

training and validation, respectively. However, changing this ratio is also a part of algorithm 

tuning, which helps with convergence to better results (Belgiu and Dragut, 2016). Random 

Forest can also be used for regression problems, where the initial computation is similar to 

that of classification, and the aggregation is then tweaked to  return a number or aggregate 

with the least error based on the Euclidean error metric used, usually RMSE. However, 

Random Forest has a shortfall in performing unbounded or extrapolation regression, which 

makes it less effective for extrapolating  since it can only compute into the range present in 

the feature space (Ho, 1998, Breiman, 2001, Belgiu and Dragut, 2016). 

 

Together with other machine learning techniques, Random Forest has been used for the 

prediction of grass nutrients such as crude protein, leaf N and P (Skidmore et al. 2010; Knox 

et al. 2011; Fernández-Habas et al. 2022). It has also been found to be robust when predicting 

vegetation parameters (Kokaly et al. 2009). Other literature has suggested that larger feature 

vectors such as hyperspectral bands tend to have better classification accuracy with this 

algorithm when there are fewer classes (Breiman, 2001). 
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Random Forest has been used for monitoring leaf N and above-ground biomass using 

WorldView-2 satellite imagery (Ramoelo et al. 2015). Previous studies have shown that the 

RF regression model has a potential for predicting grass nutrients using hyperspectral data 

(Addel-Rahman et al. 2013; Punalekar et al. 2021; Fernández- Habas et al. 2022). Adam et 

al. (2012) also indicated that the RF model was more robust in terms of estimating vegetation 

parameters as compared to other parametric   regression models. Although machine learning 

techniques have been widely used in remote sensing to estimate grass quality, is it limited by 

the availability of ground truth data to reach its full potential this is mainly because ground 

truth data collection is tedious, time consuming and has financial implications (Adjorlolo et 

al. 2012; Moghimi et al. 2020).   
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CHAPTER 3: MATERIALS AND METHODS 

3.1. Study Area 

3.1.1. Motivation for selecting study location 

The KNP (Figure 1) located in the Savanna ecosystem, the area was selected for this study 

because it is very rich in biodiversity. Considering the various factors that affect the distribution 

of grass N and P, this location serves as a good example for testing whether the Sentinel-2 

imagery can successfully estimate the concentration of grass N and P.  

3.1.2. Description of study area 

   

Figure 1 The study area in the Savanna ecosystem 

KNP is a protected area that is geographically situated at 24° 00' 41'' S and 31° 29' 07'' in the 
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eastern parts of Mpumalanga and Limpopo (Foxcroft et al. 2008). It is amongst the largest 

game reserves in Africa and is known for being rich in biodiversity. It was    established in 1898 

and covers an area of about 20 000 square kilometers (Foxcroft et al. 2008). The park is in the 

Lowveld region and forms part of the semi-arid Savanna  biome as depicted in Figure 1 above 

(Low and Rabelo, 1998). 

 

The geology of the park consists of granite rocks in the western part of the park and basaltic 

rocks in the eastern part of the park (Grant and Scholes, 2006). The Olifants  River divides 

the park into North and South. The southern part is more humid with a mean annual rainfall 

of 500 – 700 mm in contrast to the northern part which is dry with a mean annual rainfall of 

300 - 500 mm (Grant and Scholes, 2006). The park experiences humid summer days with hot 

temperatures, and the rainy season is from September until May (Foxcroft et al. 2008). 

 

3.2. Data collection 

3.2.1. Field data collection  

I. Sample collection and spectral measurements 

Several studies (Skidmore et al. 2010; Ramoelo et al. 2012 and Ramoelo et al. 2015)   have 

shown that the best period to estimate grass nutrients is during peak productivity.    Hence, the 

field spectral measurements were collected by Ramoelo et al. (2015) during peak productivity 

(March/April 2009). Eight sample sites were selected across three different land uses, 

henceforth, L denotes land use (Table 2), which are; KNP (L1 gabbro, L2 granite), Sabi-

Sands Game Reserve (SGR) (L3 granite, L4 gabbro) and the communal lands (L5-6 gabbro, 

L7 -8 granite, at Bushbuckridge. 1:250 000 geology maps and SPOT 5 images were used to 

set the boundaries of the total area (35 000 ha) of the sample sites (Wessels et al. 2011). A 

line transects sampling design (Fewster et al. 2005) was employed to collect the field data in 

all the sample sites, however, due to the limitation of access to L3 this design was not applied 

to L3. 49 plots (30 m × 30 m) were created following a combination of the systematic and 

purposive method (Ramoelo et al. 2015). The plots were separated by a distance of 500 m to 

1000 m depending on the homogeneity and the ease of access to the area. In each plot, three to 

four (0.5 m x 0.5 m) sub-plots were randomly created. The Leica®’s GS20 differential 
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geographic positioning System (DGPS) was used to capture the sample locations (Ramoelo 

et al. 2015). The DGPS points were then imported to Leica’s GeoPro software for post-

processing to produce not more than 1 m positional accuracy (Ramoelo et al. 2015). The 

dominating  grass species were collected together with the grass samples. The grass samples 

were collected at the same time to avoid diurnal variations in the mineral contents (Kreulen 

and Hoppe, 1979). 

 

Table 2 Field sampling and spectral measurement dates (Ramoelo et al. 2015) 

Sample name Date Geology types Land use Measurements 

L1(G1-5) 17 April 2009 Granite Protected area x 

L2 (G1-4) 01 April 2009 Granite Protected area x 

L2 (G4-5) 08 April 2009 Granite Protected area x 

L4 (G1-6) 15 April 2009 Gabbro Communal area x 

L4 (G7-10) 16 April 2009 Gabbro Communal area x 

L5 (G1-5) 18 April 2009 Gabbro Communal area x 

L6 (G1-5) 07 April 2009 Gabbro Communal area x 

L7 (G1-6) 06 April 2009 Granite Communal area x 

L8 (G1-4) 02 April 2009 Granite Communal area x 

L8 (G5-6) 03 April 2009 Granite Communal area x 

L8 (G7-9) 04 April 2009 Granite Communal area x 

Before collecting the grass, spectral reflectance measurements were taken using the   Analytical 

Spectral Device (ASD) FieldSpec®3 spectrometer (Clevers and Gitelson, 2013). The device 

has a 1 nm narrow band resolution between 350-2500 nm sample  range and consists of a 25° 

Field of View (FOV) with the use of a permanent fibre optic  pistol held at 1 m above the ground 

and nadir to accommodate the total area of the subplot. Multiple spectral measurements were 

recorded and then averaged to obtain the spectral measurement for each subplot (Adjorlolo et 
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al. 2012; Mutanga et al. 2015). The spectral measurements were taken on a sunny day (between 

10h30 and 15h00) for increased illumination (Abdel-Rahman et al. 2010). The spectral radiance 

values were converted into reflectance prior to each measurement using the spectral on 

reference panel (Ramoelo et al. 2015). 

