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eAppendix 1. Selecting the best-fitting SITAR model 
 
Identifying outliers: Prior to fitting the SITAR models, we used the conditional weights approach to 
identify implausible weight measurements1 and removed 22 outlier measurements greater than three 
standard deviations from expected values conditional on preceding measurements; this is an 
improvement over traditional methods that identify outliers based on cross-sectional population 
distributions. 
 
As stated in Section 2.5.1, the weight trajectories of each child were modelled using SuperImposition, 
Translation And Rotation (SITAR)2. This model fits a natural cubic spline to the average population 
growth curve (in this case, weight in kilograms versus age in months). Individual deviations from this 
mean curve are captured by three random-effects parameters, where:  
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a) Size (α) indicates the child’s mean weight compared to the average (in kilograms), representing 
vertical translation of the weight curve; 

b) Tempo (β) indicates the child’s age at peak weight velocity compared to the average (in months), 
representing horizontal translation of the weight curve; and, 

c) Intensity (γ) indicates the child’s growth rate compared to the average (expressed as a fraction). 
 
To identify the best-fitting SITAR model, we ran candidate SITAR models with all possible 
combinations of the following specifications, in the overall cohort and by sex: 

i) all three random effects, size and tempo only, or size and intensity only [3 options] 
ii) untransformed or log-transformed child weight [2 options] 
iii) three to five degrees of freedom for the population average spline [3 options]. 

 
We evaluated all candidate SITAR models based on the following criteria: low Akaike information 
criterion and Bayesian information criterion adjusted for log-transformation (aAIC, aBIC), low 
correlation between random effects, and high variance explained measured by R2 generalized to mixed 
effects models3. The diagnostics for all converged models are shown in eTables 1.1 (overall), 1.2 
(girls), and 1.3 (boys). 
 
Results: Models with all three random effects did not converge. Among models with two random 
effects, those with log-transformed weight performed better compared to models based on 
untransformed weight (eTables 1.1-1.3). The model based on log-transformed weight, random effects 
for α (size) and β (tempo) random effects, and 3 degrees of freedom for the population average spline 
explained the highest proportion of variance in the entire cohort as well as in girls only and boys only, 
therefore these were considered the best-fitting models (eTables 1.1-1.3).  
 
The best-fitting overall and sex-specific models had similar variance explained (75% overall, 76% girls 
only, 74% boys only; see eTables 1.1-3), similar correlations between random effects (0.44, 0.44, and 
0.47, respectively; see eTables 1.1-3), and similar fitted weight velocity curves (see eFigure 1.1); 
therefore, the more parsimonious overall model was selected as the final model. 
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eTable 1.1. Diagnostics for converged SITAR models fit on the entire cohort. The colour scale 
highlights better metrics in green (lower AIC, lower BIC, higher variance explained, lower correlation 
between random effects), and worse metrics in red (higher AIC, higher BIC, lower variance explained, 
higher correlation between random effects).  

Random effects 
Weight 
variable 

df 
Adjusted 

AIC 
Adjusted 

BIC 
Variance 
explained 

Correlation between 
random effects 

Size (α), tempo (β) Weight, kg 4 32,651 32,725 66 0.95 
Size (α), tempo (β) Log(weight) 3 30,788 30,855 75 0.44 
Size (α), tempo (β) Log(weight) 4 30,650 30,724 69 0.44 
Size (α), tempo (β) Log(weight) 5 30,645 30,727 67 0.44 
Size (α), intensity (γ) Weight, kg 4 32,178 32,252 68 0.91 
Size (α), intensity (γ) Weight, kg 5 32,027 32,109 68 0.91 
Size (α), intensity (γ) Log(weight) 4 30,775 30,849 69 0.36 
Size (α), intensity (γ) Log(weight) 5 30,748 30,830 66 0.37 

 
eTable 1.2. Diagnostics for converged SITAR models fit on girls only. The colour scale highlights 
better metrics in green (lower AIC, lower BIC, higher variance explained, lower correlation between 
random effects), and worse metrics in red (higher AIC, higher BIC, lower variance explained, higher 
correlation between random effects).  

