
 

 

 

Iron bioavailability, nutritional and health-promoting properties of extruded sorghum 

porridge fortified with Baobab fruit, moringa leaves and Bambara groundnut 

by 

John Lubaale 

 

 

 

 

Submitted in partial fulfilment of the requirements for the degree 

 

 

PhD 

 

  

Food Science  

 

In the Department of Consumer and Food Sciences 

Faculty of Natural and Agricultural Sciences 

University of Pretoria 

South Africa  

July 2023



 

ii 

 

DECLARATION 

I, John Lubaale, hereby declare that this thesis submitted to the University of Pretoria for the 

award of the degree PhD Food Science is my work and has not been previously submitted by 

me for a degree at this or any other university or institution of higher education. 

 

 

John Lubaale (U16209070):  

 

Date: 16th July 2023 

  



 

iii 

 

DEDICATION 

This thesis is dedicated to my mother, Rose Margaret Najjuma Mukiibi-Lubaale, for your love, 

prayers and encouragement; you are indeed the wind beneath my wings. 

  



 

iv 

 

ACKNOWLEDGEMENTS 

I wish to express my sincere gratitude to the following for their assistance and support for this 

research.  

To the Lord Almighty for the strength, wisdom and grace at every point in my life. 

My supervisors Prof. K.G. Duodu, Prof. J.R.N. Taylor, and Prof. M.N. Emmambux, for their 

excellent guidance, mentoring, encouragement and, above all, patience, which ensured the 

successful execution of this research study. 

Dr. J.C. Serem and Mr. Sunday Ntuli of the Department of Anatomy, University of Pretoria, 

for their assistance with the biological assays. 

Prof. E. Kayitesi and Dr. N.N. Mehlomakhulu for their support and guidance throughout my 

research journey. 

Dr. Marietjie Stander and Mr. Fletcher Hiten of the Central Analytical Facility, Stellenbosch 

University, under whose supervision the UPLC-MS analyses were done.  

My family, my mom, Rose Margaret Najjuma Mukiibi-Lubaale; my siblings, Loy, Andrew, 

Alex, Robert and Emma Lubaale and my nephews and nieces, Aaron, Mercy, Blessing, 

Treasure, Ryan, Trinity, Richard, Seth, Charrise, Noela and Nneamaka for their love, patience 

and prayers during the research study.  

My colleagues Reagan, Nomfundo, Lilian, Anton, Mondli, Wendy, Joyce, and staff at the 

department of consumer and food sciences who have greatly enhanced my critical thinking. 

My Respublica Student Living family Zoraya, Millet, Atlegang, Goitseone, Cindy, Michellee, 

Matsiditso, Nhlanhla, the students and staff at Respublica, who gave my life purpose outside 

academia.  

The academic and support staff at the Department of Consumer and Food Sciences at the 

University of Pretoria for their constructive discussions and support.  

My best friend and compass back North, Reagan Kawuma, I could never have done this without 

you. 

My friends Songezo, Micah, Julius, Sibusiso, Jacob, Mpho, Carol, Mpilo, Kristie, Udisha, 

Phenyo, Ranja, Tanya, Ps. Landman, Hero-Godsway, Shahied, and Javan for their 

encouragement and belief in my abilities even when I saw none. 

  



 

v 

 

ABSTRACT 

Iron bioavailability, nutritional and health-promoting properties of extruded sorghum 

porridge fortified with Baobab fruit and moringa leaves 

By 

John Lubaale 

 

Supervisor:   Prof KG Duodu  

Co-supervisor: Prof JRN Taylor 

Co-supervisor: Prof MN Emmambux  

Department:  Consumer and Food Sciences 

Degree:  PhD (Food Science) 

 

Iron deficiency, protein energy malnutrition (PEM) and the rise in diet-related non-

communicable diseases (NCDs) are major public health concerns in developing countries. 

Food-to-food fortification (FtFF) is an emerging strategy that can be used to manage 

malnutrition. Moringa leaf powder (MLF) (rich in iron) and baobab fruit pulp (BFP) (rich in 

mineral bioaccessibility enhancers, such as ascorbic and citric acids), can be used in FtFF of 

starchy foods like sorghum to help reduce iron deficiency. They are also rich in bioactive 

polyphenols, which have been shown to have health-promoting properties in terms of offering 

protection against NCDs. Compositing cereals with legumes such as Bambara groundnut can 

improve the protein quality of cereal-based foods and thus help to address PEM. Extrusion 

cooking is used to produce convenient food products such as instant porridges, which are 

popular, particularly among urban communities in sub-Saharan Africa. It has been shown to 

reduce antinutrients in foodstuffs, thus improving the bioavailability of nutrients. There is, 

therefore, an opportunity to use FtFF and extrusion cooking technology to enhance nutritional 

quality (micro- and macronutrients) and health-promoting properties of sorghum-based foods. 

This research investigates the impact of FtFF (with BFP, MLP, and Bambara groundnut) and 

extrusion cooking on the iron bioaccessibility, health-promoting properties and macronutrient 

(protein and starch) quality of sorghum-based porridges. 
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Formulations of non-tannin sorghum-based flours (sorghum alone or composited with 

Bambara groundnut flour) were prepared by FtFF with BFP and MLP (either alone or in 

combination). Flours were cooked into porridges by conventional cooking or instantized using 

extrusion cooking at a feed moisture level of 3 L/h, barrel temperature zone profile of 

60/70/80/140/140ºC and a screw speed of 250 rpm. The iron bioaccessibility (measured as in 

vitro dialyzability and ferritin formation by Caco-2 cells) of the plain sorghum-based porridges 

FtFF with BFP and MLP, phytate content, and total phenolic content (TPC) (Folin-Ciocalteu 

method were determined. Antioxidant properties of the porridges were determined using [(2,2-

azinobis-(3-ethyl-benzothiazoline-6-sulphonic acid) (ABTS) and nitric oxide (NO) radical 

scavenging and oxygen radical absorbance capacity (ORAC)], while phenolic profiles of the 

foodstuffs used for fortification and the porridges were determined using liquid 

chromatography-mass spectrometry. Cellular antioxidant protection in human carcinoma 

(Caco-2) cells using the dichlorofluorescein diacetate (DCFH-DA) assay, NO scavenging 

activity in RAW264.7 macrophages, inhibition of advanced glycation end products (AGEs) 

and prevention and treatment of lipid droplet accumulation in 3T3-L1 cells were determined. 

The FtF-fortified composite (with Bambara groundnut) porridges were analysed for functional 

properties (water absorption and solubility index, nitrogen solubility index and flow 

properties), in-vitro starch digestibility (IVSD), soluble and insoluble dietary fibre content and 

in-vitro protein digestibility (IVPD). 

Sorgum-based porridges fortified with BFP had higher iron bioaccessibility (in vitro iron 

dialysability) compared with porridges fortified with MLP. This indicates that the type of plant 

foodstuff used for FtFF had an effect on the resultant iron bioaccessibility. BFP had high levels 

of organic acids (citric and organic acids) that are well-known mineral bioaccessibility 

enhancers and could account for the enhanced iron bioaccessibility of porridges fortified with 

BFP. MLP was high in mineral bioaccessibility inhibitors (polyphenols, calcium and phytate). 

Polyphenols and phytate could form insoluble complexes with iron, and stable, insoluble 

complexes could be formed between iron, phytate and calcium, which reduces bioaccessible 

iron. 

Extrusion-cooked instant sorghum-based porridges had increased ferritin formation by Caco-2 

cells compared to conventionally wet-cooked porridges, which indicates an enhancing effect 

of extrusion cooking on iron bioaccessibility. This could be due to the ability of extrusion 

cooking to reduce the contents of antinutrients such as phytate (probably by dephosphorylation) 

and polyphenols (probably by degradation). Instant sorghum porridges fortified with BFP 
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produced higher ferritin formation in Caco-2 cells than porridges where MLP was used for 

FtFF. This was a further indication of the importance of the role of the type of plant foodstuff 

used for FtFF in mineral bioaccessibility. 

FtFF of wholegrain sorghum-based porridges with BFP and MLP enhanced health-promoting 

properties of sorghum-based porridges in terms of radical scavenging activity (ABTS and 

ORAC) (protection against oxidative stress), cellular nitric oxide (NO) inhibition (anti-

inflammatory properties) and inhibition of advanced glycation end products (AGEs) formation 

(antidiabetic properties). The observed enhanced health-promoting properties could be related 

to the enhanced levels of various bioactive phenolics (phenolic acids and their esters, 

flavonoids and flavonoid glycosides) in the sorghum-based porridges after FtFF. Phenolic 

extracts from the sorghum-based porridges showed protection against AAPH radical-induced 

oxidation in Caco-2 cells, an indication of their potential ability to protect against radical-

induced oxidative stress.  

Extracts from all the sorghum-based porridges reduced in vitro chemical formation of NO, an 

indication of their potential to contribute to alleviating radical-induced inflammation. FtFF 

significantly improved the inhibition of cellular NO production in RAW264.7 macrophages, 

possibly due to the enhancement of the phenolic profile of sorghum-based porridges following 

FtFF with baobab and moringa. Extrusion-cooked instant porridges exhibited decreased 

inhibition of NO formation in RAW264.7 macrophages, possibly due to their reduced phenolic 

content as a result of the extrusion cooking process. 

Extracts from all the sorghum-based porridges showed prevention and treatment of 

accumulated adipocytes in 3T3-L1 cells, indicating their potential application in managing 

obesity. The porridges exhibited antidiabetic properties by reducing the formation of AGEs. 

The FtFF porridges, in particular, significantly reduced the formation of AGEs, possibly due 

to the increase in phenolic content and higher antioxidant activity following FtFF with BFP 

and MLP.  

Sorghum-Bambara groundnut composite (SBC) porridges FtF-fortified with BFP and MLP 

showed a marked reduction in starch digestibility {decreased rapidly digestible starch (RDS) 

increased slowly digestible starch (SDS) and resistant starch (RS)} and estimated glycaemic 

index (GI) compared to the unfortified composite. The high levels of anti-nutritional 

compounds - polyphenolics, phytate, and soluble and insoluble dietary fibre (SDF and IDF) in 

the fortificants (BFP and MLP) could account for the reduced starch hydrolysis. Dietary fibre 
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could entrap starch molecules and reduce their accessibility to digestive enzymes, while 

polyphenols could form indigestible complexes with starch and could also bind enzymes 

responsible for the digestion of starch.  

Extrusion-cooked instant SBC porridges had higher RS, RDS, and protein digestibility (IVPD) 

with lower SDS in comparison with conventionally cooked porridges. The dextrinisation of 

starch and reduction in anti-nutritional compounds (that bind both starch and proteins) because 

of the high temperature, shear and pressure conditions during extrusion cooking could make 

the starch and protein molecules more susceptible to enzymatic hydrolysis and lead to increased 

RDS, IVPD, and lower SDS. Extrusion-cooked SBC porridges had higher SDF and lower IDF 

compared to conventionally wet-cooked porridges, possibly due to the hydrolysis of glycosidic 

bonds in IDF during extrusion cooking, solubilising it into SDF. This increase in SDF could 

account for the increase in RS and SDS as the gelatinised and disrupted starch molecules could 

be entrapped in the SDF, making them less accessible for enzymatic hydrolysis (resistant starch 

type 1). Retrogradation of starch in the extruded porridges during storage could also produce 

enzyme-resistant starch (resistant starch type III). A third possible occurrence during extrusion 

is the formation of amylose-lipid complexes resistant to enzymatic hydrolysis (resistant starch 

type V). The high RS content of these instant sorghum-based porridges suggests they could be 

useful in managing type 2 diabetes. 

Extrusion-cooked SBC porridges had lower pasting viscosities, probably due to the 

dextrinisation of starch (the primary biopolymer responsible for pasting) during the high 

temperature, shear and pressure conditions of extrusion cooking. This provides a shear-thinning 

porridge, which could increase nutrient intake for infants who have difficulty orally processing 

thick foods and thus preventing the prevalence of PEM. 

In conclusion, extrusion cooking can be used to produce instant porridges from FtF-fortified 

and composited non-tannin sorghum with improved bioaccessibility of iron, protein and starch 

digestibility and health-promoting properties. Thus, extrusion cooking and FtFF of non-tannin 

sorghum can be employed as strategies to improve the nutritional and health status of at-risk 

communities. 
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CHAPTER 1 INTRODUCTION 

Malnutrition can be classified into three related but distinctly different problems: energy 

deficiencies, nutrient deficiencies, and excessive net energy intake, all of which result in diet-

related non-communicable diseases (NCDs), and collectively they may be referred to as “the 

triple burden of malnutrition” (Davis, Oaks & Engle-Stone, 2020). Macro- and micronutrient 

(specifically iron deficiency) deficiency, as well as chronic non-communicable diseases 

(NCDs), are major public health concerns in developing countries (UNICEF/WHO/WBG, 

2021). Iron deficiency is one of the micronutrient deficiencies, accounting for 30-50% of 

anaemia in children and women, with those in underdeveloped countries being the most 

affected (Rosli, Norhayati & Ismail, 2021). Of the nearly 150 million stunted children globally, 

41% are in Africa, and 27% of the nearly 46 million wasted children globally are in Africa 

(UNICEF/WHO/WBG, 2021). Reports show a high prevalence of protein-energy malnutrition 

(PEM) and iron deficiency in Africa among children that manifests in the form of stunting, 

wasting, and increased disease burden, which often leads to mortality (Micha, Mannar, Afshin, 

Allemandi, Baker, Battersby, Bhutta, Chen, Corvalan & Di Cesare, 2020). Diet-related non-

communicable diseases such as diabetes, obesity and cardiovascular diseases are on the rise in 

Africa, where the prevalence is expected to be about 5.2% by 2045 (Sun, Saeedi, Karuranga, 

Pinkepank, Ogurtsova, Duncan, Stein, Basit, Chan & Mbanya, 2022).  

The leading cause of these forms of malnutrition is diet-related. A high proportion of the 

population of sub-Saharan Africa, especially the lower socioeconomic group, rely on 

monotonous starch-based diets (Gibson, Raboy & King, 2018). Starchy foods are often low in 

bioavailable minerals, and cereals specifically are high in mineral bioavailability inhibitors, 

notably phytate and polyphenols. The protein quality of cereals is low due to these inhibitors 

and also due to the fact that they are limiting in essential amino acids, particularly lysine 

(Hossain, Muthusamy, Zunjare & Gupta, 2019). Rapid urbanisation has driven demand for 

convenience foods among consumers, which influences dietary choices with a shift towards 

more energy-dense refined starch-based food products, high in total fats and especially 

saturated fat, leading to increased incidence of NCDs, in-part a result of oxidative stress 

(Haggblade, Duodu, Kabasa, Minnaar, Ojijo & Taylor, 2016; Nnyepi, Gwisai, Lekgoa & Seru, 

2015; Vorster, Kruger & Margetts, 2011).  

Cereals are a major staple and source of nutrition in sub-Saharan Africa. Sorghum is a major 

food crop across the semi-arid tropics of Africa because of its tolerance to high temperatures 
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and low rainfall (Taylor, 2019). In Africa, sorghum is cultivated majorly for consumption as 

soft and stiff porridges as well as alcoholic and non-alcoholic beverages (Taylor & Duodu, 

2019). 

Food-based approaches, such as dietary diversification and food-to-food fortification (FtFF) 

using micronutrient-rich foods, have been emphasised as sustainable ways to reduce the 

prevalence of micronutrient deficiencies in low socioeconomic groups (Olney, Rawat & Ruel, 

2011). FtFF is a strategy whereby nutrient-rich food combinations are used to promote the 

bioavailability of essential micronutrients by increasing the content of micronutrients and /or 

enhancing their absorption and decreasing the levels of inhibitors of micronutrient 

bioavailability (Kruger, Taylor, Ferruzzi & Debelo, 2020). FtFF is not only about tackling 

micronutrient malnutrition. Compositing cereals with legumes for enhanced protein quality can 

also be regarded as a form of FtFF. Consumption of diets rich in phenolic compounds, such as 

whole grain-based diets, appears to be associated with the reduction or prevention of NCDs 

through their antioxidant activity (Duodu & Awika, 2019), thereby promoting health.  

Extrusion cooking is a food processing technology that is applied to produce a variety of 

convenience-type products from a large diversity of raw materials (Guy, 2001). Extrusion 

cooking is a continuous food manufacturing process that applies high heat, pressure, and 

friction to transform raw foodstuffs into a cooked and pre-gelatinised form (Fellows, 2009). It 

can also destroy anti-nutritional compounds and enhances the digestibility of plant 

macronutrients (El-Hady & Habiba, 2003). Due to increasing urbanisation, there is a growing 

trend of consumer demand for instant products for the convenience they provide (Brennan, 

Brennan, Derbyshire & Tiwari, 2011). Extrusion cooking is, therefore, applied to produce 

convenience-type instant foods from grains in Africa, such as sorghum.  

Thus, the purpose of this research was to study the effects of FtFF in combination with 

extrusion cooking on the nutritional and health-promoting attributes of sorghum-based 

porridge. 
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CHAPTER 2 : LITERATURE REVIEW 

In this review, the principles of extrusion cooking and food-to-food fortification in the 

enhancement of the nutritional profile of cereal-based products will be discussed. The 

nutritional and health-promoting properties of the different foodstuffs used in this study will 

also be reviewed. The effects of extrusion cooking and FtFF on iron bioaccessibility, protein 

and starch quality, as well as the health-promoting properties of cereal-based products, will 

also be briefly discussed. Some of the key methods of analysis employed in this research study 

will also be discussed.  

2.1 EXTRUSION TECHNOLOGY IN PREPARATION OF INSTANT PORRIDGES  

2.1.1 Principles of Extrusion cooking 

Extrusion processing provides the conditions of high shear, high temperature, and high pressure 

for a short time to cook food ingredients normally at a low moisture content (Kowalski, Hause, 

Joyner & Ganjyal, 2018; Guy, 2001). Feed materials typically change their phase into a melt 

form due to high shear and high temperature under high-pressure conditions. This melt is 

finally pushed through a die. As it exits the die, it is exposed to atmospheric conditions. At this 

point, the melt expands because of the immediate pressure drop and vaporisation of the blowing 

agents (i.e., water) (Moraru & Kokini, 2003). In addition to the steam flash-off, the die-swell 

characteristics of the materials also play a role in the expansion process. The different extrusion 

technologies operate on this same principle but have developed over many years to serve many 

additional functions in food processing. These functions include conveying, mixing, shearing, 

separation, heating or cooling, co-extrusion, venting volatiles and moisture, flavour generation, 

encapsulation, and sterilisation (Guy, 2001). Depending on the desired end product, extruders 

are manufactured and applied to make use of specific functions. Extrusion cooking, also 

referred to as High-Temperature Short Time (HTST) (temperature conditions above 100°C) 

extrusion, applies shear as well as pressure to continuously and rapidly process starchy and 

protein-rich raw materials into pre-cooked foods. Extrusion cooking is applied in the 

production of ready-to-eat cereals (Singh et al., 2007). Mixing, cooking, kneading, shearing, 

shaping, and forming are the operations combined in extrusion cooking to continuously break 

down raw foods into a cooked and pre-digested form (Fellows, 2009). What makes extrusion 

cooking unique compared to other HTST processes are the shear forces applied, which break 

covalent bonds in biopolymers (Carvalho & Mitchell, 2000). 
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Many reactions, such as gelatinisation of starch, denaturation of proteins, and Maillard 

reactions, also occur during extrusion cooking (Mościcki & van Zuilichem, 2011). All these 

reactions change the physical and chemical properties of the processed materials, thereby 

affecting the product’s functional and nutritional properties. The outcome of extrusion cooking 

is ready-to-eat and easily packaged products (Kazemzadeh, 2012). Extrusion cooking also 

reduces the number of microorganisms and inactivates endogenous enzymes (Fellows, 2009). 

The low moisture content in the end products of extrusion cooking (7-10%), often achieved by 

drying the extruded products, is, however, the primary method of preservation (Mościcki, 

2011). The benefits of extrusion cooking include versatility in end products, low processing 

costs with high productivity, and the production of almost no waste products, such as effluents 

(Guy, 2001).  

There are many critical control points throughout the extrusion cooking process which affect 

the end product quality. To understand the role of raw materials in product quality, an 

understanding of extrusion cookers and the extrusion cooking process is necessary. Among 

many options to choose from in extrusion cooking is the application of either one or two screws 

in the extruder barrel, referred to as single or twin-screw extrusion cookers (Riaz, 2001). The 

main difference between the two extruders is in the mode of operation (Mościcki & van 

Zuilichem, 2011). In a single-screw extruder, the screw plays the function of conveying, 

compressing, melting and plasticising the material and finally forcing it under pressure through 

small die holes at the end of the barrel. Shear is generated due to the rubbing of the material 

against the barrel and the screw surfaces and between particles and particles of the raw material. 

However, in twin screw extruders, the barrel lining is generally smooth; thus, most of the shear 

is generated due to the rubbing of the particles against each other while the material is being 

conveyed along the two screws (Mościcki & van Zuilichem, 2011). The opportunities for the 

shear generation are tremendous in a twin-screw extruder. In short, twin screw extruders have 

greater flexibility regarding raw material size and nature (viscous, oily, wet, or sticky) and have 

greater control of parameters to achieve the desired end product (Fellows, 2009). Single screw 

extruders show low efficiency when a multi-component mixture is used as a raw ingredient 

(Mościcki & van Zuilichem, 2011). The only disadvantages of twin screw extrusion cookers 

are that they are of a more complicated design and have higher initial costs (Mościcki & van 

Zuilichem, 2011).  

Cooking in the extrusion cooker starts mainly in the compression section and intensifies in the 

plasticising section. The change in physical structure and chemical components of the material 
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related to cooking is due to three sources of energy: conductive energy through heating of the 

barrel, convective energy within the barrel from incorporated moisture reaching high 

temperatures and pressures and conversion energy when the movement of the screws in the 

confined space of the barrel causes shear and produces pressure (Kazemzadeh, 2012). Exposure 

of the food material to these energies brings the food material to its melting or plasticising point 

(Mościcki & van Zuilichem, 2011), after which it is forced through one or more die openings. 

As the food material is forced out under pressure through the die, it expands to the final shape 

(due to the rapid evaporative cooling as the product is being pushed through the die) and cools 

rapidly to retain its structure as moisture is flashed off as steam (Fellows, 2009). Table 2-1 

summarises the key variables that are vital during extrusion. 

Table 2-1: Extrusion cooking process variables and their function in the process (Yacu, 2011; 

Chessari & Sellahewa, 2001) 

Process variable Effect 

Screw speed Affects the residence time of the product in the barrel, the amount of 

shear and frictional energy generated, and barrel fill which affects melt 

viscosity. 

In-barrel moisture content Controls the frictional energy generated by affecting the melt viscosity. 

Feed rate Controls the amount of feed in the barrel, which in turn affects 

residence time and pressure in the barrel. 

Barrel temperature Determines product temperature, affecting the degree of cook and melt 

viscosity. 

 

2.1.2 Effects of extrusion cooking on mineral bioavailability, antinutrients and 

macronutrient quality of raw materials used 

The effects of extrusion cooking on the various nutrients and antinutrients explored in this 

research study will be briefly discussed. 

2.1.2.1 Mineral bioavailability/bioaccessibility 

Bioavailability is defined as the amount of an ingested active compound that is absorbed and 

is available for physiological functions (Price & Patel, 2021). Due to the complexity and time-
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consuming nature of assays for bioavailability, in vitro approaches are used to estimate 

bioavailability and referred to as bioaccessibility, which is defined as the amount of an element 

that has the potential to be absorbed and utilised for physiological functions (Etcheverry, 

Grusak & Fleige, 2012). Mineral bioavailability in plant-based foods is influenced by two main 

factors, that is, the chemical state of the element (e.g., mineral, free ion, oxidation state) and its 

association with flour components such as phytic acid, dietary fibre, and proteins. Extrusion 

cooking can affect either or both factors positively or negatively and thus influence the 

bioaccessibility of minerals.  

Researchers have reported differing findings on the effect of extrusion on the bioaccessibility 

of different mineral elements. Several authors have reported a significant improvement in Fe 

bioaccessibility upon extrusion of maise (Hazell & Johnson, 1989), sorghum (Vilakati, Taylor, 

MacIntyre & Kruger, 2016), legumes (Ummadi, Chenoweth & Uebersax, 1995), and dry beans 

(Gulati & Rose, 2018), while others have reported no change in iron and zinc bioaccessibility 

upon extrusion of a wheat bran-flour mixture and dry beans (Drago, Velasco-González, Torres, 

González & Valencia, 2007; Fairweather-Tait, Portwood, Symss, Eagles & Minski, 1989). 

Gulati and Rose (2018) and Alonso, Rubio, Muzquiz and Marzo (2001) observed significant 

increments in magnesium and phosphorus bioaccessibility in dry bean flours upon extrusion, 

Kivistö, Andersson, Cederblad, Sandberg, and Sandström (1986) reported significant decreases 

in Mg and P absorption when a high fibre cereal-based product was extruded. The contradictory 

results reported by different researchers for various mineral elements could be due to different 

techniques used for measuring bioaccessibility or due to different raw materials used for 

extrusion. For example, variable Fe bioaccessibility upon extrusion of five Italian legumes was 

reported, with some showing improvement, others no change, and still others showing reduced 

bioaccessibility (Lombardi‐Boccia, Lullo & Carnovale, 1991). Extrusion influences mineral 

bioavailability mainly due to its effect on mineral-binding components present in cereals, such 

as phytic acid, phenolic compounds, and dietary fibre. 
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2.1.2.2 Anti-nutritional factors  

While vital for health promotion due to their potential to prevent non-communicable diseases 

(Echeverria & Valenzuela, 2022), phenolic compounds are considered antinutrients due to their 

ability to bind nutrients and digestive enzymes (Duodu, 2011). Extrusion cooking has been 

reported to have different effects on phenolic compounds. Extrusion cooking of wholegrain red 

sorghum was found to cause a significant decrease in assayable phenolic compounds (by 14 to 

19%) (Llopart, Drago, De Greef, Torres & González, 2014). In single screw extrusion cooking 

of sorghum at an in-barrel moisture of 15%, phenolic compounds were more extractable than 

at 18%, presumably due to their depolymerisation (Dlamini, Taylor & Rooney, 2007a). 

However, extrusion cooking at 18% moisture rendered them less extractable, probably due to 

the polymerisation of phenolics. Llopart et al. (2014) proposed that greater interaction between 

protein and phenolic compounds occurs at lower moisture extrusion cooking conditions. 

Concerning phytate, an observed reduction in phytate in red sorghum during extrusion cooking 

was found to be dependent on temperature increase rather than on the in-barrel moisture content 

(Llopart et al., 2014). Increasing in-barrel moisture content when extrusion cooking cereal 

brans (18 to 22% moisture) (Kaur, Sharma, Singh & Dar, 2015) and various legumes (14 to 

20% moisture) (El-Hady & Habiba, 2003) was, however, found to cause a reduction in phytate. 

Decreases in phytate during extrusion cooking were found to be due to the hydrolysis of inositol 

hexakisphosphates into lower phosphates (Alonso et al., 2001) or due to the formation of 

insoluble complexes between phytate and other charged components (Kaur et al., 2015). 

Extrusion cooking has been reported to increase total dietary fibre content through the 

formation of resistant starch and to change the ratio of soluble dietary fibre to insoluble dietary 

fibre (Østergård, Björck & Vainionpää, 1989). Extrusion cooking was found to cause fibre 

depolymerisation and, as a result, increased the proportion of soluble dietary fibre (Oladiran & 

Emmambux, 2017). Increasing the in-barrel temperature has also been reported to increase the 

total dietary fibre in wheat due to the formation of lignin-like substances (Theander & 

Westerlund, 1987). Shear stress in the barrel generates strain on the insoluble fibre 

macromolecular structure and results in chemical bond breakage and the creation of smaller 

soluble compounds (Ralet, Saulnier & Thibault, 1993). However, high pressure in the barrel 

may have a greater effect on fibre solubility than the shear rate generated during high screw 

speed (Gualberto, Bergman, Kazemzadeh & Weber, 1997). Reduction in insoluble dietary 

fibre, however, reduces the quality of extrudates by decreasing the radial expansion, hence 
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increasing the bulk density and giving harder texture and less crispy products (Lue, Hsieh & 

Huff, 1991). 

2.1.2.3 Starch 

Considering the majority of the food products that are made using extrusion, the major 

ingredients used in these products are often cereal grain flours and/ or components of the flours, 

mainly starches. In many extrusion cooking applications, including sorghum-based systems, 

starch is the structure-forming material (Guy, 2001). The gelatinisation of the starch (Pelembe, 

Erasmus & Taylor, 2002) and the viscosity of the resulting starch melt in the extruder barrel 

(Mahasukhonthachat, Sopade & Gidley, 2010) have implications on the physical and 

functional properties of the resulting product. The fate of starch in extrusion cooking is thought 

to take place through a unique mechanism when compared to starch gelatinisation through hot 

pasting. The mechanism of extrusion relies on granule mechanical disruption due to high 

friction and shear, compared to the swelling of starch granules due to an excess of water in 

pasting (De Muelenaere, 1989). The extrusion mechanism largely involves starch gelatinisation 

and melting (involving destruction of the starch granules as a result of cleavage of the 

intermolecular hydrogen and covalent bonds) and fragmentation into dextrinised starch and 

oligosaccharides (Lai & Kokini, 1991; Gomez & Aguilera, 1984). The digestibility of starch 

in extruded products is high (Péronnet, Meynier, Sauvinet, Normand, Bourdon, Mignault, St-

Pierre, Laville, Rabasa-Lhoret & Vinoy, 2015). As a result, extrusion-cooked starchy foods 

often have a high glycaemic index (GI) (Camire, 2001), which may contribute to insulin 

resistance and the risk of type 2 diabetes (Ceriello & Colagiuri, 2008). This has informed 

several studies focusing on the reduction of the rate and extent of starch digestion in food 

products. The effect of extrusion on starch digestibility is dependent on the different types of 

starch, whether normal, waxy or high-amylose (Robin, Heindel, Pineau, Srichuwong & 

Lehmann, 2016). 

Partial dextrinisation of starch during extrusion cooking increases its molecular mobility 

resulting in a greater probability of retrogradation (Zhang, Liu, Liu, Luo, Li, Liu, Wu & Zuo, 

2014). Due to the detrimental effect of retrogradation on the sensory quality of starchy foods, 

research has been focused on reducing or retarding retrogradation (Wang, Li, Copeland, Niu 

& Wang, 2015). However, many studies have also shown that enzyme-resistant starch (RS) 

can be formed by retrogradation following extrusion (Kim, Tanhehco & Ng, 2006; Faraj, 

Vasanthan & Hoover, 2004; Huth, Dongowski, Gebhardt & Flamme, 2000; Unlu & Faller, 

1998). RS is particularly important due to its role in reducing the GI of foods. The rate of 
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digestion of RS-containing foods in the small intestine is lower than rapidly digestible starch-

rich foods leading to a sustained and lower level of glucose release (lower glycaemic load). 

Faraj et al. (2004) and Huth et al. (2000) have reported increments in retrograded starch and 

reduction in starch digestibility following storage of undried extrudate. RS formation during 

extrusion cooking can also result from complexation between starch and particular lipids 

(Panyoo & Emmambux, 2017). This type of RS is referred to as RS V. When considered as 

dietary fibre, RS V can be categorised depending on whether it is amorphous or semicrystalline 

as type I or type II (Panyoo & Emmambux, 2017). These starch-lipid complexes can be applied 

in the food industry for purposes such as enhancement of freeze-thaw stability, retardation of 

staling in bread and biscuits, and prevention of stickiness in starchy foods (Gulati, Brahma & 

Rose, 2020). Due to its slow degradation by bacteria in the lower intestine, RS  is associated 

with health benefits due to a slower release of glucose into the bloodstream, which can result 

in lower postprandial glycaemic and insulin responses (Birt, Boylston, Hendrich, Jane, Hollis, 

Li, McClelland, Moore, Phillips & Rowling, 2013). 

 

2.1.2.4 Proteins 

The nutritional value of protein is dependent on the quantity, digestibility and availability of 

essential amino acids (Singh, Gamlath & Wakeling, 2007). Extrusion cooking variables greatly 

influence protein digestibility (Ek & Ganjyal, 2020). The presence of the anti-nutritional 

factors phytate, phenolics (tannins), protease inhibitors, and dietary fibre can also reduce the 

amount of protein available for intestinal absorption (Camire, 2001). Studies have shown that 

high extrusion temperature along with shear can significantly reduce the anti-nutritional factors 

and promote protein digestibility (Arun Kumar, Mani, Pramod, Samuel, Jha, Sahoo, Sinha & 

Kar, 2018; de Morais Cardoso, Pinheiro, Martino & Pinheiro-Sant’Ana, 2017) Proteins can 

also unfold as a result of thermal and mechanical denaturation during extrusion rendering them 

more accessible to proteolytic enzymes (Gulati et al., 2020). Fapojuwo, Maga and Jansen 

(1987) reported improved protein digestibility of sorghum flour when extruded compared to a 

20% loss in digestibility when conventionally cooked. Hamaker, Kirleis, Butler, Axtell and 

Mertz (1987) reported a similar increment in protein digestibility following the extrusion of 

sorghum. This is primarily due to the breaking of disulphide linkages of sorghum prolamin 

proteins at high screw speeds that otherwise cause lower protein digestibility of sorghum flour. 
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2.2 PLANT FOODSTUFFS USED IN THIS STUDY 

2.2.1 Sorghum 

Sorghum (Sorghum bicolor (L.) Moench) is an important food crop in many parts of Africa, 

Asia and the semi-arid tropics worldwide (Taylor, 2019). Sorghum is a drought-tolerant crop 

which requires little husbandry during growth and can withstand periods of water logging. In 

this regard, sorghum has a distinct advantage over other major cereals. World sorghum 

production was estimated at 61.4 million tonnes in 2021, with Africa contributing over 40% of 

this production (FAO, 2022). Sorghum is the dietary staple of more than 500 million people in 

more than 30 countries (Reddy, Ashok Kumar & Sanjana Reddy, 2010).  

The nutrient composition of sorghum indicates that it is a good source of energy, protein, 

carbohydrate, vitamins and minerals, including trace elements (particularly zinc and iron), like 

most cereals (Serna-Saldivar & Espinosa-Ramirez, 2019). As with most cereals, starch and 

protein are the major components of sorghum, accounting for 56-76% and 6-20%, respectively 

(Bean, Smith, Wilson, OIoerger & Tilley, 2019). The starch composition of sorghum is similar 

to most starches and is majorly (98-99%) composed of the α-glucans, amylose and amylopectin 

(Bean et al., 2019). While albumins and globulins (accounting for about 10-30%) and glutelins 

(accounting for about 4-35%) have been reported in sorghum, the primary storage proteins in 

sorghum are prolamins (accounting for 50-70%) (Taylor, Schussler & Van der Walt, 1984). A 

major concern of sorghum protein quality is it is limited in amino acid lysine while rich in 

sulphur-containing amino acids (Bean et al., 2019). 

Sorghum’s nutritional quality is dictated mainly by its chemical composition and the presence 

of anti-nutritional factors such as phytate and phenolic compounds. Phytate (phytic acid) is the 

principal storage form of phosphate in grains and is ubiquitously distributed in plants. The 

effects of phytate in human and animal nutrition are related to the interaction of phytic acid 

with proteins, vitamins and several minerals, thereby restricting their bioavailability (Elkhalil, 

El Tinay, Mohamed & Elsheikh, 2001). In a study of 45 sorghum lines, the phytate content 

varied between 0.47 and 3.53 g/100 g, depending on genetic and environmental factors 

(Kayodé, Linnemann, Hounhouigan, Nout & van Boekel, 2006). 

Phenolic compounds are the largest group of secondary metabolites found in plant foods (Kroll, 

Rawel & Rohn, 2003). Although phenolic compounds are seen as health-promoting, they also 

function as antinutrients due to their ability to bind nutrients, rendering them less available for 
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utilisation in the body. They can be divided into three major categories: phenolic acids, 

flavonoids and tannins (Serna-Saldivar & Espinosa-Ramirez, 2019). Dlamini et al. (2007a) 

reported a total phenolics content of 0.27-0.53 g catechin equivalents (CE)/100 g in sorghum. 

Due to the high phytate and phenolic content of sorghum, the bioaccessibility of minerals such 

as iron is reduced. Iron bioaccessibility is negatively influenced by various inherent factors 

such as phytate, phenolic compounds, calcium and insoluble dietary fibre, calcium and fibre 

(both soluble and insoluble) (Hemalatha, Platel & Srinivasan, 2007).   

 

2.2.2 Bambara groundnuts 

Bambara groundnut (Vigna subterranea L. Verdc) is an underutilised annual legume native to 

Africa (Esan, Oke & Ogunbode, 2023; Khan, Rafii, Ramlee, Jusoh & Al Mamun, 2022; Tan, 

Azam-Ali, Goh, Mustafa, Chai, Ho, Mayes, Mabhaudhi, Azam-Ali & Massawe, 2020a). It has 

gained traction lately due to its nutrient density and its tolerance to drought (Esan et al., 2023). 

Global production is 0.4 million metric tonnes, with nearly all production coming from Africa 

and scanty production in Thailand, Malaysia, and Indonesia (FAO, 2022). The main chemical 

component of Bambara groundnuts is also starch (50-65%) (Nwadi, Uchegbu & Oyeyinka, 

2020), but it has a larger proportion of amylose (37%) (Ashogbon, 2014) than sorghum starch. 

The amylose content of Bambara groundnut starch is in line with the starch amylose contents 

of other pulses, which are generally higher (35-46%) than cereals (Rao, 1976). Bambara 

groundnuts are also higher in protein (17-25%) compared to sorghum, with major protein 

fractions being albumins and globulins (Poulter, 1981). The protein content of Bambara 

groundnuts is similar to that of other legumes such as chickpeas, cowpeas, lentils and green 

peas (Iqbal, Khalil, Ateeq & Khan, 2006).  

The protein quality of Bambara groundnut, as with other legumes, is limited by its deficiency 

in sulphur-containing essential amino acids, particularly methionine (Tan, Azam-Ali, Goh, 

Mustafa, Chai, Ho, Mayes, Mabhaudhi, Azam-Ali & Massawe, 2020b; Adeleke, Adiamo, 

Fawale & Olamiti, 2017). This is coupled with high phenolic content, particularly tannins (0.2-

1.8%) and trypsin inhibitors (0.06-73 units/mg of protein) (Tan et al., 2020b; Halimi et al., 

2019). Bambara groundnut also contains high contents of phytic acid (0.1-1.5%) (Yao, 

Kouassi, Erba, Scazzina, Pellegrini & Casiraghi, 2015; Mazahib, Nuha, Salawa & Babiker, 

2013). Another critical factor limiting the utilisation of legumes in general and Bambara 

groundnut, in particular, is the presence of oligosaccharides of the raffinose sugar family 
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(stachyose being the most abundant, 0.75-1 g/100 g (Apata, 2008). Due to the absence of α-

galactosidase in humans, oligosaccharides cannot be digested in the upper part of the 

gastrointestinal tract leaving them to be fermented in the colon by bacteria causing abdominal 

discomfort (Halimi, Barkla, Mayes & King, 2019). 

Due to Bambara groundnuts’ high protein and mineral contents (iron being the mineral of 

interest, Bambara groundnut is reported to have 11-150 mg/100 g of iron), it is used in 

composites with cereals and even tubers to improve the nutritional qualities of traditional meals 

(Tan et al., 2020b; Halimi et al., 2019). Cereals and tubers that are composited with Bambara 

groundnuts include maize for traditional African maise-based foods such as ‘ogi’, a starchy 

gruel (Mbata, Ikenebomeh & Ezeibe, 2009), pearl millet for the formulation of ‘agidi’, a stiff 

gel, (Zakari, Hassan & Abbo, 2010); malted sorghum and fermented sweet potato for porridge 

(Nnam, 2001) and fermented cassava for the production of ‘fufu’ (Oluwole & Olapade, 2011). 

Bambara groundnuts have also been investigated in composites in products such as biscuits 

(Abu-Salem & Abou-Arab, 2011) and bread (Alozie, Iyam, Lawal, Udofia & Ani, 2009). 

Extrusion cooking has been applied to produce white yam and Bambara groundnut expanded 

extrudates (Oluwole & Olapade, 2011), sorghum malt and Bambara groundnut-based 

extrudates (Jiddere & Filli, 2015) and pearl millet and Bambara groundnut based fura (Filli, 

Nkama & Jideani, 2013). 

 

2.2.3 Moringa 

Moringa oleifera Lam. is a tree belonging to the monogeneric genus Moringa of the 

Moringaceae family. It is native to the Indian subcontinent, but due to its ability to grow in 

humid and hot dry lands and survive in less fertile soils chronically affected by drought, it is 

grown in many tropical and subtropical areas around the world (Anwar, Latif, Ashraf & Gilani, 

2007). It has been defined as a multi-purpose tree, as all parts can be utilised for different 

purposes. The leaves are the most used part of the plant. In particular, they are used for human 

and animal nutrition and in traditional medicine to treat many ailments (Popoola & Obembe, 

2013). Several in vitro and in vivo studies have ascribed numerous pharmacological properties 

to M. oleifera leaves, although the scientific evidence on their health effects in humans is still 

limited (Leone, Spada, Battezzati, Schiraldi, Aristil & Bertoli, 2015b). On a dry basis, moringa 

leaves are rich in dietary fibre, proteins, calcium, iron, potassium, vitamins (particularly C and 

E), and β-carotene (Moyo, Masika, Hugo & Muchenje, 2011; Yaméogo, Bengaly, Savadogo, 
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Nikiema & Traore, 2011; Jongrungruangchok, Bunrathep & Songsak, 2010; Sánchez-

Machado, Núñez-Gastélum, Reyes-Moreno, Ramírez-Wong & López-Cervantes, 2010; 

Owusu, Ellis & Oduro, 2008; Aslam, Anwar, Nadeem, Rashid, Kazi & Nadeem, 2005), and in 

antioxidant and bioactive compounds, such as flavonoids, phenolic acids, glucosinolates and 

isothiocyanates, tannins and saponins (Popoola & Obembe, 2013; Anwar et al., 2007). 

Although considered antinutrients, phenolic compounds have been proposed to confer health-

promoting properties (Awika & Rooney, 2004). Moringa leaves contain approximately 2970 

mg total phenolics/100 g (dry basis) (Leone, Fiorillo, Criscuoli, Ravasenghi, Santagostini, 

Fico, Spadafranca, Battezzati, Schiraldi, Pozzi, Di Lello, Filippini and Bertoli (2015a). These 

reduce the mineral availability of the moringa. The phytate content of moringa leaves is 

considerably high, 2-3 g/100 g (dry basis) (Adetola, Kruger, White & Taylor, 2019; Leone et 

al., 2015a; Stevens, Ugese, Otitoju & Baiyeri, 2015). 

 

2.2.4 Baobab  

Baobab (Adansonia digitata L.) is a fruit tree endemic to the Savannah drylands of sub-Saharan 

Africa. Local communities mainly utilise the leaves, pulp, and seeds of baobab as a source of 

food and for income generation (Muthai, Karori, Muchugi, Indieka, Dembele, Mng’omba & 

Jamnadass, 2017). Ripe baobab fruits are large, egg-shaped, 15–20 cm long, with a hard woody 

outer shell covered with yellowish-brown hairs and are filled with a dry white powdery pulp 

that covers brownish bean-like seeds (Tembo, Holmes & Marshall, 2017; Coe, Clegg, 

Armengol & Ryan, 2013; Besco, Braccioli, Vertuani, Ziosi, Brazzo, Bruni, Sacchetti & 

Manfredini, 2007; Shahat, 2006). The pulp, which is usually eaten fresh, is acidic (pH 3.2). 

Several studies have shown that baobab fruit pulp is very rich in vitamin C with a content of 

up to 540 mg/100 g on a fresh weight basis. The seeds contain high levels of polyphenols 

(epicatechin and procyanidin), provitamin A carotenoids and fatty acids (linoleic and oleic 

acids) and show high antioxidant activity (Del Rio, Rodriguez-Mateos, Spencer, Tognolini, 

Borges & Crozier, 2013; Vermaak, Kamatou, Komane-Mofokeng, Viljoen & Beckett, 2011). 

