
Deriving the Boyer-Moore-Horspool algorithm
Loek G.W.A. Cleophas

Software Engineering & Technology Group,
Dept. of Mathematics and Computer Science, Eindhoven University of Technology,

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
loek@loekcleophas.com

Abstract—The keyword pattern matching problem has been
frequently studied, and many different algorithms for solving
it have been suggested. Watson and Zwaan in the early 1990s
derived a set of well-known solutions from a common starting
point, leading to a taxonomy of such algorithms. Their taxonomy
did not include a variant of the Boyer-Moore algorithm developed
by Horspool. In this paper, I present the Boyer-Moore-Horspool
algorithm in the context of the taxonomy.

I. I NTRODUCTION

The (exact) keyword pattern matching problemcan be de-
scribed as “the problem of finding all occurences of keywords
from a given set as substrings in a given string” [WZ96].
This problem has been frequently studied in the past, and
many different algorithms have been suggested for solving
it. Watson and Zwaan [WZ96], [Wat95, Chapter 4] derived
a set of well-known solutions to the problem from a common
starting point, factoring out their commonalities and presenting
them in a common setting to better comprehend and com-
pare them. This has lead to a taxonomy of such algorithms
as the single-keyword Knuth-Morris-Pratt and Boyer-Moore
algorithms, as well as the multiple-keyword Aho-Corasick and
Commentz-Walter algorithms. Taxonomies like this are useful
to bring order to a problem field and increase its accessibility,
showing relations between the algorithms and simplifying the
construction of coherent toolkits of such algorithms.

Watson and Zwaan’s original taxonomy contained the single
keyword Boyer-Moore algorithm [BM77] as well as a multiple
keyword version of the algorithm. Three years after Boyer
and Moore’s paper, Horspool published a paper describing a
simplification of Boyer and Moore’s algorithm [Hor80] that
nevertheless performs quite well in comparison on practical
problem instances [NR02]. Despite its close similarity to the
Boyer-Moore algorithm, Horspool’s algorithm is not included
in the original taxonomy or corresponding toolkit.

In 2003, under the supervision of Watson and Zwaan, I
extended the original taxonomy and toolkit with a number
of algorithms that had originally been omitted or that had not
appeared at the time the taxonomy was constructed [Cle03],
[CWZ04a]. An earlier version of the algorithm presentation
occurs there and in [CWZ04b], [CWZ04a]. In this short paper,
I show how Horspool’s algorithm can easily be derived and
presented as part of the taxonomy. In [Cle03] a different
derivation and presentation of thesingle-keywordHorspool
algorithm is given as well.

A. Dedication to Derrick Kourie

A lot of my work—including the algorithm exposition in this
paper—falls into the Software by Construction approach, an
approach very much advocated by Derrick. He has used it
e.g. as the basis for his honours course Formal Aspects of
Computing, for which he developed extensive lecture notes—
a draft book really—together with Bruce Watson. Even though
my presentation and derivation style is slightly different—I am
using a Dijkstra/Feijen/Hoare style originating in Eindhoven,
while he is using a Dijkstra/Morgan style—the essential ap-
proach is the same and the work fits together well.

Derrick was also a co-author on a number of papers on TA-
BASCO (together with Watson, Andrew Boake, Sergei Obied-
kov and myself). TABASCO is an approach for TAxonomy-
BAsed Software COnstruction, initially developed in Eind-
hoven by Watson and others, but used at Pretoria by Watson,
Kourie and their students as well. My MSc and PhD research
was very much in this area. Derrick has always expressed
a keen interest in it and asked interesting questions to pon-
der, during mutual visits and at conferences and workshops.
For this—but perhaps just as much for his many questions
and thoughts outside algorithms, computer science, or even
science—I am sincerely grateful to him. I therefore am hopeful
our interaction and cooperation will intensify in the future, but
confident it will at least continue.

B. Preliminaries

A string p = p1...pm of lengthm is a sequence of characters
from an alphabetV . The empty string is denoted byε. We will
usepR for the reverseof a stringp, i.e. forpm...p1. Similarly,
we usePR for the set of strings obtained by reversing all
strings fromP . For p 6= ε we usep↾1 (p↿1) for p’s rightmost
(leftmost) character, andp⇂1 (p⇃1) for p minus its rightmost
(leftmost) character.

