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ABSTRACT 

Wetlands are recognised as the important natural ecosystems in the world. The above-ground 

biomass (AGB) of wetland vegetation is essential for providing ecosystem services related to 

global climate change due to its crucial role in sequestrating anthropogenic carbon emissions. 

Seasonal AGB estimation could help to understand carbon changes in wetlands and how 

vegetation in these ecosystems differs across seasons at regional scales. Remote sensing 

technology offers time-effective and cost-efficient ways to improve the monitoring of wetlands 

and understanding of the spatial carbon changes in wetland vegetation. This study aimed to use 

seasonal derived AGB of palustrine herbaceous vegetation to determine the differences in teal 

carbon, using active and passive remote sensing data across the summer and winter seasons. The 

study was carried out in the Chrissiesmeer catchment in the temperate Grassland Biome of the 

Mpumalanga Province of South Africa. The objectives were to (1) derive different season-specific 

modelling scenarios from Sentinel-1 and Sentinel-2 imagery to assess the optimal model for 

estimating AGB of palustrine wetland vegetation AGB, (2) assess the performance of Random 

Forest (RF) and Support Vector Regression (SVR) in predicting seasonal AGB of wetland 

vegetation, (3) map the seasonal spatial patterns of teal carbon from the estimated AGB of 

wetland vegetation, and (4) assess the seasonal variation in the predicted teal carbon. RF and 

SVR algorithms were used as regression-based algorithms with important variable selection to 

develop an optimal model from the modelling scenarios, which also incorporated field-measured 

Leaf Area Index (LAI). The results showed that the combination of Sentinel-1 GLCMs and 

backscatter channels yielded higher accuracy for the estimation of the AGB of palustrine 

herbaceous vegetation attaining coefficient of determination (R2) = 0.735, root mean squared 

error (RMSE) = 39.848 g·m-2, and relative RMSE (relRMSE) = 17.286% compared to a combination 

of reflectance bands, vegetation indices and red-edge bands (R2  = 0.753, RMSE = 49.268 g·m-2, 

and relRMSE = 20.009%) in the summer season. For the estimation of AGB in the winter season, 

Sentinel-1-derived GLCMS textures  obtained higher accuracy (R2 = 0.785, RMSE = 67.582 g·m-2, 

and relRMSE = 20.885%) compared to the combination of reflectance bands, vegetation indices 

and red-edge bands of optical data (R2 = 0.749, RMSE= 69.634 g·m-2 and relRMSE = 21.248%). 



xv 

   

 

These findings suggested that Sentinel-1 sensor-derived models performed better than the 

optical models in both seasons. Furthermore, the addition of SAR textural measurements 

improved the accuracy of modelling AGB and RF model performed better than SVR in estimating 

the AGB of wetland vegetation. The study observed that there was a significant difference 

between the summer (77.527 g C/m-2 DM) and winter (57.918 g C/m-2 DM) seasonal mean carbon 

ranges (p < 0.05), and Tevredenpan wetland vegetation communities stored higher levels of 

carbon in the AGB vegetation in summer than in winter. The study showed that vegetation of 

palustrine wetlands is significant for carbon storage and fluctuates significantly between summer 

and winter. Estimating carbon stock in the AGB vegetation can aid in conserving grasslands and 

wetlands and notably optimise research on biomass estimation with remote sensing and machine 

learning systems. 

 

Key words: carbon sequestration; carbon stock; climate change; herbaceous AGB; machine 

learning; remote sensing; temporal. 
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CHAPTER 1: INTRODUCTION 

 General introduction  

Wetlands are among the most significant natural ecosystems for the long-term sequestration of 

atmospheric carbon through carbon sequestration (CS) (Nahlik and Fennessy, 2016; Were et al., 

2019). The carbon stored and sequestrated by freshwater wetlands is referred to as teal carbon 

(Nahlik and Fennessy, 2016).  According to the South African National Water Act (Act no. 36 of 1998), 

a wetland is a “land which is transitional between terrestrial and aquatic systems where the water 

table is usually at or near the surface, or the land is periodically covered with shallow water, and 

which land in normal circumstances supports or would support vegetation typically adapted to life 

in saturated soil” (Republic of South Africa (RSA), 1998). Palustrine wetlands, in particular, their 

contribution relating to ecosystem services such as supporting biodiversity, livelihoods, and CS is 

globally recognised. Keith et al. (2020) define palustrine wetlands as spatial heterogeneous systems 

consisting of seasonally or permanently saturated vegetated wetland types such as seeps, 

floodplains, and mires. However, intensified impacts of anthropogenic and climatic change 

pressures are expected to result in a global decline in freshwater ecosystems, thus affecting the 

distribution and functioning of these ecosystems (Collen et al., 2014). 

The ideal anoxic wet environment of wetland ecosystems results in inefficient respiration and 

decomposition of organic matter, leading to a high accumulation of carbon, making these 

ecosystems sinks for greenhouse gases (GHGs) (Ribeiro et al., 2021; Salimi et al., 2021). Although 

the wetland biome is globally vital for providing ecosystem services, including storing carbon, it is 

highly degraded and endangered. The water abstraction near wetlands can result in the desiccation 

of these wetlands, and surface fires can ignite the peat, causing possible burning of the substrate to 

change these sinks to sources of GHGs emissions (Grundling et al., 2015). Despite variability when 

evaluating the importance of wetlands in the balance of atmospheric GHGs, it is vital to mention 

that they have continuously been absorbing and releasing GHGs. Therefore, their contribution to 

carbon sink needs to be modelled over different times (Dayathilake et al., 2021). 
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The Intergovernmental Panel on Climate Change (IPCC) identified above-ground biomass (AGB) 

as one of the crucial components with the ability to store, accumulate, and release carbon 

(Eggleston et al., 2006). AGB is the dry mass of plant organic matter per unit area and is an indicator 

of plant health in most ecosystems (Pang et al., 2020). Moreover, the AGB contributes significantly 

to atmospheric carbon changes caused by fire, logging, and land use practices (Dahy et al., 2020). 

Therefore, it should be monitored and measured throughout the year, not only for single instance 

mapping. In addition, at different seasonal times, vegetation in wetlands shows differences in the 

carbon and nutrient cycles, water content and energy during the growing season, which in turn 

impacts the quantity of AGB in these ecosystems (Mitch et al., 2013; Jin et al., 2014). As a result of 

these fluctuations in climate variability as well as disturbances (e.g., fire and cattle ranching which 

can affect seasonal AGB) , the assessment of carbon changes in various natural ecosystems has 

become crucial for developing sustainable climate change strategies (Dayathilake et al., 2020). 

However, understanding wetland ecosystem services, including carbon changes, can be very difficult 

as wetlands are very dynamic and complex ecosystems and thus poses a challenge in knowing their 

future state (Moomaw et al., 2018; Villa and Bernal, 2018). Thus, timely monitoring systems of 

carbon changes in freshwater wetlands are still lacking, and the variations in carbon, especially in 

different seasons, are poorly understood.  

Estimation and assessment of seasonal AGB in grass-covered areas would provide valuable 

information for the evaluation and modelling of seasonal carbon changes, wetland productivity and 

the health of these ecosystems (Adam and Mutanga, 2012; Nahlik and Fennessy, 2016). Also, grass, 

sedge and large macrophyte vegetation would offer a significant opportunity to understand and 

measure how AGB or carbon growth varies in inundated and non-submerged areas since the 

grasslands are affected by seasonality (Xu and Baldocchi, 2004). There still needs to be more 

information globally on quantifying teal carbon changes in wetlands (Nahlik and Fennessy, 2016). In 

the case of South Africa, most work on the quantification of AGB has been done on quantifying 

biomass of woody structures (Mathieu et al., 2013; Naidoo et al., 2015; Urbazaev et al., 2015) and 

estimating AGB in grasslands (Cho et al., 2007; Ramoelo et al., 2015; Sibanda et al., 2015; Sibanda 

et al., 2017). There are no studies that have quantified and assessed the total carbon sink of the 

herbaceous AGB in palustrine wetland vegetation across the seasons within the Grassland Biome. 
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Skowno et al. (2019) have highlighted that the wetlands and grasslands of South Africa are severely 

destroyed because of extensive agriculture and alien invasive species. Consequently, quantifying 

teal carbon in wetlands in the Grassland Biome is crucial for protecting and monitoring wetland 

biodiversity.   

Previously, AGB was estimated using non-destructive methods, such as allometric equations 

based on critical variables like diameter, height, and wood density, particularly in forest ecosystems 

(Chave et al., 2014; Luo et al., 2017). The currently used field-based method for estimating 

herbaceous AGB is based on destructive- measurements, which involve cutting down vegetation at 

point locations (Knapp et al., 2020). However, these conventional techniques are laborious, time-

consuming, and unable to accurately map wetland carbon or biomass in terms of its spatial and 

temporal distribution (Barrachina et al., 2015; Otukei and Emanuel, 2015). Despite these 

constraints, field methods are still valuable and are crucial as calibration and validation datasets for 

upscaling model approaches (Englhart et al., 2011). The development of remote sensing technology 

over the years has been among the essential tools for biomass or carbon assessment. In contrast to 

the limitations of traditional methods, remote sensing allows for frequent wetlands monitoring over 

broad geographical areas. Several satellite datasets such as Synthetic Aperture Radar (SAR) images, 

multispectral and hyperspectral optical data, and Light Detection and Ranging (LiDAR) data have 

previously been used to develop analytical models for extracting biophysical vegetation parameters 

(Luo et al., 2017; LaRocque et al., 2020; Tavasoli and Arefi, 2020). For example, LiDAR data has 

unique benefits in obtaining information about an object horizontally and vertically and shows a 3-

dimensional (3D) representation of vegetation structure (Fatoyinbo et al., 2018). However, 

utilisation of LiDAR datasets is constrained in wetlands because of high costs and limited coverage 

information at both spatial and temporal scales (Guo et al., 2017).  

In contrast to the cost limitation of LiDAR data, freely available optical remote sensing imagery 

of high spatial, temporal, and spectral resolution has been made available over the years, improving 

hyper-temporal wetland AGB estimation (Li et al., 2021). Estimating herbaceous AGB in wetlands 

using optical data is based on correlating vegetation indices (VIs) with field-measured vegetation 

parameters (Kumar and Mutanga, 2017). VIs are spectral indices that are based on quantifying the 

physical difference in spectral reflectance of vegetation across the visible to shortwave regions of 
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the electromagnetic spectrum (EMS) (350 nm – 2500 nm) and are derived from optical remotely 

sensed data (Taddeo et al., 2019). Leaf Area Index (LAI) is also a crucial metric for characterising the 

growth of grassland and wetland vegetation, and it is a strong proxy for AGB (Van Wijk and Williams, 

2005; Masemola et al., 2016). Remote sensing VIs are quite simple and practical algorithms for 

quantitative and qualitative assessments of vegetation properties and offer the advantage of 

suppressing soil background while significantly improving the sensitivity of the detection of green 

vegetation when estimating AGB (Xue and Su 2017). However, VIs such as the Normalized Difference 

Vegetation Index (NDVI) (Tucker, 1979) is limited in estimating vegetation biomass because it 

reaches saturation in areas with high-density biomass (Mutanga and Skidmore, 2004). On the other 

hand, VIs derived from the red-edge (RE) proved to increase the accuracy of AGB estimates 

(Mutanga et al., 2012). The absence of the RE region in multispectral satellite data, such as Landsat, 

hampered the estimation of vegetation AGB at regional scales (Ramoelo et al., 2015). Commercial 

sensors containing the RE bands (RapidEye and Worldview imagery) showed improved accuracy in 

grass biomass estimates (Ramoelo et al., 2015). However, they are costly, hindering the capability 

of exploring the RE region in wetland vegetation-related studies at local and regional scales.  

The accessibility of free optical sensor imagery developed by the European Space Agency (ESA) 

has improved the retrieval of vegetation parameters, especially wetland AGB in temperate and 

semi-arid grasslands (Li et al., 2021). The Sentinel-2 Multispectral Instrument (MSI) sensor has 

better image acquisition characteristics which significantly enhances the monitoring of aspects of 

the aquatic, coastal, estuarine, marine, and terrestrial ecosystems (Stratoulias et al., 2015; Shoko et 

al., 2016). Sentinel-2 has several spectral bands, including the four RE bands (705 nm - 865 nm), 

which enable wetland assessments at broader scales due to better spectral and spatial resolutions 

(Shoko and Mutanga, 2017; Li et al., 2021). The RE region has been demonstrated to increase the 

accuracy and sensitivity of vegetation AGB estimation, overcoming the effect of saturation in areas 

with dense canopies and moderate to higher AGB (Mutanga et al., 2012; Ramoelo et al., 2015; 

Sibanda et al., 2017; Shoko and Mutanga, 2017). However, the shortcomings associated with optical 

data in estimating vegetation AGB include the reduced ability to sense the 3D structure of 

vegetation given the viewing angle, wavelength, signal saturation and cloud obstruction (Guo et al., 
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2017). Additionally, spectral contamination of background water in heterogeneous palustrine 

wetlands can also be problematic in optical sensors. 

SAR has become an attractive technology with several bands such as the C-band, X-band, and L-

band that can be used together with optical data to improve wetland AGB estimates regardless of 

cloudy conditions (Englhart et al., 2011; Sinha et al., 2015). The C-band and X-band have 

wavelengths of 5.6 cm and 3.1 cm, respectively, and have proved to be suitable for monitoring 

wetlands herbaceous AGB (Brisco et al., 2011; Naidoo et al., 2019). In areas of dense vegetation 

cover, longer wavelengths (L-band ~24cm) are more effective in estimating the AGB, particularly in 

forest ecosystems (Lang et al., 2008). Sentinel-1A SAR sensor by ESA operating at C-band frequently 

provides free imagery that improves retrieval of vegetation parameters (Sinha et al., 2015; 

Montgomery et al., 2019) and enables seasonal monitoring of AGB. The assessment of AGB with 

SAR data involves finding the relationship between vegetation biomass and radar backscatter 

coefficients (Sinha et al., 2015). Polarised and co-polarised backscatter channels (VH and VV) have 

shown to effectively estimate wetland AGB (Ye et al., 2010; Naidoo et al., 2019). Even so, radar 

backscatter signals are limited in estimating AGB in submerged and non-submerged vegetation in 

wetlands ecosystems (Silva et al., 2008; Gallant, 2015).  

The analysis of texture measurements is an image processing method that can improve the 

estimation of AGB by addressing certain existing saturation problems associated with VIs and C-

band (Cutler et al., 2012; Kelsey and Neff, 2014). Image texture, such as the grey level co-occurrence 

matrices (GLCMs) methods, enables for provision of structural and geometrical information on 

vegetation properties (Kelsey and Neff, 2014) and can be extracted in both optical and radar satellite 

imagery. The benefit of texture is that, irrespective of tone (i.e., backscatter or reflectance), it can 

enhance spatial information retrieval by raising the saturation level and improving the range of 

biomass that can be estimated using SAR data (Sarker et al., 2011). Thus, the efficiency of potential 

proxies that may improve discrimination of spatial information in vegetation properties, including 

RE bands and texture variables, must be well evaluated (Dube and Mutanga, 2015; Sibanda et al., 

2017).  

Remote sensing methods for assessing AGB in wetlands are based on investigating relationships 

between vegetation biophysical parameters and predictor variables derived from remote sensing 
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images using parametric, non-parametric and physical modelling approaches (Darvishzadeh et al., 

2008; Verrelst et al., 2015; Wan et al., 2019). Parametric approaches are based on finding the 

statistical relationship between spectral observations or reflectance and a specific field-measured 

target variable through a fitting function (Verrelst et al., 2015). The primary benefits of parametric 

regression techniques are that they are easy, fast to compute, and straightforward to understand 

(Ramoelo et al., 2015). Due to their empirical nature, they lack generalisation when it comes to up-

scaling methods and exhibit a high level of overfitting (Kokaly et al., 2009; Ramoelo et al., 2012). On 

the other hand, physical-based methods for estimating biophysical parameters from remote sensing 

data are based on understanding the physical processes involved in energy transfers within plant 

canopies using physical laws (Darvishzadeh et al., 2008). The most known physical method involves 

the inversion of Radiative Transfer Models (RTMs) such as PROSPECT (Feret et al., 2008) and 

PROSAIL (Darvishzadeh et al., 2008). Compared to empirical approaches, the physically-based 

methods overcome the site- and sensor-specific problems of statistical or empirical approaches 

(Berger et al., 2018). However, the inversion of RTMs requires site-specific information (e.g., specific 

in-field backscatter/reflectance measurements during satellite overpass), which makes the 

calibration of RTM models complex.  

Machine learning (ML) algorithms are non-parametric and build a non-linear regression 

relationship between predictor variables retrieved from remote sensing images and field-collected 

AGB (Mutanga et al., 2012). Several ML approaches, such as Random Forest (RF), Artificial Neural 

Networks (ANN) and Support Vector regression (SVR), can be integrated with remote sensing data 

and field-measured data for the estimation of AGB in wetlands and grasslands (Wan et al., 2018; 

Naidoo et al., 2019; Li et al., 2021). The most significant advantages of these ensemble algorithms 

include their ability to improve the robustness and generalisation capacity of regression models 

through modelling which incorporate many training predictor variables, big data and missing data 

and can deal with highly collinear variables (Knox et al., 2011; Mutanga et al., 2012). Also, algorithms 

such as RF offer the advantage of selecting important variables for regression models, enhancing 

the performance of modelling herbaceous AGB and contributing towards reducing overfitting in 

predictor models (Naidoo et al., 2019; Li et al., 2021).  



 

 

 

 

7 

The remote sensing technology of biomass estimation is continuously advancing as new and 

improved techniques, and applications are frequently developed. Thus, incorporating remote 

sensing variables derived from freely available Sentinel Series imagery (Sentinel-1 and Sentinel-2) 

for estimating herbaceous AGB in wetlands has been proven to be more accurate than using 

individual sensors (Huang et al., 2016; Naidoo et al., 2019). This provides a foundation to explore 

the seasonal variation in teal AGB using remote sensing and machine learning methods to achieve 

optimum modelling of herbaceous AGB in wetlands for this study. The importance of 

comprehending and assessing changes in grassland AGB at spatial and temporal scales is, therefore, 

significant for regional and dynamic carbon accounting.  

 Research Problem 

Over the years, anthropogenic pressures and changes in the global climate have transformed most 

wetlands and grassland ecosystems. This results in the inability to observe the relationship between 

these ecosystems and carbon over time, which significantly impacts carbon estimation accuracy 

(Salimi et al., 2021). Global freshwater wetland ecosystems hold a remarkable ability to control 

climate change through their capability to sequester carbon from the atmosphere (Dayathilake et 

al., 2021). However, in the case of South Africa, the wetlands and grassland ecosystems are amongst 

the most critically endangered and degraded natural resources (Van Deventer et al., 2020). Due to 

elevated levels of Grassland Biome degradation in South Africa (covering 26.2% of the country's 

area) (Fourie et al., 2015; Skowno et al., 2019); palustrine wetlands were not fully presented in the 

South African National Wetland Maps (NWMs; Van Deventer et al., 2020). 

An increase in the geographic footprint and impacts of agriculture, mining, commercial forest 

plantations, and invasive alien species have contributed to the increasing degradation of South 

Africa's wetlands and related wetland ecosystems in the Grassland Biome (Fourie et al., 2015). With 

wetlands increasingly drying because of water abstraction and climate change, transformation may 

increase, while the integrity of other wetlands may decline. Frequent monitoring of grassy wetlands 

is required to assess their changes at temporal scales and their potential for CS, especially at local 

and regional scales. However, most studies based on AGB in South Africa concentrated more on 

assessing the AGB in woody structures (Mathieu et al., 2013; Naidoo et al., 2015; Urbazaev et al., 
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2015). There are no studies focusing on quantifying wetland teal carbon stock from the AGB, 

particularly across seasons within the Grassland Biome of South Africa. According to Schwieder et 

al. (2018), this is often influenced by inconsistent data acquisition due to dense vegetation and 

strong seasonality. This results in significant uncertainties as to whether wetlands and grasslands 

will respond positively or negatively to the changing climate and whether the variation in seasons 

affects the amount of carbon stored by wetlands (Chamaillé-Jammes and Bond, 2010; Salimi et 

al.,2021). Therefore, studies on carbon stock quantification in vegetated wetlands are needed. 

 Research Aim  

This study aimed to use field-measured herbaceous AGB to quantify the seasonal differences in teal 

carbon across the summer and winter of 2017 in the Tevredenpan study area, which is part of the 

Mpumalanga Lakes District (MLD) in the Grassland Biome of the Mpumalanga Province of South 

Africa. 

 Research Questions  

(i) Which combination of remote sensing predictor variables derived from Sentinel-1 and 

Sentinel-2 datasets best predict herbaceous AGB or carbon for the different seasons? 

(ii) Which machine learning algorithm under investigation best estimate the AGB of wetland 

vegetation?  

(iii) What spatial patterns in the carbon of wetland vegetation are noted between the 

summer and winter seasons in palustrine wetlands?  

(iv) Are there any significant seasonal fluctuations in the estimated carbon of palustrine 

wetland vegetation? 

 Research objectives  

The objectives of this study were to: 

(i) Derive and test different season-specific modelling scenarios from Sentinel-1 and 

Sentinel-2 imagery to assess the optimal model for estimating AGB of palustrine 

wetland vegetation for the summer and winter seasons. 
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(ii) Assess the performance of RF and SVR algorithms in predicting seasonal AGB of 

palustrine wetland vegetation. 

(iii) Map the spatial distribution of wetland vegetation carbon stock for the summer 

and winter seasons. 

(iv) Assess the seasonal variations and if there is a statistical difference in teal carbon 

derived from wetland herbaceous AGB in the summer and winter seasons for the 

year 2017. 

 Significance of the study 

Wetland ecosystems are essential for providing ecosystem services related to global climate 

change (Were et al., 2019). Monitoring the state and health of natural ecosystems, particularly 

freshwater ecosystems, over time is critical, and it is one of the target sub-indicators (sub-indicator 

6.6.1.d) for 2030 Sustainable Development Goals (SDGs) set by the United Nations (UN) (UN, 2017). 

Several studies have highlighted that the AGB of wetland vegetation is a significant indicator of the 

state and health of wetlands (Mutanga et al., 2012; Li et al., 2019; Naidoo et al., 2019) and a good 

component for the storage of carbon (IPCC, 2006). Herbaceous AGB is the most dynamic and 

changing component and is estimated to globally contribute up to 30% of the sequestrated carbon 

(Houghton et al., 2009; Kumar and Mutanga, 2017). Thus, continuous monitoring and quantification 

of AGB at different seasons are vital owing to the increasing heterogeneity and complexity of 

ecosystems (Fernandez-Alaez et al., 2002). Additionally, monitoring results at different seasons may 

differ as natural ecosystems undergo seasonal changes due to their natural cycles (UN, 2017).  

The inundation of wetlands during the summer (wet) season may affect the monitoring 

assessments and during the winter (dry) season, for example, monitoring may yield different results 

in ephemeral wetlands influencing the dynamics of nutrient cycles, vegetation growth, and gas 

emissions from wetlands (UN,2017; Salimi et al., 2021). Therefore, thorough attention must also be 

given to the winter season, especially in climate change-related studies on wetland ecosystems 

(Salimi et al., 2021). Estimating the seasonal dynamics of AGB is of key significance for developing 

our knowledge in monitoring ecosystem natural processes, ecological functions, management, and 

wetlands protection. Remote sensing models from the integration of remote sensing datasets and 
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field measurement of vegetation biophysical parameters have improved AGB estimation in various 

studies at regional scales in wetlands and grasslands (Mutanga et al., 2012; Ramoelo et al., 2015; 

Naidoo et., 2019; Li et al., 2021). However, fewer studies have considered assessing the seasonality 

of the AGB of palustrine wetland vegetation, particularly in the Grassland Biome. The study's novelty 

lies in integrating remote sensing data and field data into season-specific models to assess seasonal 

variations in teal carbon between the summer and winter. Assessment of season variations of 

carbon stored in the AGB of wetland vegetation will help to comprehend how vegetation in wetlands 

differs and functions between seasons, and how it contributes to CS at regional scales in dry and 

semi-arid places. This, in turn, will further help in ensuring that the SDGs sub-indicator 6.6.1.d goals 

of sustainable monitoring of the health and changes in natural ecosystems over time are achieved. 

 Research Outline 

Chapter One: The aim of this chapter is to provide an introduction of the research topic, namely 

the estimation of South Africa’s teal carbon in the Grassland Biome over the summer and winter 

seasons.  Chapter one further presents a detailed description of the research problem in order to 

highlight why it is important to estimate herbaceous AGB of wetlands across these two seasons, 

indicate the main aim and objectives that are investigated in the study. In addition, this chapter 

provides insight on significance of this research.  

Chapter Two:  This chapter introduces an overview on wetlands and the process of CS in 

wetlands. It also provided a detailed evaluation of the existing literature studies on the application 

of satellite imagery data in assessing AGB of palustrine wetlands in the Grassland Biome of a part of 

the MLD of South Africa. Chapter two gives an important background on the traditional methods of 

estimating AGB that have been used in other studies and also their disadvantages. The chapter also 

reviews the utilisation of machine learning methods in non-parametric modelling for the estimation 

of AGB in palustrine wetlands. The purpose of literature review is to give background on what has 

been done and what are the research gaps.  

Chapter Three:   This chapter gives description and setting of the selected region of interest 

including the climatic conditions of the area. This chapter gives a detailed description on the 

methodology used in this study. The chapter clearly defines the chronological approach in which 
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these methods are used to conduct the research and for each objective. Chapter three also presents 

a detailed information on remote sensing data used, how it was processed , field sampling protocols, 

and field data collection for the calibration and validation of predictive models.  

Chapter Four:  This chapter will provide the results of the methods used to achieve and 

investigate the main objectives and research questions of the research project. The results section 

describes the observed variations between summer and winter, the significant differences in the 

vegetation of wetlands and further illustrate the prominent or significant remote sensing variables 

that have contributed towards the observed trends in the two investigated seasons.  

Chapter Five:   The aim of chapter five is to present the discussions which involves explaining the 

results within the context of existing literature.  The chapter explains the trend observed in the 

results of the current study in relation to previous studies, how do the findings differ or correspond 

to existing  in order to find plausible scientific reasons and arguments to validate the observed trend. 

Additionally the discussions in this chapter further help in knowing whether the objectives of the 

current research were achieved, and also pave a way for other studies to improve on the seasonal 

monitoring of AGB of wetland vegetation  

Chapter Six: This chapter presents a summary of the current study and shows the importance of 

remote sensing techniques in temporal monitoring of palustrine wetland ecosystems at regional 

scales in arid and semi-arid areas. Chapter six also provides the key scientific findings of the study 

which provide insights for future studies to assess AGB using variables and models of different 

seasons. The study limitations, recommendations for future research are proposed in this chapter. 
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CHAPTER 2:  LITERATURE REVIEW 

This chapter provides an overview of the wetlands and introduces the process of carbon stock 

quantification in wetlands. It also provides a detailed evaluation of the existing literature studies on 

the application of satellite imagery data in assessing AGB of palustrine wetlands in the Grassland 

Biome. It also gives an important background on the traditional methods of estimating AGB that 

have been used in other studies and also their disadvantages. The chapter also reviews the 

utilisation of parametric and machine learning methods in non-parametric modelling for the 

estimation of AGB in palustrine wetlands. The purpose of literature review is to give background on 

what has been done and what are the research gaps. 

 Overview on wetlands 

Wetlands are one of the most important ecosystems in the world. They are distinguished by 

hydric soils that are permanently or seasonally saturated by water, resulting in anoxic environments 

that support vegetation growth (Mitsch et al., 2013; Nahlik and Fennessy, 2016). It is estimated that 

wetlands sequester about 20–25% of the world’s organic carbon, and wetland macrophytes not only 

contribute to the sequestration of atmospheric carbon when they are alive, but they are significantly 

important even during decomposition (Berry et al., 2010; Lolu et al., 2019). The Ramsar Convention 

on Wetlands defines wetlands as “areas of marsh, fen, peat, and or water, whether natural or 

artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, 

including areas of marine water the depth of which at low tide does not exceed six meters.” 

(Matthews, 1993). Wetlands play an essential role in both hydrological and ecological processes 

(Kaplan and Avdan, 2018). Wetland services include flood mitigation, water supply and quality 

regulation, erosion control, biodiversity conservation, and food security. The United Nations World 

Water Development (UNWWD) has indicated that since the start of the 20th century, two-thirds of 

the world's wetlands have been degraded (UNWWD, 2015).  

Intensive water extraction for agriculture, deforestation, industrial expansion, reservoir 

construction, increasing sea levels (Schmitt and Brisco, 2013) and altered climate patterns (Salimi et 

al., 2021) are threats to wetlands. Previous studies on wetlands have indicated that warming climate 
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and land use practices result in changes in the composition of wetland vegetation and vegetation 

degradation in some areas, which subsequently affects net primary productivity and significantly 

affects the functioning of wetlands as carbon sequesters (Hemes et al., 2019; Salimi et al., 2021). 