However, utilisation is limited due to insufficient knowledge about the effects of processing 

conditions for quality control (Tembo et al., 2017). The high vitamin C content (ascorbic acid 

+ dehydro-ascorbic acid) of baobab pulp is completely lost in the final juice due to excessive 

heating (Tembo et al., 2017). 
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The fruit pulp is mainly used in beverages and food preparation. It is an excellent source of 

carbohydrates (85.0%, dry basis) but low in protein and fat (9.2% and 0.3%, dry basis, 

respectively). The fruit pulp is high in potassium, sodium, calcium and magnesium 

(approximately 1384, 31, 329, and 100 mg/100 g, respectively) but low in iron, zinc and copper 

(approximately 10.4, 2.0, and 1.8 mg/100 g, dry basis, respectively). Nhukarume, Chikwambi, 

Muchuweti and Chipurura (2010) and Braca, Sinisgalli, De Leo, Muscatello, Cioni, Milella, 

Ostuni, Giani and Sanogo (2018) reported total phenolic contents of between 12-58 mg gallic 

acid equivalent/100 g and 120-161 mg gallic acid /g in baobab fruit pulp, respectively and 

phytic acid was reported to be approximately 0.2% on dry basis (Adetola, Kruger, White & 

Taylor, 2019; Osman, 2004). 

 

2.3 MECHANISM OF FERRITIN FORMATION IN CELLS AS AN INDICATOR OF 

IRON UPTAKE 

Dietary iron can exist as either inorganic iron or haem iron, with inorganic iron being the most 

prevalent in diets specifically of plant origin (Anderson, Frazer, McKie, Vulpe & Smith, 2005). 

While the absorption of haem-iron is less well understood, it is far more efficient than non-

haem iron, apparently by endocytosis of the intact iron–protoporphyrin complex at the 

enterocyte brush border (Anderson et al., 2005) Figure 2-1. 

From a nutritional perspective, not only is the content of iron in foods of importance but also 

its bioaccessibility or bioavailability. The bioaccessibility of iron is determined by first its 

digestion and release from the diet, active absorption into the enterocytes, which starts with its 

reduction from the prevalent Fe3+ to Fe2+ (by stomach acid and duodenal cytochrome b (dCtyB) 

ferric reductase in the lumen, ascorbic acid would, in this case, contribute to the reduction 

process), and transport from the enterocytes to the circulation (Ferruzzi, Kruger, 

Mohamedshah, Debelo & Taylor, 2020). Absorption of iron in the intestine is mediated by the 

divalent metal transporter-1 (DMT1) (Sharp & Srai, 2007) (Figure 2-1). In the cytoplasmic 

matrix, the iron enters a labile iron pool where it is incorporated in ferritin for storage using 

poly rC-binding protein (PCBP1). For this reason, this study used the ferritin formed in a Caco-

2 cell model following treatment with the digests from the different porridges as a measure of 

iron uptake and hence, its bioaccessibility. 
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Figure 2-1: Schematic representation of the mechanism of iron uptake by enterocytes (adopted 

from (Dasa & Abera, 2018). dCtyB- duodenal cytochrome b ferric reductase, DMT1- divalent 

metal transporter, PCBP1- poly rC-binding protein 

 

2.3.2 Factors affecting iron bioaccessibility and bioavailability 

2.3.2.1 phytate 

During digestion, the phytate molecule (inositol hexakisphosphate, IP6) is negatively charged, 

indicating a potential for binding positively charged metal ions like iron (Kumar, Sinha, 

Makkar & Becker, 2010; Harland & Oberleas, 1987), (Figure 2-2). It can form stable 

complexes with divalent or trivalent mineral ions like iron, zinc, calcium, and magnesium 

through electrostatic interactions. Complexation between phytic acid and minerals can occur 

in the digestive system and is dependent on the atomic mass and electronegativity of the 

minerals. Since humans are monogastric, complexes of mineral ions with phytates are not 

easily digestible due to the lack of endogenous phytase enzymes (Hurrell & Egli, 2010), thus 

impairing their bioavailability. The higher inositol-phosphates (i.e., IP6 and IP5) have a greater 
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capacity to bind minerals and reduce their bioavailability compared with lower inositol-

phosphates (i.e., IP4, IP3, IP2 and IP1) which also generally form relatively more soluble 

complexes (Sandberg, Carlsson & Svanberg, 1989).  
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Figure 2-2: Structure of the phytate-iron complex 

 

2.3.2.2 Calcium 

Calcium inhibits the absorption of both haem and non-haem iron in a similar way (Dasa & 

Abera, 2018), and thus, this inhibition by calcium likely occurs after the haem iron is freed 

from the porphyrin ring (Hallberg, Rossander-Hulthèn, Brune & Gleerup, 1993). Moreover, 

complexes between iron, phytate and calcium (Figure 2-3) are stable and insoluble and thus 

render iron less bioavailable (Rousseau, Kyomugasho, Celus, Hendrickx & Grauwet, 2020). 

While the actual mechanism of iron inhibition by calcium is not fully understood, Hallberg, 

Rossander-Hulten, Brune and Gleerup (1992) proposed that inhibition of iron absorption 

occurs during the intestinal membrane transfer process rather than during iron’s initial uptake 

into the enterocyte. 

 



 

17 

 

O

PO

OH

O

P OO

O
Fe

O

PO OH

Fe O

O

P
O

OO

OH

O

PO O

O

O

P

O

O O

Fe

Fe

Ca

H
H

H

H

H

 

Figure 2-3: Structure of the phytate-iron-calcium complex 

 

2.3.2.3 Phenolic compounds 

During digestion, phenolic compounds in the food can be released, forming complexes with 

iron in the intestinal lumen, making it unavailable for absorption (Hart, Tako, Kochian & 

Glahn, 2015). However, it appears that phenolic compounds differ in their ability to form 

complexes with iron and their capacity to reduce its bioavailability (Dasa & Abera, 2018; 

Andjelković, Van Camp, De Meulenaer, Depaemelaere, Socaciu, Verloo & Verhe, 2006). 

Phenolics with galloyl and catechol groups can form insoluble complexes with iron, rendering 

the mineral unavailable for absorption (Figure 2-4). It has been suggested that the amount of 

iron-binding phenolic galloyl groups in foods roughly corresponds to the degree of inhibition 

of iron absorption (Brune, Hallberg & Skanberg, 1991). The inhibitory effect of phenolics on 

iron absorption is likely due to a condensation reaction with iron, which results in the formation 

of insoluble complexes (Siegenberg, Baynes, Bothwell, Macfarlane, Lamparelli, Car, 

MacPhail, Schmidt, Tal & Mayet, 1991), (Figure 2-4). 
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Figure 2-4: Binding of iron with the catechol group of phenolic compounds 

  

2.3.2.4 Organic acids 

Citric acid and ascorbic acid appear to be the organic acids that are most potent in enhancing 

iron absorption, particularly of non-haem iron (Teucher, Olivares & Cori, 2004; Salovaara, 

Sandberg & Andlid, 2003, 2002). It is proposed that organic acids enhance iron absorption by 

lowering the pH of the food and by chelating the iron and keeping it in a soluble form, thereby 

preventing the formation of insoluble and bound iron compounds (Salovaara et al., 2003, 

2002). Organic acids, particularly ascorbic acid, also act to reduce the oxidation state of iron 

from the ferric (Fe3+) to the ferrous (Fe2+) state, the form of iron absorbed at the enterocytes.  

As explained, iron is absorbed in the divalent (Fe2+) state as it is more soluble at the relatively 

high pH of the duodenum and small intestine (Lopez, Leenhardt, Coudray & Remesy, 2002). 

Thankachan, Walczyk, Muthayya, Kurpad and Hurrell (2008) showed that when ascorbic acid 

was added to rice meal at a molar ratio of 2:1 (ascorbic acid: iron), iron absorption was 

significantly increased (by over 200%). Ascorbic acid has been found to promote the 

absorption of non-haem iron from the diet to the extent that it counteracts the adverse effects 

of dietary phytate, tannins and other phenolics (Siegenberg et al., 1991), calcium and the milk 

protein, casein (Stekel, Olivares, Pizarro, Chadud, Lopez & Amar, 1986) on iron absorption.  

 

2.3.2.5 Dietary fibre  

Péneau, Dauchet, Vergnaud, Estaquio, Kesse-Guyot, Bertrais, Latino-Martel, Hercberg and 

Galan (2008), using fibre-rich fruit and vegetable juices, found that fibre only influenced non-

haem iron absorption in human participants whose non-haem iron absorption was high due to 
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low iron stores. However, fibre did not affect non-haem iron absorption in participants with 

high iron stores. Conflicting results have been found concerning the effect of fibre on iron 

bioavailability. In several animal studies, dietary fibre was shown not to significantly affect 

iron uptake (haemoglobin being used as an indicator), in rats (Zhang, Yung & KongYeung, 

2021; Carvalho, Brait, Vaz, Lollo, Morato, Oesterreich, Raposo Jr & Freitas, 2017; Laparra, 

Díez-Municio, Herrero & Moreno, 2014; Kobayashi, Ohbuchi, Fukuda, Wakasugi, Yasui, 

Hamada, Yokoyama, Kuwahata & Kido, 2011), in broiler chickens (Gomes, Kolba, Agarwal, 

Kim, Eshel, Koren & Tako, 2021; Carboni, Reed, Kolba, Eshel, Koren & Tako, 2020; Pereira 

da Silva, Kolba, Stampini Duarte Martino, Hart & Tako, 2019; Pacifici, Song, Zhang, Wang, 

Glahn, Kolba & Tako, 2017; Tako & Glahn, 2012), in pigs (Samolinska, Grela & Kiczorowska, 

2019) and in fish (Tiengtam, Khempaka, Paengkoum & Boonanuntanasarn, 2015). Cade, 

Moreton, O’Hara, Greenwood, Moor, Burley, Kukalizch, Bishop and Worwood (2005) 

observed no effect of fibre on serum ferritin in women, and conflicting results were found in 

elderly individuals (Fleming, Tucker, Jacques, Dallal, Wilson & Wood, 2002) where 

consumption of fruits rich in fibre seemed to improve iron uptake. The authors attributed this 

to the high ascorbic acid content in the fruits, which enhanced iron uptake. 

Cook, Noble, Morck, Lynch and Petersburg (1983) found that only wheat bran had a 

statistically significant inhibition of iron bioavailability from wheat muffins prepared with 

added bran, cellulose, or pectin. They demonstrated that inhibition of iron absorption is not a 

universal property of all fibre sources. Moreover, the modest effect of maximally altering the 

natural fibre levels of a meal suggests that dietary fibre per se is not a major determinant of 

food iron bioavailability in humans. Rather it is the high phytate content of some crude forms 

of fibre, such as wheat bran, which inhibits non-haem iron absorption (Cook, Reddy, Burri, 

Juillerat & Hurrell, 1997). Furthermore, high-fibre-containing foods with reduced phytate 

levels showed increased mineral absorption to a degree similar to that of low-fibre-containing 

foods (Nävert, Sandström & Ake, 1985). Hence, Lönnerdal (2000) concluded that dietary fibre 

on its own has little or no effect on mineral absorption. 

 

2.3.3 Food-to-food fortification as a strategy for improving iron quality. 

The nutrient content of cereal-based foods can be greatly improved by combining them with 

locally available nutrient-rich plant foodstuffs (Onofiok & Nnanyelugo, 1998). While several 

authors have explored the use of iron-rich food crops to improve the iron content of cereal-

based foods, emphasis should be placed on the bioaccessibility of iron in the food.  Icard-
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Vernière, Olive, Picq and Mouquet-Rivier (2015), Van der Merwe, Kruger, Ferruzzi, Duodu 

and Taylor (2019), Adetola et al. (2019) and Adetola, Kruger, Ferruzzi, Hamaker and Taylor 

(2021) have reported increments in the iron contents of sauces, pearl millet porridges, and 

maize respectively following food-to-food fortification with iron-rich foodstuffs. However, 

while moringa increased the amount of iron, the amount of bioaccessible iron measured using 

the dialyzability assay was reduced by 24% following the addition of moringa to pearl millet 

(Adetola et al., 2019). This was attributed to the high content of phytate and calcium in moringa 

that forms stable complexes rendering the iron less bioaccessible (also see Section 3.1 of this 

thesis). This was the same trend reported by other authors regarding FtFF with moringa, such 

as Van der Merwe et al. (2019) with pearl millet-based porridges and Adetola et al. (2021) 

with maize-based porridges. In contrast, the addition of baobab fruit pulp reduced the iron 

content of pearl millet-based porridge by 4%, and there was an increase in the amount of 

bioaccessible iron (by 36%) Adetola et al. (2019). This increase was attributed to the high 

content of organic acids (citric and ascorbic acids) in baobab, which are known to enhance 

mineral bioaccessibility (Iyengar, Pullakhandam & Nair, 2010; Lönnerdal, 2000). Similar 

increments in iron bioaccessibility following FtFF of pearl millet-based porridges with baobab 

were reported by Van der Merwe et al. (2019) and maize-based porridges by Adetola et al. 

(2021). In the same study, Van der Merwe et al. (2019) noted that the addition of moringa, 

roselle and baobab to pearl millet improved its iron content by 2.5, 2.1 and 2.3 times. The 

authors, however, reported that the improvement in iron bioaccessibility by the addition of 

moringa was related to the percentage used, as beyond a threshold of 30% of moringa in the 

formulation, iron bioaccessibility was significantly reduced. The authors proposed that this was 

a result of the high calcium content contributed by moringa (Van der Merwe et al., 2019). 

Gautam, Platel and Srinivasan (2010) reported that the addition of carrot to rice and sorghum 

resulted in a 14–86% increase in bioavailable iron, while amaranth leaves yielded 11–193% 

increases. In apparent contradiction, Cercamondi, Icard-Verniere, Egli, Vernay, Hama, 

Brouwer, Zeder, Berger, Hurrell and Mouquet-Rivier (2014) observed that accompanying a 

maize paste-type porridge ‘tô’ with sauces made with amaranth or jute leaves did not provide 

additional bioavailable iron, which the authors attributed to the high phenolic levels of the 

leaves. 
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2.4 PHENOLIC COMPOUNDS IN FOODSTUFFS STUDIED 

Phenolic compounds are substances that have a minimum of one benzene ring in their structure 

with one or more hydroxyl groups attached to them. They are produced by plants as secondary 

metabolites in times of stress to defend against pathogens (phytoalexins), pests and diseases 

and oxidative stress (Awika & Rooney, 2004). They possess antioxidant, anticarcinogenic, 

anti-inflammatory, immunomodulatory and antimicrobial properties in vitro (WCRF/AICR, 

2007; Rao, 2003). They also contribute sensory functions such as the aroma, astringency and 

colour of some plant parts. The majority of these phenolic compounds (95%) in plants exist in 

a bound form (Gabaza, Shumoy, Muchuweti, Vandamme & Raes, 2016) although free forms 

are also present in minor fractions due to their apparent toxicity that is reduced or eliminated 

by conjugation. They are primarily conjugated (glycosylated) with sugars such as glucose. 

Other common interactions include association with proteins, carboxylic and organic acids, 

amines and lipids (Morales-González, 2013). Phenolic compounds present in plants can be 

broadly categorised as phenolic acids, flavonoids and tannins. 

 

2.4.1 Phenolic acids 

Phenolic acids can be categorised as either benzoic acid derivatives, having a C6-C1 structure 

(Figure 2-6), or cinnamic acid derivatives, with a C6-C3 structure (Figure 2-5) (Dykes & 

Rooney, 2006). In grains like sorghum, they are located in the pericarp, testa, aleurone layer 

and endosperm (Dykes & Rooney, 2006). In sorghum, phenolic acids can exist in either free 

form or bound to various components, such as hemicelluloses (Apea-Bah, Minnaar, Bester & 

Duodu, 2016, 2014). Free phenolic acids are located in the outer layer of the pericarp and are 

extracted using organic solvents (Mattila, Pihlava & Hellström, 2005; Subba Rao & 

Muralikrishna, 2002). Bound phenolic acids are esterified to cell walls; acid or base hydrolysis 

is required to release these bound compounds from the cell matrix (Chiremba, Taylor, Rooney 

& Beta, 2012). Some phenolic acids, such as ρ-coumarates and ρ-hydroxybenzoates, are found 

in association with lignin (Wallace, Chesson, Lomax & Jarvis, 1991).  
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Figure 2-5 Cinnamic acid derivatives 

 

p-Coumaric acid (R1, R2, R4-H, R3-OH) 

o-Coumaric acid (R2, R3, R4-H, R1-OH) 

m-Coumaric acid (R1, R3, R4-H, R2-OH) 

Caffeic acid (R1, R2-H, R3, R4-OH) 

Ferulic acid (R1, R2-H, R3-OH, R4-OCH3) 

Sinapic acid (R1-H, R3-OH, R2, R4-OCH3) 
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Figure 2-6: Benzoic acid derivatives 

p-Hydroxybenzoic acid (R1, R2, R4-H, R3-OH) 

Vanillic acid (R1, R4-H, R2-OCH3, R3-OH) 

Gallic acid (R1-H, R2, R3, R4-OH) 

Syringic acid (R1-H, R2, R4-OCH3, R3-OH) 

Protocatechuic acid (R1,R4-H, R2, R3-OH) 

2.4.2 Flavonoids 

These are compounds comprising a 3-ring system with rings A and C forming a benzopyran 

nucleus and an aromatic ring B attached to the C ring, forming a C6-C3-C6 oxygenated 

heterocyclic carbon skeleton (Figure 2-7) (Dykes & Rooney, 2007; Waterman & Mole, 1994). 

They are phenylalanine derivative products of a combination of acetic acid and shikimic 

pathways (Aherne & O’Brien, 2002). Anthocyanins form an important group or class of 

flavonoids that are water-soluble pigments which contribute to the blues, purples, and reds in 

plant foods (Dykes & Rooney, 2007). Sorghums contain unique anthocyanins called 3-

deoxyanthocyanins, which lack the hydroxyl group at position 3 of the C-ring  (Dykes & 

Rooney, 2007). This feature is believed to increase their stability at high pH compared to 

common anthocyanins (Awika, Rooney & Waniska, 2004). 
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Figure 2-7: General flavonoid structure 

Although aglycones (unconjugated or free flavonoid molecules) do occur, the majority of 

flavonoids exist as glycosides (bound to a sugar moiety). The extent of oxidation and pattern 

of substitution of the C ring largely determine the difference within classes of flavonoids, while 

differences between individual compounds are dependent on the substitution of the A and B 

rings, as indicated in Figure 2-8 below (Pietta, Simonetti, Gardana & Mauri, 2000).                                                                                                                                                                                                                                                                                               
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Figure 2-8: Structures of common plant flavonoids 

2.4.3 Tannins 

Generally, tannins can be categorised as hydrolysable and condensed tannins (Hagerman, 

Riedl, Jones, Sovik, Ritchard, Hartzfeld & Riechel, 1998; Strumeyer & Malin, 1975). 

Hydrolysable tannins are compounds containing a central core of glucose or another polyol 

esterified with gallic acid (gallotannins) or with hexahydroxydiphenic acid (ellagitannins) and 

are only found in Angiospermae or dicotyledonous plants. Condensed tannins, also termed 

proanthocyanidins or procyanidins, are the most prevalent types of tannin in cereals such as 

sorghum. They are essentially oligomeric or polymeric flavanol compounds and may be 

referred to as procyanidins, propelargonidins or prodelphinidins, depending on the monomeric 

flavanol unit involved. The most prevalent proanthocyanidins in food are procyanidins and 

prodelphinidins (Cheynier, Dueñas-Paton, Salas, Maury, Souquet, Sarni-Manchado & 

Fulcrand, 2006).   

Procyanidins consist exclusively of flavan-3-ol units, (+)-catechin and/or (-)-epicatechin (Xu 

& Chang, 2007; Awika, Dykes, Gu, Rooney & Prior, 2003a). The simplest procyanidins are 

dimeric with either C4-C8 (Figure 2-9a) or C4-C6 (Figure 2-9b)-linked monomeric units (Da 

Silva, Rigaud, Cheynier, Cheminat & Moutounet, 1991). The units can also be double-linked 

through an additional ether bond between C2 and O7 (Figure 2-9c). Propelargonidins are made 

up of afzelechin and/or epiafzelechin subunits, while prodelphinidins are made up of 

gallocatechin and/or epigallocatechin subunits (Awika et al., 2003a).  
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a: Procyanidin (4β->8)-dimer               b: Procyanidin (4β->6)-dimers       c: Procyanidin (4β-

>8;2β->O->7)-dimers 

Figure 2-9: Proanthocyanidin chemical structures showing the different linkages (Prior, 

Lazarus, Cao, Muccitelli & Hammerstone, 2001)
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Table 2-2: Phenolic compounds identified in the different plants used in this study 

Food Stuff Phenolic Compound Reference 

Sorghum Caffeic acid, cinnamic acid, ferulic acid, gallic acid, sinapic 

acid, vanillic acid, and ρ-coumaric acid are the main phenolic 

acids, while luteolin, catechin, epicatechin, apigenin, 

eriodictyol, and naringenin are the main flavonoids reported in 

sorghum. 

(Xiong, Teixeira, Zhang, Warner, Shen & Fang, 2021; 

Xiong, Zhang, Warner, Shen, Johnson & Fang, 2020; Luo, 

Cui, Zhang & Duan, 2018; Rao, Santhakumar, Chinkwo, 

Wu, Johnson & Blanchard, 2018; Apea-Bah et al., 2014) 

Baobab fruit pulp Phenolic acids chlorogenic acid, caffeic acid, ρ-

hydroxycinnamic acid, protocatechuic acid, ρ-hydroxybenzoic 

acid and ellagic acid, flavonoids catechin, epicatechin, 

kaempferol, quercetin, apigenin, and myricetin along with 

Procyanidins and proanthocyanins have been previously 

reported in baobab fruit pulp.  

(Ismail, Guo, Pu, Çavuş, Ayub, Watharkar, Ding, Chen & 

Liu, 2021a; Ismail, Liu, Pu, He & Guo, 2021b; Ismail, 

Guo, Pu, Wang, Ye & Liu, 2019a; Ismail, Pu, Fan, 

Dandago, Guo & Liu, 2019b; Ismail, Pu, Guo, Ma & Liu, 

2019c; Sokeng, Sobolev, Di Lorenzo, Xiao, Mannina, 

Capitani & Daglia, 2019) 

Bambara 

groundnut 

Ferulic acid, ρ-hydroxycinnamic acid, syringic acid, caffeic 

acid, protocatechuic acid, gallic acid, ellagic acid, and quinic 

acid (phenolic acids), catechin, epicatechin, myricetin, 

kaempferol, luteolin, quercetin, and naringenin (flavonoids) 

and procyanidins have been identified in Bambara groundnut. 

(Chinnapun & Sakorn, 2022; Okafor, Jideani, Meyer & Le 

Roes-Hill, 2022; Adedayo, Anyasi, Taylor, Rautenbauch, 

Le Roes-Hill & Jideani, 2021; Adebiyi, Njobeh & 

Kayitesi, 2019; Mubaiwa, Fogliano, Chidewe & 

Linnemann, 2019; Nyau, Prakash, Rodrigues & Farrant, 

2017, 2015) 
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Moringa leaves Phenolic acids chlorogenic acid, caffeic acid, coumaric acid, 

sinapic acid, ferulic acid, gallic acid, vanillic, ρ-

hydroxybenzoic acid, and ellagic acid and flavonoids 

kaempferol, quercetin, myricetin, catechin, apigenin, and 

epigallocatechin gallate are the major phenolic compounds in 

moringa leaves.  

(Hassan, Xu, Tian, Zhong, Ali, Yang & Lu, 2021; 

Mumtaz, Kausar, Hassan, Javaid & Malik, 2021; Wu, Li, 

Chen, Wang & Lin, 2020; Coz-Bolaños, Campos-Vega, 

Reynoso-Camacho, Ramos-Gómez, Loarca-Piña & 

Guzmán-Maldonado, 2018; Rodríguez-Pérez, Quirantes-

Piné, Fernández-Gutiérrez & Segura-Carretero, 2015) 
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2.5 SORGHUM PROTEIN CONTENT AND DIGESTIBILITY 

The quality of protein in any food is determined by how digestible the protein is as well as its 

amino acid composition (WHO/FAO/UNU, 2007). Therefore, even though a food source might 

have a high protein content, the amino acid composition (particularly essential (indispensable) 

amino acids) and digestibility of the proteins present would dictate whether they are of high 

quality to the consumer. Sorghum is relatively high in protein, but the digestibility of sorghum 

proteins is generally low, especially when wet-cooked (Duodu, Taylor, Belton & Hamaker, 

2003). The low IVPD has been attributed chiefly to the disulphide crosslinking of sorghum 

prolamin proteins, making them resistant to enzyme attack (Duodu et al., 2003). 

Protein digestibility indicates the proportion of a food protein ingested, which is digested and 

absorbed in the gastrointestinal tract (WHO/FAO/UNU, 2007). It is essentially a measure of 

the extent and ease of hydrolysis of amino acids after proteolysis (Hsu, Vavak, Satterlee & 

Miller, 1977). The in vitro protein digestibility (IVPD) of uncooked decorticated sorghum is 

reported to be between 72 and 86% (Hamaker, Mertz & Axtell, 1994; Axtell, Kirleis, Hassen, 

D'Croz Mason, Mertz & Munck, 1981). The IVPD of sorghum has, however, been shown to 

decrease by 16-41% (Oria, Hamaker & Shull, 1995; Hamaker, Kirleis, Mertz & Axtell, 1986; 

Chibber, Mertz & Axtell, 1978) after processing of sorghum flour by wet cooking. This 

decrease in IVPD after cooking appears to be unique to sorghum grain (Hamaker et al., 1986) 

and does not occur to any significant extent in other cereals such as wheat and maize (Mertz, 

Hassen, Cairns-Whittern, Kirleis, Tu & Axtell, 1984). Duodu et al. (2003) reviewed the factors 

which can affect sorghum protein digestibility. The major cause of the decreased IVPD of 

sorghum upon wet cooking is regarded to be due to cross-linking of its prolamin protein 

(kafirin). It has been proposed that disulphide bonds form between cysteine-rich β- and γ-type 

kafirins at the periphery of sorghum protein bodies (Hamaker et al., 1994), the organelles of 

kafirin storage, possibly leading to a rigid β-sheet conformational structure (Emmambux & 

Taylor, 2009). It has been further proposed that disulphide bonding of protein at the protein 

body surface inhibits proteolytic attack of the more digestible α-kafirins located in the centre 

of protein bodies, therefore hindering the digestibility of the major kafirin sub-group, the α-

kafirins (Oria et al., 1995). 
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2.5.2 Compositing as a measure of improving the protein quality of sorghum. 

While cereals are limited in the essential amino acid lysine, legumes, with the exception of 

soybean, are limited in sulphur-containing amino acids (Temba, Njobeh, Adebo, Olugbile & 

Kayitesi, 2016). A combination of cereals with legumes improves the protein content and 

quality of the subsequent food products (Feyera, 2020; Temba et al., 2016). Numerous authors 

have reported improvement in the protein quality of sorghum-based products following the 

incorporation of various legumes such as cowpea  (Vilakati, MacIntyre, Oelofse & Taylor, 

2015; Dovi, 2013; Okpala, Okoli & Udensi, 2013; Pelembe et al., 2002), marama bean 

(Kayitesi, de Kock, Minnaar & Duodu, 2012), chickpea (Rani, Kumar & Sabikhi, 2016), soy 

(Bolarinwa, Olaniyan, Adebayo & Ademola, 2015), and sugar bean (Jackson, Weatherspoon, 

Nnyepi, Malete, Mokgatlhe, Lyoka & Bennink, 2013). 

 

2.6 METHODS OF ANALYSIS 

In this section, some of the methods for determining the nutritional, functional and health-

promoting properties of foods used in this research are briefly discussed. 

2.6.1 In vitro iron dialysability determination as a measure of iron bioaccessibility 

The in vitro iron dialysability assay is widely used for the determination of in vitro 

bioaccessibility of iron. It is based on a modification of the in vitro digestion model by Miller, 

Schricker, Rasmussen and Van Campen (1981). The original method was designed to 

determine the gastric and upper intestinal digestive release and solubility (bioaccessibility) of 

iron using dialyzability as a predictor of iron availability for absorption (Ferruzzi et al., 2020). 

The modified method simulates gastric and small intestinal digestion coupled with a dialysis 

step using dialysis tubing with an approx. 10 kDa molecular weight cut off, enabling 

discrimination between low molecular weight soluble mineral complexes, assumed to be 

bioaccessible, and high molecular weight ones that are assumed not to be bioaccessible (Luten, 

Crews, Flynn, Van Dael, Kastenmayer, Hurrell, Deelstra, Shen, Fairweather‐Tait & Hickson, 

1996). The major drawbacks of the in vitro iron dialysability assay are that its measure of 

bioaccessibility is limited as it cannot assess the rate of absorption, absorption, or transport 

kinetics. It can also not measure nutrient or food competition at the site of absorption 

(Etcheverry et al., 2012). Another limitation is the precipitation of a significant amount of iron 

that has diffused into the dialysis bag due to the higher pH of the dialysate, which may 

significantly affect the results (Van Campen & Glahn, 1999).  
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2.6.2 Estimation of in vitro bioaccessibility using Caco-2 cells 

Caco-2 cells (human colon adenocarcinoma cell line) demonstrate numerous morphological 

and biochemical characteristics that are similar to those of enterocytes (Au & Reddy, 2000). 

These cells can be used to assess bioaccessibility through the determination of nutrient uptake, 

transport, or both (Etcheverry et al., 2012). Iron uptake can be estimated by the Caco-2 human 

epithelial cell line via ferritin formation, via atomic absorption spectroscopy or via 

radioisotopic forms of the mineral. The in vitro Caco-2 absorption model has been suggested 

as the recommended bioaccessibility method for iron (Etcheverry et al., 2012). This assay can 

provide more information than in vitro dialysability bioaccessibility studies alone, such as the 

impact of food or nutrient components on the absorption rate and efficiency and possible 

competition at the absorption site (Glahn, Wortley, South & Miller, 2002). The Caco-2 

absorption model has been validated against human iron absorption results, with a significant 

correlation found (Au & Reddy, 2000).  

 

2.6.3 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging 

activity determination 

A main advantage of the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS●+) 

assay over other assays in the chemical determination of antioxidant activity is the fact that the 

ABTS●+ radical is soluble in both aqueous and organic solvents and therefore, the ABTS●+ 

assay can be used to determine the antioxidant capacity of both hydrophilic and lipophilic 

compounds in samples (Arnao, Cano & Acosta, 2001). However, the ABTS●+ assay is long 

and time-consuming because the ABTS●+ radical needs to be prepared first in a reaction that 

takes at least 12 hours, in comparison with another antioxidant assay such as the oxygen radical 

absorbance capacity (ORAC) using 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH) 

where the radical is available commercially as an already-made radical. Another drawback that 

applies to the ABTS assay is that the ABTS●+  radical does not occur in biological systems, 

and therefore the antioxidant activities obtained are of little physiological relevance (Prior, Wu 

& Schaich, 2005). Nonetheless, the assay is useful for routine antioxidant screening exercises 

and provides meaningful trends in differences in the antioxidant activity of different samples. 
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2.6.4 Chemical nitric oxide radical scavenging capacity determination 

The nitric oxide (NO•) free radical is produced by inducible nitric oxide synthase (iNOS) in 

vivo from arginine with oxygen as a substrate (Tsai, Lin‐Shiau & Lin, 1999). Scavenging of 

NO produced by iNOS is crucial because it may help prevent the development of systematic 

inflammation response or multiple organ dysfunction (Guzik, Korbut & Adamek-Guzik, 2003). 

The NO antioxidant assay measures the ability of antioxidants to scavenge NO•. Nitrite is first 

treated with a diazotizing reagent, namely sulphanilamide (SA), in acidic media to form a 

transient diazonium salt (Sun, Zhang, Broderick & Fein, 2003). This intermediate is then 

allowed to react with a coupling reagent, N-naphthyl-ethylenediamine (NED), to form a stable 

azo compound which has an intense purple colour. The intense purple colour of the product 

allows nitrite determination with high sensitivity and can be used to measure nitrite 

concentration as low as ~0.5 µM level. The absorbance of this adduct at 540 nm is linearly 

proportional to the nitrite concentration in the sample. The amount of nitric oxide after reaction 

with sample extracts is measured as nitrite equivalents (Gülçin, 2012). It is worth noting that 

during the reaction, nitrates may also be formed; hence the nitrates need to be reduced to nitrites 

before determination (Gülçin, 2012). The reaction mechanism of NO• is based on the ability of 

antioxidants to bind to NO• thereby preventing its oxidation to nitrates or nitrites (Gülçin, 

2012). The limitation of the assay is that NO• is not stable and needs to be generated in situ for 

each analysis (Jayachandra, Maheswaran & Murali, 2012). Also, different intermediate 

products from the oxidation of nitric oxide to nitrite, i.e. NO2, N2O3, N2O4 and ONOO- may 

interfere with the results due to possible interactions of the extracts and the nitric oxide-related 

chemical species (Marcocci, Maguire, Droylefaix & Packer, 1994). 

2.6.5 Oxygen radical absorbance capacity (ORAC) determination 

ORAC is a biologically relevant assay since the peroxyl radical (ROO•) generated from 2,2’-

azobis (2-amidinopropane) dihydrochloride (AAPH) is found in the human system. It measures 

the inhibition of peroxyl radicals by antioxidants and is reflective of radical chain-breaking 

antioxidant activity by hydrogen atom transfer (Ou, Hampsch-Woodill & Prior, 2001). In this 

regard, the ORAC assay differs from the ABTS and 2,2-diphenyl-1-picrylhydrazyl (DPPH) 

radical scavenging assays, which are based on an electron transfer mechanism (Rivero-Pérez, 

MUNiz & González-Sanjosé, 2007; Huang, Ou & Prior, 2005). The ORAC assay involves the 

reaction of peroxyl radicals (ROO•) with a fluorescent probe to form a non-fluorescent product 

which can be quantified by monitoring reduction in fluorescence (Prior et al., 2005). Although 
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this assay is biologically relevant and combines both inhibition time and degree of inhibition 

of antioxidants, it requires the use of expensive equipment (Awika, Rooney, Wu, Prior & 

Cisneros-Zevallos, 2003b), which limits its availability in most laboratories (MacDonald‐

Wicks, Wood & Garg, 2006). 

2.6.6 Advance glycation end-products (AGEs) determination 

AGEs are formed by spontaneous post-translational modification of proteins or amino acids by 

reducing sugars in Maillard-type reactions, also known as nonenzymatic glycation (Yeh, Hsia, 

Lee & Wu, 2017). The Maillard reaction is essential in food processing for sensory 

enhancement; however, excessive formation of AGEs during food storage and processing 

which end up being ingested, could result in numerous disorders along with associated 

complications such as diabetes mellitus and kidney complications and also play a role in 

tumour development and malignancy, Alzheimer’s disease, atherosclerosis, and chronic heart 

failure (Sadowska-Bartosz & Bartosz, 2016; Uribarri, del Castillo, de la Maza, Filip, Gugliucci, 

Luevano-Contreras, Macías-Cervantes, Markowicz Bastos, Medrano & Menini, 2015).  

The major AGEs are classified into 3 groups: (1) fluorescent crosslinking AGEs, such as 

carboxymethyl lysine and pentosidine; (2) nonfluorescent crosslinking AGEs, such as 

imidazolium dilysine crosslinks; and (3) nonfluorescent non-crosslinking AGEs, such as N 3- 

carboxyethyl lysine (CEL) and N 3 -carboxymethyl-lysine (CML) (Nowotny, Jung, Höhn, 

Weber & Grune, 2015; Yan, Ramasamy & Schmidt, 2008). Except for pyrraline and 

pentosidine, the production of AGEs is irreversible. Several methods have been proposed for 

the measurement of AGEs, as reviewed by Corica, Pepe, Currò, Aversa, Tropeano, Ientile and 

Wasniewska (2021). Siddiqui, Rasheed, Saquib, Al-Khedhairy, Al-Said, Musarrat and 

Choudhary (2016) describe a fluorescence spectroscopy (at an emission of 330 nm and 

excitation of 420 nm) method to quantify AGEs using methylglyoxal and bovine serum 

albumin as precursors for AGEs formation. The technique is relatively simple but cannot detect 

non-fluorescent compounds, and it is not specific for fluorescent AGEs; hence non-AGE 

fluorophore scans interfere with measurement (Corica et al., 2021). 

2.6.7 Cellular antioxidant activity assay (CAA)using Caco-2 cells 

Cellular antioxidant assays can simulate physiological conditions. Samples are tested for their 

ability to protect human adenocarcinoma cells (Caco-2 cells) against oxidation by AAPH-

induced peroxyl radicals using the dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. 



 

34 

 

For cellular antioxidant assays of this kind, it is essential to determine if the extracts or samples 

under study are cytotoxic, and this is usually done using the crystal violet assay. The crystal 

violet assay can be used for indirect quantification of cell death and to determine differences 

in proliferation upon stimulation with death-inducing agents such as polyphenols (Kanduc, 

Mittelman, Serpico, Sinigaglia, Sinha, Natale, Santacroce, Di Corcia, Lucchese & Dini, 2002). 

The CAA assay can differentiate between live and dead cells and is free from interference from 

other death-inducing agents (Bruggisser, von Daeniken, Jundt, Schaffner & Tullberg-Reinert, 

2002).  

The cellular antioxidant assay itself uses DCFH-DA, which is a cell-permeable dye. Once 

within the Caco-2 cells, DCFH-DA is deacetylated by cellular esterases forming dichloro-

dihydro-fluorescein (DCFH), which is non-fluorescent (Blasa, Angelino, Gennari & Ninfali, 

2011), (Figure 2-10). In the presence of radicals such as ONOO-, NO• and peroxyl radicals, 

DCFH oxidises to a fluorescent derivative dichlorofluorescein (DCF), and on the addition of a 

sample containing an antioxidant, the antioxidant quenches the radicals and blocks the 

conversion of DCFH to DCF in the Caco-2 cells (Blasa et al., 2011; Wolfe & Liu, 2007). Thus, 

the decrease in cellular fluorescence when compared to the control cells is indicative of the 

cellular antioxidant capacity of the antioxidant compounds. A general limitation of the DCFH-

DA in vitro antioxidant properties assay is that they may not measure the protective effect of 

antioxidant compounds under normal physiological conditions in humans (Wolfe & Liu, 2007).  
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Figure 2-10: Mechanism of measuring antioxidant activity using DCFH-DA in Caco-2 cells 

(Kellett, Greenspan & Pegg, 2018). 

 

2.6.8 Nitric oxide (NO) scavenging activity in RAW264.7 cells 

The RAW264.7 murine cell line is an essential tool for in vitro study of inflammation 

(Murakami, Kawata, Suzuki & Fujisawa, 2020). As innate cells, macrophages are recruited to 

inflammatory sites, activated, and release cascades of inflammatory molecules, including NO 

under the stimulation of lipopolysaccharide (LPS), a well-known endotoxin from Gram-

negative bacteria (Hong, Pangloli, Perumal, Cox, Noronha, Dia & Smolensky, 2020). The 

ability of the extract or sample under study to suppress the production of NO in the RAW264.7 

macrophages is measured and used as an indication of anti-inflammatory effects.  

LPS can be recognized by toll-like receptor 4 (TLR4) and induce acute or chronic inflammatory 

responses (Raetz & Whitfield, 2002). It then activates the nuclear factor kappa-light chain-

enhancer of activated B cells (NF-κB) pathway and MAPK (mitogen-activated protein kinases) 

pathways such as Janus kinase 2-JAK2, leading to the production of NO, and some other 

inflammatory factors, (Figure 2-11) (Beutler, 2004; Johnson & Lapadat, 2002). The NF-κB is 

activated by phosphorylation and subsequent degradation of its inhibitor nuclear factor of 
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kappa light polypeptide gene-enhancer in B-cells inhibitor (IκB), which is present in three 

different isoforms, IκBα, IκBβ, and IκBɛ (Kanarek, London, Schueler-Furman & Ben-Neriah, 

2010). Jagetia and Baliga (2004) described a method for determining cellular NO production 

in RAW264.7 macrophages. The reaction involves inducing cellular NO production in 

RAW264.7 macrophages using LPS before subjecting the cell extracts to a chemical NO assay.  

 

Figure 2-11: Mechanism of LPS-induced NO production in RAW264.7 macrophages (Serreli, 

Melis, Corona & Deiana, 2019). 

 

2.6.9 Cellular lipid droplet reduction in 3T3-L1 cells 

At the cellular level, obesity is defined by an increase in adipose tissue mass, which is the result 

of an enlargement in fat cells and/or an increase in their number (Chae, Seo, Yang, Yu, Suk, 

Jung, Ji, Kwon, Lee & Lee, 2015).  Adipogenesis is the process of preadipocyte differentiation 

into adipocytes (Ghaben & Scherer, 2019; Ali, Hochfeld, Myburgh & Pepper, 2013). Due to 

the ability of 3T3-L1 cells to differentiate from fibroblast into adipocytes (Zebisch, Voigt, 

Wabitsch & Brandsch, 2012), 3T3-L1 preadipocyte fibroblast clonal cell line can mature into 

fat cells (Jakab, Miškić, Mikšić, Juranić, Ćosić, Schwarz & Včev, 2021). Adipogenesis has 
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been well-characterized using 3T3- L1 preadipocytes and can be generally divided into early 

phase differentiation, which includes growth arrest and mitotic clonal expansion (MCE), and 

intermediate and late phase differentiation with chronological changes in gene expression. 

Adipogenesis ex vivo can further be divided into four steps: growth arrest, mitotic clonal 

expansion (MCE), early differentiation, and terminal differentiation (Gregoire, Smas & Sul, 

1998) (Figure 2-12). After contact inhibition and growth arrest of post-confluent 3T3-L1 

preadipocytes, the differentiation is induced by hormonal stimulation with insulin, 

dexamethasone, and 1-methyl-3-isobutyl-xanthine (IBMX) (Rubin & OM, 1978). In this stage, 

transient high expression of cytosine-cytosine-adenosine-adenosine-thymidine/enhancer-

binding proteins (C/EBP), C/EBPδ, and C/EBPβ occur. In the intermediate differentiation, 

C/EBPβ/δ stimulate C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). 

PPARγ and C/EBPα promote the induction of several adipocyte-specific genes, including 

lipoprotein lipase (LPL), adipocyte protein 2 (aP2), fatty acid synthase (FAS), and perilipin in 

the terminal stage of differentiation (Figure 2-12) (Rosen, Walkey, Puigserver & Spiegelman, 

2000). 3T3-L1 cells can be stained by oil Red-O dye (Kwan, Wu, Su, Chao, Liu, Fu, Chan, 

Lau, Tse & Han, 2017), and absorbance can be measured at a wavelength of 520 nm following 

extraction of the dye from the cells with 60% isopropanol. Polyphenol-rich diets have directly 

or indirectly resulted in the downward regulation of adipose tissues (preadipocytes, adipose 

stem cells and immune cells) (Wang, Moustaid-Moussa, Chen, Mo, Shastri, Su, Bapat, Kwun 

& Shen, 2014).  
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Figure 2-12: Stages of differentiation of 3T3-L1 cells ex vivo (Murata, Yamaguchi, Kohno, 

Takahashi, Risa, Hatori, Hikita & Kaneda, 2020) 

 

2.6.10 Nitrogen solubility index 

The nitrogen solubility index (NSI) assays the soluble nitrogenous compounds in the extruded 

products. The reduction in nitrogen solubility observed upon extrusion cooking may be 

attributed to the formation of disulphide and hydrophobic linkages due to high temperature in 

the extrusion cooker (Prudencio‐Ferreirar & Areas, 1993). The major storage proteins in 

legumes are globulins, and they are soluble in salt solutions (Kiosseoglou, Paraskevopoulou & 

Poojary, 2021).  Samples are dispersed in water at 30 ºC and stirred at a low speed of 100 rpm 

for 30 min, after which they are centrifuged twice with NaCl solution to extract all solubilized 

proteins. The filtrate is then freeze-dried to concentrate soluble protein. This is done because 

preliminary studies on liquid extracts showed wide variations in the results obtained, possibly 

due to the dilution of soluble protein, which puts the nitrogen content below the detection limit 

of the Dumatherm instrument (DT, Gerhardt Konigswinter, Germany). The detection limit of 

the Dumatherm is 0.01 mg of Nitrogen. Freeze drying helps improve the detection level as it 

concentrates the nitrogenous compounds and ensures the repeatability of the results. 

