
979-8-3503-3761-7/23/$31.00 ©2023 IEEE

Running Virtual Services for the Intelligent Edge: A

Review

Kevin Afachao1
1Department of Electrical, Electronic and Computer Engineering

University of Pretoria

Pretoria, 0028, South Africa

u22851217@tuks.co.za

Adnan M. Abu-Mahfouz1,2
2Council for Scientific and Industrial Research (CSIR)

Pretoria, 0083, South Africa

a.abumahfouz@ieee.org

Abstract— Emerging technologies like Artificial Intelligence,

the Internet of Things, Virtualization and Edge Computing are

driving research towards making the Intelligent Edge conducive

for varied application growth. Virtualization is adopted because

it provides an adaptive development of services. Artificial

Intelligence provides promising data manipulation

opportunities while Edge Computing grants lower latency and

higher data privacy to users. This article highlights significant

architecture for virtual service deployment in the Intelligent

Edge. The first basic concepts are presented: Virtualization,

Network Function Virtualization, Artificial Intelligence and the

Intelligent Edge. Then various virtual services modifications are

discussed such as the Round Robin Algorithm, the Minimum-

Minimum algorithm, the Multiheuristic Algorithm and the

Particle Swarm Optimization Algorithm. The algorithms are

contrasted on performance indicators such as makespan,

standard deviation, degree of imbalance and processing speed.

Results vary from algorithm to algorithm, indicating room for

improvements. In addition the paper presents future

opportunities for virtual service deployment in Intelligent Edge

Computing.

Keywords—Internet of Things, edge computing, artificial

intelligence, scheduling algorithms, virtualization

I. INTRODUCTION

Big technology companies such as Google, Microsoft and

Amazon are making strides in the Internet of Things (IoT) by

offering commercially viable applications that run Artificial

Intelligent (AI) services at the edge of the network, namely

Microsoft Azure IoT Edge, Amazon’s Greengrass, and

Google Cloud IoT Edge [1]. Although these are also referred

to as Edge applications, they rely heavily on Cloud

processing and cannot handle real-time applications such as

live video streaming, Augmented Reality (AR) tasks and real-

time object detection scenarios due to runtime delays. A

recent framework that combines AI and Edge computing

called the Intelligent Edge (IE) solves this problem and offers

additional privacy and security enhancements for the network.

The goal of the Intelligent Edge is a framework that combines

data processing, data analytics, data storage, deep learning

inference, deep learning training, and privacy and security

systems all at the network edge [2]. With recent

advancements in hardware computing technology, and

increasing production of user data accompanied by vast

service deployment scenarios, Intelligent Edge adapts

services to users, whiles providing low latency, low

communication cost and localized data storage.

The number and complexity of application scenarios for

IoT devices are increasing. However, these tasks can be

divided into sub-tasks using virtualization technology to

reduce their complexity. Despite this, the application

requirements such as flexibility of hardware, low latency,

high data throughput, and high quality of service (QoS) are

still not sufficiently satisfied by Intelligent Edge computing

[3]. Some of the challenges faced include how to adequately

manage resources at the edge for training and inference of

deep learning models while meeting the minimum

requirements for a good user experience. IoT devices at the

edge of the network are application-specific and constrained

due to a lack of resources. Additionally, they have a smaller

battery lifespan compared to cloud data servers. Therefore,

the Intelligent Edge computing architecture needs to embrace

collaboration with technologies such as Virtualization,

Software Defined Networking, and Network Function

Virtualization to boost service provision [4].

The motivation for this literature survey is to present a

novel scope of virtualized services in the Intelligent Edge, its

advances, and opportunities. Simulations are further

conducted to compare existing techniques implemented to

meet the inadequacies of service deployment.

The paper is outlined as follows. In the next section, the

background is presented, we continue by discussing the

various studies of virtualized services in the Intelligent Edge,

baseline algorithms and opportunities for research. Finally,

the paper ends with a conclusion.

II. BACKGROUND

Several surveys have discussed different aspects of virtual

services in different computing environments. Service

placement and migration surveys consider where to place the

virtual services during runtime and how to deploy such

services [5],[6]. Resource allocation and system

consolidation surveys consider schemes to optimize overall

system performance for virtual service continuity [7].

