Deriving the Boyer-Moore-Horspool algorithm

Loek G.W.A. Cleophas

Software Engineering & Technology Group,
Dept. of Mathematics and Computer Science, Eindhoven Wsityeof Technology,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
| oek@ oekcl eophas. com

Abstract—The keyword pattern matching problem has been A. Dedication to Derrick Kourie

frequently studied, and many different algorithms for solving

it have been suggested. Watson and Zwaan in the early 1990sA lot of my work—including the algorithm exposition in this
derived a set of well-known solutions from a common starting paper—falls into the Software by Construction approach, an
point, leading to a taxonomy of such algorithms. Their taxommy 555r0a¢ch very much advocated by Derrick. He has used it
did not include a variant of the Boyer-Moore algorithm developed . .

by Horspool. In this paper, | present the Boyer-Moore-Horspol ~ €:9- 88 _the basis for his honours course .Formal Aspects of
algorithm in the context of the taxonomy. Computing, for which he developed extensive lecture notes—
a draft book really—together with Bruce Watson. Even though
my presentation and derivation style is slightly differefitam
using a Dijkstra/Feijen/Hoare style originating in Eindka,
while he is using a Dijkstra/Morgan style—the essential ap-
proach is the same and the work fits together well.

I. INTRODUCTION

The (exact) keyword pattern matching probletan be de-
scribed as “the problem of finding all occurences of keyword®errick was also a co-author on a number of papers on TA-
from a given set as substrings in a given string” [WZ96BASCO (together with Watson, Andrew Boake, Sergei Obied-
This problem has been frequently studied in the past, akav and myself). TABASCO is an approach for TAxonomy-
many different algorithms have been suggested for solvifif\sed Software COnstruction, initially developed in Eind-
it. Watson and Zwaan [WZ96], [Wat95, Chapter 4] derivelioven by Watson and others, but used at Pretoria by Watson,
a set of well-known solutions to the problem from a commolkourie and their students as well. My MSc and PhD research
starting point, factoring out their commonalities and pregsxg was very much in this area. Derrick has always expressed
them in a common setting to better comprehend and com-keen interest in it and asked interesting questions to pon-
pare them. This has lead to a taxonomy of such algorithrder, during mutual visits and at conferences and workshops.
as the single-keyword Knuth-Morris-Pratt and Boyer-Mooreor this—but perhaps just as much for his many questions
algorithms, as well as the multiple-keyword Aho-Corasiokla and thoughts outside algorithms, computer science, or even
Commentz-Walter algorithms. Taxonomies like this are wisefscience—I am sincerely grateful to him. | therefore am hopef

to bring order to a problem field and increase its accessibiliour interaction and cooperation will intensify in the futubut
showing relations between the algorithms and simplifyimg t confident it will at least continue.

construction of coherent toolkits of such algorithms.

Watson and Zwaan'’s original taxonomy contained the single Preliminaries

keyword Boyer-Moore algorithm [BM77] as well as a multiple . .

keyword version of the algorithm. Three years after Boyét Sing p = pi...p, Of lengthm is a sequence of characters
and Moore’s paper, Horspool published a paper describind"@M an alphabet’. The empty string is denoted lay We will
simplification of Boyer and Moore’s algorithm [Hor80] thatusep” for thereverseof a stringp, i.e. for p,,...p1. Similarly,
nevertheless performs quite well in comparison on pralctic4® use P™ for the set of strings obtained by reversing all
problem instances [NRO2]. Despite its close similarity hie t SIrings fromP. Forp # e we usep[1 (p]1) for p’s rightmost
Boyer-Moore algorithm, Horspool's algorithm is not inceal (l€ftmost) character, ang|1 (p|1) for p minus its rightmost
in the original taxonomy or corresponding toolkit. (leftmost) character.

