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Abstract— At the frontier of computing today is the Internet 

of Things, rapidly connecting things and incorporating them 

into its larger ecosystem. Driving the rapid rise of the Internet 

of Things is the Edge Computing framework. While the Edge 

Computing framework has its shortcomings, it can be enhanced 

with the use of Artificial Intelligence and Virtualization 

technologies.  This paper discusses several papers and earlier 

surveys focused on enabling virtual services in Intelligent Edge 

Computing. Few works are dedicated to advancing 

virtualisation's incorporation in Intelligent Edge Computing. 

However, the current works studied provide an insight into the 

research’s direction. Furthermore, future directions are stated 

and highlighted to encourage research in this domain. 
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I. INTRODUCTION 

The IoT has led to a huge paradigm shift giving machines 

and users access to the internet by various means. The IoT 

empowers various computing technologies like Cloud 

computing and Edge computing. However, the IoT 

environment is volatile and heterogeneous. Designing a 

framework that takes into account all the different factors 

affecting performance in a single framework is a challenge 

since such a framework may have many points of failure. 

Cloud computing, on one hand, fails to provide users with a 

relevant privacy guarantee, location-aware services and low 

latency services [1]. The aforementioned areas give Edge 

computing leverage over cloud computing for IoT 

applications. On the other hand, Edge computing faces some 

challenges. The heterogeneous nature of the environment 

means that user mobility, device constraints, user requests, 

and available bandwidth all affect performance, and all of 

these factors are volatile [2]. 

Central to Artificial Intelligence (AI) today is the deep 

learning model, a subclass of machine learning [3]. 

Significant amounts of research are going into this area 

because of its ability to scale on structured and unstructured 

data, as well as the optimal performance-to-error rate ratio. 

Applications arising from deep learning and edge computing 

are beginning to emerge. While it is not a surprise, AI has 

brought several benefits to Edge Computing to augment its 

weaknesses such as network optimization to reduce network 

congestion, AI hardware to accelerate computing and varied 

application context scenarios for user satisfaction [4]. The 

inter-discipline, Intelligent Edge (IE) is now a curious subject 

for both industry and research as it brings the concept of Edge 

Computing and AI together. Furthermore, Intelligent Edge 

Computing introduces additional computational demand on 

limited network resources and optimisation problems. Thus, 

virtualization and its associated technologies are proposed to 

handle this constraint. 

The contribution of this literature survey is to show the 

scope of available technologies in virtualization for 

Intelligent Edge computing, its advances as well as 

challenges and opportunities. Also, a contribution is made to 

the ongoing discussion of how to best manage and optimize 

large-scale Edge networks for improved reliability and 

performance. The paper is outlined as follows. The next 

section presents the background, followed by a discussion of 

the various applications of virtualized services in the 

Intelligent Edge and opportunities for research. Finally, the 

paper ends with a conclusion. 

II. RELATED WORKS 

Application deployment can be achieved using 

virtualization for the Intelligent Edge.  Modern hardware on 

IoT end nodes allows lightweight virtualization to be adopted 

such as containers and Unikernel [5]. Many surveys address 

the expanse of literature related to virtualization in Edge 

computing [6]–[8]. On the other hand, surveys related to 

Intelligent Edge Computing for virtualization are few. The 

survey conducted by Zhu et al. [6] explores Deep Learning 

(DL) techniques in Mobile Edge Computing (MEC) for 

virtualized networks and presents a discussion on research 

investigations ongoing. Uncertainties for next-generation 

mobile network systems are also explored. However, the 

paper emphasizes Mobile Edge Caching and its development. 

The literature review done by Duc et al. [7] presents 

orchestration parameters or areas to be considered in 

designing systems for the virtualized Edge network, from a 

machine learning perspective with no mention of the 

Intelligent Edge. The paper by Murkherjee et al [8] 

extensively reviews AI microservices deployed in the edge 

computing framework and security implementations to 

minimize risks and vulnerabilities. The article addresses a 

specific niche in Intelligent Edge Computing which is the 

security and privacy architecture but lacks a broad view of 

advances in the field. The scope of IoT and Intelligent Edge 

Computing surveys discuss technologies in the trend of MEC 

such as NFV, SDN and ICN, however, few consider other 

virtual technologies like microservices [1], [9]. The IoT 

research domain is expanding rapidly. Ongoing research 

explores new paradigms that can be incorporated into 

Intelligent Edge Computing such as microservice. This 

literature review considers microservices in addition to other 

mainstream virtual technology like Software Defined 

Networking (SDN) and Network Function Virtualization 

(NFV). Table I shows a summary of the works presented. 



