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Abstract

Batteries are gaining momentum in the dawn of the global energy transition. Their propensity to

early ageing remains, however, a serious concern. Reasons for this include thermal and electrical stresses

experienced during operation. The combination of batteries with supercapacitors (SC) into hybrid energy

storage systems (HESS) is currently regarded as an effective means of reducing electrical stress on batteries.

However, battery-SC HESS still plays a marginal role in practice. Anticipating a possible resurgence of

interest in this technology, controllers should be designed to enable easy conversion of existing battery

energy storage systems (BESS) into battery-SC HESS. Currently, most control models in the literature

would require significant modifications to the existing infrastructure, hindering the expected transition to

the HESS. This paper introduces a fuzzy logic controller for plug-in SC aiming for straightforward conversion

of BESS into battery-SC HESS. In addition to relieving batteries from fast-varying currents, the SC can

contribute in the supply of slow-varying currents to further relieve the battery from electrical stresses and

assist in regulating the battery temperature. Extensive simulations indicate that peak currents of batteries

can be reduced by up to 26.20% under normal operation, and their temperature slope by up to 38.15%

under high temperature conditions.

Keywords: hybrid energy storage system, battery, supercapacitor, fuzzy logic controller,

thermal-electrical management.

1. Introduction

Energy storage systems are expected to play a critical role in our pursuit of a low-carbon economy and

universal access to clean energy. While the global stationary and transportation energy storage market was

estimated to be around 550 GWh in 2018, it is projected to increase fourfold by 2030 to more than 2,500

GWh [1]. Among the leading technologies is the battery characterized by high energy density, flexibility
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and modularity [2, 3, 4]. This provides it with a competitive advantage in many applications, including

transportation [5], off-grid and grid-tied renewable power systems [6, 7], and utility-scale energy storage for

ancillary services [8]. While designed to operate between 10 and 15 years [9], batteries will usually suffer

premature failure. Operational causes include high intensity, large current fluctuations, frequent charge-

discharge transition, deep discharge, and thermal stress [10, 11]. Despite this, batteries are widely deployed

as battery-alone energy storage systems (BESS). From a control point of view, these systems lack sufficient

flexibility to effectively handle the degradation factors mentioned earlier.

1.1. Literature survey on battery-supercapacitor hybrid energy storage systems

The combination of batteries with one or more energy storage technologies to form battery-based hybrid

energy storage systems (HESS) is today regarded as a promising solution to this shortcoming. In essence,

an HESS relies on the beneficial coupling of two or more energy storage technologies with complemen-

tary operating features to outperform any single component of the system. Common battery-based HESS

include battery-supercapacitors (SC), battery-fuel cell, battery-fuel cell-SC, battery-superconducting mag-

netic energy storage, battery-flywheel, and battery-compressed air storage [12]. Among them, the battery-SC

association has recently gain in popularity driven by technical feasibility and maturity. When properly con-

trolled, this superior storage system can feature high energy density, sustained by the battery, and fast power

response and high power density, sustained by the supercapacitor. Methods for cost-effective sizing of this

hybrid storage were previously proposed, including a capacity statistical model for autonomous microgrids

[13], the tuning of the time constant of low-pass filter (LPF) for uninterrupted power supply applications

[14] and utility scale PV arrays [15], and Particle Swarm Optimization for storage sizing in E-Rickshaw

applications [16]. The positive impact of supercapacitor on the lithium battery cycle life in electric vehicle

was also established in the past [17].

From a control perspective, various supervision algorithms for controlling the power allocation within

the battery-SC HESS components are reported in the literature. The most basic and intuitive consists in

applying a filter to assign the low and high frequency components of the input signal (power or current)

respectively to the battery and the SC [18]. Without further actions, this method exposes the battery to

deep discharge and overcharging risks. The utilization rate of SC might also be low, since there is no control

action taken to maintain its state-of-charge (SoC) around a reference value. These concerns are usually

addressed by more sophisticated protocols. [19] reported a fuzzy logic routine which, apart from the load

current, considers the DC-bus voltage and the SC voltage to split power between the storage devices. A

rule-based technique model that increases SC availability and limits the supply of large currents by the
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battery was presented in [20]. The handling of high-frequency currents indistinctly by the battery and SC

renders the last two models less effective.

A dynamic rate limiter that suppresses surges in battery current was reported in [21]. Optimal control for

power allocation between battery and SC in HESS was also investigated in previous research [22, 23, 24]. A

dynamic optimization model presented in [22] showed good power split capabilities in the context of batter-

SC HESS operated as part of a grid-tied renewable power system. [23] proposed a two-layer receding horizon

controller for maximum power supply by a hybrid renewable power system. In this study, the existing BESS

is upgraded to a battery-SC HESS by adding SC, which results in smoother power profiles for the battery and

the utility grid. An optimal power allocation strategy based on Pontryagin’s minimum principle was proposed

in [24]. The controller shows good performances in reducing battery power fluctuations and improving the

utilization rate of supercapacitors. Soft computing techniques, such as artificial neural networks [25, 26] and

fuzzy logic control [27, 28] were also considered for power allocation in battery-SC HESS. A Q-learning-based

method to minimize battery degradation and energy consumption in battery/SC-powered electric vehicles

was reported in [29].

In general, the above algorithms show good performance with respect to battery current fluctuations,

charge-discharge transitions and deep discharge. However, they suffer from a few shortcomings. Firstly, the

impact of high steady currents on batteries and the need to control them was usually overlooked, except in

[28]. Secondly, the interaction between the power split problem and the regulation of the battery temperature

was not considered in the past. Lastly, these control models entail relatively high levels of complexity and

are computationally costly if fine control is to be maintained. While in 2014 the SC hit 4% of the global

technology mix in energy storage deployments, this figure is now estimated to be less than 1% today [30, 31].

