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Abstract

Hyperbolic systems on networks often can be written as systems of

first order equations on an interval, coupled by transmission conditions at

the endpoints, also called port-Hamiltonians. However, general results for

the latter have been difficult to interpret in the network language. The

aim of this paper is to derive conditions under which a port-Hamiltonian

with general linear Kirchhoff’s boundary conditions can be written as a

system of 2×2 hyperbolic equations on a metric graph Γ. This is achieved

by interpreting the matrix of the boundary conditions as a potential map

of vertex connections of Γ and then showing that, under the derived as-

sumptions, that matrix can be used to determine the adjacency matrix of

Γ.
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1 Introduction

In this paper we are concerned with systems of linear hyperbolic equations on

a bounded interval, say, (0, 1), sometimes referred to as port-Hamiltonians, [13]

and the role is played by the boundary conditions coupling the incoming and

outgoing Riemann invariants determined by the system at the endpoints at

x = 0 and x = 1,

∂t

(
υ

̟

)
=


 −C+ 0

0 C−




(
υ

̟

)
, 0 < x < 1, t > 0, (1.1a)

Ξ(υ(0, t),̟(1, t),υ(1, t),̟(0, t))T = 0, t > 0, (1.1b)

υ(x, 0) = υ̊(x), ̟(x, 0) = ˚̟(x) 0 < x < 1, (1.1c)

where υ and ̟ are the Riemann invariants flowing, respectively, from 0 to 1

and from 1 to 0, C+ and C− are m+×m+ and m−×m− diagonal matrices with

positive entries and, with 2m = m+ + m−, Ξ is an 2m × 4m matrix relating

outgoing υ(0),̟(1) and incoming υ(1),̟(0) boundary values so that (1.1b)

can be written as

Ξout(υ(0, t),̟(1, t))T + Ξin(υ(1, t),̟(0, t))T = 0, t > 0. (1.2)

An important class of such problems arises from dynamical systems on met-

ric graphs. Let Γ be a graph with r vertices {vj}1≤j≤r =: Υ and m edges

{ej}1≤j≤m (identified with (0, 1) through a suitable parametrization). The dy-

namics on each edge ej is described by

∂tp
j + M

j∂xp
j = 0, t > 0, 0 < x < 1, 1 ≤ j ≤ m, (1.3)

where pj = (pj1, p
j
2)T and M

j = (M j
lk)1≤k,l≤2 are defined on [0, 1] and M

j(x) is

a strictly hyperbolic real matrix for each x ∈ [0, 1] and 1 ≤ j ≤ m. System (1.3)

is complemented with initial conditions and suitable transmission conditions

coupling the values of pj at the vertices which the edges ej are incident to.

Then (1.1) can be obtained from (1.3) by diagonalization so that (suitably re-

indexed) υ and ̟ are the Riemann invariants of p = (pj)1≤j≤m.

2



Such problems have been a subject of intensive research, both from the

dynamics on graphs, [1, 9, 5, 4, 10, 15, 17], and the 1-D hyperbolic systems,

[7, 19, 14, 13], points of view. However, there is hardly any overlap, as there

seems to be little interest in the network interpretation of the results in the

latter, while in the former the conditions on the Riemann invariants seems to

be ”difficult to adapt to the case of a network”, [10, Section 3].

The main aim of this paper, as well as of the preceding one, [2], is to bring to-

gether these two approaches. In [2] we have provided explicit formulae allowing

for a systematic conversion of Kirchhoff’s type network transmission conditions

to (1.1b) in such a way that the resulting system (1.1) is well-posed. We also

gave a proof of the well-posedness in any Lp, 1 ≤ p < ∞, which, in contrast to

[19], is purely semigroup theoretic. For notational clarity, we focused on 2 × 2

hyperbolic systems on each edge but the method works equally well for systems

of arbitrary (finite) dimension. In this paper we are concerned with the reverse

question, that is, to determine under what assumptions on Ξ, (1.1) describes a

network dynamics given by 2 × 2 hyperbolic systems on each edge, coupled by

Kirchhoff’s transmission conditions at incident vertices.

To briefly describe the content of the paper, we observe that if the matrix

Ξ = {ξij}1≤i≤2m,1≤j≤4m in (1.1b) describes transmission conditions at the ver-

tices of a graph, say Γ, on whose edges we have 2 × 2 systems of hyperbolic

equations, then we should be able to group the indices j into pairs {j′, j′′} cor-

responding to the edges of Γ on which we have 2×2 systems for the components

j′ and j′′ of (υ,̟). Thus, in a sense, the columns of Ξ determine the edges of

Γ. It follows that it is easier to split the reconstruction of Γ into two steps and

first build a digraph Γ, where each column index j of Ξ is associated with an

arc, say εj , on which we have a first order system for either υj or ̟j. Thus, the

main problem is to construct vertices of Γ (and Γ) which should be somehow

determined by a partition of the row indices of Ξ. To do this, we observe that

the coefficients of Ξ represent a map of connections of the edges in the sense

that, roughly speaking, if ξij 6= 0 and ξik 6= 0, then arcs εj and εk are incident

to the same vertex and, if they are incoming to it, then they cannot be incoming
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to any other vertex. A difficulty here is that while for the flow to occur from,

say, εj to εk, these arcs must be incident to the same vertex but the converse

may not hold, that is, for εj incoming to and εk outgoing from the same v, the

flow from εj may not enter εk but go to other outgoing arcs. To avoid such a

case, in this paper we formulate conditions ensuring that the flow connectivity

at each vertex is the same as the graph connectivity. This assumption yields a

relatively simple criterion for the reconstruction of Γ, which is that
̂(

Ξ̂out

)T

Ξ̂in

is the adjacency matrix of a line graph (where for a matrix A, Â is obtained

by replacing non-zero entries of A by 1.) This, together with some technical

assumptions, allows us to apply the theory of [12], see also [6, Theorem 4.5.1],

to construct first Γ and then Γ in such a way that (1.2) can be localized at each

vertex of Γ in a way which is consistent with (1.1a).

The main idea of this paper is similar to that of [3]. However, [3] dealt with

first order problems with (1.2) solved with respect to the outgoing data. Here,

we do not make this assumption and, while (1.1) technically is one-dimensional,

having reconstructed Γ, we still have to glue together its pairs of arcs to obtain

the edges of Γ in such a way that the corresponding pairs of solutions of (1.1a)

are Riemann invariants of 2× 2 systems on Γ. Another difficulty in the current

setting is potential presence of sources and sinks in Γ. Their structure is not

reflected in the line graph, [3], and reconstructing them in a way consistent

with a system of 2 × 2 equations on Γ is technically involved.

The paper is organized as follows. In Section 2 we briefly recall the notation

and relevant results from [2]. Section 3 contains the main result of the paper.

In Appendix we recall basic results on line graphs in the interpretation suitable

for the considerations of the paper.

2 Notation, definitions and earlier results

We consider a network represented by a finite, connected and simple (without

loops and multiple edges) metric graph Γ with r vertices {vj}1≤j≤r =: Υ and

m edges {ej}1≤j≤m. We denote by Ev the set of edges incident to v, let Jv =
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{j; ej ∈ Ev} and |Ev| = |Jv| be the valency of v. We identify the edges with

unit intervals through sufficiently smooth invertible functions lj : ej 7→ [0, 1].

In particular, we call v with lj(v) = 0 the tail of ej and the head if lj(v) = 1.

On each edge ej we consider system (1.3). Let λj− < λj+ be the eigenvalues of

M
j , 1 ≤ j ≤ m (the strict inequality is justified by the strict hyperbolicity of

M
j). The eigenvalues can be of the same sign as well as of different signs. In

the latter case, we have λj− < 0 < λj+. By f j
± = (f j

±,1, f
j
±,2)

T we denote the

eigenvectors corresponding to, respectively, λj± and by

F
j =


 f j

+,1 f j
−,1

f j
+,2 f j

−,2


 ,

the diagonalizing matrix on each edge. The Riemann invariants uj = (uj1, u
j
2)T , 1 ≤

j ≤ m, are defined by

uj = (Fj)−1pj and pj =

(
f j
+,1u

j
1 + f j

−,1u
j
2

f j
+,2u

j
1 + f j

−,2u
j
2

)
. (2.1)

Then we diagonalize (1.3) and, discarding lower order terms, we consider

∂tu
j = L

j∂xu
j =


 −λj+ 0

0 −λj−


 ∂xu

j , (2.2)

for each 1 ≤ j ≤ m.

2.1 The boundary conditions

The most general linear local boundary conditions at v ∈ Υ are given by

Φvp(v) = 0, (2.3)

where p = ((pj1, p
j
2)1≤j≤m)T and the real matrix Φv is given by

Φv :=




φj1
v,1 ϕj1

v,1 . . . φ
j|Jv |

v,1 ϕ
j|Jv |

v,1

...
...

...
...

...

φj1
v,kv

ϕj1
v,kv

. . . φ
j|Jv |

v,kv

ϕ
j|Jv |

v,kv


 , (2.4)

where Jv = {j1, . . . , j|Jv|} and kv is a parameter determined by the problem.