Furthermore, due to wetlands occupying a small extent (i.e., approximately 3-8%) of the world’s 

land surface, little attention has been given to CS of teal carbon in these ecosystems and their 

associated macrophytes, particularly freshwater wetlands (Mitsch et al., 2013; Villa and Bernal, 

2018; Lolu et al., 2019). Due to the dynamic nature of wetlands, they are subject to change on a 

seasonal or temporal and spatial basis in terms of the amount of water present, the water table, 

and the development of the quantity of vegetation. As a result, the provision of wetland services 

could continue to deteriorate (Mitchell, 2013). Currently, studies that quantified CS have primarily 

been conducted in forested terrestrial ecosystems (Berry et al., 2010; Powell et al., 2010;). However, 

the land surface is also occupied by other systems, such as grasslands and wetlands, which 

significantly contribute to carbon accounting at global and regional scales. Hence it is vital to 

quantify carbon in these ecosystems. Freshwater systems were listed by Emerton (2005) as one of 

Africa's most vulnerable resources. Furthermore, it was projected that mining methods, commercial 

agriculture, and urban expansion had destroyed more than half of the wetlands in semi-arid Africa 

(Cowan, 1995). Due to the decline in the extent of wetlands, assessing their condition is an essential 

concern. Moreover, the evaluation of wetlands demands reliable tools to monitor the vast majority 

of wetlands. Hence it is vital to assess and monitor wetlands continuously. 

 AGB as an important Essential Biodiversity Variable 

Environmental problems on a global scale, such as the impacts of climate change and the loss of 

freshwater biodiversity, are critical problems that must be addressed (Turak et al., 2017). These 

issues are presented in various initiatives such as Post-2020 Global Biodiversity Frameworks (GBFs) 

and the Aichi Targets set by Convention on Biological Diversity (CBD) (Osborn et al., 2015; Turak et 

al., 2017). Improving the monitoring of these challenges and determining biodiversity changes in 

freshwater ecosystems, for example, at multiple spatial and temporal scales, could address the 2030 

SDG targets (Target 15) set by the UN (Osborn et al., 2015). To date, there is still a need for more 

data on changes within the palustrine wetlands and only changes in the extent of open water bodies 

were reported to the SDG sub-indicator 6.6.1a (Turak et al., 2017).  
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The Essential Biodiversity Variables (EBVs), defined as derived biological state variables sensitive 

to changes over time, could form the basis of monitoring plans for freshwater ecosystems, including 

palustrine wetlands, which are currently underrepresented under SDG 15 (Turak et al., 2017). 

Regarding EBVs, "The vertical distribution of biomass in ecosystems, above and below the land 

surface", linked to the Ecosystem Structure EBV class (Pereira et al., 2013; Turak et al., 2017). Thus, 

AGB is a significant continuous and direct EBVs that can be measured with remote sensing to 

quantify changes in the structure of freshwater ecosystems. In turn, this could indicate the extent 

of freshwater ecosystems and extent of natural habitats that significantly store carbon (Pereira et 

al., 2013) and also help to meet the Aichi CBD target (Target: five, 11, 14 and 15) and SDG targets 

on freshwater biodiversity conservation. 

 The various categories of carbon in natural ecosystems   

Quantifying the different categories of carbon could help to understand and monitor changes in 

the carbon cycle (Zinke, 2020). Thus, according to Zinke (2020), the different categories of carbon 

can be described using a full spectrum of colour-based descriptions. For instance, some of the 

colour-based descriptions of carbon include green, blue, and teal and these colours are mostly 

carbon sinks, and they illustrate the influence of CS on natural ecosystems in light of the changing 

climate. Green carbon is the form of carbon that is retained in the biosphere and is absorbed by 

terrestrial plants from the atmosphere (Berry et al., 2010). Terrestrial ecosystems must be a part of 

a complete response to the climate change issue because they are crucial in controlling greenhouse 

gas concentrations in the atmosphere (Berry et al., 2010). The term "blue carbon" describes the 

organic carbon is sequestrated by vegetated oceans and coastal ecosystems such as  tidal marshes, 

mangrove forests and seagrass meadows (Macreadie et al., 2019). 

Blue carbon ecosystems capture carbon at 30 – 50 times the rate of terrestrial forest ecosystems 

(Macreadie et al., 2019; Blue carbon lab, 2021). Teal carbon refers to the carbon stored in freshwater 

wetlands found inland (Nahlik and Fennessy, 2016). According to Nahlik and Fennessy (2016), 

numerous studies have primarily investigated and quantified green and blue carbon, while inland 

wetland teal carbon is given less attention. The preliminary study indicates that inland freshwater 

wetlands have the potential to store about 20% to 30% of the world's soil carbon (Mitch and 



 

 

 

 

15 

Gosselink, 2007; Lal, 2008). Precise and reliable carbon accounting is essential for mitigating the risk 

of climate change effects through identification and conservation of wetlands or wetland-

dominated landscapes that store large carbon stocks and allowing wetlands to be included in 

carbon-offset programs. 

 Carbon sequestration in freshwater wetlands 

The increase in the atmospheric concentration of CO2 has resulted in changes in the functioning 

of natural ecosystems worldwide. The IPCC's fifth assessment report showed a global increase in 

the atmospheric concentration of CO2 from  approximately 280  to 400 parts per million (ppm) over 

the years (Pachauri et al., 2014). According to Sundquist et al. (2008), in order to stabilise 

atmospheric CO2 during the next century, the world’s annual CO2 emissions must be reduced by 

more than 75% of their current level. When the effects of climate change are not consistently 

addressed, both natural and human processes may be severely impacted. Hence, climate change 

has become humanity's most serious and complex environmental matter over time (Solomon et al., 

2007; Erwin, 2009; Pachauri et al., 2014). The projected increase of CO2 emissions in the changing 

global climate requires important initiatives to monitor AGB vegetation ecology within wetlands 

that assist with regulating excessive carbon sources. Such interventions help to ameliorate possible 

severe effects on biodiversity.  

CS is the process whereby the atmospheric CO2 is absorbed and stored in carbon pools such as 

above ground live biomass, soils, below biomass for a long-time (Villa and Bernal, 2018). CS in 

wetlands results from high rates of deposition in organic matter and low decomposition rates (Pant 

et al., 2003). To maintain and understand the atmospheric carbon dynamics, the sequestration of C 

and its storage in large quantities, whether below or above ground in wetlands, is significant (Villa 

and Bernal, 2018). The total quantity of carbon that wetland ecosystems can sequestrate at given 

spatial and temporal scales is referred to as CS potential (Were et al., 2019). CS potential indicates 

the maximum rate at which carbon is stored over a certain period. For example, the plant growth 

rate and the maximum amount of carbon that can be accumulated in plants AGB and below-ground 

biomass (BGB) (Were et al., 2019).  
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Wetlands' CS potential is controlled by various factors such as vegetation, climate, anthropogenic 

activities, as well as significant variations in the rate of transformation and decomposition of plant 

material, which have caused significant complexities in the spatial distribution and composition of 

carbon in wetlands (Villa and Bernal, 2018; Were et al., 2019; Salimi et al., 2021). Some of these 

factors have severely put most wetlands under threat, for example, direct and indirect 

anthropogenic factors such as deforestation, animal grazing, fires, and invasive alien species, to 

mention a few (Mitchell, 2013). Due to the changing climate variables, such as increased 

temperatures, erratic rainfall, and anthropogenic pressures, wetland vegetation communities have 

been destroyed (Carrington et al., 2001: Kang et al., 2007; Moncrieff et al., 2015). Consequently, 

these wetland alterations increase the chances of large amounts of carbon stocks being released 

into the atmosphere. Therefore, CS is crucial for understanding the regional carbon cycle, especially 

since it is a significant aspect of semi-arid environments. 

 Quantification of carbon stocks from biomass estimates 

Vegetation biomass is linked to a variety of crucial elements such carbon stock quantification, 

and peat formation (Sawadogo et al., 2010; Mutanga et al., 2012; Munyati et al., 2022). Quantifying 

wetland AGB would allow for the identification and prediction of potential variations in AGB, which 

is critical for developing climate change early warning systems (Wan et al., 2018; Li et al., 2021). 

Furthermore, it has been highlighted that due to the dynamic nature of the AGB, continual and 

frequent AGB observations are needed to quantify variations in carbon efficiently (Eastman et al., 

2013; Diouf et al., 2015; Shoko et al., 2016). Kumar and Mutanga (2018) stated that estimations in 

the AGB vegetation still need to be fully documented, especially in African regions. As a result, there 

are still questions concerning about their estimated temporal variations. Biomass is critical to 

comprehending and calculating carbon stocks in plant communities, particularly grassland 

vegetation. 

Although comprehensive biomass estimates are essential for precise and reliable carbon 

accounting, there are few reliable estimates of the carbon stock from dry biomass (Houghton et al., 

2009). The IPCC has then established guidelines to convert AGB to carbon stocks, assuming that 

carbon concentrations are 50% of the AGB (Penman et al., 2003). Conversion of carbon stock is 
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formulated as ΔC= AGB x CF, where ΔC = Total carbon content in the AGB; AGB = estimated AGB; 

and CF = Carbon Fraction (Otukei and Emanuel, 2015; Behera et al., 2016). Research on the 

quantification of carbon stocks has been chiefly done in converting biomass of forest ecosystems 

(Barrett, 2014; Salas Macias et al., 2017; Tavasoli et al., 2019). For instance, Barret (2014) used a 

carbon fraction of 0.50 to calculate carbon stock from AGB in the Tongass National Forest. The 

results indicated that the forest stores large amounts of forest carbon, with an estimated 650 million 

tons of carbon compared to other national forests in the United States of America. On the other 

hand, both Tavasoli et al. (2019) and Oliveria et al. (2019) used the carbon fraction of 0.47 to 

calculate the carbon stocks from dry biomass of forests in urban forests and Brazil's open savannahs, 

respectively.  

There has also been a growing interest in quantifying carbon stocks from biomass in wetlands 

ecosystems however most studies focused of yearly carbon estimation(Villa and Bernal, 2018; Dai 

et al., 2020; Dayathilake et al., 2020). Dai et al. (2020) estimated yearly CS of herbaceous vegetation 

in Poyang wetland, China. Their study indicated that herbaceous wetland vegetation sequestrated 

a total carbon amount of about 193–1221 g C m−2 year−1. Fewer studies have estimated the carbon 

stock in the AGB of wetland vegetation across the seasons (Costa and Henry 2010; Lolu et al., 2019). 

Lolu et al. (2019) investigated the seasonal carbon stock from the dry AGB of 12 wetland 

macrophytes  (i.e Epilobium hirsutum, Hippuris vulgaris, Lycopus europaeus, Menyanthes trifoliata, 

Nymphoides peltatum, Phragmites australis, Ranunculus lingua, Myriophyllum spicatum, 

Saggitraria safittifolia, Sparganium erectum, Trapa natans and Typha angustata) in the Hokersar 

wetland. The results of this study indicated the macrophytes to have an average of 244.86 g C/m-2  

in the summer season and an average of  188.790 g C/m-2 in the winter season. Costa and Henry 

(2010)  evaluated CS of aquatic macrophytes and documented lower carbon range  of  114.3 g C/m-

2 in summer compared to the range of 203 g C/m-2 in winter in the lakes of Brazil.  

Research on estimating carbon stocks between seasons from wetland vegetation biomass is still 

lacking, particularly in African regions. Large-scale changes in vegetation cover, degradation of 

biomass, and increasing climate change effects are occurring throughout Southern African regions, 

with substantial implications on the functioning of the natural ecosystem (IPCC, 2014; King, 2014). 

According to David et al. (2022), in Southern African regions  this has resulted in many uncertainties 
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regarding the rate of loss, regrowth in AGB and the carbon stocks estimations  in the AGB are largely 

undocumented. Consequently, temporally, and spatially investigated variations in distributions of 

vegetative biomass can aid in conserving grasslands and wetlands and notably optimise research on 

biomass estimation with remote sensing systems. This, in turn, helps improve and understand the 

accuracy of carbon models, leading to more accurate future predictions of global climate change. 

 Methods for estimating AGB in wetlands 

Section 2.6  provides a review on methods that are utilised for estimating AGB in wetlands based on 

existing literature. The section first reviews the field based or traditional methods which are 

categorised into destructive and non-destructive techniques. Secondly this section provides a 

review on the role of different remote sensing datasets and indices derived from satellite images in 

estimating the AGB of wetland vegetation.  

2.6.1 Field-based methods 

Traditional methods for field-based quantification of herbaceous AGB generally consist of 

collecting and estimating vegetation biomass using conventional methods such as field surveys and 

harvesting procedures for biomass assessments (García et al., 2010; Melton et al., 2013). Field 

surveys allow for the provision of high-quality point data (David et al., 2022). Harvesting is a 

destructive technique that involves physically cutting and collecting vegetation in non-forested 

wetlands (Lauck and Benscoter, 2015). Destructive methods have also been applied in wetland 

vegetation AGB estimation.  Cutting wet vegetative biomass is often done at individual sample plots 

using the average of a number of sub-plots or a quadrant of a particular size. Destructive techniques 

typically require intensive fieldwork, which is laborious and time-consuming (Lauck and Benscoter, 

2015; Han et al., 2019). Also, the destructive sampling is spatially constrained and does not fully 

describe the AGB variability across the landscape as some parts of the wetlands are inaccessible by 

foot. However, these approaches still have value, and the collected data are used for field validation.  

Estimating plant biomass in wetlands can also be done using non-destructive methods. For 

example, non-destructive methods for estimating AGB involves developing models using allometric 

equations based on the correlation between biomass and vegetation metrics such as diameter-at-

breast height (DBH) (Houghton et al., 2001; Chave et al., 2005). However, it is essential to note that 
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allometric equations are suitable for some wetlands species, such as Carex and Phragmites, which 

are large but not applicable for small species. The synergy between in-situ measurements and non-

destructive methods based on satellite data provides a solid foundation for a practical 

understanding and analysis of results obtained from secondary data such as remote sensing images 

(Stephenson et al., 2020). Despite the efficiency and importance of traditional methods, the 

dynamic nature of wetlands in terms of water level, presence and growth of vegetation, and water-

inundated areas cause these habitats to change annually or inter-annually (Mitsch et al., 2013). 

Wetlands are also hard to access in the field due to the presence of water, peat caps and other 

hazards which make physical sampling difficult. Therefore, estimating plant AGB in wetlands 

requires additional means to monitor the vast majority of wetlands distributed over large 

geographical areas. 

The role of remote sensing technology in estimating wetland AGB 

Remote sensing is an act of acquiring information from a target object without being physically 

in contact with it and the first multispectral remote sensing data was made available to the public 

in the 1970s (Fussell et al., 1986). Over the years, there has been considerable improvement on the 

use of satellite technology for estimating/predicting AGB in natural ecosystems because of the 

accessibility of these images to the public at relatively low costs. Satellite imagery data for 

monitoring and mapping wetlands can be acquired using different satellite platforms that are 

categorised as either active or passive (Wu, 2017). Active sensors provide their own energy source 

and acquire images at any time while passive sensors use the natural available energy from the sun 

to measure the reflected electromagnetic radiations (Campbell and Wynne, 2011). For example, 

images obtained from passive sensors are multispectral imagery, aerial photographs and 

hyperspectral imagery and remote sensing images from active sensors include LiDAR and SAR data.  

Several satellite remote sensors, with varying image acquisition features have been invented 

offering improved ways for monitoring of herbaceous AGB in wetland ecosystems over seasonal and 

long-term scales. These inevitable developments in remote sensing sensors offer better and finer 

spectral, temporal, and spatial resolutions that make it feasible for mapping large-scale wetlands 

dynamics (Lang et al., 2015). The following subsections will give more detailed information on the 
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application of different remote sensing datasets in estimation of AGB more specifically for palustrine 

wetlands in the Grassland Biome. 

2.6.1.1 Estimation of wetland herbaceous AGB using optical remote sensing  

Optical remote sensing technology has expanded in terms of applications due to exceptional 

technological improvements in the specifications of these sensors (Sibanda et al., 2015). Optical 

sensors make it feasible to obtain spectral data for AGB vegetation monitoring in different spectral 

regions of the EMS, which enables the detection of vegetation biomass, two-dimensional (2D) 

representation of vegetation, and its estimation within wetlands ecosystem (Gallant, 2015; Guo et 

al., 2017). Optical remote sensing data is available from several sensors, such as IKONOS, Quickbird, 

Worldview, Satellite Pour l’Observation de la Terre (SPOT), Sentinel series, Landsat, and the 

Moderate Resolution Imaging Spectroradiometer (MODIS). These sensors vary according to their 

spatial, radiometric, temporal, and spatial resolutions. This provides an opportunity to investigate 

the capabilities of these sensors for earth observation applications, including estimating biomass in 

wetlands and grasslands.  

Multispectral data with coarse to moderate resolution, such as MODIS (250 m, 500 m, and 1000 

m) and Landsat (30 m, 60 m) datasets, are currently freely available online. The space-based sensors 

provide images with a repeated global coverage, which is necessary for continuous AGB assessment 

at regional to global scale. These satellite data characteristics have resulted in numerous remote 

sensing images gaining more popularity for regional AGB mapping (Mutanga et al., 2012; 

Barrachina et al., 2015). Barrachina et al. (2015) used Landsat-5 Thematic Mapper (TM) to model 

the AGB of pastures and obtained satisfactory results of AGB estimation with a coefficient of 

determination (R2) of 0.76 and root mean square error (RMSE) of 95 g.m2. Landsat 8 Operational 

Land Imager (OLI) has nine bands that can be used to calculate vegetation AGB (Dube and Mutanga, 

2015). Dube and Mutanga (2015) quantified the AGB of a forest plantation using Landsat 8 and 

Landsat 7 datasets in the uMngeni catchment in the KwaZulu-Natal Province of South Africa. Their 

results suggested that Landsat 8 performed better than Landsat 7 in estimating the AGB of E. 

dunii species, obtaining accuracies of an R2 of 0.71, RMSE of 10.66 t ha−1 and mean of 6.26% for 

Landsat 8 and R2 of 0.68, RMSE of 11.81 t ha−1; and mean of 6.93% for Landsat 7. 
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Previous studies, however, on vegetation biomass estimation with moderate-resolution images 

reveal some gaps and shortcomings, such as the inability to measure the 3D structure of vegetation. 

For instance, it has been argued that using optical satellite images such as Landsat TM and MODIS 

may limit the quantification of AGB due to low to moderate spatial and spectral resolution in these 

sensors (Dube and Mutanga, 2015; Shoko et al., 2016; Li et al., 2021). Furthermore, moderate-

resolution sensors are limited in the AGB estimation due to the unavailability of RE bands within 

these sensors. According to the literature, the wavelengths of the RE region are sensitive to leaf 

structure reflection (i.e., LAI and leaf angle distribution), reducing the saturation effect due to lower 

absorption in this region (Cho and Skidmore, 2006; Mutanga et al., 2012). Thus, the RE region 

provides more information on the characterisation of vegetation parameters and has proven to be 

beneficial for AGB and vegetation structure estimation (Ramoelo et al., 2015; Naidoo et al., 2019; 

Li et al., 2021). Therefore, one of the main aspects to consider when using remote sensing images 

in evaluating vegetation AGB is their capability to extract biophysical vegetation characteristics such 

as structure over space and time (Forkel et al., 2013).  

The development of improved sensors (RapidEye, Sentinel-2 MSI, and Worldview) with 

designated strategically-positioned spectral bands and frequent revisit times over the years have 

improved the mapping and estimation of the vegetation biomass in grasslands and wetlands 

(Sibanda et al., 2017; Li et al., 2021). The presence of RE bands in optical sensors such as Worldview 

and RapidEye offers improved capabilities for precise and timely prediction of AGB in grasslands and 

wetlands ecosystems at both local and regional scales. These sensors have shown outstanding 

capabilities in mapping vegetation biomass in numerous studies (Ramoelo et al., 2012; Ramoelo et 

al., 2015; Sibanda et al., 2017; Naidoo et al., 2019; Li et al., 2021). While RapidEye and Worldview 

images are suitable for fine-scale monitoring and estimating teal AGB, they are very costly. 

Moreover, this causes limitations in multi-temporal or seasonal assessments of biomass and hinders 

exploring RE bands' ability for AGB estimation at regional scales.  

ESA developed the Sentinel-2 MSI sensor system, which consists of two orbiting twin satellites, 

Sentinel-2A (launched in 2015) and Sentinel-2B (launched in 2017). Sentinel-2 is an optical satellite 

with 13 spectral bands operating at spatial resolutions of 10 m, 20 m, and 60 m, with frequent revisit 

times of 5-7 days compared to the nine spectral bands of Landsat 8, which has a revisit time of  16 
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days. Furthermore, the imagery is available free of charge providing the opportunity to utilise the 

RE bands, which are not available within the Landsat and MODIS imagery; hence, this study sought 

the use of Sentinel-2 imagery. Several contributions using Sentinel-2 images in estimating 

vegetation AGB of wetlands and grasslands have been made in numerous studies (Ramoelo et al., 

2015; Sibanda et al., 2015; Naidoo et al., 2019; Li et al., 2021). For example, a study by Ramoelo et 

al. (2015) investigated the use of the RE band of Sentinel-2 in assessing grass biophysical properties. 

Li et al. (2021) used Sentinel-2A MSI images for modelling wetland vegetation AGB with ensemble 

algorithms at accuracies of R2 = 0.84 and R2 = 0.87. Despite the capabilities and significant accuracies 

demonstrated by optical data, they have shorter wavelengths that result in loss of information 

during cloudy and rainy weather and provide limited structural information (Gallant, 2015). 

Additionally, water in wetlands mixes the spectral responses of semi- and full-submerged 

vegetation. Therefore, the estimation of AGB in wetlands with dense vegetation using solely optical 

datasets may be limited (Gallant, 2015).  

Although optical remote sensing data have shown great capabilities in providing vegetation 

canopy information, including AGB estimates in different environments, the canopy structure tends 

to have significant differences between months and even across seasons. Powell et al. (2010) and 

Zhu and Liu (2019) contend that seasonal optical images can potentially result in significant 

variations in AGB estimates. However, the literature reveals that to date, previous quantification of 

AGB across seasons has been done during the peak growing season in forested environments using 

medium-resolution images like Landsat (Gasparri et al., 2010; Powell et al., 2010). On the other 

hand, studies on quantifying the AGB of wetland vegetation between seasons are still lacking and 

underrepresented. Some studies, for example, Gasparri et al. (2010) developed predictive models 

by utilising an optical image obtained at one season to correlate to AGB from various seasons, while 

Powell et al. (2010) estimated AGB of multiple years; however, using a single Landsat for each year. 

Thus, these studies did not entirely explore the use of complete seasonal variation information from 

multi-temporal optical remote sensing images obtained at different seasons. 

Satellites with a longer revisit time (i.e., Landsat) often result in limitations in collecting enough 

cloud-free images during the vegetation growing season. The temporal challenges cause significant 

uncertainties during  model parameterisation and  could potentially increase biomass estimation 
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errors. According to Zhu and Liu (2019), the benefits and shortcomings of seasonal AGB estimation 

from optical images obtained at different seasons require further investigation. Given this need, a 

knowledge gap exists regarding whether seasonally obtained optical datasets affect the accuracy of 

AGB estimations and whether the AGB estimations vary between vegetation types. Consequently, 

integration of VIs or biophysical variables (e.g., LAI) derived from sensors with better temporal 

coverage (Sentinel-2) can reduce these data gaps and creates an opportunity to expand the 

monitoring of wetland conditions and estimation of AGB in wetlands and grasslands at regional 

scales. 

2.6.1.1.1 Optical vegetation indices and estimation of AGB  

The optical remote sensing technology for biomass estimation uses the spectral characteristics 

of vegetation by integrating regions such as red, near-infrared (NIR) and RE into VIs for analysing 

the correlation between biophysical parameters and these indices (Jin et al., 2014). In general, VIs 

enhances vegetation photosynthetic activity by suppressing the soil, and atmospheric background 

noise and, in turn, improves the estimation of the AGB in wetland and grasslands (Pia et al., 2007). 

Due to the sensitivity of optical sensors for detecting wetland AGB, numerous VIs has been 

successfully used as key input variables to estimate grassland and wetland AGB in several studies 

(Mutanga et al., 2012; Huang et al., 2016; Michez et al., 2019; Li et al., 2021). The Normalized 

Difference Vegetation Index (NDVI) has proven to be a proxy of AGB of wetland vegetation in many 

studies, attaining accuracy ranges of between R2 = 0.31 to 0.84 (Adam and Mutanga, 2012; Mutanga 

et al., 2012; Wan et al., 2018). Li et al. (2021) showed that the Green Normalized Difference 

Vegetation Index (GNDVI) was among the most important VIs that were integrated into a random 

forest model scenario to estimate AGB in palustrine wetlands and obtained an accuracy of R2 = 0.82 

and RMSE = 135.91 g.m-2. Nuthammachot et al. (2020) also found a strong correlation (R2 = 0.86) 

between the Simple Ratio index and the AGB. Other studies have also investigated the correlation 

between field-measured biomass and Enhanced Vegetation Index (EVI) to precisely estimate CS in 

vegetation at a regional scale (Yang et al., 2009; Sjöström et al., 2011). 

However, the shortcomings of using VIs, such as the NDVI, is saturation in locations with dense 

vegetation canopy (Mutanga and Skidmore, 2004, Adam et al., 2010; Hill, 2013; Li et al., 2016). 

Therefore, it is vital to investigate the applicability of other additional spectral indices to improve 
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vegetation biomass estimation, especially in wetland ecosystems with remote satellite data. VIs 

derived from the NIR, narrow NIR and RE bands can yield higher accuracy of AGB estimation and 

contribute to alleviating the saturation problem (Mutanga and Skidmore, 2004; Ramoelo et al., 

2015; Sibanda et al., 2015). A series of studies indicated a strong correlation between vegetation 

biomass and indices derived from the RE and NIR regions exists (Sibanda et al., 2015; Naidoo et al., 

2019; Guerini et al., 2020; Li et al., 2021). Guerini et al. (2020) estimated biomass in natural 

grasslands using five VIs derived from the Sentinel-2 dataset, and the models for biomass 

estimations which incorporated the NDVIRE showed a strong relationship between grass biomass 

and RE bands which improved accuracies from R2 = 0.71 to 0.73 (Guerini et al., 2020). In Michez et 

al. (2019), the spectral biomass model, which included the Green-Red Vegetation Index (GRVI), 

GNDVI, and NDVIRE, showed improved accuracy with R2 = 0.35 compared to Unmanned aerial 

systems (UASs) sward height biomass model (R2 = 0.23) when mapping and monitoring biomass in 

pastures. 

LAI is one of the most vital vegetation properties used to quantify the exchange of energy, carbon 

and water between vegetation and the atmosphere (Darvishzadeh et al., 2019). LAI defines the 

number of single-sided leaves per square metre of soil (Liang et al., 2015). LAI of vegetation 

quantifies the plant canopy and gives more details on how much vegetation there is, delineating all 

the active photosynthetic areas (Kamenova and Dimitrov, 2021). Furthermore, LAI is included as an 

input in AGB models as a vegetation parameter because it is considered a strong proxy for biomass. 

Dong et al. (2020) estimated the dry AGB of six crops using LAI derived from Landsat 8 and Sentinel-

2 datasets. The results of the study suggested that crop biomass derived from LAI of the Sentinel-2 

dataset had higher accuracies (R2 = 0.80, RMSE = 136.7 g/m2 and the normalized RMSE (nRMSE) = 

38.3%) than from the assimilation of LAI from Landsat OLI (R2 = 0.68, RMSE = 191.0 g/m2, nRMSE = 

53.5%). The significant contribution of LAI as an additional parameter in wetland AGB estimation 

models is not fully documented. The inclusion of LAI in AGB estimates could significantly improve 

the prediction of current and future wetland vegetation state and changes in vegetation canopy 

structure and thus help monitor wetland functionality and health. 
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2.6.1.2  Utilisation of radar data for estimating AGB in palustrine wetlands 

SAR is an active sensor that transmits electromagnetic radio signals and collects information by 

recording backscattered signals from the target (Dabboor and Brisco, 2018). The total amount of 

SAR-reflected signals is influenced by polarisation, wavelength, moisture, incident angle and various 

land surface attributes, such as size, texture, and structure (Gallant, 2015; Sinha et al., 2015). SAR 

sensors mainly obtain data in horizontal (H) or vertical (V) polarisations; and can function in dual 

polarimetric mode (HH/HV, VH/VV or HH/VV) (i.e., Sentinel-1 and TerraSAR-X,) or in a full 

polarimetric mode (HH/HV/VH/VV) (i.e., RADARSAT-2 and ALOS-2). The SAR-recorded 

backscattering signals enable the provision of critical information on vegetation structure, including 

AGB, soil moisture and smooth water surfaces in wetlands depending on the sensor wavelength, 

incident angle and polarisation modes (Sinha et al., 2015; White et al., 2015). Sivasankar et al. (2019) 

estimated the AGB in a forest environment in Meghalaya  and the  backscatter variables HH and HV 

showed high accuracies with R2 of 0.83 and 0.89, respectively while the combination of both HH and 

HV backscatter coefficients improved the accuracy of AGB estimation to R2 = 0.91. 

SAR systems emit energy at longer wavelengths than optical systems and can collect information 

from an object at any day or time without being affected by weather patterns (Sinha et al., 2015). 

