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Abstract This paper presents an extension of the factor analysis model based
on the normal mean-variance mixture of the Birnbaum-Sanders in the pres-
ence of nonresponses and missing data. This model can be used as a powerful
tool to model non-normal features observed from data such as strongly skewed
and heavy-tail noises. Missing data may occur due to operator error or incom-
plete data capturing therefore cannot be ignored in factor analysis modeling.
We implement an EM-type algorithm for maximum likelihood estimation and
propose single imputation of possible missing values under a missing at ran-
dom mechanism. The potential and applicability of our proposed method are
illustrated through analysing both simulated and real datasets.
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1 Introduction

Consider the following Gaussian factor analysis model

Yj = µ+BUj + εj ,

[
Uj
εj

]
∼ Nq+p

([
0
0

]
,

[
I 0
0 D

])
, j = 1, . . . , n, (1)

where B ∈ Rp×q stands for the matrix of factor loadings, with q < p, Uj ’s are
the latent variables called common factors, εj ∈ Rp denote the model errors
called specific factors, and D = diag(σ2

1 , . . . , σ
2
p). We refer to [3] for more

details and applications.

The Gaussian factor analysis model lacks robustness againts asymmetry,
heavy tails and missing values and this may strongly affect statistical infer-
ence validity. McLachlan et al. [18] considered a robust extension by adopting
the multivariate t distribution for both the errors and factors. When there is
asymmetry in multivariate data, Liu and Lin [17] suggested the multivariate
skew normal factor model to compensate for missing data and to obtain valid
interpretation among variables relationships. To overcome the restriction of
skew normal factor analysis for heavy tails data, Wang et al. [28] presented
a robust skew factor analysis model based on a restricted version of the mul-
tivariate skew-t (see [12]); called skew-t factor analysis model with missing
data.

Several different skew factor analysis models based on the family of gen-
eralized hyperbolic distribution have been proposed in the literature, for ex-
ample, [20,21,26]. Recently, Wei et al. [29] developed generalized hyperbolic
factor analysis introduced by Tortora et al. [26] in the presence of missing
values. Specifically, a p-variate random variable X is said to have generalized
hyperbolic distribution if it can be generated through the linear stochastic
representation

X = µ+ λW +
√
WZ, (2)

where Z ∼ Np(0,Σ) is independent of W with generalized inverse Gaussian
distribution [6]. Pourmousa et al. [22] represented the normal mean-variance
Birnbaum-Sanders distribution when W in (2) has the Birnbaum-Saunders
distribution, denoted by W ∼ BS(α, 1). Very recently, Hashemi et al. [7] in-
troduced a skew extension of the classical factor analysis model based on the
multivariate normal mean-variance Birnbaum-Sanders distribution for model-
ing multivariate data with abnormality and heavy-tailed behavior.

The aim of this paper is to develop a flexible factor analysis model for han-
dling skewed and heavy-tailed data in the presence missing values. The missing
values might be present in the outlying data which can create seriously biased
estimates and subsequently leads to distorted inference. We specifically pro-
pose a model called the normal mean-variance Birnbaum-Sanders factor anal-
ysis (NMVBSFA), for missing information as an alternative. For parameter
estimation, we develop an EM-type algorithm namely expectation conditional
maximization either (ECME) represented by Liu and Rubin [16]. Throughout
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this paper, data’s missingness is assumed to be MAR with an ignorable mech-
anism [23,25,15]. The missingness is unrelated to the missing values. In this
setup, parameters that govern the data model and the missing-data mech-
anism are distinct, and the likelihood inference can ignore the missingness
mechanism. When the MAR condition holds, the full data log-likelihood and
the observed data log-likelihood will give identical inferences for interest pa-
rameters. Our proposed procedure is also valid if the mechanism is missing
completely at random since it is a particular case of MAR. Refer to Liu and
Lin [17] and Lin et al. [14] for more details. To ease the computational bur-
den, two indicator matrices that determine the observed and missing locations
of each observation separately are introduced. This methodology was used to
analyze a real dataset and simulation study.

The rest of this paper is organized as follows. In section 2, we establish
the notation and briefly review some preliminaries of the NMVBSFA model.
In section 3, we formulate the NMVBSFA model under an incomplete-data
specification and present the development of ECME algorithm for parameter
estimation and missing-data imputation. The methodologies are illustrated in
section 4 with a real data example. We assume that the missing mechanism
is the MAR to validate our proposed procedure for the real data analysis.
We conduct two simulation studies in section 5 to examine the validity of the
model and finite-sample properties of the ML estimators. Some concluding
remarks are given in section 6.

2 Preliminaries

In this section, we provide some preliminaries and pave the road for our factor
analysis model. First, we need to define the notation that will be used through-
out the paper. Let fGHp

(x;µ,λ,Σ, κ, χ, ψ) be the probability density func-
tion (pdf) of a p-dimensional generalized hyperbolic distribution introduced
by Barndor-Nielsen and Halgreen [2] with parameter µ, λ ∈ Rp, Σ ∈ Rp×p,
κ ∈ R, χ, ψ > 0 given by

fGHp(x;µ,λ,Σ, κ, χ, ψ) =C
Kκ− p

2

(√(
ψ + λ>Σ−1λ

)(
χ+ (x− µ)>Σ−1(x− µ)

))
(√(

ψ + λ>Σ−1λ
)(
χ+ (x− µ)>Σ−1(x− µ)