 

II. Chemical analysis 

The obtained grass samples were dried at 80˚C in an oven for 48 hours (Knox et al. 2011), 

and the  measurements were then averaged for each plot (Ramoelo et al. 2015). Chemical 

analysis of the dried grass samples was performed at South Africa's Agricultural Research 

Council-Institute for Tropical and Subtropical Crops (ARC-ITSC) in Nelspruit (Ramoelo et 

al. 2015). Leaf N concentrations were retrieved from the leaf samples using the acid digestion 

technique in sulphuric acid whereas foliar P concentrations were retrieved using a mixture of 

perchloric acid and nitric acid (Mutanga et al. 2004; Ramoelo et al. 2011b and Zengeya et al. 

2013). 

 

III. Spectral resampling 

The spectral resampling of the analytical spectral device (ASD) reflectance data was 

computed on R Studio. The data was simulated to Sentinel-2 sensor's configurations using 

Sentinel-2’s spectral response function. The Savitzky-Golay (S-G) filter method was used for 

smoothing the spectral data by removing random noise and computing the first derivative of 

the spectral data. This method was first proposed by Savitzky and Golay (1964), it fits a high-

order polynomial to the data and removes fluctuations until the optimum results are obtained 

(Savitzky & Golay, 1964). The method uses a least-squares fitting and requires a fixed 

number of sample points to give a smooth value (Bian et al. 2010). The disadvantage of this 

method is that it reduces the resolution of the data (Pres & Teukolsky, 1990). The Shapiro-

Wilk normality test was conducted in R Studio to test the normality of the data. 

 

IV. First-derivative 

A first-derivative transformation is commonly used to improve absorption features that might 

be masked by interfering background absorption (Curran et al. 1990, Dawson et al. 1990). 
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Spectral derivatives also help in reducing the continuum resulting from other leaf biochemical 

(Curran et al. 1990). In this study the reflectance spectra were transformed into a first derivative 

spectrum to determine the slope of the spectrum using Equation 7 below. 

  D λ((i) = (Rλ(j+1) - Rλ(j))/Δλ                                                         (Equation 7) 

Where D λ((i) is the first derivative transformation at a wavelength ί midpoint between 

wavebands j and j + 1. Rλ(j) is the reflectance at the j waveband, Rλ(j+1) is the reflectance at he j 

+ 1 and the Δλ is the difference in wavelengths between j and j + 1 (Dawson et al. 1990). 

 

3.2.2. Sentinel-2 data 

3.2.2.1. Image acquisition 

The sentinel-2 imagery covering the study area was downloaded for free at the Google Earth 

engine home page https://code.earthengine.google.com (Accessed: 05  August 2022). Five 

images were downloaded from 2017 to 2022 for the months between January and April 

(averaged into one image for each year) to correspond to the dates of the field data collection. 

The year 2018 was omitted due to the imagery having overcast clouds.  

 

Sentinel-2 multispectral satellite is an addition to the already existing remote sensing 

satellites, it was first launched in 2014 by the European Space Agency (ESA) (Clevers and 

Gitelson, 2013). The sensor consists of 13 spectral bands, of which 4 bands have   10 m, 6 bands 

have 20 m and 3 bands have 60 m spatial resolutions, respectively (Clevers and Gitelson, 

2013). The 3 bands at 60 m spatial resolution are very crucial for atmospheric  corrections 

(Drusch et al. 2012). The two red-edge bands are at 705 nm and 740 nm  with a spatial 

resolution of 20 m (Clevers and Gitelson, 2013). The sensor has a swath width of 290 km and 

a temporal resolution of 5 days and a radiometric resolution  of 12 bits. Table 3 below 

summarises the band properties of the Sentinel-2 sensor. 

 

Table 3 Spectral position (λ) and bandwidth (Δλ), spatial resolution, heritage and purpose of 

Sentinel-2 bands (Druschet al. 2012; Clevers and Gitelson, 2013) 

Band Name  λ(nm) Δλ 

(nm)  

Res (m) Heritage  Purpose 
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B1 Coastal 

aerosol 

443 20 60 Moderate Resolution 

Imaging 

Spectroradiometer 

(MODIS) satellite, 

Advanced Land Imager 

(ALI), LandSat-8 (LS8) 

Atmospheric 

correction (aerosol 

scattering) 

B2 Blue 490 65 10 Medium Resolution 

Imaging Spectrometer 

(MERIS), LS8, 

(LandSat-7) LS7 

Vegetation senescing, 

carotenoid, browning 

and soil background; 

Atmospheric 

correction (aerosol 

scattering) 

B3 Green 560 35 10 MERIS, LS8, LS7, 

SPOT5 

Green peak, sensitive 

to total chlorophyll in 

vegetation 

B4 Red 665 30 10 MERIS, LS8, LS7 Max. chlorophyll 

absorption 

B5 Red edge 705 15 20 MERIS Red edge position; 

consolidation of 

atmospheric 

corrections/fluorescen

ce baseline. 

B6 Red edge 740 15 20 MERIS Red edge position; 

atmospheric 

correction; retrieval of 

aerosol load 

B7 Red edge 783 20 20 MERIS, ALI LAI; edge of the NIR 

plateau 

B8 NIR 842 115 10 Landsat, SPOT5 LAI 

B8a Red edge 865 20 20 MERIS, ALI, LS8 NIR plateau, sensitive 

to total chlorophyll, 

biomass, LAI and 

protein; water vapour 

absorption reference; 

retrieval of aerosol 
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load and type 

B9 Water 

vapour 

945 20 60 MODIS, MERIS Atmospheric 

correction (water 

vapour absorption) 

B10 SWIR-

Cirrus 

1375 30 60 MODIS, LS8 Atmospheric 

correction (detection of 

thin cirrus) 

B11 SWIR 1610 90 20 LS8, SPOT5, LS7 Sensitive to lignin, 

starch and forest above 

ground biomass; 

snow/ice/cloud 

separation 

B12 SWIR 2190 180 20 LS8, LS7 Assessment of 

Mediterranean 

vegetation conditions; 

distinction of clay soils 

for monitoring of soil 

erosion; distinction 

between live biomass, 

dead biomass and soil, 

e.g. for burn scars 

mapping 

  

3.2.1.2.Image pre-processing 

The imagery downloaded from the Google Earth Engine was already pre-processed 

(atmospheric and radiometric corrections) and ready to use (Earth Engine Data Catalog, 2022). 