Random effects 
Weight 
variable 

df 
Adjusted 

AIC 
Adjusted 

BIC 
Variance 
explained 

Correlation between 
random effects 

Size (α), tempo (β) Weight, kg 3 16092 16153 67 0.95 
Size (α), tempo (β) Weight, kg 4 16048 16115 66 0.96 
Size (α), tempo (β) Weight, kg 5 16012 16086 66 0.96 
Size (α), tempo (β) Log(weight) 3 14523 14583 76 0.44 
Size (α), tempo (β) Log(weight) 4 14461 14528 71 0.43 
Size (α), tempo (β) Log(weight) 5 14455 14529 69 0.43 
Size (α), intensity (γ) Weight, kg 3 15891 15952 69 0.88 
Size (α), intensity (γ) Weight, kg 4 15538 15605 70 0.9 
Size (α), intensity (γ) Weight, kg 5 15451 15525 70 0.91 
Size (α), intensity (γ) Log(weight) 4 14508 14575 70 0.35 
Size (α), intensity (γ) Log(weight) 5 14502 14576 69 0.35 

 
eTable 1.3. Diagnostics for converged SITAR models fit on boys only. The colour scale highlights 
better metrics in green (lower AIC, lower BIC, higher variance explained, lower correlation between 
random effects), and worse metrics in red (higher AIC, higher BIC, lower variance explained, higher 
correlation between random effects).  

Random effects 
Weight 
variable 

df 
Adjusted 

AIC
Adjusted 

BIC
Variance 
explained

Correlation between 
random effects

Size (α), tempo (β) Weight, kg 3 16396 16457 67 0.96 
Size (α), tempo (β) Weight, kg 4 16369 16437 65 0.96 
Size (α), tempo (β) Weight, kg 5 16346 16421 65 0.95 
Size (α), tempo (β) Log(weight) 3 16053 16114 74 0.47 
Size (α), tempo (β) Log(weight) 5 15979 16054 64 0.46 
Size (α), intensity (γ) Weight, kg 3 17158 17219 63 0.89 
Size (α), intensity (γ) Weight, kg 4 16304 16372 66 0.93 
Size (α), intensity (γ) Weight, kg 5 16255 16330 66 0.92 
Size (α), intensity (γ) Log(weight) 4 16055 16123 66 0.40 
Size (α), intensity (γ) Log(weight) 5 16033 16108 63 0.40 
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eFigure 1.1. Plots of weight velocity (kg/month) vs. age (months) using the best-fitting SITAR models 
for the entire cohort, girls only, and boys only. All models were based on log-transformed weight, 
random effects for α (size) and β (tempo) random effects, and 3 degrees of freedom for the population 
average spline. The dashed vertical line indicates the age at peak weight velocity.  

Entire cohort Girls Boys 
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eAppendix 2. Multiple imputation by chained equations 
 
We conducted multiple imputation by chained equations using the mi suite of commands in Stata version 
14.2 (StataCorp, College Station, TX). Continuous variables were imputed using predictive mean 
matching and binary variables were imputed using logistic regression. We used a burn-in period of 10 
iterations and generated 10 imputed datasets4.  
 
We included in the imputation models all outcomes, exposures and covariates identified in Section 2.5 
of the paper, with the exception of two derived variables (food poverty and insufficient maternal energy 
intake) and included the component variables in the imputation models instead. Specifically, we derived 
missing values of food poverty from imputed total household income, and derived missing values of 
insufficient maternal energy intake from imputed maternal age, height, post-delivery weight, and energy 
intake during pregnancy. We also included auxiliary variables in the imputation models to improve 
prediction of total household income (auxiliary variable: food poverty at the 1-year study visit) and 
exclusive breastfeeding (auxiliary variable: total breastfeeding duration)4.  
 