)) p
2−κ

× exp
{

(x− µ)>Σ−1λ
}
, x ∈ Rp, (3)

where Kκ(·) denotes the modified Bessel function of the third kind of or-
der κ, and C = (ψ/χ)κ/2(ψ + λ>Σ−1λ)p/2−κ/(2π)p/2|Σ|1/2Kκ(

√
ψχ) is the

normalizing constant. A p-variate normal mean-variance Birnbaum-Sanders
distribution with location vector µ, scale covariance matrix Σ, skewness vec-
tor λ and shape parameter α, denoted by X ∼ NMVBSp(µ,Σ,λ, α) has the
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pdf

fNMVBS(x;µ,λ,Σ, α) =
1

2
fGHp

(
x;µ,λ,Σ,

1

2
,

1

α2
,

1

α2

)
+

1

2
fGHp

(
x;µ,λ,Σ,−1

2
,

1

α2
,

1

α2

)
. (4)

A two-level hierarchical representation of (4) is

X |W = w ∼ Np(µ+ wλ, wΣ), W ∼ BS(α, 1). (5)

The pdf of BS(α, 1) then can be expressed [4] as

fBS(w;α, β = 1) =
1

2
fGIG

(
w;

1

2
,

1

α2
,

1

α2

)
+

1

2
fGIG

(
w;−1

2
,

1

α2
,

1

α2

)
, (6)

where fGIG(.) is the pdf of generalized inverse Gaussian (GIG) distribution
(see [6]) with pdf

fGIG(w;κ, χ, ψ) =

(
ψ

χ

)κ/2
wκ−1

2Kκ(
√
ψχ)

exp

{
−1

2

(
w−1χ+ wψ

)}
, w > 0.

The NMVBSFA model is then given by

Yj = µ+BUj + εj , j = 1, . . . , n, (7)

along with the assumption of[
Uj
εj

]
∼ NMVBSq+p

([
−aαΛ−1/2λ

0

]
,

[
Λ−1 0
0 D

]
,

[
Λ−1/2λ

0

]
, α

)
, (8)

where µ is a p-dimensional location vector,B ∈ Rp×q is factor loadings, Uj is a
q-dimensional vector (q < p) of latent variables called common factors, εj ∈ Rp
is a p-dimensional vector of errors called specific factors, D = diag(σ2

1 , . . . , σ
2
p)

and Λ = aαIq + bαλλ
>, such that,

Wj ∼ BS(α, 1), aα = E(Wj) = 1+0.5α2 and bα = Var(Wj) = α2

(
1 +

5

4
α2

)
.

According to (5), the proposed NMVBSFA model formulated by (7) and (8)
allow the following two-level hierarchical representation

Yj | (Wj = wj) ∼ Np(µ− aαBΛ−1/2λ+ wjBΛ
−1/2λ, wjΣ),

Wj ∼ BS(α, 1). (9)

Combining the pdfs f(yj | wj) and f(wj) in (9) and integrating out the weight
variable wj yields the marginal distribution of Yj , given by

Yj ∼ NMVBSp(µ− aαη,Σ,η, α), (10)

where Σ = BΛ−1B> +D and η = BΛ−1/2λ is a p-dimensional reparame-
terized skewness parameter vector.
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3 The NMVBSFA Model with Missing Information

3.1 Model formulation

For this section we refine the NMVBSFA model to accommodate incomplete
data. To derive the estimating equations allowing for missing values, Yj is
partitioned into the observed part Y o

j with dimensional poj and the missing
part Y m

j with dimensional (p − poj). To simplify calculations, two auxiliary

permutation matrices Oj ∈ R(poj×p) andMj ∈ R((p−poj )×p) are introduced such

that Y o
j = OjYj ∈ R(poj×1) and Y m

j = MjYj ∈ R((p−poj )×1) for j = 1, . . . , n.

It is easy to see Yj = O>j Y
o
j +M>

j Y
m
j and O>j Oj +M>

j Mj = Ip. To obtain
closed-form expressions for the estimators, we follow the strategy of [7] by
proposing the invariant transformations:

B̃i
∆
= BΛ−1/2 and Ũj

∆
= Λ1/2Uj . (11)

The following proposition is useful for evaluating the required conditional ex-
pectation in the E-step for the computational algorithm described in the next
section.

Proposition 1 From (7) and (9) of NMVBSFA, we have that:

(a) The marginal distribution of the observed component Y o
j is

Y o
j ∼ NMVBSpoj (µoj − aαηoj ,Σoo

j ,η
o
j , α). (12)

(b) The conditional distribution of Y o
j given wj is

Y o
j | wj ∼ Npoj (µoj − aαηoj + wjη

o
j , wjΣ

oo
j ),

where µoj = Ojµ, ηoj = Ojη and Σoo
j = OjΣO

>
j .

(c) The conditional distribution of Y m
j given yoj , ũj and wj is

Y m
j | (yoj , ũj , wj) ∼ Np−poj (ϕm.oj ,WjD

mm.o
j )

where

ϕm.oj = Mj

[
µ+ B̃ũj +DCoo

j (yj − µ− B̃ũj)
]
,

Dmm.o
j = Mj

(
Ip −DCoo

ij

)
DM>

j ,

Coo
j = O>j

(
OjDO

>
j

)−1
Oj .