Surveys on security, explore the methods and policies to

control and mitigate cyber-attacks at the network edge [8]–

[10]. Literature reviews on content caching and computation

offloading present works on how devices can save content for

reuse as well as save device battery lifespan through efficient

computation[11]–[14]. Task scheduling involves assigning

resources to applications in a queue and deploying them

based on a priority scheme. Surveys in this area are presented

in [22]. However, this study presents a survey that concerns

running virtual services for the Intelligent Edge, with

emphasis on reduction in execution delay.

The early forms of edge computing, such as distributed

clouds [15], aimed to improve the user experience by

propagating cloud computing resources across a network.

However, the distributed cloud architecture relies solely on

the cellular network, which introduces operational costs and

unstable user service continuity. This is because cloud

content providers must compromise with network service

providers. In the distributed cloud data center, the migration

of Virtual Machines (VM) faces the challenge of execution

latency, considering that VM services introduce delay during

deployment.

Urgaonkar et al [16] presented the challenge of

determining where a user's content and services are migrated

when they move to a new area. They emphasized the need for

a policy to choose a node for service migration, but this poses

a challenge as user request patterns, the number of users, and

the number of applications are unknown and difficult to

model. They also noted that using only the Markov Decision

Process (MDP) to model the system is impractical since it

cannot account for user mobility and service request arrival

values. To overcome this challenge, they proposed a control

algorithm called Lyapunov optimization, which decouples

the MDP and solves it using non-stochastic shortest path

optimization. The Lyapunov optimization algorithm

effectively reduces the queue backlog, even though it incurs

additional migration costs. Taleb et al [17] introduced Follow

Me Cloud (FMC), which was implemented using two

deployment schemes, Location-Identifier Service Protocol

(LISP) and Software Defined Networking (SDN). They used

MDP to model service migration, but also considered 2D

service mobility. The updated version of FMC performed

better than previous versions. In addition to addressing the

challenges of user mobility and service migration, there is

also a need to consider the security of the Intelligent Edge.

As more devices are connected to the network, the attack

surface increases, and there is a greater risk of cyber threats.

This has led to the development of edge security mechanisms

that can protect the devices and data at the edge. Some of

these mechanisms include firewalls, intrusion detection

systems, and data encryption. However, there is still a need

for more research in this area to develop more effective

security mechanisms that can address the unique challenges

of the Intelligent Edge.

In [18], the authors designed a scheduling scheme,

KnapSOS for virtual services in Fog Computing to meet this

challenge of execution latency. Fog nodes employ VMs to

extend network resources by creating virtual Cloudlets for the

network edge. Against schemes that exclude virtual services,

results show improvements in energy consumption, network

utilization, execution costs and node lifetime expectancy. In

[19], researchers designed a dynamic graph partitioning

theory to ensure load balancing among distributed virtual Fog

computing systems. By introducing lightweight

virtualization, [20] implements container virtualization in

collaboration with task scheduling and load reallocation

mechanisms to realize a reduction in task execution delays in

smart manufacturing IoT application scenarios. In a recent

study, [21] formulate decision policy algorithms for task

scheduling in virtual edge systems using DRL, with the goal

of profit maximization. The algorithms outperform baselines

in terms of service delay, computation cost, energy

consumption and task execution.

The distributed and heterogeneous nature of IoT puts

infrastructure under pressure to deliver quality services to

users. Scheduling schemes are employed to ensure the

maximization of profit, the satisfaction of users, efficient

resource allocation and reduction of execution latency at the

network edge [7]. There are many task scheduling and

workload distribution methods for Edge Computing

architectures [6], however, there are not many papers

dedicated to task scheduling for virtual services in Intelligent

Edge computing.

III. SCHEDULING VIRTUAL SERVICES

Virtual services address different problems and

challenges for the Intelligent Edge through various

algorithms and models. Applications are made up of unique

sub-tasks that are responsible for features in the application.

These tasks all together make the application function

optimally and can be executed as virtual services. Multiple

VMs are created and allocated to each task for resource

maximization.

A. Key Parameters

1) Execution time (ETi): The expected time it takes for

a VM to execute a task in milliseconds.

2) Completion time (CTij): The time in milliseconds for

the VM to execute a task until the next task arrives. It usually

comprises the execution time and the ready time.

3) Make Span: The time interval between execution

initiations for a process in a VM until its termination.

4) Ready time (rj): The time in milliseconds that the

VM resource remains idle until the next task is assigned.

5) Time quantum: The allocated time in milliseconds

for which the scheduler must process a task.

