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Abstract: Since its inception in 2009, Bitcoin has increasingly gained main stream attention from the
general population to institutional investors. Several models, from GARCH type to jump-diffusion
type, have been developed to dynamically capture the price movement of this highly volatile asset.
While fitting the Gaussian and the Generalized Hyperbolic and the Normal Inverse Gaussian (NIG)
distributions to log-returns of Bitcoin, NIG distribution appears to provide the best fit. The time-
varying Hurst parameter for Bitcoin price reveals periods of randomness and mean-reverting type
of behaviour, motivating the study in this paper through fractional Ornstein–Uhlenbeck driven by
a Normal Inverse Gaussian Lévy process. Features such as long-range memory are jump diffusion
processes that are well captured with this model. The results present a 95% prediction for the price of
Bitcoin for some specific dates. This study contributes to the literature of Bitcoin price forecasts that
are useful for Bitcoin options traders.

Keywords: Lévy process; memory dependence; bitcoin; forecasting

JEL Classification: C15; C53; G17

1. Introduction

Cryptocurrency is a digital currency that uses advanced encryption techniques known
as cryptography to secure financial transactions, control the creation of additional units,
and verify the transfer of assets. It uses decentralized control by using distributed ledger
technology called Blockchain, which serves as a public financial transaction database. Bit-
coin is the first decentralized cryptocurrency introduced in 2009 by a person or a group of
persons under the pseudonym Sathoshi Nakamoto [1]. Many other alternatives of Bitcoin
have been created. On Coinmarketcap (https://coinmarketcap.com/, accessed on 25 Febru-
ary 2022), there are 2322 tradable cryptocurrencies with a total market capitalization of
USD 345 billions at the time of this paper (see [2,3] for further background on the Bitcoin
and its technology). The cryptocurrency market is known to be highly volatile [4–7] due,
on the one hand, to its sensibility to new information, whether fundamental or specu-
lative [8], since it does not rely on the stabilizing policy of a central bank. On the other
hand, the relative liquidity of the market with no official market makers makes it funda-
mentally fragile to large trading volumes and to market imperfections; thus, it is more
prone to large swings than other traded assets (see [9]). In such environments, suitable
forecasting models for cryptocurrencies have to reflect all these underlying features. Bitcoin
prices have been already modeled and predicted by means of a noncausal autoregressive
process [10], fractional geometric Brownian motion [11], and machine learning [12,13] to
name the few. Andrew and Christian [10] applied the noncausal autoregressive process
with Cauchy errors to model and predict Bitcoin prices. Their results display episodes
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of local trends, which can be modeled and interpreted as speculative bubbles. Tarnopol-
ski [11] used the fractional geometric Brownian motion to account for the long-memory
or long-term dependence of Bitcoin (BTC), manifesting itself through a Hurst exponent
H > 0.5, in order to predict future BTC/USD price. To achieve this, a Monte Carlo
simulation with 104 geometric fractional Brownian motion realizations was performed as
extensions of historical data, and the accuracy of statistical inferences is taken to be 10%.
Tarnopolski [11] concluded the prediction that the most probable Bitcoin prices at the be-
ginning of 2018 will be 6358 USD. Jalali and Heidari [14] predicted the price of Bitcoin and
changes therein using a first-order Grey model (GM (1,1)). Other studies on cryptocurrency
prediction using variants of Grey models can be found in Gatabazi et al. [15–17]. However,
the grey system theory prediction works better only with small size datasets, as the error
of prediction will increase as the dataset becomes larger (Wu et al. [18]). Moreover, small
size dataset does not exhibit some of the important characteristics of the data, such as long
range dependence as well as the size and frequency of jumps. McNally et al. ascertained
information on what accuracy the direction of Bitcoin price can be predicted. This task
is achieved with varying degrees of success through the implementation of a Bayesian
optimized recurrent neural network (RNN) and a Long Short Term Memory (LSTM) net-
work. They showed that these non-linear deep learning methods outperform the popular
ARIMA model for time series forecasting. As shown by Jalali and Heidari [14], these neural
network models are sensitive to input variables, given that the Bitcoin price depends on
different inputs with complex behaviors, as illustrated by Chen et al. [19] and Kristoufek
and Ladislav [20]. Based on new technologies, economic policies, and cultural behaviors,
these inputs may change. Motivated by these shortcomings, we introduce a mean-reverting
fractional jump-diffusion stochastic model in this study to predict Bitcoin exchange rates.