The imagery was computed using sen2cor and the QA60 bitmask band, which contains cloud 

information, was used to mask out bad-quality observations caused by opaque and cirrus clouds 

in each image (Mahdianpari et al. 2018). The remaining pixels were reserved as good-quality 

observations. The number of good-quality observations in each location of an individual pixel 

is referred as good-quality observation number. 

 

3.2.1.3.Image processing  
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ENVI 5.3 was used to create the optimal indices selected for both N and P from the Sentinel-2 

bands. The SMLR model was then implemented in R Studio software to predict leaf N and P.  

ArcGIS 10.6 was used to create maps showing the spatial distribution of Leaf N and P.  

 

3.3. Data analysis 

Finding solutions through comprehension of the information gathered to create conclusions 

that explain the significance of the data is known as data analysis (Strydom et al. 2005). One 

step in data analysis is to summarize the raw data in order to provide an answer to the research 

question and reach a conclusion (Strydom et al. 2005). The Shapiro-Wilk normality test was 

performed to test the normality of the leaf N and P measurements by the ASD in  R studio. 

The Shapiro-Wilk normality test is limited to samples sizes between 3 and 50 (Royston, 

1982). In this study, the quantitative data (remotely sensed data) was analyzed in a form of 

maps. R Studio software was used for statistical analysis and a repeated k-fold cross 

validation technique was used for validating the models. The optimal bands and vegetation 

indices that were selected by the model which yielded     high estimating accuracy were used to 

produce the variables (N and P) maps using the ENVI 5.3. 

 

3.3.1. Univariate (Simple Linear Regression) 

3.3.1.1.Various bands vs each variable 

The Simple Linear Regression (SLR) technique was used to estimate leaf N and P using the 

bands of Sentinel-2. All the 13 spectral bands (Table 4) of Sentinel-2 were used. The coefficient 

of determination (R2), p-value and Root mean square error (RMSE) was identified for each 

band. R2 was used to identify the most accurate band to estimate each variable as it measures 

the correlation between the two variables. R2 was chosen because it indicates the strength of a 

liner relationship in terms of the proportion of the variability (Richter et al. 2012). 

 

3.3.1.2.Vegetation indices vs each variable 

The following vegetation indices in Table 4 were computed to estimate leaf N and P using SLR 

technique. The coefficient of determination (R2), p-value and RMSE was identified for each 

vegetation index. R2 was used to identify the most accurate index to estimate each variable. 
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Table 4 List of vegetation indices used in this study 

Index Original formulae Revised formulae Reference 

REP 700 + 40 *((R670-R780)/2-R700)/R740-

R700) 

705 + 35 *((R665-R783)/2-R705)/R740-

R705) 

Guyot and Baret 

(1988) 

NDRE_1 (RRED_EDGE-RRED-

EDGE)/(RREDEDGE+RRED-EDGE) 

(R740-R705)/(R740+R705) Gitelson and 

Merzlyak (1994), 

Sims and Gamon 

(2002) 

NDRE_2  (R783-R705)/(R783+R705) Barness et al. 

(2000) 

MCARI ((RRED-EDGE-RRED-EDGE)-0.2(RRED-

EDGE-RGREEN))/(RRED-EDGE/RRED-

EDGE) 

((R740-R705)-0.2*(R740-

R560))*(R740/R705) 

Daughtry et al. 

(2000) 

MTCI (RRED-EDGE-RRED-EDGE)/ (RRED-EDGE-

RREED-EDGE) 

(R740-R705)/ (R740-R665) Dash and Curran 

(2004) 

NRI (RGREEN – RRED)/(RGREEN+RRED) (R560 – R665)/(R560+R665) Schleicher et al. 

(1998) 

SAVI_1 ((1+L)*RNIR-RRED)/((RNIR-RRED)+L) ((1+0.2)*R865-R665)/((R865R665)+0.2) Huete (1988) 

SAVI_2  ((1+0.2)*R842-R665)/((R842R665)+0.2) Huete (1988) 

OSAVI (1+0.16)*(RNIRRRED)/(RNIR+RRED+0.

16) 

(1+0.16)*(R842R665)/(R842+R665+0.16) 

 

Rondeaux et al. 

(1996) 

OSAVI1  (1+0.16)*(R865-R665)/(R865+R665+0.16) Rondeaux et al. 

(1996) 

OSAVI2 (1+0.16)*(RNIR-Rred-

edge)/(RNIR+RRED-EDGE+0.16) 

(1+0.16)*(R842-R705)/(R842+R705+0.16) 

 

Wu et al. (2008) 

OSAVI3  (1+0.16)*(R842R740)/(R842+R740+0.16) Wu et al. (2008) 

OSAVI4  (1+0.16)*(R865-R705)/(R865+R705+0.16) Wu et al. (2008) 

OSAVI5  (1+0.16)*(R865-R740)/(R865+R740+0.16) Wu et al. (2008) 
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NDVI_1 (RNIR-RRED)/ (RNIR+RRED) (R842-R665)/ (R842+R665) Gitelson et al. 

(1996) 

NDVI_2  (R865-R665)/ (R865+R665) Gitelson et al. 

(1996) 

GI RGREEN/RRED R560/R665 Smith et al. 

(1995) 

TCARI  3*((R700-R670)-0.2*(R700-

R550)*(R700/R670)) 

3*((R740-R705)-

0.2*(R740R560)*(R740/R705)) 

Haboudane et al. 

(2002) 

SR1 RNIR/RRED R842/R665 Jordan (1969) 

SR2  R865/R665 Jordan (1969) 

SR705 R750/R705 R740/R705 Gitelson and 

Merzlyak (1994) 

 

3.3.2. Multivariate regression 

3.3.2.1.Stepwise Multiple Linear Regression (SMLR) implementation 

SMLR is among the feature selection techniques which reduce the dimensionality of 

hyperspectral data (Clevers et al. 2007). SMLR was used to predict models for the 

independent variables (N and P). The model tested the applicability of all thirteen bands, 

twenty-one vegetation indices and a combination of all bands and vegetation indices. The 

process was done in R Studio. The Akaike Information Criterion (AIC) value, coefficient of 

determination (R2), P-value and RMSE were identified for each model. The best performing 

model was selected using the lowest AIC (Akaike Information Criterion) value (Sakamoto 

et al. 1986). Repeated k-fold cross validation with 10 folds and 5 repeats were used to 

analyse the performance of this model by assessing model accuracy (Kim, 2009). 