We will use pref(p) and suff(p) for the set ofprefixesand
suffixesof p respectively. A prefix (resp. suffix) is aproper
prefix (resp. suffix) of a stringp if it does not equalp. These
notions are extended to a set of stringsP = {p1,p2,...,pr} in
the usual way. We will use≤p to denote that a string is a
prefix of another string.

A deterministic finite automatonis a 5-tuple M =
(Q, V, δ, q0, F) where Q is a finite set of states,V is an
alphabet,δ ∈ Q × V → Q is a transition function,q0 ∈ Q

is a start state, andF ⊆ Q is a set of final states. We extend

transition functionδ ∈ Q × V → Q to δ∗ ∈ Q × V ∗ → Q

defined byδ∗(q, ε) = q andδ∗(q, wa) = δ(δ∗(q, w), a). When
δ is not a total function, we call the finite automaton (FA)
weakly deterministic.

Algorithms are described using a variation of Dijkstra’s
Guarded Command Language (GCL)—see [Cle03] for details.
In particular, theconditional andis denoted bycand, asb → S

sa is a shortcut forif b → S [] ¬b → skip fi, and for
x : P → S rof is used for executingS once for each value of
x initially satisfying P (assuming there is a finite number of
such values), where the order in which values ofx are chosen
is arbitrary.

C. The taxonomy

II. T HE PROBLEM AND SOME NAIVE SOLUTIONS

As in previous publications on the keyword pattern matching
taxonomy [WZ96], [Wat95], [Cle03], we start out with a naive
solution to the problem and derive more detailed solutions
from there.

Formally the keyword pattern matching problem, given an
alphabetV (a non-empty finite set of symbols), an input
string S ∈ V ∗, and a finite non-empty pattern setP =
{p0, p1, . . . p|P |−1} ⊆ V ∗, is to establish1

R : O =
(

⋃

l, v, r : lvr = S ∧ v ∈ P : {(l, v, r)}
)

.

that is to letO be the set of triples(l, v, r) such thatl, v andr

form a splitting of input stringS in three parts and the middle
part is a keyword inP . For reasons of simplicity, we assume
that P 6= ∅ and thatε 6∈ P for the remainder of this paper.

Example II.1. For keyword setP = {her, his, she} and input
string S = hishershey, setO will contain four triples, i.e.

(ε, his, hershey),
(hi, she, rshey),
(his, her, shey),
(hisher, she, y).

A trivial (but unrealistic) solution to the problem is

Algorithm II.2 ()

O :=
(
⋃

l, v, r : lvr = S ∧ v ∈ P : {(l, v, r)}
)

{ R }

Two basic directions in which to proceed while developing
naive algorithms to solve this problem are, informally, to
consider a substring ofS as “suffix of a prefix ofS” or as

1Note that the problem definition is slightly different but equivalent to that
used in [WZ96], [Wat95]. As a result, the algorithms given inthis text will
be slightly different in structure but equivalent in meaning to the algorithms
of the same name in those texts.

“prefix of a suffix ofS”. We consider the first possibility (the
second leads to mirror images of algorithms obtained here).
This is the way that algorithms such as the Boyer-Moore and
Boyer-Moore-Horspool algorithms treat substrings of input
string S.

Formally, we can consider “suffixes of prefixes ofS” as
follows:

(
⋃

l, v, r : lvr = S ∧ v ∈ P : {(l, v, r)}
)

= { introduceu : u = lv }
(
⋃

l, v, r, u : ur = S ∧ lv = u ∧ v ∈ P : {(l, v, r)}
)

= { nesting}
(
⋃

u, r : ur = S : X(u, r)
)

whereX(u, r) =
(
⋃

l, v : lv = u ∧ v ∈ P : {(l, v, r)}
)

. We
obtain a simple nondeterministic algorithm by applying “ex-
amine prefixes of a given string in any order” (algorithm detail
(P)) to input stringS:

Algorithm II.3 (P)

O := ∅;
for (u, r) : ur = S →

O := O ∪
(
⋃

l, v : lv = u ∧ v ∈ P : {(l, v, r)}
)

rof{ R }

This algorithm is (also) used as a starting point to derive
e.g. the Aho-Corasick algorithm and variants in [WZ96],
[Wat95].