The difficulty with such a formulation is that it is not immediately clear what
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properties Φv should have to ensure well-posedness of the hyperbolic problem

for which (2.3), v ∈ Υ, serve as boundary conditions. There are various ways

around this difficulty. In e.g. [18, 10], conditions are imposed directly on Φv to

ensure specific properties, such as dissipativity, of the resulting initial boundary

value problem. We, however, follow the paradigm introduced in [7, Section

1.1.5.1] and require that at each vertex all outgoing data must be determined

by the incoming data. Since for a general system (1.3) it is not always obvious

which data are outgoing and which are incoming at a vertex, we write (2.3) in

the equivalent form using the Riemann invariants u = F
−1p, as

Ψvu(v) := ΦvF(v)u(v) = 0. (2.5)

For Riemann invariants, we can define their outgoing values at v as follows.

Definition 2.1. Let v ∈ Υ. The following values ujk(v), j ∈ Jv, k = 1, 2, are

outgoing at v,

If λj+ > λj− > 0 λj+ > 0 > λj− 0 > λj+ > λj−

lj(v) = 0 uj1(v), uj2(v) uj1(v) none

lj(v) = 1 none uj2(v) uj1(v), uj2(v)

.

Denote by αj the number of positive eigenvalues on ej . Then we see that

for a given vertex v with valence |Jv| the number of outgoing values is given by

kv :=
∑

j∈Jv

(2(1 − αj)lj(v) + αj). (2.6)

Definition 2.2. We say that v is a sink, and write v ∈ Υz, if either αj = 2

and lj(v) = 1 or αj = 0 and lj(v) = 0 for all j ∈ Jv. We say that v is a source,

and write v ∈ Υs, if either αj = 0 and lj(v) = 1 or αj = 2 and lj(v) = 0 for all

j ∈ Jv. If v is neither a source nor a sink, then we say that v is a transient (or

internal) vertex and write v ∈ Υt.

We observe that if v ∈ Υz, then kv = 0 (so that no boundary conditions are

imposed at a sink), while if v ∈ Υs, then kv = 2|Jv|.
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A typical example of (2.5) is Kirchhoff’s law that requires that the total

inflow rate into a vertex must equal the total outflow rate from it. Since it

provides only one equation, in general it is not sufficient to ensure the well-

posedness of the problem. So, we introduce the following definition.

Definition 2.3. We say that p satisfies a generalized Kirchhoff conditions at

v ∈ Υ \ Υz if, for u = F
−1p, (2.5) is satisfied for some matrix Φv = ΨvF

−1

with kv given by (2.6).

To realize the requirement that the outgoing values should be determined

by the incoming ones, we have to analyze the structure of Ψv. Let us introduce

the partition

{1, . . . ,m} =: J1 ∪ J2 ∪ J0, (2.7)

where j ∈ J1 if αj = 1, j ∈ J2 if αj = 2 and j ∈ J0 if αj = 0. This partition

induces the corresponding partition of each Jv as

Jv := Jv,1 ∪ Jv,2 ∪ Jv,0.

We also consider another partition Jv = J0
v ∪ J1

v , where j ∈ J0
v if lj(v) = 0 and

j ∈ J1
v

if lj(v) = 1. Then we can give an alternative expression for kv as

kv =
∑

j∈J0
v

αj +
∑

j∈J1
v

(2 − αj) = |Jv,1| + 2(|J0
v ∩ Jv,2| + |J1

v ∩ Jv,0|). (2.8)

Then, by [2, Lemma 3.6],

(i) uj1(0) is outgoing if and only if j ∈ (Jv,1 ∪ Jv,2) ∩ J0
v
,

(ii) uj2(0) is outgoing if and only if j ∈ Jv,2 ∩ J0
v ,

(iii) uj1(1) is outgoing if and only if j ∈ Jv,0 ∩ J1
v ,

(iv) uj2(1) is outgoing if and only if j ∈ (Jv,1 ∪ Jv,0) ∩ J1
v .

We introduce the block diagonal matrix

F̃out(v) = diag{F̃j
out(v)}j∈Jv

, (2.9)

7



where

F̃
j
out(v) =






 0 0

0 0


 if j ∈ (Jv,0 ∩ J0

v) ∪ (Jv,2 ∩ J1
v),


 f j

+,1(lj(v)) f j
−,1(lj(v))

f j
+,2(lj(v)) f j

−,2(lj(v))


 if j ∈ (Jv,0 ∩ J1

v) ∪ (Jv,2 ∩ J0
v),


 f j

+,1(0) 0

f j
+,2(0) 0


 if j ∈ Jv,1 ∩ J0

v
,


 0 f j

−,1(1)

0 f j
−,2(1)


 if j ∈ Jv,1 ∩ J1

v
.

Further, by Fout(v) we denote the contraction of F̃out(v); that is, the 2|Jv|×kv
matrix obtained from F̃out(v) by deleting 2|Jv| − kv zero columns, and then

define Fin(v) as the analogous contraction of F(v) − F̃out(v).

In a similar way, we extract from u(v) the outgoing boundary values ũout(v) =

(ũj
out(v))j∈Jv

by

ũ
j
out(v) =





(0, 0)T if j ∈ (Jv,0 ∩ J0
v) ∪ (Jv,2 ∩ J1

v),

(uj1(lj(v)), uj2(lj(v)))T if j ∈ (Jv,0 ∩ J1
v

) ∪ (Jv,2 ∩ J0
v
),

(uj1(0), 0)T if j ∈ Jv,1 ∩ J0
v ,

(0, uj2(1))T if j ∈ Jv,1 ∩ J1
v
,

and ũin(v) = u(v) − ũout(v). As above, we define uout(v) to be the vector in

Rkv obtained by discarding the zero entries in ũout(v), as described above and,

similarly, uin(v) is the vector in R2|Jv|−kv obtained from ũin(v).

Proposition 2.4. [2, Proposition 3.8] Boundary system (2.5) at v ∈ Υ \Υz is

equivalent to

ΦvFout(v)uout(v) + ΦvFin(v)uin(v) = 0 (2.10)

and hence it uniquely determines the outgoing values of u(v) at v as defined by

Definition 2.1 if and only if

ΦvFout(v) is nonsingular. (2.11)

Then

uout(v) = −(ΦvFout(v))−1ΦvFin(v)uin(v). (2.12)
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To pass from (1.3) with Kirchhoff’s boundary conditions at each vertex v ∈
Υ \ Υz to (1.1) we have to write the former in a global form. Assuming the

vertices in Υ\Υz are ordered as {v1, . . . ,vr′}, we define Ψ′ = diag{Ψv}v∈Υ\Υz

and γu = ((u(v))v∈Υ\Υz
)T and write (2.5) as

Ψ′γu = 0. (2.13)

We note that the function values that are incoming at v ∈ Υz do not influence

any outgoing data. To keep, however, the track of all vertex values, we aug-

ment Ψ′ with zero columns corresponding to edges coming to sinks and denote

such an augmented matrix by Ψ. Since, by the hand shake lemma, we have

2
∑

v∈Υ
|Jv | = 4m and, by [2, Section 3.2],

∑
v∈Υ\Υz

kv = 2m, Ψ is a 2m× 4m

matrix. In the same way, we can provide a global form of (2.10), splitting (2.13)

as

Ψoutγuout + Ψinγuin = 0, (2.14)

where Ψout = diag{ΦvFout(v)}v∈Υ\Υz
and Ψin = diag{ΦvFin(v)}v∈Υ\Υz

,

augmented by zero columns corresponding to the incoming functions at the

sinks, γuout := ((uout(v))v∈Υ\Υz
)T , and γuin is ((uin(v))v∈Υ\Υz

)T augmented

by incoming values at the sinks.

Using the adopted parametrization and the formalism of Definition 2.1, we

only need to distinguish between functions describing the flow from 0 to 1 and

from 1 to 0. Accordingly, we group the Riemann invariants u into parts corre-

sponding to positive and negative eigenvalues and rename them as:

υ :=
(

(uj1)j∈J1∪J2
, (uj2)j∈J2

)
= (υj)j∈J+ ,

̟ :=
(

(uj1)j∈J0
, (uj2)j∈J1∪J0

)
= (̟j)j∈J− ,

(2.15)

where J+ and J− are the sets of indices j with, respectively, at least 1 positive

eigenvalue, and at least 1 negative eigenvalue of Mj . In J+ (respectively J−)

the indices from J2 (respectively J0) appear twice so that we renumber them

in some consistent way to avoid confusion. For instance, we can take J+ =
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{1, . . . ,mu,mu + 1, . . . ,m+} and J− = {m+ + 1, . . . ,mu,mu + 1, . . . , 2m} and

there are bijections between, respectively, J1∪J2 and {1, . . . ,mu}, J2 and {mu+

1, . . . ,m+}, J0 and {m+ + 1, . . . ,mu}, and J1 ∪ J0 and {mu + 1, . . . , 2m}. We

emphasize that such a renumbering is largely arbitrary and different ways of

doing it result in just re-labelling of the components of (1.1) without changing

its structure.

In this way, we converted Γ into a multi digraph Γ with the same vertices

Υ, in such a way that each edge of Γ was split into two arcs parametrized by

x ∈ [0, 1], where x = 0 on each arc corresponds to the same vertex in Γ and the

same is valid for x = 1. Conversely, if we have a multi digraph Γ, where all edges

appear in pairs and each two edges joining the same vertex are parametrized

concurrently, then we can collapse Γ to a graph Γ.