 

2.6.11 Pepsin In vitro protein digestibility (IVPD) assay 

Protein digestibility may be used as an indicator of protein quality as it is a measure of the 

susceptibility of a protein to proteolysis during the digestion of proteins (Schaafsma, 2012, 

2000). As discussed previously, a protein with high digestibility is the potential of better 

nutritional value than one of low digestibility because it would provide more amino acids for 

absorption after proteolysis. The IVPD assay relies on the solubilisation of proteins following 

digestion with the pepsin enzyme (Hamaker et al., 1986). Once digested with pepsin, the food 

sample is centrifuged, the residue dried, and its protein content determined. The digestibility 

of the food sample is obtained as a percentage difference between the solubilized protein and 

the protein initially present in the sample. It has been used extensively to determine the protein 

digestibility of sorghum foods and is considered to have a good correlation with in vivo human 

protein digestibility studies (Mertz et al., 1984; Maclean Jr, RomaÑa, Placko & Graham, 1981). 
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2.6.12 Starch digestibility 

Starch is hydrolysed by amylolytic enzymes before being absorbed as glucose in the small 

intestine (Peyrot des Gachons & Breslin, 2016). There are several methods used for the 

determination of starch digestibility in vitro, but the most common are the Englyst, Kingman 

and Cummings (1992) and Goñi, Garcia-Alonso and Saura-Calixto (1997) methods. The Goñi 

et al. (1997) method is the most widely applied technique. This method involves the use of α-

amylase and amyloglucosidase to digest starch, while protein is digested using pepsin. The use 

of α-amylase and amyloglucosidase in conjunction closely stimulates the process of starch 

digestion in the small intestine, where a larger percentage of starch is digested (Hasjim, Lee, 

Hendrich, Setiawan, Ai & Jane, 2010). A drawback is that the Goñi et al. (1997) method 

excludes the oral digestion phase, where the food is made into a bolus by mixing with saliva, 

and the salivary α-amylase begins the process of starch breakdown. In this method, the sample 

is mechanically disrupted using glass beads due to the exclusion of the chewing phase of 

digestion. Certain food and human physiological factors such as digesta viscosity, gastric 

emptying rate and transit time through the gastrointestinal tract that affect starch digestion are 

not considered in the Goñi et al. (1997) method. Several in-vivo studies have shown that these 

aforementioned factors influence the rate of starch digestion (Turnbull, Baxter & Johnson, 

2005) and as such, their omission are likely to be another limitation of the Goñi et al. (1997) 

method. 
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2.7 CONCLUDING REMARKS 

The consumption of foods low in minerals and dense in energy should be addressed to help 

prevent the triple malnutrition in sub-Saharan Africa. Foodstuffs such as sorghum, moringa 

and baobab could be used as fortificants to improve the iron quality of sorghum and thus play 

a significant role in helping to address iron deficiency in sub-Saharan Africa. Legumes are a 

source of proteins since they are high in lysine and have been used in managing protein 

malnutrition in communities consuming cereal-based diets. Bambara groundnut is a legume 

that is underutilised and drought-resilient and could be used to improve the protein quality of 

sorghum. Twin screw extrusion cooking is a high throughput and continuous food 

manufacturing process that can process sorghum to produce nutritious, convenience-type foods 

for the rapidly urbanising communities in Africa. However, there has been little research on 

starch-based systems concerning the effect of food-to-food fortification and the effects of 

extrusion cooking on macro- and micronutrient quality and health-promoting properties of 

sorghum-based foods. This research aims to establish the effect of food-to-food fortification 

and extrusion cooking on the macro- and micronutrient quality of sorghum-based porridges.
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2.10 HYPOTHESES AND OBJECTIVES   

 

2.10.1 Hypotheses 

 

1. Extrusion-cooked sorghum-based porridges will have a higher iron bioaccessibility 

when compared to conventionally wet-cooked porridges. Due to the high shear and 

temperatures involved in extrusion cooking (Cheftel, 1986) when compared to 

conventional cooking, there is the hydrolysis of insoluble dietary fibre (Rashid, Rakha, 

Anjum, Ahmed & Sohail, 2015) and dephosphorylation of phytate (Alonso et al., 2001) 

both of which bind minerals (Dust, Gajda, Flickinger, Burkhalter, Merchen & Fahey, 

2004; Ljøkjel, Sørensen, Storebakken & Skrede, 2004; Murray, Flickinger, Patil, 

Merchen, Brent Jr & Fahey Jr, 2001), reducing their bioaccessibility. Their hydrolysis 

during extrusion cooking will improve iron bioaccessibility compared to conventional 

cooking. 

Food-to-food fortification (FtFF) of sorghum with baobab fruit pulp will result in higher 

iron bioaccessibility compared to FtFF with moringa leaf powder. Baobab fruit pulp 

has a higher content of ascorbic and citric acids compared to moringa leaf, which can 

enhance mineral bioaccessibility (Iyengar et al., 2010; Lönnerdal, 2000). While 

moringa leaves have a higher content of phenolics and phytate (Leone et al., 2015a) but 

are low in organic acids. Phenolic compounds and phytate bind iron (Brune, Rossander-

Hultén, Hallberg, Gleerup & Sandberg, 1992; Brune, Hallberg & Skanberg, 1991). The 

high content of phenolics and phytate will lead to reduced iron bioaccessibility of 

sorghum-based porridges fortified with moringa leaf powder. 

 

2. Conventionally wet-cooked sorghum-based porridges will have higher phenolic content 

and health-promoting properties (radical scavenging properties, inhibition of advanced 

glycation end products and antilipogenic properties) when compared to extrusion-

cooked sorghum-based instant porridges. The high temperatures coupled with high 

shear and high pressure used in extrusion cooking will lead to the destruction of 

phenolic compounds, and the combination of high shear, pressure and moisture could 

cause the polymerisation of phenolic compounds, both of which would reduce the 

extractability of phenolic compounds and reduce antioxidant activity (Sharma, Gujral 

& Singh, 2012; Brennan et al., 2011). FtFF of sorghum with baobab and moringa will 
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enhance the phenolic content and health-promoting properties of the sorghum-based 

porridges due to the high phenolic content of baobab and moringa. Baobab fruit pulp 

and moringa leaf have been reported to be high in phenolic compounds (Kashyap, 

Kumar, Riar, Jindal, Baniwal, Guiné, Correia, Mehra & Kumar, 2022; Ismail, Guo, Pu, 

Çavuş, Ayub, Watharkar, Ding, Chen & Liu, 2021; Adetola, Kruger, White & Taylor, 

2019; Ismail, Pu, Guo, Ma & Liu, 2019; Sokeng, Sobolev, Di Lorenzo, Xiao, Mannina, 

Capitani & Daglia, 2019; Tembo, Holmes & Marshall, 2017; Leone, Fiorillo, Criscuoli, 

Ravasenghi, Santagostini, Fico, Spadafranca, Battezzati, Schiraldi, Pozzi, Di Lello, 

Filippini & Bertoli, 2015; Stevens, Ugese, Otitoju & Baiyeri, 2015; Moyo, Masika, 

Hugo & Muchenje, 2011). Their addition to sorghum will result in higher phenolic 

content of the sorghum-based porridges. Since phenolic compounds have been 

proposed to confer antioxidant properties (Duodu & Awika, 2019; Awika & Rooney, 

2004), the antioxidant properties (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic 

acid), Oxygen radical absorbance capacity, cellular antioxidant activity), nitric oxide 

scavenging capacity, advanced glycation end products inhibition and antilipogenic 

properties of sorghum-based porridges FtF fortified with moringa and baobab will be 

higher than those of plain sorghum. 

 

3. Extrusion-cooked sorghum-based porridges will have higher starch and protein 

digestibility than conventionally wet-cooked porridges. The higher temperature and 

shear of extrusion cooking will lead to depolymerization of starch, thereby making the 

starch more readily accessible for enzymatic hydrolysis (Alonso, Aguirre & Marzo, 

2000) and also disrupting the protein bodies of sorghum, exposing more of the α-

kafirins to proteolysis (Hamaker et al., 1994).  

The starch and protein digestibilities of extrusion-cooked and conventionally cooked 

sorghum-based porridges fortified with baobab and moringa will be lower than those 

of unfortified porridges. This is due to the high content of antinutritional compounds, 

including phytate, phenolics and dietary fibre, in these FfF fortificants. Antinutritional 

compounds bind to starch and proteins as well as enzymes responsible for hydrolysing 

them, resulting in lower starch and protein digestibility (Kumar, Basu, Goswami, Devi, 

Shivhare & Vishwakarma, 2021; Thakur, Sharma & Thakur, 2019). The pasting profile, 

starch and protein digestibilities of extrusion-cooked and conventionally cooked 

sorghum-based porridges fortified with baobab and moringa will be lower than those 
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of unfortified porridges. This is due to the high content of antinutritional compounds, 

including phytate, phenolics and dietary fibre, in these FfF fortificants. Antinutritional 

compounds bind to starch and proteins as well as enzymes responsible for hydrolysing 

them, resulting in lower starch and protein digestibility (Kumar, Basu, Goswami, Devi, 

Shivhare & Vishwakarma, 2021; Thakur, Sharma & Thakur, 2019). Furthermore, the 

main contributor to the viscosity of foods is starch, and a reduction in starch would 

directly be reflected in higher viscosity properties. 

 

 

2.10.2 Objectives 

1. To determine the effects of FtFF of whole-grain sorghum with baobab fruit pulp powder 

and moringa leaf powder, as well as extrusion cooking to produce instant porridges on 

porridge iron bioaccessibility, with the aim of addressing micro-nutrient deficiencies in 

sub-Saharan Africa. 

 

2. To determine the effects of FtFF of whole-grain sorghum with baobab fruit pulp powder 

and moringa leaf powder, as well as extrusion cooking to produce instant porridges on 

porridge phenolic compounds and health-promoting properties, with the aim of 

addressing the rising incidence of NCDs in sub-Saharan Africa. 

 

3. To determine the effects of FtFF of whole-grain sorghum with baobab fruit pulp 

powder, moringa leaf powder, and Bambara groundnuts, as well as extrusion cooking, 

to produce instant porridges on porridge starch and protein digestibilities, with the aim 

of addressing diabetes and protein-energy malnutrition in sub-Saharan Africa. 
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2.11 Experimental Design 1 (Chapter 3, Sections 3.1 and 3.2) 

 

Figure 2-13: Flow diagram of experimental design from raw material preparation, compositing, 

extrusion cooking conditions and drying to analyses for sections 3.1 and 3.2 
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2.12 Experimental Design 2 (Chapter 3, Section 3.3) 

 

 

Figure 2-14: Flow diagram of experimental design from raw material preparation, compositing, 

extrusion cooking conditions and drying to analyses for sections 3.3 
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CHAPTER 3 : RESEARCH 

This research chapter consists of three sections. The first section (3.1) deals with the effects of 

extrusion cooking of sorghum-based porridges food-to-food (FtF) fortified with baobab fruit 

powder and moringa leaf powder on iron bioaccessibility. The second section (3.2) concerns 

the bioactive phenolics and antioxidant properties of the FtF-fortified extruded porridges 

measured by both in vitro chemical and cellular assays. Section three (3.3) covers the in vitro 

digestibility (starch and protein) as well as pasting properties of extruded and FtF-fortified 

sorghum-Bambara groundnut composite porridges. 
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3.1 EXTRUSION COOKING OF FOOD-TO-FOOD FORTIFIED WHOLEGRAIN 

SORGHUM-BASED PORRIDGES ENHANCES CACO-2 FERRITIN FORMATION 

 

Abstract 

Iron deficiency is still a major public health concern in sub-Saharan Africa, and this is in part 

due to a monotonous diet of cereals often low in bioavailable minerals and high in mineral 

bioavailability inhibitors, notably phytate and polyphenols. Sorghum is a major food crop 

across the semi-arid tropics of Africa because of its tolerance to high temperatures and low 

rainfall. Extrusion cooking is a process that applies high heat, pressure, and shear to raw food 

materials to produce ready-to-eat products and can destroy anti-nutrients in plant foods and 

hence enhance the digestibility of their macronutrients. Food-to-food fortification (FtFF) is a 

strategy where micronutrient-rich food combinations are used to promote the bioavailability of 

essential micronutrients by increasing the content of micronutrients and enhancers of their 

absorption and decreasing the levels of inhibitors of micronutrient bioavailability. The 

objective of this study was to determine the effects of extrusion cooking of sorghum-based 

porridges FtF fortified with baobab fruit powder and moringa leaf powder on iron 

bioaccessibility, as measured by both dialyzability and Caco-2 cell assay. 

Effects of extrusion cooking of FtFF wholegrain sorghum-based porridges using iron-rich 

foodstuffs (moringa) or high in iron absorption-enhancers (baobab) on iron bioaccessibility 

were determined. Although extrusion reduced bioaccessible iron content (BIC) and percentage 

bioaccessible iron (PBI), it enhanced ferritin-formation in Caco-2 cells (by 38%) compared to 

conventional cooking, most probably because extrusion reduced contents of phenolics and 

phytate, hence freeing more iron. Fortification with baobab increased PBI by 14-34%, whether 

extruded or conventionally cooked, probably due to its organic acids. Fortification with 

moringa reduced BIC and PBI (by 30% and 71%, respectively), whether extruded or 

conventionally cooked, probably due to its high calcium and phytate contents.  

Extrusion cooking with baobab has the potential to help alleviate iron deficiency in sorghum-

based foods because it reduces the content of anti-nutrients and could play a role in alleviating 

iron deficiency. This study highlights the potential of extrusion cooking coupled with tropical 

foodstuff high in organic acids to improve iron bioavailability in wholegrain-based starchy 

staple foods. 
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3.1.2 Introduction 

Extrusion cooking is a food processing technology that can be applied to produce a variety of 

convenience-type products from diverse plant foods (Guy, 2001). It is a continuous cooking 

process that applies high heat, pressure and shear to raw food materials to produce ready-to-

eat products (Fellows, 2009). Due to rapid urbanisation in Africa, there is increasing demand 

for ready-to-eat foods (Tiuganji, Nehme, Marqueze, Isherwood, Martins, Vasconcelos, 

Cipolla-Neto, Lowden, Skene & Moreno, 2020), especially in families with working mothers. 

Another advantage of extrusion cooking is that it can destroy anti-nutrients in plant foods and 

hence enhance the digestibility of their macronutrients (Nikmaram, Leong, Koubaa, Zhu, 

Barba, Greiner, Oey & Roohinejad, 2017).  For example, it has been reported to improve iron 

availability in peas and kidney beans (Alonso et al., 2001) and in rice and maize-based protein-

enriched snacks (Wani & Kumar, 2016).  

Iron deficiency is still a major public health concern in sub-Saharan Africa (Lemoine & 

Tounian, 2020; Bouis, Saltzman, Low, Ball & Covic, 2017). The deficiency of micronutrients 

such as iron, while seldom causing death, adversely affects health. Iron deficiency accounts for 

30-50% of anaemia reported in children and women (Pasricha, Tye-Din, Muckenthaler & 

Swinkels, 2020). These deficiencies are in part due to a monotonous diet of cereals (Gibson et 

al., 2018), roots and tubers (Gregory & Wojciechowski, 2020). These starchy foods are often 

low in bioavailable minerals, and cereals are specifically high in mineral bioavailability 

inhibitors, notably phytate and polyphenols (Gibson et al., 2018). Notwithstanding these 

nutritional drawbacks, sorghum is a major food crop across the semi-arid tropics of Africa 

because of its tolerance to high temperatures and low rainfall (Taylor, 2019).  

To help prevent mineral deficiencies, at-risk communities are encouraged to diversify their 

diets by including vegetables rich in essential minerals and fruits rich in promoters of mineral 

bioavailability (WHO, 2017). FtFF is a strategy where micronutrient-rich food combinations 

are used to promote the bioavailability of essential micronutrients by increasing the content of 

micronutrients and enhancers of their absorption and decreasing the levels of inhibitors of 

micronutrient bioavailability (Kruger, 2020). FtFF with moringa leaves and baobab fruit pulp 

has been shown to improve iron and zinc bioaccessibility in pearl millet (Adetola et al., 2019) 

and maize (Adetola et al., 2021).  
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Hence, the objective of this study was to determine the effects of extrusion cooking of sorghum-

based porridges FtF fortified with baobab fruit powder and moringa leaf powder on iron 

bioaccessibility, as measured by both dialyzability and Caco-2 cell assay.   
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3.1.3 Materials and methods 

3.1.3.1 Materials 

Red non-tannin sorghum was procured from Mpumalanga Province, South Africa. The grain 

was milled using a hammer mill fitted with a 500 µm mesh size screen. The wholegrain flour 

was stored at 4°C in sealed plastic buckets. Baobab fruit powder was from Nautica Organic 

Trading, Durban, South Africa. Dried moringa leaf powder was from Supa Nutri, Cape Town, 

South Africa. 

Digestive enzymes and bile salts used were pepsin (P-7000, CAS Number: 9001-75-6), 

pancreatin (P-1750, CAS Number: 8049-47-6), and bile extract (B-8631, CAS Number: 8008-

63-7) (Sigma-Aldrich, Johannesburg, South Africa). Dialysis tubing Spectra/Por 7 (Ø=20.4 

mm) with a molecular weight cut-off of 10 kDa was used (G.I.C. Scientific, Johannesburg, 

South Africa). 

3.1.3.2 Porridge Formulations 

The following formulations of sorghum-based flours with fortificants were prepared (corn 

starch was included as a filler to maintain a constant final percentage weight for all 

formulations, figures in brackets represent the ratios of the ingredients): 

A. Wholegrain sorghum flour+corn starch (85:15) 

B. Wholegrain sorghum flour+ferrous sulphate+corn starch (85:0.02:14.98) as a 

conventional iron fortification standard 

C. Wholegrain sorghum flour+ferrous sulphate+corn starch+ascorbic acid+citric acid 

(85:0.02:14.35:0.01:0.62) as a conventional iron fortification gold standard, with 

organic acids being added before processing. The organic acids added were based 

on the amount present in the baobab fruit pulp and moringa leaf powders. 

D. Wholegrain sorghum flour+ferrous sulphate+corn starch+ascorbic acid+citric acid 

(85:0.02:14.35:0.01:0.62) as a conventional iron fortification gold standard, with 

organic acids being added after processing. 

E. Wholegrain sorghum flour+baobab fruit pulp powder+corn starch (85:6:9), with 

baobab being added before processing. 

F. Wholegrain sorghum flour+baobab fruit pulp powder+corn starch (85:6:9), with 

baobab being added after processing. 

G. Wholegrain sorghum+moringa leaf powder+corn starch fortified (85:6:9). 
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H. Wholegrain sorghum+moringa leaf powder+baobab fruit pulp powder+corn starch 

(85:6:6:3), with baobab being, was added before processing. 

I. Wholegrain sorghum+moringa leaf powder+baobab fruit pulp powder+corn starch 

(85:6:6:3), with baobab being, was added after processing. 

All formulations were made to meet approximately 25% of the recommended dietary intake 

for iron at low bioavailability of an adult woman (32.4 mg) in the total formulation (Saunders, 

Craig, Baines & Posen, 2013), except the formulations containing only baobab fruit pulp 

powder. This is because the iron content of the baobab was low. 

From the in vitro iron dialyzability results, porridge formulations A, E, G, and H were used for 

the ferritin ELISA assay with Caco-2 cells in order to study the effect of extrusion cooking 

compared to conventional cooking as well as the effect of fortification with moringa and 

baobab on ferritin formation:  

3.1.3.3 Conventional Wet Cooking 

Deionised water was added to each wholegrain sorghum-based flour in a ratio of 3:10, flour: 

water (w/w). The slurry was heated to boiling temperature (95ºC) and maintained with constant 

stirring for 25 minutes. The slurry was left to cool at ambient temperature, after which it was 

placed in plastic containers and frozen to -20ºC and freeze-dried in an Instruvac freeze-dryer 

model RFR 3878 (Air and Vacuum Technologies, Johannesburg, South Africa. Freeze-dried 

porridge flour was crushed to a particle size that passed through a 500 µm opening screen 

before further analysis. The pre-cooked porridge flour was stored at 4ºC in double-sealed, 

airtight plastic bags. 

3.1.3.4 Extrusion cooking  

A co-rotating twin-screw extrusion cooker model TX 32 (CFAM Technologies, Potchefstroom, 

South Africa) (L/D = 21.5:1) was used. Porridge formulations prepared as above were extruded 

separately. The barrel comprised of five heating zones towards the die was set at 

60/70/80/140/140ºC, respectively. Water was fed into the system at a dosing rate of 3 l/h (to 

obtain a final moisture content of 20% calculated based on the moisture content of the flours), 

and the feed rate was 10 kg/h. A die opening of 3 mm was used, and the screw speed was 

maintained at 250 rpm. Extrudates were collected three times after every 30 min interval to 

produce triplicates. They were dried immediately in a force draught oven at 50ºC for 5 min to 

a moisture content below 10%. The cooled extrudates were milled using an air-cooled analytical 
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mill to a maximum particle size of 500 µm. The milled extrudates were stored at 4ºC in double-

sealed, airtight plastic bags.  

3.1.3 Analyses 

3.1.3.5 Determination of phytate content 

Phytate was determined using the extraction and indirect quantitative assay of Fruhbeck, 

Alonso, Marzo and Santidrián (1995). The method is based on the spectrophotometric 

determination of organic phosphate present in the sample that has been acid extracted and 

purified to remove the inorganic phosphate. Dowex1-anion-exchange resin-AG 1 x 4 (4% 

Cross-linkage, chloride form, 100–200 mesh, 74–149 μm) in glass barrel Econo-columns, 7 × 

5 mm was used for purification of the extracts. The standard, sodium phytate (P-8810, Sigma-

Aldrich, Johannesburg, South Africa) and purified extracts were reacted with Wade reagent, 

after which absorbance was measured at 500 nm. 

3.1.3.6 Determination of Total Phenolic Content 

The total phenolic content of the extracts was determined as described by Apea-Bah et al. 

(2016). In each well of a 96-well microplate, 18.2 μl volume of the sample extract or catechin 

standard solution (0 - 0.5 mg/ml) was reacted with 36.4 μl 10% Folin-Ciocalteu reagent (diluted 

with distilled water) and 145.4 μl of 700 mM sodium carbonate. The reaction mixture was 

incubated for 2 hours in the dark, after which absorbance was read at 750 nm using an Omega 

FluoSTAR microplate reader (BMG Labtechnologies, Ortenberg, Germany). Total phenolic 

content was calculated with the aid of the catechin standard calibration curve and expressed as 

milligrams of catechin equivalents per gram (mg CE/g) dry weight basis. 

3.1.3.7 Determination of Organic acids 

The extraction and quantification of organic acids were by reversed phase-HPLC according to 

Tembo et al. (2017) with modifications as per Adetola et al. (2019).  

3.1.3.8 Determination of iron content  

Acid digestion of the plant foods was performed using conc. nitric acid plus hydrogen peroxide 

according to EPA method 3051A (U.S.EPA, 2007). Iron contents of the digested flour samples 

were analysed by EPA method 200.7 (U.S.EPA, 1996) using inductively coupled plasma 

atomic emission spectrometry (ICP-AES) (iCAP 6000 series, Thermo Fisher Scientific, 

Waltham, USA). Iron was analysed at 239.5 nm. To ensure accuracy, samples were analysed 

against National Institute for Standards and Technology traceable standards and independent 
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quality control solutions. A calibration acceptance criterion of R2 > 0.9995 was used, and an 

internal standard technique was used to check result accuracy.  

3.1.3.9 Determination of iron bioaccessibility using the in vitro dialyzability assay  

The in vitro dialyzability method of Miller et al. (1981) was used. Digestive enzymes and bile 

salts used were pepsin (P-7000), pancreatin (P-1750) and bile extract (B-8631). Dialysis tubing 

Spectra/Por 7 (Ø 20.4 mm) with a molecular weight cut-off of 10 kDa was used (G.I.C. 

Scientific, Johannesburg, South Africa). Mineral contents of the dialysates were measured 

using ICP-AES as described. Iron bioaccessibility was calculated as the percentage of the 

mineral in the dialysate relative to the total mineral content in the porridge sample. 

3.1.3.10 In Vitro Digestion for Caco-2 cells: Solubility Method 

The in vitro digestion method of Glahn, Lee, Yeung, Goldman and Miller (1998) with 

modifications according to Perales, Barberá, Lagarda and Farré (2005) was used and comprised 

sequential gastric and intestinal stages. The modifications mainly involved demineralizing the 

pepsin and pancreatin-bile salt solutions. In addition, instead of using dialysis tubing, aliquots 

of 20 g sample were transferred to polypropylene centrifuge tubes (50 mL) and centrifuged at 

3500 g for 1 h at 4ºC and supernatants were used to determine the bioaccessible iron content. 

The bioaccessible fraction (soluble fraction) was used in the Caco-2 cell ferritin assay. 

3.1.3.11 Culturing of Caco-2 cells and determination of ferritin synthesis by Caco-2 cells 

Cell culturing and determination of ferritin were done as described by Viadel, Perales, Barberá, 

Lagarda and Farré (2007) with modifications. Caco-2 cells were obtained from Separation 

Scientific, Johannesburg-South Africa (Cellonex Cell Line) and were used between passage 

numbers 8 and 20. The cells were sub-cultured and maintained at 37ºC in an incubator (under 

a 5% CO2/95% air atmosphere at constant humidity). Growth medium of Dulbecco’s minimum 

essential media (Sigma-Aldrich) with Earle’s salts, L-glutamine, sodium bicarbonate and 

sodium pyruvate supplemented with 10% v/v foetal bovine serum, 1% v/v non-essential amino 

acids (Sigma-Aldrich), and 1% v/v antibiotic-antimycotic solution (Sigma-Aldrich) was used. 

At 80% confluence, cells were seeded at a density of 5x104 cells/ cm2 in 6-well plates and 

maintained at 37ºC in an incubator under a 5% CO2/95% air atmosphere at constant humidity. 

The seeded cells were grown under low iron conditions, minimum essential medium (Sigma-

Aldrich) supplemented with 10% demineralized FBS and 1% v/v antibiotic-antimycotic 

solution (Gibco). The culture medium was changed every 2 days. The iron uptake assays were 

performed with differentiated cells 14–16 days after seeding. At the end of each assay, the cell 
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monolayers were washed three times with buffer solution, and the cells were detached with a 

cell scrapper. 

Cell monolayers were collected with 2 ml deionized water at 4ºC and sonicated at 30 kHz for 

30 seconds at 4ºC. Ten microliter aliquots of the sonicated Caco-2 monolayer were used in 

ferritin measurement (Human Ferritin ELISA Kit for serum, plasma, cell culture supernatant 

and urine, Sigma-Aldrich). The cell protein content was determined using a TaKaRa Bradford 

Protein Assay Kit Bicinchoninic Acid (Separations, Johannesburg, South Africa). Ferritin 

contents were expressed as ng ferritin/mg protein. 

3.1.3.12 Statistical Analyses 

Each experiment was performed thrice (except for dialyzability and ferritin formation, which 

were repeated 6 times), and a multiple analysis of variance was used to determine the 

differences between treatments. Fisher’s LSD test at a 0.05 level of significance was applied. 

Statistica 10 (StatSoft Inc., Tulsa, OK, USA) was used.

3.1.4 Results and discussion 

3.1.4.1 Antinutritional components (phytate, total phenolics and dietary fibre) and 

organic acids (ascorbic acid and citric acid) 

3.1.4.1.1 Mineral Absorption Enhancers (Organic acids - ascorbic acid and citric acid) 

Due to their role as enhancers of mineral bioavailability in foods (Iyengar et al., 2010), the 

content of organic acids (ascorbic acid and citric acid) in wholegrain sorghum-based porridges 

was of interest. Baobab had higher contents of ascorbic and citric acids (50-times more than 

moringa with none in sorghum for ascorbic acid, and 1.3 times more than moringa and 112 

times more than sorghum for citric acid) (Table 3-1). Similar trends in the organic acid contents 

of baobab compared to moringa have been reported previously (Adetola et al., 2021; Adetola 

et al., 2019). 
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Table 3-1: Organic acids, phytate, total phenolic content (TPC), insoluble dietary fibre (IDF), soluble dietary fibre (SDF) and iron contents of 

wholegrain sorghum, baobab fruit pulp powder and moringa leaf powder determined on a dry basis 

Food material 
Citric acid 

(mg/100 g) 

Ascorbic acid 

(mg/100 g) 

Phytate 

(mg/100 g) 

TPC (mg 

CE/100 g) 

IDF  

(g/100 g) 

SDF  

(g/100 g) 

Iron Content 

(mg/100 g) 

Wholegrain 

Sorghum 
284±151a ND2 1078±136b 404±19a 8.66±0.51a 1.51±0.48a 4.84±0.80b 

Baobab Fruit Pulp 

Powder 
3506±148c 164±27b 418±7a 4119±7c 12.95±0.77b 42.61±1.43c 2.32±0.44a 

Moringa Leaf 

Powder  
2722±358b 2±0a 1721±61c 3852±0b 38.17±0.85c 4.32±1.07b 100.93±7.52c 

1Values are the means±SD of at least two samples of each plant food analysed independently in triplicate (n=6) 
2Not detected 
3Means of with different superscript uppercase letters in a column differ significantly (p<0.05) 
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3.1.4.1.2 Phytate and total phenolics 

Moringa leaf powder had the highest phytate content, 1.6 times higher than wholegrain 

sorghum and 4.1 times higher than baobab fruit pulp powder (Table 3-1). The values reported 

here are similar to those reported by Kruger, Oelofse and Taylor (2014) for wholegrain 

sorghum, baobab fruit pulp (Adetola et al., 2021), and moringa leaf powder Leone et al. 

(2015a).  

The wholegrain sorghum-based porridges prepared by extrusion cooking consistently had a 

lower phytate content than their conventionally wet-cooked counterparts (on average, 16% 

lower) (Table 3-2). This lower phytate content was probably due to the thermal 

dephosphorylation of the phytate into lower inositol phosphates (Watson, Smernik & Doolette, 

2019) by extrusion cooking. In fact, it has been observed that with extrusion cooking of kidney 

beans and peas, there was an increase in inositol-penta/tetra/tri-phosphates accompanied by a 

corresponding decrease in inositol hexaphosphate content. Reduction in phytate content by 

extrusion cooking has also been reported in wholegrain sorghum-based composite flours by 

Tadesse, Beri and Abera (2019) Tadesse, Beri, and Abera (2019) and Arun Kumar et al. (2018). 

Concerning the effects of fortification, generally, none of the various fortification treatments 

reduced phytate content.    

Table 3-1 shows that baobab fruit pulp powder had the highest TPC, 6% more than moringa 

leaf powder and 90% more than wholegrain sorghum. Braca et al. (2018) similarly reported 

high values of TPC in baobab. Similarly, Leone et al. (2015a) reported high TPC values of 

moringa leaf. The TPC values for wholegrain sorghum (Table 3-1) are also within the range 

reported by Kruger, Taylor and Oelofse (2012). Table 3-2 shows that the wholegrain sorghum 

porridges prepared by extrusion cooking had lower TPC than the conventionally cooked 

porridges. The combination of high temperatures, shear and pressure during extrusion cooking 

lead to the degradation of phenolic compounds or alteration of their chemical activity (Sharma 

et al., 2012), which might alter their ability to chelate iron. Fortification with baobab fruit pulp 

and moringa leaf powder alone or in combination resulted in increased TPC (15-64% higher), 

due to their high TPC contents. A principal component analysis (PCA) plot projecting the 

dependent variables and treatments on a two-dimensional factor plane (Figure 3-1 A&B) 

showed that the extruded treatments, except those containing moringa, were in different 

quadrants to total phenolic content and phytate content. This illustrates clearly the effect of 

extrusion cooking of reducing phytate and phenolics content.
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Table 3-2: Effects of processing (conventional and extrusion cooking) and addition of organic acids, baobab fruit pulp and moringa leaf powder 

to wholegrain sorghum porridge on phytate and total phenolic content (TPC) (dry basis) of sorghum-based porridge formulations 

Formulation 

Phytate (mg/100 g) TPC (mg CE/100 g) 

Conventionally  

cooked 

Extrusion 

cooked 

Average effect of 

porridge 

formulation4,8 

Conventionally 

 cooked 

Extrusion 

 cooked 

Average effect of 

porridge 

formulation 

A. Wholegrain Sorghum 808bBC±1331,2,3 679aB±18 744BC±76 340bB±46 250aC±16 295B±31 

B. Wholegrain Sorghum+FeSO4 955bCD±67 672aB±15 (-31%)6 813CD±186 394bBC±8 204aB±3 (-18%) 299B±104 

C. Wholegrain 

Sorghum+FeSO4+Ascorbic 

Acid+Citric Acid (added before 

processing) 

783bAB±11(-3%)  699aB±7 (-28%) 714BC±104 303bA±10(-12%) 131aA±14 (-48%) 217A±95(-26%) 

D. Wholegrain 

Sorghum+FeSO4+Ascorbic 

Acid+Citric Acid (added after 

processing) 

846bBC±23 670aAB±68 (-31%) 758BC±104 342bAB±43 142aA±5 (-43%) 242A±113(-18%) 

E. Wholegrain Sorghum+Baobab  800bAB±21 705aB±39 (-27%) 752B±57 465bD±45(+37%)  278aCD±28 372C±108(+26%) 
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1Values are the means±SD of at least two samples of each formulation analysed independently in triplicate (n=6) 
2For each dependent variable (phytate, TPC), the means of each treatment (conventionally cooked, extruded) with different superscript lowercase letters in a row differ 

significantly (p<0.05) by pairwise comparison 
3Means of each treatment (conventionally cooked, extruded) with different superscript uppercase letters in a column differ significantly (p<0.05) 
4For each overall effect of porridge formulation, the means of each formulation with different superscript uppercase letters in a column differ significantly (p<0.05) 
5For each overall effect of processing technology (cooking or extruded), the means of each formulation with different superscript lowercase letters in a row differ significantly 

(p<0.05) 
6Figures in curved brackets are the average percentage difference of extruded porridges compared to conventionally wet-cooked sorghum porridges where statistically significant 
7Figures in square brackets are the average percentage difference between extrusion cooked and conventionally cooked where statistically significant 
8Average effect of porridge formulation refers to the average of each treatment (fortification) across the rows regardless of whether the formulation was conventionally wet-

cooked or extruded 
9Average effect of cooking method refers to the average of each cooking method along the column regardless of the treatment performed 

(Baobab added before processing) 

F. Wholegrain Sorghum+Baobab  

(Baobab added after processing) 

765bAB±36(-15%) 603aA±45 (-38%) 684AB±94 401bBC±12   452aF±20 (+81%) 427D±31(+45%) 

G. Wholegrain Sorghum+Moringa 960bD±41(+19%) 845aC±12 (-13%) 903C±67 563bE±49(+66%) 316aD±17 (+26%) 439D±139(+49%) 

H. Wholegrain 

Sorghum+Moringa+Baobab 

(Baobab added before processing) 

1058bE±130(+31%) 682aB±101 (-29%) 870D±33(+17%) 664bF±51(+95%) 405aE±50 (+62%) 535E±149(+81%) 

I. Wholegrain 

Sorghum+Moringa+Baobab 

(Baobab added after processing) 

893aBC±22 (-8%) 885aC±45 (+30%) 889E±34(+19%) 547aE±33(+61%) 536aG±29 

(+114%) 

542E±27(+84%) 

Average effect of cooking 

method5,9 

904b±47 747a±41 [-17%]7  454b±47 302a±41 [-25%]  
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3.1.4.2 Total iron content, iron bioaccessibility and ferritin formation in Caco-2 cells 

3.1.4.2.1 Total iron content, percentage iron bioaccessibility and bioaccessible iron (dry 

basis) 

Moringa contained 25 times more iron than sorghum and 44 times more iron than baobab 

(Table 3-1). While varying data for the iron content of moringa leaf powder have been reported, 

19 mg/100 g by Adetola et al. (2019) and 58.4 mg/100 g by Van der Merwe et al. (2019), it 

consistently has a higher iron content than sorghum. Adetola et al. (2019) reported an iron 

content of 3.7 mg/100 g in baobab, close to what we reported in this study, and Kayodé et al. 

(2006) reported iron content (3.0-11.3 mg/100 g) in sorghum within range of what was reported 

in this study. 

Regarding the total iron content (TIC), extrusion cooking significantly increased the iron 

content of the sorghum-based porridges (by 9%) (Table 3). This is probably due to the abrasive 

action of the plant materials resulting in some iron from the extruder parts, probably in the form 

of iron oxide (rust), being incorporated into the extrudates (Alonso et al., 2001). Extrusion 

cooking, when compared to conventional wet cooking, had no significant (p>0.05) effect on 

the bioaccessible iron content (BIC) of the porridges (Table 3-3). However, extruded porridge 

fortified with moringa and with moringa plus baobab had significantly lower BIC, by 59% and 

53%, respectively, compared to the conventionally wet-cooked porridge treatments. The 

reduction in BIC could result from the iron incorporated in the formulation following extrusion 

not being bioaccessible. 

Fortification with ferrous sulphate increased BIC by an overall 143% but reduced the 

percentage of bioaccessible iron (PBI) by overall 19% (Table 3-3). Fortification with ferrous 

sulphate plus ascorbic and citric acids, whether before or after cooking (conventional or 

extrusion cooking), increased both BIC and PBI (by 540% and 99% before processing by 419% 

and 64% after, respectively). The increase in both BIC and PBI was due to the enhancing effects 

of the organic acids. Ascorbic and citric acids are known mineral bioaccessibility enhancers as 

they chelate minerals and keep them in a soluble and absorbable form (Iyengar et al., 2010; 

Lönnerdal, 2000). The PCA projecting the BIC and PBI and fortification treatments on a two-

dimensional factor plane (Figure 3-1 A&B) showed that all the treatments containing organic 

acids were associated with PBI and BIC, further supporting the enhancing effect of organic 

acids on mineral bioaccessibility.  
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FtFF with baobab before processing significantly increased BIC, while baobab FtFF both 

before and after processing significantly increased PBI by 23-37%. This was supported by the 

PCA plot where all treatments containing baobab, observed along factor 1, were associated 

with PBI (Figure 3-1 A&B), suggesting an enhancing role of baobab in iron bioaccessibility. 

While the content of ascorbic and citric acids in the baobab was equivalent to the organic acids 

added in the ferrous sulphate treatment, the effect of the baobab on the bioaccessible iron was 

far less. This can be attributed to the phenolic compounds in baobab binding the iron. The 

increase in PBI following FtFF with baobab fruit powder can therefore be attributed to the 

presence of organic acids (mainly citric acid) in the baobab fruit powder. Similar results for 

BIC and PBI were reported by (Adetola et al., 2019) baobab fruit powder FtFF of pearl millet 

porridges.  

FtFF with moringa, whether alone or in combination with baobab, increased the iron content 

of the sorghum-based porridges by approximately 3 times due to its high iron content (Table 

3-3). However, moringa caused an overall significant reduction in both the bioaccessible iron 

content and percentage of bioaccessible iron, by 30% and 71%. This is likely due to its high 

phytate and calcium contents (Adetola et al., 2019). This is supported by the PCA plot, which 

revealed that all treatments containing moringa were associated with high phytate and 

phenolics contents and were in the opposite quadrant and plane to the BIC and PBI when 

projected on a two-dimensional factor plane (Figure 3-1 A&B). When complexes are formed 

between phytic acid with calcium and iron, they are more stable and less soluble than 

complexes of iron with phytic acid making complexes formed in the presence of high calcium 

content far less available (Rousseau et al., 2020). 
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Table 3-3: Effects of processing (conventional and extrusion cooking) and addition of organic acids, baobab fruit pulp and moringa leaf powder to wholegrain sorghum porridge on total iron content (TIC), bioaccessible 

iron content (BIC) and percentage bioaccessible iron (PBI) of sorghum-based porridge formulations 

Formulations 

TIC (mg/100 g db) BIC (mg/100 g db) PBI (%) 

Conventionally 

cooked 

Extrusion cooked Average effect of 

porridge 

formulation4,8 

Conventionally 

cooked 

Extrusion cooked Average effect of 

porridge 

formulation 

Conventionally 

cooked 

Extrusion cooked Average effect of 

porridge 

formulation 

A. Wholegrain Sorghum 3.7aA±0.41,2,3 5.3bB±0.1 4.5B±0.9 0.4aA±0.1 0.4aB±0.1 0.4B±0.1 9.2aD±2.4 7.1aCD±1.8 8.1E±2.4 

B. Wholegrain 

Sorghum+FeSO4 

12.9aD±0.1(+250%)6 14.2bE±0.2(+170%) 13.5E±0.7(+202%) 0.9dC±0.0(+143%) 0.9aD±0.0(+143%) 0.9D±0.0(143%) 6.9aC±1.4(-24%) 6.0aC±1.1(-15%) 6.6D±1.3 (-19%) 

C. Wholegrain 

Sorghum+FeSO4+Ascorbic 

Acid+Citric Acid (added 

before processing) 

13.4aE±0.1(+264%) 15.0bF±0.9(+185%) 14.2F±1.1(+218%) 2.4aE±0.1(+549%) 2.4aE±0.1(+535%) 2.4F±0.1(+540%) 16.7aH±0.7(+82%) 15.7aG±0.7(+121%) 16.2H±0.9(+99%) 

D. Wholegrain 

Sorghum+FeSO4+Ascorbic 

Acid+Citric Acid (added 

after processing) 

13.8aF±0.2(+273%) 15.4bF±0.0(+193%) 14.6G±0.9(+227%) 1.8fD±0.1(+395%) 2.0gE±0.3(+441%) 1.9E±0.2(+419%) 13.7aG±0.7(+49%) 13.0aF±1.9(+84%) 13.3G±1.4(+64%) 

E. Wholegrain 

Sorghum+Baobab (Baobab 

added before processing) 

3.6aA±0.2 4.8bA±0.0(-10%) 4.2AB±0.6 0.5aB±0.0 (+22%) 0.5aC±0.1(+27%) 0.5C±0.1(+27%) 12.1bF±0.8(+32%) 9.7aE±1.1(+37%) 10.9F±1.6(+34%) 

F. Wholegrain 

Sorghum+Baobab (Baobab 

added after processing) 

3.6aA±0.2 5.0bAB±0.2 4.3AB±0.8 0.4aAB±0.1 0.4aB±0.1 0.4B±0.0 11.3bEF±1.8(+23%) 7.3aCD±1.2 9.3E±2.5 

G. Wholegrain 

Sorghum+Moringa 

10.4aB±0.1(+183%) 11.2bD±0.3(+116%) 10.8C±0.5(+142%) 0.4bA ± 0.0 0.2aA±0.0(-59%)  0.3A±0.0(-30%) 3.4bAB±0.4(-63%) 1.3aA±0.1(-81%) 2.4AB±1.1(-71%) 

H. Wholegrain 

Sorghum+Moringa+Baobab 

(Baobab added before 

processing) 

10.8aC±0.3(+194%) 11.4bD±0.2(+115%) 11.1D±0.4(+148%) 0.3bA±0.1 0.2aA±0.0(-59%) 0.2A±0.1(-38%) 3.0bA±0.4(-68%) 1.3aA±0.2(-81%) 2.2A±0.9(-74%) 



 

63 

 

I. Wholegrain 

Sorghum+Moringa+Baobab 

(Baobab added after 

processing) 

10.8aC±0.2(+193%) 10.7aC±0.0(+106%) 10.7C±0.2(+140%) 0.5aB±0.0 (+27%) 0.5aC±0.0(+22%) 0.5C±0.1(+24%) 4.4aB±0.2(-52%) 4.3aB±0.8(-40%) 4.3C±0.5 (-47%) 

Average effect of cooking 

methods5,9 

9.2a±4.2 10.3b±4.1 [+10%]7 

 

 0.8a ± 0.7 0.8a±0.8  9.2b±4.8 7.5a±4.8[-19%]  

1Values are the means±SD of at least two samples of each formulation analysed independently in triplicate (n=6) 
2For each dependent variable (TIC, BIC and PBI), the means of each treatment (conventionally cooked, extruded) with different superscript lowercase letters in a row differ significantly (p<0.05) by pairwise comparison 
3Means of each treatment (conventionally cooked, extruded) with different superscript uppercase letters in a column differ significantly (p<0.05) 
4For each average effect of porridge formulation, the means of each formulation with different superscript lowercase letters in a column differ significantly (p<0.05) 
5For each average effect of processing technology (cooking or extruded), the means of each formulation with different superscript lowercase letters in a row differ significantly (p<0.05) 
6Figures in curved brackets are the average percentage difference compared to sorghum porridge were statistically significant  
7Figures in square brackets are the average percentage difference between extrusion cooked and conventionally cooked were statistically significant 
8Average effect of porridge formulation refers to the average of each treatment (fortification) across the rows regardless of whether the formulation was conventionally wet-cooked or extruded 
9Average effect of cooking method refers to the average of each cooking method along the column regardless of the treatment performed 
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Figure 3-1: Principal component analysis showing 1×2 factor coordinate plots of dependent variables (phytate, phenolics, total iron content-TIC, 

bioaccessible iron content-BIC and percentage bioaccessible iron- PBI), A, and independent variables (fortification and processing technique-wet-

cooking and extrusion), B. 

