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Abstract— Emerging technologies like Artificial Intelligence, 

the Internet of Things, Virtualization and Edge Computing are 

driving research towards making the Intelligent Edge conducive 

for varied application growth. Virtualization is adopted because 

it provides an adaptive development of services. Artificial 

Intelligence provides promising data manipulation 

opportunities while Edge Computing grants lower latency and 

higher data privacy to users. This article highlights significant 

architecture for virtual service deployment in the Intelligent 

Edge. The first basic concepts are presented: Virtualization, 

Network Function Virtualization, Artificial Intelligence and the 

Intelligent Edge. Then various virtual services modifications are 

discussed such as the Round Robin Algorithm, the Minimum-

Minimum algorithm, the Multiheuristic Algorithm and the 

Particle Swarm Optimization Algorithm. The algorithms are 

contrasted on performance indicators such as makespan, 

standard deviation, degree of imbalance and processing speed. 

Results vary from algorithm to algorithm, indicating room for 

improvements. In addition the paper presents future 

opportunities for virtual service deployment in Intelligent Edge 

Computing. 
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I. INTRODUCTION 

Big technology companies such as Google, Microsoft and 

Amazon are making strides in the Internet of Things (IoT) by 

offering commercially viable applications that run Artificial 

Intelligent (AI) services at the edge of the network, namely 

Microsoft Azure IoT Edge, Amazon’s Greengrass, and 

Google Cloud IoT Edge [1]. Although these are also referred 

to as Edge applications, they rely heavily on Cloud 

processing and cannot handle real-time applications such as 

live video streaming, Augmented Reality (AR) tasks and real-

time object detection scenarios due to runtime delays. A 

recent framework that combines AI and Edge computing 

called the Intelligent Edge (IE) solves this problem and offers 

additional privacy and security enhancements for the network. 

The goal of the Intelligent Edge is a framework that combines 

data processing, data analytics, data storage, deep learning 

inference, deep learning training, and privacy and security 

systems all at the network edge [2]. With recent 

advancements in hardware computing technology, and 

increasing production of user data accompanied by vast 

service deployment scenarios, Intelligent Edge adapts 

services to users, whiles providing low latency, low 

communication cost and localized data storage. 

The number and complexity of application scenarios for 

IoT devices are increasing. However, these tasks can be 

divided into sub-tasks using virtualization technology to 

reduce their complexity. Despite this, the application 

requirements such as flexibility of hardware, low latency, 

high data throughput, and high quality of service (QoS) are 

still not sufficiently satisfied by Intelligent Edge computing 

[3]. Some of the challenges faced include how to adequately 

manage resources at the edge for training and inference of 

deep learning models while meeting the minimum 

requirements for a good user experience. IoT devices at the 

edge of the network are application-specific and constrained 

due to a lack of resources. Additionally, they have a smaller 

battery lifespan compared to cloud data servers. Therefore, 

the Intelligent Edge computing architecture needs to embrace 

collaboration with technologies such as Virtualization, 

Software Defined Networking, and Network Function 

Virtualization to boost service provision [4]. 

The motivation for this literature survey is to present a 

novel scope of virtualized services in the Intelligent Edge, its 

advances, and opportunities. Simulations are further 

conducted to compare existing techniques implemented to 

meet the inadequacies of service deployment. 

The paper is outlined as follows. In the next section, the 

background is presented, we continue by discussing the 

various studies of virtualized services in the Intelligent Edge, 

baseline algorithms and opportunities for research. Finally, 

the paper ends with a conclusion. 

II. BACKGROUND 

Several surveys have discussed different aspects of virtual 

services in different computing environments. Service 

placement and migration surveys consider where to place the 

virtual services during runtime and how to deploy such 

services [5],[6]. Resource allocation and system 

consolidation surveys consider schemes to optimize overall 

system performance for virtual service continuity [7]. 

Surveys on security, explore the methods and policies to 

control and mitigate cyber-attacks at the network edge [8]–

[10]. Literature reviews on content caching and computation 

offloading present works on how devices can save content for 

reuse as well as save device battery lifespan through efficient 

computation[11]–[14]. Task scheduling involves assigning 

resources to applications in a queue and deploying them 

based on a priority scheme. Surveys in this area are presented 

in [22]. However, this study presents a survey that concerns 

running virtual services for the Intelligent Edge, with 

emphasis on reduction in execution delay.  

The early forms of edge computing, such as distributed 

clouds [15], aimed to improve the user experience by 

propagating cloud computing resources across a network. 