Using this construction, the second order hyperbolic problem (1.3), (2.14)

was transformed into first order system (1.1) with (2.14) written in the form

(1.2). It is clear, however, that (1.1) can be formulated with an arbitrary matrix

Ξ. Thus, we arrive at the main problem considered in this paper, how to

characterize matrices Ξ that arise from Ψ so that (1.1) describes a network

dynamics.

3 Graph realizability of port-Hamiltonians

3.1 Connectivity at a vertex

For a graph Γ, let us consider the multi digraph Γ constructed above. The sets

of vertices Υ are the same for Γ and Γ. For v ∈ Υ of Γ, we can talk about

incoming and outgoing arcs which are determined by j ∈ Jv , lj(v) and the signs

of λj+ and λj−, as in Definition 2.1. We denote by J+
v and J−

v the (ordered) sets

of indices of arcs εj incoming and, respectively, outgoing from v in Γ. We note

that |J−
v | = kv , the number of the outgoing conditions. With this notation, the

matrix Ψv can be split into two matrices

Ψout
v

= (ψj
v,i)1≤i≤kv ,j∈J

−
v

, Ψin
v

= (ψj
v,i)1≤i≤kv ,j∈J

+
v

.
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Since no outgoing value should be missing, we assume

no column or row of Ψout
v

is identically zero. (3.1)

These matrices provide some insight into how the arcs are connected by the

flow which is an additional feature, superimposed on the geometric structure of

the incoming and outgoing arcs at the vertex. In principle, these two structures

do not have to be the same, that is, it may happen that the substance flowing

from εj , j ∈ J+
v
, is only directed to some of the outgoing arcs. An extreme case

of such a situation is when both Ψout
v and Ψin

v are completely decomposable,

see [8], with blocks in both matrices having the same row indices. Then, from

the flow point of view, v can be regarded as several nodes of the flow network,

which are not linked with each other. Such cases, where the geometric structure

at a vertex is inconsistent with the flow structure, may generate problems in

determining the graph underlying transport problems. Thus in this paper we

adopt assumptions ensuring that the map of the flow connections given by the

matrices Ψout
v and Ψin

v coincides with the geometry at v. We begin with the

necessary definitions.

Consider first a transient vertex v. We say that the arc εj , j ∈ J+
v , flow

connects to εl, l ∈ J−
v
, if ψj

v,i 6= 0 and ψl
v,i 6= 0 for some 1 ≤ i ≤ kv. Using this

idea, we construct a connectivity matrix Cv = (cv,lj)l∈J
−
v ,j∈J

+
v

, where

cv,lj =





1 if εj flow connects to εl,

0 otherwise.

Remark 3.5. We observe that the above definition implies that for εj and εl

to be flow connected, εj and εl must be incident to the same vertex.

Remark 3.6. We observe that Cv can be interpreted as the adjacency matrix

of the bipartite line digraph constructed from the incoming and outgoing arcs

at v, where the connections between arcs are defined by flow connections, see

[8].

For an arbitrary matrix A = (aij)1≤i≤p,1≤j≤q , by Â = (âij)1≤i≤p,1≤j≤q we

denote the matrix with every nonzero entry of A replaced by 1.

11



Lemma 3.7. If v is a transient vertex,

Cv =
̂(

Ψ̂out
v

)T

Ψ̂in
v
. (3.2)

Proof. Denote B =
̂(

Ψ̂out
v

)T

Ψ̂in
v . Then bij = 1, i ∈ J−

v , j ∈ J+
v if and only if

kv∑

r=1

ψ̂i
v,rψ̂

j
v,r 6= 0.

This occurs if and only if there is r = 1, . . . , kv such that both ψ̂i
v,r 6= 0 and

ψ̂j
v,r 6= 0, which is equivalent to εj flow connecting with εi, that is, cv,ij = 1.

Let v be a source (as we do not impose boundary conditions on sinks). As

above, we need to ensure that the flow from a source cannot be split into several

isolated subflows. Though here we do not have inflows and outflows, we use a

similar idea and say that εi and εj , i, j ∈ J−
v
, are flow connected if there is

l ∈ {1, . . . , kv} such that ψi
v,l 6= 0 and ψj

v,l 6= 0. As before, we construct a

connectivity matrix Cv = (cv,ij)i,j∈J
−
v

, where

cv,ij =





1 if εj and εi are flow connected,

0 otherwise.
(3.3)

Note that, contrary to the internal vertex, the connectivity matrix is symmetric.

We also do not stipulate that i 6= j so that εj is always flow connected to itself

and hence, by (3.1), each entry of the diagonal of Cv is 1. We have similarly

Lemma 3.8. If v is a source,

Cv =
̂(

Ψ̂out
v

)T

Ψ̂out
v
. (3.4)

Proof. As before, let B =
̂(

Ψ̂out
v

)T

Ψ̂out
v . Then bij = 1, i, j ∈ J−

v , if and only if

kv∑

r=1

ψ̂i
v,rψ̂

j
v,r 6= 0.

12



Certainly, by (3.1), bii = 1, i ∈ J−
v
. For i 6= j, this occurs if and only if there is

r ∈ {1, . . . , kv} such that both ψ̂i
v,r 6= 0 and ψ̂j

v,r 6= 0 which is equivalent to εj

and εi being flow connected, that is, cv,ij = 1.

We adopt an assumption that the structure of flow connectivity is the same

as of the geometry at the vertex. Thus, if v is an internal vertex and j ∈ J+
v

and i ∈ J−
v , then εj flow connects to εi. Mathematically, we assume that

Cv = 1v =




1 1 . . . 1

...
...

...
...

1 1 . . . 1


 (3.5)

for all v ∈ Υt; the dimension of Cv is |J−
v | × |J+

v |.
If v ∈ Υs, then we assume that the outflow from v cannot be separated into

independent subflows, that is, that the arcs outgoing from v cannot be divided

into groups such that no arc in any group is flow connected to an arc in any

other. Equivalently, for each two arcs εi and εj , i, j ∈ J−
v , there is a sequence

j = j0, j1, . . . , jk = i such that εjr and εjr+1 , r = 0, . . . , k−1 are flow connected.

Indeed, if such a division was possible, then it would be impossible to find such a

sequence between indices j and i in different groups as some pair would have to

connect arcs from these different groups. Conversely, if for some arcs εi and εj

there is no such a sequence, then we can build two groups of indices containing,

respectively, i and j, by considering all indices for which such sequences can

be found. Clearly, no arc in the first group is flow connected to any arc in the

second as otherwise there would be a sequence connecting εj and εi. Since, by

Lemma 3.8, Cv can be considered as the adjacency matrix of the graph with

vertices given by {εj}j∈J
−
v

and the edges determined by the flow connectivity

(3.3), and Cv is symmetric, we see that the above assumption is equivalent to

Cv is irreducible. (3.6)

Remark 3.9. Assumption (3.6) is weaker than requiring that each two arcs

from {εj}j∈J
−
v

are flow connected. Then we would have Cv = 1|J−
v
|×|J−

v
|.

13



Proposition 3.10. Let v ∈ Υt. If system (2.5)

Ψvu(v) = 0 (3.7)

contains a Kirchhoff’s condition

∑

j∈Jv

(ψj
v,ru

j
1(v) + ψj

v,ru
j
2(v)) = 0, (3.8)

with ψj
v,r 6= 0 for all j ∈ Jv and some r ∈ {1, . . . , kv}, then (3.5) is satisfied.

Proof. Condition (3.8) ensures that each entry of the r-th row of both Ψ̂out
v

and

Ψ̂in
v

is 1 and thus the product of each column of Ψ̂out
v

with each column of Ψ̂in
v

is non-zero, which yields (3.5).

Example 3.11. Consider the model of [18], analysed in the framework of our

approach in [2, Example 5.12],

∂tp
j
1 +Kj∂xp

j
2 = 0, ∂tp

j
2 + Lj∂xp

j
1 = 0, (3.9)

for t > 0, 0 < x < 1, 0 ≤ j ≤ m, where Kj > 0, Lj > 0 for all j. For a given

vertex v, we define (p1(v),p2(v)) = ((pj1(v), pj2(v))j∈Jv
, νj(v) = −1 if lj(v) = 0

and νj(v) = 1 if lj(v) = 1, and Tvp2(v) = (νj(v)pj2(v))j∈Jv
. In this case αj = 1

for any j and thus for any vertex v we need |Jv| boundary conditions. We

focus on v with |Ev | > 1. Then we split R|Jv| into Xv of dimension nv and its

orthogonal complement X⊥
v

of dimension lv = |Jv | − nv and require that

p1(v) ∈ Xv, Tvp2(v) ∈ X⊥
v ,

that is, denoting I1 = {1, . . . , nv} and I2 = {nv + 1, . . . , |Jv|},

∑

j∈Jv

φjrp
j
1(v) = 0, r ∈ I2,

∑

j∈Jv

ϕj
rν

j(v)pj2(v) = 0, r ∈ I1, (3.10)

where ((ϕj
r)j∈Jv

)r∈I1 is a base in Xv and ((φjr)j∈Jv
)r∈I2 is a base in X⊥

v
. It is

clear that, in general, boundary conditions (3.10) do not satisfy (3.5). Consider

v such that each ej incident to v is parameterised so as lj(v) = 0 so that each

14



uj1(0) is outgoing and each uj2(0) is incoming. If we take φjr = ϕj
r = δrj and

Lj = Kj = 1 for j ∈ Jv, we obtain

pr1(0) = ur1(0) + ur2(0) = 0, r = nv + 1, . . . , |Jv|,

pr2(0) = ur1(0) − ur2(0) = 0, r = 1, . . . , nv.