(d)

f(wj | yoj ) = πoj fGIG

(
wj ;

1− poj
2

, χoj , ψ
o
j

)
+(1− πoj )fGIG

(
wj ;
−1− poj

2
, χoj , ψ

o
j

)
, (13)
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where

χoj = (yj − µ+ aαη)>Sooj (yj − µ+ aαη) + α−2, Sooj = OjΣ
oo
j O

>
j ,

ψoj = ηSooj η + α−2, πoj =
fGHp

(
yoj ;µoj − aαηoj ,ηoj ,Σoo

j , 0.5, α
−2, α−2

)
2fNMVBS

(
yoj ;µoj − aαηoj ,Σoo

j ,η
o
j , α
)

. (14)

(e) Y o
j | (ũj , wj) ∼ Npoj (µoj + B̃o

j ũj , wjD
oo
j ) where Doo

j = OjDO
>
j .

(f) Ũj | (yoj , wj) ∼ Nq(q
o
j , wjR

oo
j ) where qoj = Roo

j

{
boj + λ(wj − aα)

}
, boj =

B̃>Coo
j (yj − µ) and Roo

j = (Iq + B̃>Coo
j B̃)−1.

(g) Based on part (d) and (f), we have the following conditional expectations:

E(W r
j | yoj ) =

(
χoj
ψoj

)r/2{
K(1−poj )/2+r

(√
ψojχ

o
j

)
K(1−poj )/2

(√
ψojχ

o
j

) +
K−(1+poj )/2+r

(√
ψojχ

o
j

)
K−(1+poj )/2

(√
ψojχ

o
j

) },
r = ±1 (15)

E(Ũij | yoj ) = Roo
j

{
boj + λ

(
E(Wj | yoj )− aα

)}
(16)

E(W−1j Ũj | yoj ) = Roo
j

{
bojE(W−1j | yoj ) + λ

(
1− aαE(W−1j | yoj )

)}
.

(17)

and

E(W−1j ŨjŨ
>
j | yoj ) =

{
E(W−1j Ũj | yoj )bo>j

+
[
E(Ũj | yoj )− aαE(W−1j Ũj | yoj )

]
λ> + Iq

}
Roo
j .

(18)

Proof See Appendix.

The NMVBSFA model with missing data suffers from the identifiability
problem concerning the factor loading matrix B. One way to overcome this
problem proposed by Lawley [10] is to add the restriction such that B>D−1B
is a diagonal matrix with its diagonal elements arranged in decreasing order.
The second method used here is to constrain B so that its upper-right triangle
is zero and its diagonals are strictly positive [5]. In both approaches, q(q−1)/2
constraints are imposed on B. However, the loading elements’ identifiability
is not necessarily a concern in practice when carrying out the EM-based ML
estimation [24] because there is a consistent sequence of roots to the likelihood
equation. Notice that the number of factors fulfills the constraint (p − q)2 ≥
(p+ q), as suggested by Lawley and Maxwell [11]. Interested readers may also
refer to Liu and Lin [17] and Wang et al. [28] for more discussion.
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3.2 Parameter estimation via the ECME algorithm

In this section, we estimate parameters of the NMVBSFA model by develop-
ing an ECME algorithm, which is an extension to the ECM algorithm [19].
The key feature of the ECME is that it replaces some CM-steps of ECM
with CML-steps that maximize the corresponding constrained actual likeli-
hood function instead. To simplify the notation, we denote the complete data
by yc = (yo,ym, Ũ ,W ), where yo = (yo1, . . . ,y

o
n) are the observed parts of the

experimental data. In contrast, ym = (ym1 , . . . ,y
m
n ), Ũ = (Ũ1, . . . , Ũn) and

W = (W1, . . . ,Wn) are viewed as the hidden data in the EM framework. The
complete-data log-likelihood function of θ = (µ, B̃,D,λ, α), can be written
as

`c(θ | yc) =− n logα−
n∑
j=1

− (Wj − 1)2

2α2Wj
− n

2
log |D|

− 1

2

n∑
j=1

W−1j

(
yj − µ− B̃Ũj

)>
D−1

(
yj − µ− B̃Ũj

)
− 1

2

n∑
j=1

((
Wj − 2aα +W−1j a2α

)
λλ> − 2λ(Ũj − aαW−1j Ũj)

>
)
.

(19)

On the kth iteration of the E-step, we compute the expected value of the
`c(θ | yc) conditional on the observed data yoj and current parameter estimates

θ̂(k), called the Q function:

Q(θ | θ̂(k)) = E
(
`c(θ | yc) | yoj , θ̂(k)

)
, (20)

where θ̂(k) = (µ̂(k), ˆ̃B(k), D̂(k), λ̂(k), α̂(k)). To evaluate (20), we need to calcu-
late the following conditional expectations:

ŵ
(k)
j = E(Wj | yoj , θ̂(k)), t̂

(k)
j = E(W−1j | yoj , θ̂(k)), ζ̂

(k)
0j = E(Ũj | yoj , θ̂(k)),

ζ̂
(k)
1j = E(W−1j Ũj | yoj , θ̂(k)), Ω̂

(k)
j = E(W−1j ŨjŨ

>
j | yoj , θ̂(k)), (21)

which are obtainable directly by Eqs. (15)-(18) given in Proposition 1 with all

the elements in θ replaced by θ̂(k).

On the (k+ 1)th iteration of the CM-steps, the updated formula for model
parameters are summarized below.