In 2003, under the supervision of Watson and Zwaan, 'Y€ Will use pref(p) and suff(p) for the set ofprefixesand
extended the original taxonomy and toolkit with a numbesrum,xeSOf p respectlvely. A prgﬂx (resp. suffix) is proper
of algorithms that had originally been omitted or that had ngre_ﬁx (resp. suffix) of a string if it d(_)es not equap. The;e
appeared at the time the taxonomy was constructed [CleoRftions are extended to a set of strings= {p1,ps,...o,} In
[CWZ04a]. An earlier version of the algorithm presentatiol'e usual way. We will uses, to denote that a string is a
occurs there and in [CWZ04b], [CWZ04a]. In this short papeP/€fix Of another string.

I show how Horspool's algorithm can easily be derived andl deterministic finite automatonis a 5-tuple M =
presented as part of the taxonomy. In [Cle03] a differe@, V., d, qo, F') where @ is a finite set of states} is an
derivation and presentation of theingle-keywordHorspool alphabetd € Q@ x V — @ is a transition functiong, € @
algorithm is given as well. is a start state, anfl’ C @ is a set of final states. We extend

transition functiond € Q@ x V — Q to §* € Q x V* — @Q “prefix of a suffix of S”. We consider the first possibility (the
defined byd*(q,e) = ¢ anddé* (¢, wa) = §(6* (¢, w),a). When second leads to mirror images of algorithms obtained here).
0 is not a total function, we call the finite automaton (FAJhis is the way that algorithms such as the Boyer-Moore and
weakly deterministic Boyer-Moore-Horspool algorithms treat substrings of inpu

Algorithms are described using a variation of Dijkstra’§trlng S.

Guarded Command Language (GCL)—see [Cle03] for detaifsormally, we can consider “suffixes of prefixes 6f as
In particular, theconditional ands denoted byand, asb — S follows:

sa is a shortcut forif b — S| —-b — skip fi, and for

z: P — S rof is used for executing once for each value of (U Lo,relor=8AveP:{(l,v,r)})
z initially satisfying P (assuming there is a finite number of _ {introduceu : u = v }
such values), where the order in which values @fre chosen
is arbitrary. (U lLvruiur=SAlv=unrveP:{(vr)})
= { nesting}
C. The taxonomy (U ur:ur=5:X(u,r))
[I. THE PROBLEM AND SOME NAIVE SOLUTIONS where X (u,r) = (U Lv:lv=uAveP:{({lvr)}). We

As in previous publications on the keyword pattern matchinObt.aln a S|'mple nondetermlplst!c algonthm"by applymg.- ex
ine prefixes of a given string in any order” (algorithm deta

taxonomy [WZ96], [Wat95], [Cle03], we start out with a naiv . . ;
solution to the problem and derive more detailed squtio?@) o input string 5:
from there. Algorithm 11.3 (P)

Formally the keyword pattern matching problem, given an
alphabetV (a non-empty finite set of symbols), an input O := &;

string S € V*, and a finite non-empty pattern sgt = for (u,r):ur=25—
{po,p1,...pip|—1} C V*, is to establish O:=0U(U Lv:lv=unrveP:{(lvr)})
rof{ R }

R: O= (U Lv,r:lor=SAveP: {(l,v,r)}).
This algorithm is (also) used as a starting point to derive

that is to letO be the set of tripleg/, v, r) such that, v andr e.g. the Aho-Corasick algorithm and variants in [WZ96],

form a splitting of input stringS in three parts and the middle[Wat95].

part is a keyword inP. For reasons of simplicity, we assUM@are we consider how to upda@ in the repetition of

that P # & and thate ¢ P for the remainder of this paper. Algorithm 11.3. The update can be computed with another non-
Example 1.1. For keyword se® = {her, his, she} and input deterministic repetition. This inner repetition would safer

string S = hishershey, setO will contain four triples, i.e. suffixes ofu. Thus by applying “examine suffixes of a given
string in any order” (algorithm detaik) to stringu we obtain:

(e, his, hershey),
(hi, she, rshey), Algorithm 11.4 (P, S)
(his, her, shey),
(hisher, she, Y). 0:=g;
o for (u,r)iur=S5—
for (I,v) :lv=u —
A trivial (but unrealistic) solution to the problem is faS veEP—0:=0U{(l,v,r)}sa
ro
Algorithm 11.2 () rof{ R }