The tiny market share of SC suggests that the adoption of battery-SC HESS remains marginal in practice.

In anticipation of a possible resurgence of interest in this technology, controllers of battery-SC HESS should

preferably designed to enable easy upgrade of existing battery-alone energy storage systems (BESS). As a

result, the high complexity and computational cost of previous control models make them less suitable for

direct retrofit of BESS, as a complete restructuring of the control infrastructure is necessary to ensure their

smooth operation.

With respect to thermal management of batteries, their temperature should be regulated within a set

range so as to ensure safety and an optimal trade-off between the operating performances and the storage

service life. This ranges between 15°C and 35°C for lithium-ion batteries [32], and around 25°C for lead-acid

batteries [33]. At lower temperatures, the two battery technologies exhibit sluggish chemistry, which results

in temporary capacity loss, efficiency drop and reduced power and energy capabilities. On the other side,
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the irreversible degradation of electrodes that occurs at higher temperatures causes accelerated ageing and

capacity loss [34, 35, 36]. Battery cooling methods, such as air cooling, liquid cooling, direct refrigerant

cooling, phase change material (PCM) cooling, thermoelectric cooling and heat pipe cooling [37, 38], are

implemented to dissipate generated heat so as to prevent temperature rise. Air cooling can be natural or

forced. The technologies that deliver high heat transfer efficiency are often complex and costly to operate

[39]. On the other hand, Battery warm-up methods include internal heating via battery resistance, external

heating via resistive heaters and circulated fluid [40].

A few studies on the operation of battery-SC HESS for battery thermal management were reported

in the literature. A heuristic control strategy for battery cooling was presented in [41]. Under normal

operations, the battery and SC are passively connected in parallel to supply the load. In case of high battery

temperature, the two storage devices are alternatively connected and disconnected, resulting in the insertion

of idle periods that slow down heat production in the battery without power supply interruptions. The lack

of control over the SC in normal conditions hinders an effective power support to the battery. [42] proposed

a receding horizon controller that simultaneously addresses the SoC and temperature imbalances between

the battery modules and the energy losses in the converters that connect the battery and SC modules.

While effective at improving temperature and energy distributions across the battery, the algorithm has

little incidence on the regulation of the average battery temperature. A decrease in power support to the

storage equipment is also noticed. [43] designed a controller that applies the pulse technique to reduce the

average battery current during each pulse cycle. While this was expected to prevent the rise of battery

temperature, failing to account for the actual need of the storage device can yield unnecessary cooling of

batteries and workload for SC. With respect to battery heating, [36] proposed a heuristic model to minimize

battery degradation and electricity costs in a battery-SC HESS powered electric vehicle operated at subzero

temperatures. Here, the SC is primarily used to supply the peak load, while the baseload and the emergency

situations are handled by the battery. To ensure proper operation under the targeted ambient conditions,

i.e., between -20°C and 0°C, a heating resistor-fan kit serves to heat up the battery. The incidence of heat

produced by the battery was not factored in the control of the heating system.

1.2. Literature gap and research contribution

The above survey of literature showed that the issue of power allocation within battery-SC HESS and

that of battery thermal management are normally investigated separately, despite the well-known impact of

high intensity currents on the latter. The few studies that attempted to take advantage of the power split

operations for temperature regulation purposes failed to provide sufficient support to batteries either at the

power [41] or thermal [43, 36, 28] level. Further, most reported controllers earlier are not suitable for easy
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retrofit of existing BESS. In efforts to bridge this gap, the present study investigates a controller designed

for thermal-electrical management of batteries within battery-SC HESS.

By means of a proper control of SC in the supply of high- and low-frequency currents, this controller

relieves batteries from electrical stress and assists in the regulation of their temperature. In view of the

penetration rate of BESS, the controller is designed for easy upgrade of BESS to battery-SC HESS. By

requiring no modification in the existing control infrastructure, this plug-in solution safeguards from the

extra technical, financial and environmental burdens related to the previous controllers that require shut-

down, decommissioning, installation, recommissioning and possibly material disposal. These burdens might

dissuade plant owners from upgrading existing BESS to battery-SC HESS.

The plug-in SC structure was introduced and studied in our previous work [23]. While delivering good

performances, it was relevant only for grid-tied hybrid renewable systems equipped with BESS, and imple-

menting a model predictive control. Moreover, battery thermal management was not considered in that

study. The present work addresses these limitations. While gradient-based optimization algorithms have

shown the greatest potential for real-time power management [44], the high computational cost and the

difficulty of implementation make them less suitable for the retrofit application under study. This paper

proposes a simple and low cost upgrade strategy built-around a fuzzy logic algorithm, which is less expensive

in terms of computational time and memory. Successful applications of fuzzy logic controllers in power and

transportation systems were reported in the literature [45, 46].

In summary, the novelty of this research is threefold:

1. It offers a unique low-cost solution for easy upgrade of BESS to battery-SC HESS without modifying the

original infrastructure.

2. The issue of battery ageing due to high rate currents, previously overlooked, is addressed here.

3. The proposed power allocation strategy assists in the regulation of the battery temperature, which in

turn decreases the loads of cooling and heating units.

Figure 1 shows the layout of the HESS under study. The original power system comprises a BESS, power

sources, electric loads and relevant controllers to supervise the power flow across the system. The plug-in

kit consists of a SC bank, a bidirectional DC/DC converter and an energy management system (EMS)

that controls the power flow between the existing power system and the SC. Periodic measurements of the

battery temperature and a number of electric variables are supplied the EMS. The battery temperature

can be readily accessed from sensors that feed the temperature compensation circuit and/or the battery

monitoring system.
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Figure 1: Layout of the battery-SC hybrid energy storage system

Besides the power split between the HESS components, the EMS also performs the following functions:

• Assist in keeping the battery temperature within the appropriate range;

• Maintain the SC state-of-charge (SoC) within the desired limits;

• Enable direct power flow between the battery and SC whenever necessary.