III. ENABLING TECHNOLOGIES 

A. Software Defined Networking 

Software Defined Networking (SDN) addresses the 

challenge of network flexibility faced by heterogeneous, 

interoperable networks such as Edge-IoT networks. In 

heterogeneous networks, the flexibility of a network refers to 

its ability to adapt the available network resources, such as 

flows or topology, to changes in design requirements, e.g., 

shorter latency budgets or different traffic distributions. 

Network flexibility is a challenge because of the differences 

in the operating systems and protocols available in the system 

architecture. It facilitates a decentralized network traffic and 

routing scheme for both virtual and physical devices. The 

SDN architecture is multi-layered consisting of a data plane, 

application plane and control plane [10]. The control plane 

and data plane work together to ensure that the network is 

functioning properly and that the packets are being forwarded 

to the correct destination. Whereas the application plane acts 

as an intermediary between applications and the rest of the 

SDN. The SDN framework gives the network added 

functionalities to make organization easier.  The SDN 

employs a central controller to monitor and coordinate the 

entire network. The data plane contains forwarding devices 

such as virtual switches and physical switches and the control 

plane oversees the functions of the data plane. A policy on 

how to execute data packet forwarding and manipulation at 

the data plane comes from the control plane. The control 

plane plays a central part in SDN functionality. By organizing 

the data plane and the application plane, the central controller 

in the control plane optimizes the network to deliver on 

performance as well as translate software requirements into 

policy for the data plane. The application plane contains 

applications which adjust performance settings to suit 

network conditions to prevent overloading of the network. By 

decoupling the network control plane from the data plane, the 

SDN controller has access to a global view of the network as 

well as tracking all network data, such data is profitable for 

network analytics and machine learning (ML) insights. 

The heterogeneity of networks poses a challenge to 

system maintenance and application orchestration in SDN 

[10]. Cognition was proposed to handle the system dynamics, 

however, the network nodes proved incapable of performing 

the additional instructions. This is being attempted once more 

with the improvement in device performance [11]. In [12], 

the authors encounter the dynamic routing problem in an IoT 

network, due to the time cost incurred.  The routing problem 

initially was solved with the Shortest Path First (SPF) 

algorithm [13], however, on large scale, the algorithm does 

not meet performance requirements. The paper does a 

comparison between a few Machine Learning (ML) 

algorithms to determine which has the best performance: 

Max-Min Ant Swarm, Neural Network, and SPF. This leads 

to the discovery that Neural Networks outperform other ML 

algorithms in the execution time of services for SDN. 

Recognizing the potential of Neural Networks, Cui et al [14] 

propose to push the potential of SDN by aiding it with a 

Neural Network to carry out effective load balancing for 

network traffic management. From simulations, the Neural 

Network achieves a 19% decrease in latency over the Round 

Robin algorithm. Unlike Li et al [5], Stampa et al [15], 

attempts the routing optimization problem for heterogeneous 

networks with Deep Reinforcement Learning (DRL). Deep 

Reinforcement Learning employs a software agent without 

any memory of the environment to explore and exploit a 

system until it can generate the most optimal policy for 

system performance. Despite Deep Reinforcement Learning 

requiring larger datasets and computing time for training, 

they stand a chance of producing overfitting data nevertheless 

due to its adaptability over long periods and its ability to 

reach a globally optimal solution it is the most preferred and 

in the case of [15], it reduces the network delay. The results 

showed a slight reduction in network delays compared to 

previous algorithms for routing optimization. The authors in 

[16] tried to uncover the ongoing process in the DRL neural 

network that makes it exceptional at reducing network delay, 

however, despite their efforts the method failed to make any 

discovery. Resource management in Vehicular Ad hoc 

Networks (VANETS) which consider caching, computing 

and networking altogether is complex. Thus, following the 

work done by Stampa et al [8], He et al [17] attempt to model 

this situation as a joint optimization problem for DRL to 

solve. DRL is used to formulate a policy for resource 

allocation. The results did not meet expectations, since the 

energy utilization is not efficient when DRL is employed 

compared to implementations without DRL. A similar 

attempt is made on smart city environments in [18], and 

likewise, the results did not exceed the performance of the 

baseline. As a preliminary work, Nakao et al [19] consider 

the research question of what the other application scenarios 

of Deep Learning (DL) in Mobile Virtual Networks (MVN) 

could be. Through monitoring network traffic data with SDN 

and categorizing the data with neural network pattern 

recognition, potential application cases are recognized with 

the bottleneck being minimizing errors in data collection.  