B. Algorithms

1) Minimum-Minimum (Min-Min) Algorithm: The

main goal of the Min-Min Algorithm is to reduce the

makespan for processes run in the VM [22]. Intelligent Edge

applications vary in the computational demand required to

meet each application which implies that with multiple users’

service requests, edge servers get congested trying to meet all

the requests. VMs extend the capacity of physical devices

implementing the services, however executing the requests

on a First-Come-First-Serve (FCFS) does not make efficient

utilization of resources because heavy computation tasks can

become a bottleneck to the entire system. The Min-Min

algorithm ensures that computation is utilized efficiently by

running timesaving virtual services first before other services.

Although the Min-Min algorithm ensures computation

efficiency, it is not context-aware and executes tasks

irrespective of context priority. Context awareness is a

characteristic of Intelligent Edge Computing because the

Intelligent Edge considers the priority of task context before

executing them. For instance, emergency services

irrespective of computational time should get run first before

other services.

2) Multiheuristic Min-Min Algorithm: Multiheuristic

Min-Min, a variation of the Min-Min algorithm, considers the

case where the initial task–machine pair is incapable of being

run by the Virtual Machine due to incompatibility [20].

Hence, the alternative pair chosen should have a similar

minimum value as the preferred choice. Incompatibility

occurs when a virtual service cannot be deployed in a

container due to the configuration of that container. This is

not captured by the Min-Min algorithm. Multiheuristic Min-

Min Algorithm suffers from the defects of the Min-Min

algorithm in that it does not consider application context in

service execution making it less ideal for Intelligent Edge

Computing.

3) Round Robin Algorithm: The round-robin

scheduling algorithm is designed to allocate a minimum

amount of time to each task known as the time quantum, to

reduce VM idle time [21]. The VM idle time is the time the

VM waits until another task is received. In practise the Round

Robin algorithm is most efficient for modular virtual services

run at the edge, however monolithic virtual services with

computational requirements greater than the time quantum

face waiting queue delays. For instance at service initiation

the scheduler creates a waiting queue for tasks. At the arrival

of the first task, the VM executes this task within the quantum

given. Any task that arrives while the VM is busy is put in the

waiting queue until the task is completed and the next task is

received. For a task that remains incomplete, it is added to the

waiting queue once again as the latest arrival awaiting

processing. This leads to unforeseen service delays

experienced by users especially when multiple services are

initiated.

4) Particle Swarm Optimization (PSO): PSO algorithm

mimics animal behaviour in swarms, example ants and

migratory birds, indicating the unit’s performance to fit into

the group [22]. The algorithm optimises the performance of

several tasks by employing randomness and probabilities

expressed as velocity to allow the swarm to learn the optimal

performance. Each unit in the swarm moves with a stochastic

velocity and constantly updates its position from the previous

best position to the current best position. Concurrently, the

unit aims to reach the global best position, which indicates

the unit’s overall best performance in the swarm. In

Intelligent Edge applications, the PSO algorithm

continuously modifies the system resources given the system

parameters until a desirable state is attained. The downside to

this algorithm lies with the search space. In large-scale

implementations the swarm prolongs the modification in

attempt to reach the best performance. However only after

several iterations, does the system attain a global best position

which is desirable in the long term.

IV. SIMULATIONS

A. Simulation workflow

 The simulation models a real-time environment by first

creating figures of devices to be employed, then creating

logical components of the system and finally, the

management policies are realized. The CloudSim simulator is

used in this study. An adjunctive model called ReCloud is

used to compare the various algorithms in the Edge-Cloud

simulation. The simulations are carried out by following

many procedures: initializing ReCloud, creating servers for

the cloud, creating cloudlets, creating brokers, creating VMs,

creating tasks, declaring algorithms for scheduling,

simulating the environment, and monitoring results. The

ReCloud library allows comparisons between scheduling

algorithms initiated in the broker. Although an extension of

CloudSim, ReCloud is not preconfigured to provide

components like sensors and actuators.

B. Environment setup

In this review, the implementation involves three server

nodes, one as a cloud server and the other two, as gateway

servers, three VMs are created, three brokers and three hosts.

The tasks are designed to be distributed evenly across the

VMs with sizes of 1MB and 1000 MIPS. The setup is run for

three iterations and the average is taken. In this simulation the

cloudlets and virtual machines are configured as follows, the

virtual machine is set with 9726 MIPS, 512 MB RAM, 1000

MB/s bandwidth and 10000 MB image size with a single

processing element. The host servers are set with 177730

MIPS, 16000 MB of RAM, 15000 MB/s bandwidth, and

4000000 MB of storage with six processing elements. Table

I shows the simulation environment setup.