Most importantly, SAR sensor wavelengths play distinct roles in wetland AGB monitoring (Guo et 

al., 2017; Dabboor and Brisco, 2018). For instance, the C-band and X-band have shorter wavelengths 

of 5.6 cm and 3.1 cm, respectively, and were found suitable for monitoring non-forested wetlands, 

preferably with herbaceous vegetation in Canada (Ghasemi et al., 2011). The L-band can penetrate 

through vegetation cover. It is more significant in monitoring forested wetlands and soil moisture 

because of their longer wavelength’s (~24 cm) penetration ability (Lang et al., 2008). Currently, only 

a few L-band space-borne sensors are in operation, but access to this data is very limited because 

of their cost (Lang et al., 2008). The other limitation of the L-band such as the ALOS PALSAR/ALOS-

2 sensor is that only a single mosaic image is made available yearly and free which limits seasonal 

studies. Also, most SAR sensors (i.e., TerraSAR-X and RADARSAT-2) have limited surface coverage 

(15 to 80 km), short life expectancy, longer revisit time of 11 to 46 days, very expensive and are not 

freely available for the public (Chen et al., 2020). Therefore, these sensors are less suitable for 

regional to global monitoring and reporting to global targets. 
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In 2014, ESA introduced Sentinel-1, which operates as a constellation of Sentinel-1A and Sentinel-

1B and is the second most recent SAR sensor functioning with a C-band wavelength configuration 

(the first being Radarsat) (Torres et al., 2012; Filipponi, 2019). Sentinel-1A mission acquires data at 

different polarisations backscatter channels, for example, Vertical-Horizontal (VH), Vertical-Vertical 

(VV) and Horizontal-Horizontal (HH).  This mission has a shorter revisit time of 6 to 12 days at the 

equator and a wide swath of approximately 250 km (Filipponi, 2019). Free and open access to C-

band SAR data from the Sentinel-1 platform has allowed the application of temporal information 

from SAR data to efficiently map and monitor wetlands over larger spatial extents (Torres et al., 

2012; Nuthammachot et al., 2020). Apart from being freely available, Sentinel-1 C-band wavelength 

is more suited to wetland herbaceous AGB estimation due to the low AGB ranges (i.e low risk of 

signal saturation) compared to forested AGB ranges and the ability to penetrate clouds. For this 

reason, Sentinel-1 SAR data can be used to monitor wetland vegetation biomass at a relatively 

higher temporal resolution during optimal periods (Ghasemi et al., 2011). 

2.6.1.3 Estimation of wetland AGB using SAR image texture measurements 

Image texture (Haralick et al., 1973) is a significant parameter that can be used to find features 

and a point of interest by increasing differentiation of spatial information independently of tone, 

horizontal structure, and relativity of grey values in an image (Kuplich et al., 2005; Kelsey and Neff, 

2014). Texture measurements have the potential to explain how pixels are spatially correlated and 

to describe how vegetation structure varies, and this improves the estimation of AGB (Kelsey and 

Neff, 2014; Dube and Mutanga, 2015). Furthermore, texture variables are derived from both optical 

and radar images. The most basic image texture analysis methods are statistical methods which 

effectively describe texture based on analysing the distribution of grey levels in images. Examples 

of texture algorithms include sum and difference histograms (SADH), GLCMs, autocorrelation 

function (ACF) and local binary pattern (LBP) (Lu and Batistella, 2005). GLCMs textures are the most 

well-known and efficient statistical methods with strong texture analysis robustness (Argamosa et 

al., 2018). The computation of GLCMs also involves selecting essential factors such as window size 

or the number of image pixels considered in the analysis (Li et al., 2021).  
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Most studies that have applied texture measurements in biomass estimation have focused more 

on forest biomass using optical images (Kuplich et al., 2005; Kelsey and Neff, 2014; Dube and 

Mutanga, 2015). Other studies that have employed texture analysis in the estimation of AGB using 

SAR data concentrated more on the estimation of AGB in forest ecosystems (Kuplich et al., 2005; 

Sarker et al., 2011; Cutler et al., 2012). Less attention has been given to the application of textures 

in wetland AGB estimation (Li et al., 2021). SAR-derived textures can optimise the discrimination of 

spatial information in vegetation independently of tone (i.e., backscatter), increasing the saturation 

level and maximising the range of biomass estimated with SAR data (Kuplich et al., 2005). Sibanda 

et al. (2017) investigated the capability of using texture metrics from WorldView-3 images to 

estimate AGB of vegetation such as  Eragrostis plana, Heteropogon contortus, Panicum maximum, 

Setaria nigrirostrosis, Themeda triandra, and Tristachya leucothrix within the Grassland biome in 

South Africa. This region was characterised by a subtropical climate of hot summers and cold 

winters. The outcomes of the study showed that textures enhanced the estimation of grass AGB and 

improved accuracy from an RMSE of 0.83 kg/m2 to an RMSE of 0.35 kg/m2. Furthermore, the study  

also indicated that using the combination of texture models and RE derivatives improved estimation 

accuracy to an RMSE of 0.2 kg/m2.  

Argamosa et al. (2018) derived texture derivatives from Sentinel-1 data to model AGB in 

mangrove forests, and their results showed high model accuracy with an R2 = 0.79 and an RMSE = 

0.44 Mg. The study proposed that the C-band of Sentinel-1 may be used to generate adequate AGB 

models, and therefore more studies on C-band texture are still lacking (Argamosa et al., 2018). There 

are no studies that have applied SAR textural features for estimating the AGB of palustrine wetland 

vegetation. However, although Rajngewerc et al. (2022) investigated the classification of wetland 

vegetation cover maps, multi-temporal C-band Sentinel-1 data GLCMs textures illustrated better 

classifications with summer attaining improved kappa values between 9% and 22% while the 

datasets for winter yielded improvements of up to 15%. Rajngewerc et al. (2022) highlighted that 

textures could offer supplementary information, particularly in dates and locations with high 

biomass, and winter was one of the most informative seasons in their findings. Mishra et al. (2019) 

demonstrated that combining SAR and GLCM texture features could significantly improve the 

classification of heterogeneous landscapes. Comparatively with the findings of Mishra et al. (2019) 
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and Rajngewerc et al. (2022), it can be pointed out that multi-temporal SAR texture measurements 

exhibit variations according to the phenological state of vegetation. Therefore, SAR textural features 

may provide information that improves multi-temporal backscatter AGB estimates in wetlands 

characterised by heterogeneous vegetation, such as palustrine wetlands. 

2.6.1.4 Contribution of LiDAR data in estimating AGB of palustrine wetlands 

LiDAR is a remote sensing system that uses a pulsed laser to obtain the distance between an 

object and the sensor (Rapinel et al., 2015). The sensor can produce topographical information 

about the earth’s surface and a 3D representation of vegetation structure in both woody and 

herbaceous vegetation (Guo et al., 2017; Luo et al., 2017). For example, Fatoyinbo et al. (2018) the 

authors estimated wetland AGB using an airborne LiDAR dataset and attained an R2 of 0.88 and an 

RMSE of 33%. Riegel et al. (2013) estimated carbon stocks of the AGB within Coastal Plain Wetland 

characterised by numerous vegetation types (i.e., Baccharis halimifolia, Persea borbonia, Rhus 

copallinum, Salix nigra and Taxodium distichum) using LiDAR. The study achieved R2 values of 0.34 

and 0.18 with RMSE of 0.14 Mg C/ha and 0.17 Mg C/ha, respectively (Riegel et al., 2013). Other 

studies have also successfully used LiDAR for estimating wetland biomass (Luo et al., 2017; de 

Almeida et al., 2019). 

LiDAR data had higher estimation accuracy of R2 = 0.59, RMSE = 180.22 g/m2 and relRMSE = 

22.26% compared to the hyperspectral data accuracy of R2 = 0.48, RMSE = 200.98 g/m2 and relRMSE 

= 24.84% for estimation of AGB in a wetland (Luo et al., 2017). However, the combined datasets 

achieved greater accuracies of R2 = 0.65, RMSE = 167.55 g/m2 and low relRMSE = 20.71% (Luo et al., 

2017). Another study that combined LiDAR and hyperspectral data for estimating AGB in the 

Brazilian Amazon using different regression models showed higher accuracies of LiDAR with 

R2 = 0.58, RMSE = 67.6 Mg. ha−1, relRMSE% = 36%, while hyperspectral achieved R2 = 0.58, 

RMSE = 68.1 Mg. ha−1, relRMSE% = 36%, and both datasets had a more accurate AGB estimate of 

R2 = 0.70, RMSE = 57.7 Mg. ha−1, relRMSE% = 31% (de Almeida et al., 2019). LiDAR data has shown 

great capabilities for estimating biomass in forests, wetlands and grazing lands,  with more 

application being focused or predominant in forest AGB estimation (Li et al., 2021). Despite the high 
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spatial resolution of LiDAR, it is expensive to acquire data using this type of sensor, suggesting its 

limited application in monitoring spatial and temporal changes in wetlands environments.  

2.6.1.5 Combination of optical, radar and ancillary data improve the estimation of AGB of 

palustrine wetlands  

Integration of SAR data and optical remotely sensed data provides an enhanced and reliable way 

to estimate the physical characteristics of wetland vegetation, including the AGB values, which can 

be quantified (Nuthammachot et al., 2019). For example, SAR backscatter signals can penetrate 

through vegetation structures (Naidoo et al., 2016; 2019) while optical generated VI and the RE 

bands enhanced the  AGB estimates of wetland and terrestrial vegetation, reducing the saturation 

problem of certain VIs in higher AGB and dense canopies (Mutanga et al., 2012; Ramoelo et al., 

2015; Sibanda et al., 2017). A complex nature characterises wetlands in terms of spatial and 

temporal distribution, requiring accurate and reliable techniques such as image fusion of remote 

sensing data. Backscatter, spectral reflectance, and derivatives (VIs and biophysical parameters) 

could improve the estimation of wetland vegetation AGB (Naidoo et al., 2019; Nuthammachot et 

al., 2020; David et al., 2022; Zhao et al., 2022). 

 Zhao et al. (2022) mapped the AGB of Phragmites australis, a wetland plant community in the 

Momoge wetland, using a combination of Sentinel-1 and Sentinel-2 images. The study posited that 

incorporating Sentinel-1 backscatter and 2 RE bands and radar features attained high accuracy of 

89.13% when mapping Phragmites australis AGB. Although David et al. (2022) estimated AGB of 

dryland forests in Southern Africa, their study demonstrated that combining Sentinel-1and Sentinel-

2 imagery increased accuracy, obtaining R2 between 0.82 and 0.95 and RMSE of 0.45 Mg/ha and 

0.25 Mg/ha. The integration of Sentinel-1 and Sentinel-2 for estimating the AGB was investigated 

by Nuthammachot et al. (2019). The results indicated that synergistic use of the two sensors 

improved accuracy to R2= 0.84 compared to individual sensors with Sentinel-1 and 2 attaining R2 of 

0.34 and 0.82, respectively. Thus, the integration of both sensors can provide additional information 

that neither SAR nor optical data contains for sustainable monitoring of wetlands (Gosselin et al., 

2014). In Addition, the synergistic use of remote sensing images obtained at different times or 

seasons holds great potential in attaining accurate mapping of wetlands and estimation of wetland 
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AGB compared to the evaluation done using single-date remote sensing images (Sinha et al., 2015; 

Mahdavi et al., 2017). 

 Remote sensing-based modelling techniques for estimating herbaceous AGB of wetlands. 

This section gives a literature review on the remote sensing-based modelling techniques for 

estimating herbaceous AGB of wetlands. These techniques are categorised into biophysical-

radiometric and empirical methods. The empirical techniques are further sub-divided into 

parametric and non-parametric algorithms. The following subsection (subsection 2.7.1) first provide 

a review on the types of biophysical methods and how they are used to estimate vegetation 

properties such AGB. Furthermore, the section will provide a review on the different types of 

empirical methods in subsection 2.7.2 and how they are incorporated with remote sensing data in 

order to improve the prediction of AGB in wetland.  

2.7.1 Biophysical radiometric data-driven techniques 

The literature has illustrated that biophysical-radiometric methods have used radiative transfer 

models (RTMs) to derive vegetation properties using physical principles (Verrelst et al., 2015). RTMs 

rely on sensor spectral and backscatter reflectance from the earth's surface (Darvishzadeh et al., 

2008). The spectral reflectance attributes of vegetation provide vital information (as input variables) 

for physical-radiometric modelling (Jin et al., 2018). RTMs can accurately predict vegetation bio-

geophysical parameters and canopy reflection (Darvishzadeh et al., 2008). However, extraction of 

vegetation parameters such as the LAI using biophysical-radiometric models is complex and not 

straightforward. As a result, LAI is calculated from canopy reflectance through the inversion of a 

model (Verrelst et al., 2015). The inversion technique determines a set of canopy biophysical factors 

from a set of spectral band reflectance so that the computed reflectance best match the remote 

sensing reflectance (Quan et al., 2017). 

Various studies have applied RTMs, such as the PROSAIL model, which is an integration of both 

the PROSPECT model and SAIL model (Berger et al., 2018) in optical data to extract vegetation 

properties like LAI in grasslands (Darvishzadeh et al., 2008; Atzberger and Richter, 2012; 

Darvishzadeh et al., 2019; Schwieder et al., 2020). Also, RTMs have previously been used to retrieve 

and predict AGB in grasslands attaining accuracies of between R2 = 0.64 and RMSE = 42.67 gm−2 and 
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R2 = 0.48 and RMSE = 41.65 gm−2 (Quan et al., 2017). The application of RTM in wetland macrophytes 

and in extraction of vegetation biophysical parameter has been understudied due ill-posed nature 

of physical-radiometric techniques (Kganyago et al., 2021), limitations to correction of water column 

effect and complex parameterisation  of RTMs for inland water application (Rowan et al., 2021; 

Kravitz et al., 2021). RTM-based methods (i.e., PROSAIL models) are used because of their feasibility, 

accuracy, and robustness in short or non-woody vegetation (Darvishzadeh et al., 2008; Berger et al., 

2018). Another RTM approach includes the Water Cloud Model (WCM), commonly used in 

parametric models to explain the backscattered signal from the vegetation canopy in terms of 

scattering mechanisms (Attema and Ulaby, 1978). The WCM has been extensively used in numerous 

studies for woody forested AGB and stems volume retrieval (Svoray and Shoshany, 2002; Behera et 

al., 2016; Santoro et al., 2021). Interestingly, WCM has been modified to an extended water cloud 

model (EWCM) that demonstrated less reliance on field data to retrieve model parameters (Kumar 

et al., 2019). However, biophysical-radiometric approaches are characterised by complex data 

structures and may require intensive computation, for estimating vegetation properties, 

parameterisation and collecting reflectance or backscatter information and settings (i.e., incidence 

angle) in the field at the time of image acquisitions. 

2.7.2 Empirical-statistical modelling techniques 

The empirical approaches are statistical algorithms that employ predictor variables derived from 

remote sensing images and field-measured data to estimate AGB. For instance, these remote 

sensing predictor variables include VIs, spectral reflectance bands, and texture variables (Hall et al., 

1997; Darvishzadeh et al., 2011). These algorithms allow for the detection of the most relevant 

remote sensing predictor variables to model AGB by correlating these variables with the field-

observed grassland AGB (Chen et al., 2009; Jin et al., 2014). The empirical algorithms for estimating 

AGB with remote sensing are categorised as parametric and non-parametric (Verrelst et al., 2015). 

The following subsections discuss these empirical-statistical algorithms in more detail. 

2.7.2.1 Parametric algorithms 

Parametric algorithms are defined as methods that use distributional assumptions because they 

estimate the parameters of the distribution postulated for the data (Altman and Bland, 2009). 
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Stepwise Multiple linear regression (SMLR) and simple linear regression are an example of 

parametric methods that have been used to investigate the relationship between biomass and 

remotely sensed predictor variables (Grant et al., 2013; Rigge et al., 2013). Parametric algorithms 

are very easy to compute and have the ability produce satisfactory results in the estimation of 

vegetation biophysical parameters (Verrelst et al., 2015). However, parametric models tend to have 

difficulty in analysing high dimensionality and non-linear relationships of complex data between 

remote sensing variables and AGB (Verrelst et al., 2015; Lu et al., 2016). Chen et al. (2009) used the 

partial least regression algorithm to estimate AGB in grasslands of high vegetation cover with 

hyperspectral data and NDVI and attained accuracies between R2 = 0.26 and 0.27. Mutanga et al. 

(2012) attained obtained an error of prediction of 0.5465 kg/m2 when predicting the AGB of wetland 

vegetation with SLMR. The parametric methods are associated with model overfitting and yield 

lower accuracies when the sample size is small (Chen et al., 2009). Therefore, to improve the 

accuracy of modelling AGB in grasslands and wetlands advanced and more robust algorithms need 

to be implemented.  

2.7.2.2 Non-parametric algorithms 

Non-parametric methods are not based on the normal distributional assumptions of the data 

(Altman and Bland, 2009). These models have the advantage of being able to solve complicated non-

linear patterns (Wan et al., 2018). Considering this, several efficient non-parametric machine-

learning algorithms have become dominant for biomass estimation in wetlands and grasslands 

(Mutanga et al., 2012; Wan et al., 2018; Yang et al., 2018; Naidoo et al., 2019). Machine learning 

techniques such as ANNs, RF and SVM are part of non-parametric techniques that can be integrated 

with satellite data to estimate accurate AGB (Lu et al., 2016; Wan et al., 2018). Integrating non-

parametric methods and satellite data help understand the complex relationship among spectral 

features and predict easily understood, interpreted, and visualised patterns.  

For instance, Mutanga et al. (2012) showed that RF obtained reasonable estimation accuracies 

of 0.441 RMSEP within high-density AGB in wetland vegetation composed of Cyperus papyrus L., 

Echinochloa pyramidalis, Phragmites australis and Thelypteris interrupta. Wan et al. (2018) used 

SVM as regression method for modelling wetland AGB dominated by vegetation such as Carex 
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cinerascen, Miscanthus sacchariflorus and Phalaris arundinacea. According to their study, the  SVM 

obtained a lowest error with a RMSE of 0.27 compared to simple linear regression method (RMSE = 

0.31) and ANN (RMSE = 0.29) . However, the RF model was the overall best performing machine 

learning algorithm with an RMSE of 0.25 (Wan et al., 2018). Although non-parametric algorithms 

have shown significant results, they  come with some drawbacks. Researchers have pointed out that 

the computation of algorithms such as the SVM and ANN are time-consuming and require 

considerable training data and extensive customisation compared to traditional parametric 

approaches (Mas and Flores, 2008). Also, the accuracy of the estimated AGB may be lower if the 

model hyper-parameters used are not adequately tuned  (Mas and Flores, 2008). In addition, ANNs 

are complicated algorithms not easily interpretable by humans as they may not reveal the internal 

mechanism of the link between the dependent variables and the selected independent variables 

(Mas and Flores, 2008; Lu et al., 2014; Verrelst et al., 2015).  

When compared to parametric methods, ML methods are unaffected by the normal distribution 

of data and are usable for large datasets from various sources (Barrett et al., 2014). For instance, 

Xie et al. (2009) conducted a comparative study and used Landsat data and spectral bands as input 

features to estimate grassland AGB using non-parametric ANNs and parametric MLR. According to 

their outcomes, ANN models produced an accuracy of R2 = 0.82 compared to MLR models with R2 = 

0.59. Li et al. (2021) investigated the capability of spectral and texture features derived from the 

Sentinel-2 for modelling wetland grass AGB in Shengjin Lake using the RF algorithm. The results 

indicated that the RF models had a robust and efficient performance with RMSE of 126.57 g·m2 and 

R2 of 0.84. Furthermore, the RF technique has also proven insensitive to noise and has produced 

satisfying results in several studies (Adam and Mutanga, 2012; Wan et al., 2018). Thus, non-

parametric algorithms show great potential in accurately estimating herbaceous AGB in wetlands 

because they are very robust to missing values and model overfitting due to built-in variable 

importance criteria and bootstrapping, such as in the case of the RF algorithm. The variable 

importance criteria allows for selection of the predictor variable that yield to significantly higher and 

accurate predictions. The parametric algorithms have obtained less accuracies, like RMSEP of 0.55 

kg/m2, compared to the prediction of 0.44 kg/m2 RF for grassland AGB estimation (Mutanga et al., 

2012).  
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 Conclusion 

Chapter 2 presented the important overview of wetlands in the biodiversity and ecosystems. This 

include its essential role to the carbon sequestration process among other categories. Also carbon 

quantification arise in the vegetation biomass predictions. There are numerous methods that exist 

for biomass estimation in wetlands. However, the unprecedented and non-destructive remote 

sensing tools are ideal for large scale monitoring and assessments of wetland AGB. Therefore, 

integrating satellite data with RTMs, parametric and non-parametric algorithms have been 

successfully used for estimating AGB of wetlands. Hence, the following chapter provides the 

detailed information about the nature of the study area, datasets and methodological framework 

utilised for investigating research gaps associated with wetlands AGB in the current study. 
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CHAPTER 3: DATA AND METHODS 

This chapter provide a general description of the selected study area and provides insights on 

why the area of interest was chosen. Secondly, the chapter gives a description of how the field data 

and the remote sensing data was collected and used to estimate terrestrial and wetland carbon 

from the AGB of palustrine wetland across the summer and winter seasons within the study area. 

Chapter 3 describes the machine learning methods that were used for the estimation of the wetland 

vegetation AGB, how the models were developed and validated, and how the developed models 

were employed for mapping the teal carbon across the investigated seasons within the study area. 

Therefore, the primary aim of this chapter is to provide a detailed explanation on the 

methodological approach in which this research project was conducted in this study. 

 General description of the study area 

Section 3.1 provides the information and description of the study area site. The section describe the 

geographic setting of the study area, the type of vegetation that is found within the study site and 

the climatic conditions of the area. Furthermore, a map  which shows the location of the study area 

in the catchment and  within the Grassland Biome of South Africa  is provided in this section.  

3.1.1  Location and setting of the Tevredenpan study area 

This study was conducted in Tevredenpan study area (26.2°S; 30.2°E) in the Grassland Biome of 

the Mpumalanga Province in South Africa (Figure 1: A). Tevredenpan site is found in the northern 

part of the Mpumalanga Lakes District (MLD) in the quaternary catchment W55A (Figure 1: B) (Van 

Deventer, 2020). The total extent of the W55A catchment is approximately 68 870 ha. The area 

experiences temperate weather with cold winters and warm summers, with mean annual rainfall of 

600 to 800 mm (Middleton and Bailey, 2008) and a yearly mean annual evaporation of 

approximately 1 600 –1 800 mm (Schulze, 1997). The elevation of the study area is between 1700 -

1820 m above sea level and the geology is predominantly composed of Vryheid formation which is 

comparatively flat with coal mining taking place in the area. The MLD has wide range of different 

wetland types, including 416 depressions, a number of valley bottom and seeps wetlands (Van 

Deventer et al., 2020; 2022). Two river systems, the Mpuluzi River and Pearl stream, which are 
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situated in the north and south of the research area, respectively, are fed by wetlands in the MLD 

area (Naidoo et al., 2019).  

The seeps wetlands and valley bottom wetlands found on hillslopes areas in the study area are 

temporary and seasonally saturated due to seasonal changes (Naidoo et al., 2019; Van Deventer et 

al., 2020). The western part of the study area consists of the largest depression (called Tevredenpan) 

(Figure 1: C) which contains a floating peat cap that supports wetland grass growth (Grundling et 

al., 2003). The accumulation or the presence of peat aids in regulating climate change by 

sequestering atmospheric carbon and storing it in vegetation and soils (McLaughlin and Packalen, 

2021). In addition, it shows strong seasonality between summer and the winter seasons, making 

this part of the catchment a good case study for assessing teal carbon changes in palustrine 

wetlands. Moreover, serious threats posed by extensive agricultural activities such crop production, 

open cast coal mining applications, and cattle grazing have predominantly put wetlands in the area 

under pressure (Burgoyne et al., 2000; McCarthy et al., 2007; Fourie et al., 2015).   
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Figure 1: The map of the study area, indicating (A) extent of the Grassland Biome, within the 

Provinces of South Africa and location of study area in the Mpumalanga province; (B) the location 

of the study area in the northern part of the quaternary catchment (QC) W55A, considered the 

Mpumalanga Lakes District (MLD) of South Africa; and a map (C) showing the wetland types from 

the National Wetland Map version 5 (NWM5) and field sampling points of the Tevredenpan study 

area. 

3.1.2 Vegetation communities in Tevredenpan study area 

The vegetation type in the MLD catchment is described as the ‘Eastern Highveld Grassland Biome’ 

and is considered ‘hardly protected’ (Mucina and Rutherford, 2006). Wetlands in the catchment 

consists or are dominated by a diverse range of sedge and grass species (Sieben et al., 2014; 

Linström, 2015). The valley bottom wetlands within the area consists of prevalent patches of 

vegetation communities such as the Carex acutiformis, Phragmites australis and Typha capensis 
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(Naidoo et al., 2019; Van Deventer et al., 2022). The dense growth of Phragmites australis as well 

as floating microphytes are also predominant in Tevredenpan depression which is the largest 

depression in the study area (Grundling et al., 2003). Furthermore, the landscape of the 

Tevredenpan study area is characterised by nine dominant vegetation communities, eight are found 

in the wetland areas and one community within the terrestrial area (Table 1; Van Deventer et al., 

2022). 

Table 1: Wetland vegetation communities observed in the Tevredenpan study area  

Wetland vegetation communities Location   

Aristida spp. (>50%) Wetland  

Arundinella nepalensis (>50%) Wetland  

Carex spp. (>70%) Wetland  

Eragrostis plana and Themeda triandra Terrestrial 

Grass-sedge communities Wetland 

Juncus effusus (>50%) Wetland 

Phragmites australis Wetland  

Sedge dominant (>20%) Wetland  

Wet-grass communities  Wetland 
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 Methodological Framework 

This section provides a flowchart (Figure 4) that summarises the methodological steps and processes 

that were conducted and implemented for achieving the research questions, aim, and objectives of 

this study. The framework involves remote sensing image acquisition, pre-processing of seasonal   

images and analyses. The implemented framework uses the integration of remote sensing imagery 

from two different seasons and field-measured biophysical parameters such as LAI into machine 

learning algorithms to develop season-specific models of AGB of wetlands. Chapter 3 describes in 

detail all the modelling procedures involved  and summarised in this framework. The framework 

summarises all the steps conducted from section 3.3 to section 3.9  
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Figure 2: The methodological framework for estimation and assessment of carbon stock from the 

AGB of palustrine wetland vegetation in Tevredanpan study area between summer and winter 

seasons of 2017. 
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 Data collection and Pre-processing methods 

This section provide information about the field data sampling techniques, how the field data was 

collected  including dates on when the sampling of the AGB and LAI took place. Furthermore, section 

3.3 also provide information on the acquisition of remote sensing datasets that were used for 

estimating seasonal AGB. The characteristics and description of the remote sensing data used is also 

provide in this section.  

3.3.1 Field data   

3.3.1.1 Herbaceous AGB sampling   

Field sampling took place across the summer and winter seasons of 2017 in the Tevredenpan 

study area. The summer visits were made in between 27 February 2017 and 2 March 2017 (Figure 

2: A) and in winter they were made between 27 August 2017 and 1 September 2017 (Figure 2: B). 

The 2017 primary field data for the MLD was acquired by the Council for Scientific and Industrial 

Research (CSIR) (Naidoo et al., 2019; Van Deventer et al., 2020).  Stratified random sampling method 

was implemented for the collection of AGB. The location of the sample plots was chosen based on 

homogeneity, dominant vegetation community as well as grass traits such as the canopy cover, 

community composition and height. A total of 32 wet herbaceous AGB of wetland vegetation 

samples were harvested for each season and from the collected samples, 26 samples were collected 

in the wetland sections and six samples from the terrestrial section. The collected samples contained 

the herbaceous grass AGB of wetland vegetation.  

Sample plots of 6 m × 6 m were selected for sampling in both the summer and winter. In order 

to cover the representative range of variation in the AGB within each plot, three 0.5 m × 0.5 m 

quadrants were randomly positioned inside each plot of size 6 m × 6 m and the above ground 

vegetation within the quadrat was clipped. A Differential Global Positioning System (DGPS) (Trimble 

GEO 7X) with a horizontal error less than 50 cm was utilised to record the co-ordinates of the centre 

point of each plot for the summer season. During the winter sampling campaign, the Garmin 62s 

GPS was used again to locate the centre points of the sampling plots. The harvested AGB was later 

weighed, recorded, and the mean value was calculated for the three quadrants to get the average 

AGB for the entire plot. The AGB is a dry weight measure, thus the values of dry herbaceous AGB 
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per plot were then derived by drying the wet herbaceous AGB for 48 hours at a temperature of 80°C 

until the weight stabilised using an oven (Naidoo et al., 2019).  

 

Figure 3: Collection of the AGB of wetland vegetation in the Tevredenpan study area, 

indicating photographs of:  (A) summer sampling and (B) winter sampling campaign.  

3.3.1.2 Leaf Area Index sampling  

To improve the AGB estimation accuracy, LAI was included as an additional input variable for 

estimating wetland AGB. The collection of the LAI values also took place in summer and winter 

during AGB sampling. The LAI Plant canopy Analyser (LiCOR LAI-2200C) was used to obtain observed 

LAI field values within the three 0.5 m × 0.5 m quadrant sub-plots prior to AGB harvesting (Figure 3: 

B). The LiCOR LAI-2200C measures the LAI from the vegetation canopy using the incoming light from 

the sun, hence objects (i.e human shadow) that could affect the analyser’s optical sensor were 

avoided during LAI measurements in the field. To obtain the LAI values, the quadrant was randomly 

placed within the 6 m × 6 m plots in three locations and one measurement of the LAI was computed 

per quadrant the, one reading above the canopy and two measurements below vegetation canopy 

(Figure 3: A).  The mean LAI value was calculated to represent an individual 0.5 m × 0.5 m quadrant. 

The final LAI value at each plot was the average of all the three 0.5 m × 0.5 m quadrants. The LAI 

measurements for the all the summer and winter points were recorded. LAI measurements were 

taken in the same plots and subplots as the AGB measurements prior to harvesting of AGB. 

Additionally, the LAI measurements were taken on a sunny day with a 25% sensor cap shroud to 
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avoid sensor saturation. Acquisition time was between 9am and 3pm to maximise exposure to the 

sun and the acquisition orientation was towards the sun to avoid the shadow effects. 