The rest of this paper is structured as follows. The design of the controller is carried out in Section

2. Section 3 introduces the optimization problem formulated for tuning the parameters of the fuzzy logic

algorithm. Section 4 gives the case study considered for the test of the proposed controller. The presentation

of simulation results and their discussion are provided in Section 5, followed by a brief conclusion in Section

6.

Nomenclature

Abbreviations and units

°C Degree Celsius A Ampere

BESS Battery-alone Energy Storage System DC Direct Current

EMS Energy Management System F Farad

FIS Fuzzy Inference System GA Genetic Algorithm

GWh Gigawatt hour H Henry

HESS Hybrid Energy Storage System J Joule

L Low LPF Low-pass Filter

MF Membership Function NH Negative High

NM Negative Medium PCM Phase Change Material

PH Positive High PI Proportional-Integral

PM Positive Medium PV Photovoltaic
6



PWM Pulse Width Modulation p.u. Per Unit

RMS Root-mean-square ROL Rule Output Level

SC Supercapacitor S.I. International System of Units

SoC State-of-charge V Volts

W Watt Z Zero

Ω Ohm

Variables and parameters

Cbat Battery thermal capacity (J/°C) Cfl Filter capacitance (F)

Fk k-th Membership functions iHESS Total current of HESS (p.u.)

ihf HESS’ high-frequency current (p.u.) ilf HESS’ low-frequency current (p.u.)

ISC SC current (A) isc,lf SC’s low-frequency current (p.u.)

isc,req Required SC current (p.u.) Isc,req Required SC current (A)

J Fitness function ki Integral gain

kp Proportional gain L Inductance value (H)

Lfl Filter inductance (H) m Modulation index

N Number of sample intervals p Laplace variable

Pbat Battery heat generation (W) R Inductor resistance (Ω)

Rb2a Thermal resistance battery-air (°C)/W Rbat Battery Ohmic resistance (Ω)

Ibat,nom Battery nominal current (A) Rfl Filter resistance

SoCref Reference SC’s SoC SoCsc SC SoC

SoCsc,max Maximum SC SoC SoCsc,min Minimum SC SoC

t Time (s) T Time constant of low-pass filter (s)

Ta Ambient temperature (°C) Tbat Battery shell temperature (°C)

Tmax Maximum battery temperature (°C) Tref Reference battery temperature (°C)

Ts Sampling time (s) vk Weighting coefficients

Vbat Battery voltage (V) VL Inductor voltage (V)

VL,ref Reference inductor voltage (V) VSC SC voltage (V)

wk k-th rule firing strength X Array of optimized parameters

xk k-th parameters optimized by GA zk k-th rule output levels
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2. Controller design

Figure 2 shows the control system implemented by the EMS. It includes a low-pass filter (LPF), a

FIS, a current controller and a few arithmetic operators. Once the plug-in kit is connected (switch in

Fig. 1 is closed) and the required inputs are supplied to EMS, the following sequence of operations is

periodically performed. Initially, the per-unit value iHESS of the total current IHESS requested from the

HESS is filtered by the LPF to extract the low-frequency component, denoted by ilf . A subtraction block

determines the fast-varying, denoted by ihf , from iHESS and ilf . ilf is subsequently sent to the FIS that

computes the slow-varying current isc,lf to be handled by the SC. To assist in the thermal management of

the battery and increase the utilization rate of SC, the battery shell temperature Tbat and the deviation

of the supercapacitor state-of-charge SoCsc from the desired level SoCref , denoted by ∆SoCsc, are also

supplied to FIS. The obtained value of isc,lf is available at the output side of FIS. SoCref will typically

be the midpoint between the lower and upper bounds of SoCsc, denoted respectively by SoCsc,min and

SoCsc,max. Accordingly, ∆SoCsc at a sample instant k is given by

∆SoCsc(k) = SoCsc(k)− SoCref , (1)

with SoCref = (SoCsc,min + SoCsc,max)/2. Next, ihf and isc,lf are summed up and converted back to SI

unit to obtain the total current allocated to the SC, denoted by Isc,req. This value is finally enforced by

the current controller that requires the battery voltage Vbat, the SC voltage Vsc, and the SC current Isc as

additional input signals. The rest of this section focuses on the modelling of the controller components.

2.1. Frequency split of the HESS total current

Using the forward Euler method, the filtering action of LPF to extract ilf from iHESS is expressed by

ilf (k + 1) =

(
1− Ts

T

)
ilf (k) +

Ts
T
iHESS(k), (2)

iHESS

LPF

Tbat

ilf

FIS

÷IHESS

Ibat,nom

ΔSoCsc

ihf

isc,lf

X

Ibat,nom

Current 
controller

Vsc IscVbat

mIsc,reqisc,req+- ++

Figure 2: Proposed thermal-electrical controller for battery-SC HESS
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with ilf (0) = iHESS(0). Here, Ts and T denote the sample interval and the time constant respectively of

the filter in seconds. Accordingly, the fast-varying current ihf downstream the subtraction block is given by

ihf (k + 1) = iHESS(k + 1)− ilf (k + 1). (3)

Given the fast change in polarity of ihf and the use of isc,lf to keep SoCsc within the desired range

through power exchange with the external power circuit and batteries, ihf can be fully assigned to the SC.

2.2. Design of the fuzzy inference system

In mitigating the thermal stress and the high currents facing the battery, while maintaining SoCsc within

the desired limits, the FIS allocates on an ongoing basis a slow-varying current to SC considering its SoC, the

battery temperature, and the magnitude and polarity of ilf . Previous analysis of the performances of fuzzy

systems showed that the precise shapes of membership functions (MFs) were of lesser importance than their

number (partitions), their approximate placement across the universe of discourse (or universe), and the

degree of overlapping of MFs [47]. Accordingly, the trapezoidal shape is selected for all the input MFs of FIS.