Finally, we also included variables representing the interaction between the exposures and effect 
modifiers (sex, food poverty, food insecurity, maternal energy intake sufficiency)5. However, to address 
issues of collinearity and to reduce the number of terms added to the imputation models, we only 
included interaction terms for three of the seven exposures (p,p’-DDT, cis-DBCA and cis-DCCA) and 
three of the four effect modifiers (sex, food poverty, and maternal energy intake sufficiency). As stated 
in our Results section, correlations were high between congeners of DDT/E (Pearson’s r= 0.69 to 0.85) 
and between the pyrethroid metabolites cis-DCCA, trans-DCCA, and 3-PBA (r= 0.83 to 0.88), therefore 
the analyte that was most correlated with the other two analytes within the group was selected (p,p’-
DDT and cis-DCCA, respectively); cis-DBCA was not correlated with the other pyrethroid metabolites. 
Among the effect modifiers, food poverty and food insecurity were highly associated with each other 
(p<0.001), therefore only interaction terms with food poverty were created. 
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eAppendix 3. Inverse-probability of treatment weights (IPTW) 
 

Methods 
First, we constructed generalized propensity scores (GPS) for each continuous exposure A, by estimating 
the conditional density function [A|L], where L is the vector of covariates. To do so we used 
multivariable linear regression, with L including the following potential confounders and predictors of 
the outcomes identified based on a directed acyclic graph (eFigure 3.1): child sex (boy/girl); household 
food poverty (yes/no), food insecurity (yes/no), and wealth index (continuous); maternal age (years, 
continuous), height (metres, continuous), post-delivery weight (kg, continuous), education (high school 
vs. no high school), marital status (married vs. not married), energy intake during pregnancy 
(insufficient/sufficient), alcohol use during pregnancy (yes/no), HIV status (positive/negative), duration 
of exclusive breastfeeding (months, continuous), and parity (continuous).  
 
We then generated stabilized inverse-probability of treatment weights (IPTW) with the GPS as the 
denominator and the marginal exposure density [A] as the numerator6. When the GPS is correctly 

specified, marginal structural models using stabilized IPTW weights 
௙ሾAሿ

௙ሾA|Lሿ
 result in asymptotically 

unbiased estimators for the true causal effect7,8. To investigate effect measure modification by child sex, 
food poverty, and energy intake during pregnancy, we fit marginal structural models using IPTW that 
were stabilized by using the conditional exposure density [A|M] as the numerator, where M is the effect 
modifier. Because the GPS already included all effect modifiers M (i.e. M was a subset of L), the GPS 
was used as the denominator.   
 
Balance diagnostics 
We assessed covariate balance before and after weighting by the IPTW for each exposure using three 
metrics:  

i) Pearson correlation coefficients between the exposure and each continuous covariate, with 
those below 0.1 indicating balance9.  

ii) Standardized differences comparing all covariates across each quartile of exposure versus all 
other quartiles, which were then averaged across the four comparisons. Quartiles of exposure 
were used to avoid small cell sizes and finite sample bias when assessing standardized 
differences. A threshold of 0.20 for standardized differences has been suggested to indicate 
balance when conducting balance diagnostics for the GPS9. 

iii) Variance ratios comparing the variance of all covariates across each quartile of exposure 
versus all other quartiles, which were then averaged across the four comparisons. By 
definition, a variance ratio of 1.0 describes a covariate which has equal variance across 
exposure categories, and a threshold of <2.0 has been suggested to indicate balance10. 

 
Balance was improved through an iterative process. For instance, balance improved for all continuous 
covariates after log2-transformation, except for the wealth index, which is a normally-distributed variable 
and thus was kept un-transformed. In an attempt to further improve balance, we used machine learning 
algorithms to define our GPS among the candidate confounders and outcome predictors that we 
identified a priori. Using SuperLearner, which creates a weighted average of models fit using different 
machine learning algorithms and evaluated using cross-validation11, resulted in overfitting and positivity 
violations indicated by stabilized weights with a mean not equal to 1 (data not shown) and furthermore 
did not improve balance diagnostics12. Therefore, we proceeded with our more parsimonious original 
model. 
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eFigure 3.1. Directed acyclic graph of the relationship between gestational exposure to insecticides 
and child weight trajectory  
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eTable 3.1. Distribution of stabilized inverse probability of treatment weights (IPTW) for each 
exposure, in overall and effect modification models 