Key: CSA-Cooked Sorghum, CFA- Cooked Sorghum+Fe, COA- Cooked Sorghum+Fe+Organic Acids co-cooked, COB- Cooked Sorghum+Fe+Organic Acids added after, 

CBA- Cooked Sorghum+Baobab co-cooked, CBB- Cooked Sorghum+Baobab added after, CMA- Cooked Sorghum+Moringa, CGA- Cooked Sorghum+Moringa+Baobab co-

cooked, CGB- Cooked Sorghum+Moringa+Baobab added after, ESA- Extruded Sorghum, EFA- Extruded Sorghum+Fe, EOA- Extruded Sorghum+Fe+Organic Acids co-

Projection of the variables on the factor-plane (  1 x   2)
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cooked, EOB- Extruded Sorghum+Fe+Organic Acids added after, EBA- Extruded Sorghum+Baobab co-cooked, EBB- Extruded Sorghum+Baobab added after, EMA- Extruded 

Sorghum+Moringa, EGA- Extruded Sorghum+Moringa+Baobab co-cooked, EGB- Extruded Sorghum+Moringa+Baobab added after
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3.1.4.2.2 Ferritin formation in Caco-2 cells  

While in vitro dialyzable iron assesses gastric/upper intestinal digestive release and solubility 

of iron and is an indicator of iron availability for absorption, ferritin formation by Caco-2 cells 

provides information about how much of the soluble iron may be available for utilization by 

enterocytes (Ferruzzi et al., 2020). This is because when Caco-2 cells fully differentiate, they 

express transport and metabolizing systems critical to iron absorption (such as divalent metal 

ion transporter-1 and ferroportin transporters). As the storage form of cellular iron is ferritin, 

higher levels of available iron induce greater ferritin formation by Caco-2 cells and hence are 

an indicator of iron bioavailability (Glahn et al., 1998). In fact, quantitative determination of 

iron bioaccessibility using the in vitro digestion/Caco-2 cell culture model has been well 

correlated with human data (Mahler, Shuler & Glahn, 2009; Glahn et al., 1998) and, as such, 

presents a method of predicting iron bioavailability in vivo.  

Figure 3-2 shows that when wholegrain sorghum was extrusion cooked, there was a 46% 

increment in ferritin synthesis when compared to conventionally cooked wholegrain sorghum 

porridge. In this regard, it is notable that extrusion cooking caused a significant decrease in 

both total phenolics and phytate (Table 3-2). As these compounds decrease iron availability 

(Gabaza, Shumoy, Muchuweti, Vandamme & Raes, 2018), their reduction by extrusion 

cooking is the likely cause of the increase in ferritin formation. FtFF of co-extruded sorghum 

with baobab and moringa and their combination showed a reduction in ferritin synthesis by 

18%, 34% and 26%, respectively, when compared to sorghum alone. This is apparently 

somewhat contradictory to the dialyzable iron results, where there was an increase in 

bioaccessible iron with baobab inclusion (Table 3-3). 

The in vitro iron dialyzability assay assesses iron bioaccessibility in terms of the amount of 

iron that is released by simulated digestion processes and soluble to cross a semi-permeable 

membrane of a particular threshold, in this case, 10 kDa.  In contrast, ferritin formation by 

Caco-2 cells measures how much iron can be taken up by the cells to form ferritin (Ferruzzi et 

al., 2020). Therefore, while with in vitro iron dialyzability analysis of the extrusion cooked and 

conventionally cooked porridges, there was the same amount of iron crossing the dialysis 

membrane; more iron was available for ferritin formation in the extruded porridges. This was 

probably because the contents of the iron-binding phenolics and phytate were reduced by 

extrusion cooking. 
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It is also possible that another reason for the observed difference in trends between the in vitro 

iron dialyzability assay and the Caco-2 ferritin formation assay is that the dialyzability assay 

used in this research involved the utilisation of an older in vitro gastrointestinal food digestion 

instead of more advanced techniques such as INFOGEST 2.0 method described by Brodkorb, 

Egger, Alminger, Alvito, Assunção, Ballance, Bohn, Bourlieu-Lacanal, Boutrou and Carrière 

(2019). 

 

Figure 3-2: Effects of processing (conventional and extrusion cooking), FtFF with baobab fruit 

pulp and moringa leaf powder (added before processing) to wholegrain sorghum porridge on 

ferritin formation in Caco-2 cells grown under low iron conditions. Data are the mean±standard 

deviation of three independent experiments carried out in triplicate (n=9). Different letters indicate significant 

differences at p<0.05. Error bars indicate standard deviation. 

3.1.5 Conclusions 

Extrusion cooking increases ferritin formation in Caco-2 cells when compared to conventional 

wet cooking, which is indicative of the enhancing effect of extrusion cooking on iron 

bioaccessibility. This is largely due to its ability to reduce the content of phytate (probably by 

dephosphorylation) and phenolic content (probably by degradation). However, extrusion did 

not affect the amount and percentage of dialyzable iron. The apparent contradiction between 
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dialyzability and ferritin formation data is probably because they measure different aspects of 

bioaccessibility. By in vitro iron dialyzability analysis of the extrusion-cooked and 

conventionally cooked porridges, there was the same amount of iron crossing the dialysis 

membrane. However, more of this iron was available for ferritin formation in the extruded 

porridges due to the reduction in phytate and phenolics. While an acute iron uptake study in 

animal or human subjects is required to provide more definitive data regarding the effect on 

iron bioavailability of wholegrain sorghum fortification with tropical foodstuffs, this study 

highlights the potential of extrusion cooking to improve iron bioavailability in wholegrain-

based starchy staple foods. 
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3.2 EFFECTS OF EXTRUSION COOKING AND FOOD-TO-FOOD FORTIFICATION 

ON THE BIOACTIVE PHENOLIC COMPOUNDS AND HEALTH-PROMOTING 

PROPERTIES OF SORGHUM-BASED PORRIDGES 

 

3.2.1 Abstract 

Currently, there is a growing burden of diet-related non-communicable diseases (NCDs) in 

developing countries, in part due to urbanization that has led to a shift in diet from traditional 

nutrient-dense diets to highly processed foods that are energy dense and high in saturated fat. 

Sorghum is a major food crop across the semi-arid tropics of Africa because of its tolerance to 

high temperatures and low rainfall. Extrusion cooking is a process that applies high heat, 

pressure, and shear to raw food materials to produce ready-to-eat products and can destroy anti-

nutrients in plant foods and hence enhance the digestibility of their macronutrients. Food-to-

food fortification (FtFF) is a strategy where nutrient-rich food combinations are used to 

enhance their nutrient value but has not been explored for potential improvement of health-

promoting properties. The objective of this study was to determine the effects of extrusion 

cooking of sorghum-based porridges FtF fortified with baobab fruit powder and moringa leaf 

powder on antioxidant, anti-inflammatory, antidiabetic and antilipogenic properties. 

Effects of extrusion cooking and food-to-food fortification (FtFF) (with moringa and baobab) 

of wholegrain sorghum-based porridges on bioactive phenolic content, in vitro radical 

scavenging properties, antiglycation properties (AGEs), cellular antioxidant activity (CAA), 

cellular anti-inflammatory activity (inhibition of NO) and anti-obesity properties (reduction in 

lipid droplet formation) were determined. FtFF porridges showed greater phenolic content 

(phenolic acids and their esters, flavonoids and their glycosides), radical scavenging properties 

(ABTS radical scavenging and ORAC) and greater reduction in AGEs compared to unfortified 

porridges. In contrast, extruded instant porridges had lower phenolic content, radical 

scavenging properties and showed a lesser reduction in AGEs compared to conventionally wet-

cooked porridges. All porridges exhibited chemical inhibition of nitric oxide with no apparent 

effects of fortification or extrusion. While FtFF with moringa alone reduced CAA and 

extrusion cooking increased it, FtFF with baobab alone or in combination with moringa did not 

affect CAA.  FtFF produced greater higher inhibition of NO formation in RAW264.7 cells 

while extrusion cooking reduced cellular NO inhibition. Extracts from all porridge samples 

exhibited prevention and reduction of adipocyte formation in 3T3-L1 cells, indicating anti-
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lipogenic effects. In conclusion, FtFF (with moringa and baobab) and extrusion cooking can 

be used to produce instant porridges from wholegrain sorghums with targeted health-promoting 

properties to address rising non-communicable diseases in sub-Saharan Africa.  

FtFF has the potential to help alleviate antioxidant, anti-inflammatory and antidiabetic 

properties in ready-to-eat sorghum-based porridges because it enhances their phenolics profile 

and could play a role in alleviating NCDs in at-risk communities. 

This study highlights the potential of FtFF of tropical foodstuff high in phenolic compounds 

coupled with extrusion cooking to improve health-promoting properties in wholegrain-based 

starchy staple foods. 

 

Keywords: Extrusion, sorghum, wholegrain, food-to-food fortification, antioxidants, anti-

inflammatory, antilipogenic   
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3.2.1 Introduction 

Sorghum (Sorghum bicolor (L.) Moench) is adjudged as the fifth most important cereal crop 

in the world after wheat, rice, maize and barley (Taylor, 2019). Over 35% of sorghum is grown 

directly for human consumption (Taylor & Duodu, 2019). As a drought-resistant crop, sorghum 

represents an important cereal for food use because of the increase in world population and 

decreasing water supplies due to climate change (Taylor, 2019). Sorghum is, therefore, an 

essential and strategic cereal food crop, especially in the dry, semi-arid regions of the world, 

which include much of sub-Saharan Africa, where sorghum is already primarily used for 

human food within certain countries. Currently, there is a growing burden of diet-related non-

communicable diseases (NCDs) in developing countries. NCDs were responsible for nearly 

74% of deaths globally, accounting for more than 52% of the deaths in Africa, with rising 

numbers in low-income countries (WHO, 2021). NCDs stem primarily from reactive oxygen 

and nitrogen species as biomarkers of oxidative stress and inflammation (Seyedsadjadi & 

Grant, 2020). Sorghum is particularly rich in phenolic compounds that have gained popularity 

for their potential to combat NCDs (Duodu & Awika, 2019).  

Food-based strategies such as food-to-food fortification (FtFF) to address micronutrient 

deficiencies are being applied using micronutrient-rich foodstuffs (such as moringa) and foods 

rich in mineral bioaccessibility enhancers (such as baobab fruit pulp) (Adetola et al., 2021; 

Kruger, 2020; Adetola et al., 2019; Van der Merwe et al., 2019). While these foodstuffs are 

rich in micronutrients and mineral enhancers, they also contain high contents of phenolic 

compounds, with baobab being rich in flavonoids and tannins (Ismail et al., 2019) and moringa 

being rich in phenolic acids and flavonoids (Kashyap et al., 2022). 

Extrusion cooking is a food processing technology which can be applied to produce a variety 

of convenience-type products from a large diversity of raw materials (Camire, 2001). An 

example of such convenience-type products is instant porridge which is popular among 

consumers in urban and pre-urban communities in sub-Saharan Africa. Extrusion cooking is a 

continuous manufacturing process which applies high heat, pressure and friction to break down 

raw foods into a cooked and pre-gelatinised form (Fellows, 2009). While extrusion cooking 

has been reported to destroy phenolic compounds under certain conditions (Gu, Bk, Wu, Lu, 

Nawaz, Barrow, Dunshea & Suleria, 2022), it has also been reported to improve phenolic 

bioaccessibility through depolymerization of polymeric phenolic compounds (Adarkwah‐

Yiadom & Duodu, 2017). 
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The main aim of this research was to study the effects of FtFF of sorghum with moringa leaf 

and baobab fruit pulp, as well as the effect of extrusion cooking on bioactive phenolics and 

antioxidant properties of sorghum-based porridges. The information gained from this research 

could contribute to a broader application of FtFF in enhancing the health-promoting properties 

of cereal-based foods.  
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3.2.2 Materials and methods 

3.2.2.1 Materials 

Whole grain red non-tannin sorghum was procured from a local farmer in Mpumalanga, South 

Africa. Clean sorghum grains were milled into flour using a Drotsky S1 Hammer mill 

(Alberton, South Africa) fitted with a 500 µm mesh size screen to ensure a particle size of 500 

µm or smaller. Prepared flours were stored at 4°C. Naturally dehydrated organic baobab fruit 

powder from the endocarp was obtained from Nautica Organic Trading, Durban, South Africa. 

Dried moringa leaf powder was obtained from Supa Nutri (Pty) Ltd, Cape Town, South Africa. 

The human colon adenocarcinoma (Caco-2) cell line, adult murine macrophage RAW 264.7 

cells and murine fibroblast cell line (3T3-L1) were obtained from CELLONEX through 

Separations, Johannesburg, South Africa (SA). All cell lines were maintained in Dulbecco’s 

Modified Essential Medium (DMEM) supplemented with 10% foetal bovine serum and 1% 

penicillin/streptomycin/fungizone formulation (Highveld Biological Company, Johannesburg, 

South Africa) and maintained at 37°C 5% CO2. The Caco-2 cell line was used between 

passages 9-18, the 3T3-L1 was used between passages 39-45, and the RAW 264.7 cell line was 

used between passages 8-15. All chemicals were obtained from Sigma- Aldrich Company, 

Atlasville, SA. 

3.2.2.2 Porridge formulations 

The following formulations of sorghum-based flours with fortificants were prepared: 

A. Wholegrain sorghum flour+corn starch (85:15) 

B. Wholegrain sorghum flour+baobab fruit pulp powder+corn starch (85:6:9), with 

baobab being added before processing. 

C. Wholegrain sorghum flour+baobab fruit pulp powder+corn starch (85:6:9), with 

baobab being added after processing. 

D. Wholegrain sorghum+moringa leaf powder+corn starch fortified (85:6:9). 

E. Wholegrain sorghum+moringa leaf powder+baobab fruit pulp powder+corn starch 

(85:6:6:3), with baobab being added before processing. 

F. Wholegrain sorghum+moringa leaf powder+baobab fruit pulp powder+corn starch 

(85:6:6:3), with baobab being, was added after processing. 

3.2.2.3 Conventional wet cooking 

Distilled water was added to each whole sorghum-based flour in a ratio of 3:10, flour: water 

(w/w). The slurry was heated to boiling temperature and maintained with constant stirring for 
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25 minutes. The slurry was left to cool at ambient temperature, after which it was placed in 

plastic containers and frozen to -20˚C and freeze-dried. Freeze-dried porridge flour was 

crushed to a particle size that passed through a 500 µm opening screen before further analyses. 

The pre-cooked porridge flour was stored at 4°C in double-sealed, airtight plastic bags. 

3.2.2.4 Extrusion cooking of sorghum 

A co-rotating twin-screw extrusion cooker model TX 32 (CFAM Technologies, Potchefstroom-

South Africa) (L/D = 21.5:1) was used. Porridge formulations prepared as above were extruded 

separately. The barrel comprising five heating zones towards the die was set at 

60/70/80/140/140ºC, respectively. Water was fed into the system at a dosing rate of 3 l/h (to 

obtain a final moisture content of 20% calculated based on the moisture content of the flours), 

and the feed rate was 10 kg/h. A die opening of 3 mm was used, and the screw speed was 

maintained at 250 rpm. Extrudates were collected three times after every 30 min interval to 

produce triplicates. They were dried immediately in a forced draught oven at 50ºC for 5 min to 

a moisture content below 10%. The cooled extrudates were milled using an air-cooled analytical 

mill to a maximum particle size of 500 µm. The milled extrudates were stored at 4ºC in double-

sealed, airtight plastic bags. 

3.2.2.5 Preparation of phenolic extracts 

Phenolic extracts for TPC and ABTS were prepared from the plant materials according to the 

procedure previously described by Apea-Bah et al. (2014). Approximately 1 g of each dry 

sorghum-based porridge sample was extracted in duplicate using 10 ml acidified methanol (1% 

(v/v) conc HCl in methanol) by magnetic stirring for 2 hours. The suspension was centrifuged 

at 1650 g for 10 min at 4oC, and the supernatant was collected. The residue was similarly re-

extracted twice, each with 10 ml acidified methanol for 30 minutes. The supernatants were then 

pooled together and stored at -20oC in the dark before analysis. 

Phenolic extracts for liquid chromatography-mass spectrometry (LC-MS) analysis were 

prepared using a modification of a method described by Nderitu, Dykes, Awika, Minnaar and 

Duodu (2013). Approximately 5 g of each sorghum-based porridge flour was extracted using 

10 ml 1% (v/v) hydrochloric acid in methanol for 2 hours with vortexing after every 5 minutes. 

The suspension was centrifuged at 1650 g for 10 minutes at 4oC, and the supernatant was 

collected and filtered through 0.45 µm Arcrodisc PSF syringe filters (Pall Life Sciences, Ann 

Arbor, MI, USA) into 1.5 ml amber vials ahead of chromatographic analysis. 

 



 

75 

 

3.2.3 Analyses 

3.2.3.1 Determination of total phenolic content (TPC) 

The total phenolic content of the extracts was determined as described by Apea-Bah et al. 

(2016). In each well of a 96-well microplate, 18.2 μl volume of the sample extract or catechin 

standard solution (0 - 0.5 mg/ml) was reacted with 36.4 μl 10% Folin-Ciocalteu reagent (diluted 

with distilled water) and 145.4 μl of 700 mM sodium carbonate. The reaction mixture was 

incubated for 2 hours in the dark, after which absorbance was read at 750 nm using an Omega 

FluoSTAR microplate reader (BMG Labtechnologies, Ortenberg, Germany). Total phenolic 

content was calculated with the aid of the catechin standard calibration curve and expressed as 

milligrams of catechin equivalents per gram (mg CE/g) dry weight basis. 

3.2.3.2 Determination of ABTS radical scavenging capacity 

ABTS radical scavenging capacity of the sample extracts was determined using the method 

described by Apea-Bah et al. (2016). The extracts were diluted depending on their 

concentration with acidified methanol (1% (v/v) conc HCl in methanol). The ABTS radical 

cation stock solution was prepared by reacting equal volumes of 7 mM ABTS salt with 2.54 

mM potassium persulphate in distilled water for 12-16 hours at room temperature in the dark. 

A working solution was prepared by diluting the ABTS mother solution with 0.2 M phosphate-

buffered saline at pH (7.4) in the ratio of 1:29. In each well of a 96-well microplate, 10 µl of 

the diluted sample extract extracts or trolox standards (0 - 600 mM prepared in acidified 

methanol) were mixed with 190 ul of the working solution and incubated in the dark for 30 

minutes at room temperature (20oC). The absorbance was read at 750 nm using the Omega 

FluoSTAR microplate reader (BMG Labtechnologies, Ortenberg, Germany). With the aid of a 

Trolox standard calibration curve, the ABTS radical scavenging capacity was calculated and 

expressed as micromole Trolox equivalent per gram sample (µmol TE/g) dry weight basis. 

3.2.3.3 Nitric oxide radical scavenging capacity 

The nitric oxide (NO) radical scavenging capacity of the samples was determined using a 

modification of the method of Jagetia and Baliga (2004). All extracts were diluted 3 times with 

0.1 M PBS. The sodium nitroprusside (5 mM in 0.1 M PBS) was left on the working bench 

(25-27 C) for 90 minutes before use. The reaction mixture comprising 20 µl extract and 80 µl 

sodium nitroprusside, was incubated in the dark for 60 minutes at 37oC. A 100 µl volume of 

1% (w/v) sulphanilamide and 0.1% (w/v) naphthyl ethylenediamine dihydrochloride in 2.5% 
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(v/v) aqueous H3PO4 was then added. The absorbance of the reaction mixture was measured at 

546 nm using the Omega FluoSTAR microplate reader (BMG Labtechnologies, Ortenberg, 

Germany). NO scavenged by the extracts was expressed as molar NaNO2 equivalents, dry 

weight basis. 

3.2.3.4 Oxygen radical absorbance capacity (ORAC) 

The assay was performed using the method described by Ou et al. (2001) with modifications 

described by Serem and Bester (2012). The extracts were diluted 10 times with 0.1 M 

phosphate-buffered saline (PBS), pH 7.4. A 165 µl volume of 8.8 nM disodium fluorescein 

working solution and 25 µl of 0.24 M aqueous 2,2′-Azobis(2-amidinopropane) dihydrochloride 

(AAPH) were added to 10 µl of each diluted extract in a 96-microplate well. The reaction 

mixtures were shaken to mix well and incubated at 37oC while measuring their fluorescence 

decay every minute for 2 hours at 485 nm excitation and 520 nm emission wavelengths, using 

an Omega FluoSTAR microplate reader (BMG Labtech, Ortenberg, Germany). The ORAC 

values of the samples were calculated using the net area under the fluorescence decay curves 

and expressed as mmol TE/g flour, dry weight basis. 

3.2.3.5 Anti-glycation assay 

The anti-glycation assay was performed according to the method of Siddiqui et al. (2016) under 

a sterile environment. A 50 µl volume of diluted 1% conc. hydrochloric acid-methanolic 

extracts of sorghum-based porridges (diluted in PBS to yield 500 µg/ml in the well) were 

transferred into a 96-well opaque fluorescence plate, followed by the addition of 50 µl of 

bovine serum albumin (BSA, 40 mg/ml, final concentration 10 mg/ml) and 50 µl methylglyoxal 

(MGO, 56 mM, final concentration 14 mM). Thereafter, 50 µl of 0.1 M PBS pH 7.4 was added 

to the plate and incubated at 37℃ for 7 days. After incubation, fluorescence was measured at 

an emission of 330 nm and excitation of 420 nm. The positive control contained 50 µl BSA, 

50 µl MGO and 100 µl buffer, while the negative control consisted of 50 µl BSA and 150 µl 

buffer. Sample controls consisted of 50 µl sample, 50 µl MGO, and 100 µl buffer (no BSA). 

The % advanced glycation end-product (AGE) formation relative to the 100% AGE formation 

by BSA and MGO alone was calculated. 

3.2.3.6 Cellular antioxidant activity assay  

The dichlorofluorescein diacetate (DCFH-DA) assay was used to determine cellular 

antioxidant activity (CAA) using a modified method of Blasa et al. (2011). Caco-2 cells were 

plated in a 96-well plate at a concentration of 10 × 104 cells/ ml (1 x 104 cells/100 µl) and 
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incubated at 37℃ for 24 hours. Following incubation, 50 µl of 75 µM DCFH-DA was added 

to each well to a final concentration of 25 µM. After an incubation period of 1 hour at 37℃, 

the medium was removed, and the cells were gently rinsed once with PBS. Immediately, a 50 

µl volume of diluted 1% conc. hydrochloric acid-methanolic extracts of sorghum-based 

porridges (diluted in PBS to yield 50 µg/ml in the well) were added; thereafter, 50 µl of 4.9 

µM AAPH was added. The blank control was Caco-2 cells exposed to DCFH-DA and PBS, 

and the positive control was cells exposed to DCFH-DA and AAPH. 

The %CAA was calculated as:  (Gradient sample - Gradient sample blank) ×100 

               (Gradient control - Gradient control blank)  

The change in fluorescence was measured every 2 min for 60 min, at excitation/ emission of 

485 nm and 520 nm, respectively. 

3.2.3.7 Cellular anti-inflammatory activity- lipopolysaccharide assay  

Nitric oxide scavenging activity in RAW 264.7 cells was done using a modified method of 

Malan, Serem, Bester, Neitz and Gaspar (2016). Cells were grown until confluent at 37℃ and 

5% CO2 in DMEM supplemented with 10% FBS and 1% antibiotics. When confluent, cells 

were serum starved for 24 hours. After 24 hours, 80 µl cells (final concentration 1 × 106 

cells/mL) were combined with 10 µl of diluted 1% conc. hydrochloric acid-methanolic extracts 

of sorghum-based porridges (diluted in PBS to yield 50 µg/ml in the well) and 10 µl 

lipopolysaccharide (LPS, final concentration 100 ng/ml) and further incubated for 24 hours. 

After 24 hours, 50 µl of the cell supernatant was assayed for nitric oxide (NO) production using 

50 µl Griess reagent (0.1% N-1-naphthyl ethylenediamine di-hydrochloride, 1% 

sulphanilamide in 2.5% phosphoric acid) and the absorbance was read at 570 nm. Results were 

reported at % NO production, compared with RAW 264.7 cells exposed to only LPS (100% 

NO produced). Cell viability was determined with the crystal violet assay. 

3.2.3.8 Cellular lipid droplet reduction in 3T3-L1 cells 

Lipid droplet reduction and inhibition assays were performed in a similar manner as described 

by Ibrahim, Serem, Bester, Neitz and Gaspar (2020). Briefly, 3T3- L1 pre-adipocyte cells were 

maintained in DMEM containing 10% FBS and 1% antibiotic solution (DMEM/FBS). 

Confluent cells were plated at a concentration of 1 × 103/100 µl in a 96-well plate and grown 

for 3 days until confluent. For the lipid droplet reduction assay, cells were differentiated for 14 

days with differentiation medium (DM) 1 (DMEM/FCS containing final concentrations of 10 

μg/ ml insulin, 25 mM IBMX, 50 μM dexamethasone, and 100 μM rosiglitazone) changed on 
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days 4 and 7, and then with DM 2 (DMEM/FCS + final concentration of 10 μg/ml insulin) on 

day 10. On day 14, cells were replenished with 90 µl DMEM/FCS only and exposed to 10 µl 

of the sample. 

3.2.3.9 Oil red O (ORO) staining assay.  

To determine lipid content, the cultures, after differentiation and exposure to sorghum-based 

porridge extracts, were fixed with 2% formaldehyde for 30 minutes at 37℃. The formaldehyde 

was removed, the plates were dried, and 100 µl ORO solution (5% w/v in 60% isopropanol, 

then further diluted 1.7× in distilled-deionised water) was added for 1 hour. The plate was then 

rinsed with water and left to dry. Phase contrast images were taken before dye extraction with 

100 μl of a 60% isopropanol solution for 5 min. Dye absorbance of the ORO taken up by cells 

was measured at 405 nm, and the data was reported as % lipid present relative to unexposed 

differentiated 3T3-L1 cells (100% lipid formation). 

3.2.3.10 Identification and quantification of phenolic compounds using liquid 

chromatography-mass spectrometry (LC-MS) 

Phenolic compound characterization by LC-MS was performed using the method described by 

Apea-Bah et al. (2014). A Waters Acquity Ultra-Performance Liquid Chromatograph (UPLC), 

equipped with a binary pump system (Waters, Milford, MA, USA) and coupled to a Waters 

Synapt G2 system comprising a Quadrupole-Time of Flight Mass Spectrometer (QToF-MS) 

(Waters, Milford, MA, USA) using an electrospray ionization (ESI) source was used. An 

incorporated photodiode array (PDA) detector (Waters, Milford, MA, USA) was set to monitor 

phenolic compounds at the wavelength range of 230-500 nm. Separation was done on a Waters 

BEH C18 (100 × 2.1 mm, 1.7 μm) reverse phase column. The mobile phase consisted of 0.1% 

(v/v) aqueous formic acid (solvent A) and 0.1% (v/v) aqueous formic acid in acetonitrile 

(solvent B). Gradient elution of phenolic compounds was conducted as follows: 100% A (0-22 

min); 72% A (22-22.5 min); 60% A (22.5-23 min); 0% A (23-24.5); 100% A (24.5-26). The 

injection volume was 3 μl, and the flow rate was 0.3 ml/min. Ionization was in the negative 

mode with a capillary voltage of 2.5 kV and a cone voltage of 25 V. Identification of phenolic 

compounds in the sample extracts was done by comparing the retention times, mass and UV-

visible spectral data of the peaks which were observed in this study with those of pure authentic 

phenolic compound standards and with what has been reported in literature. Integrated peak 

areas of phenolic compounds in extracts were compared with those of standards to quantify the 

phenolic compounds. Leucine enkephalin (molecular weight 555 Da) was used as lock mass. 

Data collection was done using MassLynx v. 4.1 software (Waters, Milford, MA, USA). 
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3.2.4 Statistical Analyses 

Each experiment was performed twice, and a multiple analysis of variance was used to 

determine the differences in sample parameters. Fisher’s LSD test at a 0.05 level of significance 

was applied. Statistica 10 (StatSoft Inc., Tulsa, OK, USA) was used.
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3.2.5 Results and Discussion 

3.2.5.1 Effect of FtFF and of extrusion cooking on the total phenolic content (TPC), antioxidant activity against 2,2′-azino-bis(3-

ethylbenzothiazoline-6-sulphonate) radical (ABTS), oxygen radical absorbance capacity (ORAC), in vitro chemical nitric scavenging 

capacity (NO) and advanced glycation end products (AGES) of sorghum-based porridges. 

Table 3-4: Effects of extrusion cooking and food-to-food fortification of sorghum with baobab fruit pulp and moringa leaf powder on total phenolic 

content (TPC), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS) radical scavenging capacity and Oxygen Radical Absorbance 

Capacity (ORAC) of sorghum-based porridges on dry basis 

Treatment Conventionally Cooked Extruded  

TPC 

(mgCE/100 g) 

ABTS 

(µMTE/100 g) 

ORAC 

(µMTE/100 g) 

TPC 

(mgCE/100 g) 

ABTS 

(µMTE/100 g) 

ORAC 

(µMTE/100 g) 

Plain Sorghum 404d ± 19 2538b ± 50 90cd ± 6 250a ± 16 2177a ± 18 62ab ± 11 

Baobab Fruit Pulp Powder 4792i ± 102 28648k ± 512 385h ± 14 N/A N/A N/A 

Moringa Leaf Powder 4300h ± 167 37506l ± 365 463g ± 17 N/A N/A N/A 

Sorghum + Baobab (Baobab added 

before processing) 

465e ± 45 5271h ± 416 132e ± 15 278ab ± 28 3044c ± 40 88de ± 14 

Sorghum + Baobab (Baobab added 

after processing) 

452e ± 20 4221e ± 8 146e ± 12 401d ± 12 4851fg ± 198 153e ± 17 

Sorghum + Moringa 563f ± 49 3334d ± 201 152e ± 16 316c ± 17 3301cd ± 393 79bc ± 16 



 

81 

 

Sorghum + Moringa + Baobab 

(Baobab added before processing) 

664g ± 51 8151j ± 805 214g ± 23 405de ± 50 5071g ± 134 132e ± 45 

Sorghum + Moringa + Baobab 

(Baobab added after processing) 

547f ± 33 6155i ± 34 200fg ± 14 536f ± 29 6030i ± 211 179f ± 12 

1 
Values are the means ± 1 Standard deviation of at least three samples of each plant food analysed independently in triplicate (n = 9). 

2Means with different superscript letters in a column differ significantly (p≤0.05). 
3N/A- Not applicable
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The TPC of sorghum (404 mg CE/100 g) was within the range of 1 - 13 mg CE/g (that is, 100 

– 1300 mg CE/100 g) reported by Kruger et al. (2014). The TPC of baobab fruit pulp powder 

(4792 mg CE/100 g) was higher than both moringa leaf powder and sorghum. Braca et al. 

(2018) reported TPC in gallic acid equivalents at 120 – 148 mg GAE/g. Moringa leaf powder 

had a TPC of 4300 mg CE/100 g (43 mg CE/g) which was in the range of what was reported 

by Leone et al. (2015b) (29 – 53 mg CE/g). Moringa leaf powder had the highest ABTS radical 

scavenging activity, 1.3 times higher than baobab fruit pulp and 14.8 times higher than 

sorghum.  

Fortification of the sorghum flour with baobab, moringa and a combination of the two increased 

TPC (by 12% - 64%), ABTS radical scavenging (by 31% - 177%) and ORAC (by 27% - 189%) 

compared to sorghum flour (Table 3-4). The most significant increases in TPC and radical 

scavenging properties were observed in sorghum-based porridges fortified with a combination 

of baobab fruit pulp and moringa leaf powder. This suggests potential synergistic effects of the 

different phenolic compounds in the baobab fruit pulp and moringa leaf powder in exerting 

antioxidant properties.  

Instant porridges prepared by extrusion cooking had lower TPC (by 11% - 44%), ABTS radical 

scavenging activity (by 14% - 42%) and ORAC (by 11% - 48%) compared to conventionally 

wet cooked porridges (Table 3-4). The high temperature coupled with shear and pressure used 

in extrusion cooking could lead to decarboxylation of phenolic compounds, and high moisture 

could cause the polymerisation of phenolic compounds, both of which would reduce the 

extractability of phenolic compounds and reduce antioxidant activity (Sharma et al., 2012; 

Brennan et al., 2011). Furthermore, phenolic compounds such as flavonoids can bind to 

proteins, reducing their extractability (Arts, Haenen, Wilms, Beetstra, Heijnen, Voss & Bast, 

2002) and, in effect, reducing the TPC and antioxidant activity.  

A principal component analysis (PCA) plot projecting the dependent variables and treatments 

on a two-dimensional factor plane (Figure 3-3a,b) showed that samples FtF-fortified with 

moringa and baobab whether alone or in combination were correlated with TPC and antioxidant 

radical scavenging capacity measured as ORAC and ABTS compared to the unfortified 

controls. This indicates the positive effect of FtFF on the phenolic profile and antioxidant 

properties of wholegrain sorghum. The plot also revealed a greater correlation between 

conventionally wet cooked samples with TPC, ORAC and ABTS compared to their extruded 

counterparts, clearly illustrating the negative impact of extrusion cooking on these properties 



 

83 

 

of wholegrain sorghum. Notwithstanding this effect of extrusion cooking, FtF-fortified 

wholegrain sorghum-based porridges depicted a greater correlation with these properties 

compared to the unfortified porridges, whether conventionally wet-cooked or extruded. This 

highlights the positive impact of FtFF on the antioxidant properties of wholegrain sorghum-

based porridges. 
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Figure 3-3: Principal component analysis showing 1×2 factor coordinate plots of dependent variables (total phenolic content-TPC, 2,2′-azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid)-ABTS radical scavenging activity,  oxygen radical absorbance capacity-ORAC), A, and independent variables (fortification and 

processing technique-wet-cooking and extrusion), B. 

Key: CSA-Cooked Sorghum, CBA- Cooked Sorghum+Baobab co-cooked, CBB- Cooked Sorghum+Baobab added after, CMA- Cooked Sorghum+Moringa, CGA- Cooked Sorghum+Moringa+Baobab 

co-cooked, CGB- Cooked Sorghum+Moringa+Baobab added after, ESA- Extruded Sorghum, EBA- Extruded Sorghum+Baobab co-cooked, EBB- Extruded Sorghum+Baobab added after, EMA- Extruded 

Sorghum+Moringa, EGA- Extruded Sorghum+Moringa+Baobab co-cooked, EGB- Extruded Sorghum+Moringa+Baobab added after 
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3.2.5.1.1 In vitro nitric oxide scavenging 

 

Figure 3-4: The inhibitory effects of phenolic extracts from sorghum-based porridges fortified with baobab and moringa (at a concentration of 50 

µg/ml) against nitric oxide radical formation. Data are presented as the mean ± standard deviation (n = 3). Columns marked by different small 

letters indicate significant differences at p≤0.05. 

1Baobab before: Denotes addition of baobab before cooking. 
2Baobab after: Denotes addition of baobab after cooking. 
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Regarding the NO radical scavenging capacity of the phenolic extracts, the amounts of NO 

radical formed ranged between 92-130 mM NO equivalents and 114-135 mM NO equivalents 

for conventionally wet cooked and extruded sorghum-based porridges respectively, Figure 3-4. 

Unlike TPC, ABTS and ORAC, NO scavenging showed no significant trends following either 

fortification with baobab fruit pulp and moringa leaf powders or extrusion. However, all 

phenolic extracts significantly (p≤0.05) reduced the amount of NO radicals formed compared 

to the control. The NO scavenging capacity of the sorghum-based porridges demonstrates their 

potential in contributing to alleviating radical-induced inflammation. This difference in trends 

may reflect the different mechanisms of antioxidant action between the methods of analysis. 

ABTS radical scavenging depends on electron-transfer potential, while ORAC depends on 

hydrogen atom transfer of the antioxidant (Huang et al., 2005). NO radical scavenging 

capacity, on the other hand, relies upon the binding of NO radical by the antioxidant and 

therefore preventing its oxidation into nitrites and nitrates, which are detected by the Griess 

reaction (Jagetia & Baliga, 2004).
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3.2.5.1.2 Advanced glycation endproducts (AGEs)/ Antiglycation  

 

Figure 3-5: The inhibitory effects of phenolic extracts from sorghum-based porridges fortified with baobab and moringa (at a concentration of 500 

µg/ml) against advanced glycation end-products (AGEs) formation as measured in bovine serum albumin-methylglyoxal model system. Data are 

presented as the mean ± standard deviation (n = 3). Columns marked by different small letters indicate significant differences at p≤0.05. 

1Baobab before: Denotes addition of baobab before cooking. 
2Baobab after: Denotes addition of baobab after cooking.
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Protein glycation by methylglyoxal is a nonenzymatic modification whereby arginine and 

lysine side chains of proteins participate in forming a heterogeneous group of advanced 

glycation end-products (AGEs) (Wu & Monnier, 2003). Long-term hyperglycaemic conditions 

in diabetic patients cause the formation of AGEs through the protein glycation reaction. 

Therefore, inhibition of the formation of AGEs could be monitored as an indicator of anti-

diabetic properties.  

Extracts from sorghum flour as well as from the conventionally cooked and extruded instant 

porridges significantly inhibited the formation of AGEs. Extracts from sorghum porridges FtFF 

with baobab fruit pulp and moringa leaf powder exhibited relatively higher inhibition of AGE 

formation by 5-7% and 6-8%, respectively, compared to extracts from sorghum porridge alone. 

FtFF fortification with a combination of BFP and MLP resulted in a significantly higher 

reduction when compared to either BFP or MLP alone (lower inhibition of AGEs by 11-19% 

was observed when compared to sorghum alone). This could be attributed to the increase in 

phenolic and higher antioxidant activity following FtFF with BFP and MLP. Compounds with 

antioxidant activity have been reported to be useful in preventing diabetic complications 

through the reduction of AGEs formation by preventing oxidation of Amadori products and 

metal-catalysed glucoxidation (Dil, Ranjkesh & Goodarzi, 2019).  

Concerning extrusion cooking, extruded porridges consistently showed significantly lower 

inhibition of AGEs when compared to the conventionally cooked counterparts (by 5-9%). 

These results are consistent with this study's TPC and antioxidant data. 

3.2.5.1.3 Correlations between phenol content, tannin content and antioxidant activity of 

tannin sorghum 

TPC exhibited a positive correlation with ABTS (r = 0.87, p≤0.05), AGEs (r = 0.84, p≤0.05) 

and ORAC (r = 0.65, p≤0.05), Table 3-5. Adarkwah‐Yiadom and Duodu (2017) reported a 

similar correlation between TPC and ABTS for sorghum. These suggest that phenolic 

compounds contribute to the observed radical antioxidant activities; this is supported by the 

strong between TPC and total quantified phenolics (r = 0.96, p≤0.05). Radical scavenging 

activity (ABTS and ORAC) also correlated strongly with each other (r = 0.79, p≤0.05), Table 

3-5. Awika et al. (2003b) reported a similarly high correlation (r = 0.98) between ABTS radical 

scavenging activities for sorghum and sorghum products, while (Adarkwah‐Yiadom & Duodu, 

2017) reported a high correlation of the same. This suggests that both methods could be equally 

useful for assessing antioxidant activities. TPC in this study exhibited a high negative 
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correlation with NO (r = -0.70, p≤0.05), weak negative correlation with CAA (r = -0.29, 

p≤0.05), Cellular NO inhibition (r = -0.50, p≤0.05) inhibition of lipid accumulation (r = 0.43, 

p≤0.05), Table 3-5. This could be attributed to the differences in principles of action by the 

different assays. ABTS showed a strong negative correlation with cellular NO inhibition (r = -

0.94, p≤0.05), while weak correlations were observed with CAA (r = 0.32, p≤0.05) and 

inhibition of lipid accumulation (r = 0.35, p≤0.05), Table 3-5. ORAC had a strong correlation 

with CAA (r = 0.79, p≤0.05) and moderate but negative correlations with Cellular NO 

inhibition (r = -0.42, p≤0.05) and inhibition of lipid accumulation (r = -0.57, p≤0.05) which 

could suggest that ORAC could be a good indicator of CAA. In vitro chemical, NO inhibition 

had a strong correlation with cellular NO inhibition (r = 0.93, p≤0.05) and weak but negative 

correlations with CAA (r = -0.44, p≤0.05) and inhibition of lipid accumulation (r = -0.24, 

p≤0.05), Table 3-5, suggesting in vitro NO inhibition could be used to indicate cellular anti-

inflammatory properties. 