O:=(U Lv,r:lor=SAveP:{(lwvr)})

{R} Algorithm (P, s) consists of two nested nondeterministic rep-
etitions. In each case, the repetition can be made detestigini
by considering prefixes (or suffixes as the case is) in ingrgas

Two basic directions in which to proceed while developingFalled detail {)) or decreasing (detail{)) order of length.
naive algorithms to solve this problem are, informally, tdhis gives two binary choices. Since the Boyer-Moore and

consider a substring of as “suffix of a prefix ofS” or as Boyer-Moore-Horspool algorithms examine strifgrom left
to right, and the patterns iR from right to left we focus our
INote that the problem definition is slightly different butuaplent to that attention on the following algorithm:
used in [WZ96], [Wat95]. As a result, the algorithms giventliis text will
be slightly different in structure but equivalent in meanio the algorithms
of the same name in those texts.

Algorithm 1.5 (P4, Sy)

u,r:=¢,5; property that

O:=g; .
{invur=S5 Shsp(ao,w™) # L=w" e f(P)?
and we assume
NO=|Umyz: ayz=5 :{(ey.2)} |} onsp(@e) =0
ANzy <, u O
ANyeP
dor+#¢e— Note that Property 1Il.3 requirepref(f(P)®) C f(P)"
U, T = u(r'll)77'j1’ ie. SUﬁ(f(P)) - f(P)
Lv:=u,e Since we will always refer to the same getin the remainder
{invu=1iv} of this document, we will usér ¢ instead ofdr ¢ p.
do !l —
o l 7562 1L, (1w Note that functiorsuff satisfies the requirements on function
o ' 7 f stated by Property 111.3. Transition functiof; su can be
eP—-0:=0U{(,v, . ’
od asv - (v} sa computed beforehand [WZ96, section 4.1]
od{ R} Example lll.4. For P = {his, her,she}, an automaton
satisfying Property 111.3 fof = suff (i.e. recognizing precisely
suff(P)%) is depicted in Figure 1. O

This algorithm has running tim@(]S|?), assuming that com-
puting membership oP is a©(1) operation.

IIl. SUFFIX-BASED PATTERN MATCHING

To improve the running time of Algorithm 1.5, we consider
the keyword suffixessuff(P). We know thatw € suff(P) =
(3z:z € V*:zw € P). It follows that if w ¢ suff(P) any
extension ofw on the left is not an element ofuff(P)
either. Consequently, the inner repetition in Algorithn®bIltan
terminate as soon a3{1)v ¢ suff(P) holds, since then all
suffixes ofu that are equal to or longer thdih/1)v are not in By makingq = §
suff(P) either and hence not ifr.

Fig. 1. Reverse suffix automaton recognizisigff(P).

R.suff(0, ((111)v)) an invariant of the inner
repetition of the algorithm, we can use the following algjom
Example Ill.1. Consider the situation in Algorithm 11.5 with detail:

S = hishershey and P = {her, his, she} as before, when ajgorithm detail 1115, (Ecc=RsA). (Efficient cuard
execution is at the beginning of the inner loop ath, 7) = computation =reversesuffix automaton). Given an FA based
(hish,e, ershey). Note that(i[1)v = he = his not @ suffix o guff(P)R and satisfying Property 1113, update a state
of any keyword, i.e(l]1)v ¢ suff(P). Clearly, no extension variable ¢ to uphold invarianty = &% (o, (1|1)v)%). The

of v to the left can lead to additional matches, so the in”eduard conjunct(([1)v € suff(P) then becomeg # L. 0
loop can be terminated. O

, . Algorithm 1.6 (P4, S;, GS=S, EGC=RSA)
The inner repetition guard can therefore be strengthened to

u,r:=¢,5;
[# ¢ cand (I[1)v € suff(P). 0:—o.
Observe that € suff(P) is now an invariant of the inner rep- { inv ur = S
etition. This invariant is initially established by the mgsnent
v:=¢ since P # @& and thuse € suff(P).