Exposure Model n Mean SD Min Max 
o,p’-DDT Overall 751 1.00 0.18 0.27 2.68 

 Child sex 751 1.00 0.16 0.22 2.26 
 Food poverty 751 1.00 0.17 0.30 2.41 
 Food insecurity 751 1.00 0.18 0.29 2.54 
 Energy intake 751 1.00 0.18 0.27 2.67 

p,p’-DDT Overall 751 1.00 0.20 0.36 2.29 

 Child sex 751 1.00 0.18 0.31 1.97 

 Food poverty 751 1.00 0.19 0.40 2.32 

 Food insecurity 751 1.00 0.20 0.39 2.45 

 Energy intake 751 1.00 0.20 0.38 2.42 

p,p’-DDE Overall 751 1.00 0.20 0.39 2.00 

 Child sex 751 1.00 0.20 0.36 2.10 

 Food poverty 751 1.00 0.20 0.41 1.92 

 Food insecurity 751 1.00 0.20 0.38 2.06 

 Energy intake 751 1.00 0.19 0.43 1.90 

cis-DBCA Overall 738 1.00 0.14 0.43 1.76 
 Child sex 738 1.00 0.13 0.40 1.85 
 Food poverty 738 1.00 0.13 0.46 1.83 
 Food insecurity 738 1.00 0.14 0.43 1.78 
 Energy intake 738 1.00 0.13 0.41 2.12 

cis-DCCA Overall 738 1.00 0.18 0.29 2.57 
 Child sex 738 1.00 0.19 0.30 2.59 
 Food poverty 738 1.00 0.19 0.29 2.61 
 Food insecurity 738 1.00 0.19 0.27 2.73 
 Energy intake 738 1.00 0.19 0.29 2.55 

trans-DCCA Overall 738 1.00 0.17 0.38 2.17 
 Child sex 738 1.00 0.17 0.39 2.15 
 Food poverty 738 1.00 0.17 0.35 2.11 
 Food insecurity 738 1.00 0.16 0.29 1.99 
 Energy intake 738 1.00 0.17 0.41 2.30 

3-PBA Overall 737 1.00 0.25 0.18 3.83 
 Child sex 737 1.00 0.24 0.22 3.62 
 Food poverty 737 1.00 0.25 0.17 3.76 
 Food insecurity 737 1.00 0.24 0.15 3.52 
 Energy intake 737 1.00 0.24 0.16 3.47 
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eFigure 3.2. Correlations between each exposure and continuous potential confounders, before (×) and after () IPTW-weighting 
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eFigure 3.3. Standardized differences of all potential confounders, averaged across exposure quartiles, 
before (×) and after () IPTW-weighting 
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eAppendix 4. Outcome regressions: effect measure modification by food poverty, food insecurity 
and maternal energy intake during pregnancy 
 

eTable 4.1. Effects of a 10-fold increase in maternal peripartum DDT/E (ng/g lipid) or pyrethroid 
metabolite (µg/L) concentrations on birth to 5-year weight trajectory parameters, by food poverty 
status among children participating in the VHEMBE study, Limpopo, South Africa. 

 
n 

No food poverty 
β (95% CI) 

Food poverty 
β (95% CI) 

p-value, 
interaction 

Size (grams)   
o,p′-DDT 751 1.9 (-18.8, 22.6) 1.8 (-13.2, 16.8) 0.99 

p,p′-DDT 751 7.0   (-9.2, 23.2) 1.9 (-10.3, 14.1) 0.63 

p,p′-DDE 751 6.9 (-13.9, 27.8) 6.7  (-8.7, 22.0) 0.99 

cis-DBCA 738 -23.8 (-52.6,  5.0) -7.6 (-27.6, 12.4) 0.38
cis-DCCA 738 -12.6 (-47.1, 22.0) -4.0 (-27.8, 19.8) 0.70
trans-DCCA 738 -11.4 (-37.6, 14.9) -4.8 (-23.3, 13.6) 0.70
3-PBA 737 1.6 (-35.2, 38.4) 0.4 (-23.1, 24.0) 0.96