However, the distributed cloud architecture relies solely on 

the cellular network, which introduces operational costs and 

unstable user service continuity. This is because cloud 

content providers must compromise with network service 

providers. In the distributed cloud data center, the migration 



of Virtual Machines (VM) faces the challenge of execution 

latency, considering that VM services introduce delay during 

deployment. 

Urgaonkar et al [16] presented the challenge of 

determining where a user's content and services are migrated 

when they move to a new area. They emphasized the need for 

a policy to choose a node for service migration, but this poses 

a challenge as user request patterns, the number of users, and 

the number of applications are unknown and difficult to 

model. They also noted that using only the Markov Decision 

Process (MDP) to model the system is impractical since it 

cannot account for user mobility and service request arrival 

values. To overcome this challenge, they proposed a control 

algorithm called Lyapunov optimization, which decouples 

the MDP and solves it using non-stochastic shortest path 

optimization. The Lyapunov optimization algorithm 

effectively reduces the queue backlog, even though it incurs 

additional migration costs. Taleb et al [17] introduced Follow 

Me Cloud (FMC), which was implemented using two 

deployment schemes, Location-Identifier Service Protocol 

(LISP) and Software Defined Networking (SDN). They used 

MDP to model service migration, but also considered 2D 

service mobility. The updated version of FMC performed 

better than previous versions. In addition to addressing the 

challenges of user mobility and service migration, there is 

also a need to consider the security of the Intelligent Edge. 

As more devices are connected to the network, the attack 

surface increases, and there is a greater risk of cyber threats. 

This has led to the development of edge security mechanisms 

that can protect the devices and data at the edge. Some of 

these mechanisms include firewalls, intrusion detection 

systems, and data encryption. However, there is still a need 

for more research in this area to develop more effective 

security mechanisms that can address the unique challenges 

of the Intelligent Edge. 

In [18], the authors designed a scheduling scheme, 

KnapSOS for virtual services in Fog Computing to meet this 

challenge of execution latency. Fog nodes employ VMs to 

extend network resources by creating virtual Cloudlets for the 

network edge. Against schemes that exclude virtual services, 

results show improvements in energy consumption, network 

utilization, execution costs and node lifetime expectancy. In 

[19], researchers designed a dynamic graph partitioning 

theory to ensure load balancing among distributed virtual Fog 

computing systems. By introducing lightweight 

virtualization, [20] implements container virtualization in 

collaboration with task scheduling and load reallocation 

mechanisms to realize a reduction in task execution delays in 

smart manufacturing IoT application scenarios. In a recent 

study, [21] formulate decision policy algorithms for task 

scheduling in virtual edge systems using DRL, with the goal 

of profit maximization. The algorithms outperform baselines 

in terms of service delay, computation cost, energy 

consumption and task execution.  

The distributed and heterogeneous nature of IoT puts 

infrastructure under pressure to deliver quality services to 

users. Scheduling schemes are employed to ensure the 

maximization of profit, the satisfaction of users, efficient 

resource allocation and reduction of execution latency at the 

network edge [7]. There are many task scheduling and 

workload distribution methods for Edge Computing 

architectures [6], however, there are not many papers 

dedicated to task scheduling for virtual services in Intelligent 

Edge computing.  

III. SCHEDULING VIRTUAL SERVICES 

Virtual services address different problems and 

challenges for the Intelligent Edge through various 

algorithms and models. Applications are made up of unique 

sub-tasks that are responsible for features in the application. 

These tasks all together make the application function 

optimally and can be executed as virtual services. Multiple 

VMs are created and allocated to each task for resource 

maximization. 

A. Key Parameters 

1) Execution time (ETi): The expected time it takes for 

a VM to execute a task in milliseconds. 

2) Completion time (CTij): The time in milliseconds for 

the VM to execute a task until the next task arrives. It usually 

comprises the execution time and the ready time. 

3) Make Span: The time interval between execution 

initiations for a process in a VM until its termination. 

4) Ready time (rj): The time in milliseconds that the 

VM resource remains idle until the next task is assigned. 

5) Time quantum: The allocated time in milliseconds 

for which the scheduler must process a task. 

B. Algorithms 

1) Minimum-Minimum (Min-Min) Algorithm: The 

main goal of the Min-Min Algorithm is to reduce the 

makespan for processes run in the VM [22]. Intelligent Edge 

applications vary in the computational demand required to 

meet each application which implies that with multiple users’ 

service requests, edge servers get congested trying to meet all 

the requests. VMs extend the capacity of physical devices 

implementing the services, however executing the requests 

on a First-Come-First-Serve (FCFS) does not make efficient 

utilization of resources because heavy computation tasks can 

become a bottleneck to the entire system. The Min-Min 

algorithm ensures that computation is utilized efficiently by 

running timesaving virtual services first before other services. 

