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Abstract

We investigate the ability of textual analysis-based metrics of physical or transition risks

associated with climate change in forecasting the daily volume of trade contracts of gold.

Given the count-valued nature of gold volume data, our econometric framework is a log-

linear Poisson integer-valued generalized autoregressive conditional heteroskedasticity (IN-

GARCH) model with a particular climate change-related covariate. We detect a significant

predictive power for gold volume at 5- and 22-day-ahead horizons when we extend our model

using physical risks. Given the underlying positively evolving impact of such risks on the

trading volume of gold, as derived from a full-sample analysis using a time-varying IN-

GARCH model, we can say that gold acts as a hedge against physical risks at medium- and

long-horizons. Such a characteristic is also detected for platinum, and to a lesser extent, for

palladium, but not silver. Our results have important investment implications.
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1. Introduction

Climate change is associated with two types of risks namely, physical and transition. The

former involves risks due to rising temperatures, higher sea levels, more destructive storms,

and floods or wildfires. The latter is associated with a gradual switchover to a low-carbon

economy and includes risks due to climate policy changes, emergence of competitive green

technologies, and shifts in consumer preferences. Naturally, though the level and form of

the underlying uncertainty may vary, every scenario in the future includes climate-related

financial risks. Hence, climate-related risks have been shown to adversely affect a large

number of asset classes, including equities, fixed-income securities, real estate, and even

financial institutions (Battiston et al., 2021; Giglio et al., 2021). In the process, climate

risks tend to raise the stress of the entire financial system (Flori et al., 2021).

Due to heightened distress in the financial system arising out of climate risks, gold,

which is historically a well-established “safe haven” (Boubaker et al. (2020), Bouri et al.

(2022)), becomes highly important. This is because gold serves as an investment vehicle

that offers portfolio diversification and/or hedging benefits during periods of financial tur-

moil, originating from climate-related events. In such instances of “bad news”, due to the

information-seeking actions of traders, it is expected that gold returns and its volatility

should increase due to higher trading volumes, capturing information flows, emanating from

its higher demand (Wang and Yau, 2000; Lucey and Batten, 2010; Baur, 2012). Evidence

of a positive relationship between gold returns and its volatility with climate risks has been

recently provided by Cepni et al. (2022) and Gupta and Pierdzioch (2022), respectively.

In light of the underlying intuition that climate risks can be associated with higher

returns and volatility of gold prices due to increased trading volumes, we aim to analyze

the direct effect of climate risks on the volume of traded contracts of gold. In this regard,

instead of an in-sample predictability analysis, we resort to an out-of-sample forecasting

exercise over the daily period of 3rd January, 2005 to 29th October, 2021. The latter is

essential for two reasons: Statistically, forecasting is considered to be a more robust test of

predictability in terms of both models and predictors (Campbell, 2008). Secondly, accurate
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real-time forecasting of volumes (based on the information content of climate risks), which is

known to lead returns and volatility, should be of much more value to traders and investors

in the gold market, relative to in-sample evidence, in the timely pricing of related derivative

securities and for devising portfolio-allocation strategies.

Realizing the count-valued nature of the time series data on the trading volume of gold,

our econometric framework is a log-linear Poisson integer-valued generalized autoregressive

conditional heteroskedasticity (INGARCH) model with predictors, which in turn are textual

analysis-based metrics of physical or transition risks associated with climate. While the focus

is on gold, given that recent studies have also depicted the possible safe haven characteristic

for palladium, platinum, and silver (Lucey and Li, 2015; Salisu et al., forthcoming), we also

consider the role of climate risks as predictors of the trading volumes of these three different

precious metals, over the same period as gold. To the best of our knowledge, this is the

first paper to use count data-based models to forecast daily volumes of precious metals by

relying on the information contained in physical and/or transition climate risks to provide

a direct test of the safe haven characteristic of this important asset-class. The remainder

of the paper is organized as follows: Section 2 presents the methodology, while Section 3

discusses the data, and Section 4 is devoted to the empirical findings. Finally, Section 5

concludes the paper.