Since Bitcoin exchange rates not only exhibit long-range dependence [21], they also
present some periods of randomness and mean-reverting feature. Moreover, they exhibit
abrupt and discontinuous changes in prices known as jumps, which are assumed to
follow some probability law [9]. We present in this paper a fractional Ornstein–Uhlenbeck
driven by a Normal Inverse Gaussian Lévy process for short-term predictions of Bitcoin
exchange rates.

The rest of the paper is organized as follows: Section 2 introduces the methodology
used, Section 3 discusses the empirical findings, and the last Section concludes the study.

2. Materials and Methods

In this section, the basic structure of the fractional Ornstein–Uhlenbeck Lévy (fOUL)
model is described where the Bitcoin price process at any time point t, {Xt}t≥0 is modeled
as an exponential of a Lévy process. The model augments two continuous-time random
processes: a fractional Brownian process and a compound Poisson jump process, which
also generates two random sources. Fractional Brownian motion could be divided into
three different categories:

1. The process is likely to reverse the trend over the time frame considered.
2. The process is random in which knowing one data point does not provide insight into

predicting future data points.
3. The process is persistent in the sense that a future data point is likely to be similar to a

data point preceding it.

This is of particular importance in examining long-range dependence in processes.
The below subsection presents some details of the a fractional Brownian motion.

2.1. Fractional Brownian Motion

For a normalized (i.e., E[BH(1)2]) fractional Brownian motion BH(t), define the in-
cremental process B = {bH(k) : k = 0, 1, · · · }, which is also called fractional Gaussian
noise, by the following.

bH(k) = BH(k + 1)− BH(k).
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The increments (bH(k)) follow a standard normal distribution with zero mean and
variance E[bH(k)2] = E[(BH(k + 1)− BH(k))2] = E[BH(1)2] = 1, but there is no indepen-
dence. The corresponding autocovariance function γH(·) is of the following form.

γH(k) =
1
2
[|k− 1|2H − 2|k|2H + |k + 1|2H ], k ∈ Z.

If H =
1
2

, all the covariances are zero (except for k = 0), implying independence. This
is in agreement with the standard Brownian motion, which has independent increments.
Using the Taylor expansion at the origin of the function h(x) = (1− x)2H − 2 + (1 + x)2H ,

one has γH(k) =
1
2

k2Hh(1/k) for k ≥ 1.
In particular, we have the following.

lim
k→∞

γH(k)
H(2H − 1)k2H−2 = 1

Therefore, the following is the case.

∞

∑
k=1

γH(k) = ∞, for H >
1
2

;

∞

∑
k=1
|γH(k)| < ∞, for H <

1
2

.

Hence, only in the case of H >
1
2

, fractional Brownian motions display long-memory
dependence.

For a fixed real number H ∈ ( 1
2 , 1), let {BH

t , t ≥ 0} be a fractional Brownian motion
(fBm) with Hurst parameter H on a complete probability space (Ω,F , P). The integral with
respect to BH in the generalized sense of Lebesgue–Stieltjes is defined using the fractional
derivatives for a < b and α ∈ (0, 1) as follows.