CM-step 1: Calculate

µ̂(k+1) =

∑n
j=1 t̂

(k)
j q̂

(k)
j − D̂(k)

∑n
j=1 Ĉ

oo(k)

j
ˆ̃B(k)ζ̂

(k)
1j∑n

j=1 t̂
(k)
j
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where q̂
(k)
j = µ̂(k) + D̂(k)Ĉoo(k)

j (yj − µ̂(k)).

CM-step 2: Given µ = µ̂(k+1), update ˆ̃B(k) by maximizing (20) over B̃,
which gives

ˆ̃B(k+1) =

 n∑
j=1

[
Eoo(k)

ij Ω̂
(k)
j + (q̂

(k)
j − µ̂

(k+1))ζ̂
(k)>

1j

] n∑
j=1

Ω̂
(k)
j

−1 .
where Êoo(k)

j =
(
Ip − D̂(k)Ĉoo(k)

j

)
ˆ̃B(k).

CM-step 3: Given µ = µ̂(k+1) and B̃ = ˆ̃B(k), update D̂(k) by maximizing
(20) over D̃

D̂(k+1) =
1

n
Diag

 n∑
j=1

Υ̂
(k+1)
j

 ,

where

Υ̂
(k+1)
j =t̂

(k)
j (q̂

(k)
j − µ̂

(k+1))(q̂
(k)
j − µ̂

(k+1))> +
(
Ip − D̂(k)Ĉoo(k)

j

)
D̂(k)

+
(
Êoo(k)

j − ˆ̃B(k+1)
)
Ω̂

(k)
j

(
Êoo(k)

j − ˆ̃B(k+1)
)

+
(
q̂
oo(k)
j − µ̂(k+1)

)
ζ̂
(k)>

1j

(
Êoo(k)

j − ˆ̃B(k+1)
)>

+
(
Êoo(k)

j − ˆ̃B(k+1)
)
ζ̂
(k)
1j

(
q̂
oo(k)
j − µ̂(k+1)

)>
CM-step 4: Calculate

λ̂(k+1) =

∑n
j=1

(
ζ̂
(k)
0j − aα̂s(k)ζ̂

(k)
1j

)
∑n
j=1

(
ŵ

(k)
j − 2aα̂(k) + a2

α̂(k) t̂
(k)
j

) ,
where aα̂(k) = 1 + 0.5α̂(k)2.

Since there is no closed-form solution for updating α, we adopt the so-
called ‘CML-step’ to maximize the restricted actual log-likelihood function.
That is,

CML-step 5:

α̂(k+1) = arg max
α

n∑
j=1

log fNMVBS

(
yoj ;µo

(k+1)

j − aαηoj ,Σoo(k+1)

j ,ηo
(k+1)

j , α
)
,

where µ̂o
(k+1)

, η̂o
(k+1)

j and Σ̂oo(k+1)

j are µoj , η
o
j and Σoo

j in (12), respectively,

evaluated at the current estimates at the start of the (k + 1)th iteration. The
above optimization procedure can be easily done by utilizing the built-in R
function optim in range (0, 100).
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To monitor the convergence, by using the likelihood increasing property of
the ECM algorithm, the default stopping rule is `(Θ̂(k);y)− `(Θ̂(k−1);y) < ε

where `(Θ̂(k);y) is the log-likelihood evaluated for the parameter estimation at
iteration (k) and ε is the user-specified tolerance. In our analysis, the algorithm
is terminated if the maximum number of iterations kmax = 5000 is reached
or when the relative difference between two successive log-likelihood values
is less than ε = 10−6. Upon convergence, the resulting maximum likelihood

estimates are denoted by θ̂ = (µ̂, B̂, D̂, λ̂, α̂), where B̂ = ˆ̃BΛ̂1/2, and Λ̂ is
Λ = aαIq + bαλλ

> with λ and α replaced by their estimates.

3.3 Prediction of factor scores and missing values

In addition to estimate the model parameters, factor scores can be predicted
and used in subsequent analyses. For instance, researchers may want to use
the factor information for data reconstruction in lower-dimensional subspaces
[13]. The conditional predictor of unobserved factor scores corresponding to
yoj is

ûj = E(Uj | yoj , θ̂) = Λ̂−1/2E(Ũj | yoj , θ̂), (22)

where E(Ũj | yoj , θ̂) is given by (16) evaluated at θ = θ̂.
Furthermore, filling in the missing data with plausible values is an impor-

tant task for creating a complete dataset in order to apply standard statistical
methods. The maximum likelihood approach provides a simple way of imput-
ing one value for each missing datum, referred to as single imputation. As
a by-product of our ECME algorithm, conditional prediction of ymj can be
obtained via

ŷmj = E(Y m
j | yoj , θ̂) = Mj

(
µ̂+ B̂ûj + D̂Ĉoo

j (yj − µ̂− B̂ûj)
)
. (23)

3.4 Practical implementation issues

Good initial values of parameter estimates for the ECME algorithm can speed
up or enable the convergence. In particular, when the number of latent factors
is over-specified or the proportion of missing values is too large, converging
at the boundary of the parameter space might occur due to a poor choice of
initial value θ̂(0). When the raw data contains missing values, we first fill in
the missing values of the kth variable, say ymjk, by the sample mean of observed

values of corresponding variable ȳ.k =
∑no

k
j=1 y

o
jk/n

o
k, where nok is the number

of observations in the kth variable, for k = 1, . . . , p. A strategy for specifying
µ̂(0), B̂(0), D̂(0), λ̂(0) and α̂(0) are described in [7].