Thus Ψ̂out
v and Ψ̂in

v are both the identity matrices and (3.5) is not satisfied.

On the other hand, the Kirchhoff condition,

∑

j∈Jv

νj(v)pj2(v) = 0, (3.11)

see [18, Eqn (4)], satisfies (3.5), as we have

0 =
∑

j∈Jv

νj(v)pj2(v) =
∑

j∈Jv

νj(v)(f j
+,2(v)uj1(v) + f j

−,2(v)uj2(v))

=
∑

j∈Jv

νj(v)
√
KjLj(uj1(v) − uj2(v))

= −
∑

j∈J0
v

√
KjLjuj1(0) −

∑

j∈J1
v

√
KjLjuj2(1)

+
∑

j∈J1
v

√
KjLjuj1(1) +

∑

j∈J0
v

√
KjLjuj2(0),

where we used [2, Eqn 5.2]. Thus the assumption of Proposition 3.10 is satisfied.

Example 3.12. Let us consider the linearized Saint-Venant system,

∂tp
j
1 = −V j∂xp

j
1 −Hj∂xp

j
2, ∂tp

j
2 = −g∂xpj1 − V j∂xp

j
2, (3.12)

see [2, Example 1.2], assuming that on each edge we have λj± = V j±
√
gHj > 0.

Then we have

(
pj1
pj2

)
=

(
f j
+,1u

j
1 + f j

−,1u
j
2

f j
+,2u

j
1 + f j

−,2u
j
2

)
=

(
Hjuj1 +Hjuj2√
gHjuj1 −

√
gHjuj2

)
. (3.13)

We use the flow structure of [10, Example 5.1], shown in Fig. 1, and focus on

v1, where we need 2N − 2 boundary conditions which were given as

pj1(0) = p11(1), pj2(0) = p12(1), j = 2, . . . , N.
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Figure 1: Starlike network of channels

In terms of the Riemann invariants, they can be written as




H2 H2 0 0 . . . 0 0
√
gH2 −

√
gH2 0 0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . HN HN

0 0 0 0 . . .
√
gHN −

√
gHN







u21(0)

u22(0)
...

uN1 (0)

uN2 (0)




=




H1 H1

√
gH1 −

√
gH1

...

H1 H1

√
gH1 −

√
gH1





 u11(1)

u12(1)




and it is clear that (3.5) is satisfied.

3.2 Graph reconstruction

For a matrix A = (aij)1≤i≤n,1≤j≤m, denote by ac
j , 1 ≤ j ≤ m, the columns of A

and by ar
i , 1 ≤ i ≤ n, the set of its rows. Then we often write

A = (ac
j)1≤j≤m = (ar

i )1≤i≤n, (3.14)
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that is, we represent the matrix as a row vector of its columns or a column

vector of its rows. In particular, we write

Ξout = (ξoutij )1≤i≤2m,1≤j≤2m = (ξout,cj )1≤j≤2m = (ξout,ri )1≤i≤2m,

Ξin = (ξinij )1≤i≤2m,1≤j≤2m = (ξin,cj )1≤j≤2m = (ξin,ri )1≤i≤2m.

For any vector µ = (µ1, . . . , µk), we define supp µ = {j ∈ {1, . . . , k}; µj 6= 0}.

Definition 3.13. We say that (1.1) is graph realizable if there is a graph Γ =

{{vi}1≤i≤r, {ek}1≤k≤m} and a grouping of the column indices of Ξ into pairs

(j′k, j
′′

k )1≤k≤m such that (1.1a) describes a flow along the edges ek of Γ, which

satisfies a general Kirchhoff’s condition at each vertex of Γ. In other words,

(1.1) is graph realizable if there is a graph Γ and a Kirchhoff’s matrix Ψ such

that (1.1a), (1.1c) can be written, after possibly permutating rows and columns

of Ξ, as (2.2), (2.14).

Before we formulate the main theorem, we need to introduce some notation.

Let us recall that we consider the boundary system (1.2)

Ξout((υj(0, t))j∈J+ , (̟j(1, t))j∈J− ) = −Ξin((υj(1, t))j∈J+ , (̟j(0, t))j∈J−).

Let us emphasize that in this notation, the column indices on the left and right

hand side correspond to the values of the same function. To shorten notation,

let us renumber them as 1 ≤ j ≤ 2m. As noted in Introduction, appropriate

pairs of the columns would determine the edges of the graph Γ that we try

to reconstruct, hence the first step is to identify the possible vertices of Γ.

For this, we first will try to construct a multi digraph Γ on which (1.2) can

be written in the form (2.14) for (υ,̟). Roughly speaking, this corresponds

to Ξout and Ξin being composed (up to permutations) of non-communicating

blocks corresponding to the vertices. Here, each j should correspond to an arc

εj and the column j on the left hand side corresponds to the outflow along εj

from a unique vertex, while the column j on the right hand side corresponds

to the inflow along εj to a unique vertex. The vertices of Γ should be then

determined by a suitable partition of the rows of Ξout (and of Ξin).
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In the second step we will determine additional assumptions that allow Γ to

be collapsed into a graph Γ on which (1.2) can be written in the form (2.14).

Since we do not want (1.2) to be under- or over-determined, we assume

∀1≤j≤2m ξ
out,c
j 6= 0 and ξ

out,r
j 6= 0. (3.15)

Our strategy is to treat Ξout and Ξin as the outgoing and incoming incidence

matrices of a multi digraph with vertices ‘smeared’ over subnetworks of flow

connections. Thus we assume that

A:=
̂(

Ξ̂out

)T

Ξ̂in is the adjacency matrix of a line digraph. (3.16)

For A, let V out
j and V in

i be groups of row and column indices, respectively,

potentially outgoing from (respectively incoming to) a vertex, see Appendix A.

We introduce

I := {i ∈ {1, . . . , 2m}; ξ
in,r
i = 0}

and assume that

∀i∈I∃1≤j≤M ′ supp ξ
out,r
i ⊂ V out

j , (3.17)

where supp denotes the support of the vector. In the next proposition we shall

show that V out
j and V in

i determine a partition of the row indices into sets that

can be used to define vertices. The idea is that if supports of columns of Ξout

or Ξin overlap, the arcs determined by these columns must be incident to the

same vertex.

Proposition 3.14. If (3.15), (3.16) and (3.17) are satisfied, then the sets

{{Vi}1≤i≤n,VS}, (3.18)

where

VS = {i ∈ {1, . . . , 2m}; supp ξ
out,r
i ⊂ V out

M ′ }, (3.19)

Vi =
⋃

s∈V out
i

supp ξout,cs , 1 ≤ i ≤ n, (3.20)

form a partition of the row indices of both Ξout and Ξin such that if for any j,

supp ξ
out,c
j ∩ Vi 6= ∅ for some i = 1, . . . , n, S, then supp ξ

out,c
j ⊂ Vi, and if for

any k, supp ξ
in,c
k ∩ Vl 6= ∅ for some l = 1, . . . , n, S, then supp ξ

in,c
k ⊂ Vl.
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Proof. By (3.16), A is the adjacency matrix of L(Γ) for some multi digraph Γ.

As explained in Appendix A, we can reconstruct Γ with the transient vertices

defined in a unique way and admissible sources and sinks. Let us fix such a con-

struction. Then we have the sets {V in
j }1≤j≤n and {V out

i }1≤i≤n of incoming and

outgoing arcs determining any transient vertex. Further, we have (possibly) the

sets V in
N ′ and V out

M ′ that group the arcs incoming to sink(s) and, respectively, out-

going from source(s). Since A represents all arcs, the same decomposition is valid

for Ξout and Ξin, that is, we have subdivisions {V out
i }1≤i≤M ′ and {V in

j }1≤j≤N ′

of the columns of Ξout and Ξin, respectively, and hence the correspondence of

the columns with the vertices. Thus we have to show that (3.18) is a partition

of the rows of Ξout and Ξin satisfying the conditions of the proposition.

Let us recall that the entry aij of A is defined by
̂̂

ξ
out,c
i · ξ̂in,cj and if a row

k of A is zero, that is, it represents a source, then there is a zero row in Ξin.

Indeed, since, by (3.15), supp ξ
out,c
k 6= ∅, there is a nonzero entry, say, ξoutlk

and thus we must have ξinlj = 0 for any j. So, to every zero row in A, there

corresponds a zero row in Ξin. There may be, however, other zero rows in Ξin.

To determine the rows in Ξout, corresponding to sources, we consider (3.17).