 

3.3.2.2.Random Forest (RF) implementation 

RF method produces the measures of variable's importance (Grimm et al. 2008). RF draws 

ntree bootstrap samples and for each sample, it grows un-pruned treed by choosing the best 

split based on a random sample of mtry predictors at each node (Grimm et al. 2008). This assists 
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in identifying which indices or bands plays a great role in prediction. The ntree was tested at 

100 and mtry values for all thirteen wavebands and twenty-one vegetation indices. RF ranked 

the wavebands and the vegetation indices according to their predictor importance. RF method 

was executed on R Studio to randomly select a set of variables from the training dataset 

(70%). Repeated k-fold cross validation with 10 folds and 5 repeats was used to analyze the 

performance of this model by assessing model accuracy (Kim, 2009; Richter et al. 2012). The 

10 folds and 5 repeats were previously proven by Jiang and Wang (2017) to yield higher 

results. 

 

3.3.2.3.Support Vector Machines (SVMs) implementation 

SVM is relatively easy to implement and interpret (Wang, 2005). For the purpose of this 

study, the support vector machine recursive feature elimination (SVM-RFE) algorithm  was 

used implemented in R Studio to select optimal bands and indices for predicting leaf N and 

P. Repeated k-fold cross validation with 10 folds and 5 repeats was used to analyze the 

performance of this model by assessing model accuracy (Kim, 2009). 

 

3.3.3. Selection of the best model to predict leaf N and P 

The best prediction model was chosen based on the RMSE to predict leaf N and P in KNP. 

RMSE indicates the magnitude or error in % (McKeen et al. 2005; Chai and Draxler, 2014). 

Relative root mean square error (RRMSE) is the RMSE divided by the mean of the observe 

variables and is a good indicator than RMSE because it gives a great indication of the error 

without being affected by the data unit (Ritchter et al. 2012). The mean absolute error (MAE) 

also assisted in evaluating model performance (Chai and Draxler, 2014). The optimal bands 

and indices were then used to produce the regional maps of leaf N and P. 

 

CHAPTER 4: RESULTS 

The findings of the multivariate analysis, which were based on SMLR, SVM, and RF, as well 

as the univariate analysis, which were based on simple regression, are presented in this 

chapter. Maps of the spatial distribution of Leaf N and P using the most effective model for 
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each variable are also included in the results. Prediction models with the highest accuracy 

were also developed to estimate each variable (N and P). 

 

4.1. Descriptive statistics 

Descriptive statistics for Leaf N and P are shown in Table 5 below, the mean for leaf N and P 

were 0.71(%) and 0.10 (%), respectively. The minimum values for N and P were 0.34 and 0.04, 

respectively, while the maximum values were 1.06 and 0.29, respectively. The Shapiro-Wilk 

normality test showed that the distribution of N was normal (p = 0.63    and W = 0.98) whereas 

P distribution was not normal (p = 0.00 and W = 0.89). The histograms in Figure   2 below 

shows that N is normally distributed and P is right skewed. Figure 3 and 4 show the spectral 

reflectance graph of dried leaf samples before and after applying the S-G filter respectively.  

  

Table 5 Descriptive statistics for N and P 

Variables Number of 

observations 

Minimum Maximum Mean Standard 

Deviation 

Coefficient 

of 

variation 

Nitrogen (N %) 49 0.3425 1.0633 0.7075 0.1849 0.26 

Phosphorus (P 

%) 

49 0.0415 0.2903 0.1047 0.0510 0.49 

 

 

Figure 2 Histograms showing the distribution of N and P, respectively 
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Figure 3 Spectral reflectance graph of leaf samples before applying the S-G filter 

 

Figure 4 Spectral reflectance graph of leaf samples after noise removal (S-G filter) 

 

4.2. Univariate analysis results: Simple linear regression (SLR)   

4.2.1. Results for estimating Leaf N using various bands 

Table 6 shows the simple linear regression analysis result for leaf N versus various bands.  

These results showed that the red edge band at 705 nm (B5) yielded higher accuracy than other 

bands for predicting leaf N (R2 = 0.1036, P-value = 0.0241, RMSE = 0.0258 %). This shows 

the importance of the red edge in estimating leaf N. Figure 5 illustrates the scatter plots of 

simple linear regression using different bands against leaf N.  These plots below show that the 

relationship between bands and leaf N is poor. 

Table 6 Results for simple linear regression for each band against leaf N 



 
 

31 
 
 

 

 

Band No R2 P-value RMSE(%) 

B1 – Coastal aerosol 0.0024 0.7366 0.0095 

B2 - Blue 0.0094 0.5082 0.0120 

B3 - Green 0.0193 0.3416 0.0192 

B4 - Red 0.0417 0.1595 0.0206 

B5 - Red edge 0.1036 0.0241 0.0258 

B6 – Red edge 0.0196 0.3369 0.0570 

B7 -  Red edge 0.0164 0.3802 0.0652 

B8 - NIR 0.0185 0.3508 0.0682 

B8A – Red edge 0.0196 0.3380 0.0698 

B9 – water vapour 0.0236 0.2919 0.0713 

B10 - SWIR 0.0301 0.2330 0.0581 

B11 - SWIR 0.0105 0.4826 0.0537 

B12 - SWIR 0.0030 0.7105 0.0389 

 

The values of R2 which are closer to 1 indicate good leaf N estimation models whereas the 

values close to 0 indicate poor leaf N estimation models. P-values that are less than 0.05 means 

the leaf N estimation model is good at 95 % significance level. Low values of RMSE means 

the estimation model is good. 
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Figure 5 Scatter plot of different bands and leaf N (%) obtained from simple linear regression. 

X-axis = different bands, Y-axis=N 

 

4.2.2. Results for estimating Leaf N using various vegetation indices 

The results of the simple linear regression in Table 7 below showed that the vegetation index 

which yielded the highest accuracy in estimating leaf N was based on the red edge and is 

called MTCI (R2 = 0.1973, P-value = 0.0014, RMSE = 0.2408%), the second     index which 

yielded the highest accuracy was the REP (R2 = 0.1720, P-value = 0.0030, RMSE = 1.1010%) 

which is also based on the red edge bands. This emphasized the importance of the red edge 

in estimating leaf N. Figure 6 illustrates the scatter plots of simple linear regression using 

various vegetation indices against leaf N. These plots  show that the relationship between 

vegetation indices and leaf N is generally poor. 

 

Table 7 Results for simple linear regression for leaf N against various vegetation indices. 

Vegetation Index R2 P-value RMSE (%) 
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The values of R2 which are closer to 1 indicate good leaf N estimation models whereas the 

values close to 0 indicate poor leaf N estimation models. P-values that are less than 0.05 means 

that the leaf N estimation model is good at 95 % significance level. Low values of RMSE 

means the estimation model is good.  