 

Figure 4: Leaf Area Index collection, (A) recording of LAI values inside the quadrant, (B) depicts the 

quadrant and the LAI plant canopy analyser. 

3.3.2 Remote sensing data acquisition  

3.3.2.1 Acquisition of Sentinel radar images 

The Sentinel-1 mission is a radar system that consists of two SAR satellite instruments (Sentinel-

1A and 1B) that are operating at the C-band wavelength (5.405 GHz), allowing for the acquisition of 

imagery regardless of weather and illumination conditions (Torres et al., 2012). The bands of 

Sentinel-1 backscatter are made up of different polarisation signals that can be transferred to and 

retrieved from the targeted object (e.g., VV and VH). Sentinel-1 mission provide images every six to 

12 days and have a large coverage of the land at about 250 km (Torres et al., 2012; Filipponi, 2019). 

With its active phased array antenna, the Sentinel-1 sensor obtain images at four distinct imaging 

modes with varying coverage and resolutions  (Geudtner and Torres, 2012). For this study, high 

resolution Sentinel-1A Ground Range Detected (GRD) images for both winter and summer season 

were downloaded from the Alaska Satellite Facility website (https://search.asf.alaska.edu/#/). GRD 

products are composed of detected, multi-looked and projected to ground range SAR data using the 

WGS84 projection. The seasonal images were downloaded in an Interferometric Wide Swath (IW) 

            1 
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imaging mode which is an operational mode over land and has a pixel spacing of 10 m × 10 m. 

Additionally the images were acquired by taking into consideration the field sampling date (closest 

to the sampling dates) (Table 2). 

Table 2: Sentinel-1A sensor specifications including image IDs and acquisition dates of the seasonal 

images 

Downloaded Image IDs Acquisition data 

and Season  

Acquisition mode  Resolution 

(m) 

Polarisation  

S1A_IW_GRDH_1SDV_201701 

25T163826_20170125T163851 

_014990_0187A3_5A1F 

25/01/2017 

(Summer) 

 

Interferometric 

Wide Swath (IW) 

10 × 10 Dual: VV+VH 

S1A_IW_GRDH_1SDV_201708 

29T163834_20170829T163859 

_018140_01E793_5489 

 

29/08/2017 

(Winter) 

Interferometric 

Wide Swath (IW) 

10 × 10  Dual: VV+VH 

 

3.3.2.2 Sentinel-1A Pre-processing  

Images of Sentinel-1A were pre-processed using the Sentinel Application Platform (SNAP) 

software version 8.0 developed by ESA (Zuhlke et al., 2015; SNAP Development Team, 2016). The 

pre-processing of these images included (1) radiometric calibration, (2) multi-looking (3) geometric 

correction (i.e., terrain correction) and (4) speckle filtering. The following subsections describe each 

of these steps in more detail. 

3.3.2.2.1  Radiometric calibration of the radar images  

Radiometric calibration is a method that is used for converting digital numbers (DN) to 

radiometrically calibrated or normalised radar cross section sigma nought (Sigma0) (Filipponi, 2019; 
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Braun and Veci, 2021). The Sentinel-1 GRD product already has the calibration equation information 

included within the calibration vector in the product metadata and this enables the image pixel 

values to be easily converted into sigma0 (Filipponi, 2019). Sentinel-1A images were radiometrically 

calibrated using the Radiometric Calibration Function which is found under the Radar Menu. Under 

the processing parameter tab, both the polarisations (VH and VV) were selected, and the output 

bands were kept at default as sigma0. The SNAP software automatically identifies what type of input 

products is opened and what corrections ought to be performed on the product by utilising the 

metadata of the product as the corrections that are performed during image calibration are mission 

specific based on the image’s metadata (Braun and Veci, 2021). The subsequent output product was 

then kept in the native SNAP file format (BEAM-DIMAP). Radiometric calibrating of SAR images is 

important for quantitative applications of SAR data as this aids in better comparison of images 

obtained by the same sensor or different sensors (Braun and Veci, 2021).  Thus, radiometric 

correction was done for both the summer and winter seasonal images of Sentinel-1A.  

3..2.2.2.2  Multi-looking pre-processing of the radar images 

Multi-looking is an averaging process that increases SAR image quality and reduces random 

noise, and this can be achieved by averaging the range and/or azimuth resolutions of the pixels thus 

improving the radiometric resolution (Cantalloube and Nahum, 2000; Braun and Veci, 2021). The 

multi-look process was performed to both the summer and winter Sentinel-1A images from the 

Radar menu under SAR Utilities in SNAP software. Therefore, the final multi-looked output images 

for this study had two range looks, two azimuth and the resulted mean ground range pixel or spatial 

resolution was 20 m.  

3.2.2.2.3 Geometric correction of the radar images 

To geometrically correct or orthorectify the Sentinel-1 images for this study the Range Doppler 

terrain correction was used (Small and Schubert, 2008). Range Doppler terrain correction is used to 

mitigate distortions caused by topography, such as foreshortening and shadows (Filipponi, 2019; 

Kumar, 2021). There are various other geometric correction algorithms on SNAP, however Range 

Doppler terrain correction was selected because it is simpler and quicker to compute (Kumar, 2021). 
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The images were acquired with the geometry of the sensor and the image pixels did not have the 

correct geographical coordinates. The tool allows for finding the correct location of the pixel values 

using a Digital Elevation Model (DEM) and also by changing the map projection (Filipponi, 2019). 

Therefore, in the processing parameters dialog both bands (VH and VV) were selected and a high-

resolution DEM of the Shuttle Radar Topography Mission (SRTM 3 arc second) at 30 m pixel size was 

selected (Argamosa et al., 2018). Furthermore, under the map projection window the Custom 

Reference System (CRS) is by default set to the Universal Transverse Mercator (UTM) Zone 36 South 

and spheroid/datum of the World Geodetic System of 1984 (WGS 84). All the other processing 

parameters such the DEM resampling method and the input-output (I /O) Parameters tab was left 

at default. The geometrically corrected output image was then saved as a raster file (GeoTiff 

format).  

3.2.2.2.4 Speckle filtering of the radar images 

Speckle filtering is a procedure to increase image quality by reducing speckle but can result in 

reduced detail and blurred images. A number of studies have conducted a review and compared 

different speckle filters (Dong et al., 2000, Touzi et al., 2002; Lee et al., 2008; Rana and 

Suryanarayana, 2019). The speckle removal on seasonal images of Sentinel-1 was performed on the 

geometrically calibrated products in SNAP using the refined Lee filter (Argamosa et al., 2018). From 

the Radar menu, the Single Product Speckle filter which is found under Speckle filter was selected 

and under the processing dialog window, the Refined Lee speckle filter was then selected. The 

Refined Lee filter averages the image while preserving edges. It has no parameters to set, while 

others require the definition of a kernel size and other parameters. 

3.3.2.3 Acquisition of the Sentinel-2 optical images 

The Sentinel-2A MSI is an optical sensor which collects reflectance data from 13 spectral bands 

ranging from the visible to the short-wave infrared (SWIR) bands (Drusch et al., 2012). The Sentinel-

2 mission provides two types of products: Level-1C which represents top of the atmosphere (TOA) 

reflectance and Level-2A which represents Bottom of the atmosphere (BOA) reflectance. For this 

study, two Sentinel-2A images for the summer (wet) and winter (dry) seasons were downloaded at 

the Level-1C processing level because BOA products (i.e. Sentinel-2 Level-2A) were not available for 
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the required dates from the United States Geological Survey website 

(https://earthexplorer.usgs.gov/). The spatial and spectral characteristics of Sentinel-2A MSI sensor 

are described in in Table 3.   

Table 3: Characteristics and specifications of Sentinel-2A dataset with IDs of the acquired images 

for the summer and winter season  

Acquisition 

date and 

Season  

Image ID Spatial 

resolution 

(m)  

Spectral 

band ID 

Band 

name  

Bandwidth 

(nm)  

Centre 

Wavelength 

(nm) 

19/01/2017 

(Summer, 

wet) 

 

 

 

 

 

30/08/2017 

(Winter, dry)  

S2A_MSIL1C_20170119T074231_ 

N0204_R092_T36JTS_20170119T075734 

 

 

 

 

 

S2A_MSIL1C_20170830T074611_ 

N0205_R135_T36JTS_20170830T081246 

 

10 Band 2 Blue 66 492 

10 Band 3  Red 36 560 

10 Band 4 Green 31 665 

10 Band 8  NIR 106 833 

20 Band 5  Red 

edge 1 

15 705 

20 Band 6 Red 

edge 2 

15 741 

20 Band 7 Red 

edge 3 

20 783 

20 Band 8A Narrow 

NIR 

21 865 

20 Band 11 SWIR 91 1613.7 

20 Band 12 SWIR 175 2202.4 
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3.3.2.4 Pre-processing of Sentinel-2A 

The pre-processing of the selected Sentinel-2 images included (1) atmospheric correction, (2) 

resampling of the images and (3) spatial and spectral bands sub-setting.  All the pre-processing of 

Sentinel-2A images was done in in SNAP software (SNAP Development Team, 2016) and the steps 

are discussed in the following subsections.  

3.2.2.4.1 Atmospheric correction of the Sentinel-2 optical images  

Atmospheric correction is a technique that is used to  correct and remove atmospheric effects 

from raw remote sensing data in order to establish accurate surface reflectance values 

(Themistocleous et al., 2008). The Sentinel-2A (Level-1C) images were converted from TOA to BOA 

using Sen2cor (v280). From the Optical menu in SNAP, the Sen2Cor (v280) processor, found within 

the Thematic Land Processor module, was selected. To run the algorithm, under the Sen2Cor popup 

tab the input product in the I/O Parameters for Sen2Cor was the original downloaded Level-1C 

product, and in the Processing Parameters tab the resolution was changed to “ALL”. The 

atmospheric correction was applied to both the summer and winter images of Sentinel-2A. 

3.2.2.4.2 Resampling of the optical images 

Resampling is method that is mostly used to change the spatial resolution of a satellite image by 

changing the size of image pixels. In SNAP’s toolbar in the Raster menu, the resample module was 

selected in order to open the Resampling operator in the Geometric Operation tool. The process of 

resampling the downloaded optical images involved using the atmospherically corrected image as 

60 Band 1 Coastal 

aerosol 

21 442 

60 Band 9 Water 

vapour 

20 945 

60 Band 10  SWIR-

cirrus 

31 1374 
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an input source product in the I/O Parameters. To get high spatial resolution for more accuracy in 

the prediction of the AGB, under the processing parameter tab, the spectral band 2 with high spatial 

resolution of 10m was used a reference band to define the geometric resolution of the final product. 

All the spectral bands for the summer and winter images of Sentinel-2 were resampled to a 10 m 

spatial resolution.  

3.2.2.4.3 Spatial and Spectral band subset of the optical images 

The subset function under the raster menu in SNAP allows to perform both spatial and spectral 

resampling by excluding irrelevant data such as selecting only the region of interest (ROI) and 

specific bands in order to reduce the volume of data. For focused research in this study, the spatial 

and band subset process involved creating a box around the ROI in the spatial subset parameter and 

in the spectral band sub-setting parameter tab only ten bands (band 2, band 3, band 4, band 5, band 

6, band 7, band 8, band 8A, band 11, and band 12) out of the 13 acquired bands of Sentinel-2A were 

selected for estimation of AGB (Naidoo et al., 2019; Li et al., 2021). The other three bands (bands 1, 

9 and 10) were not selected for further analysis as they related to or are mostly used for water and 

atmospheric elements (Li et al., 2021). The final resulting products for summer and winter images 

were saved and exported as a raster file (GeoTiff format) for the purpose of extracting predictor 

variables of AGB estimation of vegetation.  

 Remote sensing predictor variables for estimating seasonal AGB 

Optical and SAR derived variables such as VIs, band ratios, reflectance bands, backscatter 

polarisation variables and texture variables have indicated strong correlation with vegetation 

biomass (Mutanga et al., 2012; Kelsey and Neff, 2014; Sibanda et al., 2017; Naidoo et al., 2019). The 

following sub-sections describe (1) the generation of the predictor variable from Sentinel-1A and 

Sentinel-2A imagery and (2) the processes that were undertaken for extracting the predictors in 

order to estimate the herbaceous AGB. 
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3.4.1 Generation of predictor variables  

3.4.1.1 Calculation of predictor variables from Sentinel-1A imagery 

For this study, predictor variables (textural metrics and SAR band ratio) were calculated from 

Sentinel-1A imagery. Textural features represent the spatial arrangements of image colours or 

intensities. In this study the efficiency of textures in estimating AGB of wetland vegetation for both 

summer and winter was based on the GLCM measurement technique, which has strong adaptability 

and robustness (Haralick et al., 1973). Thus, eight GLCM textural metrics (Haralick et al., 1973) 

derived from Sentinel-1A imagery were employed: dissimilarity (DIS), mean (MEA), homogeneity 

(HOM), variance (VAR), entropy (ENT), second angular moment (SAM), contrast (CON), and 

correlation (COR) to differentiate textural variety (Table  4).  

To compute textures, the raster menu in SNAP’s toolbar was selected in order to open the GLCM 

operator in the Image Analysis Operation tool, and the GLCMs textures were then derived using the 

final pre-processed raster product of Sentinel-1A seasonal images as the source product in the I/O 

parameter tab. Under the Processing parameter tab eight textures metrics were computed for both 

the polarisations bands (VH and VV) of the Sentinel-1A image. The selection of a suitable processing 

window size when deriving textural features is very crucial because using a larger window size may 

results to loss of important texture information while a smaller processing window may result to 

increased noise in the image pixel due to magnified image variations (Sarker and Nichol, 2011; 

Kelsey and Neff, 2014). Therefore, textures metrics in this study were calculated on one processing 

window size (9 × 9 pixels). The selected window size has been used in previous studies and have 

proven to have high correlation with biomass (Sarker and Nichol, 2011; Kelsey and Neff, 2014; 

Argamosa et al., 2018; Li et al., 2021). The polarisation ratio was used as a variable for modelling 

AGB (Naidoo et al., 2019). To generate SAR band ratio raster (VH/VV) in this study, the band maths 

tool in SNAP software was used to find the ratio between the dual-channel C-band SAR backscatter 

coefficients of Sentinel-1A imagery (VV and VH). Therefore, the output products of the derived 

textural metrics and the band ratio for both summer and winter were saved and exported as raster 

files for subsequent analysis in the study. 
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Table 4: Description and formulas of predictor variables derived from seasonal images of Sentinel-

1A imagery for modelling AGB of palustrine wetland vegetation. 

Sensor Remote sensing 

predictor variables 

  Variable Formula/name Bands 

used 

References 

Sentinel-

1A 

 

 

 

 

 

 

GLCM 

texture 

variables 

DIS 
  ∑ 𝑖𝑃𝑖,𝑗|𝑖 − 𝑗|

𝑁−1

𝑖,𝑗=0

 
 

VH, VV 

 

 

(Haralick et 

al.,1973) CON 
  ∑ 𝑖𝑃𝑖,𝑗(𝑖 − 𝑗)

𝑁−1

𝑖,𝑗=0

 

COR    

  ∑ (𝑖 (  ∑ 𝑖𝑗𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗

− 𝜇𝑖𝜇𝑖) / 𝜎𝑖
2𝜎𝑗

2)

𝑁−1

𝑖,𝑗=0

 

ENT  
  ∑ 𝑖𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

ln 𝑃𝑖,𝑗  

HOM  
  ∑ 𝑖𝑃𝑖,𝑗/( 1 +  (𝑖 − 𝑗)2)

𝑁−1

𝑖,𝑗=0

 

MEA   
  ∑ 𝑖𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

 

SAM    
  ∑ 𝑖𝑃𝑖,𝑗

2

𝑁−1

𝑖,𝑗=0

 

VAR 
  ∑ 𝑃𝑖,𝑗(1 − 𝜇𝑖)

𝑁−1

𝑖,𝑗=0

 

Backscatter 

channels 

  VH, VV  

SAR band 

ratio 

   B1/B2  VH/VV (Englhart,2011) 
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CON: Contrast; COR: Correlation; DIS: Dissimilarity; ENT: Entropy; HOM: Homogeneity; MEA: Mean; 

SAM: Second Angular Moment; VAR:  Variance; VH and VV: cross and co-polarisations.  

3.4.1.2  Calculation of spectral metrics from Sentinel-2 imagery 

The wavelengths of EMS regions (green, red, RE, and NIR) have significant impact on the accuracy 

of AGB in wetland and grassland vegetation (Mutanga et al., 2012; Ramoelo et al., 2015; Li et al., 

2021). In this regard, VIs and spectral band ratios derived from these spectral regions has indicated 

a correlation with the biomass of wetland vegetation and grasslands (Cho et al., 2007; Adam et al., 

2010, Mutanga et al., 2012). For this study,  eight VIs which were known to correlate well with AGB 

estimation, were calculated from the reflectance bands of Sentinel-2A.  Four were traditional VIs 

(GNDVI, GRVI, NDVI, and SR) and the other four VIs were RE-based VIs (NDVIre5, NDVIre6, NDVIre7, 

SRre5).  The traditional VIs were derived from three bands (B3, B4, B8) and the RE VIs from the NIR 

band (B8) and three RE bands (B5, B6, B7) of Sentinel-2A using the raster calculator in Quantum GIS 

(QGIS) version 3.18 (QGIS development Team, 2021). Thus, for this study Sentinel-2A variable for 

the estimation of AGB of wetland vegetation included 10 reflectance bands and eight VIs (Table 5).  

The calculated output products were saved and exported as raster files for  extraction of modelling 

dataset.  

Table 5 : Description and formulas of predictor variables derived from seasonal images of Sentinel-

2A imagery for modelling AGB of palustrine wetland vegetation. 

Sensor Remote sensing 

predictor variables 

Variable 

Formula/name 

Bands used References 

 

 

 

 

 

 

 

 

 

RE VIs  

NDVIre5  (𝑁𝐼𝑅 − 𝑅𝐸)

(𝑁𝐼𝑅 + 𝑅𝐸)
 

(𝐵𝑎𝑛𝑑 8 − 𝐵𝑎𝑛𝑑 5)

(𝐵𝑎𝑛𝑑 8 + 𝑏𝑎𝑛𝑑 5)
 

 

 

(Gitelson and 

Merzlyak 1994; 

Fernández-Manso et 

al., 2016) 

NDVIre6 (𝑁𝐼𝑅 − 𝑅𝐸)

(𝑁𝐼𝑅 + 𝑅𝐸)
 

(𝐵𝑎𝑛𝑑 8 − 𝐵𝑎𝑛𝑑 6)

(𝐵𝑎𝑛𝑑 8 + 𝐵𝑎𝑛𝑑 6)
 

 

NDVIre7 

(𝑁𝐼𝑅 − 𝑅𝐸)

(𝑁𝐼𝑅 + 𝑅𝐸)
 

(𝐵𝑎𝑛𝑑 8 − 𝐵𝑎𝑛𝑑 7)

(𝐵𝑎𝑛𝑑 8 + 𝐵𝑎𝑛𝑑 7)
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GNDVI: Green Normalized Difference Vegetation Index; GRVI: Green Red Vegetation Index; NDVI: 

Normalized Difference Vegetation Index; NDVIre5: Normalized Difference Vegetation Index Red-

edge 1; NDVIre6: Normalized Difference Vegetation Index Red-edge 2; NDVIre7: Normalized 

Difference Vegetation Index Red-edge 3; SR: Simple Ratio; SRre5: Simple Ratio Red-edge 1; and B; 

Bands. 

3.4.1.3  Estimation of LAI as a significant parameter for modelling herbaceous  wetland AGB  

In this study, Stepwise Multiple Linear Regression (SMLR) (Breaux, 1967) was used to find the 

optimal model for predicting the LAI for the summer and winter season within the study area.  For 

estimating the regional LAI layer, three modelling scenarios (Table 6) derived from the combination 

of the selected ten spectral bands, and eight VIs of Sentinel-2 (Table 5) were implemented in RStudio 

(v4.0.3). The Akaike Information Criterion (AIC) through the ‘stepAIC’ function implemented in the 

‘MASS’ package in RStudio (Ripley et al., 2013) was used for variable selection and the model with 

lower AIC value was selected for modelling of LAI. The developed models were evaluated based on 

k-10-fold cross-validation. A model consisting of a combination of the variables with the lowest 

relative root-mean-square error (relRMSE) (Appendix A, Table A1) was selected for predicting the 

 

Sentinel-

2A 

SRre5 (𝑁𝐼𝑅)

(𝑅𝐸)
 

(𝐵𝑎𝑛𝑑 8)

(𝑏𝑎𝑛𝑑 5)
 

(Sims and Gamon, 

2002) 

Traditional 

VIs 

GRVI (𝐺𝑅𝐸𝐸𝑁 − 𝑅𝐸𝐷)

(𝐺𝑅𝐸𝐸𝑁 + 𝑅𝐸𝐷)
 

(𝐵𝑎𝑛𝑑 3 − 𝐵𝑎𝑛𝑑 4)

(𝐵𝑎𝑛𝑑 3 + 𝐵𝑎𝑛𝑑 4)
 

(Tucker, 1979. 

Falkowski et al., 

2005; Motohka et al., 

2010) 

NDVI (𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

(𝐵𝑎𝑛𝑑 8 − 𝐵𝑎𝑛𝑑 4)

(𝐵𝑎𝑛𝑑 8 + 𝐵𝑎𝑛𝑑 4)
 

(Rouse et al., 1973; 

Tucker, 1979) 

GNDVI (𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁)

(𝑁𝐼𝑅  + 𝐺𝑅𝐸𝐸𝑁)
 

(𝐵𝑎𝑛𝑑 8 − 𝐵𝑎𝑛𝑑 3)

(𝐵𝑎𝑚𝑑 8 + 𝐵𝑎𝑛𝑑 3)
 

(Gitelson and 

Merzlyak, 1998) 

SR (𝑁𝐼𝑅)

(𝑅𝐸𝐷)
 

(𝐵𝑎𝑛𝑑 8)

(𝐵𝑎𝑛𝑑 4)
 

 (Chen, 1996) 

Reflectance 

bands 

  B2, B3, B4, B5, B6, B7, 

B8, B8A, B11, B12 

(ESA, 2015) 
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LAI. Thus, scenario 3 (combination of both spectral bands and VIs) was the best performing model 

(Appendix A, Table A1) in both summer and winter season and was the used to predict the LAI with 

the study area. The upscaling modelling process to derive the regional LAI in this study was done to 

move from plot LAI measurements to a continuous regional layer for the mapping the AGB.  LAI is a 

well-known proxy of AGB and has shown to have significant improved biomass estimates biomass 

(Van Wijk and Williams, 2005; Fan et al., 2009; Masemola et al., 2016; Naidoo et al., 2019) hence it 

was considered as important parameter in this study.  

Table 6: Modelling scenarios implemented in the Stepwise Multiple Linear Regression for 

predicting Leaf Area Index, numbers in the brackets represent the total number of predictor 

variables in each scenario  

                 Summer             Winter  

Scenario 1: Spectral bands (10) Scenario 1: Spectral bands (10) 

Scenario 2: VIs (8) Scenario 2: VIs (8) 

Scenario 3: Spectral bands (10) + VIs (8) Scenario 3: Spectral bands (10) + VIs (8) 

 

3.4.2 Extraction of the modelling dataset from the remote sensing predictor variables  

To investigate the ability and attributes of Sentinel-1A GRD derived variables for estimating 

seasonal AGB, this study selected Sentinel-1A derived variables included 16 GLCMs, VH and VV 

backscatter channels, and VH/VV band ratio making a total of 38 input variables (19 per season 

including the field measured LAI). Sentinel-2 MSI predictor variables for wetland vegetation AGB 

estimation in both summer and winter included ten reflectance bands and eight VIs totalling up to 

38 variables (18 per season including field measured LAI). The raster layers of all the predictor 

variables derived from both Sentinel-1A and Sentinel-2A were later imported into ArcMap version 

10.4.1 (ESRI, 2016) for further analysis. The extract multi-values to point tool in ArcMap was used 

and under the parameter tab, the shapefile with the centre co-ordinate of the biomass field sample 

points was selected as the input point feature to extract pixel values of reflectance bands, 
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backscatter values, VIs, ratios, and textures. The pixel values were exported and saved as excel file 

and used as the modelling dataset for wetland vegetation AGB estimation in RStudio software.  

 Different modelling scenarios for estimating herbaceous AGB 

To optimise the modelling of AGB of wetland vegetation, different predictor variables of both 

Sentinel-1A and Sentinel-2A images for summer and winter were combined into modelling 

scenarios. Four modelling scenarios in each season were tested in RF and SVR machine learning 

algorithms to predict herbaceous AGB within the selected study area. All the modelling scenarios 

included the LAI field measured values as an additional predictor variable. The first four scenarios 

included the bands only for each season, namely the Summer Sentinel-1A (SS1), Winter Sentinel-1A 

(WS1), Summer Sentinel-2A (SS2), and Winter Sentinel-2 (WS2). Therefore, the following modelling 

scenarios (Table 7) were implemented in each season for the estimation of AGB using the algorithms 

explained in the below section (3.5). 

Table 7:  Modelling scenarios implemented in summer and winter seasons for estimating 

herbaceous AGB (all scenarios included LAI); Numbers in the brackets indicates total predictor 

variables. 

Scenario 

(down) and 

Sensor 

(across) 

      

  Sentinel-1A modelling scenarios 

 

Sentinel-2A modelling scenarios 

Seasons: Summer Winter Summer Winter 

Scenario 1 GLCMs only (16) + 

LAI  

 GLCMs only (16) + 

LAI  

Reflectance bands 

(10) +LAI 

Reflectance bands 

(10) +LAI 

Scenario 2: Band ratio (1) + 

Backscatter (2) + 

LAI 

Band ratio (1) + 

Backscatter (2) + 

LAI 

Traditional VIs (4) 

+LAI 

Traditional VIs (4) 

+LAI 

Scenario 3:   Backscatter (2) + 

GLCMs only (16) + 

LAI 

Backscatter (2) + 

GLCMs only (16) + 

LAI 

RE indices (4) +LAI RE indices (4) +LAI 
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Scenario 4: Backscatter (2) + 

band ratio (1) + 

GLCMs (16) + LAI 

Backscatter (2) + 

band ratio (1) + 

GLCMs (16) + LAI 

Reflectance bands 

(10) + RE indices (4) + 

Traditional VIs (4) 

+LAI 

Reflectance bands 

(10) + RE indices (4) + 

Traditional VIs (4) 

+LAI 

 

 Machine learning algorithms used for modelling seasonal herbaceous AGB  

3.6.1 Random Forest  

The RF algorithm, developed by Breiman (2001), is an efficient bagging-based ensemble learning 

method which improves on the regression and classification tree (CART) by combining multiple 

decision trees. The RF algorithm has been used for modelling AGB and analysing relationships 

between remote sensing variables and AGB (Schwieder et al., 2018; Li et al., 2021) and for estimating 

the AGB of wetland vegetation (Naidoo et al., 2019). RF is an approach with the advantages of 

being insensitive to noise, overtraining and producing accurate and precise predictive results 

(Mutanga et al., 2012). For this study, the RF algorithm was implemented using the “randomForest” 

package (Liaw, 2015) in RStudio software (v4.0.3). To assess the significant influence of different 

remote sensing variables and also to reduce the large number of predictor variables, the variable 

importance selection was implemented in modelling scenarios that had more than ten input 

predictor variables.  

The VSURF function (Genuer et al., 2015) which is a RF-based important variable selection 

function was implemented. The R package "vsurf" (Genuer et al., 2015) returns two subsets of 

variables to address  both  regression and classification problems. The first subset is a subset 

containing significant variables that includes some duplication  while the second subset is smaller, 

avoid duplications and subsequently corresponds more on the prediction variables. In order to train 

the RF models, the study implemented the repeated k-fold cross validation to adjust 

hyperparameters for more robust models. The k-fold cross validation is a method that is based on 

splitting the observations into k folds of equal size (Richter et al., 2012). Therefore, to improve 

robustness and model accuracy the study applied a repeated 10-fold cross validation resampling 

method as a trainControl function (repeated twice). Furthermore, two important parameters were 
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optimised in the RF models: (i) ntree, the tree number contained in the RF model, and (ii) mtry, the 

variable number used during node splitting of each tree. The selected value of ntree was set to a 

default value of 500. Thus, the final optimal models used for prediction of the AGB of wetland 

vegetation in the summer and winter season were selected where the value of the mtry had a 

minimised error. Furthermore, the mtry values in the study ranged between 2 and 12. 

3.6.2 Support Vector Regression  

SVM algorithm is a supervised machine learning method that can solve both classification and 

regression problems without considering the distribution of data (Cortes and Vapnik, 1995). The 

SVM method makes use of a high dimensional space, and it fundamentally converts the non-linear 

regression problems into linear form using kernel functions (Cortes and Vapnik, 1995). In this study, 

SVM was used as a regression method (SVR) to estimate herbaceous AGB for both the winter and 

summer season using the package “e1071” (Karatzoglou et al., 2006) which contains the SVM 

function in RStudio software (version 4.0.3). The SVR models employed Radial Basis Function (RBF) 

Kernel because it is efficient and at the same time it associated with fewer numeral difficulties  such 

as computational time compared to other SVM kernels such as linear and polynomial kernels (Wan 

et al., 2018). To select the most significant predictor variables for training the SVR models, the 

recursive feature elimination (RFE) (Chen et al., 2007) was implemented in each modelling scenario 

that had more than ten predictors as input variables to reduce the large number of predictor 

variables and improve model performance.  