First we note that any j of that assumption, if it exists, is determined in a unique

way as the sets V out
j are not overlapping. Next we observe that if supp ξ

out,r
i ⊂

V out
j and supp ξ

out,r
i ∩ supp ξ

out,r
k 6= ∅, then supp ξ

out,r
k ⊂ V out

j . Indeed, if

supp ξ
out,r
k ⊂ V out

p and l ∈ supp ξ
out,r
i ∩ supp ξ

out,r
k , then l ∈ V out

j ∩V out
p which

implies V out
j = V out

p . Thus we can define the set

VS = {i ∈ {1, . . . , 2m}; supp ξ
out,r
i ⊂ V out

M ′ }.

For any i ∈ VS and q ∈ supp ξ
out,r
i , we have supp ξout,cq ⊂ I, as otherwise

there would be a nonzero product ξ
out,c
q · ξin,cs for some s as ξ

in,r
t 6= 0 for each

t /∈ I. Then, let there be k such that supp ξout,cp ∩ supp ξ
out,c
j ∋ k for some

j ∈ V out
M ′ . This means, by (3.17), that supp ξ

out,r
k ⊂ V out

M ′ and hence p ∈ V out
M ′ .

Consider any nonzero element of ξout,cp , say, ξoutlp 6= 0. By the above argument,

l ∈ I. If supp ξ
out,r
l ⊂ V out

M ′ , then l ∈ VS . If not, supp ξ
out,r
l ∩ V out

j 6= ∅ for
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some j 6= M ′ which contradicts (3.17). Thus, VS satisfies the first part of the

statement. The second part is void as there is no ξ
in,c
j with supp ξ

in,c
j ∩VS 6= ∅.

Therefore all indices i ∈ VS , that is, such that supp ξ
out,r
i ⊂ V out

M ′ , determine a

source as there is no connection to any inflow.

Now, consider the indices i ∈ I \VS . Then, again by (3.17), for any i ∈ I \VS
there is a unique j 6= M ′ such that supp ξ

out,r
i ⊂ V out

j , that is, such an i

belongs to the vertex determined by V out
j . This determines a partition of I

corresponding to the vertices (recall that there are no zero rows in Ξout and so

each row must belong to a vertex).

Next we associate the remaining rows in Ξout and Ξin with the vertices.

Consider V out
i and V in

j for some 1 ≤ i ≤ n and j defined by (A.2). The non-

zero entries apq of A, where p ∈ V out
i and q ∈ V in

j , occur whenever supp ξout,cp ∩
supp ξin,cq 6= ∅. Hence, the rows with indices k ∈ supp ξout,cp ∩ supp ξin,cq

must belong to a vertex through which the incoming arc εq communicates

with the outgoing arc εp. Since all nonzero entries in, respectively, supp ξout,cp

and supp ξin,cq reflect non-zero outflow along εp, respectively, inflow along εq,

supp ξout,cp and supp ξin,cq must belong to the same vertex. Since the same is

true for any indices from V out
i and V in

j , plausible partitions of row indices of

Ξout and Ξin defining vertices are,

V
out
i =

⋃

s∈V out
i

supp ξout,cs , V
in
j =

⋃

q∈V in
j

supp ξin,cq .

We first observe that if V out
i and V in

j determine the same transient vertex, then

V
out
i \ {s ∈ V

out
i ; ξin,rs = 0} = V

in
j . (3.21)

Indeed, let p ∈ V
out
i \ {s ∈ V

out
i ; ξin,rs = 0}. Then there is s ∈ V out

i such that

p ∈ supp ξout,cs . Since p /∈ {s ∈ V
out
i ; ξin,rs = 0}, there is q such that ξinpq 6= 0 and

thus ξ̂
out,c
s · ξ̂in,cq 6= 0. Hence, q ∈ V in

j and consequently p ∈ V
in
j . The converse

can be proved in the same way by using assumption (3.15) since if p ∈ V
in
j then,

by construction, p must belong to a support of some ξin,cq and thus cannot be

in {s ∈ V
out
i ; ξin,rs = 0}. As we see, if Vout

i contains rows ξout,rk with k ∈ I \VS ,
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then these rows satisfy supp ξ
out,r
k ⊂ V out

i . If we add the indices of such rows

to V
in
j with V in

j determining the same vertex as V out
i , then such an augmented

V
in
j will be equal to V

out
i and thus we use can use (3.18) to denote the partition

of {1, . . . , 2m} into V
out
1 , . . . ,Vout

n ,VS .

We easily check that this partition satisfies the conditions of the proposition.

We have already checked this for VS . So, let supp ξout,cq ∩ V
out
i 6= ∅ for some

1 ≤ i ≤ n, then there is s ∈ V out
i such that k ∈ supp ξout,cq ∩ supp ξout,cs .

Clearly, k /∈ VS by the construction of V
out
i . If k ∈ I \ VS , then q ∈ V out

i by

assumption (3.17) and hence supp ξ
out,c
q ⊂ V

out
i . If k /∈ I, then ξ̂

out,c
s · ξ̂in,cp 6= 0

for some p but then also ξ̂in,cp · ξ̂out,cq 6= 0 and hence p ∈ V in
j , yielding q ∈ V out

i

and consequently supp ξout,cq ⊂ V
out
i . Similarly, if supp ξin,cp ∩ V

out
i 6= ∅, then

there is k ∈ supp ξin,cp ∩ supp ξout,cq for some q ∈ V out
i . But then, immediately

from the definition, supp ξin,cp ⊂ V
in
j ⊂ V

out
i by (3.21).

We note that (3.18) does not contain rows corresponding to sinks and they

must be added following the rules described in Appendix A. With such an

extension, we consider the multi digraph Γ, determined by

{{Vi}1≤i≤n,VS ,VZ}, {{V out
i }1≤i≤n, V

out
M ′ , ∅}, {{V in

ji
}1≤i≤n, ∅, V in

N ′}, (3.22)

where the association i 7→ ji is defined in (A.2). By construction, if we take the

triple Vi, V
out
i , V in

ji
, 1 ≤ i ≤ n, it determines a transient vertex, the outgoing

arcs given by the indices of columns in Ξout and the incoming arcs given by the

indices of columns in Ξin. Similarly, the pair VS, V
out
M ′ determines the sources

and all outgoing arcs, while the set of incoming arcs is empty. Thus, if we

denote by Ξi
out and Ξi

in the submatrices of Ξout and Ξin consisting of the rows

with indices in Vi and columns in V out
i and V in

ji
, respectively, with an obvious

modification for VS , then (1.2) decouples into n (or n+ 1) independent systems

Ξi
out((υj(0, t))j∈J+∩V out

i
, (̟j(1, t))j∈J−∩V out

i
)

= −Ξi
in((υj(1, t))j∈J+∩V in

ji

, (̟j(0, t))j∈J−∩V in
ji

), 1 ≤ i ≤ n,

ΞS
out((υj(0, t))j∈J+∩V out

M′
, (̟j(1, t))j∈J−∩V out

M′
) = 0.

(3.23)
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This system can be seen as a Kirchhoff system on the multi digraph Γ but

we need to collapse Γ to a graph Γ on which (3.23) can be written as (2.14).

We observe that the question naturally splits into two problems – one is about

collapsing the graph, while the other is about grouping the components of (υ,̟)

into pairs compatible with the parametrization of Γ.

Let A be the adjacency matrix of L(Γ), with (3.17) and (3.15) satisfied. As

in Appendix A, we can construct outgoing and incoming incidence matrices A+

and A− but these are uniquely determined only if there are no sources and sinks.

We have, however, an additional piece of information about sources.

If we grouped all sources into one node, as before Proposition A.19, then,

by Lemma 3.8, the flow connectivity in this source was given by

Cv :=
̂(

Ξ̂S
out

)T

Ξ̂S
out.

However, such a matrix would not necessarily satisfy assumption (3.6). Thus,

we separate the arcs into non-communicating groups, each determining a source

satisfying (3.6). For this, by simultaneous permutations of rows and columns,

Cv can be written as

ΞS = diag{ΞS
i }1≤i≤k, (3.24)

where k may equal 1. Since the simultaneous permutation of rows and columns

is given as PCvP
T , where P is a suitable permutation matrix, [16, p. 140],

we see that ΞS is a symmetric matrix, along with Cv. By [11, Sections III

§ 1 and III § 4], ΞS is irreducible if and only if it cannot be transformed by

simultaneous row and column permutations to the form (3.24) with k > 1 (since

ΞS is symmetric, all off-diagonal blocks must be zero). Then ΞS can be reduced

to the canonical form, [11, Section III, Eq. (68)], in which each ΞS
i is irreducible.

If (3.24) is in the canonical form, then we say that ΞS allows for k sources, each

satisfying (3.6). The indices of the columns contributing to the blocks define the

k non-communicating sources VS1
, . . . ,VSk

in Γ, which we denote V out
S1

, . . . , V out
Sk

,
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V out
M ′ = V out

S1
∪ . . . ∪ V out

Sk
. Finally, define ξout,r = (ξout,rSij

)1≤i≤k,1≤j≤2m by

ξout,rSij
=





1 if j ∈ V out
Si

,

0 otherwise.

For the sinks, it is simpler as there is no constraining information from (1.2).