B. Microservices 

Commercially, applications are designed as a unit, with 

one programming language and function dependent on one 

another [20]. However, the application cannot be augmented 

with new functionalities quickly since that would mean 

redesigning the whole application. Also, application 

deployment features a single programming language-driven 

application, dependent on other functions working together. 

However, when one function fails during runtime the whole 

system terminates. This can be detrimental to security as a 

service [21].  On the other hand, Microservices are service-

oriented modular units for software development. The 

microservices are deployed in containers such as Docker and 

orchestrated with Kubernetes. With a divide-and-conquer 

pattern and lightweight communication protocols, it achieves 

application task execution. As a new paradigm, it enables the 

deployment of multiple virtual units to carry out tasks without 

the task having a single point of failure from any of the units 

[20]. Due to the flexibility of microservices, they are 

deployed rapidly and new instances are created dynamically 

according to network traffic, service requests, service 

assurance and security. Microservices deploy AI applications 

for a varied number of services, security as a service, 

infrastructure as a service, and software as a service [22]. 



Traditional IoT applications on a large scale are difficult 

to maintain, restructure and extend to other use cases. IoT 

needs to incorporate architecture which is flexible, 

interoperable, heterogeneous and robust against the harsh 

environment. In [23], the authors propose an open IoT 

microservice framework which uses device plugins and third-

party service plugins to encourage other applications to be 

introduced. However, the paper does not sufficiently consider 

AI applications. Advancing the earlier work done, Ali et al 

[24] incorporate microservices, ML algorithms and Virtual 

Objects into the IoT framework. The microservices grant the 

flexibility of the application, whiles the ML algorithms 

render predictive performance to the applications and Virtual 

Objects extending the reach of the IoT network. The 

performance of this scheme showed low query time from 

Virtual Objects and a low error rate in activity prediction 

accuracy. Another direction of research in this area has been 

to employ microservices with Deep Learning techniques like 

DRL to the problem of optimization for IoT networks at the 

Edge. In [25], Chen et al show a decrease in system 

performance in terms of user service average waiting time 

after DRL is employed in Edge-Cloud networks. About the 

baseline algorithms, genetic algorithm and random 

TABLE I.   ENABLING TECHNOLOGIES FOR VIRTUAL SERVICE AT THE INTELLIGENT EDGE 

Ref. Objective Contribution Limitation 

[12] Traffic engineering with ML Using ML to interface between the control plane and data plane 

of SDN to provide faster time gains for Edge network 

Implementation does not 

perform better than the baseline 

[13] Load balancing with SDN-enabled network Using Neural Network to enhance network load balancing 
performance in SDN 

Implementation was carried out 
in small-scale simulation 

[14] SDN routing optimization Using DRL for routing optimization to enhance the performance 

of SDN in Edge network 

Performance decreases with a 

decrease in training time 

[15] SDN resource management Using DRL for Network resource allocation policy in Edge 
networks enabled with SDN 

Implementation is not energy 
efficient compared to baselines 

[16] Network latency prediction Using Neural Network to predict network delay in SDN enabled 

Edge networks 

Implementation does not 

perform better than the baseline 

[17] Predictive dynamic network routing Using Neural Networks to solve the routing optimization 
problems in SDN enabled Edge networks 

Implementation carried out on a 
small scale 

[18] SDN optimization for Smart Cities Using DRL for Network resource allocation policy in Edge 

networks enabled with SDN 

Implementation does not 

perform better than the baseline 

[19] Identifying mobile application scenarios Using Neural Networks to identify application scenarios from 
data distributions in SDN enabled Edge networks 

Added data introduces 
computational error 

[23] Microservice IoT application deployment Considers AI applications in microservice deployment for IoT Implementation is carried out 

on a small scale 

[24] Predictive Analysis of Data aided by 
Microservices 

Using microservices to integrate various applications in IoT Implementation is carried out 
on a small scale 

[27] Microservice IoT application deployment 

for Environmental Monitoring 

Using microservices to integrate individual applications into one 

system 

There is no implementation 

carried out 

[28] Microservice IoT application deployment 
for Industrial Monitoring 

Using microservices for anomaly detection in Industrial 
machines. 