RFE employs a backward selection process to find the optimal predictor features. It builds a 

model based on each attribute and then assesses the relative importance of each component inside 

the model (Guyon et al., 2002; Chen et al., 2007). The characteristics are then iteratively ranked in 

order of relevance, with the least important feature(s) being removed based on model assessment 

metrics (e.g., RMSE). RFE is effective at identifying important characteristics or variables that can be 

used to predict the target variable from a training dataset. To find the optimal values for tuning the 

SVR model, significant hyperparameters are required such as cost and sigma and these can be 

optimised using methods such as the gradient descent (Keerthi et al., 2007), grid search (Hsu et al., 

2003), and meta-heuristics algorithms (Blum and Roli, 2003; Talbi, 2009). In this study, a grid search 
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function was then applied in each modelling scenario to tune the models by searching the optimal 

values for cost and sigma. The grid-search strategy is a viable method for hyper-parameter tuning 

as it exhaustively considers all possible parameter combinations and selects the pair of parameters 

with the lowest out-of-the-bag error (Kganyago et al., 2021). Therefore, the optimal trained model 

that was used to predict the target variable (herbaceous AGB) was trained using important variables 

selected by RFE and it was selected where cost had minimised error (RMSE), and sigma was kept 

constant at a default value.   

 Validating model accuracy  

The accuracies of predictive models for both summer and winter models of RF and SVR were 

evaluated using three statistical “goodness-of-fit” measures recommended by Richter et al. (2012).  

These measures are the coefficient of determination or R2 (Equation 1), the root mean square error 

or RMSE (Equation 2) and the relative root-mean square error (relRMSE, (Equation 3)). These 

equations are often used in the literature to assess accuracy of predictive models when estimating  

vegetation biophysical parameters (Richter et al., 2012; Naidoo et al., 2019; Kganyago et al., 2021; 

Li et al., 2021). R2 is a statical measure  with values ranging between 0 and 1 and it indicates the 

amount of variability explained by the predictive model, the RMSE indicates the magnitude of error 

in the units of the target variable and relRMSE is a dimensionless index expressed as percentage and 

it is suitable for comparisons between different variables or ranges (Richter et al., 2012). The 

resulting accuracies were recorded, and the optimal model was selected where the relRMSE  was 

minimised. To facilitate comparison of model accuracies between different variables, the model 

accuracy is regarded as either excellent (RRMSE<10%), good (10%<RRMSE<20%), fair 

(20%<RRMSE<30%) or inadequate (RRMSE>30%) (Jamieson et al., 1991; Heinemann et al. 2012). 

The lower relRMSE the better the model’s performance (Li et al., 2021) and more stable the 

replicability of the model. The evaluation of the accuracy was applied to both SVR and RF seasonal 

models in R statistical software. 

                                                      𝑅2    =   1 −
∑ (𝑧𝑖   −   𝑧̂𝑖)2𝑛

𝑖=1

∑ (𝑧𝑖    −   𝑧̅𝑖)2𝑛
𝑖=1  

                   

                                                      Equation 1: Coefficient of determination (Richter et al., 2012) 
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RMSE  = √
1

𝑛
∑(𝑧̂𝑖    −    𝑧𝑖 )

2 

𝑛

𝑖=1

                      

                                 Equation 2: Root mean square error (Richter et al., 2012) 

 

 

relRMSE =  
𝑅𝑀𝑆𝐸

𝑍̅𝑖

              

                               Equation 3: Relative root mean square error (Richter et al., 2012) 

 

where 𝑍𝑖   and  𝑍̂𝑖     indicates the observed and predicted AGB values in the i th plot sample 

respectively, 𝑍̅𝑖  denotes the mean of the observed AGB values, and n indicates the total number of 

samples (in the validation dataset).  

 Mapping of seasonal teal carbon  

The seasonal maps of the AGB of wetland vegetation were created using the raster layers of the 

selected important variables of the optimal model per season. The LAI raster layer was used in the 

AGB mapping since it was one of the most important variables in all scenarios. The layers were 

stacked for the mapping procedure in R statistical software using packages: ‘modelMap’ (Freeman 

et al., 2018), ‘raster’ (Hijmans et al., 2015) and ‘rgdal’ (Bivand et al., 2015) and the most accurate 

modelling algorithm (i.e. RF or SVR). The scale for mapping both the summer and winter AGB was 

20 m considering the resolution of Sentinel-1A image. The AGB maps for the summer and winter 

season were then converted into carbon stock maps by assuming that carbon is composed of 50% 

of the AGB content on average (Chave et al., 2005). A Scaling Factor (SF) of 0.5 was applied to the 

resulting estimated AGB raster map in ArcGIS (version 10.4.1) to convert it to carbon stock using 
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equation 4. The equation has been proven to be efficient in converting the AGB to carbon stock 

(Otukei and Emanuel, 2015; Behera et al., 2016; Shen et al., 2020). Therefore, the conversion 

equation is given as:  

 

C = AGB  × 𝑆F              

                        Equation 4: Conversion of the wetland AGB to carbon stock (Penman et al., 2003) 

 

Where:  C= Carbon stock (g C/m2 DM), AGB=above ground biomass (g/m2), and SF= 0.5.  

 Assessment of seasonal variations in carbon stocks between the summer and winter  

3.9.1 Statistical significance between summer and winter using the National Wetland Map 

version 5 boundaries. 

In order to assess the seasonal variations in the amount of carbon stored within the AGB in the 

selected study area, the points were stratified into wetland hydrogeomorphic (HGM) types and 

terrestrial systems to distinguish between teal and green carbon. The stratification of points was 

done based on the NWM5 wetland polygons (Van Deventer et al., 2020). All the points outside the 

NWM5 polygons were considered to be terrestrial points, while points falling within or inside the 

polygons were considered wetlands. The Random Points Inside Layer Bounds tool found under 

Research Tools in QGIS (v3.18) used to generate random points inside the HGM layers. Therefore, 

both  the terrestrial and wetland layers  in this study had 176 random points each. The points were 

generated for both the summer and winter seasons to facilitate a comparative analysis between the 

two investigated seasons. Additionally, the generated random points were used to extract 

estimated carbon values for each season from the estimated carbon maps using the extract multi-

values to points tool in ArcMap for seasonal variation analysis.  

Statistical measures of variability such as mean, standard deviation (SD) and coefficient of 

variation (COV%) computed in RStudio software was used to assess seasonal differences in the 

extracted carbon values of wetlands and terrestrial areas across the summer and winter seasons. 

The COV is an amount of relative variability that shows how values are distributed in a dataset 
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relative to the mean. It is calculated as the ratio of the standard deviation to the mean. Independent 

unpaired Welch T-test was also computed at 95% confidence interval to ascertain if values are 

statistically different between summer and winter seasons and between the HGM types (terrestrial- 

wetland). Also, to visualise the seasonal variability of carbon, a box and whisker plot was plotted in 

R software. 

3.9.2 Seasonal differences in carbon across wetland vegetation communities in the 

Tevredenpan study area 

Vegetation in wetlands plays a crucial role in storing carbon either in the  AGB and subsequently 

facilitates the process of carbon sequestration. Seasonal variations were further determined 

between the vegetation types found in the study site. The classification boundaries of wetland 

vegetation communities of Van Deventer et al. (2022) were used for the Tevredenpan study area.  

Thus, for this study, nine wetland vegetation communities were considered for analysis of seasonal 

variations namely,  Aristida spp., Arundinella nepalensis, Carex spp., grass-sedge, Eragrostis plana, 

Juncus effuses, Phragmites australis, Sedge dominant, Themeda triandra and Wet-grass. The 

shapefiles of each vegetation type were used to generate random points in QGIS using the Random 

Points Inside Layer Bounds tool in QGIS. For each vegetation type, 76 random points were generated 

inside the boundary layers using the Random Points Inside Layer Bounds tool in QGIS (v3.18). The 

outputs were exported as point shapefiles for further comparative analysis. The points shapefiles 

for each wetland vegetation type  were later used to extract carbon values from the estimated 

carbon maps of the summer and winter seasons, respectively, in ArcMap using the Spatial Analyst 

tool “extract multi-values to points”. Additionally, a t-test was computed to determine if the 

variation in carbon stock were statistically significant between the summer and winter. The t-test 

was computed for each wetland vegetation type in RStudio software. Statistical significance was 

tested at a confidence interval of 95%.   

 Conclusion  

Chapter 3 emphasised the important background and features of Tevredenpan study area 

description with its associated vegetation communities. The vegetation communities varied from 

Aristida spp., Arundinella nepalensis, Carex spp., grass-sedge, Eragrostis plana, Juncus effuses, 
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Phragmites australis, Sedge dominant, Themeda triandra and Wet-grass. This study used wet 

summer and dry winter in-situ herbaceous biomass with Sentinel-1 and sentinel-2 derived variables 

for wetland biomass estimation. The GLCM textures, backscatter channels, SAR band ratio, 

reflectance bands, both RE and traditional VIs were used as predictor variables in the current study. 

The remote sensing derived predictor variables were grouped into different modelling scenarios to 

estimate AGB of wetland vegetation Accordingly, LAI was the significant parameter for the 

modelling of herbaceous wetland AGB. The above applications were necessary to improve 

monitoring procedures of wetland AGB carbon distribution protection. However, in the following 

chapter, the study explain the results in detail and discuss the meaning of the findings for estimation 

of herbaceous wetland AGB. 
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CHAPTER 4: RESULTS AND ANALYSIS 

This chapter provides the results of the research project in relation to the methods used in this 

study. It first highlights the significant predictor variables and their influence towards the estimation 

of wetland vegetation AGB and teal carbon. Secondly it provides the accuracies of all the modelling 

scenarios obtained using different machine learning algorithms as well as the optical and SAR 

sensors. A detailed representation and observations on the spatial distribution of the predicted teal 

carbon maps are documented. Furthermore, the chapter also provides a statistical analysis on 

variations or differences that observed between the investigated seasons within the selected study 

area of interest. The results presented in this chapter addressed the aim, objectives, and the 

research questions of this study.  

 Variable importance in Sentinel-1A and Sentinel-2A predictors  

The results in Tables 8 and 9 illustrate the varying influence of predictor variables derived from 

Sentinel-1 and Sentinel-2 imagery, respectively, coupled with different modelling scenarios that had 

more than ten input variables for estimating AGB of wetland vegetation across the summer and 

winter seasons. The results in both Tables 8 and 9, indicate that the selection of important variables 

by VSURF and RFE was not entirely consistent in both the RF and SVR models throughout the 

investigated seasons. According to Table 8, for Sentinel-1 models in both summer and winter, the 

LAI appeared in all the models (RF and SVR) indicating that it was one of the most important AGB 

predictor variable. VH backscatter and the textures derived from VH (vhMEAN and vhVariance) also 

appeared to have influence when AGB of wetland vegetation within the study area in both seasons. 

Comparatively, VV only indicated to be more important for prediction of herbaceous AGB during 

the winter season in Scenario 3 and Scenario 4. Additionally, when observing the trend of input 

variables in Scenario 4 (Backscatter, band ratio, GLCMs, and LAI), the ratio between VH and VV didn’t 

appear to be an important predictor in the estimation of both summer and winter herbaceous AGB 

in the study. 
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Table 8:  Variable importance of RF and SVR models with more than 10 input predictor variables 

derived from Sentinel-1 imagery.  

SS1: Summer Sentinel-1; WS1: Winter Sentinel-1 

 

When examining the influence of input variables in Table 9 in Sentinel-2 modelling scenarios for 

both summer and winter, the LAI showed to be the most important predictor variable in Scenario 1 

and Scenario 4 across the summer and winter seasons. In both the RF and SVR models, the RE bands 

(B5, B6), the red (B4) and green (B3) were selected as most important AGB predictors compared to 

other input bands (B2, B7, B8, B8A, B11 and B12) for the summer season.  However, in the winter 

season the SWIR band (B12) was the only important reflectance band for estimating the AGB of 

wetland vegetation than other bands. Moreover, it is worth noting that traditional indices such as 

NDVI and SR were important variables when incorporating all the variables in RF and SVR (Scenario 

4) for both the winter and summer. VIs derived from the RE region (NDVIre5, SRre5) appeared to be 

important predictors of the AGB of wetland vegetation.  

 

 

Sentinel-1 

                               SS1                    WS1   

RF_VSURF    SVR_RFE RF_VSURF SVR_RFE 

Scenario 1: GLCMs (16) 

+LAI 

LAI, vhMEAN LAI, vhMEAN, 

vhVariance 

vhVariance, LAI LAI, vhMEAN, 

vhVariance, 

vvMEAN, 

vvVariance 

Scenario 3:  Backscatter (2) 

+ GLCMs only (16) +LAI 

LAI, vhMEAN, 

VH 

LAI, vhMEAN, 

vhVariance 

VH, LAI, 

vhVariance  

VH, LAI, 

vhVariance, 

vhMEAN, VV 

Scenario 4: Backscatter (2) 

+ Band ratio (1) + GLCMs 

(16) +LAI 

LAI, vhMEAN, 

vhVariance, VH 

LAI, vhVariance, 

vhMEAN, VH, 

vvCorrelat 

VH, LAI, 

vhVariance 

VH, LAI, 

vhVariance, 

vhMEAN, VV 
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Table 9:  Variable importance of RF and SVR models with more than 10 input predictor variables 

derived from Sentinel-2A.  

SS2: Summer Sentinel-2; WS2: Winter Sentinel-2 

 Accuracy of modelling scenarios for predicting wetland AGB for the summer and winter 

season  

The results in Table 10 presented the statistical description of four modelling scenarios for 

estimation of the AGB of palustrine wetland vegetation for both summer and winter seasons and 

for Sentinel-1 and Sentinel-2 comparisons using the RF and SVR algorithms, respectively. When 

comparing the results obtained by different Sentinel-1 modelling scenarios for the summer, 

Scenario 3 which incorporated GLCMS textures, backscatter channel, and LAI was the best 

performing model for estimating the AGB of wetland vegetation  with a R2 = 0.735, RMSE = 39.848 

g·m-2, relRMSE = 17.286% compared to Scenario 1  which attained R2 = 0.709, RMSE = 40.919 g·m-2, 

and relRMSE = 17.538%, Scenario 2 (R2 = 0.699, RMSE = 44.005 g·m-2, relRMSE = 17.546%), and 

Scenario 4 (R2 = 0.697, RMSE = 44.278 g·m-2, relRMSE = 17.796%) for the same season. However, the 

difference between the models was minimal when considering the relRMSE. For the winter season, 

a combination of GLCMs and LAI in Scenario 1 yielded higher accuracy in estimating AGB (R2 = 0.785, 

RMSE = 67.582 g·m-2, relRMSE = 20.885%) than the combination of backscatter channels and GLCMs  

(R2 = 0.805, RMSE = 67.063 g·m-2, relRMSE = 21.371%), or that of band ratio and backscatter (R2 = 

0.736, RMSE = 72.944 g·m-2, relRMSE = 21.53 %), and  when all the variables (backscatter channels, 

band ratio, GLCMs, and LAI ) were combined (R2 = 0.777, RMSE = 68.778 g·m-2, relRMSE = 21.774%).

    

 

Implementation of variable 

importance Sentinel-2  

                               SS2                    WS2   

     RF_VSURF   SVR_RFE  RF_VSURF  SVR_RFE 

Scenario 1: Reflectance 

bands (10) +LAI 

LAI, B4, B3, B6, B8 LAI, B4, B5, B3, B7 LAI, B12 LAI, B12 

Scenario 4: Reflectance 

bands (10) + RE indices (4) + 

Traditional VIs (4) +LAI 

LAI, SR, NDVI, B4, 

B3, GNDVI, B5 

LAI, SR, B8, NDVI, 

B5, B4 

LAI, NDVI, 

SRre5, 

NDVIre5, B12  

LAI, SR, B12, 

SRre5, NDVI, 

NDVIre5 



 

 

 

 

66 

Incorporation of all the variables (spectral bands, traditional VIs and RE VIs) of the Sentinel-2 

models, yield higher accuracies for estimating wetland vegetation AGB in the summer  with an 

accuracy of R2 = 0.753, RMSE = 52.856 g·m-2, relRMSE = 20.009%, compared to individual spectral 

bands ( R2 = 0.644, RMSE = 67.063 g·m-2, relRMSE = 19.610 %) or VIs (R2 = 0.665, RMSE = 52.865 g·m-

2, relRMSE = 22.051%) for the same season (Table 10). Similarly, the estimation of AGB in winter also 

improved when all the variables (spectral bands, traditional VIs, and RE VIs) were combined (R2 = 

0.749, RMSE = 69.634 g·m-2, relRMSE = 21.248%) compared to the use of traditional VIs (R2 = 0.658, 

RMSE = 76.079 g·m-2, relRMSE = 24.512%) or reflectance bands. However, the difference between 

the combination of all the variables (reflectance bands, traditional VIs, and RE VIs) was minimal in 

both the summer and winter models (Scenario 4) in comparison to the accuracy obtained by 

scenario 3 (RE bands). 

It is worth noting that in terms of algorithm performance when looking at the predicted model 

validation accuracy of the relRMSE, the results suggest that RF models performed better than SVR. 

This can be attributed to the fact that the relRMSE of the SVR scenarios is twice the RF obtained 

relRMSE values. Furthermore, when examining the overall performance of the sensors or that of 

the best performing models in terms of the lowest relRMSE, the SAR C-band obtained high 

accuracies when looking at the results in the summer (relRMSE = 17.286%) compared to the optical 

sensor (relRMSE= 20.009%) for the same season. Similar trend of results is evident in winter, 

Sentinel-1 illustrated a better performance (relRMSE = 20.885%) when compared to Sentinel-2 

(relRMSE = 21.248%) in estimating AGB within the Tevredenpan study site. Thus, the combination 

of SAR GLCMs, C-band backscatter and LAI (Scenario 3) was applied for mapping summer AGB while 

in winter Scenario 1 (SAR GLCMs textures and LAI) was used for mapping winter AGB. 
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Table 10: RF and SVR model accuracies of Sentinel-1 and Sentinel-2 derived modelling scenarios for estimation of wetland AGB with 10-fold cross 

validation across summer and winter.

                                   Summer                                            Winter 

Sentinel-1A  
All scenarios (LAI 
included) 

RF SVR RF  SVR 

R2 RMSE 
(g.m-2) 

relRMSE (%) R2 RMSE 
(g.m-2) 

relRMSE 
(%) 

R2 RMSE 
(g.m-2) 

relRMSE 
(%) 

R2 RMSE 
(g.m-2) 

relRMSE 
(%) 

Scenario 1: GLCMs  0.709 40.919 17.538 0.723 46.861 38.328 0.785 67.582 20.885 0.795 64.209 35.206 
Scenario 2: Band ratio + 
Backscatter 

0.699 44.005 17.546 0.716 44.794 36.568 0.736 72.944 21.53 0.763 64.953 39.682 

Scenario 3: GCLMs + 
Backscatter  

0.735 39.848  17.286 0.708 44.188 36.753 0.805 67.063 21.371 0.852 59.887 33.287 

Scenario 4: GLCMs+ 
backscatter+ band ratio  

0.697 44.278 17.796 0.726 44.294 36.719 0.777 68.778 21.774 0.773 65.442 37.773 

Sentinel-2A 
All scenarios (LAI 
included) 

RF SVR RF SVR 

R2 RMSE 
(g.m-2) 

relRMSE 
(%) 

R2 RMSE 
(g.m-2) 

relRMSE 
(%) 

R2 RMSE 
(g.m-2) 

relRMSE 
(%) 

R2 RMSE 
(g.m-2) 

relRMSE 
(%) 

Scenario 1: Reflectance 
bands 

0.644 52.856 19.610 0.651 51.071 37.891 0.671 78.961 21.293 0.644 73.267 40.726 

Scenario 2: Traditional 
VIs 

0.665 52.865 22.051 0.643 48.890 38.674 0.658 76.079 24.512 0.691 68.911 46.198 

Scenario 3: RE VIs 0.629 50.352 21.918 0.702 52.937 41.983 0.673 67.798 22.663 0.640 69.775 43.839 
Scenario 4: Reflectance 
bands traditional Vis +RE 
VIs 

0.753 49.269 20.009 0.652 50.595 40.374 0.749 69.634 21.248 0.768 65.699 38.447 
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To analyse the modelling accuracy, the scatterplots illustrated in Figure 5 (A-D) below were 

constructed based on the performance of RF and SVR models to find correlation between the 

observed and predicted AGB in relation to the line of best fit in the study area. An estimation from 

the RF models showed the best agreement along the 1:1 line compared to the SVR models. The 

goodness of fit was measured and found to be 0.735 and 0.726 for the RF and SVR models in 

summer, respectively. However, for the winter season the SVR model showed a strong correlation 

between the observed and predicted wetland vegetation AGB obtaining a R2 = 0.852.  
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(A) 
(B) 
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(C) (D) 

Figure 5: Seasonal accuracies of observed versus predicted AGB density scatterplots across seasons using the RF and SVR models after 10-fold cross 

validation. (A) RF summer model ; (B) SVR summer model; (C) RF winter model; (D) SVR winter model and dotted blue line=1:1 trend line.
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 Spatial patterns in carbon of AGB of wetland vegetation in Tevredenpan 

In this study, carbon maps within the selected study area were generated by converting the AGB 

maps into carbon using a factor of 0.50. Figure 6 and Figure 7 shows the spatial patterns of the 

estimated wetlands and terrestrial carbon stock in the Tevredenpan study area. The spatial 

distribution trends of terrestrial and wetland carbon varied across the summer (Figure 6) and winter 

(Figure 8) indicating patterns of low to high carbon ranges throughout the study area. In both the 

summer and winter carbon maps, the green areas exhibit high carbon content ranges i.e. 190 g C/m-

2 DM to 300 g C/m-2 stored in the AGB of wetland and terrestrial vegetation. The yellow areas 

illustrated moderate carbon stocks that ranged between 160 g C/m-2 DM and 190 g C/m-2 followed 

by the brown zones which had relatively lower wetland and terrestrial carbon stock  below 160 g 

C/m-2 DM per pixel compared to the above mentioned green and yellow areas.  

Along the seasonal seep wetlands i.e. D-2 moderate ranges of carbon stock between  160 – 180 

g C/m-2 DM were evident in the summer season  in Figure 6, whereas during winter season  in Figure 

8 the seasonal or temporal seep wetlands (E-2) illustrated lower ranges of carbon <160 g C/m-2 DM. 

In the south-western part of the study site, a high-density range  between 205 to 280 g C/m-2 DM of 

teal carbon was observed over the Tevredenpan depression in D-1 during summer and similar high 

ranges were also evident in the same depression  in E-1 during the winter season (Figure 7). The 

Tevredenpan is mostly dominated by a dense growth of Phragmites australis species which contains 

a floating peat cap. The agricultural fields (D-4) also showed high ranges of carbon  ranging  from 

190 to 220 g C/m-2DM in summer. However, the amount of carbon in the AGB  gradually decreased 

and the range was <160 g C/m-2 DM) over the agricultural fields (E-4) during the winter season. 

Moreover, the channelled valley-bottom wetland in the northern eastern part of the study area 

showed high range of teal carbon values in both the summer (Figure 6, D-3) and winter season 

(Figure 8, E-3). The Phragmites australis and Typha capensis species prevail along these channels i.e. 

D-1 and E-3. 
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Figure 6: Spatial distribution of estimated teal carbon across the summer season of 2017 in 

Tevredenpan study area. 
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Figure 7: Spatial pattern of the predicted wetland teal carbon across the winter season of 2017 in 

the Tevredenpan study area 

 Seasonal variations in estimated carbon stocks in the Tevredenpan study area 

In Figure 8 and  Table 11, the predicted teal carbon of wetlands between the seasons, illustrated 

highest carbon stock in summer than in the winter season within the study site. The estimated 

carbon stock in wetland areas in the Tevredenpan study area ranged from 33.460 g C/m-2 DM to 

109.100 g C/m-2 DM, with a standard deviation (SD) of 20.066 g C/m-2 DM for the summer season 

(Figure 8, Table 11). For the winter season, teal carbon stock in the study area varied from 38.630 g 

C/m-2 DM to 98.539 g C/m-2 DM, with a SD of 20.672 g C/m-2 DM (Figure 8, Table 11). The mean teal 

carbon (i.e. wetland grass and sedges) values were significantly high in the summer i.e. 78.288 g 
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C/m-2 DM than in the winter season i.e. 58.599 g C/m-2 DM. When looking at the green carbon (i.e. 

terrestrial grasses), Tevredenpan study area depicted high range of green carbon in the summer 

season compared to the winter season in Figure 8 and Table 11. These carbon values ranged 

between 31.310 g C/m-2 DM and 112.650 g C/m-2 DM in summer with a mean of 76.767 g C/m-2 DM 

and SD of 21.490 g C/m-2 DM. However, in the winter season the range of green carbon was between 

39.596 g C/m2 DM to 96.611 g C/m-2 DM with a mean and SD of 57.250 g C/m-2 DM and 18.602 g 

C/m-2 DM, respectively.  

 Although the green carbon was slightly greater i.e. 112.650 g C/m-2 than the teal carbon (109.100 

g C/m-2 DM) in summer (Figure 8), mean values  in Table 11 between the teal carbon and green 

carbon showed no significant difference (<2% difference, p > 0.05) in summer. Similar pattern of 

results was evident in winter between the mean carbon values of terrestrial and wetland indicating 

no significant difference for this season (<1% difference, p > 0.05) (Table 11). However, wetlands 

contained a marginal higher carbon content of 98.539 g C/m-2 DM than terrestrial i.e. 96.611 g C/m-

2 DM for this season (Figure 8). High coefficient of variation (COV %) of carbon stock in the terrestrial 

area (27.994%) reflects a substantial spatial variability, showing the heterogeneity of the carbon in 

the study area when compared to the teal carbon (COV = 25.630%) in summer (Table 11). Contrary, 

in the winter season high COV in wetland teal carbon (35.278%) illustrated the high degree of 

variation to the mean in carbon stock while lower variability was observed in the estimated green 

carbon (32.494%) (Table 11).  

Table 11:  Descriptive statistical table with variations in predicted carbon maps across summer and 

winter season in Tevredenpan study site. COV= co-efficient of variation, SD= standard deviation, 

N= total number of random points per season, min =minimum, and max= maximum. 

  

Season HGM Type       N  Min   Mean (g C/m-2)   Max    SD  COV  p-value 

Summer  Wetland  175 33.460 78.288 109.100 20.066 25.630 0.4941 
  Terrestrial 175 31.310 76.767 112.650 21.490 27.994 

Winter   Wetland 175 38.630 58.599 98.539 20.672 35.278 0.5236 
  Terrestrial  175 39.596 57.250 96.611 18.602 32.494 
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Figure 8: Seasonal variations in the predicted teal carbon for Tevredenpan study area across the 

summer and winter seasons for the year 2017.  

The means in groups (Group one: summer-winter) illustrated higher mean of carbon stocks 

(77.527 g C/m-2) in summer when compared to the means in groups for the winter season (57.918 

g C/m-2). Thus, significant statistical difference (p < 0.05) between the summer and winter season 

was observed when looking at the mean in groups of the estimated carbon of both terrestrial and 

wetland across the seasons in Group one (Table 12).   

Table 12: Statistical differences in mean in groups across the seasons for the year 2017 in the 

Tevredanpan. 

Differences in groups Means in groups (g C/m-2) p-value < 0.05 

    One: Summer - Winter Summer: 77.527 Yes 

 Winter: 57.918  
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According to Table 13 the analysis of carbon stock in the vegetation communities found within 

the Tevredenpan study area varied between the summer and winter season. The results indicated 

that all the wetland vegetation communities of the study area had high mean values of carbon in 

the summer season compared to the winter season (Table 13). For example, Juncus effusus a 

wetland species contained high carbon content in the AGB with a mean of 86.690 g C/m-2 DM in 

summer and a mean of 70.355 g C/m-2 DM in the winter season. Similarly, terrestrial vegetation 

community i.e. Eragrostis spp. and Themeda spp. had high mean carbon content of 72.275 g C/m-2 

DM in the AGB during the summer season while in winter it was lower 57.148 g C/m-2 DM  indicating 

a statistical significance between the two seasons ( p < 0.05). Therefore, at 95% confidence interval 

the carbon stock in the wetland vegetation types illustrated to be significantly different between 

the summer and winter in all the nine vegetation communities of the Tevredenpan study site (p < 

0.05).  

Table 13: Seasonal differences in the estimated carbon between wetland vegetation communities 

of the Tevredenpan study area; n represents the number of random points. 

Vegetation type 
                   
  N 

 
     Location 

         Means in groups (g C/m-2)  p-value < 
0.05  Summer   Winter 

Arundinella nepalensis   76 Wetland  74.432 55.662 Yes 

Aristida spp. 76 Wetland 75.964 59.203 Yes 

Carex spp. 76 Wetland  84.978 60.074 Yes 

Eragrostis spp. and 
Themeda spp. 