Although the Min-Min algorithm ensures computation 

efficiency, it is not context-aware and executes tasks 

irrespective of context priority. Context awareness is a 

characteristic of Intelligent Edge Computing because the 

Intelligent Edge considers the priority of task context before 

executing them.  For instance, emergency services 

irrespective of computational time should get run first before 

other services. 

2) Multiheuristic Min-Min Algorithm: Multiheuristic 

Min-Min, a variation of the Min-Min algorithm, considers the 

case where the initial task–machine pair is incapable of being 

run by the Virtual Machine due to incompatibility [20]. 

Hence, the alternative pair chosen should have a similar 

minimum value as the preferred choice. Incompatibility 

occurs when a virtual service cannot be deployed in a 

container due to the configuration of that container. This is 

not captured by the Min-Min algorithm. Multiheuristic Min-

Min Algorithm suffers from the defects of the Min-Min 

algorithm in that it does not consider application context in 



service execution making it less ideal for Intelligent Edge 

Computing. 

3) Round Robin Algorithm: The round-robin 

scheduling algorithm is designed to allocate a minimum 

amount of time to each task known as the time quantum, to 

reduce VM idle time [21]. The VM idle time is the time the 

VM waits until another task is received. In practise the Round 

Robin algorithm is most efficient for modular virtual services 

run at the edge, however monolithic virtual services with 

computational requirements greater than the time quantum 

face waiting queue delays. For instance at service initiation 

the scheduler creates a waiting queue for tasks. At the arrival 

of the first task, the VM executes this task within the quantum 

given. Any task that arrives while the VM is busy is put in the 

waiting queue until the task is completed and the next task is 

received. For a task that remains incomplete, it is added to the 

waiting queue once again as the latest arrival awaiting 

processing. This leads to unforeseen service delays 

experienced by users especially when multiple services are 

initiated. 

4) Particle Swarm Optimization (PSO): PSO algorithm 

mimics animal behaviour in swarms, example ants and 

migratory birds, indicating the unit’s performance to fit into 

the group [22]. The algorithm optimises the performance of 

several tasks by employing randomness and probabilities 

expressed as velocity to allow the swarm to learn the optimal 

performance. Each unit in the swarm moves with a stochastic 

velocity and constantly updates its position from the previous 

best position to the current best position. Concurrently, the 

unit aims to reach the global best position, which indicates 

the unit’s overall best performance in the swarm. In 

Intelligent Edge applications, the PSO algorithm 

continuously modifies the system resources given the system 

parameters until a desirable state is attained. The downside to 

this algorithm lies with the search space. In large-scale 

implementations the swarm prolongs the modification in 

attempt to reach the best performance. However only after 

several iterations, does the system attain a global best position 

which is desirable in the long term.  

IV. SIMULATIONS 

A. Simulation workflow 

 The simulation models a real-time environment by first 

creating figures of devices to be employed, then creating 

logical components of the system and finally, the 

management policies are realized. The CloudSim simulator is 

used in this study. An adjunctive model called ReCloud is 

used to compare the various algorithms in the Edge-Cloud 

simulation. The simulations are carried out by following 

many procedures: initializing ReCloud, creating servers for 

the cloud, creating cloudlets, creating brokers, creating VMs, 

creating tasks, declaring algorithms for scheduling, 

simulating the environment, and monitoring results. The 

ReCloud library allows comparisons between scheduling 

algorithms initiated in the broker. Although an extension of 

CloudSim, ReCloud is not preconfigured to provide 

components like sensors and actuators. 

B. Environment setup  

In this review, the implementation involves three server 

nodes, one as a cloud server and the other two, as gateway 

servers, three VMs are created, three brokers and three hosts. 

The tasks are designed to be distributed evenly across the 

VMs with sizes of 1MB and 1000 MIPS. The setup is run for 

three iterations and the average is taken. In this simulation the 

cloudlets and virtual machines are configured as follows, the 

virtual machine is set with 9726 MIPS, 512 MB RAM, 1000 

MB/s bandwidth and 10000 MB image size with a single 

processing element. The host servers are set with 177730 

MIPS, 16000 MB of RAM, 15000 MB/s bandwidth, and 

4000000 MB of storage with six processing elements. Table 

I shows the simulation environment setup. 