There is no implementation 
carried out 

[25] Microservice IoT application deployment Using microservices to design a robust service deployment 

scheme for Edge-Cloud, with DRL 

Service often breaks down 

during implementation 

[26] Microservice IoT application deployment Using DRL to solve microservice deployment optimization 
problems for Edge-Cloud environment 

Implementation records slight 
improvement in performance 

[31] Identification of Cognitive 5G use cases Using NFV to provide edge network flexibility with AI for 

optimization 

Performance declines due to 

false negatives and false recall 

[32] Malfunction Detection for NFV networks Using AI for anomaly detection in NFV-enabled edge networks Implementation is not robust 
and would not withstand large-

scale evaluation 

[33] Dynamic identification and selection of 
VNF 

Using AI for routing optimization in NFV-enabled edge network Performance declines when 
service requests increase 



algorithm, the DRL algorithm achieves 32% and 44% better 

service waiting time respectively. Also, Debauche et al [26] 

show that the optimization problem needs to be solved in 

microservice deployment optimization, with pattern 

recognition from neural networks and the results attained 

show a 5% reduction in latency and the corresponding 

increase in service time deployment by 28 seconds. 

Researchers have applied microservices in various Intelligent 

Edge application deployment scenarios. For example, 

microservices and Deep Learning (DL) are applied in 

environmental monitoring at the edge of the network [27]. 

Also, microservices are applied in Intelligent Edge 

Computing for industrial processes [28]. Wide-scale adoption 

of microservices is hindered by potential drawbacks in 

microservices such as the time-consuming nature of 

developing microservices because of their complexity. Also, 

microservices rely predominantly on communication traffic, 

which tends to create a significant overhead than expected 

during the peak demand for services. 

C.  Network Function Virtualization. 

Network Function Virtualization (NFV) allows 

distributed and otherwise proprietary hardware in the form of 

servers, switches and routers to perform virtual network 

functions (VNF) [29]. NFV takes advantage of virtualization 

technologies like Virtual Machines and Containers to deploy 

VNFs. NFV supports functions of services that change 

frequently, such as switching functions, tunnelling functions, 

service assurance functions, converged functions, application 

functions and security functions [30]. These service functions 

are defined as VNF and implemented on servers. NFV offers 

the advantages such as hardware agnosticism and service 

orchestration among others.  

To provide a general overview of NFV and AI operation 

for Intelligent Edge Computing, it is important to note that 

the edge computing environment is not well designed to deal 

with dynamic function requests under virtualization for 

mobile users since there are privacy concerns when it comes 

to the vulnerability of VM systems and the sizes of VM 

images which exceed the minimum memory capacity of most 

end devices [30]. NFV can meet these challenges. To deal 

with privacy concerns, using NFV standards such as security 

management and monitoring data breaches can be detected 

quickly and addressed. Also by using compression 

techniques available in the NFV network such as gzip or 

bzip2 the sizes of VM images can be reduced. Next-

generation networks envision the connection of whole 

continents to the internet. The problem is how to manage such 

a massive network. AI is the option considered by Yahia et al 

[31] to achieve such an ambition with NFV providing 

flexibility of the intelligent network. The work shows that 

Deep Learning methods such as LSTM and RNN achieve 

bandwidth prediction values better than the baseline ML 

algorithms such as Decision trees. Ahrens et al. deployed a 

self-supervised neural network associated with SDN 

technology to detect anomalies such as bugs and software 

update errors in VNF systems [32]. The system predicts 

anomalies based on CPU and memory utilization metrics. 

However, the algorithm is not robust and would not withstand 

large-scale implementation. In [33], the authors proposed a 

DL technique called Deep Belief Networks to achieve the 

best routing performance. Deep Belief Network learns the 

optimal routing scheme by feature extraction and 

classification thus achieving decent network traffic 

prediction for NFV orchestration. However, there is a 

performance decline when the service requests increase due 

to prediction errors. Deep Learning can be applied in the 

context of NFV to model NFV placement problems 

considering the reliability requirement of the services. Some 

of the problems of NFV in this domain include the 

complexity and difficulty of deploying NFV at scale. The 

breadth of the architecture and the number of distinct 

components make it challenging to design, build and support 

[34]. 