2. Methodology

We implement the following autoregressive model for count time-series, inspired from

the GARCH model of Bollerslev (1986), which in turn is called an INGARCH model, and

has become a state-of-the-art framework (Davis et al., 2021) for analyzing count data:

yt|yt−1, yt−2, · · · ∼ Poi(λt) (2.1)

λt = α0 + α1yt−1 + β1λt−1

However, the parameter space for these models is restricted due to positivity, and this

gives rise to the following log-linear INGARCH model, making the parameter space relatively

2



more unrestricted:

yt|yt−1, yt−2, · · · ∼ Poi(λt) (2.2)

λt = α0 + α1yt−1 + β1λt−1

Bringing in covariates or predictors, we obtain the following log-linear Poisson IN-

GARCH(1,1) model:

yt|yt−1, yt−2, · · · ∼ Poi(λt) (2.3)

log(λt) = α0 + α1 log(1 + yt−1) + β1 log(λt−1) + ηTXt

where Xt is the matrix of covariates and yt denotes a count time series. To ensure

stationarity it is necessary to assume that: 0 < α1 + β1 < 1.

We use the prediction routine in the tscount package in R (Liboschik et al. (2017))

to produce forecasts. Briefly put, this method chooses a roll-over forecasting scheme. To

predict yn+1 based on y1, · · · yn, the simple conditional expectation is used, and for yn+2 one

uses the same conditional expectation, but this time replacing the unknown yn+1 by ŷn+1

based on the previous computation.

We judge the quality of future h−step aggregated forecast, i.e. yn+1 + · · · + yn+h for

different values of h through a pseudo-out-of-sample evaluation metric. More specifically,

we follow the following steps:

• Predict FWCi,h = ŷi+m+ · · ·+ ŷi+m+h−1 using the log-linear INGARCH tsglm predict

routine with covariate(s) based on pairs (yj, Xj) j = i, · · · , i+m− 1;

• FWOCi,h = ŷi+m+· · ·+ŷi+m+h−1 using the log-linear INGARCH tsglm predict routine

without covariates based on pairs (yj) j = i, · · · , i+m− 1;

• Next we compare the two forecasted series FWC{},h and FWOC{},h by the means of

Clark and West (CW; 2007) test.
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3. Data

Our climate risks data are sourced from Bua et al. (2022) and consist of a daily Physical

Risk Index (PRI) and Transition Risk Index (TRI). These two novel climate risk indicators

are the result of a text-based approach which combines the term frequency-inverse docu-

ment frequency and the cosine-similarity techniques expanding on the work of Engle et al.

(2020). Specifically, the authors first group various scientific texts on climate change by

topic, either involving physical or transition risk, to obtain two documents that, if digested,

provide a comprehensive understanding of the physical and transition climate risks. The

authors then use these climate risks-related documents to feed their text-based algorithms,

and search the same structured information within a corpus of (European) news sourced

by Reuters News. As output, they obtain two distinct time series, so-called “concerns”,

roughly representing the news media attention towards physical and transition risks, which

we indicate as: CONCERNPR and CONCERNTR, respectively. As a final step, the authors

model the climate risks series, PRI and TRI, as autoregressive order one (AR(1)) residuals

of the concerns series in order to capture shocks and innovations in physical and transition

risks.

We use these measures of climate risks because the proposed measures, which originated

from advanced climate vocabularies, exhibit several advantages with respect to previous

studies. They, for instance, embed multiple dimensions of the risks without discarding

relevant aspects resulting in complete climate risks indicators, which can enhance studies

on the financial implications of climate risks. The PRI includes both acute and chronic

physical risks like floods, extreme weather events, permafrost thawing, and sea level rise, as

well as issues about climate adaptation actions, and other physical risk-averse effects like

the loss in biodiversity. The TRI, on the other hand, includes news on regulations and

measures to curb greenhouse gas (GHG) emissions, news concerning the costs associated

with the transition to a greener economy, and news discussing the advances of technological

innovation and renewable energies to reach, for example, net-zero emissions targets. Bua et

al. (2022) also perform commonality tests to assess the actual degree of overlap of the two
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indicators and conclude that both PRI and TRI carry relevant individual information.

We collect daily data on the volume of traded contracts of the top four precious metals:

gold, palladium, platinum and silver, with the series downloaded from Bloomberg. Our

analysis covers the period of 3rd January, 2005 to 29th October, 2021, i.e., 4245 daily

observations. Note that, the start and end dates of our samples are driven purely by the

availability of data on the climate risks predictors. All the variables of interest have been

plotted in Figure 1.