TABLE I. SIMULATION PARAMETER SETTINGS FOR THE EXPERIMENT

PARAMETER VALUES

Number of tasks 200

Number of VMs 3

Number of hosts 3

MIPS of VM 9726

MIPS of host 177730

ram of VM (MB) 512

ram of host (MB) 16000

bandwidth of VM (MB/s) 1000

bandwidth of host (MB/s) 15000

VM Image Size (MBs) 10000

Storage on Host (MBs) 4000000

C. Results

 The experiment is run over 200 tasks in three rounds and

the average values of the algorithms are illustrated in figures.

The bar graph in Fig. 1 indicates the average performance of

the algorithms in terms of makespan. Fig. 2 shows the

standard deviation of each of the algorithms. Standard

deviation measures the spread of the values from the average

makespan recorded. This measure indicates how varied the

makespan recorded for each task varies from the expected

value. The lower the deviation the closer the values are to the

standard value, the higher the deviation, the more distant the

values are from the average value. The Round-Robin

algorithm records the lowest standard deviation, with the

Multiheuristic algorithm following and the PSO algorithm

coming in third whereas the Minimum-Minimum algorithm

records the highest values for standard deviation. Round

Robin algorithm is handicapped when the quantum allocated

to the processor is large. With a large quantum, the recorded

makespan and service delay increases rapidly. Thus with an

increasing number of tasks, the round-robin algorithm

quickly descends to a First-Come-First-Serve (FCFS)

algorithm. In the simulation, the Minimum-Minimum

algorithm works with the execution times of the tasks and

locates the pair with the minimum task-to-VM execution ratio,

however, the delays experienced in the operating system

implementing this algorithm refer to several configurations

on the VM, that make certain tasks incompatible with

particular virtual machines.

Fig. 3 shows the degree of imbalance among the VMs.

The degree of imbalance is simply a measure of the maximum

completion time in addition to the minimum completion time,

divided by the average completion time across VMs. The

Minimum-minimum algorithm records the highest degree of

imbalance because in executing the shortest jobs first, the

resources across the VMs are not used efficiently. For

instance, VMs responsible for handling heavy computing

tasks would remain idle whiles the VMs which handle light

computations with shorter execution times remain busy.

Multiheuristic Min-Min corrects this by considering an

additional condition to ensure load rebalancing. The PSO

algorithm follows after the Minimum-Minimum algorithm,

whiles the Round Robin algorithm records the least values. In

Fig. 4 the processing speeds are compared among the

mentioned algorithms. The PSO algorithm records the

highest processing speed due to the search space expansion

when dealing with a huge number of tasks, this means many

more computations are performed than necessary leading to

an increase in the processing time. The Minimum-Minimum

algorithm, Multiheuristic Algorithm and Round Robin record

similar values. The round-robin algorithm which uses a

standard quantum of 100ms per task makes efficient use of

the processing unit since computation length is minimized as

well as idle time. The PSO algorithm was introduced to

optimize service delays specifically. The processing speed of

tasks for the PSO algorithm is large and hence contributes to

the recorded delay, however, with an increasing number of

tasks, the system is optimized to produce desirable results.

Thus, PSO records high performance for large-scale systems

than for small-scale systems. Moreover, PSO utilises basic

mathematical operators compared to other algorithms which

make use of matrix-level computations, this makes the

processing relatively better.

There have been many variations of PSO, Round Robin,

and Minimum-Minimum algorithms because these

algorithms serve as the basis for many job scheduling

algorithms. Ideally, these algorithms vary in how they assign

tasks to the scheduler, how they utilize the task queues and

how they manage resources to monitor task completion and

redeployment for Intelligent Edge Computing applications.

V. FUTURE DIRECTIONS

A. Emerging Technologies

 Cloud service architecture often relies on service

deployment schemes such as Microservices, which enable the

deployment of multiple small services to achieve a common

goal. Microservices offer language-agnostic and independent

building blocks that are well-suited for the Intelligent Edge

environment, which comprises distributed software

frameworks. Big tech companies like Netflix and Amazon are

already testing microservices in their applications [25]. One

of the benefits of microservices is easy deployment and

reconfiguration of services, made possible by lightweight

virtualization technology like Docker. Docker Swarm,

Kubernetes, and Mesos are examples of container

orchestration technologies that enable complex and dynamic

orchestration and maintenance of microservices [26].