In addition, the intuitive method is adopted to determine the number and placement of MFs, while Genetic

Algorithm is used to optimize their overlapping and the parameters of output functions [47, 48]. Finally, the

Sugeno fuzzy inference is implemented in FIS, because of its computational efficiency and effective tuning

by optimization techniques [49].

Considering the impact of the intensity and polarity of ilf on the HESS components, three MFs are

assigned to ilf : Negative High (NH), Low (L), and Positive High (PH), with L spreading on both sides

of zero (no current). The polarities are such that NH and the negative portion of L correspond to charge

current supplied to the HESS, while the positive portion of L and PH correspond discharge current request

from the HESS. Given the need to maintain, as far as possible, SoCsc around SoCref , three MFs are also

assigned to the input variable ∆SoCsc: Negative High (NH), Low (L) and Positive High (PH), with L

spreading on both sides of the central value (zero deviation). Finally, previous experiments showed that the

optimal operating temperature range for lithium-ion batteries was between 15 °C and 35 °C, while that of

lead-acid batteries was around 25 °C [32, 33]. For both technologies, the universe of Tbat can be occupied

by three MFs: Low (L), Medium (M) and High (H), with M spreading on both sides of the recommended

temperature.

The governing principles in devising the fuzzy logic rules are as follows:

(1) If Tbat is Medium then SC provides moderate support to the battery in supplying ilf . This support

varies with the intensity of ilf and the deviation of SoCsc from SoCref .
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Table 0: Generalized fuzzy logic rules of FIS.

ilf

NH L PH

∆SoCsc NH α·NH β·NM Z

L γ·NM Z γ·PM

PH Z β·PM α·PH

(2) If Tbat is Low then, taking “Tbat is Medium” as reference operating condition, double the current flow

from/to the battery. This results in halving the portion of ilf assigned to the SC and doubling the

current between SC and battery. No low-frequency current is however assigned to SC if ∆SoCsc is Low.

(3) If Tbat is High then, taking “Tbat is Medium” as reference operating condition, reduce by half the current

flow from/to the battery. This results in doubling the portion of ilf assigned to the SC and halving the

current between SC and battery.

A general formulation of the fuzzy logic rules of FIS is provided in Tables 0. The rule output levels

(ROLs) of FIS are defined as follows: NH for negative high, NM for negative medium, Z for zero, PM for

positive medium, and PH for positive high. Given the governing principles introduced earlier, the parameters

α, β and γ are such that:

• α=0.5, β=2 and γ=0 if Tbat is Low;

• α=1, β=1 and γ=1 if Tbat is Medium;

• α=2, β=0.5 and γ=2 if Tbat is High;

Details on the formulation of ROLs as functions of input variables is presented later in Section 3.

2.3. Current controller

Figure 3 shows the PI current controller, adapted from [50], together with the power circuit that connects

the SC in parallel with the battery. Here, L and R denote respectively an inductor and its equivalent series

resistance. Based on the average model of the DC/DC converter, the plant to be controlled in the SC current

control loop is given by Eqs. (4) and (5)

Vsc − VL = mVbatt, (4)

VL = RIsc + L
dIsc
dt

, (5)
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where VL denotes the terminal voltage across the inductor. If the inductor voltage is adopted as the control

variable, then the plant to be controlled is described by the Laplace transformation of (5) as follows

Isc(p) =
1

Lp+R
VL(p), (6)

where p is the Laplace transform variable. Based on (4), the modulation index m is therefore obtained as

follows

m =
Vsc − VL,ref

Vbat
, (7)

where VL,ref denotes the PI controller output [50]. The corresponding block diagram of the current controller

is shown in Fig. 3. In this diagram, Isc,req is divided by the modulation index m so that the reference SC

current is transferred from the battery side to the SC side of the DC/DC converter. VL,ref is given in

Laplace domain by

VL,ref (p) =

(
kp +

ki
p

)
E(p), (8)

where kp and ki denote respectively the proportional gain and the integral gain of the PI controller, and

E(p) denotes the Laplace transform of the error signal expressed by

E(p) = I∗sc,req(p)− Isc(p). (9)

÷Isc,req -+

Isc

PI +-

Vsc

÷

Vbat

m PWM 
generator +

-

Vbat+

-

Vsc

L, R

Current controller

DC/DC converter

Supercapacitor

Isc

*
sc,reqI

Lfl, Rfl

Cfl

Figure 3: Current controller and power circuit of SC
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Figure 4: Parameters of the input membership functions optimized by GA

3. Genetic Algorithm-based optimization of FIS parameters

3.1. Overview of Genetic Algorithms

Genetic algorithms are a population-based optimization technique inspired by both the natural selection

theory and the evolutionary genetics [51, 52]. To evolve an initial population of individuals (candidate

solutions) towards the optimal one within a search space, three basic operations are repeatedly applied by

genetic algorithms to form the next generation from the current population:

• Selection: choose individuals (parents) that survive the current population to contribute to the next

generation.

• Crossover: combine pairs of parents to form new individuals (children) for the next generation.

• Mutation: apply random alterations (mutations) to individual parents to create children.

In this respect, the individuals are compared to each other using their respective fitness values obtained

by evaluating the function to be optimized (fitness function). Typically, parents with better fitness values

are more likely to be selected by genetic algorithms. Interested readers may refer to [52, 53] for further

information on genetic algorithms.

3.2. Optimization model

This section introduces the optimization problem solved by Genetic Algorithm to obtain the parameters

of FIS.

3.2.1. Optimization variables and FIS output

The array X optimized by Genetic Algorithm includes the parameters of input MFs and those of ROLs.