Table 3-5: Pearson’s correlation coefficient of total phenolic content, antioxidant activities 

(ABTS, ORAC, and cellular antioxidant activity), anti-inflammatory properties (chemical and 

cellular NO production), antidiabetic properties (AGEs) and antilipogenic properties (3T3-L1) 

 TPC ABTS ORAC CAA mM NO RAW264.7 3T3-L1 AGEs 

TPC 1 0.87** 0.65** -0.29** -0.70** -0.50** 0.43** 0.84** 

ABTS  1 0.79** 0.32** -0.70** -0.94** 0.34** 0.89** 

ORAC   1 0.79** -0.64** -0.42** 0.57** 0.89** 

CAA    1 -0.44** -0.08** -0.38** 0.63** 

mM NO     1 0.93** 0.24** -0.63** 

RAW264.7      1 -0.35** -0.66** 

3T3-L1       1 0.33** 

AGEs        1 

1** Correlation is significant at the 0.05 level (2-tailed) 
2TPC- total phenolic content, ABTS-2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), ORAC- Oxygen 

Radical Absorbance Capacity, CAA- cellular antioxidant protection of 2′,7′-Dichlorofluorescein diacetate, mM 

NO- chemical inhibition of nitric oxide production, RAW264.7- inhibition of nitric oxide production in LPS stress 

RAW26.7 macrophages, 3T3-L1- prevention and treatment of lipid droplets, AGEs- Advanced glycation 

endproducts.
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3.2.5.2 Liquid chromatography-mass spectrometry (LCMS) 

3.2.5.2.1 Compound Identification 

Table 3-6: Retention time, UV-visible absorption maxima and mass spectral characteristics of phenolic compounds found in extracts of cooked 

sorghum (sorgh), Baobab fruit pulp (Bao), moringa (mor), extruded sorghum (ESA) extruded sorghum fortified with baobab (EBA), extruded 

sorghum fortified with moringa (EMA) and extruded sorghum fortified with moringa and baobab (EGA) 

tR 

(min) 

λmax 

(nm) 

[M-H]-

(m/z) 

MS/MS fragments (Intensity, %) Proposed compounds Peak Sorg Bao Mor ESA EBA EMA EGA 

Hydroxybenzoic acid derivatives         

10.85 254, 253 137 137 (67), 93 (100) 4-Hydroxy benzoic 

acid 

6 + + + + + + + 

8.08 294, 259, 

230 

153 153(42), 109(100) Protocatechuic acid 2 + + + + + + + 

15.27 297, 263 167 167 (17), 123 (1), 108 (100) Vanillic acid 20 + + + + + + + 

6.48 272, 230 169 169 (72), 125 (100), 107 (3) Gallic acid 1 + + + + + + + 

19.56 230 197 197 (77), 182 (35), 179 (7), 153 

(45), 138 (22), 123 (100), 121 (70) 

Syringic acid 32 + + + + + + + 

Hydroxycinnamic acid derivatives         



 

91 

 

15.29 310, 230 163 163 (25), 147 (10) 145 (53), 119 

(76) 

P-Coumaric acid 21 + - + - - + + 

10.16 272, 230 179 179 (42), 164 (1), 161 (1), 135 

(100) 

Caffeic acid 5 + - + + + + + 

18.48 324, 244 193 133 (100), 161 (15) Ferulic acid 28 + - + + + + + 

17.33 328, 325 223 223 (38), 208 (21), 179 (9), 164 

(40) 

Sinapic acid 27 + + - - + + + 

Phenolic esters         

15.51 230 237 237 (10), 163 (12), 147 (5), 145 

(100), 119 (52), 117 (91) 

p-Coumaroyl glycerol 23 + - - + + + + 

14.25 288,230 253 253 (40), 179 (11), 164 (3), 161 

(100), 135 (61) 

Caffeoylglycerol 15 + - + + + + + 

24.86 230 255 255 (100), 179 (7), 164 (2), 161 (8), 

135 (3) 

Dihydrocaffeoylglycer

ol 

46 + + + + + + + 

11.07 309, 230 337 337 (26), 191 (29), 173 (13), 163 

(100), 119 (46) 

3-p-coumaroylquinic 

acid 

7 - - + - - + + 

13.84 309, 230 337 337 (20), 191 (9), 173 (100), 163 

(12), 119 (19) 

4-p-coumaroylquinic 

acid 

14 - - + - - + + 
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9.43 325, 230 353 353 (54), 191 (100), 179 (53), 173 

(4), 161 (3), 135 (46) 

3-Caffeoyl-quinic acid 3 + + + + + + + 

11.91 325, 230 353 353 (70), 191 (45), 179 (63), 173 

(100), 161 (2), 135 (38) 

4-Caffeoyl-quinic acid 10 + + + + + + + 

12.32 325, 230 367 367 (26), 193 (100), 191 (24), 178 

(2), 173 (20), 149 (17), 135 (20), 

134 (78) 

3-Feruloylquinic acid 11 - - + - - + + 

14.91 325, 230 367 367 (24), 193 (17), 191 (6), 178 (1), 

173 (100), 149 (9), 134 (14) 

4-Feruloylquinic acid 19 - - + - - + + 

9.73 230 399 399 (31), 253 (2), 191 (100), 179 

(50), 135 (81) 

Coumaroyl-caffeoyl-

glycerol 

4 - - + - - - - 

18.77 230 415 415 (13), 253 (40), 179 (11), 161 

(55), 135 (100) 

Dicaffeoylglycerol 30 + - - + + + + 

14.72 230 468 468 (14), 332 (16), 306 (27), 179 

(14), 161 (73), 151 (45), 135 (100), 

133 (44) 

Dicaffeoyl spermidine 17 + - - + + + + 

Flavonols         
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19.78 365, 266, 

234 

285 285 (100), 257 (2), 243 (1), 241 (1), 

213 (2), 197 (1), 151 (5) 

Kaempferol 33 + + + + + + + 

23.90 363, 230 301 301 (100), 273 (7), 257 (1), 229 (1), 

179 (22), 151 (69), 121 (15), 107 

(18) 

Quercetin 41 + + + + + + + 

20.41 350, 265, 

230 

317 317 (100), 289 (4), 179 (55), 151 

(11), 107 (19) 

Myricetin 36 + + - + + + + 

 Flavonol glycosides 

19.53 350, 265, 

230 

447 447 (100), 285 (27), 257 (4), 243 

(1), 229 (1), 227 (27), 199 (1), 151 

(2) 

Kaempferol glycoside 31 + + + + + + + 

14.67 230 449 449 (10), 285 (65), 257 (14), 243 

(16), 241 (5), 229 (9), 199 (2), 151 

(100) 

Dihydrokaempferol 

glycoside 

16 + - + + + + + 

22.85 230, 251 463 463 (100), 301 (41), 273 (4), 257 

(1), 229 (3), 179 (3), 151 (6), 121 

(1), 107 (1) 

Quercetin glycoside 38 + + + + + + + 
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20.04 352, 230 477 477 (60), 301 (75), 273 (5), 257 (2), 

229 (7), 179 (11), 151 (16), 121 (4), 

107 (2) 

Quercetin glucuronide 35 - - + - - + + 

17.31 354, 255 609 609 (100), 301 (75), 229 (2), 179 

(4), 151 (10), 121 (9), 107 (2) 

Rutin 26 + + + + + + + 

Flavan-3-ols         

11.36 274, 230 289 289 (100), 245 (36), 203 (46), 179 

(14), 135 (5), 125 (32), 109 (40) 

Catechin 9 + + - + + + + 

13.48 274, 230 289 289 (100), 245 (36), 203 (46), 179 

(13), 135 (100), 125 (23),109 (48) 

Epicatechin 13 + + - + + + + 

Flavan-3-ol glycosides 

15.43 272 451 451 (6), 407 (26), 289 (43), 245 (5), 

203 (10), 179 (9), 125 (100), 109 

(7) 

Epicatechin glycoside 22 - + + - + + + 

Flavanones         

24.19 288, 234 271 271 (100), 227 (2), 177 (10), 151 

(47), 119 (59), 107 (23) 

Naringenin 42 + - - + + + + 
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23.05 289, 230 287 287 (2), 272 (7), 269 (34), 245 (5), 

243 (7), 151 (29), 135 (100), 133 

(25), 125 (5), 107 (8), 93 (8) 

Eriodictyol 39 + - - + + + + 

24.27 288, 234 301 301 (100), 286 (22), 272 (12), 243 

(3), 151 (67), 135 (4), 125 (6), 107 

(25) 

Hesperetin 44 + + + + + + + 

Flavanone glycosides 

17.04 324, 229 433 433 (33), 271 (100), 313 (4), 227 

(4), 177 (19), 151 (92), 119 (35), 

107 (18) 

Naringenin glycoside 25 + + - - - - - 

19.98 230 449 449 (15), 287 (34), 151 (100), 135 

(67), 125 (16), 107 (10) 

Eriodictoyl glycoside 34 + - - + + + + 

21.72 283, 230 579 579 (100), 459 (11), 271 (51), 227 

(2), 177 (4), 151 (54), 119 (15), 107 

(24) 

Naringin 37 + + + + + + + 

Flavones 

24.24 346, 334, 

266, 230 

269 269 (100), 241 (0.1), 227 (0.2), 225 

(4), 201 (2), 183 (3), 181 (2), 159 

(2), 151 (11), 117 (21), 107 (5) 

Apigenin 43 + - - + + + + 
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23.64 340, 266, 

230 

285 285 (100), 267 (1), 257 (1), 243 (2), 

241 (1), 229 (1), 217 (3), 213 (1), 

199 (4), 197 (1), 151 (1), 133 (24) 

Luteolin 40 + + + + + + + 

Flavone glycosides 

24.41 230, 646 431 431 (78), 341 (12), 311 (11), 269 

(4), 243 (1), 241 (3), 225 (3), 201 

(1), 183 (3), 181 (8), 151 (11), 117 

(6), 107 (3) 

Vitexin 45 + + + + + + + 

18.60 350, 265 447 447 (100), 285 (100), 257 (4), 243 

(2), 241 (1), 151 (1) 

Luteolin glycoside 29 + + + + + + + 

16.04 232, 530 563 563 (100), 506 (5), 473 (9), 443 

(29), 383 (31), 353 (69),269 (38), 

241 (11), 225 (10), 201 (2), 183 (2), 

181 (4), 159 (31), 151 (8), 117 (61), 

107 (3) 

Glucosyl-arabinosyl 

apigenin 

24 + + + + + + + 

Proanthocyanidins 

11.33 279, 233 577 577 (26), 451 (45), 425 (20), 407 

(45), 289 (100), 245 (39), 203 (23), 

125 (91), 109 (19) 

Procyanidin dimer 8 - + - - - - - 
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12.50 279, 234, 

230 

865 865 (18), 577 (29), 451 (9), 425 

(21), 407 (46), 289 (100), 245 (38), 

203 (22), 109 (17) 

Procyanidin trimer 12 - + - - - - - 

14.81 274, 233 1154 1154 (9), 865 (19), 577 (28), 425 

(10), 407 (44), 289 (100), 245 (45), 

203 (22), 109 (9) 

Procyanidin tetramer 18 - + - - - - - 

tR- retention time, λmax- Wavelength of maximum absorption, [M-H]-(m/z)- negatively charged atomic mass unit 

 



 

98 

 

The compound labelled peak 1 (tR = 6.48 min, λmax = 230, 272 nm) with [M-H]- at m/z 169 

(Table 3-6) was identified as gallic acid. It produced a fragment at m/z 125 due to the loss of 

CO2 (-44 amu) (Table 3-6 and Figure 7-8, appendix) (Pérez-Magariño, Revilla, González-

SanJosé & Beltrán, 1999). The fragment at m/z 107 is due to the loss of H2O from the m/z 125 

fragment.  

The compound labelled peak 2 (tR 8.08 min, λmax = 294, 259, 230 nm) had [M-H]- at m/z 153 

(Table 3-6 and Figure 7-9, appendix) and was identified as protocatechuic acid. It produced a 

fragment at m/z 109 due to loss of CO2 (-44 amu) (Pérez-Magariño et al., 1999).  

The compound labelled peak 6 (tR 10.85 min, λmax = 254, 253 nm) had [M-H]- at m/z 137 (Table 

3-6) and was identified as 4-hydroxy benzoic acid. It produced a fragment at m/z 97 (Table 3-6  

and Figure 7-13, appendix) due to the loss of CO2 (-44 amu).  

The compound labelled peak 20 (tR 15.27 min, λmax = 297, 263 nm) had [M-H]- at m/z 167 

(Table 3-6 and Figure 7-25, appendix) and was identified as vanillic acid. It had a fragment at 

m/z 123 due to the loss of CO2 (-44 amu) (Pérez-Magariño et al., 1999) and at m/z 108 due to 

possible loss of a methyl group (-15 amu) from the m/z 123 fragment.  

The compound labelled peak 32 (tR 19.83 min, λmax = 230 nm) had [M-H]- at m/z 197 (Table 

3-6 and Figure 7-37, appendix) and produced a major fragment at m/z 153 corresponding to the 

loss of a CO2 moiety (-44 amu) (Sun et al., 2007). The compound was identified as syringic 

acid  

The compound labelled peak 5 (tR 10.16 min, max = 230, 272 nm) had [M-H]- at m/z 179 (Table 

3-6) and was identified as caffeic acid. Fragmentation produced ions at m/z 164, 161, and 135 

(Table 3-6 and Figure 7-12, appendix). The fragment at m/z 164 results from demethylation (-

CH3 group) of caffeic acid (-15 amu), while dehydration of caffeic acid could account for the 

m/z 161 (-18 amu). The loss of CO2 (-44 amu) from the caffeic acid accounts for the m/z 135 

fragment (Pérez-Magariño et al., 1999).  

The compound labelled peak 21 (tR 15.29 min, λmax = 310, 230 nm) had [M-H]- at m/z 163 

(Table 3-6 and Figure 7-26, appendix) and was identified as ρ-coumaric acid. It had a fragment 

at m/z 147 indicative of loss of O2 (-16 amu) (Pérez-Magariño et al., 1999), at m/z 145 

corresponding to loss of an H2O group from the parent ion (-18 amu), and at m/z 119 as a result 

of loss of a CO2 moiety (-44 amu) from the parent ion.  
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The compound labelled peak 27 (tR 17.33 min, max = 328, 325 nm) had [M-H]- at m/z 223 

(Table 3-6) and was identified as sinapic acid. Fragmentation produced ions at m/z 208, 179, 

and 164 (Table 3-6 and Figure 7-32, appendix). The fragments at m/z 208 and 179 correspond 

to demethylation (-CH3 group, -15 amu) and decarboxylation (-CO2, -44 amu), respectively, of 

sinapic acid (Sinosaki, Tonin, Ribeiro, Poliseli, Roberto, Silveira, Visentainer, Santos & 

Meurer, 2020). The fragment at m/z 164 is due to the elimination of CO2 (-44 amu) from the 

fragment at m/z 208.  

Peak 28 (tR 18.48 min, max = 324, 244 nm) with [M-H]- at m/z 193 (Table 3-6) was identified 

as ferulic acid. It produced fragments at m/z 133 and 161 (Table 3-6 and Figure 7-33, appendix). 

The m/z 133 fragment could be due to the loss of a methyl, CH3 (-15 amu) from the methoxy 

group, the loss of CO2 (-44 amu) from the carboxylate moiety on the ethylene short chain of 

the ferulic acid molecule and the loss of a hydride ion (H, 1 amu) ([M-H]- (193) – 15 – 44 – 1) 

(Svensson, Sekwati-Monang, Lutz, Schieber & Gänzle, 2010). The fragment at m/z 161 

corresponds to the loss of O2 (-32 amu) from the ferulate anion ([M-H]- (193) – 32).  

The compound labelled peak 3 (tR 9.43 min, λmax = 325, 230 nm) had [M-H]- at m/z 353 (Table 

3-6) and produced fragments at m/z 191, 179, 173, 164, 161, 135 and 127 (Table 3-6 and Figure 

7-10, appendix). The corresponding to the loss of a CO2 moiety (-44 amu). The compound was 

identified as 3-Caffeoylquinic acid based on its fragmentation pattern. The fragments at m/z 

191 and m/z 179 correspond to quinic acid and caffeic acid, respectively, from the cleavage of 

the compound. The fragment at m/z 173 corresponds to dehydration of quinic acid (-18 amu) 

(Clifford, Johnston, Knight & Kuhnert, 2003). The fragment at m/z 164 could correspond to 

the demethylation (-CH3 group) of the caffeic acid (-15 amu), while dehydration of caffeic acid 

could account for the m/z 161 (-18 amu). The loss of CO2 (-44 amu) from the caffeic acid 

accounts for the m/z 135 fragment (Pérez-Magariño et al., 1999). 

The compound labelled peak 4 (tR 9.73 min, λmax = 230 nm) had [M-H]- at m/z 399 (Table 3-6) 

and produced fragments at m/z 253, 179, 163 and 135 (Table 3-6 and Figure 7-11, appendix). 

The fragment at m/z 253 could be accounted for as caffeoyl glycerol, m/z 179 being the caffeic 

acid moiety, m/z 163 being the coumaric acid moiety, and the m/z 135 resulting from the loss 

of a CO2 (-44 amu) from the caffeic acid. The compound was identified as coumaroyl caffeoyl 

glycerol based on its fragmentation pattern in literature (Kang, Price, Ashton, Tapsell & 

Johnson, 2016). It was present only in the moringa sample chromatograms at peak 4 (Figure 

3-4, appendix). Its absence in sorghum-based porridges fortified with Moringa could be 
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attributed to the breakdown of the compound due to high temperature, shear and pressure 

following extrusion. 

The compound labelled peak 7 (tR 11.07 min, λmax = 309, 230 nm) had [M-H]- at m/z 337 (Table 

3-6) and produced fragments at m/z 191, 173, 163, and 119 (Table 3-6 and Figure 7-14, 

appendix) and was identified as 3-ρ-coumaroyl quinic acid based on its fragmentation in 

literature (Clifford et al., 2003). The fragment at m/z 191 could be accounted for as quinic acid, 

m/z 173 could be a result of dehydration of the quinic acid (-18 amu), m/z 163 being the caffeic 

acid moiety, m/z 163 being the coumaric acid moiety, and m/z 119 could be from the loss of a 

CO2 (-44 amu) from coumaric acid. 

The compound labelled peak 10 (tR 9.43 min, λmax = 325, 230 nm) had [M-H]- at m/z 353 (Table 

3-6) and produced fragments at m/z 191, 179, 173, 164, 161, 135 and 127 (Table 3-6 and Figure 

7-17, appendix). The corresponding to the loss of a CO2 moiety (-44 amu). The compound was 

identified as 4-Caffeoylquinic acid based on its fragmentation pattern in literature. The 

fragments at m/z 191 and 179 correspond to quinic acid and caffeic acid, respectively, from the 

cleavage of the compound. The fragment at m/z 173 corresponds to the dehydration of quinic 

acid (-18 amu) (Clifford et al., 2003). The fragment at m/z 164 could correspond to the 

demethylation (-CH3 group) of the caffeic acid (-15 amu), while dehydration of caffeic acid 

could account for the m/z 161 (-18 amu). The loss of CO2 (-44 amu) from the caffeic acid 

accounts for the m/z 135 fragment (Pérez-Magariño et al., 1999). According to Clifford et al. 

(2003), isomers substituted at position 4 produce a characteristic major fragment at m/z 173. 

Thus, the conclusion is that the compound at peak 10 is a position 4 substituted isomer of the 

compound at peak 3. 

The compound labelled peak 11 (tR 12.32 min, λmax = 325, 230 nm) had [M-H]- at m/z 367 

(Table 3-6) and produced fragments at m/z 193, 191, 178, 173, 149, and 134 (Table 3-6 and 

Figure 7-18, appendix). The compound was identified as 3-feruloyl quinic acid based on its 

fragmentation pattern in literature. The fragments at m/z 193 and 191 correspond to ferulic and 

quinic acids, respectively, from the cleavage of the compound. The fragment at m/z 178 could 

be a result of the demethylation of ferulic acid (-15 amu). The fragment at m/z 173 corresponds 

to dehydration of quinic acid (-18 amu) (Clifford et al., 2003). The fragment at m/z 149 could 

be a result of the decarboxylation of the ferulic acid moiety (-44 amu). The loss of CO2 (-44 

amu) from the fragment at m/z 178 accounts for the m/z 134 fragment. 
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The compound labelled peak 14 (tR 13.84 min, λmax = 309, 230 nm) had [M-H]- at m/z 337 

(Table 3-6) and produced fragments at m/z 191, 173, 163, and 119 (Table 3-6 and  

Figure 7-52, appendix) and was identified as 4-ρ-coumaroyl quinic acid based on its 

fragmentation in literature (Clifford et al., 2003). The fragment at m/z 191 could be accounted 

for as quinic acid, m/z 173 could be a result of dehydration of the quinic acid (-18 amu), m/z 

163 being the caffeic acid moiety, m/z 163 being the coumaric acid moiety, and m/z 119 could 

be from the loss of a CO2 (-44 amu) from coumaric acid. Due to its major fragment at m/z 173, 

it was differentiated from the 4-p-coumaroyl quinic acid, according to Clifford et al. (2003). 

The compound labelled as peak 15 (tR 14.25 min, λmax = 230 nm) had [M-H]- at m/z 253 (Table 

3-6) and was identified as caffeoyl glycerol based on its fragmentation pattern in literature 

(Kang et al., 2016). The fragments at m/z 179 correspond to the loss of the glycerol molecule 

(-74 amu) to form caffeic acid (m/z 179) (Table 3-6 and Figure 7-12, appendix). The fragment 

at m/z 164 could correspond to the demethylation (-CH3 group) of the caffeic acid (-15 amu), 

while dehydration of caffeic acid could account for the m/z 161 (-18 amu). The loss of CO2 (-

44 amu) from the caffeic acid accounts for the m/z 135 fragment (Pérez-Magariño et al., 1999).   

The compound labelled peak 17 (tR 14.72 min, λmax = 230 nm) had [M-H]- at m/z 468 (Table 

3-6) and was identified as dicaffeoyl spermidine based on the fragmentation pattern in 

literature. It produced fragments at m/z 332, 306, 179, 161, 151 and 135 (Table 3-6 and Figure 

7-23, appendix). The fragment at m/z 179 is the caffeic acid moiety, m/z 161 corresponds to 

dehydration of the caffeic acid molecule, and the m/z 135 results from the loss of CO2 (-44 

amu) from the caffeic acid. Kang et al. (2016) reported dicaffeoyl spermidine in sorghum 

before. 

The compound labelled peak 19 (tR 14.91 min, λmax = 325, 230 nm) had [M-H]- at m/z 367 

(Table 3-6) and produced fragments at m/z 193, 191, 178, 173, 149, and 134 (Table 3-6 and 

Figure 7-18, appendix). The compound was identified as 3-feruloyl quinic acid based on its 

fragmentation pattern in literature. The fragments at m/z 193 and 191 correspond to ferulic and 

quinic acids, respectively, from the cleavage of the compound. The fragment at m/z 178 could 

be a result of the demethylation of ferulic acid (-15 amu). The fragment at m/z 173 corresponds 

to dehydration of quinic acid (-18 amu) (Clifford et al., 2003). The fragment at m/z 149 could 

be a result of the decarboxylation of the ferulic acid moiety (-44 amu). The loss of CO2 (-44 

amu) from the fragment at m/z 178 accounts for the m/z 134 fragment. Due to its major fragment 
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at m/z 173, it was differentiated from the 3-feruloyl quinic acid, according to Clifford et al. 

(2003).   

The compound labelled as peak 23 (tR 15.51 min, λmax = 230 nm) had [M-H]- at m/z 237 (Table 

3-6) and was identified as ρ-coumaroyl-glycerol based on its fragmentation pattern in literature 

(Kang et al., 2016). The fragments at m/z 163 correspond to the loss of the glycerol molecule 

(-74 amu) to form p-coumaric acid (m/z 163) (Table 3-6 and Figure 7-26, appendix). The 

fragment at m/z 147 is indicative of loss of O2 (-16 amu) (Pérez-Magariño et al., 1999), at m/z 

145 corresponding to possible loss of an H2O group from the parent ion (-18 amu), and at m/z 

119 probably as a result of loss of a CO2 moiety (-44 amu). 

The compound labelled as peak 30 (tR 18.77 min, λmax = 230 nm) had [M-H]- at m/z 415 (Table 

3-6 and Figure 7-35, appendix) and was identified as dicaffeoyl glycerol based on its 

fragmentation pattern in literature (Kang et al., 2016). The fragments at m/z 179 correspond to 

the liberation of caffeic acid (m/z 179) (Table 3-6 and Figure 7-12, appendix). The dehydration 

of caffeic acid could account for the m/z 161 (-18 amu). The loss of CO2 (-44 amu) from the 

caffeic acid account for the m/z 135 fragment (Pérez-Magariño et al., 1999). 

The compound labelled as peak 46 (tR 24.56 min, λmax = 230 nm) had [M-H]- at m/z 255 (Table 

3-6 and Figure 7-49, appendix) and was identified as dihydrocaffeoyl glycerol based on its 

fragmentation pattern in literature (Kang et al., 2016). It produced ionic fragments at m/z 179, 

164, 161, and 135. The fragments at m/z 179 correspond to the liberation of caffeic acid (m/z 

179) (Table 3-6 and Figure 7-12, appendix). The demethylation and dehydration of caffeic acid 

could account for the fragments at m/z 164 (-15 amu) and 161 (-18 amu), respectively. The loss 

of CO2 (-44 amu) from the caffeic acid accounts for the m/z 135 fragment (Pérez-Magariño et 

al., 1999).   

The compound at peak 33 (tR = 19.78 min and λmax = 365, 266, 234 nm) (Table 3-6) had a 

molecular ion m/z at 285 and was identified as kaempferol. It produced anionic fragments at 

m/z 257, 243, 241, 229, and 151 (Table 3-6 and Figure 7-38, appendix).  The loss of CO (-28 

amu), C2H2O (-42 amu) and CO2 (-44 amu) each from kaempferol produce the fragments at 

m/z 257 (Fabre, Rustan, de Hoffmann & Quetin-Leclercq, 2001), 243 and 241 respectively. 

The loss of two CO molecules (-56 amu) accounts for the ion at m/z 229. Loss of a C2H2O 

molecule (42 amu) and a CO2 molecule (-44 amu) together from kaempferol accounts for the 

m/z 199 fragment. Retrocyclization cleavage of kaempferol at bond positions 1 and 3 of the C 

ring produces a 1,3A- fragment at m/z 151 (Figure 3-7) (Fabre et al., 2001). 
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The compound labelled peak 36 with molecular ion at m/z 317 (tR = 20.41 min and λmax = 350, 

265, 230 nm) (Table 3-6) was identified as myricetin. Fragmentation produced ionic fragments 

at m/z 289, 179, 151 and 107 (Table 3-6 and Figure 7-41, appendix). The fragment at m/z 289 

could be a result of the loss of a CO molecule from the myricetin aglycone (-28 amu). The 

ionic fragments at m/z 179 and 121 could result from retrocyclization cleavage of the myricetin 

molecule involving bonds 1 and 2 of the C ring to produce the 1,2A and 1,2B- fragments, 

respectively (Figure 3-6). The fragment at m/z 107 is indicative of consecutive loss of a CO 

moiety (-28 amu) and a CO2 moiety from the 1,2A- fragment (-44 amu). 

 

Figure 3-6: Proposed fragmentation scheme for flavonols (e.g., quercetin and myricetin) 
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Figure 3-7: Proposed general fragmentation scheme for flavonoids 

The compound at Peak 41 had a molecular ion at m/z 301 (tR = 23.90 min and λmax = 363, 230 

nm) (Table 3-6) and was identified as quercetin. It produced fragments at m/z 273, 229, 179, 

151, 121, and 107 (Table 3-6 and Figure 7-46, appendix). Loss of a CO molecule (-28 amu) 

and a C2H2O molecule (-42 amu) from the quercetin aglycone produces the fragments at m/z 

273 and 257, respectively (Fabre et al., 2001). The loss of both a CO molecule and a CO2 

molecule from the quercetin aglycone results in the fragment at m/z 229. Retrocyclization 

cleavage of the quercetin molecule at bond positions 1 and 2 of the C ring produces a 1,2A- 

fragment at m/z 179 and a 1,2B- fragment at m/z 121 (Figure 3-6 and Figure 3-7) (Fabre et al., 

2001). The loss of a CO molecule (-28 amu) from the 1,2A- fragment yields the fragment at m/z 

151 (Figure 3-6). The loss of both a CO molecule (-28 amu) and a CO2 molecule (-44 amu) 

from the 1,2A- fragment produces the fragment at m/z 107. 

The compound at peak 16 (tR = 14.67 min and λmax = 230 nm) had a molecular ion at m/z 449 

(Table 3-6) and was identified as dihydrokaempferol glycoside. It produced fragments at m/z 

285, 257, 243, 241, 229, 199 and 151 (Table 3-6 and Figure 7-22, appendix).  The fragment at 

m/z 285 is the kaempferol aglycone produced from the loss of the hexose unit along with 2 

hydrogen units (-164 amu). The loss of a CO molecule (-28 amu), a C2H2O molecule (-42 amu) 

and a CO2 molecule (-44 amu) each from the kaempferol aglycone moiety produces the 

fragments at m/z 257, 243 and 241, respectively (Fabre et al., 2001). The loss of two CO 

molecules (-56 amu) from the kaempferol aglycone fragment produces the ion at m/z 229, while 

the loss of a C2H2O molecule (-42 amu) together with a CO2 molecule (-44 amu) from the 

kaempferol aglycone fragment produces the fragment at m/z 199. The ionic fragment at m/z 

151 is the 1,3A- fragment produced from retrocyclization cleavage of kaempferol at bond 

positions 1 and 3 of the C ring (Figure 3-7) (Fabre et al., 2001). 

The compound at peak 26 (tR = 17.04 min and λmax = 324, 229 nm) (Table 3-6) had a molecular 

ion at m/z 609 and was identified as rutin. It produced fragments at m/z 301, 227, 179, 151, 

121, and 107 (Table 3-6 and Figure 7-31, appendix). The fragment at m/z 301 is the quercetin 

aglycone produced from the loss of the disaccharide from the rutin molecule. The fragment at 

m/z 179 is the 1,2A- fragment produced from retrocyclization cleavage of the quercetin molecule 

at bond positions 1 and 2 of the C ring (Figure 3-6 and Figure 3-7). The loss of a CO molecule 

(-28 amu) from the 1,2A- fragment yields the fragment at m/z 151 (Figure 3-6). The fragment at 
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m/z 121 is the 1,2B- fragment produced from retrocyclization cleavage of the C ring of quercetin 

aglycone at bond positions 1 and 2 (Figure 3-6 and Figure 3-7). 

The compound at peak 31 (tR = 19.53 min and λmax = 350, 265, 230 nm) (Table 3-6) had a 

molecular ion at m/z 447 and was identified as kaempferol glycoside. It produced fragments at 

m/z 285, 257, 243, 229, 199, and 151 (Table 3-6 and Figure 7-36, appendix).  The fragment at 

m/z 285 is the kaempferol aglycone after the loss of the glycoside unit (-162 amu). The loss of 

a CO molecule (-28 amu) and a C2H2O molecule (-42 amu) each from the kaempferol aglycone 

produces the fragments at m/z 257 and m/z 243 respectively (Fabre et al., 2001). The loss of 

two CO molecules (-56 amu) from the kaempferol aglycone produces the fragment at m/z 229, 

while the loss of a C2H2O molecule (-42 amu) together with a CO2 molecule (-44 amu) from 

the kaempferol aglycone produces the fragment at m/z 199. The fragment at m/z 151 is the 1,3A- 

fragment produced from retrocyclization cleavage of the kaempferol aglycone at bond 

positions 1 and 3 of the C ring (Figure 3-7) (Fabre et al., 2001). 

The compound at Peak 35 (tR = 20.04 min and λmax = 352, 230 nm) (Table 3-6) had a molecular 

ion m/z at 477 and was identified as quercetin glucuronide. It produced fragments at m/z 301, 

273, 229, 179, 151, 121, and 107 (Table 3-6 and Figure 7-40, appendix). The fragment at m/z 

301 is the quercetin aglycone after the loss of the glucuronide moiety. Loss of a CO molecule 

(-28 amu) and a C2H2O molecule (-42 amu) each from the quercetin aglycone produces the 

fragments at m/z 273 and 257, respectively (Fabre et al., 2001). The fragments at m/z 179 and 

121 are, respectively, the 1,2A- and 1,2B fragments produced from retrocyclization cleavage of 

the quercetin aglycone at bond positions 1 and 2 of the C ring (Figure 3-6 and Figure 3-7) 

(Fabre et al., 2001). The loss of a CO molecule (-28 amu) from the 1,2A- fragment produces the 

fragment at m/z 151 (Figure 3-6). The loss of a CO molecule (-28 amu) together with a CO2 

molecule (-44 amu) from the 1,2A- fragment produces the fragment at m/z 107.   

The compound at peak 38 (tR = 20.04 min and λmax = 352, 230 nm) (Table 3-6) had a molecular 

ion m/z at 463 and was identified as quercetin glycoside. It produced fragments at m/z 301, 273, 

229, 179, 151, 121, and 107 (Table 3-6 and Figure 7-43, appendix). The fragment at m/z 301 

is the quercetin aglycone after the loss of the glucose moiety. Loss of a CO molecule (-28 amu) 

and a C2H2O molecule (-42 amu) each from the quercetin aglycone produce the fragments at 

m/z 273 and 257, respectively (Fabre et al., 2001). The loss of a CO molecule (-28 amu) 

together with a CO2 molecule (-44 amu) produces the fragment at m/z 229. The fragments at 

m/z 179 and 121 are, respectively, the 1,2A- and 1,2B- fragments produced from retrocyclization 
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cleavage of the quercetin aglycone at bond positions 1 and 2 of the C ring ( Figure 3-6 and 

Figure 3-7) (Fabre et al., 2001). The loss of a CO molecule (-28 amu) from the 1,2A- fragment 

yields the fragment at m/z 151 ( Figure 3-6). The loss of a CO molecule (-28 amu) together 

with a CO2 molecule (-44 amu) from the 1,2A- fragment produces the fragment at m/z 107.   

The compound labelled peak 9 (tR 11.36 min, λmax = 274, 230 nm) had a molecular ion at m/z 

289 (Table 3-6) and was identified as catechin. Its fragmentation (Table 3-6 and Figure 7-16, 

appendix) produced an ion at m/z 245, which could be due to the loss of a CO2 molecule (-44 

amu) (Sandhu & Gu, 2010; Pérez-Magariño et al., 1999).  The fragment at m/z 203 could result 

from the loss of a CO2 (-44 amu) together with a C2H2O molecule (-42 amu) (Stöggl, Huck & 

Bonn, 2004). The fragment at m/z 179 corresponds to the loss of dihydroxybenzene moiety (-

110 amu), which was also detected as an anionic fragment at m/z 109 (Ben Said, Hamed, 

Mahalel, Al-Ayed, Kowalczyk, Moldoch, Oleszek & Stochmal, 2017). 

The compound labelled peak 13 (tR 13.48 min, λmax = 274, 230 nm) had a molecular ion at m/z 

289 (Table 3-6 and Figure 7-20) and was tentatively identified as epicatechin. Its fragmentation 

pattern was identical to that of the catechin described above. Although catechin and epicatechin 

have similar molecular ions at m/z 289 and similar fragmentation patterns, epicatechin is 

regarded to elute after catechin because, stereogeometrically, catechin is more polar than 

epicatechin (Dou, Lee, Tzen & Lee, 2007). 

The compound labelled peak 22 (tR 15.43 min, λmax = 272 nm) had molecular ion at m/z 451 

(Table 3-6) and was proposed to be epicatechin glycoside. Its fragmentation (Table 3-6 and 

Figure 7-27, appendix) produced an ion at m/z 407, which could be attributed to the loss of a 

CO2 molecule (-44 amu). The anion at m/z 289 is the epicatechin aglycone produced after the 

loss of a hexose unit (-162 amu) (Apea-Bah et al., 2014; Nderitu et al., 2013). Loss of a CO2 

molecule (-44 amu) from the epicatechin aglycone produces the fragment at m/z 245 (Sandhu 

& Gu, 2010; Pérez-Magariño et al., 1999).  The fragment at m/z 203 could result from the loss 

of a CO2 (-44 amu) together with a C2H2O molecule (-42 amu) from the epicatechin aglycone 

(Stöggl et al., 2004). The fragment at m/z 179 corresponds to the loss of dihydroxybenzene 

moiety (-110 amu), which was also detected as an anionic fragment at m/z 109 (Ben Said et al., 

2017). 

The compound labelled peak 39 (tR 23.05 min, λmax = 289, 230 nm) had a molecular ion at m/z 

287 (Table 3-6) and was identified as eriodictoyl (Fabre et al., 2001). It produced fragments at 

m/z 272, 269, 245, 243, 151, 135, 133, 125, and 107 (Table 3-6 and Figure 7-44, appendix). 
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The fragments at m/z 272 and 269 could be attributed to the demethylation (-CH3, -15 amu) 

and dehydration (-H2O, -18 amu) of the eriodictoyl moiety, respectively. The fragments at m/z 

245 and 243 could be due to the loss of a C2H2O (-42 amu) molecule and a CO2 (-44 amu) 

molecule, respectively. The fragments at m/z 151 and 135 are, respectively, the 1,3A- and 1,3B- 

fragments produced from retrocyclization cleavage of eriodictyol at bond positions 1 and 3 of 

the C ring (Figure 3-7) (Fabre et al., 2001). The fragment at m/z 125 is the 1,4A- produced from 

retrocyclization cleavage of eriodictyol at bond positions 1 and 4 of the C ring (Figure 3-7). 

Dehydration (-H2O, -18 amu) of the moiety at m/z 151 could yield the fragment at m/z 133. 

The loss of a CO molecule from the fragment at m/z 125 (-28 amu) could account for the 

fragment at m/z 107.  

The compound at Peak 42 (tR = 21.72 min and λmax = 288, 234 nm) (Table 3-6) had a molecular 

ion at m/z at 271 and was identified as naringenin. It produced fragments at m/z 227, 177, 151, 

119 and 107 (Table 3-6 and  

Figure 7-51, appendix). The fragment at m/z 227 is produced from the loss of CO2 (-44 amu) 

from the naringenin moiety. The fragment at m/z 177 results from the loss of the B-ring via 

position 2 and position 1’ of naringenin, Figure 3-7. The ionic fragment at m/z 151 and 119, 

respectively, are the 1,3A- and 1,3B fragments resulting from retrocyclization cleavage of 

naringenin (Figure 3-7) (Fabre et al., 2001) while the fragment at m/z 107 results from loss of 

a CO2 moiety from the 1,3A- fragment (-44 amu). Thus, the compound at m/z 271 was identified 

as naringin. 

The compound labelled peak 44 (tR 23.05 min, λmax = 289, 230 nm) had a molecular ion at m/z 

301 (Table 3-6) and was identified as hesperetin (Fabre et al., 2001). It produced fragments 

m/z 286, 272, 243, 151, 135, 133, 125, 107 and 93 (Table 3-6 and Figure 7-48, appendix). The 

fragments at m/z 286 could be attributed to the demethylation (-CH3, -15 amu) of the hesperetin 

molecule. The fragments at m/z 272 could be attributed to the demethylation (-CH3, -15 amu) 

of the fragment at m/z 286. The fragments at m/z 243 could be due to the loss of a CO2 molecule 

(-44 amu). The fragments at m/z 151, 135 and 125 are, respectively, the 1,3A-, 1,3B- and 1,4A- 

fragments produced from retrocyclization cleavage of hesperetin. Dehydration (-H2O, -18 amu) 

of the moiety at m/z 151 could yield the fragment at m/z 133. The loss of a CO molecule from 

the fragment at m/z 125 (-28 amu) could account for the fragment at m/z 107). 

The compound at Peak 25 (tR = 17.04 min and λmax = 324, 229 nm) (Table 3-6) had a molecular 

ion at m/z 433 and was identified as naringenin glycoside (Apea-Bah et al., 2014; Svensson et 
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al., 2010). It produced a fragment at m/z 271 (Table 3-6 and Figure 7-30, appendix), which is 

the naringenin aglycone after the loss of one hexose unit (-162 amu). The fragment at m/z 227 

results from the loss of CO2 (-44 amu) from the naringenin moiety, while the fragment at m/z 

177 results from loss of the B-ring via position 2 and position 1’ of naringenin, Figure 3-7. The 

ionic fragment at m/z 151 and 119, respectively, are the 1,3A- and 1,3B fragments resulting from 

retrocyclization cleavage of naringenin (Figure 3-7) (Fabre et al., 2001) while the fragment at 

m/z 107 results from loss of a CO2 moiety from the 1,3A- fragment (-44 amu). Based on this 

fragmentation pattern, the compound was identified as naringenin glycoside. 

The compound labelled peak 34 (tR 19.98 min, λmax = 230 nm) had a molecular ion at m/z 449 

(Table 3-6) and was identified as eriodictyol glycoside (Apea-Bah et al., 2014). It produced 

fragments at m/z 287, 151, 135, 125, and 107 (Table 3-6 and Figure 7-39, appendix). The 

fragment at m/z 287 (eriodictyol aglycone) is due to the loss of one hexose unit (-162 amu). 

The fragments at m/z 151, 135 and 125 are, respectively, the 1,3A-, 1,3B- and 1,4A- fragments 

produced from retrocyclization cleavage of eriodictyol, (Figure 3-7) (Fabre et al., 2001). The 

loss of a CO molecule from the fragment at m/z 125 (-28 amu) could account for the fragment 

at m/z 107. 

The compound at Peak 37 (tR = 21.72 min and λmax = 283, 230 nm) (Table 3-6) had a molecular 

ion at m/z at 573 and was identified as naringin. It produced fragments at m/z 459, 313, 271, 

227, 177, 151, 119 and 107 (Table 3-6 and Figure 7-42, appendix). The fragment at m/z 459 

could be a 1,3B fragment resulting from retrocyclization cleavage of naringenin aglycone in 

naringin (Figure 3-7) (Zeng, Su, Zheng, Liu, Li, Zhang, Liang, Bai, Peng & Yao, 2018). The 

fragment ion at m/z 313 could be because of the loss of the rhamnose moiety from the moiety 

at m/z 459. The ion at m/z 271 is naringenin, formed by the successive loss of rhamnose and a 

glucose moiety from naringin. The fragment at m/z 227 corresponds to the loss of CO2 (-44 

amu) from the carboxylate moiety, while the fragment at m/z 177 is a result of loss of the B-

ring via position 2 and position 1’ of naringenin, Figure 3-7. The ionic fragment at m/z 151 and 

119, respectively, are the 1,3A- and 1,3B fragments resulting from retrocyclization cleavage of 

naringenin (Figure 3-7) (Fabre et al., 2001), while the fragment at m/z 107 is indicative loss of 

a CO2 moiety from the 1,3A- fragment (-44 amu). This cleavage of the naringin molecule could 

also account for the fragment at m/z 459. 

The compound at peak 40 (tR = 23.64 min and λmax = 340, 266, 230 nm) (Table 3-6) with 

molecular ion at m/z 285 was identified as luteolin. It produced fragments at m/z 267, 257, 243, 
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217, 213, 199, 151 and 133 (Table 3-6 and Figure 7-45, appendix).  The fragment at m/z 267 

results from dehydration (-18 amu) of the luteolin aglycone (Fabre et al., 2001). The loss of a 

CO molecule (-28 amu) and a C2H2O molecule (-42 amu) each from the luteolin aglycone 

produce the fragments at m/z 257 and 243, respectively. The fragment at m/z 217 is consistent 

with the loss of a carbon suboxide molecule (C3O2, -68 amu) ((Fabre et al., 2001), while the 

fragment at m/z 213 is consistent with the loss of a CO2 molecule (-44 amu) together with a 

CO group (- 28 amu) from the luteolin aglycone. The loss of a C2H2O molecule (-42 amu) 

together with a CO2 molecule (-44 amu) from the luteolin aglycone produces the fragment at 

m/z 199. The fragments at m/z 151 and 133 are, respectively, the 1,3A- and 1,3B- fragments 

resulting from the retrocyclization cleavage of luteolin at bond positions 1 and 3 of the C ring 

(Figure 3-7). 

The compound labelled peak 43 (tR 24.24 min, λmax = 346, 334, 266, 230 nm) had molecular 

ion at m/z 269 (Table 3-6) and was identified as apigenin. It produced fragments at m/z 241, 

227, 225, 201, 183, 181, 159, 151, 149, and 117 (Table 3-6 and Figure 7-47, appendix).  The 

loss of CO (-28 amu), C2H2O (- 42), CO2 (-44 amu) and C2O3 (-68 amu) moieties each from 

the apigenin aglycone produces the fragments at m/z 241, 225, 227, and 201 respectively. The 

loss of a C2H2O molecule (-42 amu) together with a CO2 molecule (-44 amu) from the apigenin 

aglycone produces the fragment at m/z 183, while the loss of two CO2 molecules (-88 amu) 

from the apigenin aglycone accounts for the fragment at m/z 181. The loss of a C2O3 molecule 

(-42 amu) together with a C2H2O molecule (-44 amu) from the apigenin aglycone accounts for 

the fragment at m/z 183. Ionic fragments at m/z 151 and 117, respectively, are the 1,3A- and 1,3B- 

fragments from the retrocyclization cleavage of apigenin at bond positions 1 and 3 of the C 

ring (Figure 3-7) (Fabre et al., 2001). The loss of a CO2 molecule (-44 amu) from the 1,3A- 

fragment (m/z 151) could account for the fragment at m/z 107.
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Figure 3-8: Proposed fragmentation scheme for apigenin glycoside compounds showing potential modes of cleavage of sugar moieties 
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The compound labelled peak 24 with molecular ion at m/z 563 (Table 3-6) was identified as 

glucosyl-arabinosyl apigenin. It produced fragments at m/z 506, 473, 383, 353, 269, 241, 225, 

201, 183, 181, 159, 151, 117, and 107 (Table 3-6 and Figure 7-29, appendix). These fragments 

arise from various modes of fragmentation of the sugar moieties (Figure 3-8) and the apigenin 

aglycone (Figure 3-7). The fragment at m/z 506 corresponds to the loss of a 60 amu moiety 

(CH2O3 molecule), while the fragment at m/z 473 occurs as a result of cleavage and the loss of 

a 90 amu fragment (C3H6O3 molecule) (Figure 3-8) (Benayad, Gómez-Cordovés & Es-Safi, 

2014; Tahir, Shaari, Abas, Parveez, Ishak & Ramli, 2012). The fragment at m/z 383 

corresponds to cleavage of 120 amu (C4H8O4 molecule) and 60 amu fragments (-180 amu). 