Emerging technologies like Software Defined Networking

(SDN) [6], [22] and Information-Centric Networking (ICN)

[27] are also being considered for deploying virtual services

at the Intelligent Edge. SDN offers scalability, availability,

resilience, and interoperability, making it an ideal technology

for deploying any type of service on machines. ICN, on the

other hand, provides a robust and efficient service

architecture that ensures minimal delays during service

updates or migration, and it is constructed with IoT and

Intelligent Edge Computing as the focus, making it more

compatible than traditional IP networks.

Fig 1. A bar graph of the average makespan recorded from the algorithms.

Fig.2 A bar graph of the standard deviation recorded from the algorithms.

Fig.3 A bar graph of the degree of imbalance recorded from the algorithms.

Fig.4 A bar graph of the processing speeds recorded from the algorithms.

Another emerging technology that has been gaining attention

in the context of Intelligent Edge Computing is serverless

computing. Serverless computing allows developers to build

and run applications without having to manage the underlying

infrastructure. This approach can significantly reduce costs

and simplify application development, deployment, and

scaling. Platforms such as AWS Lambda, Azure Functions,

and Google Cloud Functions have been widely adopted and

are increasingly being used for Intelligent Edge Computing

applications. With serverless computing, developers can

focus on writing code and designing applications, while

leaving the underlying infrastructure and scaling to the cloud

provider.

B. Frameworks for Optimizing Intelligent Edge Computing

In addition to the technologies mentioned earlier, recent

developments in the field of intelligent edge computing

include Arm's ArmNN and Arm Computing Library, which

provide efficient execution of neural network models on

Arm-based processors, and Qualcomm's Snapdragon Neural

Processing Engine, which is designed to optimize neural

network performance on mobile devices. The AI-enabled

technologies placed a demand for computation resources

which inhibits the performance of edge computing devices

since the hardware available is limited in its computational

power. The need has given rise to libraries and hardware

providing increased processing speeds and lightweight sizes

ideal for the network edge. Currently, CPU chip designs are

taking a step further by providing edge nodes with extra

computing power through the incorporation of neuromorphic

chips, TPUs, GPU and FPGAs. Hardware matched with light

frameworks like TensorFlow Lite, Caffe2, and Arm

Computing Library give virtual services an expansive domain

to provide novel ideas like Intelligent Edge As a Service

(EIaaS), Resource as a Service(RaaS) and also Security as a

Service(SaaS).

C. Varying Application Scenarios

Applications at the edge require different levels of priority

based on their demands. While some smart applications need

a real-time response and run at the edge, others require a best-

effort response. For instance, online gaming demands high

throughput, but even slight delays can lead to service

degradation [1]. Applications that need a real-time response,

such as virtual and augmented reality, terminate when they

encounter latency delays. As such, future applications will

require a balance between real-time response and best effort.

The Intelligent Edge plays a crucial role in enabling

applications such as Telepresence, Ubiquitous Computing,

and the Internet of Everything. Telepresence [6], which is an

extension of mixed reality, allows users to be present in

another location and respond to stimuli from that location.

Another promising future application scenario is Gadget-Free

computing [26], where users can interact with services

through the environment without carrying mobile devices.

The Intelligent Edge ensures that content and services are

available to users even as they move from one location to

another. Furthermore, advancements in technologies such as

5G, AI, and IoT are facilitating the development of new

applications at the Intelligent Edge, opening up new

possibilities for the future.

VI. CONCLUSIONS

With the increasing popularity of Edge computing and

Artificial Intelligence (AI), there is now greater potential for

complex AI applications to be implemented in the volatile

environment of the Intelligent Edge. To support this, various

technologies, including virtualization, are being introduced to

enable the efficient deployment of virtual services at the

Edge. This literature review has identified four different

approaches to virtual service deployment and evaluated their

performance using the CloudSim simulator. The round-robin

algorithm was found to have the best average makespan,

assuming a minimal quantum, and comparison was made

based on factors such as standard deviation, degree of

imbalance, and processing speeds. Further research

opportunities were also highlighted, particularly in

developing algorithms that can minimize service delay and

execute tasks in the shortest possible time.