GI 0.0777 0.0525 0.0935 

MCARI 0.0207 0.3235 0.0204 

MTCI 0.1973 0.0014 0.2408 

NDRE_1 0.0558 0.1023 0.0623 

NDRE_2 0.0562 0.1009 0.0632 

NDVI_1 0.0260 0.2681 0.0791 

NDVI_2 0.0125 0.4445 0.0843 

NRI 0.0414 0.1606 0.0852 

OSAVI 0.0045 0.6476 0.0805 

OSAVI1 0.0023 0.7460 0.0788 

OSAVI2 0.0298 0.2357 0.0577 

OSAVI3 0.0005 0.8812 0.0111 

OSAVI4 0.0279 0.2513 0.0550 

OSAVI5 0.0001 0.9580 0.0128 

REP 0.1720 0.0030 1.1010 

SAVI_1 0.0001 0.9465 0.0756 

SAVI_2 0.0009 0.8423 0.0754 

SR_1 0.0512 0.1179 0.6210 

SR_2 0.0425 0.1555 1.2228 

SR705 0.0669 0.0727 0.1786 

TCARI 0.0307 0.2288 0.0273 
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Figure 6 Scatter plot of different vegetation indices and leaf N (%) obtained from simple linear 

regression. X - axis = different vegetation indices, Y – axis=N 

4.2.3. Results for estimating Phosphorus (P) using various bands  

Table 8 below shows the simple linear regression analysis result for P versus various bands. 

These results showed that the blue band at 443 nm (B1) yielded the highest accuracy for 

predicting P (R2 = 0.0131, P-value = 0.4329, RMSE = 0.0094%). Figure 7 illustrates the scatter 

plots of simple linear regression using different bands and P.  These plots below show that the 

relationship between bands and P is very poor. 

Table 8 Results for simple linear regression for each band against P. 

Band No R2 P-value RMSE (%) 

B1 0.0131 0.4329 0.0094 

B2 0.0094 0.5069 0.0120 
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B3 0.0087 0.5236 0.0193 

B4 0.0001 0.9463 0.0210 

B5 0.0005 0.8786 0.0273 

B6 0.0001 0.9382 0.0576 

B7 0.0000 0.9835 0.0657 

B8 0.0000 0.9826 0.0688 

B8A 0.0000 0.9718 0.0705 

B9 0.0005 0.8735 0.0721 

B10 0.0005 0.8732 0.0590 

B11 0.0000 0.9801 0.0540 

B12 0.0000 0.9854 0.0390 

 

The values of R2 which are closer to 1 indicate good P estimation models whereas the values 

close to 0 indicate poor P estimation models. P-values that are more than 0.05 means the P 

estimation model is poor at 95 % significance level. Low values of RMSE means the estimation 

model is good. 
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Figure 7 Scatter plot of different bands and leaf P (%) obtained from simple linear regression. 

X-axis = different bands, Y-axis=P 

 

4.2.4. Results for estimating Phosphorus (P) using various vegetation indices 

The results of the simple linear regression in Table 9 below showed that the vegetation index 

yielded the highest accuracy in estimating P was the red edge based index called the REP (R2 

= 0.0161, p-value = 0.3852, RMSE = 1.2002%). The second index which yielded the highest 

accuracy was based on the red edge and is called MTCI (R2 = 0.0146, p-value = 0.4080, RMSE 

= 0.2668%). The results show the importance of the red edge in estimating phosphorus. Figure 

9 illustrates the scatter plots of simple linear regression using various vegetation indices and P.  

These plots below show that the relationship between vegetation indices and P is poor. 

 

Table 9 Results for simple linear regression for P against various vegetation indices. 
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Vegetation Index R2 P-value RMSE (%) 

GI 0.0271 0.2586 0.0960 

MCARI 0.0003 0.8985 0.0206 

MTCI 0.0146 0.4080 0.2668 

NDRE_1 0.0015 0.7907 0.0640 

NDRE_2 0.0011 0.8215 0.0650 

NDVI_1 0.0001 0.9501 0.0801 

NDVI_2 0.0000 0.9746 0.0848 

NRI 0.0109 0.4753 0.0865 

OSAVI 0.0000 0.9788 0.0807 

OSAVI1 0.0000 0.9942 0.0788 

OSAVI2 0.0012 0.8131 0.0585 

OSAVI3 0.0050 0.6293 0.0111 

OSAVI4 0.0006 0.8711 0.0558 

OSAVI5 0.0038 0.6759 0.0128 

REP 0.0161 0.3852 1.2002 

SAVI_1 0.0000 0.9750 0.0756 

SAVI_2 0.0000 0.9938 0.0754 

SR_1 0.0002 0.9274 0.6375 

SR_2 0.0001 0.9356 1.2495 

SR705 0.0012 0.8154 0.1848 

TCARI 0.0016 0.7876 0.0277 

 

The values of R2 which are closer to 1 indicate good P estimation models whereas the values 

close to 0 indicate poor P estimation models. P-values that are more than 0.05 means the P 

estimation model is poor at 95 % significance level. Low values of RMSE means the estimation 

model is good. 
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Figure 8 Scatter plot of different vegetation indices and P (%) obtained from simple linear 

regression. X - axis = different vegetation indices, Y-axis=P 

4.3. Multivariate results for estimating leaf N and P 

The machine learning techniques SMLR, SVM and RF were used to determine the best model 

in using the optimal bands and vegetation indices to predict leaf N and P. The AIC and the 

coefficient of determination (R2) were used to select the best model which performed well in 

predicting leaf N and P concentration. 

 

4.3.1. SMLR results for estimating leaf N and P 

The best model using SMLR was selected based on the lowest AIC value (Table 10). According 

to the model the optimal bands for estimating leaf N are; bands 4, 5, 6, 7, 8,10 and 12. The 

overall model yielded AIC = -198.48, R2 = 0.63 and RMSE = 0.11%. The optimal VIs for 

estimating leaf N are Modified Chlorophyll Absorption in Reflectance Index (MCARI), 
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MERIS Terrestrial Chlorophyll Index (MTCI), NDRE_2, NDVI_1, NDVI_2, OSAVI, 

OSAVI1, OSAVI3, OSAVI5, REP, SAVI_1, SAVI_2, SR_1, SR_2 and SR705. The overall 

model yielded AIC = -215.65, R2 = 0.81 and RMSE = 0.08%. The optimal combination of 

bands and VIs for estimating leaf N are B1, B2, B3, B5, B6, B7, B8, B8A, B9, B11, GI, 

MCARI, MTCI, NDRE_1, NDRE_2, NDVI_1, NDVI_2, OSAVI, OSAVI1, OSAVI3, 

OSAVI4, OSAVI5, REP, SAVI_2, SR_1, SR_2 and SR705. The overall model yielded AIC= 

-242.37, R2= 0.93 and RMSE= 0.05%. 