4. Empirical results

4.1. Preliminary analysis of the relationship between trading volumes and cli-
mate risks

Before we proceed to the formal forecasting exercise, we wanted to check if indeed climate

risks positively impact the trading volume of gold, as is expected in light of gold’s ability to

hedge climate risks being a safe haven. For this purpose, we utilize a time-varying analogue

of Eq. (2.3).5 As can be seen from Panel A of Figure 2, whereby we report the time-varying

t-statistic involving the effect of CONCERNPR and CONCERNTR on the trading volume of

gold, the effect is generally positive in a statistically significant manner under physical risks,

i.e., CONCPR, while this is not necessarily the case under CONCTR capturing transition risks

of climate.6 Qualitatively similar observations were also drawn for palladium and platinum

in particular, and to a lesser degree for silver, as shown in Panels B, C and D, respectively of

Figure 2. This finding is expected to a certain degree, given the underlying nature of these

two risks, with the effects of physical risks likely to be felt immediately on the stress of the

financial system. In light of this evidence related to the sign of the effect of climate risks,

we would want to put relatively more reliance on the forecasting accuracy of gold volumes

5The time-varying log-linear Poisson INGARCH(1,1) model can be described as: yt|yt−1, yt−2, · · · ∼
Poi(λt), with log(λt) = α0(t/n)+α1(t/n) log(1 + yt−1)+β1(t/n) log(λt−1)+η(t/n)

T
Xt. For the estimation

of the parameter functions (α0(·), α1(·), β1(·), η), we employ a kernel-based technique padded on quasi-
maximum likelihood estimation as in Karmakar et al. (2022). In this regard, we use the rectangular kernel
K(x) = I(−1 ≤ x ≤ 1) and bandwidth bn = m/n to remain consistent with our forecasting set-up, which in
turn assumes stationarity of the last m observations.

6Using PRI and TRIs instead of CONCERNPR and CONCERNTR, yielded, not surprisingly, similar
observations, with the results available upon request from the authors.
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Fig. 1: Time series plot of climate risk measures and count data variables
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emanating from physical rather than transition risks in the process of validating the safe

haven nature of gold (and palladium and platinum).

Fig. 2: Time-varying effect of climate risks on the volume of contracts traded for the precious metals
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4.2. Climate risks and forecasting results of trading volumes of precious metals

In Table 1, we present the p-values of the CW test, derived based on a rolling-window

estimation of m = 500, i.e., approximately two years of data points, which in turn ensures

that the out-of-sample basically starts from the tumultuous period associated with the be-

ginning of the global financial crisis. The forecasts were conducted for three horizons of h =

1, 5, and 22, corresponding to a one-day-, one-week-, and one-month-ahead. We find that

CONCERNPR produces statistically superior forecasting gains relative to the benchmark

model at h = 5 and 22 for the trading volume of gold, which in turn are also reflected in the

PRI for these corresponding forecasting horizons. TRI is also found to produce statistical

forecasting gains for gold trading volumes at h = 5, but the corresponding PRI produces a

much lower p-value, which is indicative of a stronger predictive ability of the same. In sum,

while we do not find evidence of forecastability of gold volume a-day-ahead, we do so at a

week- and month-ahead, and that too from the physical risks component of climate change.

Given the positive time-varying impact of such risks on the trading volume of gold (as shown

in Figure 2), we can say that gold acts as a hedge against physical risks at medium- and

long-horizons.

Turning now to the other three precious metals, we find that statistically superior fore-

casting gains for palladium emanating from both physical and transition risks are obtained

at h = 1, while this holds for both h = 5 and h = 22 for platinum. As far as silver is

concerned, accurate forecasting is derived from the climate risks-related metrics for all three

horizons, with a stronger effect obtained under transition risks compared to physical ones,

especially when one compares the p- values associated with TRI and PRI. In light of the

underlying time-varying relationship between the trading volumes of palladium, platinum,

and silver with climate risks, we tend to conclude that while the former two, especially

platinum, can hedge climate risks, silver, with its volume being negatively impacted, is not

necessarily well-suited to play the role of a safe haven relative to physical and transition

risks.7

7As part of additional analysis, we collected 5-minute interval intraday price data of these four precious
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Table 1: CW p-values for forecasts of trading volumes of precious metals based on metrics of climate risks

Gold Palladium Platinum Silver
h = 1 CONCERNPR 0.1516 0.0338 0.5155 0.0185

CONCERNTR 0.7873 0.0080 0.9380 0.5576
PRI 0.3311 0.0115 0.4822 0.0054
TRI 0.3779 0.0977 0.5424 0.0860

h = 5 CONCERNPR 0.0036 0.8603 0.0985 0.6815
CONCERNTR 0.3347 0.2218 0.5316 0.3738
PRI 0.0037 0.5924 0.0024 0.0078
TRI 0.0338 0.1357 0.0373 0.0000

h = 22 CONCERNPR 0.0071 0.8689 0.0139 0.5256
CONCERNTR 0.8585 0.8147 0.3902 0.1232
PRI 0.0146 0.5540 0.0037 0.0062
TRI 0.5376 0.6736 0.2331 0.0001