To determine the most plausible value of q, we adopt the Akaike informa-
tion criterion (AIC) and the Bayesian information criterion (BIC) taking the
form of

AIC = 2m− 2`max, BIC = m log n− 2`max,
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Table 1 Acronyms used for all factor analysis models under comparison.

FA Gaussian factor analysis Liu and Lin [17] for λ = 0
SNFA Skew normal factor analysis Liu and Lin [17]
STFA Skew-t factor analysis Wang et al. [28]
GHFA Generalized hyperbolic factor analysis Wei et al. [29]
NMVBSFA Normal mean-variance Birnbaum-Sanders factor analysis Proposed in this paper

such that `max is the maximized log-likelihood, and m is the number of free
parameters in the considered model. The smaller the AIC and BIC values, the
most parsimonious model is favored over more complex ones.

4 Automobile Data Analysis

In the subsequent sections, we compare the performance of some factor anal-
ysis models. For convenience, we use the abbreviations in Table 1. Here, we
consider the automobile data studied by Kibler et al. [9]. This dataset, avail-
able at the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml).
There are n = 205 inventories with p = 15 continuous attributes, denoted by
X1, . . . , X15, summarized in Table 2. In addition, most attributes exhibit mild
to strong asymmetry and light to extremely heavy tails, indicating that the
subpopulation deviate substantially from normality. There are 45 observations
what have at least one missing value. Without considering the missing data,
using the generalized Shapiro-Wilk test for multivariate normality proposed by
Villasenor Alva and Estrada [27], the p-value corresponding to the test statis-
tic 0.912 is smaller than 2e-16, confirming a serious departure from normality
of the data. To compare the performance of the proposed model, we implement

Table 2 An overview of the automobile data.

Number of Sample Sample Sample Sample
Attributes Description missing values mean sd skewness kurtosis
x1 normalized-losses (Nor-Los) 41 122.0 35.4 0.8 3.5
x2 wheel-base (Whe) 0 98.8 6.0 1.0 4.0
x3 length (Len) 0 174.0 12.3 0.2 2.9
x4 width (Wid) 0 65.9 2.1 0.9 3.7
x5 height (Hei) 0 53.7 2.4 0.1 2.5
x6 curb-weight (Cur) 0 2555.6 520.7 0.7 2.9
x7 engine-size (Eng) 0 126.9 41.6 1.9 8.1
x8 bore (Bor) 4 3.3 0.3 0.1 2.2
x9 stroke (Str) 4 3.3 0.3 -0.7 5.0
x10 compression-ratio (Com-Rat) 0 10.1 4.0 2.6 8.1
x11 horsepower (Hor) 2 104.3 39.7 1.4 5.5
x12 peak-rpm (Peak-rpm) 2 5125.4 479.3 0.1 3.0
x13 city-mpg (City-mpg) 0 25.2 6.5 0.7 3.5
x14 highway-mpg (Hig-mpg) 0 30.8 6.9 0.5 3.4
x15 price (Price) 4 13207.1 7947.1 1.8 6.1

several factor analyzers to compare with the NMVBSFA model with q ranging
from 2 to qmax = 10 to fit this dataset.

Table 3 lists the maximum likelihood results, including the maximized
log-likelihood values and the number of parameters together with the BIC
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Table 3 Estimation performance for factor models in Table 1 fitted to the automobile data.

q FA SNFA
Original data Standardized data Original data Standardized data

m `max BIC `max BIC m `max BIC `max BIC
2 59 -10977.83 22269.72 -2745.97 5806.03 61 -10945.39 22215.49 -2712.25 5749.21
3 72 -10794.46 21972.17 -2562.61 5508.48 75 -10743.42 21886.08 -2511.58 5422.38
4 84 -10756.16 21959.45 -2524.31 5495.76 88 -10703.15 21874.73 -2471.30 5411.04
5 95 -10730.97 21967.63 -2499.12 5503.93 100 -10677.19 21886.68 -2445.34 5422.99
6 105 -10709.45 21977.82 -2474.68 5508.27 111 -10616.59 21824.04 -2409.65 5410.16
7 114 -10716.11 22039.03 -2454.90 5516.62 121 -10722.51 22089.10 -2385.93 5415.95
8 122 -10711.59 22072.59 -2442.37 5534.16 130 -10679.06 22050.10 -2355.50 5402.99
9 129 -10697.30 22081.26 -2433.71 5554.09 138 -10666.91 22068.40 -2355.43 5445.45
10 135 -10693.41 22105.42 -2433.24 5585.09 145 -10666.28 22104.40 -2354.95 5481.74
q STFA GHFA

Original data Standardized data Original data Standardized data
m `max BIC `max BIC m `max BIC `max BIC

2 62 -10779.64 21889.31 -2547.80 5425.62 76 -10795.99 21927.34 -2564.15 5463.65
3 76 -10632.69 21669.94 -2400.85 5206.24 89 -10624.78 21659.44 -2392.93 5195.74
4 89 -10589.90 21653.54 -2358.05 5189.85 101 -10585.78 21650.63 -2353.93 5186.93
5 101 -10526.19 21590.00 -2294.34 5126.31 112 -10500.20 21543.35 -2268.35 5079.66
6 112 -10502.20 21600.58 -2270.08 5136.35 122 -10474.93 21551.36 -2243.08 5087.67
7 122 -10601.24 21851.88 -2277.32 5204.05 131 -10584.10 21822.94 -2217.55 5089.83
8 131 -10605.09 21907.50 -2231.66 5160.64 139 -10589.27 21881.19 -2205.15 5112.95
9 139 -10585.97 21911.85 -2223.35 5186.60 146 -10569.57 21884.37 -2187.60 5120.43
10 146 -10595.22 21967.61 -2229.96 5237.08 152 -10574.88 21932.25 -2176.11 5134.72
q NMVBSFA