The optimal bands for estimating P using the SMLR model are; bands 2, 5, 6, 7 and 8A. The 

overall model yielded AIC = -289.48, R2 = 0.17 and RMSE = 0.05%. The optimal vegetation 

indices for estimating P are GI, NDRE_2, NDVI_1, NDVI_2, NRI, OSAVI2, OSAVI4, 

OSAVI5, REP, SAVI_1, SAVI_2 and TCARI. The overall model yielded AIC = -299.92, R2 

= 0.49 and RMSE = 0.04%. The optimal combination of bands and VIs for estimating P are 

B1, B4, B6, B7, B8, B8A, B9, B11, MCARI, NDRE_1, NDRE_2, NDVI_1, NDVI_2, NRI, 

OSAVI, OSAVI4, OSAVI5, SAVI_2 and TCARI. The overall model yielded AIC = -305.12, 

R2 = 0.66 and RMSE = 0.03%. 

 

 

 

Table 10 Summary of SMLR results for estimating leaf N and P 

Variable Scenario Optimal bands/Vis 

 

AIC P-value 

<0.05 

R2 RMSE (%) 

N Bands B4, B5, B6,B7,B8,B10 and 

B12 

-198.48 Yes 0.6250 

 

0.1121 

VIs MCARI, MTCI, NDRE_2, 

NDVI_1, NDVI_2,  

OSAVI, OSAVI1, OSAVI3, 

OSAVI5, REP, SAVI_1, 

SAVI_, SR_1, SR_2 and 

SR705 

-215.65 Yes 0.8095 0.0799 
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Bands + 

VIs 

B1, B2, B3, B5, B6, B7, B8, 

B8A, B9, B11, GI, MCARI, 

MTCI, NDRE_1, NDRE_2, 

NDVI_1, NDVI_2,OSAVI, 

OSAVI1, OSAVI3, OSAVI4, 

OSAVI5, REP, SAVI_2, 

SR_1,  SR_2 and SR705. 

-242.37 Yes 0.9323 0.0476 

P Bands B2, B5, B6, B7 and B8A -289.48 No 0.1661 0.0461 

VIs GI, NDRE_2, NDVI_1, 

NDVI_2, NRI, OSAVI2, 

OSAVI4, OSAVI5, REP, 

SAVI_1, SAVI_2 and TCARI 

-299.92 

 

Yes 0.4935 0.0359 

Bands + 

VIs 

B1, B4, B6, B7, B8, B8A, B9, 

B11, MCARI, NDRE_1, 

NDRE_2, NDVI_1, NDVI_2, 

NRI, OSAVI, OSAVI4, 

OSAVI5, SAVI_2 and TCARI 

-305.12 Yes 0.6577 0.0296 

 

 

The repeated k-fold cross validation results on Table 11 below confirm that the best model for 

estimating N using SMLR is a combination of bands and indices which yielded R2 = 0.6931, 

RMSE = 0.1424%, RRMSE = 6.73% and MAE = 0.1122. Whereas the best model for 

estimating P is a combination on vegetation indices which yielded R2 = 0.40, RMSE = 0.05%, 

RRMSE = 34.32% and MAE = 0.04. 

 

Table 11 Cross-validated results for estimating leaf N and P using SMLR 

Variable Scenario Optimal bands/VIs R2 RMSE 

(%) 

RRMSE 

(%) 

MAE 

N Bands B4, B5, B6,B7,B8,B10 

and B12 

0.5916   0.1298  15.842 0.1102 

VIs MCARI, MTCI, 

NDRE_2, NDVI_1, 

NDVI_2, OSAVI, 

0.6864  0.1465  11.293 0.1167 
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OSAVI1, OSAVI3, 

OSAVI5, REP, 

SAVI_1, SAVI_2, 

SR_1, SR_2 and SR705 

Bands + VIs B1, B2, B3, B5, B6, 

B7, B8, B8A, B9 and 

B11, GI, MCARI, 

MTCI, NDRE_1, 

NDRE_2, NDVI_1, 

NDVI_2,OSAVI, 

OSAVI1, OSAVI3, 

OSAVI4, OSAVI5, 

REP, SAVI_2, SR_1,  

SR_2, SR705. 

0.6931  0.1424 6.73 0.1122 

P Bands B2, B5, B6, B7 and 

B8A 

0.3506   0.0480   44.041 0.0382 

VIs GI, NDRE_2, NDVI_1, 

NDVI_2, NRI, 

OSAVI2, OSAVI4, 

OSAVI5, REP, 

SAVI_1, SAVI_2 and 

TCARI 

0.4013 0.0468 34.322 0.0399 

Bands + VIs B1, B4, B6, B7, B8, 

B8A, B9, B11, 

MCARI, NDRE_1, 

NDRE_2, NDVI_1, 

NDVI_2, NRI, OSAVI, 

OSAVI4, OSAVI5, 

SAVI_2 and TCARI 

0.3878   0.0471  28.214 0.0399 

 

4.3.2. Random Forest regression results for estimating leaf N and P 

The RF regression results on Table 12 below show that the best model for estimating leaf N 

was a combination of bands only (B4, B5, B11 and B12) which yielded R2 = 0.48, RMSE = 

0.16%, RRMSE = 10.72% and MAE = 0.13. Whereas the best model for estimating P was a 
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combination of two VIs (NRI and NDRE_2) which yielded R2 = 0.36, RMSE = 0.05%, RRMSE 

= 25.98% and MAE = 0.04. 

Table 12 Cross-validated results for random forest. 

Variable Scenario Optimal bands/VIs R2 RMSE 

(%) 

RRMSE 

(%) 

MAE 

N Bands B4, B5, B11 and B12 0.4832  0.1554 10.723 0.1279 

VIs REP 0.3874   0.1583  12.025 0.1343 

Bands + VIs B5, B12, REP and 

MTCI 

0.3864   0.1590 10.419 0.1340 

P Bands B2, B4, B5 and B10 0.2282   0.0500 23.961 0.0424 

VIs NRI and NDRE_2 0.3564  0.0531 25.976 0.0432 

Bands + VIs B1, B2, B4, B5 and 

NRI 

0.2555   0.0526 23.819 0.0440 

 

4.3.3. Support vector machines (SVMs) results for estimating leaf N and P 

The SVMs results on Table 13 below show that the best model for estimating leaf N was a 

combination of bands only (B5, B12, B4 and B11) which yielded R2 = 0.14, RMSE = 0.18%, 

RRMSE = 17.54% and MAE = 0.15. Similarly, the best model for estimating P was a 

combination of bands only (B5, B2 and B4) which yielded R2 = 0.08, RMSE = 0.06 (%), 

RRMSE = 40.78 (%) and MAE = 0.04. 