The fragment at m/z 353 corresponds to cleavage and the loss of 90 amu (C3H6O3 molecule) 

and 120 amu (C4H8O4 molecule) fragments (-210 amu). The fragment at m/z 269 (identified as 

apigenin aglycone) could be due to the loss of the glucose and arabinose units. The apigenin 

aglycone could further undergo loss of CO (-28 amu), CO2 (-44 amu), and C2H2O (-42), 

yielding fragments at m/z 241, 225, and 227, respectively. Ionic fragments at m/z 151 and 117, 

respectively, are the 1,3A- and 1,3B- fragments due to the retrocyclization cleavage of apigenin 

aglycone at bond positions 1 and 3 of the C ring (Figure 3-7) (Fabre et al., 2001). The loss of 

a CO2 molecule from the 1,3A- fragment (m/z 151) could account for the fragment at m/z 107. 

The compound labelled peak 29 (tR = 18.60 min and λmax = 350, 265 nm) (Table 3-6) had a 

molecular ion m/z at 447 and was identified as luteolin glycoside. It produced fragments at m/z 

285, 257, 243, 241, 229, 199 and 151 (Table 3-6 and Figure 7-34, appendix).  The fragment at 

m/z 285 is the luteolin aglycone after the loss of the glucose unit (-162 amu). The loss of a CO 

molecule (-28 amu) and a C2H2O molecule (-42 amu) each from the luteolin aglycone produces 

the m/z 257 and 243 fragments (Fabre et al., 2001). The fragment at m/z 151 is the 1,3A- 

fragment resulting from retrocyclization cleavage of luteolin at bond positions 1 and 3 of the 

C ring (Figure 3-7). 

The compound labelled peak 45 with molecular ion at m/z 431 (Table 3-6) was identified as 

vitexin (apigenin-8-C-glycoside) based on its fragmentation pattern in literature. It had 

fragments at m/z 341, 311, 269, 241, 225, 201, 183, 181, 159, 151, 117, and 107 (Table 3-6 and   

Figure 7-50, appendix). The fragments at m/z 341 and m/z 311 correspond to the loss of 90 amu 

(C3H6O3 molecule)  and 120 amu, Figure 3-8, respectively, from the molecular ion via different 

modes of cleavage of the sugar moiety as illustrated in Figure 3-8 (Krasteva & Nikolov, 2008). 

The fragment at m/z 269 (identified as apigenin aglycone) is produced after the loss of the 
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glucose unit (-162 amu). Loss of CO (-28 amu), CO2 (-44 amu) and C2H2O (-42 amu) units 

each from the apigenin aglycone yields the fragments at m/z 241, 225, and 227, respectively. 

The fragments at m/z 151 and 117 are, respectively, the 1,3A- and 1,3B- fragments as a result of 

the retrocyclization cleavage of apigenin at bond positions 1 and 3 of the C ring (Figure 3-7) 

(Fabre et al., 2001). The loss of a CO2 (-44 amu) molecule from the 1,3A- fragment (m/z 151) 

produces the fragment at m/z 107. 

 The compound labelled peak 8 (tR 11.33 min, λmax = 279, 233 nm) had a molecular ion at 

m/z 577 (Table 3-6) and was identified as a procyanidin dimer. It had fragments at m/z 451, 

425, 407, 289, 245, 203, 125 and 109 (Table 3-6 and Figure 7-15 appendix). The fragment ion 

at m/z 451 results from the loss of a phloroglucinol molecule (A-ring) (–126 amu) by a 

heterocyclic ring fission (HRF) reaction (Figure 3-9) (Hayasaka, Waters, Cheynier, Herderich 

& Vidal, 2003),. The fragment ion at m/z 425 is proposed to be a retro-Diels-Alder (RDA) 

fragment produced via cleavage of the C-ring of one of the monomeric flavan-3-ol components 

of the procyanidin dimer, as illustrated in Figure 3-9. The fragment at m/z 407 results from the 

loss of a water molecule (–18 amu) from the m/z 425 fragment, most likely from the 3-OH 

(Figure 3-9) (Gu, Kelm, Hammerstone, Beecher, Holden, Haytowitz & Prior, 2003). The 

fragment at m/z 289 is a monomeric flavan-3-ol subunit (epicatechin or catechin) produced 

from the fragmentation of the procyanidin dimer by the quinone methide (QM) reaction. Either 

of the monomeric flavan-3-ol subunits can lose a CO2 molecule (-44 amu) to produce the 

fragment at m/z 245 (Figure 3-9). The fragment ion at m/z 125 is proposed to be an RDA 

fragment produced via cleavage of the C-ring of one of the monomeric flavan-3-ol components 

of the procyanidin dimer, as illustrated in Figure 3-9.  
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Figure 3-9 The structures of procyanidin dimer, trimer and tetramer showing quinone-methide (QM), retro-Diels-Alder (RDA) and heterocyclic ring fission (HRF) modes of cleavage 
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The compound labelled peak 12 (tR 12.50 min, λmax = 279, 234, 230 nm) had a molecular ion 

at m/z 865 (Table 3-6) and was identified as a procyanidin trimer. It had fragments at m/z 577, 

451, 425, 407, 289, 245, 203, 125 and 109 (Table 3-6 and Figure 7-19, appendix). The fragment 

ion at m/z 451 corresponds to the loss of a phloroglucinol molecule (A-ring) (–126 amu) 

(Hayasaka et al., 2003) via the HRF reaction (Figure 3-9). The fragment at m/z 577 represents 

a dimeric procyanidin specie which results from splitting the procyanidin trimer via a QM 

reaction (Figure 3-9). The rest of the fragments are produced via similar fragmentation patterns 

described above for procyanidin dimer.  

The compound labelled peak 18 (tR 14.81 min, λmax = 274, 233 nm) had a molecular ion at 

m/z 1154 (Table 3-6) and was identified as procyanidin tetramer. It had fragments at m/z 865, 

577, 451, 425, 407, 289, 245, 203, 125 and 109 (Table 3-6 and Figure 7-24, appendix). The 

molecular fragments at m/z 865 and 577 are, respectively, the procyanidin trimer and dimer 

fragments produced from the splitting of the procyanidin tetramer via a QM reaction (Figure 

3-9). The rest of the fragments are produced via similar fragmentation patterns described above 

for procyanidin trimer and dimer.  
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3.2.5.2.2 Effect of food-to-food fortification (FtFF) and extrusion on the concentration of phenolic compounds in wholegrain sorghum-

based porridges 

Table 3-7: Effect of FtFF and extrusion on the concentration of phenolic compounds (µg/g) in wholegrain sorghum-based porridges 

Compound Cooked 

Sorghum 

Baobab Moringa Extruded 

Sorghum 

Extruded 

sorghum + 

Baobab 

Extruded 

sorghum + 

Moringa 

Extruded 

sorghum + 

Moringa + 

Baobab 

Phenolic acids 

p-Hydroxybenzoic acid 617c±66 86a±21 371b±12 340b±29 405b±20 341b±44 371b±39 

Protocatechuic acid 121c±13 599e±9 271d±11 28a±5 50b±3 72b±4 86bc±35 

Vanillic acid 12d±0 26e±2 5a±2 4a±0 10cd±1 6ab±0 9bc±1 

Gallic acid 7a±1 42c±2 110d±7 2a±0 13ab±11 5a±1 20b±0 

Syringic acid 21b±0 33c±4 51d±6 1a±0 6a±0 4a±2 22b±3 

p-Coumaric acid 181c±20 ND 919d±34 ND ND 42a±3 101b±3 

Caffeic acid 941d±49 ND 647c±7 263b±25 285b±5 256b±13 305b±8 

Ferulic acid 92e±0 ND 2a±0 42b±0 58d±3 50c±3 55d±3 

Sinapic acid 4a±0 3a±0 ND ND 24b±3 4a±0 20b±0 

Total Phenolic acids 1996 789 2376 680 851 780 989 

Phenolic acid esters 

p-Coumaroyl glycerol 1837c±82 ND ND 1491b±59 1220a±8 1186a±34 1091a±84 

Caffeoyl glycerol 3104e±79 ND 57a±4 1743d±97 1603cd±27 1277b±29 1470c±6 
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Dihydrocaffeoyl glycerol 501a±62 3008b±91 2636b±184 169a+8 617a±45 235a±8 418a±48 

3-Coumaroyl quinic acid ND ND 5309b±53 ND ND 36a±3 42a±6 

4-Coumaroyl quinic acid ND ND 2882c±139 ND ND 14a±2 22a±2 

3-Caffeoyl quinic acid 57a±19 93a±4 22695b±1350 12a±1 9a±1 64a±4 136a±12 

4-Caffeoyl quinic acid 1594a±155 2819a±69 464493b±4985 523a±91 277a±22 1708a±78 1730a±130 

3-Feruloyl quinic acid ND ND 390b±8 ND ND 239a±10 406c±4 

4-Feruloyl quinic acid ND ND 265d±3 ND ND 247c±14 319e±9 

Coumaroyl caffeoyl glycerol ND ND 41751a±2279 ND ND ND ND 

Dicaffeoyl glycerol 3506c±82 ND ND 2253a±41 2459b±92 2292a±20 2408b±17 

Dicaffeoyl spermidine 663c±58 ND 16a±5 728c±68 446b±4 492b±75 524b±31 

Total Phenolic acid esters 11262 5920 540494 6919 6631 7790 8566 

Flavonoid aglycones 

Kaempferol 115f±5 16a±0 61d±0 20a±0 40b±6 46bc±4 53e±1 

Quercetin 15b±0 17b±0 83d±1 11a±0 11a±0 17b±1 36c±0 

Myricetin 5d±0 9f±0 ND 1a±0 6e± 3b±0 6e±0 

Catechin 7b±1 309d±6 ND 2a±0 25c±0 1a±0 19c±1 

Epicatechin 145a±8 3563b±226 ND 20a±4 133a±17 3a±1 128a±13 

Naringenin 71d±6 ND ND 33bc±8 41c±6 27b±1 38bc±6 

Apigenin 29d±1 ND ND 11b±1 19c±2 10b±0 27d±5 

Eriodictoyl 119e±3 ND ND 52c±4 82d±5 6a±0 28b±0 

Hesperitin 10b±0 12c±0 78g±0 4a±0 17d±0 19e±2 32f±0 
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1Values are the means±SD of at least two samples of each formulation analysed independently.  
2Values within the same column followed by different letters are significantly different (p<0.05).  

Luteolin 99e±4 5a±0 29b±0 32b±2 36bc±6 41cd±4 45d±1 

Total flavonoid aglycones 610 3931 251 186 410 173 406 

Flavonoid glycosides 

Kaempferol glycoside 8a±1 23a±1 1425c±42 5a±1 7a±0 213b±11 244b±17 

Dihydrokaempferol glycoside 34f±0 ND 8b±1 15e±2 11cd±0 9bc±0 13de±2 

Quercetin glucoside 24a±4 23a±0 1687d±37 8a±1 9a±2 281b±14 360c±21 

Rutin 60ab±2 100c±1 5604e±12 22a±1 29ab±1 681c±57 861d±40 

Epicatechin glucoside ND ND 293e±3 ND ND 5b±1 9c±0 

Eriodictoyl glucoside 96b±4 ND ND 36a±2 36a±2 35a±2 38a±3 

Naringenin glucoside 53e±2 22b±2 ND 27bc±2 30cd±0 27bc±2 36d±6 

Naringin 7a±0 8a±1 577b±49 10a±1 9a±0 11a±1 5a±0 

Vitexin 7c±0 1a±0 40d±1 4b±0 3b±0 4b±0 6c±0 

Luteolin glucoside 41a±1 24a±0 1261c±23 41a±0 36a±2 190b±9 29a±0 

Glucosyl-arabinosyl apigenin 23e±1 1a±0 10d±0 6bc±1 8cd±0 5b±0 6bc±0 

Total flavonoid glycosides 353 202 10865 174 151 1461 1607 

Proanthocyanidins 

Procyanidin dimer ND 896a±47 ND ND ND ND ND 

Procyanidin trimer ND 947a±17 ND ND ND ND ND 

Procyanidin tetramer ND 2.02a±0.09 ND ND ND ND ND 

Total proanthocyanidins  1845.02      
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3ND = not detected 
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Sorghum and moringa both contained 2 times more total phenolic acids than baobab fruit pulp. 

The predominant phenolic acids were caffeic acid in sorghum, p-coumaric acid in moringa leaf 

powder (MLP) and protocatechuic acid in baobab fruit pulp (BFP) (Table 3-7). Food-to-food 

fortification (FtFF) with BFP alone, whether alone or in combination with MLP, had no effect 

on the phenolic acids quantified in this study except for protocatechuic acid (increased by 79% 

and 207 respectively), vanillic acid (increased by 150% and 125% respectively), caffeic acid 

(increased by 8% and 16% respectively), ferulic acid (increased by 38% and 31% respectively) 

and sinapic acid (increased by 100% and 100% respectively). FtFF with MLP had no effect on 

phenolic acids quantified except protocatechuic acid (increased by 157%), ferulic acid 

(increased by 19%) and sinapic acid (increased by 100%). A combination of MLF and BFP 

increased the gallic and syringic acid contents of sorghum-based porridges (by 900% and 

210%, respectively). Concerning phenolic acid esters, MLP had the highest content of esters, 

with caffeoylquinic acid being the predominant ester. Caffeoyl glycerol was the predominant 

ester in sorghum, while dihydrocaffeoyl glycerol was the predominant ester in baobab fruit 

pulp powder. Caffeoyl glycerol and diacaffeoyl spermidine were undetected in BFP, while 

feruloyl quinic acids were absent in sorghum and BFP. FtFF with BFP had no effect on the 

caffeoyl glycerol and 3-caffeoyl quinic acid contents of sorghum but increased the 

dihydrocaffeoyl glycerol content (by 265%) and diacaffeoyl spermidine (by 39%). FtFF with 

MLP alone decreased the caffeoyl glycerol and diacaffeoyl spermidine contents (by 27% and 

39%, respectively), increased the contents of dihydrocaffeoyl glycerol and 3-caffeoylquinic 

acid (by 39% and 433% respectively) and introduced 3- and 4- feruloyl quinic acids that were 

absent in sorghum. FtFF with a combination of MLP and BFP decreased the caffeoyl glycerol 

and diacaffeoyl spermidine contents (by 16% and 28%, respectively), increased the contents of 

dihydrocaffeoyl glycerol and 3-caffeoylquinic acid (by 147 and 433% respectively) and 

introduced 3- and 4- feruloyl quinic acids that were absent in sorghum. 

Concerning flavonoids, quercetin was the main flavonoid in MLP while epicatechin was the 

principal flavonoid in sorghum and BFP.  FtFF with BFP, whether alone or in combination 

with MLP, caused a significant increase in the contents of kaempferol (by 100% and 165%, 

respectively), myricetin (by 500% and 500% respectively), catechin (by 1150% and 850% 

respectively), epicatechin (by 565% and 540% respectively), apigenin (by 73% and 145% 

respectively), and hesperetin (by 325% and 700% respectively) (Table 3-7). FtFF with BFT 

alone did not affect the quercetin, naringenin, or luteolin content. FtFF with MLP alone caused 

a significant increase in the contents of kaempferol (by 130%), quercetin (by 54%), myricetin 
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(by 200%), and hesperetin (by 325%) while significantly reducing the content of epicatechin 

(by 85%). FtFF with MLP had no effect on catechin, naringenin, apigenin and Luteolin content. 

FtFF, with a combination of BFT and MLP, significantly increased the quercetin (by 227%) 

and luteolin (by 41%) contents but did not affect the naringenin content.  

Regarding flavonoid glycosides, overall, MLP had the highest content of flavonoid glycosides 

(about 42 times more than sorghum and 53 times more than BFP). Rutin was the predominant 

glycoside in all the plant samples. Except for dihydrokaempferol glycoside, which was 

significantly reduced (by 27%), FtFF with BFP had no effect on the flavonoid glycoside content 

of sorghum. FtFF with MLP alone significantly increased kaempferol glycoside (by 4160%), 

quercetin glucoside (by 3413%), and luteolin glycoside (by 363%), while incorporating 

epicatechin glucoside, which was initially absent in the sorghum and decreasing the 

dihydrokaempfeol glycoside content (by 40%). FtFF with a combination of BFP and MLP 

significantly increased kaempferol glycoside (by 4780%), quercetin glucoside (by 4400%) and 

vitexin (by 50%) while incorporating epicatechin glucoside, which was initially absent in the 

sorghum. Proanthocyanidins were only identified in BFP but were absent in all samples 

fortified with BFP, possibly due to their breakdown following extrusion cooking. 

Concerning extrusion, extrusion cooking consistently reduced the concentration of phenolic 

compounds (total phenolic acids, total phenolic acid esters, total flavonoid aglycones, and total 

flavonoid glycoside), which can be clearly shown when concentrations of total phenolic 

compounds in conventionally cooked sorghum porridge are compared to extruded sorghum 

porridge, Table 3-7.  Various workers have also reported a reduction in phenolic extrusion 

cooking treatment of sorghum (Awika et al. (2003b); (Adarkwah‐Yiadom & Duodu, 2017); 

Dlamini et al. (2007b)), faba bean and kidney bean (Alonso et al. (2000)).  The decrease in 

total phenolic content during extrusion cooking may be ascribed to the binding of phenolic 

compounds with protein (Emmambux & Taylor, 2003) and other cell wall macromolecules 

thereby reducing their extractability (Taylor & Duodu, 2015; Awika et al., 2003a). High-

temperature conditions during extrusion cooking may denature protein and cause it to assume 

a more open structure with exposed sites, which promotes phenolic-protein interaction 

(Dlamini et al., 2007b). 
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3.2.5.3 Assays involving the use of cell tissue cultures. 

For all cell tissue culture assays (Caco-2, 3T3-L1 and RAW264.7), the 1% Conc. hydrochloric 

acid-methanolic phenolic extracts of sorghum-based porridges were tested for cytotoxicity at 

the concentrations used (dilutions with PBS to yield 50 µg/ml in the well for all cell lines). For 

all concentrations of the extracts used, the cells showed a viability of at least 80% for 72 hours, 

indicating minimal cytotoxicity. The concentration that showed tissue culture activity with 

minimal cytotoxicity after 72 hours was a final concentration of 50 µg/ml in the tissue culturing 

well. 

3.2.5.3.1 Cellular antioxidant activity (DCFH-DA assay) 

 

Figure 3-10: Cellular protection (mean ± SEM) against AAPH-induced oxidative damage for 

sorghum-based porridge extracts (diluted in PBS to yield 50 µg/ml in the well) in the Caco-2 

cell line, measured using the DCFH-DA assay. Bars with different letters are significantly 

different, p≤0.05. 
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The cellular antioxidant activities (CAA) based on the Caco-2 cell line model of the sorghum-

based sample extracts were determined. A positive control consisting of Caco-2 cells treated 

with phosphate-buffered saline without the sorghum extracts in the presence of AAPH was 

used to indicate maximum oxidative damage. Extracts from extruded sorghum FtFF with BFP 

alone or in combination with MLP exerted similar CAA to extracts from extruded sorghum 

alone. Extracts from extruded sorghum FtFF with MLP exerted lower CAA (by 10%) 

compared to extracts from extruded sorghum alone. 

Apart from the extract from extruded sorghum FtFF with MLP extracts from all the other 

extruded samples had higher CAA (by up to 11.4%) than the extract from cooked (unextruded) 

sorghum flour. The improvement of CAA by extrusion is probably because extrusion has been 

reported to increase free phenolic compounds while reducing bound phenolic compounds. 

Approximately 80% of sorghum phenolic compounds are linked to arabinoxylans by ester 

bonds, which are capable of resisting the digestion process in the upper gastrointestinal tract, 

compromising their bioaccessibility (Salazar Lopez, Loarca-Piña, Campos-Vega, Gaytán 

Martínez, Morales Sánchez, Esquerra-Brauer, Gonzalez-Aguilar & Robles Sánchez, 2016). 

Extrusion cooking has been reported to increase the proportion of free phenolic compounds 

and thus increase their bioaccessibility (Herrera-Cazares, Luzardo-Ocampo, Ramírez-Jiménez, 

Gutiérrez-Uribe, Campos-Vega & Gaytán-Martínez, 2021). Regarding the effect of MLP, this 

could be attributed to the high content of soluble and insoluble dietary fibre. Zhao, Zhang, 

Dong, Huang, Liu, Deng, Ma, Zhang, Wei and Xiao (2018) reported that insoluble dietary fibre 

decreased free phenolic compounds and increased their bound form in rice. 

Concerning extrusion, CAA indicates significantly higher values in extruded sorghum when 

compared to conventionally cooked sorghum (by 10%). The cell type effect is a function of the 

oxidative status of different cellular compartments (cytoplasm, mitochondria and nucleus) 

(Koren, Zverev, Ginsburg & Kohen, 2008), as well as the rate and degree of absorption, 

metabolism, conjugation and secretion. Literature has documentation of various phenolic 

compounds identified in this study and their role in CAA, including caffeic acid (Fan, Liu, Gao, 

Zhang & Yi, 2018), gallic acid, ferulic acid, luteolin, quercetin, quercetin glycoside, myricetin, 

kaempferol, catechin and epicatechin (Wan, Liu, Yu, Sun & Li, 2015). The antioxidant activity 

ranking of tested compounds in the CAA assay differed from the results in the ORAC assay in 

vitro but was more in agreement with the ranking in the ORAC assay in vitro, demonstrating 

the good biological relevance of the CAA assay developed in this study. Thus, the CAA values 

could be used to predict the antioxidant activity of antioxidants in vivo. 
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3.2.5.3.2 Lipid accumulation in 3T3-L1 cells 

Figure 3-11 shows the effect of sorghum-based porridge phenolic extracts on the formation of 

lipid droplets (prevention) and reduction of lipid droplet size and/or density (treatment). 

Prevention and treatment of lipid droplet formation by phenolic extracts ranged from 25-29% 

and 13-22%, respectively, with no significant differences amongst different treatments 

compared to the control. This was confirmed by microscopic images (Figure 3-12 and Figure 

3-13 ) that showed a reduction in the density of lipid droplets. 

Phenolic compounds identified in the sorghum-based porridges from this study have been 

reported to play a vital role in lipid accumulation at different stages (Aranaz, Navarro-Herrera, 

Zabala, Miguéliz, Romo-Hualde, López-Yoldi, Martínez, Vizmanos, Milagro & González-

Navarro, 2019). The authors indicated that quercetin reduced lipid accumulation along the 

entire incubation period while apigenin and myricetin were active during the onset and 

completion of differentiation. Phenolic acids, including ferulic, gallic and vanillic acids, were 

active in downward lipid accumulation during the onset of differentiation, with only p-

coumaric acid showing downward regulation of lipid accumulation throughout the whole 

differentiation (Aranaz et al., 2019). Aranaz et al. (2019) also reported that the anti-adipogenic 

effect was accompanied by the downregulation of Stearoyl-CoA desaturase-1 and Lipoprotein 

lipase, both relevant in adipogenesis.
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Figure 3-11: Effect of sorghum-based porridge phenolic extracts (diluted in PBS to yield 50 µg/ml in the well) on percentage lipid accumulation, 

compared with differentiated controls. Data are the mean±standard deviation of three independent experiments carried out in triplicate (n=9). 

Different letters indicate significant differences at p<0.05. Error bars indicate standard deviation. 
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Figure 3-12: Effect of sorghum-based porridge phenolic extracts (diluted in PBS to yield 50 µg/ml in the well) on 3T3-L1 adipocyte differentiation 

process, compared with differentiated controls. Phase contrast micrographs of Oil Red O stained differentiated murine (3T3-L1) adipocytes at 40×. 

Bar = 50 μm. 1-Control, 2-Cooked sorghum, 3- Extruded sorghum: a- Prevention of lipid droplet accumulation, b- Treatment of accumulated lipid 
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4 (a) 
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Figure 3-13: Effect of sorghum-based porridge phenolic extracts (diluted in PBS to yield 50 µg/ml in the well) on 3T3-L1 adipocyte differentiation 

process, compared with differentiated controls. Phase contrast micrographs of Oil Red O stained differentiated murine (3T3-L1) adipocytes at 40×. 
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Bar = 50 μm. 4- Extruded sorghum fortified with BFP, 5- Extruded sorghum fortified with MLP, 6- Extruded sorghum fortified with BFP and 

MLP: a- Prevention of lipid droplet accumulation, b- Treatment of accumulated lipid droplets 
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3.2.5.3.3 Nitric oxide (NO) scavenging activity in RAW264.7 cells. 

 

Figure 3-14: Percentage inhibition of LPS-induced nitric oxide production in RAW264.7 

macrophages of sorghum-based phenolic extracts (diluted in PBS to yield 50 µg/ml in the well). 

The bars represent means from three independent experiments ± SEM. Different letters indicate significant differences at 

p<0.05. Error bars indicate standard deviation. 

All extracts showed a significant reduction in NO formed by the cells (Figure 3-14). Extracts 

from extruded sorghum FtFF with BFP reduced NO formation in RAW 264.7 cells by 50% 

relative to the control MLP FtFF extracts resulting in a significantly higher reduction in NO 

than BFP (64%). A combination of MLP and BFP caused the most significant reduction in NO 

formed (78%). Choo, Lee, Nguyen, Lee, Woo, Min and Lee (2015) and Nguyen, Zhao, Lee, 

Kim, Min and Woo (2015) reported that phenolic acid esters (caffeoyl glycerols) reduced NO 

production in RAW 264.7. They further concluded that the suppression of NO production (anti-

inflammatory activity) is predominantly exerted by methyl ester of phenolic acid derivatives 

and not simple methylation or O-methyl substitution of OH group in free phenolic acid 

derivatives (Nguyen et al., 2015). This is consistent with the findings in this study which 

showed that while sorghum and BFP contained phenolic acid esters, MLP had the highest 
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content of phenolic acid esters, thus the high NO inhibition when sorghum was fortified with 

MLP. The higher inhibition observed when a combination of MLP and BFP is consistent with 

the higher content of phenolic acid esters that increased with a combination of the two. 

Concerning extrusion cooking, extruded sorghum showed a lower inhibition of NO when 

compared to conventionally wet-cooked sorghum. This is consistent with the reduction in 

phenolic acid esters following extrusion.  

 

3.2.6 Conclusion 

FtFF of wholegrain sorghum with baobab and moringa, either alone or in combination, 

enhances the TPC, radical scavenging activity (ABTS and ORAC), cellular NO inhibition and 

AGEs but does affect the chemical NO inhibition and adipogenesis in 3T3-L1 cells. 

Fortification with baobab shows no marked significance on CAA, while moringa reduces CAA 

marginally. This could be attributed to the different phenolic compositions of baobab and 

moringa. Extrusion of wholegrain sorghum reduced the TPC, radical scavenging activity 

(ABTS and ORAC), cellular NO inhibition and AGEs but does not affect the chemical NO 

inhibition and adipogenesis in 3T3-L1 cells, while it increases CAA. This may be an indication 

that the prevailing conditions during extrusion cooking, such as high temperature in the 

presence of moisture and intense shear, may break down phenolic compounds, making them 

more active. The results from this study demonstrate the potential for health-promoting 

properties of extruded wholegrain FtFF sorghum in terms of protection against oxidative stress 

and related non-communicable diseases.
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3.3 EFFECTS OF EXTRUSION COOKING AND FOOD-TO-FOOD FORTIFICATION 

ON NUTRITIONAL (IN VITRO STARCH AND PROTEIN DIGESTIBILITY), 

PASTING AND FUNCTIONAL PROPERTIES OF SORGHUM-BAMBARA 

GROUNDNUT-BASED PORRIDGE 

 

3.3.1 Abstract 

Protein-energy malnutrition (PEM) and micronutrient deficiencies remain burdens among 

children in Africa due to monotonous cereal-based diets. Compositing with local pulses such 

as Bambara groundnuts can be a solution. Food-to-food fortification (FtFF) of cereals with 

micronutrient-rich food products has become pivotal in addressing micronutrient deficiency. 

Rapidly urbanising communities in Africa, however, demand convenience-type products. To 

address these needs, the nutritional, physical and functional properties of extrudates of 

composited whole sorghum and whole grain Bambara groundnut flours fortified with baobab 

and moringa leaf powder using a twin screw extrusion cooker were investigated. Moringa leaf 

powder and baobab were used as fortificants either individually or in combination at rates of 

10% of the sorghum-Bambara groundnut composite. This research aimed to establish the 

effects of food-to-food fortification of sorghum-Bambara groundnut composite and extrusion 

moisture on product nutritional, physical and functional properties. This would indicate which 

FtFF porridge could yield nutritionally beneficial products for specific at-risk groups and how 

they could be applied as convenience-type nutritious foods.  

Compositing sorghum with Bambara groundnut increased in vitro protein digestibility (IVPD) 

while reducing the extent of starch hydrolysis, estimated glycaemic index (EGI) and the 

estimated glycaemic load (EGL). Fortification of the composite with moringa leaf powder 

(MLP) and baobab fruit pulp (BFP), whether alone or in combinations, significantly increased 

the total dietary fibre (TDF), resistant starch (RS), and slowly digestible starch (SDS) while 

considerably decreasing rapidly digestible starch (RDS), EGI, and EGL. This was attributed to 

the high antinutrients (phenolic compounds, phytate and dietary fibre) present in the 

fortificants. Extrusion cooking of the composites significantly increased the TDF, IVPD, RDS, 

RS, EGI and EGL while decreasing the SDS.  This was attributed to the conditions of high 

temperature, shear and pressure during extrusion cooking that leads to the degradation of starch 

and proteins, making them more susceptible to enzymatic hydrolysis as well as the reduction 

of antinutrients in the foodstuffs. All composites exhibited a shear-thinning behaviour.  
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FtFF and extrusion cooking of wholegrain sorghum-Bambara groundnut composite porridges 

has the potential to reduce PEM through boosting the protein content and digestibility of 

sorghum (by addition of Bambara groundnut) as well as diet-related noncommunicable 

diseases such as diabetes (through FtFF with BFP and MLP).  

This study highlights the potential of FtFF and extrusion to enhance protein quality and starch 

digestibility of wholegrain-based starchy staple foods. 

Keywords: Food-to-food fortification, Protein, Extrusion, Pasting, Starch, Fibre 
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3.3.1 Introduction 

The Covid-19 pandemic is fuelling the global nutrition crisis and highlighting the importance 

of good nutrition for human health. Sub-Saharan Africa remains the region with the highest 

prevalence of undernutrition (UNICEF/WHO/WBG, 2021). Of the nearly 150 million stunted 

children globally, 41% are in Africa, and 27% of the nearly 46 million children who are 

severely wasted globally are in Africa. Reports show a high prevalence of protein-energy 

malnutrition (PEM) and iron deficiency in Africa among children and manifest in the forms of 

stunting, wasting, and increased disease burden, which often leads to mortality (Micha et al., 

2020). A predominance of poor diets and infectious diseases in developing communities go 

hand-in-hand as causes of these mortalities (Müller & Krawinkel, 2005). Moreover, diet-

related noncommunicable diseases such as diabetes are on the rise, with Africa expected to 

have a prevalence of about 5.2% by 2045 (Sun et al., 2022). Diet plays a crucial role in 

managing both type 1 and type 2 diabetes, with low GI foods being essential in handling it and 

the presence of fibre and resistant starch can reduce the glycaemic load of a food (Zafar, Mills, 

Zheng, Regmi, Hu, Gou & Chen, 2019). The glycaemic load reduction is attributed mainly to 

the diluting effect of fibre and resistant starch on the rapidly digestible starch (RDS), thus 

reducing the amount of RDS (Pugh, Cai, Altieri & Gary Fros, 2023). 

Starchy cereals, roots and tubers are the staple foods of people in sub-Saharan Africa (Gregory 

& Wojciechowski, 2020; Gibson & Hotz, 2001). The monotony of starch possibly explains the 

lack of protein and micronutrients in the diets of children, leading to malnutrition. Sorghum is 

quantitatively a major cereal in sub-Saharan Africa (Taylor, 2019). One of the key values of 

sorghum is that it can grow in poor soils and drought-stricken areas where subsistence farmers 

do not have irrigation systems in place. Nutritionally, however, sorghum is especially poor in 

the essential (indispensable) amino acid lysine (Serna-Saldivar & Espinosa-Ramirez, 2019). 

Furthermore, sorghum protein digestibility is largely reduced on wet cooking to prepare 

traditional foods (Duodu et al., 2003). The low IVPD has been attributed chiefly to the 

disulphide crosslinking of sorghum prolamin proteins, making them resistant to enzyme attack 

(Duodu et al., 2003). 

Food-based strategies, such as dietary diversification, have successfully addressed malnutrition 

(Duodu, Lubaale & Kayitesi, 2021). As animal proteins are costly and scarce in developing 

communities (Ryckman, Beal, Nordhagen, Chimanya & Matji, 2021), incorporating these 

excellent protein sources into children's diets to prevent PEM is sometimes not feasible. 
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Developing cereal and legume composite foods is an excellent dietary diversification strategy 

to improve the protein quality of traditional starchy foods. Compositing has proven to be 

successful in the production of protein-rich foods where sorghum has been composited with 

various legumes (Jadhavar, Jaiswal & Bornare, 2021). Food-to-food fortification is where 

micronutrient-rich food combinations are used to promote the bioavailability of essential 

micronutrients by increasing the nutrient levels and the levels of enhancers and decreasing the 

levels of inhibitors of nutrient bioavailability (Thompson, 2007). Food-to-food fortification (as 

an intervention) with iron-rich products such as moringa has the potential to alleviate iron 

nutritional deficiencies but also increase fibre content and help manage diabetes. Fortification 

with baobab, which is high in tannins, could increase resistant starch and reduce rapidly 

digestible starch (Coe et al., 2013). Moreover, tannins can bind enzymes to starch hydrolysing 

enzymes, thus decreasing the hydrolysis of starch (Giuberti, Rocchetti & Lucini, 2020) 

Bambara groundnut is a drought-tolerant and nutritious indigenous African grain legume 

(pulse) with high protein content but is underutilized (Majola, Gerrano & Shimelis, 2021). Due to 

the Bambara groundnut plants’ nitrogen fixation abilities, it is applied in intercropping and crop 

rotation with other grains such as sorghum (Majola et al., 2021). Being tolerant to low soil 

fertility and low rainfall while rich in high-quality protein makes Bambara groundnuts a 

potential solution to address poor diets, recurring drought and soil degradation in sub-Saharan 

Africa. However, Bambara groundnuts remain utilised mainly by subsistence farmers 

(Pasipanodya, Horn, Achigan-Dako, Musango & Sibiya, 2022). 

The presence of anti-nutritional compounds in sorghum and Bambara groundnuts present 

limitations to the nutritional attributes of these grains. The presence of antinutritional factors 

such as saponins, tannins, phytic acid, gossypol, lectins, protease inhibitors, amylase inhibitor, 

and goitrogens compounds in plant foods inhibits the absorption of nutrients in plant-based diets 

(Suhag, Dhiman, Deswal, Thakur, Sharanagat, Kumar & Kumar, 2021). The rapidly urbanising 

communities of Africa (Blekking, Giroux, Waldman, Battersby, Tuholske, Robeson & Siame, 

2022) lead to fast-paced lifestyles where long food preparation times are burdensome. 

Extrusion cooking is a food processing technology which can be applied to produce a variety 

of convenience-type products from a large diversity of raw materials (Camire, 2001). Extrusion 

cooking is a continuous manufacturing process which applies high heat, pressure and friction 

to break down raw foods into a cooked and pre-gelatinised form (Fellows, 2009). It also 

effectively destroys anti-nutritional compounds and enhances the digestibility of plant proteins 
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(Gu et al., 2022). Extrusion cooking could, therefore, be applied to produce convenience-type 

foods from African grains such as sorghum and Bambara groundnuts. Compositing sorghum 

with Bambara groundnuts could help alleviate protein deficiency in the starch-based diets of 

children. Extrusion of composites could also hold the benefits of improved protein quality. 

The nutritional, physical and functional properties of food-to-food fortified sorghum-Bambara 

groundnut composites fortified with moringa leaf powder and baobab fruit pulp are 

investigated in the current study. The aim is to establish the effects of food-to-food fortification 

of sorghum-Bambara groundnut composite and extrusion moisture on product nutritional, 

physical and functional properties. This will indicate which FtFF porridge could yield 

nutritionally beneficial products for specific at-risk groups and how they could be applied as 

convenience-type nutritious foods.  

 

3.3.2 Materials and methods 

3.3.2.1 Materials 

Red non-tannin sorghum was procured from Mpumalanga Province, South Africa. The grain 

was milled using a hammer mill fitted with a 500 µm mesh size screen. The wholegrain flour 

was stored at 4°C in sealed plastic buckets. Baobab fruit powder was from Nautica Organic 

Trading (Durban, South Africa). Dried moringa leaf powder was from Supa Nutri, Cape Town, 

South Africa. Bambara groundnut was procured from Limpopo Province, South Africa. 

3.3.2.2 Porridge formulations 

The following formulations of sorghum-based flours with fortificants were prepared (figures 

in brackets represent the ratios of the ingredients): 

a. Wholegrain sorghum flour (WSF)+wholegrain Bambara groundnut flour (WBF) 

(70:30) 

b. Wholegrain sorghum flour-Bambara groundnut flour (WSB)+Moringa leaf powder 

(MLF) (90+10) 

c. Wholegrain sorghum flour-Bambara groundnut flour (WSB)+Baobab fruit pulp 

(90+10) 

d.  Wholegrain sorghum flour-Bambara groundnut flour+Moringa+Baobab fruit pulp 

(90+5+5) 
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3.3.2.3 Conventional Wet Cooking 

Deionised water was added to each wholegrain flour along with the flour formulations in a 

ratio of 3:10, flour: water (w/w). The slurry was heated to boiling temperature (95ºC in Pretoria 

with an altitude of 1,339 metres above sea level) and maintained with constant stirring for 25 

min. The slurry was left to cool at ambient temperature, after which it was placed in plastic 

containers and frozen to -20ºC and freeze-dried. Freeze-dried porridge flour was crushed to a 

particle size that passed through a 500 µm opening screen before further analysis. The pre-

cooked porridge flour was stored at 4ºC in double-sealed, airtight plastic bags. 

3.3.2.4 Extrusion cooking  

A co-rotating twin-screw extrusion cooker model TX 32 (CFAM Technologies, Potchefstroom, 

South Africa) (L/D = 21.5:1) was used to produce instant porridge based on the stated 

formulations. The barrel comprised of five heating zones towards the die was set at 

60/70/80/140/140ºC, respectively. Water was fed into the system at a dosing rate of 3 l/h (to 

obtain a final barrel moisture content of 20% calculated based on the moisture content of the 

flours), and the feed rate was 10 kg/h. A die opening of 3 mm was used, and the screw speed 

was maintained at 250 rpm. The extrudates were dried immediately in a force draught oven at 

90ºC for 5 min to a moisture content below 10%. The cooled extrudates were milled using an 

air-cooled analytical mill to a maximum particle size of 500 µm. The milled extrudates were 

stored at 4ºC in double-sealed, airtight plastic bags.  

3.3.3 Analyses 

3.3.3.1 Water absorption capacity and Water solubility index 

The procedure described by (Gujral & Pathak, 2002) was used to determine the water absorption 

and solubility index. Extrudate (2.5 g) was dispersed in 30 mL of distilled water at 30°C for 30 

minutes in a shaking water bath, and the mixture was vortexed every 5 min interval. The sample 

solution was centrifuged at 2490 x g for 15 min, and the supernatant was decanted into an 

aluminium pan of known weight. Water absorption capacity was recorded as the pellet (g) 

weight obtained per gram of dry ground sample. The amount of dry solids recovered after 

evaporating the supernatant in an oven at 100°C overnight was expressed as a percentage of dry 

solids in the sample and defined as the water solubility index. 
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3.3.3.2 Nitrogen solubility index 

The nitrogen solubility index was determined according to the AACC Method 46-23 (AACC, 

2000) with modification. About 1 g flour of each sample was dispersed in 20 mL of 0.1M NaCl 

solution at pH 7 and stirred continuously for 1 hour at 30°C. The suspension was centrifuged 

(9154.3 x g, 15 min, and 4°C), and the supernatant was filtered through a Whatman No. 1 filter 

paper. The residue was re-washed twice in 10 mL of 0.1M NaCl solution at pH 7. The filtrate 

was frozen (-18°C) overnight and freeze-dried (13KL, Instruvac Lyophilizer, Midrand, South 

Africa) for 4 days. The nitrogen content of the freeze-dried sample was determined using a 

Dumatherm (DT, Gerhardt Konigswinter, Germany). The nitrogen solubility index was 

expressed as a percentage of the total nitrogen content of the freeze-dried sample divided by 

the total nitrogen content in the flour sample on a dry basis. 

3.3.3.3 Determination of Total Phenolic Content 

Total phenolic contents were extracted, and content was determined as described by Apea-Bah 

et al. (2016). Approximately 1 g of each dry sorghum-based porridge sample was extracted in 

duplicate using 10 ml acidified methanol (1% (v/v) conc HCl in methanol) by magnetic stirring 

for 2 h. The suspension was centrifuged (Hermle refrigerated centrifuge Z 366 K, New Jersey, 

USA) at 1650 g for 10 min at 4oC and the supernatant was collected. The residue was similarly 

re-extracted twice, each with 10 ml acidified methanol for 30 min. The supernatants were then 

pooled together and stored at -20oC in the dark before analysis. In each well of a 96-well 

microplate, 18.2 μl volume of the sample extract or catechin standard solution (0-0.5 mg/ml) 

was reacted with 36.4 μl 10% Folin-Ciocalteu reagent (diluted with distilled water) and 145.4 

μl of 700 mM sodium carbonate. The reaction mixture was incubated for 2 h in the dark, after 

which absorbance was read at 750 nm using a microplate reader (FLUOstar Omega Filter-

based multi-mode microplate reader, Ortenberg, Germany). Total phenolic content was 

calculated with the aid of the catechin standard calibration curve and expressed as milligrams 

of catechin equivalents per gram (mg CE/g) dry weight basis. 

3.3.3.4 Determination of ABTS radical scavenging capacity 

ABTS radical scavenging capacity of the sorghum-Bambara-based phenolic extracts was 

determined using a modification of the method described by (Apea-Bah et al., 2016). The 

extracts were diluted 10 times with acidified methanol (1% (v/v) conc HCl in methanol). The 

ABTS radical cation stock solution was prepared by reacting equal volumes of 7 mM ABTS 
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salt with 2.54 mM potassium persulphate in distilled water for 12-16 hours at room temperature 

in the dark. A working solution was prepared by diluting the ABTS mother solution with 0.2 

M phosphate-buffered saline at pH (7.4) in the ratio of 1:29. In each well of a 96-well 

microplate, 10 μl of the diluted sample extract extracts or trolox standards (0 - 600 mM 

prepared in acidified methanol) were mixed with 190 ul of the working solution and incubated 

in the dark for 30 min at room temperature (20oC). The absorbance was read at 750 nm using 

a microplate reader (FLUOstar Omega Filter-based multi-mode microplate reader, Ortenberg, 

Germany). With the aid of a Trolox standard calibration curve, the ABTS radical scavenging 

capacity was calculated and expressed as micromole Trolox equivalent per gram sample (μmol 

TE/g) dry weight basis. 

3.3.3.5 In vitro Protein digestibility 

In vitro protein digestibility (IVPD) was determined for the different whole grain, soured flours 

and gruels by the pepsin digestibility method described by Hamaker et al. (1986) modified by 

Da Silva, Taylor and Taylor (2011). In brief, the method involved incubating approximately 

200 mg of the flour for 2 h at 37oC in pepsin suspension (CAS Number 9001-75-6, P7000 

Sigma-Aldrich Pepsin from porcine gastric mucosa, activity ≥250 units/mg solid) prepared by 

dissolving 105 g of the enzyme in 100 ml of pH 2 0.1 M sodium citrate buffer. Protein 

digestibility is defined as the percentage of nitrogen solubilized under the conditions of the 

assay relative to flour's total nitrogen. This was measured in terms of insoluble residual total 

protein content (N x 6.25) determined by Dumas combustion using a Dumatherm (DT N64+, 

Gerhardt Königswinter, Germany) nitrogen analyser. Protein digestibility was calculated by 

the difference between the total protein and the residual protein after pepsin digestion expressed 

as a percentage of the total protein. 