TABLE I. SIMULATION PARAMETER SETTINGS FOR THE EXPERIMENT 

PARAMETER VALUES 

Number of tasks 200 

Number of VMs 3 

Number of hosts 3 

MIPS of VM 9726 

MIPS of host 177730 

ram of VM (MB) 512 

ram of host (MB) 16000 

bandwidth of VM (MB/s) 1000 

bandwidth of host (MB/s) 15000 

VM Image Size (MBs) 10000 

Storage on Host (MBs) 4000000 

C. Results 

  The experiment is run over 200 tasks in three rounds and 

the average values of the algorithms are illustrated in figures. 

The bar graph in Fig. 1 indicates the average performance of 

the algorithms in terms of makespan. Fig. 2 shows the 

standard deviation of each of the algorithms. Standard 

deviation measures the spread of the values from the average 

makespan recorded. This measure indicates how varied the 

makespan recorded for each task varies from the expected 

value. The lower the deviation the closer the values are to the 

standard value, the higher the deviation, the more distant the 

values are from the average value. The Round-Robin 

algorithm records the lowest standard deviation, with the 

Multiheuristic algorithm following and the PSO algorithm 

coming in third whereas the Minimum-Minimum algorithm 

records the highest values for standard deviation. Round 

Robin algorithm is handicapped when the quantum allocated 

to the processor is large. With a large quantum, the recorded 

makespan and service delay increases rapidly. Thus with an 

increasing number of tasks, the round-robin algorithm 

quickly descends to a First-Come-First-Serve (FCFS) 

algorithm. In the simulation, the Minimum-Minimum 



algorithm works with the execution times of the tasks and 

locates the pair with the minimum task-to-VM execution ratio, 

however, the delays experienced in the operating system 

implementing this algorithm refer to several configurations 

on the VM, that make certain tasks incompatible with 

particular virtual machines.  

Fig. 3 shows the degree of imbalance among the VMs. 

The degree of imbalance is simply a measure of the maximum 

completion time in addition to the minimum completion time, 

divided by the average completion time across VMs. The 

Minimum-minimum algorithm records the highest degree of 

imbalance because in executing the shortest jobs first, the 

resources across the VMs are not used efficiently. For 

instance, VMs responsible for handling heavy computing 

tasks would remain idle whiles the VMs which handle light 

computations with shorter execution times remain busy. 

Multiheuristic Min-Min corrects this by considering an 

additional condition to ensure load rebalancing. The PSO 

algorithm follows after the Minimum-Minimum algorithm, 

whiles the Round Robin algorithm records the least values. In 

Fig. 4 the processing speeds are compared among the 

mentioned algorithms. The PSO algorithm records the 

highest processing speed due to the search space expansion 

when dealing with a huge number of tasks, this means many 

more computations are performed than necessary leading to 

an increase in the processing time. The Minimum-Minimum 

algorithm, Multiheuristic Algorithm and Round Robin record 

similar values. The round-robin algorithm which uses a 

standard quantum of 100ms per task makes efficient use of 

the processing unit since computation length is minimized as 

well as idle time. The PSO algorithm was introduced to 

optimize service delays specifically. The processing speed of 

tasks for the PSO algorithm is large and hence contributes to 

the recorded delay, however, with an increasing number of 

tasks, the system is optimized to produce desirable results. 

Thus, PSO records high performance for large-scale systems 

than for small-scale systems. Moreover, PSO utilises basic 

mathematical operators compared to other algorithms which 

make use of matrix-level computations, this makes the 

processing relatively better.  

There have been many variations of PSO, Round Robin, 

and Minimum-Minimum algorithms because these 

algorithms serve as the basis for many job scheduling 

algorithms. Ideally, these algorithms vary in how they assign 

tasks to the scheduler, how they utilize the task queues and 

how they manage resources to monitor task completion and 

redeployment for Intelligent Edge Computing applications.  

V. FUTURE DIRECTIONS 

A.  Emerging Technologies 

 Cloud service architecture often relies on service 

deployment schemes such as Microservices, which enable the 

deployment of multiple small services to achieve a common 

goal. Microservices offer language-agnostic and independent 

building blocks that are well-suited for the Intelligent Edge 

environment, which comprises distributed software 

frameworks. Big tech companies like Netflix and Amazon are 

already testing microservices in their applications [25]. One 

of the benefits of microservices is easy deployment and 

reconfiguration of services, made possible by lightweight 

virtualization technology like Docker. Docker Swarm, 

Kubernetes, and Mesos are examples of container 

orchestration technologies that enable complex and dynamic 

orchestration and maintenance of microservices [26]. 