We have columns with indices in V in
N ′ corresponding to sinks. These are zero

columns in Ξin but the columns with these indices in Ξout have nonempty

supports and thus we can determine from which vertices they are outgoing. Let

us denote

V in
Vi

= {j ∈ V in
N ′ ; supp ξ

out,c
j ∩ Vi 6= ∅}, i = 1, . . . , n, S1, . . . , Sk. (3.25)

For each i we consider a partition

V in
Vi

= V in
i,1 ∪ . . . ∪ V in

i,li
, i = 1, . . . , n, S1, . . . , Sk, (3.26)

where li ≤ |V in
Vi

|, into non-overlapping sets V in
i,l , 1 ≤ l ≤ li. Then we define sinks

Vi,l as the heads of the arcs with indices from V in
i,l ; we have nz = l1 + · · · + lSk

sinks. Then, as above, define ξin,r = (ξin,r{i,l},q)i∈{1,...,Sk},l∈{1,...,li},q∈{1,...,2m} by

ξin,r{i,l},q =





1 if q ∈ V in
i,l ,

0 otherwise.

Remark 3.15. We expect |V in
Vi

|, i = 1, . . . , n, S1, . . . , Sk, to be even numbers

and (3.26) to represent a partition of V in
Vi

into pairs so that li = |V in
Vi

|/2.

Then, as in Remark A.20, the incoming and outgoing incidence matrices are

A+ =




A
+

0

ξin,r


 , A− =




A
−

ξout,r

0




which, by a suitable permutation of columns moving the sources and the sinks

to the last positions, can be written, respectively, as



A
+

T A
+

S 0 0

0 0 0 0

0 0 ZS Z


 and




A
−
T 0 0 A

−
Z

0 S SZ 0

0 0 0 0


 . (3.27)
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Both matrices have 2m columns and n := n+ k + nz rows. Hence, as shown in

Remark A.20, the adjacency matrix of the full multi digraph Γ is given by

A(Γ) = (aij)1≤i,j≤n = A+(A−)T =




A
+

T (A−
T )T A

+

S S
T 0

0 0 0

Z(A−
Z )T ZS(SZ)T 0


 , (3.28)

where the dimensions of the blocks in the first row are, respectively, n×n, n×k
and n × nz, in the second row, k × n, k × k and k × nz and in the last one,

nz × n, nz × k and nz × nz. Thus, if aij is in the block (p, q), 1 ≤ p, q ≤ 3, then

aji will be in the block (q, p).

Consider a nonzero pair (aij , aji) of entries of A(Γ). If, say, aij = h, then

it means that the i-th row of A+ and j-th row of A− have entry 1 in the same

h columns, that is, there are exactly h arcs coming from vj to vi. Similarly, if

aji = e, then there are exactly e arcs coming from vi to vj . Conversely, if there

are h arcs from vj to vi and e arcs from vi to vj , then (aij , aji) = (h, e). In

particular, h+e = 2 if and only if there are two arcs between vj and vi running

either concurrently or countercurrently. Since the columns of A+ and A− are

indexed in the same way as that of Ξout and Ξin, the pair (aij , aji) determines

the rows a
+,r
i and a

+,r
j of A+ and thus the indices

(aij 7→ {kij1 , . . . , kijh }, aji 7→ {kji1 , . . . , kjie })

= (aij 7→ supp a
+,r
i ∩ a

−,r
j , aji 7→ supp a

+,r
j ∩ supp a

−,r
i )

(3.29)

of columns of Ξout (and of Ξin).

Theorem 3.16. System (1.2) is graph realizable with Kirchhoff’s conditions

satisfying (3.1) and (3.5) for v ∈ Υt and (3.6) for v ∈ Υs if and only if, in

addition to (3.15), (3.16) and (3.17), there is a partition (3.26) such that A(Γ)

defined by (3.28) satisfies

1. for any 1 ≤ i, j ≤ n, aii = 0 and (aij , aji) is in one of the following form

(2, 0), (1, 1), (0, 2) or (0, 0); (3.30)
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2. if (aij , aji) determines the indices k and l according to (3.29), then

if (aij , aji) = (2, 0) or (0, 2), then k, l ∈ J+ or k, l ∈ J−

and ck 6= cl,

if (aij , aji) = (1, 1), then k ∈ J+ and l ∈ J−

or k ∈ J− and l ∈ J+.

(3.31)

Proof. Necessity. Let us consider the Kirchhoff system (2.14). By construction,

both matrices Ψout and Ψin are in block diagonal form with equal row dimen-

sions of the blocks. We consider the problem already transformed to Γ. We

note that each arc’s index must appear twice in Ψ – once in Ψout and once in

Ψin (if there are sinks, the indices of incoming arcs will correspond to the zero

columns). Further, whenever column indices k and l appear in the blocks of,

respectively, Ψout and Ψin, then εl is incoming to, while εk is outgoing from,

the same vertex (and not any other). Thus, by (3.5), the matrix

Ã = (ãij)1≤i,j≤2m =
̂

(Ψ̂out)T Ψ̂in

is block diagonal with blocks of the form Cv = 1v, except for zero rows corre-

sponding to the sources and zero columns corresponding to sinks. In general,

however, the column indices in Ψout and Ψin do not correspond to the indices

of the arcs they represent. Precisely, ãij = 1 if and only if there is a vertex

for which the arc εj
′

is incoming and εi
′

is outgoing, where j′ and i′ are the

indices of the arcs that correspond to the columns j and i of, respectively Ψin

and Ψout. To address this, we construct Ξout and Ξin as

Ξout = ΨoutP, Ξin = ΨinQ,

where P and Q are permutation matrices, so that in both matrices the column

indices 1, . . . , 2m correspond to ε1, . . . , ε2m. Hence

A = (aij)1≤i,j≤2m :=
̂

(Ξ̂out)T Ξ̂in =
̂

(Ψ̂outP )T Ψ̂inQ = PT ÃQ

is a matrix where the indices 1, . . . , 2m of both the columns and the rows cor-

respond to ε1, . . . , ε2m. Since Γ did not have loops, it is clear that aii = 0
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for all i = 1, . . . , 2m. It is also clear that any two columns (or rows) of Ã are

either equal or orthogonal and this property is preserved by permutations of

columns and of rows. Hence, by Proposition A.18, A is the adjacency matrix

of a line digraph and hence (3.16) is satisfied. Since the arcs’ connections given

by A and Ã are the same, we see that A is equal to the adjacency matrix of

the line graph of Γ. Therefore, the transient vertices determined by A are the

same as in Γ (and hence in Γ). On the other hand, as we know, A does not

determine the structure of sources and sinks in Γ. The fact that (3.15) is sat-

isfied is a consequence of (3.1). For (3.17), we recall, see Appendix A, that

the sets V out
j group together the indices representing arcs εk outgoing from a

single vertex, thus they correspond to the blocks Ψout
v in the matrix Ψout and

therefore (3.17) is satisfied, even for any i. Next, since Γ has been constructed

from Γ, the structure of the blocks in Ψout corresponding to sources ensures

that, after permutations, their entries will coincide with ΞS
out and thus (3.24)

will hold with the blocks in (3.24) exactly corresponding to the sources in Γ,

on account of (3.6). Similarly, in Γ the sinks are determined and thus we have

groupings of pairs of the arcs (a partition of the set of indices corresponding

to arcs incoming to sinks) coming from transient vertices or sources to sinks

and thus the constructions (3.27) and (3.28) are completely determined. Then

we observe that whenever we have a source v, then the arcs outgoing from v

must be coming in pairs with a single pair coming from v to any other possible

vertex, meaning that the respective entry in A(Γ) must be either (2, 0) or (0, 2).

Similar argument holds for the sinks. Since the problem comes from a graph, by

construction, the orientation of the flows is consistent with the parametrization.

Sufficiency. Given (1.2), we have flows ((υj)j∈J+ , (̟j)j∈J− ) defined on

(0, 1). Assumptions (3.15), (3.16) and (3.17) ensure, by Proposition 3.14, the

existence of a multi digraph Γ on which (1.2) can be localized to decoupled sys-

tems at vertices and written as (3.23). Precisely speaking, (3.16) associates the

indices of incoming components of the solution at a vertex with incoming arcs

and similarly for the indices of the outgoing components. Therefore, if an arc εp

runs from vj to vi, then the flow occurs from vj to vi, that is, if p ∈ J+, then
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the flow on εp is given by υp with υp(0) at vj and υp(1) at vi and analogous

statement holds for p ∈ J−. In other words, the index p of the arc εp running

from vj to vi determines the orientation of the parametrization: 0 7→ vj and

1 7→ vi if p ∈ J+ and 0 7→ vi and 1 7→ vj if p ∈ J−.

Now, assumption 1 ensures that there are no loops at vertices and that

between any two vertices there are either two arcs or none. If aij is an entry in

A
+

S S
T , Z(A−

Z )T or ZS(SZ)T , then aij = 0 or aij = 2 and, , by the dimensions

of the blocks, respectively, aji ∈ {0, 2} and aji = 0. On the other hand, if aij

is an entry in A
+

T (A−
T )T , then it can take any value 0, 1 or 2 and the aji equals,

respectively, 2 or 0, 1, 0. Thus, double arcs indexed, say, by (k, l), between

vertices could be combined into edges of an undirected graph (with no loops

and multiple edges). However, in this way we construct a combinatorial graph

which does not take into account that if εk and εl are combined into one edge e

of Γ, their orientations must be the same. Thus, if (aij , aji) = (2, 0) determines

the pair of indices k, l according to (3.31), then both arcs εk and εl of Γ run

from vj to vi and the components k and l of the solution flow concurrently along

e. By assumption, k, l ∈ J+ or k, l ∈ J−. In the first case, we associate vj with

0 and vi with 1 and we have (υk, υl) on e, in agreement with the orientation.