 

3.3.3.6 In vitro kinetics of starch digestibility (IVSD) 

The method, according to (Goñi et al., 1997), was used with slight modification. A sample 

(conventionally wet cooked and extruded) containing 50 mg starch was used per assay, and 1 

mL of boiling water was added to each sample for easy dispersion before 10 mL of HCl-KCl 

buffer (pH 1.5) and 0.2 mL of a solution containing 1 mg of pepsin (Sigma Aldrich P7000-

100G) were added followed by incubation at 40°C for 60 min with constant agitation. Ten (10 

mL) of tris-maleate buffer (pH 6.9) was added, and pH was adjusted with 1M NaOH. The 

volume was made up to 25 mL with tris-maleate buffer, and the 0-minute aliquot of 0.1 mL 
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was taken before the addition of 5 mL tris-maleate buffer (pH 6.9) containing 2.6IU of 

pancreatic α-amylase with an activity of 19.6 units/mg (Sigma-Aldrich A-3176)                     followed by 

incubation at 37°C with constant shaking. Aliquots of 0.1 mL were taken at 5 min and then at 

intervals of 30 min until 3 h. The tubes containing the aliquots taken were placed in boiling water 

for 15 min to inactivate α-amylase. Then, 1 mL of 0.4M sodium-acetate buffer (pH 4.75) and 

90 μL of amyloglucosidase with an activity of 64.7 U/mg (Megazyme E-AMGDF) was added 

and incubated at 60°C for 45 min. Glucose concentration was measured using a glucose 

oxidase-peroxidase kit, and the rate of in vitro starch digestion was expressed as the percentage 

of the total starch digested at time intervals (0, 5, 30, 60, 90, 120 and 180 min). 

The first-order equation proposed by Goñi et al. (1997) was used to describe the kinetics of 

starch hydrolysis: 

𝐶 = 𝐶∞ (1 − 𝑒−𝑘𝑡) 

Where C is the concentration at time t, C∞ is the percentage of starch hydrolyzed after 180 min, 

k is kinetic constant (min-1), and t is time (min). The parameters K and C∞ were estimated 

for each treatment based on the data obtained from the in vitro hydrolysis procedure. The 

equation by (Jaisut, Prachayawarakorn, Varanyanond, Tungtrakul & Soponronnarit, 2008) was 

used to calculate the area under the curve (AUC): 

𝐴𝑈𝐶 = (𝐶∞ (𝑡𝑓−𝑡0) − 𝐶∞/𝐾) (1 − exp(−𝐾(𝑡𝑓−𝑡0))) 

Where tf is the final time (180 min), t0 is the initial time (time 0). The hydrolysis index (HI) 

was defined as the area under the hydrolysis curve of the sample divided by the corresponding 

area of white bread. The estimated glycaemic index was then estimated using the equation 

according to (Goñi et al., 1997): 

𝐸𝐺𝐼 = 39.71 + 0.549𝐻𝐼 

Estimated glycaemic load (EGL) was calculated using the following: 

EGL = EGI × Available Carbohydrate 

 100 

The enzymatic hydrolysis method of (Goñi et al., 1997) was used to obtain the rapidly 

digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) fractions. The 

RDS was defined as the percentage of starch digested at 30 min, the SDS as the percentage of 

starch digested at 120 min, and the RS was defined as the sum of RDS and SDS subtracted from 

the total starch. 
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3.3.3.9 Soluble and insoluble dietary fibre determination 

This was estimated according to AOAC 991.43 (1995) method using the total dietary fibre 

megazyme kit (K-TDFR). Approximately 1 g of the sample was dissolved in 40 mL of mes-

tris (pH 8.2) buffer solution, and thermostable α-amylase with an activity of 3,000 U/ml (E-

AMGDF) was added to hydrolyze starch to dextrins at 100 °C. Protease with an activity of 350 

tyrosine U/ml (E- BSPRT) was used to solubilize protein. Amyloglucosidase with an activity 

of 3,300 U/ml (E- BLAAM) was used to hydrolyze starch fragments to glucose. The sample 

and enzyme mixture was filtered, and the residue was washed with ethanol and acetone to 

obtain the insoluble dietary fibre (IDF) portion. Four volumes of ethanol heated to 60 °C were 

added to the filtrate to precipitate the SDF and were left to stand for 1 hour, after which it was 

filtered. The soluble dietary fibre (SDF) residues were washed with 78%, 95% (v/v) ethanol 

and acetone. The IDF and SDF residues were dried overnight at 100 °C. The SDF and IDF 

residues were corrected for protein and ash for the final calculation of SDF and IDF values. 

3.3.3.10 Pasting Properties 

The pasting properties of all raw and extruded flours were measured using a rheometer 

equipped with a starch pasting cell with Rheoplus software®, (Anton Paar, Ostfilderm, 

Germany). Flour and distilled water suspensions were prepared at 10% solids. During the 

pasting procedure, suspensions were equilibrated at 50 ˚C for 5 minutes, after which heating to 

90 ˚C at a uniform rate of 5°C per min with constant stirring at 160 rpm was applied. The 

heated slurry was held at 91°C for 5 minutes, then cooled to 50°C at 5°C per min. It was then 

held at 50°C for 5 minutes.  

3.3.4 Statistical Analysis 

Each experiment was performed thrice, and multiple analysis of variance was used to determine 

the differences between treatments. Fisher’s LSD test at a 0.05 level of significance was 

applied. Statistica 10 (StatSoft Inc., Tulsa, OK, USA) was used. Fisher’s LSD posthoc test was 

also applied for pair-wise comparison between the control formulation and the treatments.
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3.3.4 Results and Discussion 

3.3.4.1 Nutritional properties 

Wholegrain Bambara groundnut porridge was significantly higher in protein (61% higher), fat 

(21% higher) and ash (minerals) (225% higher) than wholegrain sorghum (Table 3-8). 

Wholegrain sorghum had significantly higher starch (45% higher), insoluble dietary fibre (IDF) 

(30% higher) and total dietary fibre (22% higher). The composition of sorghum is in the ranges 

reported by Bean et al. (2019), while the Bambara groundnut compositions are in the range of 

what was reported by Anhwange & Atoo (2015). 

Sorghum, like most cereals, is dense in starch but limited in the essential amino acid lysine. 

Bambara groundnut, like all legumes, is rich in protein and amino acid-rich but limited in 

sulphur-containing amino acids (Temba et al., 2016). Complementing sorghum with Bambara 

groundnut improves the protein quality of the subsequent food products. Extrusion, due to its 

high temperature, pressure and shear, plays a great role in reducing the antinutrients that are 

rich in grains (Duodu, 2014). 

As expected, compositing sorghum with Bambara groundnut significantly lowered the starch 

content of the composite. Whether alone or in combination, fortification with moringa and 

baobab also resulted in a significant reduction in the starch content (8-21%), probably because 

of the dilution effect of the moringa or baobab replacing the composite flours. Bambara 

groundnuts had higher protein content than sorghum which resulted in a substantial (p≤0.05) 

overall increase in protein (12%) content when compared with wholegrain sorghum (Table 

3-8). Fortification with moringa leaf powder, on the other hand, resulted in a significant 

increase in the protein content of the composite, probably due to the high protein content of 

moringa (29.2%).  As expected, extrusion cooking did not cause a significant difference 

(p≤0.05) in protein contents. Proper Adequate nutrition within the first 1000 days of life (0-23 

months) is critical for optimal physical and cognitive development, with malnutrition leading 

to impaired growth and mortality (Akombi, Agho, Merom, Renzaho & Hall, 2017).  The WHO, 

FAO, and UNU (2007) suggested that the average protein requirement for children aged 2 years 

and between 3-5 years be 0.79 and 0.70 g protein/kg body weight per day, respectively. A 

serving size of 100 g dry base composite porridges could contribute approximately 50-100% 

of this protein requirement. 

Sorghum IDF values were in close range with those reported by Bader Ul Ain, Saeed, Khan, 

Niaz, Khan, Anjum, Tufail and Hussain (2019), while Bambara groundnut values were far 
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below those reported by Tanya, Mbofung and Keshinro (1997) (Table 3-8). Regarding SDF, 

Tanya et al. (1997) reported higher levels of SDF in Bambara groundnut than those found in 

this study (3.5 g/100 g), while sorghum had SDF values close to those reported by Bader Ul 

Ain et al. (2019). As expected, fortification with either moringa or baobab significantly 

increased both the IDF and SDF of the composite porridges (by 22-58% and 81-183%, 

respectively). This was because the IDF and SDF content of baobab (12.95 g/100 g and 42 

g/100 g, respectively) and moringa (38.17 g/100 g and 4.32g/100 g) were significantly higher 

than that of composite porridge. Concerning extrusion cooking, there was a significant decrease 

in the IDF (overall by 16%) content coupled with a corresponding significant increase in the 

SDF (overall by 46%). This can be attributed to the formation of smaller and more soluble 

molecules due to hydrolysis of the glycosidic linkages and disruption of noncovalent bonds in 

polysaccharides by extrusion cooking (Oladiran & Emmambux, 2018, 2017; Spotti & 

Campanella, 2017; Rashid et al., 2015). 

Polyphenolic compounds are considered antinutrients due to their ability to form complexes 

with dietary proteins, enzymes and minerals (Duodu, 2011). In this study, total phenolic content 

(TPC as mg catechin equivalents/g) and antioxidant properties (radical scavenging activity 

against ABTS radical, micromolar Trolox equivalents/g) for individual porridges and 

composites were determined. Sorghum had 1.3 times more phenolics than Bambara groundnut, 

and its antioxidant properties measured as ABTS was lower than that of Bambara groundnut 

(Table 3-8). Phenolic compounds possess antioxidant properties (Duodu, 2011; Awika & 

Rooney, 2004; Rice-Evans, Miller & Paganga, 1997), and as such, the antioxidant properties 

of sorghum and Bambara groundnut are related to the TPC. Compositing Bambara groundnut 

with sorghum resulted in a 26% reduction in the TPC with a corresponding 8% reduction in 

ABTS due to the lower phenolic content of Bambara groundnut. Fortification with baobab and 

moringa, whether alone or in combination, resulted in a significant increase in the TPC (by 

69%, 92% and 117%, respectively) and the ABTS (by 56%, 78% and 94%). The high 

temperature coupled with shear and pressure used in extrusion cooking could lead to 

decarboxylation of phenolic compounds, and high moisture could cause polymerization of 

phenolic compounds, both of which would reduce the extractability of phenolic compounds 

and reduce antioxidant activity (Sharma et al., 2012; Brennan et al., 2011). Furthermore, 

phenolic compounds such as flavonoids can bind to proteins which would reduce their 

extractability (Arts et al., 2002) and, in effect, reduce the TPC and antioxidant activity.  
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A projection of principal components on a principal component bi-plot projecting the 

dependent variables and treatments on a two-dimensional factor plane (Figure 3-15a,b) showed 

that samples FtF-fortified with moringa and baobab whether alone or in combination, were 

correlated with TPC, ABTS, IDF, SDF, TDF and crude ash compared to the unfortified controls 

whether they were extrusion-cooked or conventionally wet cooked. This confirmed the 

findings discussed in Table 3-8, indicating the augmenting effect of FtFF on these properties 

of wholegrain sorghum-Bambara groundnut-based porridges. The biplot revealed that FtFF 

samples were negatively correlated with starch content which reinforced the findings presented 

in Table 3-8 that alluded to a lower starch content in FtF-fortified porridges as a result of the 

diluting effect of the fortificant on the starch content. The plot also revealed a greater 

correlation between conventionally wet cooked porridges with TPC, ABTS, IDF, and total 

starch, compared to their extruded counterparts which were correlated with SDF and TDF, 

confirming findings presented in Table 3-8. This illustrated the effect of extrusion on dietary 

fibre and starch and the potential for modifying properties of wholegrain sorghum-based 

porridges essential for managing several chronic NCDs such as type 2 diabetes. 
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Table 3-8: Effects of compositing, extrusion cooking and food-to-food fortification (with baobab fruit pulp and moringa leaf powder) on the proximate composition of wholegrain sorghum-Bambara groundnut composite 

Treatment Formulation Total Starch (%) Crude Protein 

(%) 

Crude fat (%) Crude Ash (%) IDF (%) SDF (%) TDF (%) TPC (mg/g) ABTS 

(mmolTE/g) 

Moisture 

Content 

Cooked 

Samples 

Wholegrain Sorghum-Bambara 60.01gh±2.46 13.79b±0.01 2.31bc±0.11 2.62b±0.04 9.46bc±1.61 1.99ab±0.49 11.45bc±1.05 2.99b±0.25 30.13d±0.11 5.27d±0.08 

Wholegrain Sorghum-

Bambara+Baobab 

55.91f±2.15 13.13b±0.18 2.48bc±0.20 2.62bcd±0.04 12.93e±0.01 5.01d±0.02 17.94d±0.03 5.48f±0.33 49.53±0.97 3.60c±0.18 

 Wholegrain Sorghum-

Bambara+Moringa 

52.08ef±2.23 15.06d±0.20 3.16c±1.55 2.90cd±0.06 14.03f±0.52 3.61c±1.87 17.64d±1.20 6.14g±0.45 54.11±4.19 2.32b±0.24 

 Wholegrain Sorghum-

Bambara+Baobab+Moringa 

52.91ef±3.32 14.12c±0.38 1.54ab±0.37 2.85cd±0.48 14.90f±0.64 5.63de±0.48 20.53e±1.12 7.11h±0.16 61.58±1.26 1.75a±0.15 

Extruded 

samples 

Wholegrain Sorghum-Bambara 60.16g±2.51 13.64b±0.19 1.63ab±0.72 2.32b±0.04 8.87b±1.31 3.16c±0.02 12.03c±1.51 2.38a±0.09 14.85a±1.11 8.23g±0.05 

 Wholegrain Sorghum-

Bambara+Baobab 

55.79f±1.89 14.15bc±0.94 1.25a±0.49 2.53bc±0.15 10.57c±0.02 7.01f±0.73 17.58d±0.75 3.63c±0.18 20.78b±1.89 7.76f±0.16 

 Wholegrain Sorghum-

Bambara+Moringa 

52.63ef±3.44 15.66d±.04 1.74ab±0.82 2.95d±0.17 11.51d±0.33 5.78e±0.03 17.29d±0.36 4.18d±0.16 25.95c±2.46 7.14e±0.04 

 Wholegrain Sorghum-

Bambara+Baobab+Moringa 

42.60cde±7.93 14.49cd±0.16 1.92ab±0.70 2.76cd±0.24 12.24e±0.41 7.74f±0.01 19.98e±0.42 4.57e±0.31 25.62c±3.55 7.07e±0.10 

1Values are the means±SD of at least two samples of each formulation analyzed independently in triplicate (n=6). Values within the same column followed by different letters are significantly different (p<0.05).  
2For each dependent variable (phytate, TPC), the means of each treatment (conventionally cooked, extruded) with different superscript lowercase letters in a row differ significantly (p<0.05) by pairwise comparison 
3Means of each treatment (conventionally cooked, extruded) with different superscript uppercase letters in a column differ significantly (p<0.05) 
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Projection of the variables on the factor-plane (  1 x   2)
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Figure 3-15: Principal component analysis showing 1×2 factor coordinate plots of dependent variables (total phenolic content-TPC, 2,2′-azino-bis(3-ethylbenzothiazoline-6-

sulphonic acid)-ABTS radical scavenging activity,  crude protein-CP, crude fat-CF, crude ash-CA, total starch-TS, insoluble dietary fibre-IDF, soluble dietary fibre-SDF, 

total dietary fibre-TDF, moisture content-MC), A, and independent variables (fortification and processing technique-wet-cooking and extrusion), B. 
Key: CSA-Cooked Sorghum-Bambara, CBA- Cooked Sorghum-Bambara+Baobab co-cooked, CMA- Cooked Sorghum-Bambara+Moringa, CGA- Cooked Sorghum-Bambara+Moringa+Baobab co-cooked, 

ESA- Extruded Sorghum-Bamabara, EBA- Extruded Sorghum-Bambara+Baobab co-cooked, EMA- Extruded Sorghum-Bambara+Moringa, EGA- Extruded Sorghum-Bambara+Moringa+Baobab co-cooked 
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3.3.4.3 In vitro Starch kinetics and protein digestibility 

The effects of fortification on starch digestibility before and after extrusion cooking on 

sorghum-Bambara groundnut composite porridges are shown in Figure 3-16 and the derived 

parameters, C∞, HI, K, RDS, SDS, RS, EGI and EGL, in Table 3-9. The in vitro starch 

digestibility parameters, C∞, HI, K, and RDS with lower SDS (Table 3-9), were generally higher 

within extruded porridges than in the conventionally wet cooked porridges. This is more likely 

due to the dextrinization and depolymerization of starch, which occurred during the extrusion, 

making starch more readily accessible for enzymatic hydrolysis (Alonso et al., 2000). 

Extrusion-cooked porridges also had significantly higher RS than conventionally wet-cooked 

porridges. The slightly higher content of RS in extruded porridges could be attributed to the 

retrogradation of starch during the storage of the porridges during storage (resistant starch type 

III) (Alsaffar, 2011; Chanvrier, Uthayakumaran, Appelqvist, Gidley, Gilbert & López-Rubio, 

2007). Another possible cause could be that the increased solubilization of fibre (section 

3.3.4.1) could result in the entrapment of the starch molecules in the SDF matrix rendering it 

inaccessible for enzymatic degradation (resistant starch I) (Brennan, Blake, Ellis and Schofield, 

1996; Oladiran and Emmambux, 2017; Oladiran and Emmambux, 2018). Another possible 

explanation could be that the process of extrusion resulted in the formation of amylo-lipid 

complexes (resistant starch V) that are resistant to enzymatic breakdown  (Panyoo & 

Emmambux, 2017) owing to the relatively high-fat content of Bambara groundnut. 

The total starch digested for the sorghum-Bambara groundnut composite was significantly 

(p≤0.05) lower than that of sorghum flour for both extruded and conventionally cooked 

porridge. This was expected since Bambara groundnut showed lower digested total starch when 

compared to sorghum. The compositing of sorghum with Bambara groundnut significantly 

(p≤0.05) lowered the C∞, hydrolysis index (HI), K, estimated glycaemic index (EGI) and 

estimated glycaemic load (EGL) of the composite porridge (by 8%, 15%, 26%, 6% and 15% 

respectively). The reduction in these starch digestion parameters could be due to the interaction 

between proteins in Bambara groundnut with the starch in sorghum. Proteins can enfold 

themselves around starch and act as a barrier to the enzymatic hydrolysis of starch (Yang, 

Zhong, Goff & Li, 2019). These findings were supported by starch digestion fractions data that 

showed a decrease in rapidly digestible starch (RDS) (by 19%) and an increase in resistant 

starch (RS) (by 9%).  
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Fortification with baobab and moringa alone and in combination significantly (p<0.05) 

decreased the IVSD whether alone or in combination (Figure 3-16) in both conventionally wet 

cooked and extruded porridges as shown by a lower C∞, HI, K, EGI and EGL (Table 3-9) 

whether conventionally wet cooked or extruded with meals fortified with a combination of 

baobab and moringa showing the lowest of these parameters.  These effects following 

fortification with baobab and moringa, either alone or in combination, could be attributed to 

the high phenolics and fibre content of both as well as the high phytate content in moringa 

(Section 3.1). While baobab had the highest phenolic and total dietary fibre (the majority of it 

being soluble) contents, moringa had the highest phytate content (Section 3.1). In studying the 

glycaemic index and α-amylase activity of different rice cultivars, Kumar, Sahu, Panda, 

Biswal, Sah, Lal, Baig, Swain, Behera and Chattopadhyay (2020) reported decreased 

glycaemic index and α-amylase activity in varieties with high phytic acid content. Thompson 

and Yoon (1984) reported reduced wheat starch hydrolysis when phytic acid was incorporated. 

The mechanism of impediment of starch digestion could be directly by binding starch in the 

cell wall matrix or binding starch hydrolysing enzymes (Selle, Cowieson, Cowieson & 

Ravindran, 2012). Deshpande and Salunkhe (1982) reported that phenolic compounds like 

tannic acid and catechin interacted with the starch of legumes and potatoes as well as amylose 

and amylopectin, resulting in a reduction in the in vitro starch digestibility. Thompson and 

Yoon (1984) reported similar effects of tannic acid and catechin on wheat starch hydrolysis. 

Coe et al. (2013) confirmed these findings when in vivo, incorporating baobab in white bread 

reduced the glycaemic response and rapidly digestible starch. Brennan, Merts, Monro, 

Woolnough and Brennan (2008) reported a reduction of starch digestibility when gaur gum and 

wheat brain were incorporated in wheat bread, results that were consistent with Jenkins, 

Wolever, Thorne, Jenkins, Wong, Josse and Csima (1984)’s findings. Yağcı and Göğüş (2009) 

also reported a reduction in starch digestibility when various food by-products were added to 

rice grits and durum flour. Brennan et al. (2008) suggested that fibre may directly hinder 

digestion by limiting contact between starch and digestive enzymes. 

Similarly, Brennan, Blake, Ellis and Schofield (1996), Oladiran and Emmambux (2017), and 

Oladiran and Emmambux (2018) suggested that gelatinized and disrupted starch granules could 

be within soluble fibre matrix, and this would reduce starch digestibility due to limited access 

by starch degrading enzymes to the substrate. Other mechanisms of reduction of starch 

hydrolysis have been suggested to be starch-phenolic complexes formed through hydrogen and 

hydrophobic interactions that make the starch inaccessible to the enzymes (Sun & Miao, 2020; 
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Amoako & Awika, 2016; Zhu, 2015). Other mechanisms have been the interaction of phenolic 

compounds with starch hydrolysis enzyme at the active site inhibition (Lv, Zhang, Li, He, Hao 

& Dai, 2019; Sun, Gidley & Warren, 2018; Liu, Hu, Zhang, Zhang, Wang, Qian & Qi, 2017) 

The results of in vitro protein digestibility (IVPD) are presented in Table 3-9. Compositing 

sorghum with Bambara groundnut significantly increased the IVPD (by 44%). These findings 

are consistent with Patil, Rudra, Varghese and Kaur (2016), who reported that the incorporation 

of legumes in wheat showed a significant increase in IVPD. The high IVPD of Bambara 

groundnuts is probably due to its more soluble globulin-type proteins (Yagoub & Abdalla, 

2007) as opposed to the less soluble kafirins predominant in sorghum (Duodu et al., 2003). In 

conventionally wet-cooked composite porridges, fortification with either moringa or baobab 

had no significant effect on the IVPD. However, on extrusion, fortification with baobab, 

whether alone or in combination with moringa, increased the IVPD (by 12-16%). Fortification 

with moringa alone still did not affect the IVPD when extruded. Extrusion cooking led to an 

overall 34% higher IVPD and amount of digestible protein when compared to conventionally 

wet-cooked composite porridges. The reduction of phenolic content and phytate content that 

are known to bind proteins could also explain the increase in IVPD in extruded porridge, as 

extruded porridges showed reduction in phenolic and phytate content. Previous research has 

indicated that the presence of antinutritional compounds can decrease the protein digestibility 

(Park, Kim & Baik, 2010).  Patil et al. (2016) observed a double increment in IVPD when 

wheat-based flour was extruded. Moreover, the heat and shear of extrusion cooking are thought 

to disrupt the protein bodies of sorghum, exposing the α-kafirins to proteolytic attack (Hamaker 

et al., 1994). The α-kaffirins are thought to be more digestible than the β- and γ- kaffirins and 

is possibly related to the higher digestibility of α-kaffirins, especially after extrusion cooking.  

For greater visibility of the effects of the dependent variables on the independent variables, a 

projection of dependent variables and treatments on a principal component bi-plot was 

prepared (Figure 3-17a,b). The plot revealed that samples FtF-fortified with moringa and 

baobab, whether alone or in combination, were correlated with reduced IVSD indices (RS and 

SDS). In contrast, the unfortified controls were correlated with higher starch digestibility 

indices (C∞, HI, K, EGI and EGL) further affirming the findings presented in Table 3-9, thus 

showing a negative effect of FtFF on the IVSD.  On close inspection of the biplot, it was 

observed that extrusion cooked porridges were correlated with IVPD and the indices of high 

starch digestibility. In contrast, conventionally wet-cooked samples were correlated with 

indices of reduced IVSD. An agreement with the role of extrusion in improving the IVPD and 
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IVSD in Table 3-9. Notably, while generally, extruded porridges correlated with indices of 

high IVSD, the FtFF porridges showed lesser correlation than the unfortified controls. These 

porridges could be essential in managing type 2 diabetes.
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Table 3-9: Effects of compositing, extrusion cooking and food-to-food fortification (with baobab fruit pulp and moringa leaf powder) on the starch kinetics, starch fractions, in vitro protein and starch digestibilities of 

wholegrain sorghum-Bambara groundnut composite 

Formulations 

C͚ (%) HI (%) K (min-1) RDS (%) SDS (%) 

Conventionally 

cooked 

Extrusion 

cooked 

Conventionally 

cooked 

Extrusion 

cooked 

Conventionally 

cooked 

Extrusion 

cooked 

Conventionally 

cooked 

Extrusion 

cooked 

Conventionally 

cooked 

Extrusion 

cooked 

Wholegrain Sorghum-Bambara 50.54±0.49f A 61.19±1.50hB 45.35±0.49fA 49.24±0.16gB 0.13±0.01cA 0.29±0.01eB 38.89±1.25gA 43.16±0.50iB 7.21±1.60cB 1.37±0.87aA 

Wholegrain Sorghum-

Bambara+Baobab 40.07±0.80cA 49.04±1.05fB 31.18±0.87cA 38.10±1.22eB 0.01±0.00aA 0.02±0.00bB 9.45±1.34abA 22.19±1.05deB 29.77±2.27gB 13.24±1.85dA 

Wholegrain Sorghum-

Bambara+Moringa 39.23±0.57cA 44.52±0.86eB 30.13±0.53cA 35.54±0.25dB 0.01±0.00aA 0.02±0.00bB 11.79±2.59bA 20.84±1.01dB 26.94±2.16fgB 15.27±0.14dA 

Wholegrain Sorghum-

Bambara+Baobab+Moringa 32.89±1.40bA 40.09±0.70cB 22.68±0.45aA 30.47±0.12cB 0.01±0.00aA 0.02±0.00bB 7.93±0.28aA 15.19±1.41cB 24.17±0.56fB 14.44±1.41dA 

Formulations RS (%) EGI (%) EGL (%) 

IVPD (%)-Amount of digestible 

protein per 100 g sample 

 

Wholegrain Sorghum-Bambara 53.90±0.34bA 55.48±0.38cB 64.61±0.27eA 66.74±0.10fB 39.28±0.08ghA 42.90±2.89hA 44.59±1.08bA 57.58±1.22dB   

Wholegrain Sorghum-

Bambara+Baobab 60.78±0.94dA 64.57±0.79eB 56.83±0.48bA 60.63±0.67dB 33.34±0.08eA 33.92±0.17eA 45.96±2.36bcA 66.02±3.38eB 

  

Wholegrain Sorghum-

Bambara+Moringa 61.27±0.43dA 63.88±0.14eB 56.25±0.29bA 59.22±0.14cB 31.06±0.11deA 33.42±0.17eA 49.08±4.39cA 55.61±2.90dB 

  

Wholegrain Sorghum-

Bambara+Baobab+Moringa 67.90±0.28gA 70.62±0.35hB 52.16±0.23aA 56.44±0.10bB 29.53±0.15cA 28.34±0.92bcA 45.01±1.39bA 64.57±1.03eB 

  

1Values are means ± standard deviations of 3 independent experiments. 
2Values within the same column followed by different letters are significantly different (p<0.01) 
3For each dependent variable (C∞, HI, K, RDS, SDS, RS, EGI, EGL, IVDP), the means of each treatment (conventionally cooked, extruded) with different superscript lowercase letters in a row differ significantly (p<0.05) by pairwise comparison 
4Means of each treatment (conventionally cooked, extruded) with different superscript uppercase letters in a column for each dependent variable differ significantly (p<0.05) 
5C∞ = % starch digested after 180 min, RDS- rapidly digestible starch, SDS- slowly digestible starch, RS- resistant starch, HI- hydrolysis index, EGI-estimated glycaemic index, EGL- estimated glycaemic load, IVPD- in vitro protein digestibility 
6HI, k and GI were calculated from the equation: 𝐴𝑈𝐶= (𝐶∞ (𝑡𝑓−𝑡0)− 𝐶∞/𝐾) (1−exp (−𝐾(𝑡𝑓−𝑡0) EGL per g solids was estimated as EGI*S/100 where S is starch content (g/100g solids) White bread was used as the reference for calculating EGI 
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Figure 3-16:  Effects of compositing, extrusion cooking and food-to-food fortification on the kinetics of starch digestion of wholegrain sorghum-Bambara composite
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Figure 3-17: Principal component analysis showing 1×2 factor coordinate plots of dependent variables (% starch digested after 180 min- C&, rapidly digestible 

starch- RDS, slowly digestible starch-SDS, resistant starch-RS, hydrolysis index-HI, estimated glycaemic index-EGI, estimated glycaemic load-EGL, in vitro protein 

digestibility-IVPD), A, and independent variables (fortification and processing technique-wet-cooking and extrusion), B. 
Key: CSA-Cooked Sorghum-Bambara, CBA- Cooked Sorghum-Bambara+Baobab co-cooked, CMA- Cooked Sorghum-Bambara+Moringa, CGA- Cooked Sorghum-Bambara+Moringa+Baobab 

co-cooked, ESA- Extruded Sorghum-Bamabara, EBA- Extruded Sorghum-Bambara+Baobab co-cooked, EMA- Extruded Sorghum-Bambara+Moringa, EGA- Extruded Sorghum-

Bambara+Moringa+Baobab co-cooked 
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3.3.4.4 Pasting and functional properties 

Pasting viscosities of wholegrain sorghum-based composite porridges are shown in Figure 

3-18, Figure 3-19 and Table 3-10. All porridges indicated shear-thinning behaviour indicating 

their ability to be used as weaning foods. Foods that are thick and pasty are difficult for infants 

to process orally, and thus their nutrient intake is limited with several weaning foods available 

in Africa, resulting in PEM (Makame, De Kock & Emmambux, 2020).  Overall, including 

Bambara groundnut in sorghum caused a significant decrease (p≤0.05) in maximum viscosity, 

trough viscosity and final viscosity for both conventional and extrusion-cooked porridge. The 

pasting viscosity reduction corresponds with previous studies when Bambara groundnuts were 

added to sorghum (Muller, 2017). This was due to the decrease in the starch content of the 

sorghum when Bambara groundnut was included, and starch is the main food biopolymer that 

contributes to pasting viscosity (Sarker, Elgadir, Ferdosh, Akanda, Aditiawati & Noda, 2013).  

Fortification with either moringa or baobab, alone or in combination, significantly reduced the 

maximum viscosity and trough viscosity during heating for conventional and extrusion-cooked 

porridges. This reduction in maximum and trough viscosity could be a function of the high 

content of insoluble dietary fibre in the moringa and baobab and, thus, a lower starch content. 

The apparent viscosity of non-starch polysaccharides depends on ionically charged groups, 

molecular weight, the concentration of dietary fibre, surrounding structures (Caprita & Caprita, 

2011) and pH (Guillon & Champ, 2000).  

Notably, the final viscosity of conventionally cooked porridge for all fortified flours with 

moringa and baobab was significantly higher than that of composite flour alone.  The final 

pasting viscosity after cooling to 50 ºC is essentially a three-dimensional network of 

intertwined amylose molecules incorporating dispersed swollen and ruptured starch granules 

(Langton & Hermansson, 1989). In the current system (Table 3-10 and Figure 3-18, Figure 

3-19), the final viscosity is a combination of cooked starch from sorghum and Bambara 

groundnut, denatured protein from sorghum and Bambara groundnut, and the soluble/insoluble 

dietary fibres from moringa and Baobab containing some minerals and vitamins depending on 

the treatment. The higher final viscosity of conventionally cooked samples with moringa and 

baobab (both high in fibre) could suggest that the three-dimensional network is strengthened 

by the presence of the soluble dietary fibre in moringa and baobab.  

Extrusion cooking also caused a decrease in maximum, trough, and final paste viscosities. This 

was previously found in the extrusion cooking of sorghum (Mahasukhonthachat et al., 2010). 
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The decrease in pasting viscosity during extrusion was due to starch dextrinization and 

depolymerisation (Lai & Kokini, 1991) and depolymerization of fibre (Brennan et al., 2008). 

The depolymerized polysaccharides may lower final viscosity during cooling because of lower 

molecular weight/short-chain polymers contributing to lower hydrodynamic volumes. The 

ability to increase the viscosity of solutions depends on the hydrodynamic volume of the 

polysaccharide. A large hydrodynamic volume results in increased viscosity at low 

concentrations (Lovegrove, Edwards, De Noni, Patel, El, Grassby, Zielke, Ulmius, Nilsson & 

Butterworth, 2017). Relatively lower chain length molecules, due to depolymerization, have 

lower hydrodynamic volume. 

Fortification with either moringa or baobab did not significantly affect the NSI; however, 

extrusion cooking significantly decreased the NSI (by 78%) Table 3-10. Hot, moist conditions 

in extrusion cooking probably caused exposure of hydrophobic protein cores (Camire, 1991) 

and polymerization (via disulphide bonds) after unfolding of the protein matrix during protein 

denaturation (Chen, Wei & Zhang, 2011), which could reduce protein solubility.  

Fortification with baobab caused no significant changes in the WAI or WSI of conventionally 

wet cooked sorghum-Bambara groundnut porridge but significantly decreased the WAI (by 

30%) and increased the WSI of extruded sorghum porridge and (by 52%) (Table 3-10). 

Fortification with moringa caused a significant reduction in the WAI of the composite porridge 

that was conventionally wet cooked (by 39%) but did not affect the WSI. The reduction could 

be attributed to the high content of insoluble dietary fibre in moringa. 

The significantly lower (p≤0.05) WAI and higher WSI following fortification with baobab 

could be explained by the dextrinization/depolymerisation of starch polymers due to the severe 

cooking conditions at low extrusion moisture caused by high friction, pressure and heat (Pham 

& Del Rosario, 1984). Dextrinised starch is more soluble than conventionally cooked starch 

(Altan, McCarthy & Maskan, 2008). 

Extruded composite porridges fortified with moringa had a significantly higher WAI when 

compared to the conventionally wet-cooked porridge compared to other extruded composites 

with baobab. This can be attributed to an increase in the partially depolymerised dietary fibre 

component of moringa. An increase in WAI can be due to modification of the insoluble dietary 

fibre. Extrusion cooking under high mechanical energy can also defibrillate and reduce the size 

of dietary fibre, exposing more hydroxyl groups to bind water (Menegassi, Pilosof & Arêas, 

2011). 
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A presentation of the results from Table 3-10 in a projection of dependent variables and 

treatments on a principal component bi-plot (Figure 3-20a,b) revealed that samples extruded 

porridges FtF-fortified with moringa and conventionally wet cooked porridges FtF-fortified 

with baobab were correlated with WAI, NSI, initial viscosity, and trough viscosity. The plot 

also revealed that extruded porridges FtF-fortified with baobab alone or with moringa and 

conventionally wet-cooked porridges fortified with moringa alone and with baobab correlated 

with WSI, NSI, maximum viscosity, and final viscosity which confirmed the findings presented 

in Table 3-10. This demonstrates the effect of FtFF on increasing WSI, NSI, maximum 

viscosity, trough viscosity, and final viscosity and, thus, potential application in producing 

porridges with prolonged gastric emptying. Concerning the cooking method, the biplot showed 

that extrusion cooked porridges correlated with WAI, WSI and initial viscosity. In contrast, 

conventionally wet-cooked porridges correlated with NSI, maximum viscosity, trough 

viscosity and final viscosity, further confirming the findings discussed in Table 3-10. The PCA 

lays bare the negative effect of extrusion cooking on viscosity, WSI and WAI and its potential 

application in delivering nutrient-dense yet less viscous foods. 
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Table 3-10: Effects of compositing, extrusion cooking and food-to-food fortification (with baobab fruit pulp and moringa leaf powder) on some functional and pasting properties of wholegrain sorghum-Bambara 

groundnut composite 

Formulations 

Initial Viscosity (mPa·s) Maximum Viscosity (mPa·s) Trough Viscosity (mPa·s) Final Viscosity WAI (g/100g) 

Conventionally 

cooked 

Extrusion cooked Conventionally 

cooked 

Extrusion cooked Conventionally 

cooked 

Extrusion 

cooked 

Conventionally 

cooked 

Extrusion 

cooked 

Conventionally 

cooked 

Extrusion 

cooked 

Wholegrain Sorghum-

Bambara 8.25±0.22aA 105.37±4.53eB 1203.00±5.00hB 167.00±1.00dA 776.20±7.20hB 96.23±1.20dA 588.73±6.14dB 96.32±2.33cA 4.21±0.53dA 4.18±0.44dA 

Wholegrain Sorghum-

Bambara+Baobab 12.32±4.26aA 93.43±4.66dB 1133.00±63.00gB 85.00±1.00bA 711.80±20.44gB 39.69±0.30bA 1133.33±63.52fB 63.58±0.55bA 3.48±0.92cdA 2.94±0.08bcA 

Wholegrain Sorghum-

Bambara+Moringa 10.45±1.12aA 51.00±3.69bB 1168.00±13.00ghB 112.00±3.00cA 603.97±19.35fB 60.75±2.82cA 959.17±8.81eB 93.32±2.33cA 2.56±0.33abA 3.94±0.37cB 

Wholegrain Sorghum-

Bambara+Baobab+Moringa 9.26±0.40aA 84.86±3.54cB 1058.00±39.00fB 63.00±2.00aA 560.73±20.43eB 33.39±0.35aA 560.73±20.43dB 51.23±0.58aA 2.52±0.09aA 2.79±0.05abA 

Formulations WSI (g/100g) NSI (%)    

Wholegrain Sorghum-

Bambara 9.15±1.19bcA 16.01±0.76fB 15.77±1.34deB 3.46±0.0.25abA     

  

Wholegrain Sorghum-

Bambara+Baobab 10.33±0.57cA 24.35±1.61hB 17.41±1.6eB 3.37±0.24abA     

  

Wholegrain Sorghum-

Bambara+Moringa 10.78±0.72cdA 14.05±0.34eB 12.42±2.15cdB 2.91±0.50aA     

  

Wholegrain Sorghum-

Bambara+Baobab+Moringa 11.84±0.45dA 23.59±1.03gB 14.80±0.73dB 2.88±0.15aA     

  

1Values are means ± standard deviations of 3 independent experiments. 
2Values within the same column followed by different letters are significantly different (p<0.01) 
3For each dependent variable (Initial, peak and trough viscosities, WAI-Water absorption index, WSI-Water solubility index, NSI, Nitrogen solubility index), means of each treatment (conventionally cooked, extruded) with different superscript lowercase letters 

in a row differ significantly (p<0.05) by pairwise comparison 
4Means of each treatment (conventionally cooked, extruded) with different superscript uppercase letters in a column for each dependent variable differ significantly (p<0.05)
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Figure 3-18: Effects of compositing, extrusion cooking and food-to-food fortification (with baobab fruit pulp and moringa leaf powder) on the 

pasting curves of wholegrain sorghum-Bambara groundnut flours 
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Figure 3-19: Effects of compositing, extrusion cooking and food-to-food fortification (with baobab fruit pulp and moringa leaf powder) on the 

pasting curves of wholegrain sorghum-Bambara groundnut flours
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Figure 3-20: Principal component analysis showing 1×2 factor coordinate plots of dependent variables (initial viscosity-IV, tough viscosity-TV, maximum 

viscosity-MV, Final viscosity-FV, water absorption-WAI, water solubility index-WSI, nitrogen solubility index-NSI), A, and independent variables 

(fortification and processing technique-wet-cooking and extrusion), B. 
Key: CSA-Cooked Sorghum-Bambara, CBA- Cooked Sorghum-Bambara+Baobab co-cooked, CMA- Cooked Sorghum-Bambara+Moringa, CGA- Cooked Sorghum-

Bambara+Moringa+Baobab co-cooked, ESA- Extruded Sorghum-Bamabara, EBA- Extruded Sorghum-Bambara+Baobab co-cooked, EMA- Extruded Sorghum-Bambara+Moringa, EGA- 

Extruded Sorghum-Bambara+Moringa+Baobab co-cooked 
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3.3.5 Conclusions 

Including wholegrain, Bambara groundnut flour with wholegrain sorghum flour increases the 

protein content and improves IVPD. A serving size of 100 g dry base composite porridges 

could contribute approximately 50-100% of the daily protein requirements of children between 

2-5 years, alluding to possible application in the mitigation of PEM. Extrusion-cooked 

porridges showed lower polyphenols and phytate contents, both of which are antinutrients 

translating into improved IVPD and IVSD, thus strengthening the potential for implementation 

in managing PEM. Extrusion and Bambara groundnut inclusion reduce extrudate peak, trough 

and final pasting viscosities, which could increase nutrient density per gram of composite 

porridge when the flours are applied as porridges. Sorghum-Bambara groundnut composite 

flour extruded at low extrusion moisture could yield nutrient-dense instant porridge flour. The 

positive nutritional improvement and promising physical and functional qualities of composite 

flours extruded at low extrusion moisture produce extrudates which are potentially suitable as 

convenience-type products. The reduction observed in the starch digestibility and EGI of 

sorghum-Bambara groundnut composite fortified with baobab fruit pulp and moringa leaf 

powder is a result of changes in functional and rheological properties of fortificants during 

extrusion cooking. This study, therefore, demonstrates that food-to-food fortification with 

moringa and baobab could be added to locally available food crops to produce food products 

suitable for the management of nutrition-related diseases such as type 2 diabetes.
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Chapter 4 : GENERAL DISCUSSION 

The general discussion is divided into two sections. The first section is a critical review of the 

experimental design and methodologies used in this study, focusing on the challenges faced 

and the strengths and weaknesses of the experimental approach used in the research, leading to 

recommendations for future research. The second section discusses the significant findings in 

this research, particularly concerning the effect of food-to-food fortification (with baobab and 

moringa) and extrusion cooking on iron bioaccessibility, phenolics and antioxidant properties, 

in vitro digestibility (protein and starch digestibility) as well as pasting properties of sorghum-

based porridges. 

 

4.1 METHODOLOGY 

4.1.1 Selection of raw materials 

This study used whole-grain sorghum, moringa leaf powder, baobab fruit pulp powder, and 

whole-grain Bambara groundnut. These are all locally available food crops, some of which are 

indigenous and drought tolerant. Therefore, they are crucial for food security, particularly in 

sub-Saharan Africa, which informed the choice to study them in this research. The sorghum 

used was a red non-tannin type (type 1), which was preferred because of the negative effect of 

tannins on nutritional quality (Sharma, Kumar, Kaur, Tanwar, Goyal, Sharma, Gat & Kumar, 

2021). Moringa leaves are high in micronutrients, including iron (Moyo et al., 2011) and 

therefore could be explored for the potential to tackle iron-deficiency anaemia. Baobab fruit 

pulp is high in organic acids such as citric and ascorbic acids (Adetola et al., 2019) that are 

well-known mineral bioaccessibility enhancers (Iyengar et al., 2010; Lönnerdal, 2000). All 

these foods are also rich in phenolic compounds that can potentially prevent certain NCDs 

(Duodu & Awika, 2019).  

Fortification of the sorghum-based porridges in this research at a rate of 6 g/100 g was informed 

by previous studies that showed that the addition of mineral-rich foodstuffs such as moringa 

beyond a certain threshold (30%) resulted in no significant effect on mineral bioaccessibility 

(Van der Merwe et al., 2019).  
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4.1.2 Analytical Methods 

4.1.2.1 Phytate Determination 

In this research, the method used to determine phytate was the one defined by Fruhbeck et al. 

(1995). Phytates are extracted from the sample using 0.066 M HCl, which dissociates the 

phytate from the plant matrix. Anion-exchange purification is used to remove the non-phytate 

phosphate. This is necessary as the spectrophotometric determination measures the total 

amount of phosphate in the sample. The phosphate complexes with ferric chloride and 

sulphosalicylic acid exhibiting maximum spectrophotometric absorbance at a wavelength of 

500 nm. The major drawback of this method is the possibility of inaccuracy due to large and 

varying degrees of iron (III) adsorption onto the phytate complex (Wu, Tian, Walker & Wang, 

2009), leading to possible over or underestimation. This can be addressed by using 

chromatography techniques. These allow for direct measurement of the phytates in the sample 

rather than the estimation using indirect methods like the one employed. However, 

chromatography techniques are expensive and time-consuming, and this method offers a rapid 

way of estimating the phytate content of plants. 