Algorithm detail I1l.2. (Gs=s). (cuard strengthening = NO=|Uzy,z2: f\yz :<S Ay} |}
suffix). Strengthen the guard of the inner repetition by addin A xye,]g v
conjunct(]1)v € suff(P). O y

dor#e—
Direct evaluation of[1)v € suff(P) is expensive. Therefore, = “m 1), rl1;
it is done using the transition function of a finite automaton ~ **“ *= < .
based orsuff(P)%, with the following properties: q:= Or,suft(qo, UT1);

{inv u=1lv A v e suff(P)

Property 1.3 (Transition function of automaton recognizing Ag= 57%5“(%, ((1D)v)E) }

f(P)%). The transition functior ¢ p of a (weakly determin-
istic) FAM = (Q,V,dr+.p, o, F) recognizingf(P)” has the 2in [wz96], the transition function is calledp.

dol#ecandg# L — Algorithm V.4 (P4, S;, GS=S, EGC=RSA, SSD)
Lv:=11,(1)v;

q:=90psut(q,11); u,r:=¢,8S;
asveP —0:=0U{(l,v,r)} sa 0:=wg;
od lbv:=¢,¢
{l=c¢cor(l]1)v & suff(P) } {invur=S
od{ R}
NO=|Uuzyz: zyz=5 :{(z,y,2)}
Assuming P is constant,(MAX p:p € P : |p|)—the length Nay <pu
of a longest keyword ilP—is constant and this algorithm has NyeP
O(]S|) running time. Au=IvAv € suff(P)
A (L= e cor (I[1)v ¢ suff(P)) }

dor+#e—

u,r:=u(rlk(l,v,r)), rlk{l,v,r);
In Section 3 of [WZ96], a family of sublinear keyword l,v:=u,¢;
pattern matching algorithms is derived starting from Algo- ¢ := g suii(qo,![1);

IV. SUFFIX-BASED SUBLINEAR PATTERN MATCHING

rithm 111.6. The basic idea is to make shiftsf more than {inv g =65 qui(q0, (([11)v)7) }

one symbol This is accomplished by replacing,r := dol#ecandq# L —

u(r1l),r|1 by u,r = wu(rlk),r|k for some k satisfying Liv:=11,(11)v;

1 <k < (MINn:1<nAsuff(u(rin)) NP # @ :n). The q:=0rsuit(q,11);

upper bound is the distance to the next matchnh&imal safe asveP—-0:=0U{(,v,r)} sa
shift distance Any smaller numbek satisfying the equation od

is safe as well, and we thus define a safe shift distance as:od{ R }

Definition IV.1 (Safe shift distance)A shift distancek
satisfying

Based on this algorithm skeleton, various shift functiors a
1<k<(MINn:1<nAsufftu(rin)) NP #a:n) derived in [WZ96§ by weakening the predicasaiff(u(r1n))N

P # @ from the maximal safe shift distance. There, this leads
among others to the Commentz-Walter, Fu-San and multiple
Example 1V.2. Consider the situation in Algorithm 111.6 with keyword Boyer-Moore algorithms.

S = hishershey and P = {her, his, she} as before, when
execution is at the guard of the inner loop afdv,r) =
(h,e,ishershey). As (I[1)v & suff(P), ¢ = L will hold, so
the inner loop will not be executed. After the assignments latthis section, we consider two particular weakenings ef th
the beginning of the outer loop have been executed agaiange predicatsuff(u(rin)) N P # &:

we will have(l,v,r) = (hi, e, shershey) with a shift of one . om)

position, but a shift tql, v,) = (his, e, hershey) i.e. a shift VivinviP £ o
of two positions would be optimal. O (used in algorithm detailNLA) given in [WZ96, Section 3.7])
and

is called asafe shift distance

V. THE MULTIPLE-KEYWORD HORSPOOL ALGORITHM

Algorithm detail IV.3. (ssD. Replace assignment, r : = . N .