(Dα
a+ f )(x) =

1
Γ(1− α)

(
f (x)

(x− a)α
+ α

∫ x

a

f (x)− f (u)
(x− u)1+α

du
)

(D1−α
b− g)(x) =

e−iπα

Γ(α)

(
g(x)

(b− x)1−α
+ (1− α)

∫ b

x

g(x)− g(u)
(u− x)2−α

du
)

Provided that Dα
a+ f ∈ L1[a, b], D1−α

b− gb− ∈ L∞[a, b], where gb−(x) = g(x)− g(b). The

generalized Lebesgue–Stieltjes integral
∫ b

a f (x)dg(x) is given by the following.

∫ b

a
f (x)dg(x) = eiπα

∫ b

a
(Dα

a+ f )(x)(D1−α
b− gb−)(x)

From the Hölder continuity of BH , it follows that, for α ∈ (1− H, 1), D1−α
b− BH

b− ∈
L∞[a, b] a.s. Then, for a function f with Dα

a+ f ∈ L1[a, b], the integral with respect to BH can
be defined as follows.∫ b

a
f (x)dBH(x) = eiπα

∫ b

a
(Dα

a+ f )(x)(D1−α
b− BH

b−)(x)

The tracking of the variation of the Hurst parameter H Figure 1 suggests a mean-
reverting process for the data (since H < 1/2 for a large part of the time period). This
justifies our choice for a fractional Ornstein–Uhlenbeck Lévy process. Let us start by
defining a Lévy process. A Lévy process L = (Lt)t≥0 can be decomposed into a Brownian
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motion W = (Wt)t≥0 and a pure jump process Z = (Zt)t≥0 independent from the Brownian
motion as follows.

Lt = σWt + Zt (1)

The building block of the pure jump process Z is the Poisson process.
While fitting the Normal, Hyperbolic, Generalized Hyperbolic, and Normal Inverse

Gaussian (NIG) distributions to the log returns of Bitcoin data (see Figure 2), NIG displays
the best fit. We consider, in this work, the fractional Ornstein–Uhlenbeck Lévy process
where the jump part is modeled by an NIG process. Before presenting this model, it is
important to recall what a Levy process as well as the Normal Inverse Gaussian distribu-
tion are.

Figure 1. Time-varying parameters.
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Figure 2. Fitted densities on the log-scale for the series of Bitcoin returns.
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2.2. Lévy Process
2.2.1. Infinitely Divisible Distributions

A random variable X is called infinitely divisible, if for each positive integer n ≥ 2,
there exist independent and identically distributed (i.i.d) random variables X1, X2, · · · , Xn
such that the distribution of Y is the same as the distribution of ∑n

k=1 Xk and has a char-
acteristic function. In the literature, the characteristic function of the one-dimensional
infinitely divisible distribution is generalized by the Lévy–Khinchin–Kolmogorov formula
given below.

Let us start by defining the cumulative generating function of the random vector
x = (x1, · · · , xn) ∈ Rn, which determines the Lévy measure.

The pth order joint cumulant of x is given by the following:

cum(x) = ∑(−1)k−1(k− 1)!(E ∏
r∈p1

xr) · · · (E ∏
r∈pk

xr),

whereE is the expectation operator, and the summation extends over all partitions (p1, · · · , pk),
k = 1, · · · , n, of (1, · · · , n). Note that cum(x) is the coefficient of inξ1 · · · ξn in the Taylor se-
ries expansion about the origin of the following function, known as the cumulant generating
function of the random vector x.

C(ξ, x) = logE[exp(i
n

∑
r=1

ξrxr)], x = (x1, · · · , xn), ξ = (ξ1, · · · , ξn) ∈ Rn, (2)

If function C(ξ, x) has the following Lévy–Khinchin–Kolmogorov form:

C(ξ, x) = iaξ − b
ξ2

2
+ κ(ξ), ξ ∈ R (3)

then the random variable x follows an infinitely divisible distribution, where the following is
the case: a, b ∈ R, b ≥ 0,

κ(ξ) =
∫
R
(exp iξv− 1− iξφ(v))Q(dv), ξ ∈ R (4)

and Q is a Radon measure on R with the following:

Q(0) = 0,
∫
R

min(1, v2)Q(dv) < ∞, (5)

and where function φ in Equation (4) is of the following form.