Table 13 Cross-validated results for SVM 

Variable Scenario Optimal bands/VIs R2 RMSE 

(%) 

RRMSE 

(%) 

MAE 

N Bands B5, B12, B4 and 

B11 

0.1432 0.1838 17.543 0.1532 

VIs MCARI, NDRE_2, 

SAVI_2, MTCI and 

REP 

0.0535 0.1899 17.543 0.1555 

Bands + VIs B5, REP, MTCI, 0.0625 0.1875 18.119 0.1519 
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NDRE_2 and B12 

P Bands B5, B2 and B4 0.0805 0.0567 40.783 0.0440 

VIs GI, NRI, SR_2 and 

NDVI_1 

0.0577 0.0497 45.681 0.0373 

Bands + VIs B2 0.0550 0.0581 48.517 0.0446 

 

4.4. Leaf N and P maps derived from Sentinel-2 bands and VIs 

The spatial distribution of Leaf N (%) was demonstrated in Figure 9, 10, 11, 12 and 13 for the 

years 2017, 2019, 2010, 2021 and 2022, respectively. These maps were based on the SMLR 

model using a combination of the following bands and VIs; B1, B2, B3, B5, B6, B7, B8, B8A, 

B9 and B11, GI, MCARI, MTCI, NDRE_1, NDRE_2, NDVI_1, NDVI_2, OSAVI, OSAVI1, 

OSAVI3, OSAVI4, OSAVI5, REP, SAVI_2, SR_1, SR_2 and SR705. The concentration of 

leaf N is depicted as low, moderate and high on the maps. Figure 9-13 below depict that the 

spatial distribution of leaf N is evenly distributed in the eastern and western sides of the study 

area, however, it increases on the eastern side and decreases on the western side from 2017 to 

2022. 

 

The spatial distribution of phosphorus (%) was demonstrated in Figure 14, 15, 16, 17 and 18 

for the year 2017, 2019, 2010, 2021 and 2022, respectively. These maps were based on the 

SMLR model using a combination of the following VIs GI, NDRE_2, NDVI_1, NDVI_2, NRI, 

OSAVI2, OSAVI4, OSAVI5, REP, SAVI_1, SAVI_2 and TCARI. The concentration of 

phosphorus is depicted as low, moderate and high on the maps. The Figure 14-18 below depict 

that the spatial distribution of phosphorus low in the eastern and high in the western side of the 

study area in 2017, the distribution reduces in 2019 and becomes moderate in 2020 and 2021. 

In 2022 the distribution of phosphorus becomes low again in the eastern side of the park. 
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Figure 9 Spatial distribution of Leaf N in 2017 at the Savanna ecosystem for the wet season 

 

Figure 10 Spatial distribution of Leaf N in 2019 at the Savanna ecosystem for the wet season 
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Figure 11 Spatial distributions of Leaf N in 2020 at the Savanna ecosystem for the wet season 

 

Figure 12 Spatial distribution of leaf N in 2021 at the Savanna ecosystem for the wet season 

 

 

Figure 13 Spatial distribution of leaf N in 2022 at the Savanna ecosystem for the wet season 
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Figure 14 Spatial distribution of P in 2017 at the Savanna ecosystem for the wet season 

 

Figure 15 Spatial distribution of P in 2019 at the Savanna ecosystem for the wet season 

 

Figure 16 Spatial distribution of P in 2020 at the Savanna ecosystem for the wet season 
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Figure 17 Spatial distribution of P in 2021 at the Savanna ecosystem for the wet season 

 

Figure 18 Spatial distribution of P in 2022 at the Savanna ecosystem for the wet season 

 

CHAPTER 5: DISCUSSION 

5.1. Estimating leaf N and P using simple linear regression 

The results of SLR in Table 6 for estimating leaf N against different spectral bands of   the 

Sentinel-2 satellite have shown that the red edge band at 705 nm (B5) produces the highest 

accuracy for predicting leaf N (R2 = 0.1036, P-value = 0.0241, RMSE = 0.0258%). The 

importance of the red edge band has been shown in previous studies (Fernández-Habas et al, 

2022). The overall results of predicting leaf N using various bands have shown that the 
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relationship between Leaf N and bands is poor as depicted by scatter plots in Figure 5. The 

results of estimating leaf N   against different vegetation indices in Table 7 have shown that 

the high performing vegetation index was based on the red edge and is called MTCI (R2= 

0.1973, P-value = 0.0014, RMSE = 0.2408%). Similar results showing the importance of the 

MTCI were        obtained in previous studies (Loozen et al, 2018). The second index which yielded 

the highest accuracy was the REP (R2 = 0.1720, P-value = 0.0030,   RMSE = 1.1010%) which is 

also based on the red edge. Studies conducted by Cho & Skidmore (2006) and Kanke et al. 

(2012) have shown that REP is highly correlated with chlorophyll and therefore leaf N. 

 

The results of SLR as shown in Table 8 of estimating P against different spectral bands  of 

Sentinel-2 satellite have shown a poor performance of bands in predicting P. The blue band 

at 443 nm (B1) produced the highest accuracy for predicting P (R2 = 0.0131, P-value = 0.4329, 

RMSE = 0.0094%). The low coefficient of determination for the relationship between B1 and 

phosphorus could be due to the insensitivity of the 443 nm band to phosphorus. The results 

of estimating P using different vegetation indices in Table 9 have shown that the high-

performing index was the REP (R2 = 0.0161, p-value = 0.3852, RMSE = 1.2002%). Mutanga 

et al. (2007) successfully mapped grass phosphorus concentration in KNP using the REP 

derived from the HyMAP imagery. The second index which yielded the highest accuracy was 

based on the red edge and   is called MTCI (R2 = 0.0146, p-value = 0.4080, RMSE = 0.2668%). 

Clevers and Gitelson (2013) also conducted a study that showed the importance of MTCI in 

predicting P.  The overall univariate results showed the importance of the red edge bands and 

the REP in estimating N and P, this was also previously shown by Horler et al. (1983). 

 

5.2. Estimating leaf N and P using SMLR 

For SMLR the best-performing model was selected based on the highest coefficient of 

determination (R2). The results of the SMLR model in Table 11 have shown that for 

estimating leaf N, the high-performing model was based on a combination of the following 

optimal bands and VIs; B1, B2, B3, B5, B6, B7, B8, B8A, B9 and B11, GI, MCARI, MTCI, 

NDRE_1, NDRE_2, NDVI_1, NDVI_2, OSAVI, OSAVI1, OSAVI3, OSAVI4, OSAVI5, 

REP, SAVI_2, SR_1, SR_2 and SR705 (R2 = 0.69). Whereas for estimating P the best 

performing model was based on a combination of the following VIs; GI, NDRE_2, NDVI_1, 
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NDVI_2, NRI, OSAVI2, OSAVI4, OSAVI5, REP, SAVI_1, SAVI_2 and TCARI (R2 = 

0.40). These results emphasize the importance of red edge bands as well as the red edge based 

vegetation indices in estimating grass nutrients. Similarly, Fernandez-Habas et al (2022) 

showed the importance of bands located in the red edge and NIR (700, 710, 1160 and 1170 

nm) in predicting grass nutrients. 