Figure 4 shows the MF parameters of input variables optimized by GA. It is noteworthy that the MF
12



parameters of Tbat are derived from previous experiments, and are therefore not subject to optimization.

Based on the governing principles identified in Section 2.2, the rule output levels of FIS can be generalised

as follows:

zk = λk(xjilf + xj+1∆SoCsc), (10)

where zk (k = 1, . . . , 27) denotes a ROL in Table 0, λk ∈ Λ = {0, 0.5, 1, 2}, and xj and xj+1 are parameters

optimized by GA, with j denotes the element index in the array X. Table 0 shows that the determination

of ROLs NH, NM, Z, PM and PH under medium Tbat, i.e, α = β = γ = 1, is sufficient to obtain the ROLs

under low and high Tbat. Accordingly, the rest of analysis of Table 0 in this section relates to medium

battery temperature conditions, unless stipulated otherwise.

The formulation of NH, NM, Z, PM and PH as functions of the optimization variables is carried out

here. Table 0 shows that the charge of SC under the ROL NH depends closely on the supply of a high

intensity current ilf by the external circuit. Similarly, the discharge of SC under the ROL PH is primarily

performed by supplying an intensive current ilf to the external circuit. Given the high intensity of ilf , the

component proportional to ∆SoCsc in Eq. (10) is redundant, and may cause excessive current transients

across the HESS. Accordingly, the parameters xj+1 in Eq. (10) are set at zero for both NH and PH. In

the case of the ROL Z, xj and xj+1 are equal to zero so that no slow-varying current is allocated to the

SC. Finally, Table 0 shows that the ROL NM applies to “low ∆SoCsc/negative high ilf” and “negative

high ∆SoCsc/low ilf” conditions. Similarly, the ROL PM applies to “low ∆SoCsc/positive high ilf” and

“positive high ∆SoCsc/low ilf” conditions. Therefore, the first term in the brackets of Eq. (10) should

dominate the output when ilf is of high intensity, while the second term should dominate when ∆SoCsc is

high. Accordingly, both xk and xk+1 are required for both NM and PM.

Equations (11) to (15) summarize the above findings:

NH = x17ilf , (11)

NM = x18ilf + x19∆SoCsc, (12)

Z = 0, (13)

PM = x20ilf + x21∆SoCsc, (14)

PH = x22ilf , (15)
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where x17, . . . , x22 are the ROL parameters optimized by GA.

Considering Eq. (10), the final output isc,lf of FIS is determined as follows

isc,lf =

∑N
k=1wkzk∑N
k=1wk

, (16)

where N=27 is the total number of rules, wk denotes the rule firing strength derived from the rule antecedent,

and is given by

wk = min(F1(ilf ), F2(∆SoCsc), F3(Tbat)). (17)

Here, F1(...), F2(...) and F3(...) are the membership functions for inputs 1, 2, and 3, respectively, and min

denotes the mathematical function “minimum” that implements the fuzzy logical operator AND.

3.2.2. Fitness function

In this study, the fitness function J(X) is formulated to minimize the thermal and electrical stress on

the battery, while maximizing the availability of SC. Accordingly, J(X) is formulated as a multi-objective

objective function consisting of three factors:

(1) the root-mean-square (RMS) current of the battery [14], denoted by J1(X).

(2) the mean deviation of the battery temperature from the recommended value, denoted by J2(X).

(3) the mean absolute deviation of SoCsc from SoCref , denoted by J3(X).

The fitness function minimized by GA is therefore given by

J(X) = v1J1(X) + v2J2(X) + v3J3(X), (18)

where v1 to v3 are weighting coefficients, and X = [x1, x2, . . . , x22]T corresponds to the array of optimization

variables identified earlier.

Let N denote the number of sample intervals within the optimization period, the normalized expression

of J1 is given by

J1(X) =
1

Ibat,nom

√√√√ 1

N

N∑
k=1

I2
bat,k(X), (19)

where Ibat,k(X) denotes the battery current during the k-th sample interval.

The normalized expression of J2 is given by
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J2(X) =
1

N(Tmax − Tref )

N∑
k=1

| Tbat,k(X)− Tref |, (20)

where Tmax and Tref denote the maximum attainable and the recommended temperatures respectively.

The normalized expression of J3 is given by

J3(X) =
1

N∆SoCsc,max

N∑
k=1

| ∆SoCsc,k(X) |, (21)

where ∆SoCsc,max denotes the maximum deviation of SoCsc from SoCref , and ∆SoCsc,j is given by

∆SoCsc(k) = SoCsc(k)− SoCref . (22)

Here, SoCsc(k) is obtained using the Coulomb counting approach as follows:

SoCsc(k) = SoCsc(k − 1) +
Isc(k)

CVmax
Ts, (23)

where Isc(k) corresponds to the SC current during the sample time k, C is the capacitance of the SC in

Farads, and Vmax is the maximum voltage of the SC in Volts.

Considering the lumped RC-thermal circuit model of the battery, its thermal behaviour is modelled as

Pbat = Cbat
dTbat
dt

+
Tbat − Ta
Rb2a

, (24)

where Pbat, Tbat, Ta, Cbat, and Rb2a denote the battery heat generation, battery temperature, ambient

temperature, thermal capacity of the battery, and thermal resistance between battery and ambient air,

respectively.