φ(v) =

v, if |v| ≤ 1,
v
|v| , if |v| > 1

The measure Q in Equation (4) is called the Lévy measure of x. The variable a is referred
to as the center or drift and determines the location, and b is the variance. The Lévy triplet
(a, b, Q) determines x uniquely. If b = 0, then the distribution is referred to as a purely
non-Gaussian distribution.

Examples of infinitely divisible distributions include Normal (Gaussian), Poisson,
Gamma, Variance Gamma (VG), and Inverse Gamma (IG) distributions, to name the
few. Their corresponding Lévy measures are QGaussian(dx) = 0, QPoisson(dx) = λδλ(dx),

QGamma(dx) =
ce−λx

x
1x>0 dx, QVG(dx) = (

ce−λ+x

x
1x>0 +

ce−λ−|x|

x
1x<0)dx, and

QIG(dx) =
ce−

λ2
2 x

√
2πx

3
2

1x>0 dx, respectively. The Poisson, gamma, VG, and IG distributions

are purely non-Gaussian distributions.
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2.2.2. Continuous-Time Stochastic Processes

Using infinitely divisible distributions, one can define a continuous sequence of inde-
pendently infinitely divisible random variables, which will be referred to as the continuous-
time stochastic processes. The two basic classes of continuous-time stochastic processes are
Brownian motion and the Poisson process. The Poisson process generated by the Poisson
distribution is the building block of pure jump processes. Both processes are fundamentally
different concerning their path properties and the fact that they belong to the larger class of
Lévy processes (for more details about Lévy processes, see [5]. Cont and Tankov [6] provide
details of Lévy processes with applications to finance). A stochastic process X = (Xt)t≥0
is a family of R-valued random variables Xt with parameter t ≥ 0, defined on the sample
space Ω.

A real-valued stochastic process L = {Lt, t ≥ 0} defined in a complete probability
space (Ω,F , P) is called a Lévy process if the following is the case:

1. The random variables Lt0 , Lt1 − Lt0 , · · · , Ltn − Ltn−1 are independent for all n ≥ 1 and
0 ≤ t0 < t1 < · · · < tn (independent increments);

2. Lt+s − Lt has the same distribution as Ls for all s, t ≥ 0 (stationary increments);
3. L is stochastically continuous; that is, for all t ≥ 0 and a > 0.

lim
s→t

P[|Ls − Lt| > a] = 0.

4. The paths t 7→ Lt are right-continuous with left limits (cadlag-continue á droite et limite
á gauche).

2.2.3. Normal Inverse Gaussian

An N-vlued stochastic process N = (Nt)t≥0 is called a Poisson process with intensity
λ ∈ (0, ∞) if N satisfies (i)–(iii) and if the following is the case.

1. iv) P(Nt = k) =
(λt)k

k!
exp(−λt), k ≥ 0, t ≥ 0 (Poisson distribution).

We can define more general Lévy processes as follows:

Ct =
Nt

∑
k=1

Yk, t ≥ 0,

for a Poisson process (Nt)t≥0 and independently identically distributed Yk, and with k ≥ 1
being the jump size distribution f (.). Such processes are called compound Poisson processes.
The characteristic function of Ct is given by the following.

φCt(v) = exp(λt
∫
R
(eivx − 1) f (x) dx).

If f is given by the probability density function of the normal distribution, then
C = (Ct)t≥0 is referred to as a jump diffusion process. The total intensity of Poisson processes
with jump sizes in the interval [x, x + dx] is determined by density λ f (dx).

Consider a process Xs = (Xs
t )t≥0 with Xs

t = sNλ(s)
t , where s is a given a real number

and (Nλ(s)
t )t≥0 is the Poisson process with intensity λ(s). The number s represents the

jump size, and intensity λ(s) is the expected number of jumps with size s in the unit time.
Let S = {si ∈ R : si 6= 0, i = 1, 2, · · · } be a subset of jump sizes, λ(si) > 0 for all

si ∈ S. Consider a process Y = (Yt)t≥0 defined by the following.