76 Terrestrial 72.275 57.148 Yes 

Grass-sedge 
communities 

76 Wetland  79.631 63.079 Yes 

Juncus effusus 76 Wetland 86.690 70.355  Yes 

Phragmites australis 76 Wetland  75.290 58.904 Yes 

Sedge dominant 76 Wetland  72.123 60.128 Yes 

Wet-grass community 76 Wetland  74.621 57.523 Yes 
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 Conclusion  

The study showed the feasibility of integrating satellite dataset and non-parametric algorithms for 

seasonal AGB of wetland vegetation estimation. In general, RF outperformed the SVR algorithm for 

estimating seasonal AGB of wetland vegetation with lower relRMSE. The variations in the spatial 

pattern of the predicted wetland teal carbon between winter and summer season were expected 

due to different climate variability. Despite, the overall high values of the predicted carbon stocks 

in most vegetation communities of the study area in summer than winter, vegetation abundance 

contributed to the observed seasonal variations. The next chapter focus is to provide justification of 

the current study findings and link the findings with existing literature.  
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CHAPTER 5: DISCUSSION 

This study aimed to assess seasonal variations in carbon derived from the AGB of palustrine 

wetland vegetation across the summer and winter seasons in the Grassland Biome of Mpumalanga, 

South Africa. The study integrated different remote sensing variables derived  from the Sentinel-1A 

and Sentinel-2A imagery and arranged them into modelling scenarios for predicting wetland AGB 

using RF and SVR algorithms. The study showed the seasonal variation of carbon stock and its 

distribution across the summer and winter and within the wetland vegetation communities in the 

Tevredenpan study area. Machine learning algorithms implemented in this study illustrated a 

varying performance of important input variables selected, with the RF algorithm yielding a better 

performance for predicting AGB. Assessing seasonal variations using Sentinel-1 and Sentinel-2 

seasonal datasets and their derivatives could help to know how wetland vegetation influences CS 

and how it varies between seasons.  

 Selection of important variables for estimating wetland herbaceous AGB  

The results of important variable selection in Sentinel-1 variables showed that VH polarisation 

was a more prominent predictor variable than VV polarisation (Table 8). The importance of VH in 

mapping and estimated AGB are consistent  in previous studies ( Sinha et al., 2015; Castillo et al., 

2017; Crabbe et al., 2019).  Castillo et al. (2017) demonstrated that the cross-polarisation (VH) was 

more efficient in estimating the AGB of mangroves than that of the VV co-polarisation. In a grassland 

environment, Crabbe et al. (2019) observed  that VH backscatter yielded better estimates of pasture 

AGB (R2 = 0.71) than VV co-polarisation band. These observations may be due to the fact that VH 

backscatter results from volumetric scattering, which is more evident in vegetation which displays 

volumetric architecture (e.g., grasses) than in co-polarised backscatter which is often affected by 

surface roughness (Laurin et al., 2018). This study found that GLCMs textures of VH, particularly the 

vhMEAN and VhVariance were important predictor variables for modelling AGB of wetland 

vegetation within the grasslands. Selection of important textural features for biomass estimation 
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however may differ based on the window size utilised, spectral wavelengths, and different 

vegetation types.  

In line with the finding of this study, the importance of SAR-based GLCMs texture variables as 

important predictor variables for estimating AGB is also evident in previous studies though they 

estimated AGB in forested environments (Zhao et al., 2016; Argamosa et al., 2018; Chen et al., 2018).  

For example, Argamosa et al. (2018)  demonstrated that VH textures (Variance and contrast) 

calculated from 9 × 9 window size were selected as important predictors for mangrove AGB 

estimation, significantly improving model performance (R2 = 0.79).  Application of SAR textural 

features in retrieving AGB of wetland and grassland vegetation is poorly documented in the 

literature. However, some studies applied SAR textures in the classification of wetland vegetation, 

the results demonstrated improved classification of wetland vegetation between summer (9% to 

22%) and winter (up to 15%) (Rajngewerc et al., 2022) and also that of heterogeneous wetland 

terrains (Mishra et al., 2019). Therefore, C-Band Sentinel-1 data GLCMs textures are significant 

variables for wetland AGB estimation due to their ability to provide and characterise vegetation 

structure required for precise AGB models.  

Analysis of important predictor variables for Sentinel-2 derived variables in this study showed 

that bands centred around the 704- 782 nm (RE), 665nm (red), 833 nm (NIR), and 559 nm (green) 

spectral regions were selected as necessary for predicting biomass, particularly during the summer 

season. The selected bands in this study B4, B3, B6, B5, B7 and B8 (Table 9) fall within the 

wavelengths of EMS regions that have previously been found to strongly link or relate to the biomass 

of wetland and grassland vegetation by numerous studies (Mutanga et al., 2012; Ramoelo et al., 

2015; Sibanda et al., 2015; Li et al., 2021). Interestingly both the RF and SVR importance variable 

selection demonstrated that the SWIR band (2202 nm) was the most critical spectral band compared 

to other bands in winter. These findings are supported by Ramoelo and Cho (2014), who state that 

the SWIR region is a significant wavelength for estimating biomass in the dry or winter season 

because the vegetation is photosynthetically inactive and dead. Similar findings were presented by 

Xu et al. (2014), who found a correlation between the Normalized Difference Water Index (NDWI) 
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derived from the SWIR and dead vegetation cover. The use of  SWIR band (B12) as a prominent input 

variable for modelling winter AGB in this study thus further confirms the significant influence of the 

SWIR region in AGB modelling, particularly in the dry season. 

VIs reduces the soil background and environment noise effect and overcome the saturation 

problem when estimating biomass (Mutanga and Skidmore, 2004; Adam et al., 2014). In this study, 

traditional VIs (GNDVI, NDVI, SR) and RE VIs (NDVIre5, SRre5) were among the important selected 

spectral indices for estimating the AGB of wetland vegetation across the summer and winter seasons 

(Table 9). Previous studies have proved that the VIs calculated from the NIR, red,  and red-edge 

bands significantly yield greater accuracies for estimation of wetland and grassland AGB (Ramoelo 

et al., 2015; Sibanda et al., 2016; Naidoo et al., 2019; Li et al., 2021). LAI illustrated to be the most 

important variable amongst Sentinel-1A and Sentinel-2A predictor variables in all the investigated 

seasons. Earlier studies have also documented the significance of LAI in modelling the AGB (Van 

Wijk and Williams, 2005; Fan et al., 2009; Masemola et al., 2016; Naidoo et al., 2019). The LAI is a 

good indicator of vegetation status and a strong proxy of biomass because it greatly influences the 

spectral reflectance of vegetation canopies and therefore has a crucial role in vegetation ecosystem 

processes (Darvishzadeh et al., 2008). Thus, LAI is a good indicator of growth and productivity in the 

vegetation of grasslands and wetlands and has improved the estimation of AGB for this study. 

 Performance of Sentinel-1 and Sentinel-2 AGB modelling scenarios across summer and 

winter  

For this study, the accuracy of Sentinel-1 and Sentinel-2 seasonal modelling scenarios (Table 10) 

revealed that a combination of SAR GLCMs texture variables and backscatter performed better in 

predicting summer wetland AGB (R2 = 0.735, RMSE = 39.848 g·m-2 and relRMSE = 17.286%) than a 

combination of reflectance bands, VIs and RE bands (R2 = 0.753, RMSE= 49.268 g·m-2 and relRMSE = 

20.009%). SAR-derived scenarios obtained higher accuracies across the winter regardless of the 

incorporation of GLCMs only (R2 = 0.785, 67.582 g·m-2, 20.885%) compared to the combination of 

reflectance bands, VIs and RE bands of optical data (R2 = 0.749, RMSE = 69.634 g·m-2 and relRMSE = 

21.248%). These results suggest that the SAR C-band variable had a stronger correlation with the 
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herbaceous AGB of palustrine in our study compared to modelling scenarios of the optical sensor. 

The findings of this study are in contrast to the results obtained by earlier studies (Naidoo et al., 

2019; Nuthammachot et al., 2020). Nuthammachot et al. (2020) found that Sentinel-1 variables 

obtained lower accuracy (R2 = 0.34) compared to Sentinel-2 variables (R2 = 0.82) in a forest 

environment. However, studies documented that SAR C-band is saturated in high biomass areas 

such as forests and could attain lower AGB accuracies (Imhoff et al., 1995; Huang et al., 2018). As 

such C-band is more suitable for monitoring low herbaceous vegetation (Ghasemi et al., 2011), as 

in the case of this study.  

Consistently with the successful  application of SAR in retrieving wetland AGB in grasslands for 

the present study, studies of Wang et al. (2019) and Crabbe et al. (2019) have also demonstrated 

the suitability of using Sentinel-1 datasets in estimating AGB in grasslands. Furthermore, previous 

comparative studies that found Sentinel-1 to perform better than Sentinel-2 stated that the 

inclusion of SAR GLCMs textural information improved the modelling of AGB (Chen et al., 2018; 

Navarro et al., 2019). However, some studies found that the optical derived models performed 

better than SAR modelling data for modelling AGB (Zhao et al., 2016; Forkuor et al., 2020). Fourker 

et al. (2020) reckoned that the poor performance of Sentinel-1 to Sentinel-2 in their study could be 

influenced by the exclusion of textural features. Consequently, the performance of remote sensing 

sensors in estimating AGB vary with different regional factors such as climate, vegetation types, and 

landscape.  

The high penetration capability of SAR as a result of enhanced backscatter or double bounce 

scattering between water, emergent, and flooded vegetation in wetlands allows for extensive 

information extraction of the structural parameters of plants not contained within the spectral 

signature of vegetation to improve biomass estimation (Dabboor and Brisco, 2019). This supports 

the better performance of SAR-derived modelling scenarios for estimating AGB of palustrine 

wetlands compared to the performance of optical modelling scenarios in this study. Integrating SAR 

texture variables and SAR backscatter in models retrieves crucial structural information, decreases 

the influence of environmental background to some extent, and subsequently improves the 
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capability of the models for measuring the AGB of palustrine wetlands. However, the potential to 

track the seasonal dynamics of grassland and wetland vegetation with Sentinel-1 and Sentinel-2 

derived variables is not fully known. Our results also demonstrated that the Sentinel-1 backscatter 

data (under all-weather conditions) and Sentinel-2 data can track the seasonality of carbon changes 

in the AGB of wetland vegetation in grasslands.  

 Machine learning algorithms in modelling seasonal AGB of wetland vegetation 

Comparative analysis between the machine learning algorithms in this study showed that the RF 

model performed better (relRMSE = 17.286%) than the SVR machine learning algorithm (relRMSE = 

36.719%) (Table 10). RF modelling approach is very robust, has variable importance selection, 

minimises overfitting, multi-collinearity, and has been implemented independently of the data 

distribution (Mutanga et al. 2012). The lower accuracies with the SVR may be associated with the 

absence of a basic method to optimise and tune the model hyperparameters (Cherkassky and Ma 

2004; Siegmann and Jarmer, 2015; Wan et al., 2018). The findings of Chen et al. (2018) however 

posited that SVR performed better than RF and ANN in forest AGB estimation which contradicts the 

findings of this study. Comparative analysis in some previous studies discovered that the there was 

no significant difference between the SVR and RF machine learning algorithms (Adam et al., 2014). 

 The improved performance of results in RF in this study agrees with previous studies in wetland 

AGB estimation ( Wan et al., 2018; Naidoo et al., 2019) and in forest biomass retrieval (Chen et al., 

2019). Wan et al. (2018) indicated that the RF was the best-performing machine learning algorithm 

with an RMSE of 250 g m − 2 than SVR (RMSE = 270 g m − 2) for modelling the AGB of a wetland. 

Naidoo et al. (2019) successfully demonstrated the robustness of the RF algorithm in estimating 

palustrine wetland herbaceous AGB. However, the previous studies of Wan et al. (2018) and Naidoo 

et al. (2019) did not apply or assess the performance of these machine learning algorithms at 

different seasons (i.e. wet and dry seasons). Therefore, the results of this study further revealed 

that machine learning algorithms have the capacity to identify non-linear relations between 

relevant biophysical parameters and satellite-based predictor variables of different seasons  
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 Spatial mapping of seasonal carbon changes from the AGB in palustrine wetland   

The predicted carbon maps of terrestrial and wetland vegetation had a range of carbon stock 

between 30 g C/m-2 DM to 300 g C/m-2 DM across the seasons (Figures 6 and 7)  . The seasonal seep 

wetlands demonstrated moderate ranges of carbon stock (160 – 180 g C/m-2 DM) in the summer 

season. In contrast, during the winter season, lower ranges of carbon (<160 g C/m-2 DM) were 

evident in these wetlands. Salimi et al. (2021) state that during the winter season, monitoring may 

yield different results in ephemeral/temporal wetlands, and the dynamics of nutrient cycles and 

carbon dynamics from wetlands may vary. The influence or presence of vegetation communities 

such as the Phragmites australis and Typha capensis in the Tevredenpan study site resulted in high 

spatial patterns of carbon stock along the valley-bottom wetlands and depression in both summer 

and winter. Naidoo et al. (2019) also reported that the Tevredenpan study sites illustrated signs of 

cattle grazing along the seasonal and temporal valley-bottom and seeps wetlands. However, the 

inundation and saturation in seasons prohibit cattle from moving around through certain wetland 

types; thus macrophytes like Phragmites australis are less likely to experience grazing. Hence the 

high accumulation of carbon in these wetland types. Literature also indicates that these wetland 

vegetation types tend to store large quantities of biomass or carbon (Mutanga et al., 2012; Lolu et 

al., 2019).  

 Seasonal variation in carbon stock between the summer and winter season 

The assessment of seasonal variations using the NWM5 polygons to extract the predicted carbon 

stock values from the predicted maps indicated differences between the terrestrial and wetland 

carbon. The results illustrated that the green carbon was slightly greater (112.650 g C/m-2) than the 

teal carbon (109.100 g C/m-2 DM) in summer, and during the winter season, wetlands contained a 

marginal higher teal carbon content of 98.539 g C/m-2 DM than green carbon i.e. 96.611 g C/m-2 

DM. The results indicated slightly higher carbon in terrestrial areas in summer compared to winter, 

which could be associated with the impacts of fires in grasslands during the winter. The current 

study did not evaluate the impact of fire and Naidoo et al. (2019) indicated that the Tevredanpan 

study area did not illustrate any apparent effects of fires.  Disturbances from activities such as fires, 
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agriculture practices, and cattle ranging affect the composition of vegetation and decreases the 

AGB, resulting in low carbon in the above-ground vegetation (Matayaya et al., 2017). Furthermore, 

though the grazing pressure component was also not evaluated in this study, in summer the grass 

is in abundance, and during the winter plant growth is significantly reduced because vegetation is 

photosynthetically inactive (Ramoelo and Cho, 2014); so there is less grass available and the little 

grass that is available is heavily grazed, this could affect the process of carbon sequestration by the 

AGB vegetation.   

The findings of this study indicated that there were no significant differences (p > 0.05)  between 

terrestrial and wetland carbon in the summer and that for the winter season in this study (Table 11). 

Thus, wetlands have great potential for maintaining expected ranges of AGB carbon stock 

comparable to terrestrial vegetation. The findings of this study also suggested that overall carbon 

differences in seasons were statistically significant (p < 0.05), with means of green and teal carbon 

illustrating higher mean of carbon stocks (77.527 g C/m-2 DM) in summer than mean of teal and 

green carbon for the winter season (57.918 g C/m-2 DM). These results are consistent and 

comparable to previous studies that have also recorded high mean carbon stock values in summer 

compared to the winter season (Costa and Henry 2010; Lolu et al., 2019). Lolu et al. (2019) found 

that the above ground  carbon stock in wetland macrophytes in Hokersar wetland , to have an 

average of  244.86 g C/m-2  in the summer season and an average of  188.790 g C/m-2 in the winter 

season. In contrast, Costa and Henry (2010) documented a carbon range of 114.3 g C/m-2 in summer 

to 203 g C/m-2 in winter in the lakes of Brazil. Therefore, based on the varying results of this study 

as well as of the previous studies, the primary productivity of wetland ecosystems differs due to the 

influence of geographic setting or location, climate condition, and the type of vegetation.  

Furthermore, at different seasons the natural ecosystems undergo seasonal changes due to their 

natural cycles (UN, 2017). Hence the observed significant differences in the results of carbon stocks 

between summer and winter.  

This study also illustrated that wetland vegetation communities within the Tevredenpan study 

area contained significant carbon content in summer compared to the winter (Table 13), indicating 
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significant variation between the summer and winter season (p < 0.05). This study further revealed 

that the taller, evergreen, and sturdier species (i.e., Juncus effusus) were significant sinks of AGB 

carbon storing about 70.355 g C/m-2 DM in winter  to 86.690 g C/m-2 DM in summer. These results 

have been observed by other studies in the literature (Tang et al., 2011; Gagnon et al., 2012; Means 

et al., 2016).  The range of carbon stock in the AGB of Juncus effusus in this study however is lower 

compared to the findings of Means et al. (2016),  who found that the same species in a created 

wetland contained 703 g C/m2 of above ground carbon. Some earlier studies implied that climatic 

conditions during the growing season or wet season may enhance photosynthetic rate in vegetation 

species and results in increased AGB in grasslands (Piao et al., 2003; Piao et al., 2008; Zeng et al., 

2019). Hence the high carbon content in the AGB vegetation of wetland during summer in this study. 

Due to vegetation dying out and being photosynthetically inactive in winter, this could explain the 

low mean carbon stocks observed during winter compared to the summer in our study. Therefore, 

the carbon content and balance of wetlands is likely to fluctuate significantly because of factors such 

as climate and land-use practices that alter water-table dynamics, temperatures, and vegetation 

communities. Furthermore, the addition of BGB however, which was not quantified in this study 

would have likely displayed a more complete view on the overall biomass stored in all the palustrine 

wetland vegetation species. Assessment of seasonal carbon changes in various natural ecosystems 

is therefore a crucial factor for the development of sustainable climate change strategies, protection 

of wetlands and better understanding of CS.  
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CHAPTER 6: CONCLUSION 

This chapter provides a summary of the current study key findings and shows the importance of 

remote sensing techniques in temporal monitoring of palustrine wetland ecosystems at regional 

scales in arid and semi-arid areas. The chapter provides the limitations of the current study and 

further proposes recommendations in order to improve on the seasonal monitoring of AGB of 

wetland vegetation. The recommendations and key findings stipulated in this chapter could help in 

understanding the role of wetland particularly vegetated wetland in the changing climate to 

facilitate conservation and monitoring of these ecosystems.  

 General summary and conclusion   

Wetland ecosystems are essential for providing ecosystem services related to global climate 

change (Were et al., 2019). However, intensive water extraction for agriculture, deforestation, 

industrial expansion, reservoir construction, increasing sea levels and altered climate patterns are 

threats to wetlands.  (Schmitt and Brisco, 2013; Salimi et al., 2021). Furthermore, the impacts of 

anthropogenic pressures and global climatic changes are projected to result in changes in the 

functioning and integrity of most ecosystems. Biomass of wetland vegetation is a significant 

component of wetland vegetation that plays a crucial role in CS. Due to the dynamic nature of 

wetlands, assessment of temporal changes and estimating carbon stock in the AGB can aid in 

conserving grasslands and wetlands and notably help  to understand the carbon changes in wetland 

vegetation leading to more accurate future predictions of global climate change. This study aimed 

to use seasonal derived AGB of palustrine herbaceous vegetation to determine the differences in 

teal carbon, using active and passive remote sensing data across the summer and winter seasons. 

The current study investigated  three objectives to address specific research questions. The 

objectives  of the study were to :  (i) Derive and test different season-specific modelling scenarios 

from Sentinel-1 and Sentinel-2 imagery to assess the optimal model for estimating AGB of palustrine 

wetland vegetation for the summer and winter seasons, (ii) Assess the performance of RF and SVR 

algorithms in predicting seasonal AGB of palustrine wetland vegetation, (iii) Map the spatial 
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distribution of wetland vegetation carbon stock for the summer and winter seasons and, (iv) Assess 

the seasonal variations and if there is a statistical difference in teal carbon derived from wetland 

herbaceous AGB in the summer and winter seasons for the year 2017. 

To address and answer the current study research questions and objectives, this study integrated 

machine learning techniques, i.e. RF and SVR, with different combinations of predictor variables 

from Sentinel-1A GRD and Sentinel-2A MSI imagery, to assess and map seasonal variations in teal 

carbon derived from the herbaceous AGB of palustrine wetland. The study was carried out in the 

Tevredenpan study area in the Grassland biome of the Mpumalanga province, South Africa. The 

results of the investigated objectives of the study showed that palustrine wetland vegetation plays 

a significant role in storing carbon in the AGB. However, the amount of carbon stored in the above-

ground wetland vegetation significantly differs between seasons and across wetland vegetation 

communities. This study highlighted that summer had significantly high values of carbon stored in 

the AGB of wetland vegetation. Furthermore, inclusion of the dry season in AGB monitoring studies 

could provide a substantial understanding of the seasonal functioning of the AGB of wetland and 

grassland vegetation and its role in CS at a regional scale.  

The predicted carbon maps illustrated significant differences in the spatial distribution of green 

and teal carbon across the summer and winter seasons. These seasonal differences could be linked 

to the grassland vegetation communities' sensitivity to seasonality and land utilisation for 

agriculture, grazing, mining, and grass fires. This study further illustrated the importance of a hybrid 

methodological approach for enhancing the estimation, mapping and monitoring of AGB of wetland 

vegetation. Incorporating texture measurements derived from SAR improved the estimation of 

wetland AGB in this study. Sentinel-1 SAR C-band performed better in estimating herbaceous AGB 

of palustrine wetlands than Sentinel-2  due to the volumetric information from the VH polarisation 

and capability of penetrating through vegetation canopy structures. Furthermore, the results 

revealed that the RF regression machine algorithm offers better modelling performance compared 

to the SVR algorithm in prediction models and therefore is potentially a good contender for seasonal 

teal AGB estimates. Therefore, the results of the current study have imperative contributions for 



 

 

 

   

 

88 

the long-term monitoring of wetlands functioning in arid and semi-arid regions in response to 

climate change 

 Limitations of the study  

Despite the satisfactory modelling accuracies achieved in this study, the number of samples 

collected could have influenced the accuracy of the predictive models. According to Korhonen et al. 

(2017) and Morais et al. (2021) one of the general problems that affects the accuracy of  predictive 

biomass models is the limited number of field-collected sample points that are used for model 

validation and calibration. Furthermore, the integration of LAI raster layers which were derived 

using the stepwise multiple linear regression into the models for mapping AGB could have 

influenced the mapping of wetland and terrestrial carbon spatial distribution across the studied 

seasons. These algorithms are associated with model overfitting and yield lower accuracies when 

the sample size is small (Chen et al., 2009).  Furthermore, empirical models are seldom transferrable. 

For example, there is minimal to no chance for these models to effectively work elsewhere or be in 

a different site – without additional field measurements from that particular site. 

 Recommendations for future research 

The RF algorithm yielded better results compared to the SVR model  and was able to identify non-

linear relations between AGB and predictor variables of different seasons in this study. However,  

the current study recommends that these seasonal models should be tested in a different location 

and environment to further validate the model transferability of machine learning techniques as 

well as their prediction accuracy. The current study only tested a single window (9 × 9) when 

extracting the SAR GLCM features and this may have influenced the accuracy of the results in the 

AGB models. Larger window size may omit significant information while smaller window size may 

result to pixel noise (Sarker and Nichol, 2011; Kelsey and Neff, 2014). Thus, current study 

recommends that future studies should use or test multiple moving window sizes for calculating the 

GLCMs feature in order to determine  if there are significant improvements in seasonal AGB 

accuracies. Future studies should explore the combination of RTMs and ensemble algorithms for 
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mapping LAI at different seasons to improve the accuracy of LAI maps to be integrated in biomass 

mapping.  Potential future work should also evaluate other approaches for tuning hyper-parameters 

of machine learning algorithms especially in SVR models to improve prediction accuracy. Further 

investigation on the influence of vegetation heterogeneity in the canopy (Dang et al., 2019; Li et al., 

2019) particularly in smaller wetlands needs to be considered for estimating the AGB of wetland 

vegetation in grasslands. Although individual sensors had good performance in this study, the 

synergy of multiple remote sensing data or the combination of predictor variables for different 

seasons from both optical and radar should also be explored in future work to determine if there 

are significant improvements in the differences of  seasonal above ground carbon stock of palustrine 

wetland vegetation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

   

 

90 

REFERENCES 

Adam, E., Mutanga, O. and Rugege, D., 2010. Multispectral and hyperspectral remote sensing for 

identification and mapping of wetland vegetation: a review. Wetlands ecology and management, 

18, pp.281-296. 

Adam, E., Mutanga, O., Odindi, J. and Abdel-Rahman, E.M., 2014. Land-use/cover classification in a 

heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random 

forest and support vector machines classifiers. International Journal of Remote Sensing, 35(10), 

pp.3440-3458. 

Adam, E.M. and Mutanga, O., 2012, October. Estimation of high-density wetland biomass: 

combining regression model with vegetation index developed from Worldview-2 imagery. 

In Remote sensing for agriculture, ecosystems, and hydrology XIV (Vol. 8531, pp. 198-206). SPIE. 

Altman, D.G. and Bland, J.M., 2009. Parametric v non-parametric methods for data 

analysis. Bmj, 338. 

Argamosa, R.J.L., Blanco, A.C., Baloloy, A.B., Candido, C.G., Dumalag, J.B.L.C., DImapilis, L.L.C. and 

Paringit, E.C., 2018. Modelling above ground biomass of mangrove forest using sentinel-1 

imagery. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4(3). 

Attema, E.P.W. and Ulaby, F.T., 1978. Vegetation modelled as a water cloud. Radio science, 13(2), 

pp.357-364. 

Atzberger, C. and Richter, K., 2012. Spatially constrained inversion of radiative transfer models for 

improved LAI mapping from future Sentinel-2 imagery. Remote Sensing of Environment, 120, 

pp.208-218. 

Barrachina, M., Cristóbal, J. and Tulla, A.F., 2015. Estimating above-ground biomass on mountain 

meadows and pastures through remote sensing. International Journal of Applied Earth Observation 

and Geoinformation, 38, pp.184-192. 



 

 

 

   

 

91 

Barrett, B., Nitze, I., Green, S. and Cawkwell, F., 2014. Assessment of multi-temporal, multi-sensor 

radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning 

approaches. Remote sensing of environment, 152, pp.109-124. 

Barrett, T., 2014. Storage and flux of carbon in live trees, snags, and logs in the Chugach and Tongass 

National Forests. Gen. Tech. Rep. PNW-GTR-889. Portland, OR: US Department of Agriculture, 

Forest Service, Pacific Northwest Research Station. 44 p., 889. 

Behera, M.D., Tripathi, P., Mishra, B., Kumar, S., Chitale, V.S. and Behera, S.K., 2016. Above-ground 

biomass and carbon estimates of Shorea robusta and Tectona grandis forests using QuadPOL ALOS 

PALSAR data. Advances in Space Research, 57(2), pp.552-561. 

Berger, K., Atzberger, C., Danner, M., D’Urso, G., Mauser, W., Vuolo, F. and Hank, T., 2018. 

Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: A 

review study. Remote Sensing, 10(1), p.85. 

Berry, S., Keith, H., Mackey, B., Brookhouse, M. and Jonson, J., 2010. Green Carbon Part 2.: The role 

of natural forests in carbon storage (p. 124). ANU Press. 

Bivand, R., Keitt, T., Rowlingson, B., Pebesma, E., Sumner, M., Hijmans, R., Rouault, E. and Bivand, 

M.R., 2015. Package ‘rgdal’. Bindings for the Geospatial Data Abstraction Library. Available online: 

https://cran. r-project. org/web/packages/rgdal/index. html (accessed on 15 October 2017), p.172. 

Blum, C. and Roli, A., 2003. Metaheuristics in combinatorial optimization: Overview and conceptual 

comparison. ACM computing surveys (CSUR), 35(3), pp.268-308. 

Braun, A. and Veci, L., 2021. TOPS Interferometry Tutorial. Sentinel-1 Toolbox. 

Breaux, H.J., 1967. On stepwise multiple linear regression. Army Ballistic Research Lab Aberdeen 

Proving Ground MD. 

Breiman, L., 2001. Random forests. Machine learning, 45, pp.5-32. 



 

 

 

   

 

92 

Brisco, B., Kapfer, M., Hirose, T., Tedford, B. and Liu, J., 2011. Evaluation of C-band polarization 

diversity and polarimetry for wetland mapping. Canadian Journal of Remote Sensing, 37(1), pp.82-

92. 

Burgoyne, B.M., Bredenkamp, G.J. and Van Rooyen, N., 2000. Wetland vegetation in the North-

eastern Sandy Highveld, Mpumalanga, South Africa. Bothalia, 30(2), pp.187-200. 

Campbell, J.B. and Wynne, R.H., 2011. Introduction to remote sensing. Guilford Press. 

Cantalloube, H. and Nahum, C., 2000. How to compute a multi-look SAR image. European Space 

Agency-Publications-Esa Sp, 450, pp.635-640. 

Carrington, D.P., Gallimore, R.G. and Kutzbach, J.E., 2001. Climate sensitivity to wetlands and 

wetland vegetation in mid-Holocene North Africa. Climate Dynamics, 17(2), pp.151-157. 

Castillo, J.A.A., Apan, A.A., Maraseni, T.N. and Salmo III, S.G., 2017. Estimation and mapping of 

above-ground biomass of mangrove forests and their replacement land uses in the Philippines using 

Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134, pp.70-85. 

Chamaillé‐Jammes, S. and Bond, W.J., 2010. Will global change improve grazing quality of 

grasslands? A call for a deeper understanding of the effects of shifts from C4 to C3 grasses for large 

herbivores. Oikos, 119(12), pp.1857-1861. 

Chang, J. and Shoshany, M., 2016, July. Mediterranean shrublands biomass estimation using 

Sentinel-1 and Sentinel-2. In 2016 IEEE International Geoscience and Remote Sensing Symposium 

(IGARSS) (pp. 5300-5303). 

Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., Fromard, F., 

Higuchi, N., Kira, T. and Lescure, J.P., 2005. Tree allometry and improved estimation of carbon stocks 

and balance in tropical forests. Oecologia, 145(1), pp.87-99. 