REFERENCES

[1] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge

Intelligence: Paving the Last Mile of Artificial Intelligence With
Edge Computing,” Proceedings of the IEEE, 2019, doi:

10.1109/JPROC.2019.2918951.

[2] J. Chen and X. Ran, “Deep Learning With Edge Computing: A

Review,” Proceedings of the IEEE, 2019, doi:

10.1109/JPROC.2019.2921977.

[3] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X.

Chen, “Convergence of Edge Computing and Deep Learning: A

Comprehensive Survey,” IEEE Communications Surveys and
Tutorials, vol. 22, no. 2. Institute of Electrical and Electronics

Engineers Inc., pp. 869–904, Apr. 01, 2020. doi:

10.1109/COMST.2020.2970550.
[4] Y. Y. Shih, H. P. Lin, A. C. Pang, C. C. Chuang, and C. T. Chou,

“An NFV-Based Service Framework for IoT Applications in Edge

Computing Environments,” in IEEE Transactions on Network and
Service Management, Dec. 2019, vol. 16, no. 4, pp. 1419–1434.

doi: 10.1109/TNSM.2019.2948764.

[5] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. K.
Leung, “Mobility-induced service migration in mobile micro-

clouds,” in Proceedings - IEEE Military Communications

Conference MILCOM, Nov. 2014, pp. 835–840. doi:
10.1109/MILCOM.2014.145.

[6] H. Tabatabaee Malazi et al., “Dynamic Service Placement in Multi-

Access Edge Computing: A Systematic Literature Review,” IEEE
Access, vol. 10, pp. 32639–32688, 2022, doi:

10.1109/ACCESS.2022.3160738.

[7] L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu, “Resource Allocation
Strategy in Fog Computing Based on Priced Timed Petri Nets,”

IEEE Internet Things J, vol. 4, no. 5, pp. 1216–1228, Oct. 2017,

doi: 10.1109/JIOT.2017.2709814.
[8] Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, “Edge

Computing Security: State of the Art and Challenges,” Proceedings

of the IEEE, 2019, doi: 10.1109/JPROC.2019.2918437.
[9] S. Lal, T. Taleb, and A. Dutta, “NFV: Security Threats and Best

Practices,” IEEE Communications Magazine, vol. 55, no. 8, pp.

211–217, May 2017, doi: 10.1109/MCOM.2017.1600899.
[10] J. Pan and Z. Yang, “Cybersecurity challenges and opportunities in

the new ‘edge computing + iot’ world,” in SDN-NFVSec 2018 -

Proceedings of the 2018 ACM International Workshop on Security
in Software Defined Networks and Network Function Virtualization,

Co-located with CODASPY 2018, Mar. 2018, vol. 2018-January,
pp. 29–32. doi: 10.1145/3180465.3180470.

[11] J. Yao, T. Han, and N. Ansari, “On Mobile Edge Caching,” IEEE

Communications Surveys and Tutorials, vol. 21, no. 3, pp. 2525–
2553, Jul. 2019, doi: 10.1109/COMST.2019.2908280.

[12] L. C. Mutalemwa and S. Shin, “A classification of the enabling

techniques for low latency and reliable communications in 5G and
beyond: Ai-enabled edge caching,” IEEE Access, vol. 8, pp.

205502–205533, 2020, doi: 10.1109/ACCESS.2020.3037357.

[13] H. Zhu, Y. Cao, W. Wang, T. Jiang, and S. Jin, “Deep
Reinforcement Learning for Mobile Edge Caching: Review, New

Features, and Open Issues,” IEEE Netw, vol. 32, no. 6, pp. 50–57,

Nov. 2018, doi: 10.1109/MNET.2018.1800109.
[14] R. S. Alonso, J. Prieto, F. de la Prieta, S. Rodriguez-Gonzalez, and

J. M. Corchado, “A Review on Deep Reinforcement Learning for

the management of SDN and NFV in Edge-IoT,” in 2021 IEEE
Globecom Workshops, GC Wkshps 2021 - Proceedings, 2021. doi:

10.1109/GCWkshps52748.2021.9682179.

[15] T. Taleb and A. Ksentini, “An analytical model for follow me
cloud,” in GLOBECOM - IEEE Global Telecommunications

Conference, 2013, pp. 1291–1296. doi:

10.1109/GLOCOM.2013.6831252.
[16] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K.