Because the ohmic heat varies proportionally to the square of the current, it will usually form the primary

source of heat generation inside the battery under large load current. The battery heat generation can be

therefore modelled as

Pbat = RbatI
2
bat, (25)

where Rbat denotes the ohmic resistance of the battery. Substituting (25) into (24) yields after discretization

Tbat(k) =

(
1− Ts

CbatRb2a

)
Tbat(k − 1) +

Ts
Cbat

(
RbatI

2
bat(k) +

Tamb

Rb2a

)
. (26)

3.2.3. Optimization constraints

The following constraints retain the trapezoidal shape of membership functions in Fig. 4(a), and ensure

that the overlaps are confined along their oblique sides:
15



x1 − x2 ≤ 0 (27)

x1 − x3 ≤ 0, (28)

−x2 + x3 ≤ 0, (29)

x2 − x4 ≤ 0, (30)

x3 − x4 ≤ 0, (31)

x4 − x5 ≤ 0, (32)

x5 − x6 ≤ 0, (33)

x5 − x7 ≤ 0, (34)

−x6 + x7 ≤ 0, (35)

x6 − x8 ≤ 0, (36)

x7 − x8 ≤ 0, (37)

Similarly, the following constraints retain the trapezoidal shape of membership functions in Fig. 4(b),

and ensure that the overlaps are confined along their oblique sides:

x8 − x10 ≤ 0 (38)

x9 − x11 ≤ 0, (39)

−x10 + x11 ≤ 0, (40)

x10 − x12 ≤ 0, (41)

x11 − x12 ≤ 0, (42)

x12 − x13 ≤ 0, (43)

x13 − x14 ≤ 0, (44)

x13 − x15 ≤ 0, (45)

−x14 + x15 ≤ 0, (46)

x14 − x16 ≤ 0, (47)

x15 − x16 ≤ 0, (48)

The constraint (49) ensures that the SC is directly charged by the battery when ilf and ∆SoCsc are

respectively L and NH:

x5x18 + x9x19 ≤ 0. (49)
16



The following constraint is introduced to guarantee the charging of SC when ilf and ∆SoCsc are respec-

tively NH and L:

x1x18 + x13x19 ≤ 0. (50)

The constraint (51) ensures that the SC get discharged when ilf and ∆SoCsc are respectively L and PH:

− x4x20 − x16x21 ≤ 0. (51)

The following constraint is introduced to guarantee the discharging of SC when ilf and ∆SoCsc are

respectively PH and L:

− x8x20 − x12x21 ≤ 0. (52)

Considering the fuzzy rules in Table 0, the constraints (53) and (54) ensure that the peak of the ROL

NH is inferior to that of NM.

x1x17 − x4x18 − x9x19 ≤ 0. (53)

x1x17 − x1x18 − x12x19 ≤ 0. (54)

Similarly, the constraints (55) and (56) ensure that the peak of the ROL PH is superior to that of PM.

x8x20 + x13x21 − x8x22 ≤ 0. (55)

x5x20 + x16x21 − x8x22 ≤ 0. (56)

The bound limits are as follows

− 1 ≤ x1, x2, x3, x4 ≤ 0. (57)

0 ≤ x5, x6, x7, x8 ≤ 1. (58)

∆SoCsc,min ≤ x9, x10, x11, x12 ≤ ∆SoCsc,avg. (59)

∆SoCsc,avg ≤ x13, x14, x15, x16 ≤ ∆SoCsc,max. (60)

1/4 ≤ x17, x19, x21, x22 ≤ 1/2. (61)
17



Algorithm 1: Evaluation of individual fitness in Genetic Algorithm

1 Build FIS using X, Fig. 4, Table 0, and Eqs. (11) to (15);

2 for k = 1 to N do

3 Determine ilf (k) and ihf (k) from iHESS , Eq. (2) and Eq. (3);

4 Compute ilf,sc(k) from FIS, with ilf (k), ∆SoCsc(k) and Tbat(k) as inputs ;

5 Isc,req(k)← (ihf (k) + isc,lf (k))Ibat,nom ;

6 Isc(k)← Isc,req(k) ;

7 Ibat(k)← IHESS(k)− Isc(k) ;

8 Determine Tbat(k+ 1) from Eq. (26), and ∆SoCsc(k+ 1) from Eqs. (22) and (23);

9 end

10 Determine J1(X), J2(X) and J3(X) from Eqs (19), (20) and (21), respectively;

11 J(X)← v1J1(X) + v2J2(X) + v3J3(X).

0 ≤ x18, x20 ≤ 1/4. (62)

The boundaries (61) on x17 and x22 result in a relatively large current assigned to the SC if ilf is of high

intensity. Similarly, the bound limits on x19, x21 result in a relatively large current assigned to the SC if

∆SoCsc is high. In both cases, the current supplied by the SC does not exceed 1
2Ibat,nom so that the rules

α·NH and α·PH in Table 0 under low battery temperature, and β·NM and β·PM in Table 0 under high

battery temperature do not cause the slow-varying current isc,lf to exceed 1, or Ibat,nom in physical unit.

The boundaries (62) applied to x18 and x20 require the SC to handle a relatively small portion of isc,lf when

it is medium, i.e, under NM and PM rules.

3.2.4. Optimization problem

Considering the above, the optimization problem solved by GA is summarized as follows:

min
X

J(X)

s.t. G(X) ≤ 0,

where J is detailed by inequalities (18), (19) and (21), and G(X) consists of equations (27) through to (62).

Algorithm 1 describes the steps in determining the fitness value of an individual, i.e, a candidate solution

X to the optimization problem.
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Figure 5: Sandia National Laboratory’s load profile for determination of duty cycle for energy storage systems in a PV smoothing
application

4. Case study

An HESS consisted of four 3.6V lithium-ion battery cells and twelve 2.7V supercapacitor cells is con-

sidered in this simulation study. Details on the characteristics of storage devices are depicted in Table 1.

To ensure a stable operation of the retrofitted HESS and to prolong the SC lifespan, the variation of SoCsc

is restricted between 0.5 and 1. The following scenarios that correspond to normal and extreme operating

conditions are considered to test the controller:

• Scenario I — Optimal conditions: Tamb and Tbat(0) are both set at 25 °C, SoCsc(0) is set around 75

%, and iHESS has a non-zero profile.