Chave, J., Réjou‐Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B., Duque, A., Eid, 

T., Fearnside, P.M., Goodman, R.C. and Henry, M., 2014. Improved allometric models to estimate 

the aboveground biomass of tropical trees. Global change biology, 20(10), pp.3177-3190. 



 

 

 

   

 

93 

Chen, J., Gu, S., Shen, M., Tang, Y. and Matsushita, B., 2009. Estimating aboveground biomass of 

grassland having a high canopy cover: an exploratory analysis of in situ hyperspectral 

data. International Journal of Remote Sensing, 30(24), pp.6497-6517. 

Chen, J.M., 1996. Evaluation of vegetation indices and a modified simple ratio for boreal 

applications. Canadian Journal of Remote Sensing, 22(3), pp.229-242. 

Chen, L., Ren, C., Zhang, B., Wang, Z. and Xi, Y., 2018. Estimation of forest above-ground biomass by 

geographically weighted regression and machine learning with sentinel imagery. Forests, 9(10), 

p.582. 

Chen, L., Wang, Y., Ren, C., Zhang, B. and Wang, Z., 2019. Optimal combination of predictors and 

algorithms for forest above-ground biomass mapping from Sentinel and SRTM data. Remote 

Sensing, 11(4), p.414. 

Chen, X.W. and Jeong, J.C., 2007, December. Enhanced recursive feature elimination. In Sixth 

international conference on machine learning and applications (ICMLA 2007) (pp. 429-435). IEEE. 

Chen, Y., Qiao, S., Zhang, G., Xu, Y.J., Chen, L. and Wu, L., 2020. Investigating the potential use of 

Sentinel-1 data for monitoring wetland water level changes in China’s Momoge National Nature 

Reserve. PeerJ, 8, p.e8616. 

Cherkassky, V. and Ma, Y., 2004. Practical selection of SVM parameters and noise estimation for 

SVM regression. Neural networks, 17(1), pp.113-126. 

Cho, M.A. and Skidmore, A.K., 2006. A new technique for extracting the red edge position from 

hyperspectral data: The linear extrapolation method. Remote sensing of environment, 101(2), 

pp.181-193. 

Cho, M.A., Skidmore, A., Corsi, F., Van Wieren, S.E. and Sobhan, I., 2007. Estimation of green 

grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least 

squares regression. International journal of applied Earth observation and geoinformation, 9(4), 

pp.414-424. 



 

 

 

   

 

94 

Collen, B., Whitton, F., Dyer, E.E., Baillie, J.E., Cumberlidge, N., Darwall, W.R., Pollock, C., Richman, 

N.I., Soulsby, A.M. and Böhm, M., 2014. Global patterns of freshwater species diversity, threat and 

endemism. Global ecology and Biogeography, 23(1), pp.40-51. 

Cortes, C. and Vapnik, V., 1995. Support-vector networks. Machine learning, 20, pp.273-297. 

Costa, M.L.R. and Henry, R., 2010. Phosphorus, nitrogen, and carbon contents of macrophytes in 

lakes lateral to a tropical river (Paranapanema River, São Paulo, Brazil). Acta Limnologica 

Brasiliensia, 22, pp.122-132. 

Cowan, G.I. (Ed.). 1995: Wetlands of South Africa. Pretoria: Department of Environmental Affairs 

and Tourism. 

Crabbe, R.A., Lamb, D.W. and Edwards, C., 2021. Investigating the potential of Sentinel-1 to detect 

varying spatial heterogeneity in pasture cover in grasslands. International Journal of Remote 

Sensing, 42(1), pp.274-285. 

Cutler, M.E.J., Boyd, D.S., Foody, G.M. and Vetrivel, A., 2012. Estimating tropical forest biomass with 

a combination of SAR image texture and Landsat TM data: An assessment of predictions between 

regions. ISPRS Journal of Photogrammetry and Remote Sensing, 70, pp.66-77. 

Dabboor, M. and Brisco, B., 2018. Wetland monitoring and mapping using synthetic aperture 

radar. Wetl. Manag., 1, p.13. 

Dabboor, M. and Brisco, B., 2018. Wetland monitoring and mapping using synthetic aperture 

radar. Wetland  Management Assessment  Risk Sustainability Solution, 1, p.13. 

Dahy, B., Issa, S., Ksiksi, T. and Saleous, N., 2020, July. Geospatial Technology Methods for Carbon 

Stock Assessment: A Comprehensive Review. In IOP Conference Series: Earth and Environmental 

Science (Vol. 540, No. 1, p. 012036). IOP Publishing. 

Dai, X., Yang, G., Liu, D. and Wan, R., 2020. Vegetation Carbon Sequestration Mapping in Herbaceous 

Wetlands by Using a MODIS EVI Time-Series Data Set: A Case in Poyang Lake Wetland, 

China. Remote Sensing, 12(18), p.3000. 



 

 

 

   

 

95 

Dang, A.T.N., Nandy, S., Srinet, R., Luong, N.V., Ghosh, S. and Kumar, A.S., 2019. Forest aboveground 

biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. 

Ecological Informatics, 50, pp.24-32. 

Darvishzadeh, R., Atzberger, C., Skidmore, A. and Schlerf, M., 2011. Mapping grassland leaf area 

index with airborne hyperspectral imagery: A comparison study of statistical approaches and 

inversion of radiative transfer models. ISPRS Journal of Photogrammetry and Remote 

Sensing, 66(6), pp.894-906. 

Darvishzadeh, R., Skidmore, A., Schlerf, M. and Atzberger, C., 2008. Inversion of a radiative transfer 

model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote sensing 

of environment, 112(5), pp.2592-2604. 

Darvishzadeh, R., Wang, T., Skidmore, A., Vrieling, A., O’Connor, B., Gara, T.W., Ens, B.J. and 

Paganini, M., 2019. Analysis of Sentinel-2 and RapidEye for retrieval of leaf area index in a saltmarsh 

using a radiative transfer model. Remote sensing, 11(6), p.671. 

David, R.M., Rosser, N.J. and Donoghue, D.N., 2022. Improving above ground biomass estimates of 

Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral 

imagery. Remote Sensing of Environment, 282, p.113232. 

Dayathilake, D.D.T.L., Lokupitiya, E. and Wijeratne, V.P.I.S., 2020. Estimation of aboveground and 

belowground carbon stocks in urban freshwater wetlands of Sri Lanka. Carbon Balance and 

Management, 15(1), pp.1-10. 

de Almeida, C.T., Galvao, L.S., Ometto, J.P.H.B., Jacon, A.D., de Souza Pereira, F.R., Sato, L.Y., Lopes, 

A.P., de Alencastro Graça, P.M.L., de Jesus Silva, C.V., Ferreira-Ferreira, J. and Longo, M., 2019. 

Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian 

Amazon using different regression algorithms. Remote Sensing of Environment, 232, p.111323. 

Diouf, A.A., Brandt, M., Verger, A., El Jarroudi, M., Djaby, B., Fensholt, R., Ndione, J.A. and Tychon, 

B., 2015. Fodder biomass monitoring in Sahelian rangelands using phenological metrics from FAPAR 

time series. Remote Sensing, 7(7), pp.9122-9148. 



 

 

 

   

 

96 

Dong, Y., Milne, A.K. and Forster, B.C., 2000, July. A review of SAR speckle filters: texture restoration 

and preservation. In IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing 

Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the 

Environment. Proceedings (Cat. No. 00CH37120) (Vol. 2, pp. 633-635). 

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., 

Laberinti, P., Martimort, P. and Meygret, A., 2012. Sentinel-2: ESA's optical high-resolution mission 

for GMES operational services. Remote sensing of Environment, 120, pp.25-36. 

Dube, T. and Mutanga, O., 2015. Evaluating the utility of the medium-spatial resolution Landsat 8 

multispectral sensor in quantifying aboveground biomass in uMngeni catchment, South 

Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 101, pp.36-46. 

Dube, T. and Mutanga, O., 2015. Investigating the robustness of the new Landsat-8 Operational Land 

Imager derived texture metrics in estimating plantation forest aboveground biomass in resource 

constrained areas. ISPRS Journal of Photogrammetry and Remote sensing, 108, pp.12-32. 

Eastman, J.R., Sangermano, F., Machado, E.A., Rogan, J. and Anyamba, A., 2013. Global trends in 

seasonality of normalized difference vegetation index (NDVI), 1982–2011. Remote Sensing, 5(10), 

pp.4799-4818. 

Eggleston, S., Buendia, L., Miwa, K., Nagara, T., Tanabe, K., 2006. IPCC guidelines for national 

greenhouse gas inventories. Volume 4-Agriculture, Forestry and Other Land Use. IGES, Japan. 

Emerton, L., 2005. The economic value of Africa’s wetlands. Freshwater Ecoregions of Africa and 

Madagascar: A Conservation Assessment, p.11. 

Englhart, S., Keuck, V. and Siegert, F., 2011. Aboveground biomass retrieval in tropical forests—The 

potential of combined X-and L-band SAR data use. Remote sensing of environment, 115(5), pp.1260-

1271. 

Environmental Systems Research Institute. 2016. “ArcGIS Desktop: Release 10.4.” Redlands: ESRI. 

Erwin, K.L., 2009. Wetlands and global climate change: the role of wetland restoration in a changing 

world. Wetlands Ecology and management, 17(1), pp.71-84. 



 

 

 

   

 

97 

European Space Agency. 2015. Sentinel-2 User Handbook, ESA Standard Document; European Space 

Agency: Paris, France. 

Falkowski, M.J., Gessler, P.E., Morgan, P., Hudak, A.T. and Smith, A.M., 2005. Characterizing and 

mapping forest fire fuels using ASTER imagery and gradient modeling. Forest ecology and 

management, 217(2-3), pp.129-146. 

Fan, L.Y., Gao, Y.Z., Brück, H.E.B.C. and Bernhofer, C., 2009. Investigating the relationship between 

NDVI and LAI in semi-arid grassland in Inner Mongolia using in-situ measurements. Theoretical and 

applied climatology, 95, pp.151-156. 

Fatoyinbo, T., Feliciano, E.A., Lagomasino, D., Lee, S.K. and Trettin, C., 2018. Estimating mangrove 

aboveground biomass from airborne LiDAR data: a case study from the Zambezi River 

delta. Environmental Research Letters, 13(2), p.025012. 

Feret, J.B., François, C., Asner, G.P., Gitelson, A.A., Martin, R.E., Bidel, L.P., Ustin, S.L., Le Maire, G. 

and Jacquemoud, S., 2008. PROSPECT-4 and 5: Advances in the leaf optical properties model 

separating photosynthetic pigments. Remote sensing of environment, 112(6), pp.3030-3043. 

Fernández-Manso, A., Fernández-Manso, O. and Quintano, C., 2016. Sentinel-2A red-edge spectral 

indices suitability for discriminating burn severity. International journal of applied earth observation 

and geoinformation, 50, pp.170-175. 

Filipponi, F., 2019. Sentinel-1 GRD preprocessing workflow. Multidisciplinary digital publishing 

institute proceedings, 18(1), p.11. 

Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M.D., Neigh, C.S. and Reichstein, M., 2013. Trend 

change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote 

Sensing, 5(5), pp.2113-2144. 

Forkuor, G., Zoungrana, J.B.B., Dimobe, K., Ouattara, B., Vadrevu, K.P. and Tondoh, J.E., 2020. 

Above-ground biomass mapping in West African dryland forest using Sentinel-1 and 2 datasets-A 

case study. Remote Sensing of Environment, 236, p.111496. 



 

 

 

   

 

98 

Fourie, L., Rouget, M. and Lötter, M., 2015. Landscape connectivity of the grassland biome in M 

pumalanga, South Africa. Austral Ecology, 40(1), pp.67-76. 

Freeman, E.A., Frescino, T.S. and Moisen, G.G., 2018. ModelMap: an R package for model creation 

and map production. R package version, 4, pp.6-12. 

Fussell, J., Rundquist, D. and Harrington, J.A., 1986. On defining remote sensing. Photogrammetric 

Engineering and Remote Sensing, 52(9), pp.1507-1511. 

Gagnon, V., Chazarenc, F., Kõiv, M. and Brisson, J., 2012. Effect of plant species on water quality at 

the outlet of a sludge treatment wetland. Water research, 46(16), pp.5305-5315. 

Gallant, A.L., 2015. The challenges of remote monitoring of wetlands. Remote Sensing, 7(8), 

pp.10938-10950. 

García, M., Riaño, D., Chuvieco, E. and Danson, F.M., 2010. Estimating biomass carbon stocks for a 

Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of 

Environment, 114(4), pp.816-830. 

Gasparri, N.I., Parmuchi, M.G., Bono, J., Karszenbaum, H. and Montenegro, C.L., 2010. Assessing 

multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry 

forests of Argentina. Journal of Arid Environments, 74(10), pp.1262-1270. 

Genuer, R., Poggi, J.M. and Tuleau-Malot, C., 2015. VSURF: an R package for variable selection using 

random forests. The R Journal, 7(2), pp.19-33. 

Geudtner, D. and Torres, R., 2012, July. Sentinel-1 system overview and performance. In 2012 IEEE 

International Geoscience and Remote Sensing Symposium (pp. 1719-1721). IEEE. 

Ghasemi, N., Sahebi, M.R. and Mohammadzadeh, A., 2011. A review on biomass estimation 

methods using synthetic aperture radar data. International Journal of Geomatics and 

Geosciences, 1(4), p.776. 



 

 

 

   

 

99 

Gitelson, A. and Merzlyak, M.N., 1994. Spectral reflectance changes associated with autumn 

senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and 

relation to chlorophyll estimation. Journal of plant physiology, 143(3), pp.286-292. 

Gitelson, A.A. and Merzlyak, M.N., 1998. Remote sensing of chlorophyll concentration in higher 

plant leaves. Advances in Space Research, 22(5), pp.689-692. 

Grant, K.M., Johnson, D.L., Hildebrand, D.V. and Peddle, D.R., 2013. Quantifying biomass production 

on rangeland in southern Alberta using SPOT imagery. Canadian Journal of Remote Sensing, 38(6), 

pp.695-708. 

Grundling, P., Linström, A., Grobler, R. and Engelbrecht, J., 2003. The Tevredenpan peatland 

complex of the Mpumalanga Lakes District. International Mire Conservation Group Newsletter, 

(2007/3). 

Grundling, P.L., 2015. Genesis and hydrological function of an African mire: understanding the role 

of peatlands in providing ecosystem services in semi-arid climates. 

Guerini Filho, M., Kuplich, T.M. and Quadros, F.L.D., 2020. Estimating natural grassland biomass by 

vegetation indices using Sentinel 2 remote sensing data. International Journal of Remote Sensing, 

41(8), pp.2861-2876. 

Guo, M., Li, J., Sheng, C., Xu, J. and Wu, L., 2017. A review of wetland remote sensing. Sensors, 17(4), 

p.777. 

Guo, X., Coops, N.C., Tompalski, P., Nielsen, S.E., Bater, C.W. and Stadt, J.J., 2017. Regional mapping 

of vegetation structure for biodiversity monitoring using airborne lidar data. Ecological informatics, 

38, pp.50-61. 

Guyon, I., Weston, J., Barnhill, S. and Vapnik, V., 2002. Gene selection for cancer classification using 

support vector machines. Machine learning, 46, pp.389-422. 

Hall, F.G., Knapp, D.E. and Huemmrich, K.F., 1997. Physically based classification and satellite 

mapping of biophysical characteristics in the southern boreal forest. Journal of Geophysical 

Research: Atmospheres, 102(D24), pp.29567-29580. 



 

 

 

   

 

100 

Han, L., Yang, G., Dai, H., Xu, B., Yang, H., Feng, H., Li, Z. and Yang, X., 2019. Modeling maize above-

ground biomass based on machine learning approaches using UAV remote-sensing data. Plant 

methods, 15(1), pp.1-19. 

Haralick, R.M., Shanmugam, K. and Dinstein, I.H., 1973. Textural features for image 

classification. IEEE Transactions on systems, man, and cybernetics, (6), pp.610-621. 

Heinemann, A.B., Van Oort, P.A., Fernandes, D.S. and Maia, A.D.H.N., 2012. Sensitivity of 

APSIM/ORYZA model due to estimation errors in solar radiation. Bragantia, 71, pp.572-582. 

Hemes, K.S., Chamberlain, S.D., Eichelmann, E., Anthony, T., Valach, A., Kasak, K., Szutu, D., 

Verfaillie, J., Silver, W.L. and Baldocchi, D.D., 2019. Assessing the carbon and climate benefit of 

restoring degraded agricultural peat soils to managed wetlands. Agricultural and Forest 

Meteorology, 268, pp.202-214. 

Hijmans, R.J., Van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J.A., Lamigueiro, O.P., 

Bevan, A., Racine, E.B., Shortridge, A. and Hijmans, M.R.J., 2015. Package ‘raster’. R package, 734, 

p.473. 

Hill, M.J., 2013. Vegetation index suites as indicators of vegetation state in grassland and savanna: 

An analysis with simulated Sentinel-2 data for a North American transect. Remote Sensing of 

Environment, 137, pp.94-111. 

Houghton, R.A., Hall, F. and Goetz, S.J., 2009. Importance of biomass in the global carbon 

cycle. Journal of Geophysical Research: Biogeosciences, 114(G2). 

Houghton, R.A., Lawrence, K.T., Hackler, J.L. and Brown, S., 2001. The spatial distribution of forest 

biomass in the Brazilian Amazon: a comparison of estimates. Global Change Biology, 7(7), pp.731-

746. 

Hsu, C.W., Chang, C.C. and Lin, C.J., 2003. A practical guide to support vector classification. 

Huang, C., Ye, X., Deng, C., Zhang, Z. and Wan, Z., 2016. Mapping above-ground biomass by 

integrating optical and SAR imagery: a case study of Xixi National Wetland Park, China. Remote 

Sensing, 8(8), p.647. 



 

 

 

   

 

101 

Imhoff, M.L., 1995. Radar backscatter and biomass saturation: Ramifications for global biomass 

inventory. IEEE Transactions on Geoscience and Remote Sensing, 33(2), pp.511-518. 

IPCC (2006). Eggleston, S., Buendia, L., Miwa, K., Ngara, T. and Tanabe, K., 2006. IPCC guidelines for 

national greenhouse gas inventories. 

IPCC, 2014. Impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution 

of working group II to the fifth assessment report of the intergovernmental Panel on Climate 

Change, 1132. 

Jamieson, P.D., Porter, J.R. and Wilson, D.R., 1991. A test of the computer simulation model 

ARCWHEAT1 on wheat crops grown in New Zealand. Field crops research, 27(4), pp.337-350. 

Jin, X., Kumar, L., Li, Z., Feng, H., Xu, X., Yang, G. and Wang, J., 2018. A review of data assimilation of 

remote sensing and crop models. European Journal of Agronomy, 92, pp.141-152. 

Jin, Y., Yang, X., Qiu, J., Li, J., Gao, T., Wu, Q., Zhao, F., Ma, H., Yu, H. and Xu, B., 2014. Remote 

sensing-based biomass estimation and its spatio-temporal variations in temperate grassland, 

Northern China. Remote Sensing, 6(2), pp.1496-1513. 

Kamenova, I. and Dimitrov, P., 2021. Evaluation of Sentinel-2 vegetation indices for prediction of 

LAI, fAPAR and fCover of winter wheat in Bulgaria. European Journal of Remote Sensing, 54(sup1), 

pp.89-108. 

Kang, L., Han, X., Zhang, Z. and Sun, O.J., 2007. Grassland ecosystems in China: review of current 

knowledge and research advancement. Philosophical transactions of the royal society B: Biological 

Sciences, 362(1482), pp.997-1008. 

Kaplan, G. and Avdan, U., 2018. Monthly analysis of wetlands dynamics using remote sensing 

data. ISPRS International Journal of Geo-Information, 7(10), p.411. 

Karatzoglou, A., Meyer, D. and Hornik, K., 2006. Support vector machines in R. Journal of statistical 

software, 15, pp.1-28. 



 

 

 

   

 

102 

Keerthi, S., Sindwhani, V. and Chapelle, O., 2007. An efficient method for gradient-based adaptation 

of hyperparameters in SVM models in Advances in Neural Information Processing Systems19, eds 

Schölkopf B., Platt JC, Hoffman T. 

Keith, D.A., Ferrer, J.R., Nicholson, E., Bishop, M.J., Polidoro, B.A., Ramirez-Llodra, E., Tozer, M.G., 

Nel, J.L., Mac Nally, R., Gregr, E.J. and Watermeyer, K.E., 2020. The IUCN global ecosystem typology 

v1. 01: Descriptive profiles for biomes and ecosystem functional groups. 

Kelsey, K.C. and Neff, J.C., 2014. Estimates of aboveground biomass from texture analysis of Landsat 

imagery. Remote Sensing, 6(7), pp.6407-6422. 

Kganyago, M., Mhangara, P. and Adjorlolo, C., 2021. Estimating crop biophysical parameters using 

machine learning algorithms and Sentinel-2 imagery. Remote Sensing, 13(21), p.4314. 

King, E., 2014. Southern Africa's Dryland Forests and Climate Change Adaptation. A policy briefing 

prepared for Governance of Africa's Resources Programme. 

Knapp, N., Fischer, R., Cazcarra-Bes, V. and Huth, A., 2020. Structure metrics to generalize biomass 

estimation from lidar across forest types from different continents. Remote Sensing of 

Environment, 237, p.111597. 

Knox, N.M., Skidmore, A.K., Prins, H.H., Asner, G.P., van der Werff, H.M., de Boer, W.F., van der 

Waal, C., de Knegt, H.J., Kohi, E.M., Slotow, R. and Grant, R.C., 2011. Dry season mapping of savanna 

forage quality, using the hyperspectral Carnegie Airborne Observatory sensor. Remote sensing of 

environment, 115(6), pp.1478-1488. 

Kokaly, R.F., Asner, G.P., Ollinger, S.V., Martin, M.E. and Wessman, C.A., 2009. Characterizing canopy 

biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote sensing 

of environment, 113, pp. S78-S91. 

Kravitz, J., Matthews, M., Lain, L., Fawcett, S. and Bernard, S., 2021. Potential for high fidelity global 

mapping of common inland water quality products at high spatial and temporal resolutions based 

on a synthetic data and machine learning approach. Frontiers in Environmental Science, 9, 

p.587660. 



 

 

 

   

 

103 

Kumar, D., 2021. Urban objects detection from C-band synthetic aperture radar (SAR) satellite 

images through simulating filter properties. Scientific Reports, 11(1), p.6241. 

Kumar, L. and Mutanga, O., 2017. Remote sensing of above-ground biomass. Remote Sensing, 9(9), 

p.935. 

Kumar, S., Garg, R.D., Govil, H. and Kushwaha, S.P., 2019. PolSAR-decomposition-based extended 

water cloud modeling for forest aboveground biomass estimation. Remote Sensing, 11(19), p.2287. 

Kuplich, T.M., Curran, P.J., Atkinson, P.M., 2005. Relating SAR image texture to biomass of 

regenerating tropical forests. International Journal of Remote Sensing 26 (21), 4829–4854. 

Lal, R., 2008. Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 363(1492), pp.815-830. 

Lang, M.W. and Kasischke, E.S., 2008. Using C-band synthetic aperture radar data to monitor 

forested wetland hydrology in Maryland's coastal plain, USA. IEEE Transactions on Geoscience and 

Remote Sensing, 46(2), pp.535-546. 

Lang, M.W., Kasischke, E.S., Prince, S.D. and Pittman, K.W., 2008. Assessment of C-band synthetic 

aperture radar data for mapping and monitoring Coastal Plain forested wetlands in the Mid-Atlantic 

Region, USA. Remote Sensing of Environment, 112(11), pp.4120-4130. 

LaRocque, A., Phiri, C., Leblon, B., Pirotti, F., Connor, K. and Hanson, A., 2020. Wetland Mapping 

with Landsat 8 OLI, Sentinel-1, ALOS-1 PALSAR, and LiDAR Data in Southern New Brunswick, 

Canada. Remote Sensing, 12(13), p.2095. 

Lauck, M. and Benscoter, B., 2015. Non-destructive estimation of aboveground biomass in sawgrass 

communities of the Florida Everglades. Wetlands, 35(1), pp.207-210. 

Laurin, G.V., Balling, J., Corona, P., Mattioli, W., Papale, D., Puletti, N., Rizzo, M., Truckenbrodt, J. 

and Urban, M., 2018. Above-ground biomass prediction by Sentinel-1 multitemporal data in central 

Italy with integration of ALOS2 and Sentinel-2 data. Journal of Applied Remote Sensing, 12(1), 

pp.016008-016008. 



 

 

 

   

 

104 

Lee, J.S., Wen, J.H., Ainsworth, T.L., Chen, K.S. and Chen, A.J., 2008. Improved sigma filter for speckle 

filtering of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 47(1), pp.202-213. 

Li, C., Zhou, L. and Xu, W., 2021. Estimating aboveground biomass using Sentinel-2 MSI data and 

ensemble algorithms for grassland in the Shengjin Lake Wetland, China. Remote Sensing, 13(8), 

p.1595. 

Li, F., Zeng, Y., Luo, J., Ma, R. and Wu, B., 2016. Modeling grassland aboveground biomass using a 

pure vegetation index. Ecological Indicators, 62, pp.279-288. 

Li, Y., Li, C., Li, M. and Liu, Z., 2019. Influence of variable selection and forest type on forest 

aboveground biomass estimation using machine learning algorithms. Forests, 10(12), p.1073. 

Liaw, A., 2006. Package randomForest: Breiman and Cutler's Random Forest for Classification and 

Regression. CRAN Repository. 

Linström, A., 2015. Wetland status Quo report: Chrissiesmeer project. Tevredenpan Wetland W55A 

(Wetlands W55A - 05 to 07). In: Lowies, M. (Ed.), SANBI Rehabilitation Plan for the Chrissiesmeer 

Wetland Project, Mpumalanga Province: Planning Year 2015/2016. Prepared by Margaret Lowies, 

Aurecon South Africa (Pty) Ltd as Part of the Planning Phase for the Working for Wetlands 

Rehabilitation Programme. Report No. 109664/9589, South African National Biodiversity Institute 

(SANBI). Pretoria, South Africa. 

Lolu, A.J., Ahluwalia, A.S., Sidhu, M.C. and Reshi, Z.A., 2019. Carbon sequestration potential of 

macrophytes and seasonal carbon input assessment into the Hokersar wetland, 

Kashmir. Wetlands, 39(3), pp.453-472. 

Lu, D., Batistella, M., 2005. Exploring TM image texture and its relationships with biomass estimation 

in Rondônia, Brazilian Amazon. Acta Amazonica 35, 249–257. 

Lu, D., Chen, Q., Wang, G., Liu, L., Li, G. and Moran, E., 2016. A survey of remote sensing-based 

aboveground biomass estimation methods in forest ecosystems. International Journal of Digital 

Earth, 9(1), pp.63-105. 



 

 

 

   

 

105 

Luo, J., Duan, H., Ma, R., Jin, X., Li, F., Hu, W., Shi, K. and Huang, W., 2017. Mapping species of 

submerged aquatic vegetation with multi-seasonal satellite images and considering life history 

information. International journal of applied earth observation and geoinformation, 57, pp.154-

165. 

Luo, S., Wang, C., Xi, X., Pan, F., Qian, M., Peng, D., Nie, S., Qin, H. and Lin, Y., 2017. Retrieving 

aboveground biomass of wetland Phragmites australis (common reed) using a combination of 

airborne discrete-return LiDAR and hyperspectral data. International journal of applied earth 

observation and geoinformation, 58, pp.107-117. 

Macreadie, P.I., Anton, A., Raven, J.A., Beaumont, N., Connolly, R.M., Friess, D.A., Kelleway, J.J., 

Kennedy, H., Kuwae, T., Lavery, P.S. and Lovelock, C.E., 2019. The future of Blue Carbon 

science. Nature communications, 10(1), pp.1-13. 

Mahdavi, S., Salehi, B., Granger, J., Amani, M., Brisco, B. and Huang, W., 2018. Remote sensing for 

wetland classification: A comprehensive review. GIScience & Remote Sensing, 55(5), pp.623-658. 

Mas, J.F. and Flores, J.J., 2008. The application of artificial neural networks to the analysis of 

remotely sensed data. International Journal of Remote Sensing, 29(3), pp.617-663. 

Masemola, C., Cho, M.A. and Ramoelo, A., 2016. Comparison of Landsat 8 OLI and Landsat 7 ETM+ 

for estimating grassland LAI using model inversion and spectral indices: case study of Mpumalanga, 

South Africa. International Journal of Remote Sensing, 37(18), pp.4401-4419. 

Matayaya, G., Wuta, M. and Nyamadzawo, G., 2017. Effects of different disturbance regimes on 

grass and herbaceous plant diversity and biomass in Zimbabwean dambo systems. International 

Journal of Biodiversity Science, Ecosystem Services & Management, 13(1), pp.181-190. 

Mathieu, R., Naidoo, L., Cho, M.A., Leblon, B., Main, R., Wessels, K., Asner, G.P., Buckley, J., Van 

Aardt, J., Erasmus, B.F. and Smit, I.P., 2013. Toward structural assessment of semi-arid African 

savannahs and woodlands: The potential of multitemporal polarimetric RADARSAT-2 fine beam 

images. Remote Sensing of Environment, 138, pp.215-231. 



 

 

 

   

 

106 

Matthews, G.V.T., 1993, March. The Ramsar Convention on Wetlands: its history and development. 

Gland: Ramsar Convention Bureau. 