Leung, “Dynamic service migration and workload scheduling in

edge-clouds,” Performance Evaluation, vol. 91, pp. 205–228, Sep.

2015, doi: 10.1016/j.peva.2015.06.013.

[17] T. Taleb, A. Ksentini, and P. A. Frangoudis, “Follow-me cloud:

When cloud services follow mobile users,” IEEE Transactions on

Cloud Computing, vol. 7, no. 2, pp. 369–382, Apr. 2019, doi:

10.1109/TCC.2016.2525987.
[18] D. Rahbari and M. Nickray, “Scheduling of Fog Networks with

Optimized Knapsack by Symbiotic Organisms Search.” in FRUCT,

2018, pp.278-283
[19] N. Song, C. Gong, X. An, and Q. Zhan, “Fog computing dynamic

load balancing mechanism based on graph repartitioning,” China

Communications, vol. 13, no. 3, pp. 156–164, Mar. 2016, doi:
10.1109/CC.2016.7445510.

[20] L. Yin, J. Luo, and H. Luo, “Tasks Scheduling and Resource

Allocation in Fog Computing Based on Containers for Smart
Manufacturing,” IEEE Trans Industr Inform, vol. 14, no. 10, pp.

4712–4721, Oct. 2018, doi: 10.1109/TII.2018.2851241.

[21] P.Gazori, D. Rahbari, and M. Nickray, “Saving time and cost on the
scheduling of fog-based IoT applications using deep reinforcement

learning approach” Future Generation Computer Systems, vol. 110,

pp.1098-1115, Sep 2020.
[22] I. D. Filip, F. Pop, C. Serbanescu, and C. Choi, “Microservices

scheduling model over heterogeneous cloud-edge environments as

support for IoT applications,” IEEE Internet Things J, vol. 5, no. 4,
pp. 2672–2681, Jan. 2018, doi: 10.1109/JIOT.2018.2792940.

[23] J. Yao, J. Guo, and L. N. Bhuyan, “Ordered Round-Robin: An

efficient sequence preserving packet scheduler,” IEEE Transactions
on Computers, vol. 57, no. 12, pp. 1690–1703, 2008, doi:

10.1109/TC.2008.88.

[24] H. S. Al-Olimat, M. Alam, R. Green, and J. K. Lee, “Cloudlet
scheduling with particle swarm optimization,” in Proceedings -

2015 5th International Conference on Communication Systems and

Network Technologies, CSNT 2015, Sep. 2015, pp. 991–995. doi:
10.1109/CSNT.2015.252.

[25] Z. Chang, S. Liu, X. Xiong, Z. Cai, and G. Tu, “A Survey of Recent

Advances in Edge-Computing-Powered Artificial Intelligence of
Things,” IEEE Internet of Things Journal, vol. 8, no. 18. Institute of

Electrical and Electronics Engineers Inc., pp. 13849–13875, Sep.
15, 2021. doi: 10.1109/JIOT.2021.3088875.

[26] E. Harjula et al., “Decentralized Iot edge nanoservice architecture

for future gadget-free computing,” IEEE Access, vol. 7, pp.
119856–119872, 2019, doi: 10.1109/ACCESS.2019.2936714.

[27] T. le Duc, R. G. Leiva, P. Casari, and P. O. Östberg, “Machine

learning methods for reliable resource provisioning in edge-cloud
computing: A survey,” ACM Comput Surv, vol. 52, no. 5, Sep.

2019, doi: 10.1145/3341145.

[28] S. Bansal and D. Kumar, “IoT Ecosystem: A Survey on Devices,
Gateways, Operating Systems, Middleware and Communication,”

Int J Wirel Inf Netw, vol. 27, no. 3, pp. 340–364, Sep. 2020, doi:

10.1007/s10776-020-00483-7.
[29] M. Zolotukhin, T. Hamalainen, T. Kokkonen, and J. Siltanen,

“Increasing web service availability by detecting application-layer

DDoS attacks in encrypted traffic,” in 2016 23rd International
Conference on Telecommunications, ICT 2016, Jun. 2016. doi:

10.1109/ICT.2016.7500408.

[30] N. M. Yungaicela-Naula, C. Vargas-Rosales, and J. A. Perez-Diaz,
“SDN-based architecture for transport and application layer DDoS

attack detection by using machine and deep learning,” IEEE Access,

vol. 9, pp. 108495–108512, 2021, doi:
10.1109/ACCESS.2021.3101650.

when