 

5.3. Estimating leaf N and P using RF 

For RF the best-performing model was selected based on the highest coefficient of 

determination (R2). The results of the RF model in Table 12 have shown that for estimating  leaf 

N, the high-performing model was based on a combination of the following bands; B4, B5, B11 

and B12 (R2= 0.48). The results conquer with those obtained by Ramoelo et al. (2015) who 

showed that when using the RF technique, the spectral bands at 705 nm (B5) and the two SWIR 

bands at 1610 nm (B11) and 2190 nm (B12) were the most important bands in estimating leaf 

N using Sentinel-2. The results also correspond to previous studies which highlighted the 

importance of the red edge bands and the SWIR bands in estimating leaf N (Ramoelo, 2012). 

Chabalala et al. (2020) also successfully predicted grass nitrogen using the RF model with a 

mean  R2 of 0.92 and 0.53 for Sentinel-2 and RapidEye respectively. Whereas for estimating P, 

the high-performing model was a combination of the following two VIs; NRI and NDRE_2 

(R2= 0.36). NRI is based on the red and green band whereas the NDRE_2 is based on the red 

edge bands. The selection of only two vegetation indices may be because phosphorus has few 

identifiable absorption features. Generally, the RF technique selected few optimal bands and 

vegetation indices as compared to SMLR and SVM. 

 

5.4. Estimating leaf N and P using SVM 

For SVM the best-performing model was selected based on the highest coefficient of 

determination (R2). The results of SVM model in Table 13 have shown that for estimating 

leaf N, the high-performing model was based on a combination of the following bands B5, 

B12, B4 and B11 (R2 = 0.14 and RMSE = 0.18%, RRMSE = 17.54% MAE = 0.15). The 

optimal bands selected are similar to those selected by RF technique for estimating leaf N. 

This again emphasizes the importance of red edge and SWIR bands in estimating leaf N 

(Ramoelo, 2012). Whereas  for estimating P, the high-performing model was a combination 
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of the following bands   B5, B2 and B4 (R2 = 0.08 and RMSE = 0.06%, RRMSE = 40.78% 

MAE = 0.04). 

 

5.5. Selection of the best model for predicting leaf N and P 

SMLR outperformed RF and SVM in estimating leaf N and P in terms of accuracy and the 

certainty of the predictors. SMLR model using a combination of the following bands and VIs; 

B1, B2, B3, B5, B6, B7, B8, B8A, B9 and B11, GI, MCARI, MTCI, NDRE_1, NDRE_2, 

NDVI_1, NDVI_2, OSAVI, OSAVI1, OSAVI3, OSAVI4, OSAVI5, REP, SAVI_2, SR_1, 

SR_2, SR705 yielded the highest accuracy in predicting leaf N (R2 = 0.69). On the other hand, 

the model which produced the highest accuracy for estimating phosphorus was based on a 

combination of the following vegetation indices; GI, NDRE_2, NDVI_1, NDVI_2, NRI, 

OSAVI2, OSAVI4, OSAVI5, REP, SAVI_1, SAVI_2 and TCARI (R2 = 0.40). SMLR is 

capable of handling high dimensional datasets (Clevers et al. 2007) this may explain better 

performance as compared to random forest and SVM. 

 

5.6. The spatial distribution of N and P across KNP 

The distribution map of Leaf N as depicted in Figure 9, 10, 11, 12 and 13 for the years 2017, 

2019, 2010, 2021 and 2022 respectively were created based on the SMLR model using a 

combination of bands and VIs. The maps show a great difference in the distributions of Leaf 

N across different sampling points in the study area. From the maps, it is clear that the 

concentration of leaf N is high alongside the water streams and decreases as you move away 

from the streams. Similar results were obtained in previous studies of mapping the spatial 

distribution of grass nutrients (Knox et al, 2011; Ramoelo et al. 2015; Chabalala et al. 2020). 

The concentration of leaf N increases on the eastern side and decreases on the western side 

from 2017 to 2022. This could be attributed to various environmental factors such as geology 

as shown in previous studies (Ramoelo and Cho, 2018; Manyashi, 2015). 

 

The maps show the spatial distribution of P as depicted in Figure 14, 15, 16, 17 and 18 for the 

years 2017, 2019, 2010, 2021 and 2022 respectively. The concentration of phosphorus is 

depicted as low, moderate and high on the maps. Figure 14-18 depict that the spatial 

distribution of phosphorus was low in the eastern and high in the western side of the study 
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area in 2017, the distribution reduces in 2019 and  becomes moderate in 2020 and 2021. In 2022 

the distribution of P becomes  low again in the eastern side of the park and high in the western 

part. These variations might be due to the occurrences of veld fires. Few studies have 

successfully mapped P as compared to N (Mutanga & Kumar, 2007; Knox et al. 2011). The 

formulae for SAVI and MTCI both utilizes the red edge bands and hence they showe high 

significance in estimating leaf N and P. 

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS 

The study investigated optimal spectral bands and VIs which were derived from the field 

spectral measurements for predicting leaf N and P. This study showed the importance of the 

red-edge derived vegetation indices and the red-edge bands of Sentinel-2 in estimating grass 

nutrients. The study demonstrated the importance of combining spectral bands and VIs for 

estimating grass nutrients. This study further demonstrated that SMLR outperformed RF and 

SVM techniques in predicting both leaf N and P. The study further demonstrated that the 

freely available Sentinel-2 datasets can be used for predicting grass nutrients to avoid the 

commercial implications of purchasing satellite data. 

 

The spatial distribution of leaf N and P were successfully mapped. The concentration of Leaf 

N is high alongside  the water streams and decreases as you move away from the streams. 

Whereas the concentration of phosphorus varies greatly between the eastern and western parts 

of the study area. This could be attributed to various environmental variables, veld fires and 

geology. The results of this study can be used to guide livestock farmers about pasture quality. 

Leaf N concentration has been estimated and mapped more than P  and therefore future studies 

should explore the possibility of estimating foliar P using SWIR bands. The limitation of this 

study is that various environmental factors that could affect the distributions of Leaf N and P 

were not studied. Therefore, future studies should explore the impacts of environmental 

variables of these grass nutrients. The study further recommends future research should be 

conducted to  compare the different machine-learning techniques to predict grass nutrients. 

Studies using drone remote sensing will be valuable for monitoring and estimating grass 

nutrients.   
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