Emerging technologies like Software Defined Networking 

(SDN) [6], [22] and Information-Centric Networking (ICN) 

[27] are also being considered for deploying virtual services 

at the Intelligent Edge. SDN offers scalability, availability, 

resilience, and interoperability, making it an ideal technology 

for deploying any type of service on machines. ICN, on the 

other hand, provides a robust and efficient service 

architecture that ensures minimal delays during service 

updates or migration, and it is constructed with IoT and 

Intelligent Edge Computing as the focus, making it more 

compatible than traditional IP networks. 

 

 

Fig 1. A bar graph of the average makespan recorded from the algorithms. 

 

Fig.2 A bar graph of the standard deviation recorded from the algorithms. 



 

Fig.3 A bar graph of the degree of imbalance recorded from the algorithms. 

 

Fig.4 A bar graph of the processing speeds recorded from the algorithms. 

Another emerging technology that has been gaining attention 

in the context of Intelligent Edge Computing is serverless 

computing. Serverless computing allows developers to build 

and run applications without having to manage the underlying 

infrastructure. This approach can significantly reduce costs 

and simplify application development, deployment, and 

scaling. Platforms such as AWS Lambda, Azure Functions, 

and Google Cloud Functions have been widely adopted and 

are increasingly being used for Intelligent Edge Computing 

applications. With serverless computing, developers can 

focus on writing code and designing applications, while 

leaving the underlying infrastructure and scaling to the cloud 

provider. 

B. Frameworks for Optimizing Intelligent Edge Computing 

In addition to the technologies mentioned earlier, recent 

developments in the field of intelligent edge computing 

include Arm's ArmNN and Arm Computing Library, which 

provide efficient execution of neural network models on 

Arm-based processors, and Qualcomm's Snapdragon Neural 

Processing Engine, which is designed to optimize neural 

network performance on mobile devices. The AI-enabled 

technologies placed a demand for computation resources 

which inhibits the performance of edge computing devices 

since the hardware available is limited in its computational 

power. The need has given rise to libraries and hardware 

providing increased processing speeds and lightweight sizes 

ideal for the network edge. Currently, CPU chip designs are 

taking a step further by providing edge nodes with extra 

computing power through the incorporation of neuromorphic 

chips, TPUs, GPU and FPGAs. Hardware matched with light 

frameworks like TensorFlow Lite, Caffe2, and Arm 

Computing Library give virtual services an expansive domain 

to provide novel ideas like Intelligent Edge As a Service 

(EIaaS), Resource as a Service(RaaS) and also Security as a 

Service(SaaS). 

C. Varying Application Scenarios 

Applications at the edge require different levels of priority 

based on their demands. While some smart applications need 

a real-time response and run at the edge, others require a best-

effort response. For instance, online gaming demands high 

throughput, but even slight delays can lead to service 

degradation [1]. Applications that need a real-time response, 

such as virtual and augmented reality, terminate when they 

encounter latency delays. As such, future applications will 

require a balance between real-time response and best effort. 

The Intelligent Edge plays a crucial role in enabling 

applications such as Telepresence, Ubiquitous Computing, 

and the Internet of Everything. Telepresence [6], which is an 

extension of mixed reality, allows users to be present in 

another location and respond to stimuli from that location. 

Another promising future application scenario is Gadget-Free 

computing [26], where users can interact with services 

through the environment without carrying mobile devices. 

The Intelligent Edge ensures that content and services are 

available to users even as they move from one location to 

another. Furthermore, advancements in technologies such as 

5G, AI, and IoT are facilitating the development of new 

applications at the Intelligent Edge, opening up new 

possibilities for the future. 

VI. CONCLUSIONS 

With the increasing popularity of Edge computing and 

Artificial Intelligence (AI), there is now greater potential for 

complex AI applications to be implemented in the volatile 

environment of the Intelligent Edge. To support this, various 

technologies, including virtualization, are being introduced to 

enable the efficient deployment of virtual services at the 

Edge. This literature review has identified four different 

approaches to virtual service deployment and evaluated their 

performance using the CloudSim simulator. The round-robin 

algorithm was found to have the best average makespan, 

assuming a minimal quantum, and comparison was made 

based on factors such as standard deviation, degree of 

imbalance, and processing speeds. Further research 

opportunities were also highlighted, particularly in 

developing algorithms that can minimize service delay and 

execute tasks in the shortest possible time. 
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