Yt = γt +
∞

∑
i=1

Xsi
t .

For process Y, function Q defined for any subset V of S to be Q(V) = ∑si∈V λ(si)
represents the expected number of jumps with size si ∈ V in the unit time interval. Thus,
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the map Q from a subset of R to R+ is a measure. Using Q, we can obtain an extended
process Y such that the characteristic function of Yt is given by the following:

φYt(v) = exp(iγvt + t
∫
R
(eivx − 1)Q(dx))

where γ ∈ R, and Q is referred to as a Lévy measure, which captures both the discontinuities
rate of occurrence and their overall size. The process Y will be called a pure jump process if
its characteristic exponent φY(v) (φY(v) = exp(ψY(v)), where ψY(v) is proportional to the
time period as ψYt(v) = t× ψY1(v)) is of the following form.

φYt(v) = exp
{

t
(

iγv +
∫
R
(eivx − 1− ivx1|x|≤1)Q(dx)

)}
.

If t = 1, then we have a purely non-Gaussian infinitely divisible random variable.
Thus, there is a one-to-one correspondence between a purely non-Gaussian infinitely
divisible random variable and a pure jump process. If a pure jump process T = (Tt)t≥0
is nondecreasing (that is, Tt ≥ 0 almost surely for t > 0, and Tt ≥ Tl almost surely for
l ≤ t), then process T is called a subordinator or intrinsic time process. The Poisson, gamma,
and inverse Gaussian processes are nondecreasing; hence, they are subordinators. By
considering the inverse Gaussian process T = (Tt)t≥0 as the subordinator of Brownian
motion W = (Wt)t≥0, we obtain the Normal Inverse Gaussian (NIG) process L = (Lt)t≥0
with the following.

Lt = µTt + σWTt . (6)

We can now present the model to be used in this study.

2.3. Fractional Ornstein–Uhlenbeck Lévy Process

The fractional Ornstein–Uhlenbeck Lévy (fOUL) process X = {Xt}t≥0 is a solution of
the following stochastic differential equation:

dXt = −αXtdt + dLH
t (7)

where α > 0 is a parameter, and LH = (LH)t≥0) is a fractional NIG Lévy process with
Hurst parameter H.

By applying Ito’s formula to function f (t, Xt) = Xteαt, we obtain the following.

d f (t, Xt) = eαtdLH
t

Thus, the solution of the Equation (7) is given by the following.

Xt = X0e−αt +
∫ t

0
e−α(t−s)dLH

s (8)

In practice, as the price is observed at fixed times 0 = t0 < t1 < t2 < · · · < tn = T,
with constant ∆t = tk+1 − tk, the solution (8) can be discretized by

Xtk+1 = Xtk e−α∆t +
∫ tk+1

tk

e−α(tk+1−s)dLH
s .

3. Results

The data comes from the Coinmarketcap website (https://coinmarketcap.com/, ac-
cessed on 25 February 2022) and covers a period of 5 years starting from 28 April 2013 to
18 July 2019 with a total of 2283 data points (trading days). The evolution of closing prices
St and the corresponding time paths of logarithmic returns rt series over the study period
are depicted in Figure 3. As illustrated, the daily log-returns lie between [−0.27, 0.36] over
the observed period. The plots confirm the presence of volatility clustering and jumps.

https://coinmarketcap.com/
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Figure 4 depicts a Monte Carlo simulation with 1000 trajectories at equidistant time
step t ∈ (0, ∆t, 2∆t, · · · , T) where the time step is set at ∆t = 1 and T = 30.