4.1.2.3 Total phenolic and antioxidant activity determination 

The Folin-Ciocalteu assay of Singleton and Rossi (1965) was used to determine the total 

phenolic content and radical scavenging against ABTS●+ [2,2´-azinobis (3-ethyl-

benzothiazole-6-sulphonic acid)] was used to determine the antioxidant properties of the 

sorghum-based porridges. The methods are both based on reduction-oxidation reactions 

involving electron transfer. The Folin-Ciocalteau assay involves oxidation of the phenolate ion 

under alkaline conditions (Romulo, 2020; Shahidi & Zhong, 2015; Waterman & Mole, 1994), 

and the ABTS radical scavenging assay involves electron transfer to the ABTS•+ radical cation 

(Nwachukwu, Sarteshnizi, Udenigwe & Aluko, 2021; Shahidi & Zhong, 2015). While the 

assays are simple, convenient and reproducible, they lack specificity (measuring all reducing 

compounds) and are of relatively weak physiological relevance as radicals formed in ABTS do 

not exist in physiological systems (Nwachukwu et al., 2021; Shahidi & Zhong, 2015).  A 

possible way of accounting for potential interferences from non-phenolic reducing substances 

(such as ascorbic acid present in the plant materials) is by determining their contribution to 

total phenolic content and subtracting the values obtained from the gross total phenolic content. 

However, this could be a rather long and cumbersome approach. Perhaps a more realistic 
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approach to adopt in phenolics research would be to combine the Folin-Ciocalteu assay with 

other more specific methods for the determination of phenolic compounds, such as HPLC or 

LCMS, as was done in this research.  To mimic more physiologically relevant radicals, the 

ORAC and NO assays were also performed. 

Nitric oxide (NO•) and ORAC are physiologically relevant as the reactive nitrogen species 

(produced in NO in the NO scavenging assay) and the peroxyl radical (ROO•) (produced in 

ORAC) occur in physiological systems (Nwachukwu et al., 2021). The mechanism of the NO• 

assay is based on the competitive binding of NO• by antioxidants preventing its oxidation to 

nitrates or nitrites (Gülçin, 2012), while ORAC involves a reaction of peroxyl radicals (ROO•) 

with a fluorescent probe to form a non-fluorescent product quantified by monitoring loss in 

fluorescence (Prior et al., 2005). The limitations of the NO• assay are that NO• is unstable and 

needs to be generated in situ for each analysis (Jayachandra et al., 2012) and the possibility of 

different intermediate products from the oxidation of NO to nitrite, i.e. NO2, N2O3, N2O4 and 

ONOO- interfering with the results by interactions with phenolic extracts (Marcocci et al., 

1994). The requirement of sophisticated and expensive equipment (Awika et al., 2003b) in 

ORAC assay is its only major limitation. 

In this research, samples were tested for their ability to protect human adenocarcinoma cells 

(Caco-2 cells) against oxidation by AAPH-induced peroxyl radicals using the DCFH-DA 

assay. The assay employs dichlorofluorescein diacetate (DCFH-DA), a cell-permeable dye, 

which in the presence of cellular esterases, is deacetylated, forming non-fluorescent DCFH 

(Blasa et al., 2011). In the presence of radicals such as ONOO-, NO• and peroxyl radicals, the 

DCFH oxidises to a fluorescent derivative DCF, and on the addition of a sample containing 

antioxidants, the antioxidants quench the radicals and block the conversion of DCFH to DCF 

in the Caco-2 cells (Blasa et al., 2011; Wolfe & Liu, 2007). The decrease in cellular 

fluorescence when compared to the control cells is indicative of the cellular antioxidant 

capacity of the antioxidant compounds. The limitation of this assay is that exposure of DCFH-

loaded cells to light in the presence of oxygen causes photo-reduction of DCFH, causing 

continuous oxidation as free radicals can be generated continuously contribute (Wolfe & Liu, 

2007).  In this research, this limitation was overcome by performing the test in the absence of 

light and using an opaque 96-well plate to contain the DCFH-loaded cells. 

The phenolic content of plants has been directly linked to their antioxidant activity (Rice-Evans 

et al., 1997). While the Folin-Ciocalteu TPC assay provides a rapid and inexpensive means of 
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estimating the phenolic content of plants, it should be coupled with methods such as LCMS 

and antioxidant assays such as ABTS, ORAC, and NO inhibition for the certainty of the 

findings. Notwithstanding this, TPC was shown to be highly correlated with the LCMS data 

and antioxidant properties in this study (Section 3.2), indicating the reliability of the assay. 

 

4.1.2.4 Determination of organic acids  

Two main organic acids (ascorbic acid and citric acid) were of interest in this research, and 

these were determined using reversed-phase HPLC. For ascorbic acid in particular, an 

important factor which needed to be taken into consideration, especially during the extraction 

phase, was its extreme susceptibility to oxidation (Hooper & Ayres, 1950). For this reason, 

extraction of ascorbic acid from plant tissues for analysis is commonly done with acid solvents, 

as was done in this research with the use of metaphosphoric acid. It has been shown that 

metaphosphoric acid preserves ascorbic acid in atmospheric conditions (Musulin & King, 

1936). 

 

4.1.2.6 In vitro iron dialysability determination as a measure of iron bioaccessibility 

As a measure of bioaccessibility, the in vitro dialysability assay (conducted as shown in Figure 

4-1) is limited as it cannot assess the rate of absorption or transport kinetics of minerals. 

Furthermore, it cannot measure the actual amount of nutrients at the site of absorption 

(Etcheverry et al., 2012). In this research, an essential feature of the in vitro dialysability assay 

which needed to be noted is that some of the iron which diffuses into the dialysis bag 

immediately becomes insoluble due to the higher pH of the dialysate. There is, therefore, the 

potential for underestimation of the amount of soluble iron (Van Campen & Glahn, 1999). This 

could likely be an intrinsic weakness of the assay as the high pH of the medium within the 

dialysis tubing is required because of the requirement to simulate the duodenal conditions of 

the digestive tract. 

Nonetheless, the dialysability assay remains a useful measure of iron (or nutrient) 

bioaccessibility and has been found to have a reasonable agreement with human absorption 

studies (Etcheverry et al., 2012). Dialysable iron values from a study performed by Luten et 

al. (1996) had good similarity in terms of ranking and magnitude with non-haem iron 

absorption values from a human subject study. For future research, more sophisticated gut 

digestion models, such as the computer-controlled gastrointestinal model (TIM) system 
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developed by The Netherlands Organization for Applied Scientific Research (TNO), could be 

considered. This system simulates conditions in the human stomach, duodenum, jejunum and 

ileum (Minekus, Marteau, Havenaar & Veld, 1995), including dynamic aspects such as the 

simulation of peristaltic movements. This gastrointestinal model has a much greater in vivo 

predictive value than other in vitro systems, such as the mineral dialysability assay (Minekus, 

2015). 
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Figure 4-1: Illustration of the in vitro dialyzability assay to assess iron bioaccessibility 
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4.1.2.7 Estimation of in vitro iron bioaccessibility using Caco-2 cells 

In this research, in vitro iron bioaccessibility was also determined by the estimation of iron 

uptake in terms of ferritin formation by Caco-2 cells. The assay procedure is illustrated in 

Figure 4-2. This assay can provide more information than bioaccessibility studies alone, such 

as the impact of food or nutrient components on the absorption rate and efficiency and possible 

competition at the absorption site (Glahn et al., 2002). The Caco-2 cell assay has been validated 

against human absorption of iron data and showed a significant correlation found (Au & Reddy, 

2000). The Caco-2 cell model is thus a useful technique to assess human iron absorption as 

well as iron and zinc bioavailability from various food combinations (Garcia, Flowers & Cook, 

1996). 
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Figure 4-2: Estimation of iron bioaccessibility using Caco-2 cells 
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4.1.2.8 Advanced glycation end-products (AGEs) determination 

AGEs result from spontaneous post-translational modification of proteins or amino acids 

through reducing sugars via Maillard-type reactions or nonenzymatic glycation (Yeh et al., 

2017) (Figure 4-3). Consumption of foods containing excessive levels of AGEs formed during 

processing and storage has been implicated in several disorders and their associated 

complications, such as diabetes mellitus, kidney complications, tumour development and 

malignancy, Alzheimer’s disease, atherosclerosis, and chronic heart failure (Sadowska-Bartosz 

& Bartosz, 2016; Uribarri et al., 2015). In this research, the effect of phenolic extracts on the 

formation of AGEs was determined using the fluorescence spectroscopy method described by 

Siddiqui et al. (2016), where methylglyoxal and bovine serum albumin act as precursors for 

the formation of AGEs. The treatments are prepared in sterile centrifuge tubes in a sterile 

environment to minimize contamination before incubation at 37 ºC for 7 days, after which 

fluorescence is measured at emission and excitation wavelengths of 330 nm and 420 nm, 

respectively. Spectrofluorimetric detection is simple and rapid but has a major drawback in that 

it cannot detect the majority of non-fluorescent AGEs, and in addition, it is not specific for 

fluorescent AGEs; hence non-AGE fluorescent compounds can interfere with measurement 

(Corica et al., 2021). More specific analytical chromatography techniques could be useful in 

identifying fluorescent AGEs to back up the spectrofluorimetric data. 
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Figure 4-3: Different pathways of advanced glycation end products (AGEs) formation. The Figure schematically depicts the  Maillard reaction 

leading to AGE formation through the initial reaction between reducing sugars and the free amino group of a protein through the stages of Schiff 

base and Amadori product formation. The Figure also illustrates the many other different pathways that may lead to the formation of AGEs, even 

in the absence of glucose.
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4.1.2.9 Cellular anti-inflammatory activity-lipopolysaccharide assay 

The RAW264.7 murine cell line is an important tool for in vitro study of inflammation 

(Murakami et al., 2020), which is conducted by monitoring the production of NO by the cells. 

In this research, anti-inflammatory effects were studied by determining the ability of phenolic 

extracts to prevent NO accumulation in lipopolysaccharide- (LPS) induced RAW264.7 cell 

macrophages. A major challenge encountered while working with RAW264.7 cells was their 

sensitivity to the enzyme mix used to dislodge them from the tissue culturing plate before 

subculturing or plating. This was resolved by using a cell scraper rather than the enzyme mix. 

While these techniques are a cheap and rapid indicator of physiological activity, a weakness in 

this study was that the extracts used did not undergo in vitro digestion prior to analysis. This is 

mainly because this section did not focus on in vitro digestion attributes, but this could be 

explored in future research. 

 

4.1.2.10 Cellular lipid droplet reduction in 3T3-L1 cells 

3T3-L1 cells were used in this study to study the potential antiadipogenic properties of the 

sorghum-based porridge phenolic extracts. The growth and differentiation of the 3T3-L1 cells 

were carried out using the method described by Zebisch et al. (2012). Owing to their ability to 

be stained by oil Red-O dye (Kwan et al., 2017), this dye was used to quantify lipids by 

extracting the dye from the cells with 60% isopropanol, and absorbance was then measured at 

520 nm. Laboratory studies indicate that the antiobesity effects of polyphenol-rich diets may 

be attributed to the ability of polyphenols to interact, directly or indirectly, with adipose tissues 

(pre-adipocytes, adipose stem cells and immune cells) (Wang et al., 2014). One main drawback 

found when using the oil Red-O dye in this research was that some undifferentiated cells were 

also stained. This was because the dye attached to certain components of the cells could lead 

to an overestimation of the adipocyte content. Exploring alternative types and concentrations 

of the solvents for the oil Red-O dye could help resolve this. Kinkel, Fernyhough, Helterline, 

Vierck, Oberg, Vance, Hausman, Hill and Dodson (2004) found that 99% isopropanol was 

effective in selective staining of 3T3-L1 differentiated cells with oil Red-O dye.  
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4.2 KEY RESEARCH FINDINGS 

One of the significant findings from this study is that extrusion cooking of sorghum-based 

porridges resulted in an increase in ferritin formation in Caco-2 cells. Specifically, Caco-2 cells 

treated with extruded instant sorghum porridge exhibited greater ferritin formation (higher iron 

uptake) than cells treated with conventionally cooked sorghum porridge. This finding suggests 

that extrusion cooking enhances iron bioavailability in sorghum porridge. This was possibly 

due to the reduced mineral bioaccessibility inhibitors, phytate and polyphenols by the extrusion 

cooking process. Several studies suggest that phytate can be degraded by extrusion cooking 

into lower inositols such as inositol-penta, tetra, tri, di and monophosphate (Watson et al., 

2019), as illustrated in Figure 4-4. The mineral binding capacity of phytate is reduced as 

phosphate groups are removed from the higher inositol phosphates to form lower inositol 

phosphates (Sandberg, Brune, Carlsson, Hallberg, Skoglund & Rossander-Hulthén, 1999; 

Persson, Türk, Nyman & Sandberg, 1998; Kaufman & Kleinberg, 1971). 
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Figure 4-4: Dephosphorylation of phytate during extrusion cooking 
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This study also showed that FtFF had an effect on the iron bioaccessibility of sorghum-based 

porridges, with the nature of the effect being dependent upon whether moringa leaves or baobab 

fruit pulp was used for the fortification. FtFF with moringa, whether alone or in combination 

with baobab, resulted in major reductions in bioaccessible iron measured by the in vitro iron 

dialysability assay [bioaccessible iron content (BIC) and percentage bioaccessible iron (PBI)]. 

In contrast, BIC and PBI were significantly increased when baobab was co-processed 

(extrusion-cooked or conventionally wet-cooked) with whole-grain sorghum. As explained, 

baobab contains high levels of organic acids, which can chelate iron and keep it in the soluble 

form required for absorption (Iyengar et al., 2010; Lönnerdal, 2000). As described, ascorbic 

and citric acid reduces iron from its F3+ to its Fe2+ form, thereby keeping it soluble and in a 

bioavailable form (Mackenzie & Garrick, 2005). This difference in effect on iron 

bioaccessibility depending on whether fortification was done with moringa or baobab was also 

reflected, to some extent, concerning ferritin formation in the Caco-2 cell assay. Co-extruded 

sorghum porridges fortified with moringa and baobab showed significantly lower ferritin 

formation in Caco-2 cells when compared to ferritin formation in Caco-2 cells, with the 

sorghum porridge alone, with the effect of moringa being significantly greater than baobab 

alone. 

The results from this research have also provided evidence that sorghum-based porridges may 

have health-promoting properties in terms of offering protection against diet-related NCDs. 

This is important given the growing concern about NCDs, such as cancer, diabetes and obesity 

in sub-Saharan Africa (Awika & Rooney, 2004).  

All the porridges exhibited the ability to protect against oxidative stress through their 

antioxidant properties, either by in vitro radical scavenging effects or by their display of 

antioxidant activity in Caco-2 cells. FtFF enhanced the radical scavenging properties of the 

porridges, which is an indicator that compared to the unfortified sorghum porridge, the FtFF 

porridges may provide better protection against oxidative stress.  
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Figure 4-5: Summary of the role of phenolic compounds in protecting against oxidative stress 

in Caco-2 cells ex vivo (Furger, 2021). 

 

In exhibiting antioxidant properties and hence the potential ability to protect against oxidative 

stress, the results indicated that there could be some additive effects. The antioxidant capacity 

(ABTS, ORAC and cellular antioxidant activity in Caco-2 cells, (Figure 4-5)) observed when 

baobab and moringa were combined was significantly higher than those when the individual 

foods were used as fortificants, whether extrusion- or conventionally wet-cooked. This could 

be attributed to a possible synergistic effect of the phenolic compounds present in each. 

Hajimehdipoor, Shahrestani and Shekarchi (2014) studied the effects of different combinations 

of phenolic compounds and reported higher antioxidant activities when certain combinations 

of flavonoids and phenolic acids were made. In this study, moringa was particularly high in 

phenolic acids and their esters, while baobab was high in flavonoids (section 3.2.5.2.2). 

The degree of hydroxylation in phenolic acids is important with respect to antioxidant activity. 

Generally, the greater the number of hydroxyl groups in the phenolic structure, the higher the 

radical scavenging capacity (Marinova & Yanishlieva, 2003; Van den Berg, Haenen, Van den 

Berg, Van der Vijgh & Bast, 2000). Moringa and baobab were particularly high in the phenolic 
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acids protocatechuic acid and gallic acid. More hydroxyl groups on a phenolic compound 

provide more sites for radical scavenging.  

Concerning flavonoids, moringa was rich in quercetin, which has a unique structure comprising 

a 2,3 double bond in combination with a 3-hydroxy group on the C ring, Figure 4-6. These 

structures have higher antioxidant activity because the resonance stabilization for electron 

delocalization across the flavonoid molecule is increased (Rice-Evans, Miller & Paganga, 

1996). These unique structures could account for the higher antioxidant activities of porridges 

fortified with moringa and baobab, whether alone or in combination.  

 

Figure 4-6: Flavonoid structure showing some of the relevant structures for antioxidant activity 

(hydroxylation at the meta-position on the C-ring, an ortho group at the para-position of the C-

ring and a double bond between position 2 and 3 of the C-ring) 

Sorghum porridges fortified with baobab and moringa, whether alone or in combination, 

consistently showed greater inhibition of NO production in LPS activated RAW264.7 

macrophages, an indication of enhanced anti-inflammatory activity of the fortified sorghum 

porridges compared to the unfortified porridges.  In reviews of the role of phenolics in the 

prevention of inflammation, Conforti and Menichini (2011) and Shahidi and Yeo (2018) 

summed up the role of phenolic compounds as interrupting the pathways involved in the 

activation of inducible nitric oxide synthase (iNOS), an enzyme that catalyses the production 

of NO, thus preventing the activation of nuclear factor kappa-B (NF-κB), a protein transcription 

factor that increases the production of inflammatory cytokines. Phenolic compounds can also 

inhibit the iNOS enzyme itself (Figure 4-8). The phenolic compounds identified in this study 

have been shown to suppress inflammation through this mechanism, such as caffeic acid (Chao, 

Mong, Chan & Yin, 2010; Da Cunha, Duma, Assreuy, Buzzi, Niero, Campos & Calixto, 2004),  

naringin (Chtourou, Aouey, Aroui, Kebieche & Fetoui, 2016), rutin (Kamel, Abd El‐Raouf, 

Metwally, Abd El‐Latif & El‐sayed, 2014), quercetin (Hämäläinen, Nieminen, Vuorela, 
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Heinonen & Moilanen, 2007; Kim, Cheon, Kim, Kim & Kim, 1999), apigenin (Ju, Kang, Bae, 

Pae, Lyu & Jeon, 2015; Kim et al., 1999), kaempferol (Devi, Malar, Nabavi, Sureda, Xiao, 

Nabavi & Daglia, 2015; M Calderon-Montano, Burgos-Morón, Pérez-Guerrero & López-

Lázaro, 2011; Hämäläinen et al., 2007), naringenin (Hämäläinen et al., 2007), and luteolin 

(Kim et al., 1999).  

Moringa was exceptionally high in 3- and 4-coumaroyl quinic acids and 3- and 4-feruloyl 

quinic acids, which were absent in sorghum. In a study of the anti-inflammatory properties of 

roots and rhizomes, Wu, Wei, Yang, Zhang, Xu, Yang, Zhong, Liu and Yang (2017) reported 

enhanced inhibition of NO production in LPS-activated RAW264.7 macrophage when a 

feruloyl group was present in phenolic acid esters than when p-hydroxyl or cinnamoyl groups 

were present. Suppression of NO production (anti-inflammatory activity) is predominantly 

exerted by methyl esters of phenolic acid derivatives and not simple methylation or O-methyl 

substitution of the OH group in free phenolic acid derivatives (Nguyen et al., 2015) (Figure 

4-7a and b). On the other hand, Baobab contained significantly higher amounts of quercetin 

and apigenin, which may account for its higher inhibition of NO production. There is a 2,3 

double bond in both apigenin and quercetin and a 3-hydroxyl group in quercetin, Figure 4-6. 
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Figure 4-7: Core structures of the methyl esters of coumaric acid (a) and benzoic acid 

derivatives (b) 
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Figure 4-8: Summary of the role of phenolic compounds in the inhibition of cellular NO 

production in RAW264.7 macrophages (Serreli et al., 2019). 

This research used inhibition of AGEs, reduction in starch digestibility and reduction in the 

glycaemic index as indicators of anti-diabetic activities. With all these indicators, FtFF 

produced enhanced the anti-diabetic activities of the porridges.  

An increase in the inhibition of AGEs was observed with FtFF of whole-grain sorghum using 

baobab and moringa, whether alone or in combination, which may be related to the observed 

increase in the concentration of phenolic compounds following FtFF with moringa and baobab. 

Figure 4-9 illustrates how phenolic compounds could inhibit the formation of AGEs in the 

human body and thus exert anti-diabetic properties. Several different phenolic compounds have 

been demonstrated to prevent AGEs formation through various mechanisms. These include the 

trapping of reactive carbonyl species such as methylglyoxal (Chen, Huang, Hwang, Ho, Li & 

Lo, 2014; Gutierrez, 2012; Wu, Huang, Lin & Yen, 2011; Peng, Cheng, Ma, Chen, Ho, Lo, 



 

178 

 

Chen & Wang, 2008) by the phenolic compound, (Figure 4-9). According to Shao, Bai, He, 

Ho, Yang and Sang (2008), this function is highly dependent on the hydroxyl group at position 

2 of the A ring (for flavonoids) as they reported slower trapping of methylglyoxal and glyoxal 

when phloretin (a dihydrochalcone) was glycosylated at position 2 to form phloridzin. 

Moreover, both compounds were more reactive than lysine and arginine in trapping reactive 

carbonyl groups indicating a competitive action in the prevention of AGEs by flavonoids with 

the A-ring (Shao et al., 2008).  

Other mechanisms by which phenolic compounds inhibit the formation of AGEs are inhibition 

of the formation of Amadori products (Chompoo, Upadhyay, Kishimoto, Makise & Tawata, 

2011; McIntyre, Harris, Saleem, Beaulieu, Ta, Haddad & Arnason, 2009; Yoshikawa, 

Pongpiriyadacha, Kishi, Kageura, Wang, Morikawa & Matsuda, 2003), trapping already 

formed α-dicarbonyl compounds, glycation of amino groups (Mesías, Navarro, Gökmen & 

Morales, 2013; Wang & Ho, 2012; Chompoo et al., 2011; McIntyre et al., 2009; Hsieh, Lin, 

Yen & Chen, 2007; Sang, Shao, Bai, Lo, Yang & Ho, 2007; Lo, Li, Tan, Pan, Sang & Ho, 

2006), exhibiting antioxidant activity against free radicals formed during glycation (McIntyre 

et al., 2009; Ardestani & Yazdanparast, 2007) and reduction of protein carbonyl and thiol 

oxidation (Ardestani & Yazdanparast, 2007), (Figure 4-9). The phenolic compounds identified 

in this study, such as chlorogenic acid, gallic acid, quercetin, rutin, catechin, and coumaric acid, 

among others, have been implicated in playing a role in the inhibition of AGEs (Anwar, Khan, 

Almatroudi, Khan, Alsahli, Almatroodi & Rahmani, 2021; Khan, Liu, Wang & Sun, 2020; 

Khangholi, Majid, Berwary, Ahmad & Abd Aziz, 2016). As mentioned earlier, moringa was 

exceptionally high in phenolic acid esters, coumaric acid, gallic acid and rutin, while baobab 

was high in rutin and catechin. 
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Figure 4-9: Summary of the role of phenolic compounds in the inhibition of advanced glycation end products (AGEs) in the human body
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FtFF with baobab and moringa alone and, in combination, decreased the in vitro starch 

digestibility and the estimated glycaemic index of both conventionally wet cooked and 

extruded porridges. These effects following fortification with baobab and moringa, either alone 

or in combination, could be attributed to both the high phenolics and fibre content of both and 

the high phytate content in moringa (Section 3.1). Tannins and flavonoids interact with starch, 

reducing in vitro starch digestibility (Coe et al., 2013; Thompson & Yoon, 1984; Deshpande 

& Salunkhe, 1982). Coe et al. (2013) reported similar findings in in vivo research where 

incorporating baobab fruit pulp in white bread reduced the glycaemic response and rapidly 

digestible starch in human participants. Soluble dietary fibre has been reported to reduce starch 

digestibility (Yağcı & Göğüş, 2009; Brennan et al., 2008; Brennan et al., 1996; Jenkins et al., 

1984). Brennan et al. (2008) suggested that fibre may directly hinder digestion by limiting 

contact between starch and digestive enzymes. Previously, Brennan et al. (1996) suggested that 

gelatinized and disrupted starch granules could be entrapped within the soluble fibre matrix, 

and this would reduce starch digestibility due to limited access by amylase enzymes. 

Furthermore, starch-phenolic complexes formed through hydrogen and hydrophobic 

interactions can make the starch inaccessible to the enzymes (Sun & Miao, 2020; Amoako & 

Awika, 2016; Zhu, 2015). Lastly, the interaction of phenolic compounds with amylase enzymes 

at their active sites could also be a cause for inhibition (Lv et al., 2019; Sun et al., 2018; Liu et 

al., 2017) 

The porridges showed the ability to prevent and reduce adipocyte formation, indicating their 

potential anti-obesity activities. Extracts from all the porridges showed effective prevention 

and treatment of adipocytes, with no evidence of effects of fortification or extrusion cooking. 

This prevention and treatment of adipocytes are indicative of the different roles played by the 

different phenolic compounds in the lipid droplet formation and treatment process. According 

to Aranaz et al. (2019), different types of phenolic compounds identified in the sorghum-based 

porridges in this study have differing effects at various stages of the lipogenesis process, which 

could account for the lack of significant differences between the different treatments (FtFF and 

extrusion). Phenolic compounds have been reported to exert antilipogenic properties through 

various mechanisms. Apigenin is believed to activate 5' adenosine monophosphate-activated 

protein kinase (AMPK), resulting in reduced lipolytic and adipogenic gene expression (Ono & 

Fujimori, 2011). Catechin and kaempferol act by enhancing adiponectin expression, which 

enhances glucose uptake ex vivo (Lee, Rao, Chen, Lee & Tzeng, 2009; Cho, Park, Shin, Kim, 

Shin, Shin, Lee, Lee, Baik & Lee, 2007). Myricetin and quercetin reduce the accumulation of 
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triglycerides, and rutin down-regulates the adipogenic transcription factors PPARγ and 

C/EBPα (Chang, Tzeng, Liou, Chang & Liu, 2012; Yang, Della-Fera, Rayalam, Ambati, 

Hartzell, Park & Baile, 2008; Choi, Park, Choi & Lee, 2006). While cellular lipid studies can 

be used as an indicator of human physiological activity, studies that show a correlation between 

these two are lacking, presenting a limitation. 

Figure 4-10, Figure 4-11, and Figure 4-12 highlight the key findings of this research concerning 

the overall effects of FtFF with moringa leaf powder, whether alone or in combination with 

baobab fruit pulp and extrusion cooking on the nutritional and health-promoting potential of 

whole-grain sorghum-based porridges and their potential applications. While moringa could be 

used as a fortificant to increase iron content, it leads to reduced iron bioavailability due to its 

high levels of anti-nutritional factors. Fortification with moringa, however, produces porridges 

with enhanced potential health benefits in terms of possibly providing protection against diet-

related NCD due to the high phenolic content of moringa. Fortification with baobab, on the 

other hand, produces porridges with enhanced iron bioaccessibility (probably as a consequence 

of its high content of organic acids) and potentially enhanced health benefits. Based on these 

findings, it is useful to investigate the extent to which both moringa and baobab could be used 

together optimally to achieve enhanced iron bioavailability and health benefits regarding 

protection against NCDs.  Extrusion cooking as a processing technique could be used to 

produce instant cereal-based porridges with improved iron bioavailability and health benefits.  
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Figure 4-10: Schematic showing major findings concerning FtFF of sorghum-based porridges 

with moringa leaf powder. RS-resistant starch, RDS- Rapidly digestible starch, GI-estimated glycaemic index, AGEs- 

Advanced glycation end-products, TPC-total phenolic content, ABTS-2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), 

ORAC-Oxygen Radical Absorbance Capacity, NO-Nitric oxide 
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Figure 4-11: Schematic showing major findings following FtFF of sorghum-based porridges 

with baobab fruit pulp powder. RS-resistant starch, RDS- Rapidly digestible starch, GI-estimated glycaemic index, 

AGEs- Advanced glycation end-products, TPC-total phenolic content, ABTS-2,2′-azino-bis(3-ethylbenzothiazoline-6-

sulfonic acid), ORAC-Oxygen Radical Absorbance Capacity 
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Figure 4-12: Schematic showing major findings following extrusion cooking of FtF-fortified 

sorghum. RS-resistant starch, TPC-total phenolic content, ABTS-2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), 

ORAC-Oxygen Radical Absorbance Capacity, NO-Nitric oxide 
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CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 

Sorghum-based porridges FtF-fortified baobab fruit pulp (BFP) had higher iron bioaccessibility 

measured as percentage bioaccessible iron (PBI). However, fortification with moringa leaf 

powder (MLP) significantly reduced the PBI and bioaccessible iron content (BIC). This 

indicates that the type of plant foodstuff used for FtFF has an effect on the resultant iron 

bioaccessibility obtained. The increase in PBI following fortification with BFP could be 

attributed to the high content of organic acids (citric and organic acids) in the BFP that are 

well-known mineral bioaccessibility enhancers. BFP is also low in phytate, a mineral 

bioaccessibility inhibitor that could account for the improvement in PBI. On the other hand, 

MLP is high in mineral bioaccessibility inhibitors, namely, polyphenols, calcium and phytate. 

Polyphenols and phytate form insoluble complexes with iron, and stable, insoluble complexes 

can be formed between iron, phytate and calcium, which has the overall effect of reducing 

bioaccessible iron. These findings confirmed the first hypothesis of this study and highlight 

FtFF with baobab fruit pulp, an essential investigation in this study, as a novel technique for 

improving iron bioaccessibility. The application of FtFF presents iron deficiency at-risk 

communities within sub-Saharan Africa (where sorghum and baobab are prevalent) with a 

sustainable strategy for improving iron bioaccessibility, an important aim of this research 

study. 

Extrusion-cooked instant sorghum-based porridges had increased ferritin formation by Caco-2 

cells when compared to conventionally wet-cooked porridges, which is indicative of an 

enhancing effect of extrusion cooking on iron bioaccessibility and uptake. This is mainly due 

to the ability of extrusion cooking to reduce the contents of the mineral bioaccessibility 

inhibitors phytate (probably by dephosphorylation) and polyphenols (probably by 

degradation). Instant sorghum porridges fortified with BFP produced higher ferritin formation 

in Caco-2 cells than porridges where MLP is used for FtFF. This is a further indication of the 

importance of the role of the type of plant foodstuff used for FtFF in mineral bioaccessibility. 

This was critical because it further confirmed the first hypothesis of this study, place extrusion 

cooking and instant products at the centre of addressing iron deficiency through potentially 

improving iron bioaccessibility. This study provides a novel application for measuring the 

effect of extrusion cooking on iron bioaccessibility using a physiological system, a combination 

of in vitro iron dialysability and ferritin formation by Caco-2 cells. This is the first research 
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undertaken to show the augmenting effect of extrusion cooking on ferritin formed by Caco-2 

cells treated with digested wholegrain sorghum porridge extracts. 

FtFF of wholegrain sorghum-based porridges with BFP and MLP enhanced health-promoting 

properties of sorghum-based porridges in terms of radical scavenging activity (ABTS and 

ORAC) (protection against oxidative stress), cellular nitric oxide (NO) inhibition (anti-

inflammatory properties) and inhibition of advanced glycation end products (AGEs) formation 

(anti-diabetic properties). The observed enhanced health-promoting properties can be related 

to the enhanced levels of various bioactive phenolics in the sorghum-based porridges after 

FtFF. These bioactive phenolics range from phenolic acids and phenolic acid esters to 

flavonoids and flavonoid glycosides. Phenolic extracts from the sorghum-based porridges 

show protection against AAPH radical-induced oxidation in Caco-2 cells, an indication of their 

potential ability to protect against radical-induced oxidative stress. These findings confirm the 

second hypothesis of this study, presenting a novel angle of exploring FtFF with baobab and 

moringa aimed at augmenting the phenolic profile and health-promoting profile of wholegrain 

sorghum-based porridges in communities at-risk of contracting chronic diet-related NCDs. 

Studies exploring in vivo and human methods should be further explored to drive the potential 

application in curbing chronic diet-related NCDs. 

Extracts from all the sorghum-based porridges reduced in vitro chemical formation of NO, an 

indication of their potential to contribute to alleviating radical-induced inflammation. Cellular 

inhibition of NO production in RAW264.7 macrophages revealed that FtFF significantly 

improved the inhibition of cellular NO production in RAW264.7 macrophages, whilst 

extrusion resulted in a reduction. The improvement in cellular NO inhibition in RAW264.7 

macrophages may be attributed to the enhancement of the phenolic profile of sorghum-based 

porridges following FtFF with baobab and moringa. However, extrusion-cooked instant 

porridges exhibit decreased inhibition of NO formation in RAW264.7 macrophages, possibly 

due to their reduced phenolic content as a result of the extrusion cooking process. These 

findings also confirm the second hypothesis of this study and, as previously discussed, present 

a potential for FtFF as a technique to improve the phenolic profile and antioxidant properties 

of wholegrain sorghum-based porridges prepared through FtFF. 

Extracts from all the sorghum-based porridges showed prevention and treatment of 

accumulated adipocytes in 3T3-L1 cells, indicating their potential application in the 

management of obesity. The porridges also exhibited anti-diabetic properties through their 
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ability to reduce the formation of AGEs. The FtFF porridges, in particular, significantly 

reduced the formation of AGEs, possibly due to the increase in phenolic content and higher 

antioxidant activity following FtFF with BFP and MLP. 

Sorghum-Bambara groundnut composite (SBC) porridges (whether extrusion- or 

conventionally wet-cooked) FtF-fortified with BFP and MLP (whether alone or in 

combination) showed a marked reduction in starch digestibility (decreased rapidly digestible 

starch, RDS, coupled with increased slowly digestible starch, SDS and resistant starch, RS) 

and estimated glycaemic index (GI) compared to the unfortified composite. This decrease in 

starch digestibility and estimated GI suggest a potential for the application of these porridges 

in the management of type 2 diabetes. The reduction in the RDS, GI and increase in SDS 

following FtFF with BFP and MLP could be attributed to the high levels of antinutritional 

compounds - polyphenolics, phytate, and soluble and insoluble dietary fibre (SDF and IDF) in 

the fortificants that reduce starch hydrolysis. These antinutritional compounds, such as dietary 

fibre (which entraps starch molecules), polyphenols (which complex with starch and starch 

hydrolysing enzymes) and starch reducing digestibility and could also bind enzymes 

responsible for the digestion of the starch. This is in line with the third hypothesis of this study 

and should further be investigated with systems that would better predict potential applications 

in managing type 2 diabetes, such as animal trials and human intervention studies. 

Extrusion-cooked instant SBC porridges had higher resistant starch (RS), RDS, and protein 

digestibility (IVPD) with lower SDS in comparison with conventionally cooked porridges. The 

higher RDS, IVPD and lower SDS could be due to the dextrinization of starch and the reduction 

in antinutritional compounds (that bind both starch and proteins) that occur because of the high 

temperature, shear and pressure, making the starch and protein molecules more susceptible to 

enzymatic hydrolysis and thus accounting for the increased RDS, IVPD, and lower SDS. 

Extrusion-cooked SBC porridges in this study had higher SDF and lower IDF than 

conventionally wet-cooked porridges, which is attributed to the hydrolysis of the glycosidic 

bonds in the IDF as a result of extrusion cooking solubilizing it into SDF. This increase in SDF 

could account for the increase in SDS as the gelatinized, and disrupted starch molecules could 

be entrapped in the SDF, making them less accessible for enzymatic hydrolysis. Another 

possible cause could be the retrogradation of the starch in the extruded porridges during storage 

forming enzyme-resistant starch. The high RS content of these instant sorghum-based 

porridges makes them possibly relevant in managing type 2 diabetes. This underpins the third 
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hypothesis of this study, and while further research is needed before application in managing 

type 2 diabetes, these results are proof of concept. 

Extrusion-cooked SBC porridges had lower pasting viscosities, probably due to the 

dextrinization of starch (the primary biopolymer responsible for pasting) during high 

temperature, shear and pressure conditions during extrusion cooking. This provides a shear-

thinning porridge, which could increase nutrient intake for infants who have difficulty orally 

processing thick foods and thus preventing the prevalence of PEM. 

While further studies that incorporate in vivo methods of analysis and, where possible, human 

studies should be explored before the techniques applied in this study can be conclusive, this 

study is a proof of concept that FtFF can be used to alter particular properties of cereal staples 

to address the double burden of malnutrition and diet-related NCDs. At the centre of this 

approach is extrusion cooking as a technique to reduce the antinutritional properties of the final 

product and deliver healthy and nutritious products to at-risk communities. 

It is recommended that studies on the bioavailability of iron and dietary phenolics from these 

fortified porridges, using models such as ex vivo inverted rat intestine and in vivo animal 

models, be studied to better understand their contribution to alleviating iron deficiency and 

oxidative stress in physiological systems.  

Future studies on the consumer sensory acceptability, satiety-promoting potential and oral 

processing properties of the fortified porridges are needed to provide valuable information 

about the commercial potential of the instant sorghum-based porridges fortified with baobab 

and moringa. 
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CHAPTER 7  APPENDIX 

Figure 7-1: Total ion chromatogram of 1% (v/v) HCl in methanol extract from cooked wholegrain sorghum flour 
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Figure 7-2: Total ion chromatogram of 1% (v/v) HCl in methanol extract from baobab fruit pulp powder   
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Figure 7-3: Total ion chromatogram of 1% (v/v) HCl in methanol extract from moringa leaf powder 
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Figure 7-4: Total ion chromatogram of 1% (v/v) HCl in methanol extract from extruded wholegrain sorghum flour   
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Figure 7-5: Total ion chromatogram of 1% (v/v) HCl in methanol extract from wholegrain sorghum flour co-extruded with baobab fruit pulp 

powder  
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Figure 7-6: Total ion chromatogram of 1% (v/v) HCl in methanol extract from wholegrain sorghum flour co-extruded with moringa leaf powder   
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Figure 7-7: Total ion chromatogram of 1% (v/v) HCl in methanol extract from wholegrain sorghum flour co-extruded with baobab fruit pulp and 

moringa leaf powders 
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Figure 7-8: Mass spectrum of gallic acid (m/z at 169) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study 
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Figure 7-9: Mass spectrum of protocatechuic acid (m/z at 153) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this 

study 
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Figure 7-10: Mass spectrum of 3-Caffeoyl-quinic acid (m/z at 353) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in 

this study 
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Figure 7-11: Mass spectrum of Coumaroyl-caffeoyl-glycerol (m/z at 399) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs 

used in this study 
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Figure 7-12: Mass spectrum of caffeic acid (m/z at 179) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study   
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Figure 7-13: Mass spectrum of 4-hydroxy benzoic acid (m/z at 137) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used 

in this study   
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Figure 7-14: Mass spectrum of 3-ρ-coumaroylquinic acid (m/z at 337) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used 

in this study  
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Figure 7-15: Mass spectrum of procyanidin dimer (m/z at 353) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this 

study  
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Figure 7-16: Mass spectrum of catechin (m/z at 289) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study   
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Figure 7-17: Mass spectrum of 4-caffeoyl-quinic acid (m/z at 353) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in 

this study 
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Figure 7-18: Mass spectrum of 3-feruloyl quinic acid (m/z at 367) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in 

this study 
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Figure 7-19: Mass spectrum of procyanidin trimer (m/z at 865) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this 

study  
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Figure 7-20: Mass spectrum of epicatechin (m/z at 289) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study 
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Figure 7-21: Mass spectrum of Caffeoylglcerol (m/z at 253) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this 

study  
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Figure 7-22: Mass spectrum of dihydrokaempferol glycoside (m/z at 449) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs 

used in this study  
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Figure 7-23: Mass spectrum of dicaffeoyl spermidine (m/z at 468) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in 

this study 
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Figure 7-24: Mass spectrum of procyanidin tetramer (m/z at 1154) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in 

this study  
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Figure 7-25: Mass spectrum of vanillic acid (m/z at 167) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study   
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Figure 7-26: Mass spectrum of ρ-coumaric acid (m/z at 163) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this 

study  
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Figure 7-27: Mass spectrum of epicatechin glycoside (m/z at 451) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in 

this study 
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Figure 7-28: Mass spectrum of ρ-coumaroyl glycerol (m/z at 237) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in 

this study 
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Figure 7-29: Mass spectrum of glucosyl-arabinosyl apigenin (m/z at 563) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs 

used in this study 
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Figure 7-30: Mass spectrum of naringenin glycoside (m/z at 433) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in 

this study 
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Figure 7-31: Mass spectrum of rutin (m/z at 609) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study 
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Figure 7-32: Mass spectrum of sinapic acid (m/z at 223) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study 

  

O

OH

OH

O
CH3

O
CH3

Phenolic Acids 100PPM

m/z
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

%

0

100

JL_UP_210907_48 2225 (17.314) Cm (2223:2236) 2: TOF MS ES- 
2.97e3121

2970

93
2090

59
71

67
65

91
56

87
47

79
45

69
30 75

22

94
175

113
6497;51

107
47

101
41 119

22

193
2355149

2257

135
993

122
270 134

189

123
130

148
239

143
102

164
1181

163
590

150
201

159
127

151
86

165
645

179
262167

145 177
80

175
39 184

19

187
14

223
1139

208
624

194
235

199
72

207
70

210
140 221

56

219
41

224
270

227
65

230
46 238

43
256
39

247
35



 

273 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-33: Mass spectrum of ferulic acid (m/z at 193) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study 
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Figure 7-34: Mass spectrum of luteolin glycoside (m/z at 447) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this 

study  
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Figure 7-35: Mass spectrum of dicaffeoyl glycerol (m/z at 415) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this 

study 
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Figure 7-36: Mass spectrum of kaempferol glycoside (m/z at 447) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in 

this study 
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Figure 7-37: Mass spectrum of syringic acid (m/z at 197) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study 

  

O OH

O

OH

O
CH3 CH3

Phenolic Acids 100PPM

m/z
60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205

%

0

100

JL_UP_210907_48 1717 (13.380) Cm (1717:1726) 2: TOF MS ES- 
1.78e3123

1778

121
1242

95
659

78
221

67
143

63
32

68
34

83
52

82
3179

19

86
39

106
115

97
13

110
57

197
1372

153
799

138
394

124
110

130
65

133
55

136
43

139
83

150
38

142
27

182
614

167
405

154
154

161
39

163
25

179
123

168
117 184

94 188
41

198
187

203
64

199
24

205
19



 

278 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-38: Mass spectrum of kaempferol (m/z at 285) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study 
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Figure 7-39: Mass spectrum of eriodctoyl glycoside (m/z at 449) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in 

this study 
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Figure 7-40: Mass spectrum of quercetin glucuronide (m/z at 477) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in 

this study 
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Figure 7-41: Mass spectrum of myricetin (m/z at 449) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study 
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Figure 7-42: Mass spectrum of naringin (m/z at 579) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study 
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Figure 7-43: Mass spectrum of quercetin glycoside (m/z at 463) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this 

study 
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Figure 7-44: Mass spectrum of eriodctoyl (m/z at 287) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study 
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Figure 7-45: Mass spectrum of luteolin (m/z at 285) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study 
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Figure 7-46: Mass spectrum of quercetin (m/z at 301) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study
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Figure 7-47: Mass spectrum of apigenin (m/z at 269) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study  
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Figure 7-48: Mass spectrum of hesperetin (m/z at 301) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study
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Figure 7-49: Mass spectrum of dihydrocaffeoyl glycerol (m/z at 255) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used 

in this study 
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Figure 7-50: Mass spectrum of vitexin (m/z at 431) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study
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Figure 7-51: Mass spectrum of naringenin (m/z at 271) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used in this study 
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Figure 7-52: Mass spectrum of 4-ρ-coumaroyl quinic acid (m/z at 271) in 1% (v/v) hydrochloric acid in methanol extracts from the foodstuffs used 

in this study 
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