Original data Standardized data
m `max BIC `max BIC

2 62 -10778.25 21886.53 -2546.41 5422.85
3 76 -10621.88 21648.32 -2390.04 5184.62
4 89 -10582.51 21638.77 -2350.66 5175.07
5 101 -10501.17 21539.97 -2269.32 5076.27
6 112 -10467.73 21531.65 -2235.77 5067.72
7 122 -10541.64 21732.69 -2216.39 5082.19
8 131 -10543.52 21784.35 -2195.88 5089.08
9 139 -10525.12 21790.14 -2184.81 5109.53
10 146 -10518.64 21814.44 -2171.06 5119.28

values compared to the other models; listed in Table 1. From this table, the
NMVBSFA with q = 6 provides the best fitting performance (for original
data BIC=21531.65, for standard data BIC=5067.72) for this dataset. This
example demonstrates that the NMVBSFA provides improvements over the
other methods because it provides more flexibility in capturing non-normal
features. Figure 1 graphs the factor-5 scores estimated by using (22) and we
observe that the estimated factor scores obtained by the NMVBSFA model
appear to be more suitable as its skewness and kurtosis are larger compared
to that of the other two models.

Figure 2 depicts the pairwise scatter plots of the 57 missing values predicted
by using (23) for the model in Table 1. We find that either FA and SNFA or
STFA models offer very similar imputed values, while the GHFA and NMVB-
SFA models provide rather different imputations. Therefore, the NMVBSFA
and GHFA models have similar performance for the analysis of missing values.
Thus, we are interested in whether the estimated factor scores are affected by
the assumed underlying factor distribution. Figure 3 depicts the scatter plots
of factor scores estimated using the NMVBSFA against GHFA according to
equation (22) and marginal histograms on the plot’s horizontal and vertical
axes. Comparing the spread of estimated factor scores, the two models appear
to provide somewhat different results. The factor scores’ marginal histograms
look skewed and have long tails, indicating that the NMVBSFA model may
be more appropriate for capturing the true latent factors.
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Fig. 1 Histograms of the estimated 5nd factor scores obtained of factor analysis models

Figures 4 and 5 display the fitted contours of SNFA and STFA models
versus the NMVBSFA model obtained by marginalization of the fitted distri-
butions superimposed on the scatter points for seven pairs of variables, mainly
focusing on Price (15th attribute) versus the remaining attributes, where the
missing values are imputed by using (23). As can be seen in Figures 4 and 5,
the contours of NMVBSFA appear to match the scattering shape more ideally
than SNFA or STFA.

5 Monte Carlo simulations

5.1 Simulation 1

The first simulation experiment aims at examining the finite sample behaviour
of ML estimators and their standard errors. We generate M = 500 samples
from the model (7) with q = 1 with different sample sizes n =100, 500 and
1000. The true parameters values are specified as µ = (12, 13, 15, 13, 11)>,
B = (4, 5, 2, 4, 6)>, D = diag(1, 2, 3, 4, 5), λ = 2, and α = 0.5 throughout this
experiment. Each simulated dataset was fitted under the true model via the
ECME algorithm. The average values of the maximum likelihood estimates
across all samples were computed. To proceed with the experimental study,
synthetic missing values are introduced to the simulated data under MAR
mechanism. In the MAR experiment, missing items are obtained by deleting



Flexible factor model for handling missing data in supervised learning 13

−2 −1 0 1 2 3 4

−
1

0
1

2
3

SNFA

F
A

FA vs SNFA

−2 −1 0 1 2 3 4

−
1

0
1

2
3

STFA

F
A

FA vs STFA

−2 −1 0 1 2 3 4

−
1

0
1

2
3

GHFA

F
A

FA vs GHFA

−2 −1 0 1 2 3 4

−
1

0
1

2
3

NMVBS

F
A

FA vs NMVBSFA

Fig. 2 Scatter plots of imputed missing values using the factor analysis models Table 1 for
the automobile data

at random under low (r = 10%), moderate (r = 20%) and relatively high (r =
30%) rates of missingness.

To investigate the estimation accuracies, we compute the absolute relative
bias (RB) and root mean squared error (RMSE) respectively given by

RB(θ̂i) =
1

M

M∑
r=1

∣∣∣∣ θ̂(r)i − θiθi

∣∣∣∣ and RMSE(θ̂i) =

√√√√ 1

M

M∑
r=1

(
θ̂
(r)
i − θi

)2
,

where θ̂
(r)
i is the estimate of a specific parameter θi at the rth replication. The

results are given in Table 4. From Table 4, the RB and RMSE values for all
parameters are getting smaller when the sample size increases. This shows the
maximum likelihood estimates obtained by the proposed estimating procedure
are close to the real values when we increase the sample size. Also, the RB
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and RMSE values for all parameters are getting bigger when the missingness
rate rises.
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Table 4 Simulation results for assessing the asymptotic properties of parameter estimates.