5. Conclusion

In this paper, we forecast the daily volume of trade contracts of gold based on the infor-

mation contained in textual analysis-based metrics of physical or transition risks associated

with climate change. In light of the count-valued nature of the time series data of gold

volume, we utilize a log-linear Poisson integer-valued generalized autoregressive conditional

heteroskedasticity (INGARCH) model involving a specific-type of climate change-related

predictor. Based on daily data covering the period of 3rd January, 2005 to 29th October,

2021, emanating from physical risks, we detect statistically superior forecasting gains for

gold volume at week- and month-ahead horizons, but not for one-day-ahead. Given the

underlying positively evolving impact of such risks on the trading volume of gold, obtained

from a full-sample analysis using a time-varying INGARCH model, we conclude that gold

metals from Bloomberg, and computed daily counts of positive and negative log-returns. The idea in this
instance is that if gold and the other three metals are indeed safe haven, then climate risks should be able
to predict relatively more accurately the positive rather than the negative counts, as an indication of being
a hedge against such risks. For this exercise, we consider the period of 1st May, 2018 to 29th October, 2021,
with the start date concentrated around the peak date (19th September, 2018) of the physical risk metrics,
with which gold trading volumes were shown to be, in general, positively related. As shown in Table A1 of
the Appendix, gold is the only case, compared to the three other precious metals, whereby not only physical,
but also transition risks, tend to accurately forecast positive returns only at h = 1- and 5-day ahead. Note
that, in light of the small sample size of 973 observations, we use a rolling-window of 125 days to obtain
our results. These findings, in turn, confirm that gold is indeed best-suited among precious metals to hedge
climate risks.
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acts as a hedge against physical risks of climate change at medium- and long-horizons. Such

an observation could also be detected for platinum, and to a lesser extent, for palladium, but

not silver. Considering that trading volume is known to lead to gold returns and volatility,

our results have important investment implications in terms of the design of optimal port-

folios. In particular, we find that gold can be included in a portfolio to hedge against the

physical aspect of climate risks, which is known to negatively impact the risk of financial

assets.

A similar future analysis could be devoted to forecasting the trading volume of “green”

and “environmental, social, and governance (ESG)” assets.
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Appendix

Table A1: CW p-values for forecasts of count of negative and positive log-returns of precious metals based
on metrics of climate risks. Palla, Plati and Silv stand for Palladium, Platinum and Silver respectively

Gold(−) Gold(+) Palla(−) Palla(+) Plati(−) Plati(+) Silv(−) Silv(+)
h =1 CONCERNPR 0.5133 0.1752 0.4537 0.3530 0.2563 0.3806 0.5666 0.1382

CONCERNTR 0.5863 0.0974 0.0005 0.2325 0.3271 0.2477 0.1800 0.4095
PRI 0.5582 0.3376 0.0911 0.1454 0.5451 0.1769 0.4141 0.0584
TRI 0.2448 0.0101 0.0000 0.0001 0.0979 0.0295 0.0055 0.0599

h = 5 CONCERNPR 0.8809 0.0614 0.6413 0.1020 0.8995 0.0616 0.6656 0.0231
CONCERNTR 0.8519 0.1150 0.6939 0.0674 0.5921 0.4680 0.9058 0.2494
PRI 0.4390 0.1400 0.4699 0.0724 0.8710 0.0501 0.3262 0.0173
TRI 0.6106 0.0978 0.1539 0.0061 0.4548 0.2239 0.7337 0.1364

h = 22 CONCERNPR 0.9741 0.4987 0.3309 0.6267 0.7895 0.5719 0.9915 0.1660
CONCERNTR 0.8692 0.5397 0.8881 0.1097 0.7086 0.8413 0.9736 0.6213
PRI 0.8479 0.8827 0.8744 0.7016 0.9113 0.6123 0.8696 0.1650
TRI 0.8745 0.7585 0.8180 0.0985 0.6247 0.9366 0.9059 0.5890

Note: − or + corresponding to the name of a precious metal indicates the case of negative or positive
count of log-returns.
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