Otherwise, we associate vj with 1 and vi with 0 and we have (̟k, ̟l) on e.

On the other hand, if (aij , aji) = (1, 1) then, by assumption, either k ∈ J+ and

l ∈ J− or k ∈ J− and l ∈ J+ and the components k and l flow countercurrently.

Again, in the first case, k ∈ J+ and εk running from vj to vi requires vj to be

associated with 0 and vi with 1, while l ∈ J− and εl running from vi to vj also

requires vj to be associated with 0 and vi with 1. Thus, we have (υk, ̟l) on e.

Otherwise, we associate vj with 1 and vi with 0 and we have (̟k, υl) on e.

Finally, the assumption ck 6= cl in the first case of assumption (3.31) ensures

that the resulting system is hyperbolic on each edge.

Example 3.17. Let us consider the system

∂tυj + cj∂xυj = 0, 1 ≤ j ≤ 4,

∂t̟j − cj∂x̟j = 0, 5 ≤ j ≤ 6,
(3.32)
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where cj > 0, with boundary conditions




0 1 1 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1







υ1(0)

υ2(0)

υ3(0)

υ4(0)

̟5(1)

̟6(1)




=




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 0 0 0 1

0 0 1 1 1 0







υ1(1)

υ2(1)

υ3(1)

υ4(1)

̟5(0)

̟6(0)




.

(3.33)

Thus

A =
̂

(Ξ̂out)T Ξ̂in =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 0 0 0 1

0 0 1 1 1 0




.

Thus, there is a multi digraph Γ for which A is the adjacency matrix of L(Γ).

There is no sink and to determine the structure of the sources, we observe that

ΞS
out =




0 1 1 0

1 0 0 0

1 1 0 0

0 0 1 1




and so ΞS =
̂(

Ξ̂S
out

)T

Ξ̂S
out =




1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1



.

This matrix is irreducible and thus we have one source. Therefore

A+ =




1 1 0 0 0 1

0 0 1 1 1 0

0 0 0 0 0 0


 , A− =




0 0 0 0 1 0

0 0 0 0 0 1

1 1 1 1 0 0




and consequently

A =




0 1 2

1 0 2

0 0 0


 .
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•

v2 v1

v3

υ1υ2υ3 υ4

̟5

̟6

Figure 2: The reconstructed multi digraph Γ. It is seen that it cannot describe

a flow on Γ as ̟5 and ̟6 must flow in the same direction.

Further,

supp a
+,r
1 = {1, 2, 6}, supp a

+,r
2 = {3, 4, 5},

supp a
−,r
1 = {5}, supp a

−,r
2 = {6}, supp a

−,r
3 = {1, 2, 3, 4},

hence, by (3.29),

(a12 7→ {6}, a21 7→ {5}), (a13 7→ {1, 2}, a31 7→ ∅), (a23 7→ {3, 4}, a32 7→ ∅).

To reconstruct Γ, we see that ε5 and ε6 should be combined into a single edge

e. Since, however, J+ = {1, 2, 3, 4}, J− = {5, 6}, the flow along ε5 runs from 1

to 0 and hence v1 should correspond to 1 in the parametrization, while v2 to

0. On the other hand, ε6 runs also from 1 to 0 but from v2 to v1 and hence v2

should correspond to 1, while v1 to 0. This contradiction is in agreement with

the violation of assumption (3.31) as (a12, a21) = (1, 1) but in the corresponding

(k, l) = (6, 5), both k and l belong to J−.

Consider a small modification of (3.32), (3.33),

∂tυj + cj∂xυj = 0, 1 ≤ j ≤ 5,

∂t̟6 − c6∂x̟6 = 0,
(3.34)

cj > 0, with the last two boundary conditions of (3.33) accordingly changed to

υ5(0) − υ1(1) − υ2(1) −̟6(0) = 0,

̟6(1) − υ3(1) − υ4(1) − υ5(1) = 0.
(3.35)

29



• •

•

v2 v1

v3

υ1υ2υ3 υ4

υ5

̟6

Figure 3: The reconstructed multi digraph Γ for (3.34), (3.35)

The matrices Ξout,Ξin,Ξ
S , A+, A− and A are the same as above and thus the

multi digraph Γ is the same as before. However, this time on ε5 we have the

flow υ5, occurring from 0 to 1 and thus ε5 and ε6 can be combined with a

parametrization running from 0 at v1 to 1 at v2. Assuming c1 > c2, c3 > c4, we

identify u11 = υ1, u
1
2 = υ2, u

3
1 = υ3, u

3
2 = υ4, u

2
1 = υ5, u

2
2 = ̟6 and write (3.34) as

a system of 2 × 2 hyperbolic systems on a graph Γ = ({v1,v2,v3}, {e1, e2, e3})

∂tu
1
1 + c1∂xu

1
1 = 0,

∂tu
1
2 + c2∂xu

1
2 = 0,

∂tu
2
1 + c5∂xu

2
1 = 0,

∂tu
2
2 − c6∂xu

2
2 = 0,

∂tu
3
1 + c3∂xu

3
1 = 0,

∂tu
3
2 + c4∂xu

3
2 = 0,

(3.36)

with boundary conditions at

v1 : u21(0) − u11(1) − u12(1) − u22(0) = 0,

v2 : u22(1) − u31(1) − u32(1) − u21(1) = 0,

v3 :

u12(0) + u31(0) = 0,

u11(0) = 0,

u11(0) + u12(0) = 0,

u31(0) + u32(0) = 0.

(3.37)

A Line digraphs

Consider a digraph G (possibly with multiple arcs but with no loops) and its

line graph L(G). For both G and L(G) we consider their adjacency matrices
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v2 v1

v3

1

0 0

1
01

e1

e2

e3

u11u12u31 u32

u21

u22

Figure 4: A network Γ realizing the flow (3.36), (3.37)

A(G) and A(L(G)). The matrix A(L(G)) is always binary, with zeroes on the

diagonal. Not any binary matrix is the adjacency matrix of a line graph, see

[3, 6]. In fact, we have

Proposition A.18. A binary matrix A is the adjacency matrix of a line digraph

of a multi digraph if and only if all diagonal entries are 0 and any two columns

(equivalently rows) of A are either equal or orthogonal (as vectors).

For our analysis, it is important to understand the reconstruction of G from

a matrix A = (aij)1≤i,j≤m satisfying the above conditions. As in (3.14), we

write

A = (aij)1≤i,j≤m = (ac
j)1≤j≤m = (ar

i )1≤i≤m.

If for some i1 we have ai1j1 = . . . = ai1jk = 1, then it means that ej1 , . . . , ejk

join ei1 and thus they must be incident to the same vertex v and all eil for

which ailj1 = 1 (and thus all ailjp = 1 for p = 1, . . . , k) are outgoing from v. We

further observe that all zero rows can be identified with source(s). Similarly,

zero columns correspond to sinks. If ac
j = ar

j = 0 for some j, then ej connects

a source to a sink.

Using the adjacency matrix of a line digraph, we cannot determine how many

sources or sinks the original graph could have without additional information.

We can lump all potential sources and sinks into one source and one sink, we can

have as many sinks and sources as there are zero columns and rows, respectively,
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or we can subdivide the arcs into some intermediate arrangement. We describe

a construction with one source and one sink and indicate its possible variants.

We introduce V in
1 = {r ∈ {1, . . . ,m}; ac

r = ac
1} and, inductively, V in

k =

{r ∈ {1, . . . ,m}; ac
r = ac

jk
, jk = min{j; j /∈ ⋃

1≤p≤k−1

V in
p }} and the pro-

cess terminates at N ′ such that
⋃

1≤p≤N ′

V in
p = {1, . . . ,m}. In the same way,

V out
1 = {l ∈ {1, . . . ,m}; ar

l = ar
1} and V out

k = {l ∈ {1, . . . ,m}; ar
l =

ar
jk
, jk = min{j; j /∈ ⋃

1≤p≤k−1

V out
p }} and the process terminates atM ′ such that

⋃
1≤p≤M ′

V out
p = {1, . . . ,m}. In other words, {V in

j }1≤j≤N ′ and {V out
i }1≤i≤M ′

represent the vertices of G through, respectively, incoming and outgoing arcs.

If there are any zero rows in G, then we swap the corresponding set V out
j0

with

the last set V out
M ′ . In this way, V out

M ′ represents all arcs outgoing from sources (if

they exist). For this construction, we represent them as coming from a single

source but other possibilities are allowed, see Remark A.20. Similarly, if there

are any zero columns, we swap the corresponding set V in
i0

with V in
N ′ , that is, V in

N ′

represents the arcs incoming to sink(s). Then we denote

M :=





M ′ if V out
M ′ = {j; ar

j 6= 0},
M ′ − 1 if V out

M ′ = {j; ar
j = 0},

N :=





N ′ if V in
N ′ = {j; ac

j 6= 0},
N ′ − 1 if V in

N ′ = {j; ac
j = 0}.