w(r]1),7|1 in Algorithm I1l.6 (P,, S,, GS=S, EGC=RSA) by VEIL)eVvt nviP £ 2

assignmentu, r : = u(r{k),r|k using a safe shift distance (used in [WZ96, Section 3.2, page 13]). Note that the new

k. U predicates only refer tb andv, but not tor. Informally, this
_amounts to discarding amjght lookaheadwhen determining

In [WZ96], yaripus approxima’gions from beIOV_V of the MaXly shift. We now further weaken the first predicate, assuming
mal safe shift distance are derived by weakening the preslicg £ e

suff(u(rin)) NP # . This results in safe shift distances that

are easier to compute than the maximal safe shift distance. y+,ynny*p +£ g

In these derivations, the = lv A v € suff(P) part of the

invariant of the inner repetition in Algorithm 111.6 is useBy = {v=(vl1)(vl1)}
addingl, v := ¢, ¢ to the initial assignments of the algorithm, V(|10)V NV*P + @
we turn this into an invariant of the outer repetition. Thisoa

turns! = ¢ cor (I]1)v ¢ suff(P)—the negation of the guard of = {vlleVvr}

the inner repetition—into an invariant of the outer repetit V*()VPNV*P # &

Since shift functions may depend énw andr, we will write) .
k(L v, 7). We now further weaken the second predicate, assumiag:

We arrive at the following algorithm skeleton: 3The algorithm skeleton is called(, si, RT, ssD) there.

VIV N VP # o

{v=¢}
VIV A VP £ &

=

Note the close resemblance between the two weakened pr%

icates: the only difference is that the first refers (/1)
assumingu # e whereas the second refers (fd1) assuming

v = . Using the two weakened predicates (depending

whetherv = ¢ or v # ¢) we get a practical safe shift distance

We show the case # ¢ here:

(MIN n:1<n<|r|Asuff(u(rin)) NP # @ :n)
{ weakening steps abovg
(MINn:1<nA(V*@I)V"NV*P #£2):n)
In [WZ96, Section 3.4khary, € V — N is defined for all
a €V by
charym(a) = (MIN n:n > 1AV*aV*"NV*P # @ :n)

and hence we hav&wary,,, (v[1) as a safe shift for case+# e.
Similarly, for casev = ¢ we havechary,,,(111) as a safe shift.
Functionchary,, is thebad character shiffunction used on
I[[1 in the original Boyer-Moore algorithm.

Algorithm 1V.4 makes a shift at the beginning of the mairfrmn (

loop. As noted abovei| > 1 does not hold initially, and both P~>" , _
The initial shift therefore cannot be based oﬁo hishershe, e, andq to ¢7. The inner loop is executed three

[andv equale.
eitherv[1 or [[1. Givene ¢ P, we set the initial shift to 1 (in

fact, it could be set to the length of the shortest keyword

P)4.
This then allows the use of

Definition V.1 (Shift function ky,,;). Shift functionky,,,, is
defined as:

charym (v]1) if v#e¢,
kpmn(l,0) = < chary, (I[1) if v=ecAl#e,
1 fo=cAl=c¢c.

O
Example V.2. For P = {her, his, she} as before, we have

a e h
charpm(a) 1 1

T r sy
13 2 3

O
Algorithm detail V.3. (BMH). (Boyermoore-Horspool). Cal-

culating the shift distance using., is algorithm detail
(BMH). O

function of the original Boyer-Moore algorithm, instead of
also using the more complaood suffix shiffunction as the
original algorithm does.

The use of shift functionks,,, yields algorithm ¢,, s,
§°S, EGC=RSA, SSD, NLAU, OPT, BMCW, BMH), the Set
orspool algorithm as presented in e.g. [NRO2, Subsection
3.3.2]. Finally adding problem detaibkw) (“one keyword”,

j.e. restricting setP to contain exactly one keyword) leads
o0 the single-keyword Horspool algorithm [NRO2, Subsettio
2.3.2] originally developed by Horspool [Hor80].