McCarthy, T., Cairncross, B., Huizenga, J., Batchelor, A., 2007. Conservation of the Mpumalanga 

Lakes District. Technical Report. School of Geosciences, University of the Witwatersrand, 

Johannesburg and Wetland Consulting Services (Pty) Ltd, South Africa. 

McLaughlin, J.W. and Packalen, M.S., 2021. Peat carbon vulnerability to projected climate warming 

in the Hudson Bay Lowlands, Canada: A decision support tool for land use planning in peatland 

dominated landscapes. Frontiers in Earth Science, 9, p.650662. 

Means, M.M., Ahn, C., Korol, A.R. and Williams, L.D., 2016. Carbon storage potential by four 

macrophytes as affected by planting diversity in a created wetland. Journal of environmental 

management, 165, pp.133-139. 

Melton, J.R., Wania, R., Hodson, E.L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C.A., 

Beerling, D.J., Chen, G. and Eliseev, A.V., 2013. Present state of global wetland extent and wetland 

methane modelling: conclusions from a model inter-comparison project 

(WETCHIMP). Biogeosciences, 10(2), pp.753-788. 

Michez, A., Lejeune, P., Bauwens, S., Herinaina, A.A.L., Blaise, Y., Castro Muñoz, E., Lebeau, F. and 

Bindelle, J., 2019. Mapping and monitoring of biomass and grazing in pasture with an unmanned 

aerial system. Remote Sensing, 11(5), p.473. 

Middleton, B.J. and Bailey, A.K., 2008. Water resources of South Africa, 2005 study (WR2005). Water 

Research Commission Report No. TT, 381(08). 

Mishra, V.N., Prasad, R., Rai, P.K., Vishwakarma, A.K. and Arora, A., 2019. Performance evaluation 

of textural features in improving land use/land cover classification accuracy of heterogeneous 

landscape using multi-sensor remote sensing data. Earth Science Informatics, 12(1), pp.71-86. 

Mitch, W.J. and Gosselink, J.G., 2007. Wetlands. Hoboken, New Jersey: Wiley, 574p. 

Mitchell, S.A., 2013. The status of wetlands, threats and the predicted effect of global climate 

change: the situation in Sub-Saharan Africa. Aquatic sciences, 75(1), pp.95-112. 



 

 

 

   

 

107 

Mitsch, W.J., Bernal, B., Nahlik, A.M., Mander, Ü., Zhang, L., Anderson, C.J., Jørgensen, S.E. and Brix, 

H., 2013. Wetlands, carbon, and climate change. Landscape Ecology, 28(4), pp.583-597. 

Moncrieff, G.R., Scheiter, S., Slingsby, J.A. and Higgins, S.I., 2015. Understanding global change 

impacts on South African biomes using Dynamic Vegetation Models. South African Journal of 

Botany, 101, pp.16-23. 

Moomaw, W.R., Chmura, G.L., Davies, G.T., Finlayson, C.M., Middleton, B.A., Natali, S.M., Perry, J.E., 

Roulet, N. and Sutton-Grier, A.E., 2018. Wetlands in a changing climate: science, policy and 

management. Wetlands, 38(2), pp.183-205. 

Morais, T.G., Teixeira, R.F., Figueiredo, M. and Domingos, T., 2021. The use of machine learning 

methods to estimate aboveground biomass of grasslands: A review. Ecological Indicators, 130, 

p.108081. 

Motohka, T., Nasahara, K.N., Oguma, H. and Tsuchida, S., 2010. Applicability of green-red vegetation 

index for remote sensing of vegetation phenology. Remote Sensing, 2(10), pp.2369-2387. 

Mucina, L. and Rutherford, M.C., 2006. The vegetation of South Africa, Lesotho and Swaziland. 

South African National Biodiversity Institute. 

Munyati, C., 2022. Detecting the distribution of grass aboveground biomass on a rangeland using 

Sentinel-2 MSI vegetation indices. Advances in Space Research, 69(2), pp.1130-1145. 

Mutanga, O. and Skidmore, A.K., 2004. Narrow band vegetation indices overcome the saturation 

problem in biomass estimation. International journal of remote sensing, 25(19), pp.3999-4014. 

Mutanga, O., Adam, E. and Cho, M.A., 2012. High density biomass estimation for wetland vegetation 

using WorldView-2 imagery and random forest regression algorithm. International Journal of 

Applied Earth Observation and Geoinformation, 18, pp.399-406. 

Nahlik, A.M. and Fennessy, M.S., 2016. Carbon storage in US wetlands. Nature 

Communications, 7(1), pp.1-9. 



 

 

 

   

 

108 

Naidoo, L., Mathieu, R., Main, R., Kleynhans, W., Wessels, K., Asner, G. and Leblon, B., 2015. 

Savannah woody structure modelling and mapping using multi-frequency (X-, C-and L-band) 

Synthetic Aperture Radar data. ISPRS Journal of Photogrammetry and Remote Sensing, 105, pp.234-

250. 

Naidoo, L., Mathieu, R., Main, R., Wessels, K., Asner, G.P., 2016. L-band Synthetic Aperture Radar 

imagery performs better than optical datasets at retrieving woody fractional cover in deciduous, dry 

savannahs. Int. J. Appl. Earth Obs. Geoinf. 52, 54–64. 

Naidoo, L., Van Deventer, H., Ramoelo, A., Mathieu, R., Nondlazi, B. and Gangat, R., 2019. Estimating 

above ground biomass as an indicator of carbon storage in vegetated wetlands of the grassland 

biome of South Africa. International Journal of Applied Earth Observation and Geoinformation, 78, 

pp.118-129. 

Navarro, J.A., Algeet, N., Fernández-Landa, A., Esteban, J., Rodríguez-Noriega, P. and Guillén-

Climent, M.L., 2019. Integration of UAV, Sentinel-1, and Sentinel-2 data for mangrove plantation 

aboveground biomass monitoring in Senegal. Remote Sensing, 11(1), p.77. 

Nuthammachot, N., Askar, A., Stratoulias, D. and Wicaksono, P., 2022. Combined use of Sentinel-1 

and Sentinel-2 data for improving above-ground biomass estimation. Geocarto International, 37(2), 

pp.366-376. 

Osborn, D., Cutter, A. and Ullah, F., 2015. Universal sustainable development goals. Understanding 

the Transformational Challenge for Developed Countries. 

Otukei, J.R. and Emanuel, M., 2015. Estimation and mapping of above ground biomass and carbon 

of Bwindi impenetrable National Park using ALOS PALSAR data. South African Journal of 

Geomatics, 4(1), pp.1-13. 

Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R et al (2014) Climate change 2014: 

synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the 

Intergovernmental Panel on Climate Change. IPCC, Geneva, p 151. 



 

 

 

   

 

109 

Pang, H., Zhang, A., Kang, X., He, N. and Dong, G., 2020. Estimation of the Grassland Aboveground 

Biomass of the Inner Mongolia Plateau Using the Simulated Spectra of Sentinel-2 Images. Remote 

Sensing, 12(24), p.4155. 

Pant, H.K., Rechcigl, J.E. and Adjei, M.B., 2003. Carbon sequestration in wetlands: concept and 

estimation. Food, Agriculture and Environment, 1(2), pp.308-313. 

Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., 

Tanabe, K. and Wagner, F., 2003. Good practice guidance for land use, land-use change and 

forestry. Good practice guidance for land use, land-use change and forestry. 

Pereira, H.M., Ferrier, S., Walters, M., Geller, G.N., Jongman, R.H.G., Scholes, R.J., Bruford, M.W., 

Brummitt, N., Butchart, S.H.M., Cardoso, A.C. and Coops, N.C., 2013. Essential biodiversity 

variables. Science, 339(6117), pp.277-278. 

Piao, S., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M., Luyssaert, S., Margolis, H., Fang, J., 

Barr, A., Chen, A. and Grelle, A., 2008. Net carbon dioxide losses of northern ecosystems in response 

to autumn warming. Nature, 451(7174), pp.49-52. 

Piao, S., Fang, J., Zhou, L., Guo, Q., Henderson, M., Ji, W., Li, Y. and Tao, S., 2003. Interannual 

variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 

1982 to 1999. Journal of Geophysical Research: Atmospheres, 108(D14). 

Powell, S.L., Cohen, W.B., Healey, S.P., Kennedy, R.E., Moisen, G.G., Pierce, K.B. and Ohmann, J.L., 

2010. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field 

inventory data: A comparison of empirical modeling approaches. Remote Sensing of 

Environment, 114(5), pp.1053-1068. 

Programme, W.W.A. The United Nations World Water Development Report 2015; United Nations 

Educational, Scientific and Cultural Organization: Paris, France, 2015. 

Quan, X., He, B., Yebra, M., Yin, C., Liao, Z., Zhang, X., & Li, X. (2017). A radiative transfer model-

based method for the estimation of grassland aboveground biomass. International Journal of 

Applied Earth Observation and Geoinformation, 54, 159-168. 



 

 

 

   

 

110 

Quantum GIS Development Team, 2021. Quantum GIS Geographic Information System 2009. 

Rajngewerc, M., Grimson, R., Bali, L., Minotti, P. and Kandus, P., 2022. Cover classifications in 

wetlands using Sentinel-1 data (Band C): a case study in the Parana River delta, Argentina. Revista 

de Teledetección, (60), pp.29-46. 

Ramoelo, A. and Cho, M.A. 2014. Dry season biomass estimation as an indicator of rangeland 

quantity using multi-scale remote sensing data. In: 10th International Conference on African 

Association of Remote Sensing of Environment (AARSE) 2014, University of Johannesburg, 27-31 

October 2014. 

Ramoelo, A., Cho, M., Mathieu, R. and Skidmore, A.K., 2015. Potential of Sentinel-2 spectral 

configuration to assess rangeland quality. Journal of applied remote sensing, 9(1), p.094096. 

Ramoelo, A., Cho, M.A., Mathieu, R., Madonsela, S., Van De Kerchove, R., Kaszta, Z. and Wolff, E., 

2015. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using 

random forest modelling and WorldView-2 data. International journal of applied earth observation 

and geoinformation, 43, pp.43-54. 

Ramoelo, A., Cho, M.A., Mathieu, R.S., Skidmore, A.K., Schlerf, M. and Heitkönig, I.M.A., 2012. 

Estimating grass nutrients and biomass as an indicator of rangeland (forage) quality and quantity 

using remote sensing in Savanna ecosystems. 

Ramoelo, A., Skidmore, A.K., Cho, M.A., Schlerf, M., Mathieu, R. and Heitkönig, I.M., 2012. Regional 

estimation of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye 

sensor. International Journal of Applied Earth Observation and Geoinformation, 19, pp.151-162. 

Rana, V.K. and Suryanarayana, T.M.V., 2019. Evaluation of SAR speckle filter technique for 

inundation mapping. Remote Sensing Applications: Society and Environment, 16, p.100271. 

Rapinel, Sébastien, Laurence Hubert-Moy, and Bernard Clément. "Combined use of LiDAR data and 

multispectral earth observation imagery for wetland habitat mapping." International journal of 

applied earth observation and geoinformation 37 (2015): 56-64. 



 

 

 

   

 

111 

Republic Of South Africa (RSA), 1998. National Water Act (NWA), Act 36 of 1998. Government 

Printers, Pretoria, South Africa. 

Ribeiro, K., Pacheco, F.S., Ferreira, J.W., de Sousa‐Neto, E.R., Hastie, A., Krieger Filho, G.C., Alvalá, 

P.C., Forti, M.C. and Ometto, J.P., 2021. Tropical peatlands and their contribution to the global 

carbon cycle and climate change. Global Change Biology, 27(3), pp.489-505. 

Richter, K., Atzberger, C., Hank, T.B. and Mauser, W., 2012. Derivation of biophysical variables from 

Earth observation data: validation and statistical measures. Journal of Applied Remote Sensing, 6(1), 

pp.063557-063557. 

Riegel, J.B., Bernhardt, E. and Swenson, J., 2013. Estimating above-ground carbon biomass in a 

newly restored coastal plain wetland using remote sensing. Plos one, 8(6), p.e68251. 

Rigge, M., Smart, A., Wylie, B., Gilmanov, T. and Johnson, P., 2013. Linking phenology and biomass 

productivity in South Dakota mixed-grass prairie. Rangeland Ecology & Management, 66(5), pp.579-

587. 

Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A., Firth, D. and Ripley, M.B., 2013. 

Package ‘mass.’ Cran r, 538, pp.113-120. 

Rouse, J.W., Haas, R.H., Schell, J.A. and Deering, D.W., 1974. Monitoring vegetation systems in the 

Great Plains with ERTS. NASA Spec. Publ, 351(1), p.309. 

Rowan, G. S., & Kalacska, M. (2021). A review of remote sensing of submerged aquatic vegetation 

for non-specialists. Remote Sensing, 13(4), 623. 

Salas Macias, C.A., Alegre Orihuela, J.C. and Iglesias Abad, S., 2017. Estimation of above‐ground live 

biomass and carbon stocks in different plant formations and in the soil of dry forests of the 

Ecuadorian coast. Food and Energy Security, 6(4), p.e00115. 

Salimi, S., Almuktar, S.A. and Scholz, M., 2021. Impact of climate change on wetland ecosystems: A 

critical review of experimental wetlands. Journal of Environmental Management, 286, p.112160. 



 

 

 

   

 

112 

Santoro, M., Cartus, O. and Fransson, J.E., 2021. Integration of allometric equations in the water 

cloud model towards an improved retrieval of forest stem volume with L-band SAR data in 

Sweden. Remote Sensing of Environment, 253, p.112235. 

Sarker, L.R. and Nichol, J.E., 2011. Improved forest biomass estimates using ALOS AVNIR-2 texture 

indices. Remote Sensing of Environment, 115(4), pp.968-977. 

Sawadogo, L., Savadogo, P., Tiveau, D., Dayamba, S.D., Zida, D., Nouvellet, Y., Oden, P.C. and Guinko, 

S., 2010. Allometric prediction of above-ground biomass of eleven woody tree species in the 

Sudanian savanna-woodland of West Africa. Journal of Forestry Research, 21(4), pp.475-481. 

Schmitt, A. and Brisco, B., 2013. Wetland monitoring using the curvelet-based change detection 

method on polarimetric SAR imagery. Water, 5(3), pp.1036-1051 

Schulze, R.E., 1997. South African Atlas of Agrohydrology and Climatology. Water Research 

Commission, Pretoria, South Africa. Report TT82/96. 

Schwieder, M., Buddeberg, M., Kowalski, K., Pfoch, K., Bartsch, J., Bach, H., Pickert, J. and Hostert, 

P., 2020. Estimating grassland parameters from Sentinel-2: A model comparison study. PFG–Journal 

of Photogrammetry, Remote Sensing and Geoinformation Science, 88(5), pp.379-390. 

Schwieder, M., Leitão, P.J., Pinto, J.R.R., Teixeira, A.M.C., Pedroni, F., Sanchez, M., Bustamante, 

M.M. and Hostert, P., 2018. Landsat phenological metrics and their relation to aboveground carbon 

in the Brazilian Savanna. Carbon balance and management, 13(1), pp.1-15. 

Shen, G., Wang, Z., Liu, C. and Han, Y., 2020. Mapping aboveground biomass and carbon in 

Shanghai's urban forest using Landsat ETM+ and inventory data. Urban Forestry & Urban 

Greening, 51, p.126655. 

Shoko, C. and Mutanga, O., 2017. Examining the strength of the newly-launched Sentinel 2 MSI 

sensor in detecting and discriminating subtle differences between C3 and C4 grass species. ISPRS 

journal of photogrammetry and remote sensing, 129, pp.32-40. 



 

 

 

   

 

113 

Shoko, C., Mutanga, O. and Dube, T., 2016. Progress in the remote sensing of C3 and C4 grass species 

aboveground biomass over time and space. ISPRS Journal of Photogrammetry and Remote 

Sensing, 120, pp.13-24. 

Sibanda, M., Mutanga, O. and Rouget, M., 2015. Examining the potential of Sentinel-2 MSI spectral 

resolution in quantifying above ground biomass across different fertilizer treatments. ISPRS Journal 

of Photogrammetry and Remote Sensing, 110, pp.55-65. 

Sibanda, M., Mutanga, O., Rouget, M. and Kumar, L., 2017. Estimating biomass of native grass grown 

under complex management treatments using worldview-3 spectral derivatives. Remote 

Sensing, 9(1), p.55. 

Sieben, E.J.J., Mtshali, H., Janks, M., 2014. National Wetland Vegetation Database: classification and 

analysis of wetland vegetation types for conservation planning and monitoring. In: Water Research 

Commission (WRC). WRC, Pretoria, South Africa, p. 241. Report No. K5/1980. 

Siegmann, B. and Jarmer, T., 2015. Comparison of different regression models and validation 

techniques for the assessment of wheat leaf area index from hyperspectral data. International 

journal of remote sensing, 36(18), pp.4519-4534. 

Silva, T.S., Costa, M.P., Melack, J.M. and Novo, E.M., 2008. Remote sensing of aquatic vegetation: 

theory and applications. Environmental monitoring and assessment, 140(1), pp.131-145. 

Sims, D.A. and Gamon, J.A., 2002. Relationships between leaf pigment content and spectral 

reflectance across a wide range of species, leaf structures and developmental stages. Remote 

sensing of environment, 81(2-3), pp.337-354. 

Sinha, S., Jeganathan, C., Sharma, L.K. and Nathawat, M.S., 2015. A review of radar remote sensing 

for biomass estimation. International Journal of Environmental Science and Technology, 12(5), 

pp.1779-1792. 

Sinha, S., Jeganathan, C., Sharma, L.K. and Nathawat, M.S., 2015. A review of radar remote sensing 

for biomass estimation. International Journal of Environmental Science and Technology, 12, 

pp.1779-1792. 



 

 

 

   

 

114 

Sivasankar, T., Lone, J.M., Sarma, K.K., Qadirº, A. and Raju, P.L.N., 2019. Estimation of above ground 

biomass using support vector. Vietnam Journal of Earth Sciences, 41(2), pp.95-104. 

Sjöström, M., Ardö, J., Arneth, A., Boulain, N., Cappelaere, B., Eklundh, L., De Grandcourt, A., Kutsch, 

W.L., Merbold, L., Nouvellon, Y. and Scholes, R.J., 2011. Exploring the potential of MODIS EVI for 

modeling gross primary production across African ecosystems. Remote sensing of environment, 

115(4), pp.1081-1089. 

Skowno, A., Raimondo, D., Powrie, L., Hoffman, M.T., Van der Merwe, S., Hlahane, K., Fizzoti, B., 

Varaiwa, T., 2019. Chapter 3: Pressures and Threats. South African National Biodiversity Assessment 

2018: Technical Report. In: Terrestrial Environment, vol. 1. South African National Biodiversity 

Institute (SANBI), Pretoria, South Africa. 

Small, D. and Schubert, A., 2008. Guide to ASAR geocoding. ESA-ESRIN Technical Note RSL-ASAR-GC-

AD, 1, p.36. 

SNAP Development Team, 2016. S1TBX. SNAP - ESA Sentinel Application Platform v2.0.2, 

http://step.esa.int 

Solomon, S., Qin, D., Manning, M., Averyt, K. and Marquis, M. eds., 2007. Climate change 2007-the 

physical science basis: Working group I contribution to the fourth assessment report of the IPCC 

(Vol. 4). Cambridge university press. 

Stephenson, P.J., Ntiamoa-Baidu, Y. and Simaika, J.P., 2020. The use of traditional and modern tools 

for monitoring wetlands biodiversity in Africa: challenges and opportunities. Frontiers in 

Environmental Science, 8, p.61. 

Stratoulias, D., Balzter, H., Sykioti, O., Zlinszky, A. and Tóth, V.R., 2015. Evaluating sentinel-2 for 

lakeshore habitat mapping based on airborne hyperspectral data. Sensors, 15(9), pp.22956-22969. 

Sundquist E, Burruss R, Faulkner S, Gleason RA, Harden JW, Kharaka YK et al (2008) Carbon 

sequestration to mitigate climate change. US Geological Survey, Fact Sheet 2008–3097. 

http://step.esa.int/


 

 

 

   

 

115 

Svoray, T. and Shoshany, M., 2002. SAR-based estimation of areal aboveground biomass (AAB) of 

herbaceous vegetation in the semi-arid zone: A modification of the water-cloud 

model. International Journal of Remote Sensing, 23(19), pp.4089-4100. 

Taddeo, S., Dronova, I. and Depsky, N., 2019. Spectral vegetation indices of wetland greenness: 

Responses to vegetation structure, composition, and spatial distribution. Remote sensing of 

Environment, 234, p.111467. 

Talbi, E.G., 2009. Metaheuristics: from design to implementation. John Wiley & Sons. 

Tang, Y.S., Wang, L., Jia, J.W., Fu, X.H., Le, Y.Q., Chen, X.Z. and Sun, Y., 2011. Response of soil 

microbial community in Jiuduansha wetland to different successional stages and its implications for 

soil microbial respiration and carbon turnover. Soil Biology and Biochemistry, 43(3), pp.638-646. 

Tavasoli, N. and Arefi, H., 2020. Comparison of capability of SAR and optical data in mapping forest 

above ground biomass based on machine learning. Environmental Sciences Proceedings, 5(1), p.13. 

Themistocleous, K., Hadjimitsis, D., Hadjimitsis, D.G. and Themistocleous, K., 2008, October. The 

importance of considering atmospheric correction in the pre-processing of satellite remote sensing 

data intended for the management and detection of cultural sites: a case study of the Cyprus area. 

In Conference Paper:14th International Conference on Virtual Systems and Multimedia (dedicated 

to culture heritage). VSMM, Limmasol, Turkey. 

Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, 

N., Brown, M. and Traver, I.N., 2012. GMES Sentinel-1 mission. Remote sensing of 

environment, 120, pp.9-24. 

Touzi, R., 2002. A review of speckle filtering in the context of estimation theory. IEEE Transactions 

on Geoscience and Remote Sensing, 40(11), pp.2392-2404. 

Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring 

vegetation. Remote sensing of Environment, 8(2), pp.127-150. 



 

 

 

   

 

116 

Turak, E., Harrison, I., Dudgeon, D., Abell, R., Bush, A., Darwall, W., Finlayson, C.M., Ferrier, S., 

Freyhof, J., Hermoso, V. and Juffe-Bignoli, D., 2017. Essential Biodiversity Variables for measuring 

change in global freshwater biodiversity. Biological Conservation, 213, pp.272-279. 

United Nations (UN), 2017. Integrated Monitoring Guide for SDG 6: Step-by-step Monitoring 

Methodology for Indicator 6.6.1 on Water-Related Ecosystems. Version 20 January 2017 

Urbazaev, M., Thiel, C., Mathieu, R., Naidoo, L., Levick, S.R., Smit, I.P., Asner, G.P. and Schmullius, 

C., 2015. Assessment of the mapping of fractional woody cover in southern African savannas using 

multi-temporal and polarimetric ALOS PALSAR L-band images. Remote Sensing of 

Environment, 166, pp.138-153. 

Van Deventer, H., Linström, A., Naidoo, L., Job, N., Sieben, E.J.J. and Cho, M.A., 2022. Comparison 

between Sentinel-2 and WorldView-3 sensors in mapping wetland vegetation communities of the 

Grassland Biome of South Africa, for monitoring under climate change. Remote Sensing 

Applications: Society and Environment, 28, p.100875. 

Van Deventer, H., Van Niekerk, L., Adams, J., Dinala, M.K., Gangat, R., Lamberth, S.J., Lötter, M., 

Mbona, N., MacKay, F., Nel, J.L. and Ramjukadh, C.L., 2020. National Wetland Map 5: An improved 

spatial extent and representation of inland aquatic and estuarine ecosystems in South Africa. Water 

SA, 46(1), pp.66-79. 

Van Wijk, M.T. and Williams, M., 2005. Optical instruments for measuring leaf area index in low 

vegetation: application in arctic ecosystems. Ecological Applications, 15(4), pp.1462-1470. 

Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J.P., Veroustraete, F., Clevers, J.G. and Moreno, 

J., 2015. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical 

properties–A review. ISPRS Journal of Photogrammetry and Remote Sensing, 108, pp.273-290. 

Villa, J.A. and Bernal, B., 2018. Carbon sequestration in wetlands, from science to practice: An 

overview of the biogeochemical process, measurement methods, and policy framework. Ecological 

Engineering, 114, pp.115-128. 



 

 

 

   

 

117 

Wan, R., Wang, P., Wang, X., Yao, X. and Dai, X., 2018. Modeling wetland aboveground biomass in 

the Poyang Lake National Nature Reserve using machine learning algorithms and Landsat-8 

imagery. Journal of Applied Remote Sensing, 12(4), pp.046029-046029. 

Wan, R., Wang, P., Wang, X., Yao, X. and Dai, X., 2018. Modeling wetland aboveground biomass in 

the Poyang Lake National Nature Reserve using machine learning algorithms and Landsat-8 

imagery. Journal of Applied Remote Sensing, 12(4), p.046029. 

Wang, J., Xiao, X., Bajgain, R., Starks, P., Steiner, J., Doughty, R.B. and Chang, Q., 2019. Estimating 

leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and 

Landsat images. ISPRS Journal of Photogrammetry and Remote Sensing, 154, pp.189-201. 

Were, D., Kansiime, F., Fetahi, T., Cooper, A. and Jjuuko, C., 2019. Carbon sequestration by wetlands: 

a critical review of enhancement measures for climate change mitigation. Earth Systems and 

Environment, 3(2), pp.327-340. 

White, L., Brisco, B., Dabboor, M., Schmitt, A. and Pratt, A., 2015. A collection of SAR methodologies 

for monitoring wetlands. Remote sensing, 7(6), pp.7615-7645. 

Wu, Q., 2017. GIS and remote sensing applications in wetland mapping and monitoring. 

Xie, Y., Sha, Z., Yu, M., Bai, Y. and Zhang, L., 2009. A comparison of two models with Landsat data 

for estimating above ground grassland biomass in Inner Mongolia, China. Ecological 

Modelling, 220(15), pp.1810-1818. 

Xu, D., Guo, X., Li, Z., Yang, X. and Yin, H., 2014. Measuring the dead component of mixed grassland 

with Landsat imagery. Remote Sensing of Environment, 142, pp.33-43. 

Xu, L. and Baldocchi, D.D., 2004. Seasonal variation in carbon dioxide exchange over a 

Mediterranean annual grassland in California. Agricultural and Forest Meteorology, 123(1-2), pp.79-

96. 

Xue, J. and Su, B., 2017. Significant remote sensing vegetation indices: A review of developments 

and applications. Journal of sensors, 2017. 



 

 

 

   

 

118 

Yang, S., Feng, Q., Liang, T., Liu, B., Zhang, W. and Xie, H., 2018. Modeling grassland above-ground 

biomass based on artificial neural network and remote sensing in the Three-River Headwaters 

Region. Remote Sensing of Environment, 204, pp.448-455. 

Yang, Y.H., Fang, J.Y., Pan, Y.D. and Ji, C.J., 2009. Aboveground biomass in Tibetan grasslands. Journal 

of Arid Environments, 73(1), pp.91-95. 

Ye, Y., Zhou, C., Sun, Y. and Zhou, D., 2010, June. Estimation of wetland aboveground biomass based 

on SAR image: a case study of Honghe National Natural Reserve in Heilongjiang, China. In 2010 18th 

International Conference on Geoinformatics (pp. 1-6). IEEE. 

Zeng, N., Ren, X., He, H., Zhang, L., Zhao, D., Ge, R., Li, P. and Niu, Z., 2019. Estimating grassland 

aboveground biomass on the Tibetan Plateau using a random forest algorithm. Ecological Indicators, 

102, pp.479-487. 

Zhao, H. and Gui, L., 2019. Nonparametric and parametric methods of spectral analysis. In Matec 

web of conferences (Vol. 283, p. 07002). EDP Sciences. 

Zhao, P., Lu, D., Wang, G., Liu, L., Li, D., Zhu, J. and Yu, S., 2016. Forest aboveground biomass 

estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR 

data. International Journal of Applied Earth Observation and Geoinformation, 53, pp.1-15. 

Zhao, Y., Mao, D., Zhang, D., Wang, Z., Du, B., Yan, H., Qiu, Z., Feng, K., Wang, J. and Jia, M., 2022. 

Mapping Phragmites australis Aboveground Biomass in the Momoge Wetland Ramsar Site Based on 

Sentinel-1/2 Images. Remote Sensing, 14(3), p.694. 

Zhu, X. and Liu, D., 2015. Improving forest aboveground biomass estimation using seasonal Landsat 

NDVI time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 102, pp.222-231. 

Zinke, L., 2020. The colours of carbon. Nature Reviews Earth & Environment, 1(3), pp.141-141. 

Zuhlke, M., Fomferra, N., Brockmann, C., Peters, M., Veci, L., Malik, J. and Regner, P., 2015, 

December. SNAP (sentinel application platform) and the ESA sentinel 3 toolbox. In Sentinel-3 for 

Science Workshop (Vol. 734, p. 21). 



 

 

 

   

 

119 

APPENDIX A 

Table A1:  Modelling accuracies for estimation of the LAI as an additional parameter in modelling 

AGB of palustrine wetland vegetation. 

Modelling scenarios 

(down) and Season 

(across) 

Summer Winter 

    R2 RMSE (m2.m-

2) 

relRMSE %      R2 RMSE 

(m2.m-2) 

relRMSE 

(%) 

Scenario 1: Spectral 

bands only 

0.611 1.509 23.024 0.740 1.237 26.892 

Scenario 2: VIs only 0.422 1.674 28.454 0.764 1.253 23.904 

Scenario 3: Bands + VIs 0.611 1.687 21.339 0.770 1.272 19.581 
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