• Scenario II.a — Low temperature mode: Tamb and Tbat(0) are both set at 5 °C, SoCsc(0) is set around

75 %, and iHESS has a non-zero profile.

• Scenario II.b — High temperature mode: Tamb and Tbat(0) are both set at 45 °C, SoCsc(0) is set

around 75 %, and iHESS has a non-zero profile.

Put together, these scenario provide a full picture of the expected performances of the controller, should

it be used under the recommended conditions or far away from the appropriate temperature range.

5. Simulations and discussion

5.1. Controller parameters

Figure 5 presents the load profile obtained from the U.S. guideline for determination of duty cycle for

energy storage systems in a PV smoothing application [56]. This load profile IHESS was applied to the

battery-SC HESS to compute the optimal array X of controller parameters. In the rest of this paper, the

sign convention is such that a negative current always flows towards the storage device to charge it. Fig.
19



Table 1: Simulation parameters for testing of the battery-SC HESS controller

Parameter Value Unit Parameter Value Unit

Battery cells [41, 54] GA parameters

Ebatt,nom 8.64 Wh v1; v2; v3 0.25; 0.25; 0.5

Vbatt,nom 3.60 V Population size 100

Ibatt,nom 2.20 A Elite count 5 %

Rbatt 0.10 Ω Crossover fraction 0.8

Cbatt,cell 17.26 J/°C Low-pass filter

Rb2a,cell 6.84 °C/W T 100 sec.

# in series 4

Supercapacitor cells [55] Current controller

Csc,nom 450.00 F kp 1.85

Vsc,nom 2.70 V ki 2720

Rsc,cell 2.80e-3 Ω DC-DC converter

Rb2a,cell 6.84 °C/W L, Lfl 0.56 mH

# in series 6 R, Rfl 0.09 Ω

# in parallel 2 Cfl 72.73 mF

Switching frequency 20 kHz
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Figure 6: Optimization outputs from Genetic Algorithm

6(a) shows the convergence curve obtained for the case study introduced earlier subject to the load profile

in Figure 5. Figure 6(b) shows the MFs of Tbat derived from previous experiments on lithium-ion batteries

[32]. The optimized array X of controller parameters is as follows: X = [-0.6981; -0.3797; -0.5292; -0.2025;

0.2417; 0.6537; 0.3508; 0.8789; -0.2328; -0.1841; -0.2067; -0.1020; 0.0127; 0.1845; 0.1014; 0.2427; 0.3896;

0.2054; 0.3053; 0.1785; 0.3317; 0.3600]. The membership functions of ilf and ∆SoCsc are shown in Fig. 6(c)

and Fig. 6(d), respectively.

5.2. Scenario I: Controller performance under normal operating conditions

The battery-supercapacitor HESS and the proposed controller were implemented in Simulink/Matlab.

Figure 7 presents the current profiles under a fast-varying load, with both the ambient and initial battery

temperature set at 25°C. Here, the subscript w/o corresponds to the performance obtained when the SC is

controlled by the LPF alone, while w refers to the performance under full implementation of the proposed

EMS. It shows that the presence of LPF causes the SC to handle the spiky content of IHESS . As a result,

the current supplied by the battery within the LPF-controlled HESS (Fig. 7(b)) is smoother than that of

the BESS (Fig. 7(a)). Fig. 7(c) shows the current profile of the SC, which shows fast fluctuations. Under

full deployment of the EMS, the FIS limits the supply of high intensity current by the battery. This is

21



achieved by diverting part of low-frequency content of IHESS towards the SC, as depicted in Fig. 7(d).

Under normal operating conditions, the SC contributes up to 18.28% in the supply of low-frequency current

by the HESS. In comparison to BESS and HESS,w/o alternatives, Table 2 shows that the RMS value of

the battery current (J1) decreases by, respectively, 26.20% and 13.77% under the new controller. Moderate

improvement on the deviations of battery temperature (J2) and SC SoC (J3) from specified values is also

noticed.
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Figure 7: Current profiles under a fast-varying load. (a) Total current requested from the HESS. (b) Battery current. (c) SC
current. (d) Low-frequency content of SC current.

Figure 8 plots the evolution of battery temperature, assuming that the current profiles given in 7(a) and

(b) repeat continuously for six hours.

Based on previous studies on the cyclic ageing of batteries [57, 58], the capacity loss is given by Eq. 63 :

Qbat,loss = B(C) exp

(
−31700 + 370.3C

RTbat

)
(Ah)z, (63)

22



Table 2: Performance indexes under normal and critical operating modes

Simulation
J1 J2 J3

BESS HESS,w/o HESS,w BESS HESS,w/o HESS,w BESS HESS,w/o HESS,w

Scenario 1 0.6398 0.5476 0.4722 0.0018 0.0014 0.0012 - 0.0062 0.0050

Scenario 2.a 0.8854 0.7099 0.8796 0.5665 0.5674 0.5665 - 0.0215 0.0002

Scenario 2.b 0.8854 0.7099 0.5405 0.5773 0.5762 0.5751 - 0.0140 0.0336
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Figure 8: Evolution of battery temperature under scenario I

with

B = 25623.71C−0.28. (64)

Here, B denotes the pre-exponential factor; C denotes the C-rate; R stands for the ideal gas constant, which

is equal to 8.314 J(kg K)−1; Tbat denotes the absolute battery shell temperature in K; Ah denotes the Ah

throughput of the battery; z stands for the power law coefficient, which is equal to 0.552. In this study, Ah

corresponds to the product of Ibat,RMS and the total time of operation. To determine the battery lifetime,

it is assumed to operated for six hours, as shown in Fig. 8, and is rested for 18 hours daily. The end of life

is reached when the battery loses 20% of its nominal capacity given in Table 1.