n r Measure µ1(12) µ2(13) µ3(15) µ4(13) µ5(11) b1(4) b2(5) b3(2) b4(4) b5(6) d11(1) d22(2) d33(3) d44(4) d55(5) λ1(2) α(0.5)
100 10% RB 0.0255 0.0291 0.0132 0.0259 0.0466 0.0724 0.0747 0.1011 0.0848 0.0774 0.4792 0.3699 0.1591 0.2210 0.2877 0.9712 0.3466

RMSE 0.1515 0.2484 0.0618 0.1876 0.4093 0.1344 0.2128 0.0691 0.1838 0.3539 0.3614 0.8357 0.3601 1.3323 3.3782 7.9787 0.0432
20% RB 0.0266 0.0299 0.0132 0.0266 0.0468 0.0727 0.0769 0.1079 0.0865 0.0780 0.5053 0.3791 0.1671 0.2445 0.3111 0.9537 0.3539

RMSE 0.1609 0.2497 0.0625 0.2013 0.4182 0.1350 0.2176 0.0772 0.1893 0.3669 0.3909 0.9431 0.3883 1.5906 3.7778 8.3840 0.0447
30% RB 0.0275 0.0312 0.0141 0.0279 0.0475 0.0733 0.0793 0.1159 0.0886 0.0797 0.5185 0.3845 0.1732 0.2512 0.3087 1.1015 0.3620

RMSE 0.1705 0.2531 0.0631 0.2182 0.4293 0.1368 0.2189 0.0843 0.1904 0.3669 0.4006 0.9791 0.4260 1.6082 3.9278 12.0196 0.0458

500 10% RB 0.0127 0.0151 0.0060 0.0132 0.0213 0.0408 0.0434 0.0601 0.0398 0.0457 0.3854 0.3301 0.1020 0.1555 0.2209 0.6695 0.2141
RMSE 0.0351 0.0596 0.0115 0.0458 0.0903 0.0413 0.0665 0.0207 0.0397 0.1122 0.1851 0.5191 0.1688 0.5451 1.5637 1.8806 0.0156

20% RB 0.0127 0.0155 0.0061 0.0131 0.0219 0.0424 0.0428 0.0602 0.0419 0.0472 0.3901 0.3367 0.1096 0.1580 0.2216 0.6791 0.2190
RMSE 0.0368 0.0615 0.0125 0.0467 0.0925 0.0435 0.0684 0.0208 0.0438 0.1154 0.1983 0.5321 0.1701 0.5785 1.6624 1.9452 0.0158

30% RB 0.0133 0.0157 0.0064 0.0136 0.0227 0.0440 0.0419 0.0604 0.0430 0.0477 0.3946 0.3383 0.1122 0.1649 0.2301 0.6885 0.2196
RMSE 0.0380 0.0623 0.0138 0.0483 0.0954 0.0464 0.0705 0.0219 0.0455 0.1202 0.2000 0.5453 0.1761 0.5963 1.8771 1.9686 0.0157

1000 10% RB 0.0090 0.0103 0.0051 0.0086 0.0160 0.0330 0.0302 0.0420 0.0371 0.0340 0.4292 0.3316 0.0950 0.1406 0.2121 0.7192 0.1657
RMSE 0.0175 0.0292 0.0093 0.0192 0.0454 0.0257 0.0334 0.0109 0.0320 0.0620 0.2060 0.4937 0.1279 0.4141 1.2218 2.1019 0.0090

20% RB 0.0091 0.0103 0.0054 0.0090 0.0166 0.0333 0.0302 0.0422 0.0373 0.0349 0.4294 0.3377 0.0993 0.1377 0.2182 0.7214 0.1779
RMSE 0.0177 0.0298 0.0101 0.0199 0.0460 0.0255 0.0332 0.0109 0.0319 0.0630 0.2060 0.5063 0.1287 0.3992 1.2435 2.1086 0.0093

30% RB 0.0092 0.0105 0.0056 0.0095 0.0166 0.0333 0.0320 0.0426 0.0373 0.0366 0.4298 0.3386 0.1008 0.1463 0.2177 0.7269 0.1833
RMSE 0.0179 0.0302 0.0101 0.0227 0.0478 0.0257 0.0368 0.0114 0.0319 0.0687 0.2121 0.5131 0.1291 0.4453 1.2656 2.1873 0.0098

5.2 Liver disorders dataset

In this simulation study, we used the liver disorders dataset which is available
at the UCI machine learning repository (https://archive.ics.uci.edu/ml). Data
include the measurements of p = 6 attributes with two groups and we focus a
subset of n = 200 observations from the second selector field. Hashemi et al. [7]
demonstrated that the best model is the NMVBSFA model with q = 2 because
it has the smallest BIC. As we also want to know the performance of the SNFA,
STFA, GHFA and NMVBSFA in accommodating missing values, simulated
random missing values were introduced into the data. In this experimental
study, a random sample was deleted from the original data to model low (r
= 10%) and high (r = 30%) rate of missing, respectively. For each considered
factor analysis model, we also report the AIC and BIC score as a measure of
model fits for comparison and the predictive accuracy on the imputation of
missing values, assessed by the mean squared prediction errors (MSPE):

MSPE =
1

n∗

n∑
j=1

(ymj − ŷmj )>(ymj − ŷmj ), (24)

where n∗ =
∑n
j=1(p − poj) is the number of total missing values. A smaller

value of MSPE indicates a more accurate prediction of missing values.
Figure 6 shows the boxplots of AIC, BIC and MSPE values as a function

of q ranging from 1 to 3 for each model. We found that NMVBS with q = 2 is
still the best model no matter which selection criterion is used.