Figure 4 depicts a Monte Carlo simulation with 1000 trajectories at equidistant time
step t ∈ (0, ∆t, 2∆t, · · · , T) where the time step is set at ∆t = 1 and T = 30. This technique
is useful in the estimation of the conditional value at risk(CVaR) and most notably in
pricing derivatives such as over the counter (OTC) options where market prices are not
observable. Other applications have been found in quantifying the extent of mispricings in
vanilla options.

Figure 5 is a graphical display of histograms for an empirical distribution superim-
posed with the best fitting density distribution, which has been taken at specified time
points: 29 July 2019, 8 August 2019 and 18 August 2019. Notice that, the shape of the
distributions are almost symmetrical apart from the slight skewness in the left tails.
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Figure 3. Bitcoin asset prices.

Figure 4. Trajectories of simulated Bitcoin prices.
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Figure 5. Distribution dynamics of Bitcoin prices at ∆t = 10, 20, 30.

4. Discussion

On one hand, Figure 2 reveals that the Normal Inverse Gaussian (NIG) distributions
fits better to the log-returns of data as compared to the Gaussian distribution, Hyperbolic
distribution, and Generalized Hyperbolic distribution. This indicates that Bitcoin data are
non-Gaussian, and any prediction model with only a Gaussian process may be misleading.
Moreover, a stochastic model driven by a Lévy process is more likely to bring reliable
forecast results.

On the other hand, given the self-similarity property of Bitcoin, a fractional Brownian
motion model will be convenient to simulate its future prices. Tracing the variation of
Hurst parameter H estimated from Bitcoin data over a one year (entire 2018) period (see
Figure 1) reveals that H remains below 1/2 during almost the entire second half of 2018.
Thus, we choose the mean-reverting fractional stochastic model, such as the fractional
Ornstein–Uhlenbeck stochastic driven by NIG processes for the prediction of Bitcoin’s
future prices.

Table 1 is a percentile table that quantifies the risk of the Bitcoin price being above
or below a certain level. The economic interpretation of the p-th percentile is the value
such that P(Xt ≤ xt) = pα α ∈ (0.25, 0.50, 0.75, 0.90, 0.95, 0.99). The 50th percentile is
also called the median, whereas the 25th and 75th percentiles are called quantiles. Using
the closing price on 19 July, we can easily forecast future prices at specific time intervals:
t ∈ (∆t = 10 day (29July), ∆t = 20 day (8Aug) and ∆t = 30 day (18Aug)).

Table 1. Percentiles of prices.

29 July 8 August 18 August
Quantiles 10 Day 20 Day 30 Day

25% 9812 9590 8915
50% 10,360 10,283 9956
75% 10,841 11,029 11,161
90% 11,342 11,818 12,049
95% 11,881 12,245 13,157
99% 11,963 12,885 13,600

mean 10,085.65 10,085.66 10,085.68
skweness −0.0899 −0.0891 −0.0626
kurtosis 1.1390 0.5511 0.3755

5. Conclusions

This paper assess bitcoin exchange rate dynamics by using a time-variant Hurst
parameter and forecasts its future value by using a fractional Ornstein–Uhlenbeck driven
by a Levy process. The time-dependent Hurst parameter H reveals that Bitcoin displays

various memory dependency across the study period: mean-revertingness (H <
1
2
),

randomness (H =
1
2
), and persistency (H >

1
2
). While fitting the Gaussian, the Hyperbolic,
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the Generalized Hyperbolic, and the Normal Inverse Gaussian (NIG) distributions to log-
returns of bitcoin, the NIG distribution appears to provide the best fit. This justifies our
selection of a stochastic model driven by NIG process. As a result, a Monte Carlo simulation
through a fractional Ornstein–Uhlenbeck driven by the NIG process predicts that there is a
95% chance for Bitcoin prices to be less that USD 11,881, USD 12,245, and USD 13,157 on
29 July 2019, 8 August 2019, and 18 August 2019, respectively. This model is interesting
in two ways: It captures specific features of bitcoin price movement such as memory
dependence and abrupt jumps. It could be of interest to Bitcoin options’ traders.
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