For each configuration, Table 3 shows the RMS current of the battery (Ibat,RMS), the final temperature

(Tbat,SS), the average temperature (Tbat,avg), the total battery capacity loss Qbat,loss over the same period,

and the corresponding theoretical battery lifespan. It appears that the proposed plug-in module increases

the theoretical lifespan of the battery by 17.00% and 7.75% compared, respectively, to the BESS and the

HESS controlled by the filter alone.
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Table 3: Assessment of theoretical battery ageing

Ibat,RMS (A) Tbat,SS (°C) Tbat,avg (°C) Qbat,loss (%) Lifespan (hours)

BESS 1.408 28.623 27.803 0.330 60.575

HESS,w/o 1.200 27.802 27.174 0.304 65.777

HESS,w 1.004 27.361 26.833 0.282 70.872

5.3. Scenario II: Controller performance under extreme ambient temperatures

5.3.1. Scenario II.a: Supercapacitor support under low temperature conditions

The effectiveness of the battery-SC HESS controller in low temperature environment is investigated

in this section. A scenario that assumes the storage system functioning in room temperature at 5 °C is

considered to evaluate the performances under extremely cold operating conditions. Figure 9 depicts the

current and temperature profiles in the battery-SC HESS in this context. Here, the subscripts w and wo

denote respectively the performances obtained by considering and ignoring the battery temperature in the

control strategy. The latter is evaluated by maintaining the fuzzy input Tbat constantly at the reference

value of 25 °C.

In operating the battery-SC HESS in cold environment to supply the load shown in Fig. 9(a), the

controller that involves the battery temperature tends to increase the battery current (cf. Fig. 9(b)) by de-

creasing the portion of low-frequency current assigned to SC (cf. Fig. 9(c)). This results in increased battery

heating by Joule’s effect (cf. Fig. 9(d)), causing faster rise of temperature so as to move it near the optimal

range. Except for the handling of fast transitions by SC, the profiles of battery current and temperature are

identical to those observed under the BESS. In comparison to BESS and HESS,w/o alternatives, Table 2

shows that the average deviation of the battery temperature (J2) decreases, respectively, by 0% and 0.15%

over the six minutes of functioning under the new controller. The latter is accompanied by 23.82% increase

in the RMS value of Ibat (J1), because battery warming receives higher priority. A significant improvement

of 99.07% is also reported on the deviation of SC SoC.

5.3.2. Scenario II.b: Supercapacitor support under high temperature conditions

The effectiveness of the battery-SC HESS controller in high temperature environment is investigated in

this section. A scenario that assumes the hybrid storage system functioning at a room temperature of 45

°C is proposed to evaluate the performance under extremely hot operating conditions. Figure 10 shows the

various current and temperature profiles under the different configurations.

When operating the battery-SC HESS under high ambient temperature to supply the load in Fig. 10(a),

24



0 50 100 150 200 250 300 350
Time (s)

-2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

C
ur

re
nt

 (
A

)

(a)

I
HESS

0 50 100 150 200 250 300 350
Time (s)

-2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

C
ur

re
nt

 (
A

)

(b)

I
bat,w

I
bat,w/o

I
bat,BESS

0 50 100 150 200 250 300 350
Time (s)

-2

-1.5

-1

-0.5

0

C
ur

re
nt

 (
A

)

(c)

I
sc,w

I
sc,w/o

0 50 100 150 200 250 300 350
Time (s)

5

5.05

5.1

5.15

5.2

5.25

5.3

5.35

T
em

pe
ra

tu
re

 (
°C

)

(d)

T
bat,w

T
bat,w/o

T
bat,BESS

T
amb

Figure 9: Current and temperature profiles under room temperature at 5 °C

the controller supplied with the battery temperature in input tends to reduce its current (cf. Fig. 10(b)) by

increasing the low-frequency current assigned to SC (cf. Fig. 10(c)). This reduces battery heating by Joule’s

effect, slowing the temperature rise. Compared to the BESS, Figure 10(d) shows that 38.15% decrease in

the battery temperature slope is achieved by the new controller. Further, Table 2 reports, after functioning

six minutes, 0.3% and 0.19% decrease in battery temperature deviation (J2) compared respectively to BESS

and w/o alternatives. This is accompanied by 38.95% and 23.87% decrease in the RMS value of Ibat (J1).

A degradation of 140% is also reported on the deviation of SC SoC.

6. Conclusions and future work

This paper has presented a fuzzy logic controller for plug-in supercapacitor modules thoughtfully designed

for easy upgrade of battery-alone storage systems to battery-supercapacitor HESS. Through an adequate
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Figure 10: Current and temperature profiles under ambient temperature at 45 °C

control of supercapacitors that contribute in the supply of both high and low frequency currents, the proposed

EMS mitigates the electric and thermal stresses on batteries, resulting in extended lifespan. The simulation

study showed that up to 26.20% decrease in peak battery current can be achieved under normal ambient

conditions, and up to 38.15% decrease in battery temperature slope can be achieved under high temperature

conditions. Moreover, The thermal support from the SC is gradually decreased when battery warm-up

increase in priority. The proposed controller showed better performance than the battery-alone storage

systems. It also outperforms the previous battery-supercapacitor HESS controllers with respect to ease of

implementation and extent of support to batteries.

While the proposed EMS has proved to be effective in extending the lifespan of batteries, future research

is needed to further inform the decision-making process. One area of future work is in devising a suitable

approach for sizing the supercapacitors and DC/DC converter so that the economic benefit at the plant
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level is maximized. This can offer a solid ground to help the management decide whether to upgrade his/her

BESS or not.

Appendix A. Block diagram simulation model of the battery-supercapacitor HESS

The power and control layers of the model implemented Matlab/Simulink block are shown in Figure A.1

and Figure A.2 respectively.
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