6 Conclusion

This paper presents computationally tractable techniques for the NMVBSFA
model to accommodate data with missing values, asymmetric features and
heavy-tailed noises simultaneously. The proposed ECME algorithm, incorpo-
rating two auxiliary indicator matrices, presents a certain degree of conve-
nience and flexibility in its implementation. The experimental studies have
highlighted the capability of the NMVBSFA model as a promising tool for
robust modeling of data in the presence of missing values. The superiority of
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Fig. 6 The boxplots of AIC, BIC and MSPE values over 100 replicates for the AIS data
with synthetic 10% and 30% missing values.

the NMVBSFA over its nested models (FA, SNFA and STFA) lies in the fact
that the non-negligible effects of skewness and outliers can be simultaneously
taken into account.

Concerning the future work, a natural generalization is to broaden the
current method in a finite mixture representation for model-based clustering
and classification based on [14]. It is of considerable interest to compare fuzzy
method for clustering and classification [8] to examine the sensitivity of miss-
ing data mechanism in the NMVBSFA models.
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Appendix A. Proof of Proposition 1

(a) Let Yj (j = 1, . . . , n), µ, Σ and λ be a partitioned as

Yj =

[
Y o
j

Y m
j

]
=

[
OjYj
MjYj

]
, µ =

[
µoj
µmj

]
=

[
Ojµ
Mjµ

]
, λ =

[
λoj
λmj

]
=

[
Ojλ
Mjλ

]
,

Σ =

[
Σoo
j Σom

j

Σmo
j Σmm

j

]
=

[
OjΣO

>
j OjΣM

>
j

MjΣO
>
j MjΣM

>
j

]
.

Based on [22], the marginal distribution of the observed component Y o
j is

Y o
j ∼ NMVBSpoj (µoj − aαηoj ,Σoo

j ,η
o
j , α).

(b) Using part (a) and (9), proof of part (b) is omitted.

(c) We have Yj =

[
Y o
j

Y m
j

]
| (ũj , wj) ∼ Np(µ + B̃ũj , wjD). By Theorem 2.5.1

of [1], we can show that

ϕm.oj =E(Y m
j | Y o

j , ũj , wj) = Mjµ

+MjB̃ũj +MjDO
>
j (OjDO

>
j )−1(OjYj −Ojµ−OjB̃ũj)

=Mj

[
µ+ B̃ũj +DO>j (OjDO

>
j )−1Oj(Yj − µ− B̃ũj)

]
,

and

Dmm.o
j =cov(Y m

j | Y o
j , ũj , wj) = MjDM

>
j −MjDO

>
j (OjDO

>
j )−1OjDM

>
j

=Mj

(
Ip −DO>j (OjDO

>
j )−1Oj

)
DM>

j .

Thus, Y m
j | (Y o

j , ũj , wj) ∼ Np−poj (ϕm.oj ,WjD
mm.o
j ).

The proofs of part (d), (e) and part (f) are straightforward omitted based on
part (a) and [7].

(g) It follows from part (d) that the distribution of Wj | yoj has a mixture of two
GIG distributions. Thus, E(W r

j | yoj ) = πojE(V r1j) + (1− πoj )E(V r2j), where

V1j ∼ GIG
(

1−poj
2 , χoj , ψ

o
j

)
and V2j ∼ GIG

(
− 1+poj

2 , χoj , ψ
o
j

)
. Therefore,

E(W r
j | yoj ) =πoj

(
χoj
ψoj

)r/2
K(1−po)/2+r

(√
ψojχ

o
j

)
K(1−po)/2

(√
ψojχ

o
j

)
+ (1− πoj )

(
χoj
ψoj

)r/2
K−(1+po)/2+r

(√
ψojχ

o
j

)
K−(1+po)/2

(√
ψojχ

o
j

) , r = ±1.
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From part (f), we can see that E(Ũj | yoj ,Wj) = Roo
j

{
boj + λ(Wj − aα)

}
.

Applying the law of iterative expectations, we get

E(Ũj | yoj ) =E
{
E(Ũj | yoj ,Wj) | yoj

}
= E

{
Roo
j

{
boj + λ(Wj − aα)

}
| yoj

}
=Roo

j

{
boj + λ(E(Wj | yoj )− aα)

}
.

Using the law of iterative expectations and part (f), it is easy to verify that

E(W−1j Ũj | yoj ) =E
{
W−1j E(Ũj | yoj ,Wj) | yoj

}
=E

{
W−1j

[
Roo
j

{
boj + λ(Wj − aα)

}]
| yj
}

=Roo
j

{
bojE(W−1j | yoj ) + λ

[
1− aαE(W−1j | yoj )

]}
.

Using the law of iterative expectations, we obtain

E(W−1j ŨjŨ
>
j | yoj ) = E(W−1j E(ŨjŨ

>
j | yoj ,Wj) | yoj )

=E
{
W−1j

[
E(Ũj | yoj ,Wj)E(Ũj | yoj ,Wj)

> +WjR
oo
j

]
| yj
}

=E
{
W−1j

[
E(Ũj | yoj ,Wj)

(
Roo
j

{
boj + λ(Wj − aα)

})>
+WjR

oo
j

]
| yoj

}
=

{
E(W−1j Ũj | yoj )bo>j +

[
E(Ũj | yoj )− aαE(W−1j Ũj | yoj )

]
λ> + Iq

}
Roo
j .
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