IV. FUTURE DIRECTIONS 

A.  Security 

The Intelligent Edge computing paradigm incorporates 

many frameworks avoiding a centralized administration. The 

network infrastructure and virtual services infrastructure are 

all independent, however, they collaborate to ensure user 

satisfaction. These distributed frameworks are areas 

malicious agents can exploit to launch attacks against the 

network. A security feature that offers global protection over 

the whole Intelligent Edge infrastructure would be preferred 

over individual security schemes which would present many 

points of failure. The entire perimeter of the network needs to 

be protected to ensure adversaries are kept away from crucial 

services. With the collaboration of different paradigms, a 

single vulnerability can lead to the exploitation of the entire 

network. Many attempts are being made to employ SDN, and 

DRL due to the nature of these two technologies to provide a 

global optimum solution to network monitoring and routing, 

enhancing security in networks by first identifying what 

patterns in network traffic are normal and then escalating 

abnormal cases for inspection. By doing so popular malware 

and exploitation hacks can be avoided [8], [35]. 

B.  Privacy 

          Organizations such as the European Union are taking 

steps to ensure that user data is only used with user 

authorization, in response to recorded cases of data 

manipulation and infringement [36]. Current efforts are 

trying to make procedures as transparent as possible avoiding 

black boxes and misleading policies. Attempts are being 

made to uncover what exactly happens in hidden layers of 

deep neural networks [13]. Researchers are also developing 

new paradigms by incorporating current enabling techniques 

[1]. Two such paradigms are Privacy by Design (PbD) and 

Software Defined Privacy (SDP). PbD is a scheme that uses 

microservices to augment the whole system's security as a 

Service (SaaS). Privacy by Design (PbD) as a data privacy 

concept calls for the incorporation of data privacy protections 

into the design of information systems, products, and 

services. PbD aims to prevent data privacy breaches and 

protect the privacy of individuals by proactively 

incorporating data privacy safeguards into systems and 

processes. PbD is based on some principles: proactive not 

reactive; privacy as the default setting; privacy embedded 

into the design; full functionality – positive-sum, not zero-

sum; end-to-end security – full lifecycle protection. Software 

Defined Privacy (SDP) seeks to modify SDN to offer users 



enhanced privacy based on transparent policies. Software 

Defined Privacy is built to protect the privacy of its users by 

controlling or limiting the amount of information made 

available to third parties. The software can apply encryption 

or filtering of various kinds. 

C.    Standardization 

     Industry players such as service providers, researchers, 

network operators, and other stakeholders are providing input 

to form standards for Intelligent Edge Computing, to 

establish a trustworthy paradigm. The terms Intelligent Edge 

and Edge Intelligence are used loosely and interchangeably. 

According to Wang et al [21], Intelligent Edge is used to 

describe techniques used to incorporate DL into Edge 

Computing whiles Edge Intelligence is attaining AI-enabled 

Edge Computing infrastructure which is independent of 

Cloud computing for reliability, scalability and flexibility. 

However, there is no universally accepted definition for 

Intelligent Edge Computing. On the other hand, in 2017 

European Telecommunications Standards Institute (ETSI) 

led to the change of MEC is Mobile Edge Computing to 

Multi-Access Edge Computing to recognize the wireless 

networks and enhanced user mobility introduced into mobile 

computing. The term is now widely used in technology under 

cellular networking. Other paradigms like Cloudlet and Fog 

Computing are employed and governed mainly by private 

corporations. Universal standards are needed to enhance 

product and service integrity. 

V. CONCLUSIONS 

Due to the growth of AI and Edge computing, it is more 

possible to bring complex AI applications into the edge 

computing volatile environment. This makes Intelligent Edge 

feasible with current trends. Virtualization and Network 

Function Virtualization are thus introduced to facilitate the 

realization of an efficient Intelligent Edge. Also in this 

literature review, consideration is given to the several 

approaches that have been used to achieve virtual service 

deployment in the Intelligent Edge and in what direction 

current research is driving the Intelligent Edge. 
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