Here, we consider how to updateO in the repetition of
Algorithm II.3. The update can be computed with another non-
deterministic repetition. This inner repetition would consider
suffixes ofu. Thus by applying “examine suffixes of a given
string in any order” (algorithm detail (S)) to stringu we obtain:

Algorithm II.4 (P, S)

O := ∅;
for (u, r) : ur = S →

for (l, v) : lv = u →
as v ∈ P → O := O ∪ {(l, v, r)} sa

rof

rof{ R }

Algorithm (P, S) consists of two nested nondeterministic rep-
etitions. In each case, the repetition can be made deterministic
by considering prefixes (or suffixes as the case is) in increasing
(called detail (+)) or decreasing (detail (−)) order of length.
This gives two binary choices. Since the Boyer-Moore and
Boyer-Moore-Horspool algorithms examine stringS from left
to right, and the patterns inP from right to left we focus our
attention on the following algorithm:

Algorithm II.5 (P+, S+)

u, r := ε, S;
O := ∅;
{ inv ur = S

∧ O =













⋃

x, y, z : xyz = S

∧ xy ≤p u

∧ y ∈ P

: {(x, y, z)}













}

do r 6= ε →
u, r := u(r↿1), r⇃1;
l, v := u, ε;
{ inv u = lv }
do l 6= ε →

l, v := l⇂1, (l↾1)v;
as v ∈ P → O := O ∪ {(l, v, r)} sa

od

od{ R }

This algorithm has running timeΘ(|S|2), assuming that com-
puting membership ofP is a Θ(1) operation.

III. SUFFIX-BASED PATTERN MATCHING

To improve the running time of Algorithm II.5, we consider
the keyword suffixes,suff(P). We know thatw ∈ suff(P) ≡
(

∃x : x ∈ V ∗ : xw ∈ P
)

. It follows that if w 6∈ suff(P) any
extension ofw on the left is not an element ofsuff(P)
either. Consequently, the inner repetition in Algorithm II.5 can
terminate as soon as(l↾1)v 6∈ suff(P) holds, since then all
suffixes ofu that are equal to or longer than(l↾1)v are not in
suff(P) either and hence not inP .

Example III.1. Consider the situation in Algorithm II.5 with
S = hishershey and P = {her, his, she} as before, when
execution is at the beginning of the inner loop and(l, v, r) =
(hish, ε, ershey). Note that(l↾1)v = hε = h is not a suffix
of any keyword, i.e.(l↾1)v 6∈ suff(P). Clearly, no extension
of v to the left can lead to additional matches, so the inner
loop can be terminated.

The inner repetition guard can therefore be strengthened to

l 6= ε cand (l↾1)v ∈ suff(P).

Observe thatv ∈ suff(P) is now an invariant of the inner rep-
etition. This invariant is initially established by the assignment
v := ε sinceP 6= ∅ and thusε ∈ suff(P).

Algorithm detail III.2. (GS=S). (Guard Strengthening =
Suffix). Strengthen the guard of the inner repetition by adding
conjunct(l↾1)v ∈ suff(P).

Direct evaluation of(l↾1)v ∈ suff(P) is expensive. Therefore,
it is done using the transition function of a finite automaton
based onsuff(P)R, with the following properties:

Property III.3 (Transition function of automaton recognizing
f(P)R). The transition functionδR,f,P of a (weakly determin-
istic) FA M = (Q, V, δR,f,P , q0, F) recognizingf(P)R has the

property that

δ∗R,f,P (q0, w
R) 6= ⊥ ≡ wR ∈ f(P)R

and we assume

δR,f,P (q, ε) = q.

Note that Property III.3 requirespref(f(P)R) ⊆ f(P)R

i.e. suff(f(P)) ⊆ f(P).

Since we will always refer to the same setP in the remainder
of this document, we will useδR,f instead ofδR,f,P .

Note that functionsuff satisfies the requirements on function
f stated by Property III.3. Transition functionδR,suff can be
computed beforehand [WZ96, section 4.1]2.

Example III.4. For P = {his, her, she}, an automaton
satisfying Property III.3 forf = suff (i.e. recognizing precisely
suff(P)R) is depicted in Figure 1.

q0

q1 q2 q3

q4 q5 q6

q7 q8 q9

s

i

h

r e h

e

h s

Fig. 1. Reverse suffix automaton recognizingsuff(P)R.