Example V.4. We present part of a complete run of the Boyer-
Moore-Horspool algorithm here.

Consider the situation whef, v,) = (hisher, e, shey) (and
henceu = lv = hisher and ¢ = ¢4) and execution is at
the beginning of the inner loop. After updatirigy, ¢ they
equalhishe,r, ¢5. Since the guard of the inner loop still holds
true, it is executed again, updatidgy, g to hish, er, ¢6. Since
the guard of the inner loop still holds true, it is executed
again, updatingl, v, g to his, her, 1. As her € P, the triple
(his, her, shey) is added to seiD, i.e. a match ofher is
detected and registered.

Since the guard of the inner loop no longer holds true, the
algorithm executes the outer loop again (ag). Asv # ¢,
l,v) = charpy, (vfl) = chary, (r) = 3 i.e. a shift of 3
positions occurs, updating, r to hishershe,y, updatingl, v

times again, leading to detection and registration of a rhatc
R‘If she.

The guard of the inner loop no longer holds true by then,

so the algorithm executes the outer loop again. A shift of

position is made based athary,, (e), beforeu, r are updated

to hishershey, e, l,v to hishershey, e, andq to L. The guard

of the inner loop does not hold true, and the guard of the outer

loop no longer holds true either, ending program execution.
O

VI. CONCLUDING REMARKS

In this paper we presented the Boyer-Moore-Horspool algo-
rithm in the context of the taxonomy of keyword pattern
matching algorithms developed by Watson and Zwaan and
later extended by Cleophas. The presentation shows that,
given such a taxonomy, the addition of algorithms similar to
those in the taxonomies is fairly straightforward. A diffat
presentation and placement of teangle-keywordHorspool
algorithm in the keyword pattern matching taxonomy can be
found in [Cle03].

The above derivation and presentation show that algorithms
using shift functionky,,, use just the bad character shift

“The presentation of the Boyer-Moore-Horspool algorithrthia taxonomy
as presented in [Cle03], [CWZ04b], [CWZ04a] does not deah vthis
initialization correctly. The definition of the shift funoh and algorithm
given there was incorrect and may lead to matches at the riegirof the
input string being skipped. The implementation of the athar in the toolkit

accompanying the taxonomig correct, dealing with the problem as we do

here.

REFERENCES
[BM77] R. S. Boyer and J. S. Moore. A fast string searchingatgm.
Communications of the ACM0(10):62—-72, 1977.
[Cle03] Loek G. W. A. Cleophas. Towards SPARE Time: A New

Taxonomy and Toolkit of Keyword Pattern Matching Algoritem
Master's thesis, Department of Mathematics and Computer Sc
ence, Technische Universiteit Eindhoven, August 2003.

[CWZ04a]

[CWZ04b]

[Hor80]

INROZ]

[Wat95]

[(WZ96]

Loek Cleophas, Bruce W. Watson, and Gerard Zwaamew
taxonomy of sublinear keyword pattern matching algorithms
Technical Report 04/07, Department of Mathematics and Com-
puter Science, Technische Universiteit Eindhoven, 2004.

Loek Cleophas, Bruce W. Watson, and Gerard Zwaan.
Automaton-based sublinear keyword pattern matching.Prio-
ceedings of the 11th international conference on StringcEss-

ing and Information REtrieval (SPIRE 2004yolume 3246 of
LNCS Springer, October 2004.

R. Nigel Horspool. Practical fast searching inrggs. Software—
Practice & Experiencg10(6):501-506, 1980.

Gonzalo Navarro and Mathieu Raffinétexible pattern matching

in strings: practical on-line search algorithms for text:ich
biological sequencesCambridge University Press, 2002.

Bruce W. WatsonTaxonomies and Toolkits of Regular Language
Algorithms PhD thesis, Department of Mathematics and Comput-
ing Science, Technische Universiteit Eindhoven, Septerh®@5.

B. W. Watson and G. Zwaan. A taxonomy of sublinear iplet
keyword pattern matching algorithms.Science of Computer
Programming 27(2):85-118, 1996.