(A.1)

Thus, we see that the number of internal (or transient) vertices, that is, which

are neither sources nor sinks is n := M = N . For such vertices it is important

to note that, in general, V out
j and V in

j , 1 ≤ j ≤ n, do not represent the same

vertex. To combine V out
i and V in

j into the same vertex we have, for 1 ≤ i, j ≤ n,

vj = {V in
j , V out

i }, aipjr = 1 for some/any ip ∈ V out
i , jr ∈ V in

j . (A.2)

With this notation, we present a more algorithmic way of reconstructing G from

A. First, we collapse equal rows of A into a single row of A+ and equal columns of

A into a single column and then take the transpose to get A−. Mathematically,

let I+ be a set of indices such that I+ ∩ V out
i consists of exactly one point for

each 1 ≤ i ≤M ′ and ordered by the order of {V out
i }. Similarly, let I− be a set
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of indices such that I− ∩ V in
i consists of exactly one point for each 1 ≤ i ≤ N ′.

We order I− consistently with I+, namely, if ik ∈ I+ and jk ∈ I− are the k-th

indices in, respectively, I+ and I−, then ik ∈ V out
k and jk ∈ V in

j with j related to

k by (A.2), that is, {V out
k , V in

j } determines the same vertex vk. As mentioned

above, possible zero rows correspond to the highest indices. With this, we define

A
+ = (ar

i )i∈I+ , A
− =

(
(ac

j)j∈I−

)T
. (A.3)

We see now that each row of A+ corresponds to a vertex and each column of A+

corresponds to an incoming arc. If there are zero rows in A, there is a zero row

at the bottom of A+ showing the presence of a (single) source. The presence of a

sink is indicated by zero columns in A+. Similarly, each row of A− corresponds

to a vertex with arcs outgoing from it represented by nonzero entries in this row,

in columns with indices corresponding to the indices of the arcs. If there are

zero columns in A, they appear as a zero row in A−, which represents a (single)

sink. Possible sources are visible in A− as zero columns. What is important,

however, is that even though we lumped all sources and sinks into one single

source and a single sink, the zero columns in A+ and A− keep track of the arcs

going into the sink or out of the source, respectively. Unless there are no sources

and sinks, A+ and A− are not the incoming and outgoing incidence matrices of

a graph (for the definition of these, see e.g. [3]). Indeed, A+ does not contain

sinks that, clearly, are part of the incoming incidence matrix. Similarly, A−

does not include sources. If we keep our requirement that there is only one sink

and one source, then we add one row to A+ and one to A− to represent the

sink and the source, respectively. We use convention that, if both the sink and

the source are present, the source is the last but one row and the sink is the

last one. To determine the entries we use the required property of the incidence

matrices, that there is exactly one non-zero entry in each column (expressing

the fact that each arc has a unique tail and a unique head). Thus, we put 1 in

the added rows in any column that was zero in A+ (resp. A−). We denote such

augmented matrices by A+ and A−. It is easy to see that the following result

is true.
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Proposition A.19. A+ and A− are, respectively, incoming and outgoing inci-

dence matrices of a multi digraph G having A as the adjacency matrix of L(G).

Proof. Since each column of A+ and A− contains 1 only in one row, we can

construct a multi digraph G from them using A(G) = A+(A−)T as its adjacency

matrix. Since we allow G to be a multi digraph, the entries of A(G) give the

number of arcs joining the vertices. A (k, l) entry in A(G) is given by a
+,r
k ·a−,r

l

and, by construction, a+,r
k is a row in A belonging to vk and a

−,r
l is a column in

A corresponding to vl. Nonzero entries in a
+,r
k correspond to the arcs incoming

to vk and nonzero entries in a
−,r
l correspond to the arcs outgoing from vl so

the value of a+,r
k · a−,r

l is the number of nonzero entries occurring at the same

places in both vectors and thus the number of arcs from vl to vk.

The adjacency matrix A(L(G)) is determined as (A−)TA+. The entries of

this product are given by a
−,c
k · a+,c

l . Since each column has only one nonzero

entry (equal to 1), the product will be either 0 or 1. It is 1 if and only if there

is i (exactly one) such that the entry 1 appears as the i-th coordinate of both

a
−,c
k and a

+,c
l . Now, by construction, a−ik = 1 if and only if k ∈ V out

i and a+il = 1

if and only if l ∈ V in
j , where the correspondence between j and i is determined

by (A.2). This is equivalent to akl = 1.

Remark A.20. Assume that A has k zero rows and l zero columns. We cannot

identify the numbers of sinks and sources from A without additional information.

Above, we lumped all sources and all sinks into, respectively, one source and one

sink but sometimes we require more flexibility. As we know, the k zero rows in A

become k zero columns in A
− associated with the arcs outgoing from sources. In

a similar way, the l zero columns in A stay to be l zero columns in A+ associated

with the arcs incoming to sinks. We can group these arcs in an arbitrary way,

with each group corresponding to, respectively a source or a sink. Assume we

wish to have k̄ sources and l̄ sinks. Then we build the corresponding matrix

A+ by adding k̄ − 1 zero rows for the sources to A+ and l̄ rows corresponding

to sinks, which will consist of zeroes everywhere apart from the columns that

were zero columns in A
+; in these columns we put 1s in such a way that each
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column contains only one nonzero entry (and zeroes elsewhere). Then columns

having 1 in a particular row will represent the arcs incoming to a given sink. In

exactly the same way we augment A−, by creating l̄− 1 zero rows for the sinks

and k̄ rows for the sources. In this way, we construct the following incoming

and outgoing incidence matrices, respectively, A+ and A− that, by a suitable

permutation of columns, can be written as

Ā+ := A+P =




A
+

T A
+

S 0 0

0 0 0 0

0 0 ZS Z


 ,

Ā− := A−P =




A
−
T 0 0 A

−
Z

0 S SZ 0

0 0 0 0


 ,

where P is the required permutation matrix and, in both cases, the first group of

columns have indices corresponding to V in
i , 1 ≤ i ≤ n (resp. V out

j , 1 ≤ j ≤ n),

the second group corresponds to the arcs incoming from the sources to the

transient vertices, the third group combines arcs connecting sources and sinks

and the last group corresponds to the sinks fed by the transient vertices. We

observe that the number of columns in each group in A− and A+ is the same.

Since

Ā+(Ā−)T = (A+P )(A−P )T = A+PPT (A−)T = A+A−,

as PT = P−1, see [16, p. 140], for such a digraph G we have

A(G) = A+(A−)T =




A
+

T (A−
T )T A

+

S S
T 0

0 0 0

Z(A−
Z )T ZS(SZ)T 0


 . (A.4)

Example A.21. Consider the networks G1 and G2 presented on Fig. 5. We

observe that grouping of sources and sinks does not affect the line graph,
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L(G1) = L(G2), see Fig. 6. To illustrate the discussion above, we have

A =




0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 0 0 0 0

0 0 1 0 1 0 0

0 0 0 0 0 0 0




. (A.5)

Then

A
+ =




1 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 0 0 0 0


 (A.6)

and we see that there are two transient (internal) vertices v1 and v2 with arcs

e1, e2 and e4 incoming to v1 and arcs e3 and e5 are incoming to v2. The last

row in A+ corresponds to source(s) with outgoing arcs e1, e2, e5 and e7. We also

note that the zero columns in A
+ correspond to arcs e6 and e7 that are incoming

to sinks. To build A−, we first collapse the identical columns of A and take the

transpose. We see from A that the first row of the transpose corresponds to the

incoming arcs e1, e2 and e4 and thus also to vertex v1 of A+. Hence, there is

no need to re-order the rows and so (A.3) gives

A
− =




0 0 1 0 0 0 0

0 0 0 1 0 1 0

0 0 0 0 0 0 0


 . (A.7)

The last row corresponds to sinks and the zero columns inform us that arcs

e1, e2, e5 and e7 emanate from sources.

If we want to reconstruct the original graph with one source and one sink,
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then

A+ =




1 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 1



, A− =




0 0 1 0 0 0 0

0 0 0 1 0 1 0

1 1 0 0 1 0 1

0 0 0 0 0 0 0




and

A+(A−)T =




0 1 2 0

1 0 1 0

0 0 0 0

0 1 1 0



,

which describes the right multi digraph in Fig. 5. On the other hand, we can

•

•

•

••

•

•

e7

e1

e2

e3

e4
e5

e6

G1 •

•••

e1e2

e5
e7

e3

e4
e6

G2

Figure 5: Multi digraphs G1 with 3 sources and two sinks and G2 with all

sources and all sinks grouped into a single source and a single sink

consider two sinks (maximum number, as there are two zero columns in A) and,

say, three sources. Then

A+ =




1 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0




, A− =




0 0 1 0 0 0 0

0 0 0 1 0 1 0

1 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



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and

A+(A−)T =




0 1 1 1 0 0 0

1 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0




which describes the left multi digraph in Fig. 5.

It is easily seen that both digraphs have the same line digraph, shown on

Fig. 6, whose adjacency matrix is A.

e1L(G1) = L(G2)

e2

e7

e3

e4e5e6

Figure 6: The line digraph for both G1 and G2
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