By makingq = δ∗R,suff(q0, ((l↾1)v)R) an invariant of the inner
repetition of the algorithm, we can use the following algorithm
detail:

Algorithm detail III.5. (EGC=RSA). (Efficient Guard
Computation =ReverseSuffix Automaton). Given an FA based
on suff(P)R and satisfying Property III.3, update a state
variable q to uphold invariantq = δ∗R,suff(q0, ((l↾1)v)R). The
guard conjunct(l↾1)v ∈ suff(P) then becomesq 6= ⊥.

Algorithm III.6 (P+, S+, GS=S, EGC=RSA)

u, r := ε, S;
O := ∅;
{ inv ur = S

∧ O =













⋃

x, y, z : xyz = S

∧ xy ≤p u

∧ y ∈ P

: {(x, y, z)}













}

do r 6= ε →
u, r := u(r↿1), r⇃1;
l, v := u, ε;
q := δR,suff(q0, l↾1);
{ inv u = lv ∧ v ∈ suff(P)

∧ q = δ∗R,suff(q0, ((l↾1)v)R) }

2In [WZ96], the transition function is calledτP .

do l 6= ε cand q 6= ⊥ →
l, v := l⇂1, (l↾1)v;
q := δR,suff(q, l↾1);
as v ∈ P → O := O ∪ {(l, v, r)} sa

od

{ l = ε cor (l↾1)v 6∈ suff(P) }
od{ R }

AssumingP is constant,
(

MAX p : p ∈ P : |p|
)

—the length
of a longest keyword inP—is constant and this algorithm has
Θ(|S|) running time.

IV. SUFFIX-BASED SUBLINEAR PATTERN MATCHING

In Section 3 of [WZ96], a family of sublinear keyword
pattern matching algorithms is derived starting from Algo-
rithm III.6. The basic idea is to make shiftsof more than
one symbol. This is accomplished by replacingu, r :=
u(r↿1), r⇃1 by u, r := u(r↿k), r⇃k for some k satisfying
1 ≤ k ≤

(

MIN n : 1 ≤ n ∧ suff(u(r↿n)) ∩ P 6= ∅ : n
)

. The
upper bound is the distance to the next match, themaximal safe
shift distance. Any smaller numberk satisfying the equation
is safe as well, and we thus define a safe shift distance as:

Definition IV.1 (Safe shift distance). A shift distancek

satisfying

1 ≤ k ≤
(

MIN n : 1 ≤ n ∧ suff(u(r↿n)) ∩ P 6= ∅ : n
)

is called asafe shift distance.

Example IV.2. Consider the situation in Algorithm III.6 with
S = hishershey and P = {her, his, she} as before, when
execution is at the guard of the inner loop and(l, v, r) =
(h, ε, ishershey). As (l↾1)v 6∈ suff(P), q = ⊥ will hold, so
the inner loop will not be executed. After the assignments at
the beginning of the outer loop have been executed again,
we will have(l, v, r) = (hi, ε, shershey) with a shift of one
position, but a shift to(l, v, r) = (his, ε, hershey) i.e. a shift
of two positions would be optimal.

Algorithm detail IV.3. (SSD). Replace assignmentu, r : =
u(r↿1), r⇃1 in Algorithm III.6 (P+, S+, GS=S, EGC=RSA) by
assignmentu, r : = u(r↿k), r⇃k using a safe shift distance
k.

In [WZ96], various approximations from below of the maxi-
mal safe shift distance are derived by weakening the predicate
suff(u(r↿n))∩P 6= ∅. This results in safe shift distances that
are easier to compute than the maximal safe shift distance.
In these derivations, theu = lv ∧ v ∈ suff(P) part of the
invariant of the inner repetition in Algorithm III.6 is used. By
addingl, v := ε, ε to the initial assignments of the algorithm,
we turn this into an invariant of the outer repetition. This also
turnsl = ε cor (l↾1)v 6∈ suff(P)—the negation of the guard of
the inner repetition—into an invariant of the outer repetition.

Since shift functions may depend onl, v andr, we will write
k(l, v, r).

We arrive at the following algorithm skeleton:

Algorithm IV.4 (P+, S+, GS=S, EGC=RSA, SSD)

u, r := ε, S;
O := ∅;
l, v := ε, ε;
{ inv ur = S

∧ O =













⋃

x, y, z : xyz = S

∧ xy ≤p u

∧ y ∈ P

: {(x, y, z)}













∧ u = lv ∧ v ∈ suff(P)
∧

(

l = ε cor (l↾1)v 6∈ suff(P)
)

}
do r 6= ε →

u, r := u(r↿k(l,v,r)), r⇃k(l,v,r);
l, v := u, ε;
q := δR,suff(q0, l↾1);
{ inv q = δ∗R,suff(q0, ((l↾1)v)R) }

do l 6= ε cand q 6= ⊥ →
l, v := l⇂1, (l↾1)v;
q := δR,suff(q, l↾1);
as v ∈ P → O := O ∪ {(l, v, r)} sa

od

od{ R }

Based on this algorithm skeleton, various shift functions are
derived in [WZ96]3 by weakening the predicatesuff(u(r↿n))∩
P 6= ∅ from the maximal safe shift distance. There, this leads
among others to the Commentz-Walter, Fu-San and multiple
keyword Boyer-Moore algorithms.

V. THE MULTIPLE-KEYWORD HORSPOOL ALGORITHM

In this section, we consider two particular weakenings of the
range predicatesuff(u(r↿n)) ∩ P 6= ∅:

V ∗vV n ∩ V ∗P 6= ∅

(used in algorithm detail (NLA) given in [WZ96, Section 3.7])
and

V ∗(l↾1)vV n ∩ V ∗P 6= ∅

(used in [WZ96, Section 3.2, page 13]). Note that the new
predicates only refer tol andv, but not tor. Informally, this
amounts to discarding anyright lookaheadwhen determining
a shift. We now further weaken the first predicate, assuming
v 6= ε:

V ∗vV n ∩ V ∗P 6= ∅

⇒ { v = (v⇂1)(v↾1) }

V ∗(v⇂1)(v↾1)V n ∩ V ∗P 6= ∅

⇒ { v⇂1 ∈ V ∗ }

V ∗(v↾1)V n ∩ V ∗P 6= ∅

We now further weaken the second predicate, assumingv = ε:

3The algorithm skeleton is called (P+, S+, RT, SSD) there.

V ∗(l↾1)vV n ∩ V ∗P 6= ∅

⇒ { v = ε }

V ∗(l↾1)V n ∩ V ∗P 6= ∅

Note the close resemblance between the two weakened pred-
icates: the only difference is that the first refers to(v↾1)
assumingv 6= ε whereas the second refers to(l↾1) assuming
v = ε. Using the two weakened predicates (depending on
whetherv = ε or v 6= ε) we get a practical safe shift distance.
We show the casev 6= ε here:

(

MIN n : 1 ≤ n ≤ |r| ∧ suff(u(r↿n)) ∩ P 6= ∅ : n
)

≥ { weakening steps above}
(

MIN n : 1 ≤ n ∧ (V ∗(v↾1)V n ∩ V ∗P 6= ∅) : n
)

In [WZ96, Section 3.4]charbm ∈ V → N is defined for all
a ∈ V by

charbm(a) =
(

MIN n : n ≥ 1 ∧ V ∗aV n ∩ V ∗P 6= ∅ : n
)

and hence we havecharbm(v↾1) as a safe shift for casev 6= ε.
Similarly, for casev = ε we havecharbm(l↾1) as a safe shift.
Functioncharbm is the bad character shiftfunction used on
l↾1 in the original Boyer-Moore algorithm.

Algorithm IV.4 makes a shift at the beginning of the main
loop. As noted above,|l| ≥ 1 does not hold initially, and both
l andv equalε. The initial shift therefore cannot be based on
eitherv↾1 or l↾1. Givenε 6∈ P , we set the initial shift to 1 (in
fact, it could be set to the length of the shortest keyword in
P)4.

This then allows the use of

Definition V.1 (Shift function kbmh). Shift functionkbmh is
defined as:

kbmh(l, v) =







charbm(v↾1) if v 6= ε,
charbm(l↾1) if v = ε ∧ l 6= ε,
1 if v = ε ∧ l = ε.

Example V.2. For P = {her, his, she} as before, we have

a e h i r s y

charbm(a) 1 1 1 3 2 3

Algorithm detail V.3. (BMH). (Boyer-Moore-Horspool). Cal-
culating the shift distance usingkbmh is algorithm detail
(BMH).

The above derivation and presentation show that algorithms
using shift functionkbmh use just the bad character shift

4The presentation of the Boyer-Moore-Horspool algorithm inthe taxonomy
as presented in [Cle03], [CWZ04b], [CWZ04a] does not deal with this
initialization correctly. The definition of the shift function and algorithm
given there was incorrect and may lead to matches at the beginning of the
input string being skipped. The implementation of the algorithm in the toolkit
accompanying the taxonomyis correct, dealing with the problem as we do
here.

function of the original Boyer-Moore algorithm, instead of
also using the more complexgood suffix shiftfunction as the
original algorithm does.

The use of shift functionkbmh yields algorithm (P+, S+,
GS=S, EGC=RSA, SSD, NLAU , OPT, BMCW, BMH), the Set
Horspool algorithm as presented in e.g. [NR02, Subsection
3.3.2]. Finally adding problem detail (OKW) (“one keyword”,
i.e. restricting setP to contain exactly one keyword) leads
to the single-keyword Horspool algorithm [NR02, Subsection
2.3.2] originally developed by Horspool [Hor80].

Example V.4. We present part of a complete run of the Boyer-
Moore-Horspool algorithm here.

Consider the situation when(l, v, r) = (hisher, ε, shey) (and
henceu = lv = hisher and q = q4) and execution is at
the beginning of the inner loop. After updatingl, v, q they
equalhishe, r, q5. Since the guard of the inner loop still holds
true, it is executed again, updatingl, v, q to hish, er, q6. Since
the guard of the inner loop still holds true, it is executed
again, updatingl, v, q to his, her,⊥. As her ∈ P , the triple
(his, her, shey) is added to setO, i.e. a match ofher is
detected and registered.

Since the guard of the inner loop no longer holds true, the
algorithm executes the outer loop again (asr 6= ε). Asv 6= ε,
kbmh(l, v) = charbm(v↾1) = charbm(r) = 3 i.e. a shift of 3
positions occurs, updatingu, r to hishershe, y, updatingl, v

to hishershe, ε, andq to q7. The inner loop is executed three
times again, leading to detection and registration of a match
of she.

The guard of the inner loop no longer holds true by then,
so the algorithm executes the outer loop again. A shift of1
position is made based oncharbm(e), beforeu, r are updated
to hishershey, ε, l, v to hishershey, ε, andq to⊥. The guard
of the inner loop does not hold true, and the guard of the outer
loop no longer holds true either, ending program execution.

VI. CONCLUDING REMARKS

In this paper we presented the Boyer-Moore-Horspool algo-
rithm in the context of the taxonomy of keyword pattern
matching algorithms developed by Watson and Zwaan and
later extended by Cleophas. The presentation shows that,
given such a taxonomy, the addition of algorithms similar to
those in the taxonomies is fairly straightforward. A different
presentation and placement of thesingle-keywordHorspool
algorithm in the keyword pattern matching taxonomy can be
found in [Cle03].

REFERENCES

[BM77] R. S. Boyer and J. S. Moore. A fast string searching algorithm.
Communications of the ACM, 20(10):62–72, 1977.

[Cle03] Loek G. W. A. Cleophas. Towards SPARE Time: A New
Taxonomy and Toolkit of Keyword Pattern Matching Algorithms.
Master’s thesis, Department of Mathematics and Computer Sci-
ence, Technische Universiteit Eindhoven, August 2003.

[CWZ04a] Loek Cleophas, Bruce W. Watson, and Gerard Zwaan. Anew
taxonomy of sublinear keyword pattern matching algorithms.
Technical Report 04/07, Department of Mathematics and Com-
puter Science, Technische Universiteit Eindhoven, 2004.

[CWZ04b] Loek Cleophas, Bruce W. Watson, and Gerard Zwaan.
Automaton-based sublinear keyword pattern matching. InPro-
ceedings of the 11th international conference on String Process-
ing and Information REtrieval (SPIRE 2004), volume 3246 of
LNCS. Springer, October 2004.

[Hor80] R. Nigel Horspool. Practical fast searching in strings. Software—
Practice & Experience, 10(6):501–506, 1980.

[NR02] Gonzalo Navarro and Mathieu Raffinot.Flexible pattern matching
in strings: practical on-line search algorithms for texts and
biological sequences. Cambridge University Press, 2002.

[Wat95] Bruce W. Watson.Taxonomies and Toolkits of Regular Language
Algorithms. PhD thesis, Department of Mathematics and Comput-
ing Science, Technische Universiteit Eindhoven, September 1995.

[WZ96] B. W. Watson and G. Zwaan. A taxonomy of sublinear multiple
keyword pattern matching algorithms.Science of Computer
Programming, 27(2):85–118, 1996.