Tempo (days)  
 o,p′-DDT 751 -0.3 (-2.7, 2.1) -0.3 (-1.9, 1.3) 1.00
p,p′-DDT 751 -0.4 (-2.1, 1.3) -0.3 (-1.6, 1.0) 0.93
p,p′-DDE 751 -0.1 (-2.4, 2.2) -0.3 (-1.9, 1.3) 0.92
cis-DBCA 738 -1.0 (-4.6, 2.6) -2.2 (-4.5, 0.1) 0.59
cis-DCCA 738 -2.5 (-5.2, 0.2) -1.4 (-4.5, 1.6) 0.62
trans-DCCA 738 -1.4 (-4.0, 1.2) -1.4 (-3.9, 1.1) 0.99
3-PBA 737 -2.6 (-6.3, 1.1) -1.8 (-5.3, 1.7) 0.76

Abbreviations: CI, confidence interval; DDE, dichlorodiphenyldichloroethylene; DDT, dichlorodiphenyltrichloroethane; cis-DBCA, cis-
3-(2,2-dibromovinyl)-2,2-dimethyl-cyclopropane carboxylic acid; cis-DCCA, cis-3-(2,2,-dicholorvinyl)-2,2-dimethyl-cyclopropane 
carboxylic acid; trans-DCCA, trans-3-(2,2,-dicholorvinyl)-2,2-dimethyl-cyclopropane carboxylic acid; 3-PBA, 3-phenoxybenzoic acid. 
 

eTable 4.2. Effects of a 10-fold increase in maternal peripartum DDT/E (ng/g lipid) or pyrethroid 
metabolite (µg/L) concentrations on birth to 5-year weight trajectory parameters, by food insecurity 
status among children participating in the VHEMBE study, Limpopo, South Africa. 

 
n 

Food secure 
β (95% CI) 

Food insecure 
β (95% CI) 

p-value, 
interaction 

Size (grams)   
o,p′-DDT 751 2.8 (-14.4, 20.0) 0.4 (-17.6, 18.4) 0.86 

p,p′-DDT 751 -1.2 (-14.5, 12.1) 8.2 (  -6.9, 23.2) 0.38 

p,p′-DDE 751 0.0 (-15.8, 15.9) 14.7 (  -5.5, 34.9) 0.29 

cis-DBCA 738 -16.1 (-38.2,  5.9) -9.4 (-34.0, 15.2) 0.70
cis-DCCA 738 -6.6 (-33.4, 20.2) -7.3 (-34.1, 19.4) 0.97
trans-DCCA 738 -4.5 (-24.8, 15.9) -9.5 (-30.7, 11.8) 0.75
3-PBA 737 2.9 (-21.7, 27.5) -3.1 (-31.7, 25.6) 0.76

Tempo (days)  
 o,p′-DDT 751 -0.2 (-2.1, 1.7) -0.5 (-2.4, 1.4) 0.84
p,p′-DDT 751 -0.6 (-2.0, 0.7) -0.1 (-1.5, 1.4) 0.56
p,p′-DDE 751 -0.5 (-2.3, 1.3) 0.1 (-1.8, 1.9) 0.64
cis-DBCA 738 -1.1 (-3.9, 1.6) -2.6 (-5.3, 0.2) 0.48
cis-DCCA 738 -3.2 (-5.9,-0.5) -0.2 (-3.6, 3.2) 0.18
trans-DCCA 738 -2.0 (-4.3, 0.3) -0.7 (-3.5, 2.2) 0.47
3-PBA 737 -3.2 (-6.5, 0.1) -1.1 (-5.0, 2.9) 0.41

Abbreviations: CI, confidence interval; DDE, dichlorodiphenyldichloroethylene; DDT, dichlorodiphenyltrichloroethane; cis-DBCA, cis-
3-(2,2-dibromovinyl)-2,2-dimethyl-cyclopropane carboxylic acid; cis-DCCA, cis-3-(2,2,-dicholorvinyl)-2,2-dimethyl-cyclopropane 
carboxylic acid; trans-DCCA, trans-3-(2,2,-dicholorvinyl)-2,2-dimethyl-cyclopropane carboxylic acid; 3-PBA, 3-phenoxybenzoic acid. 
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eTable 4.3. Effects of a 10-fold increase in maternal peripartum DDT/E (ng/g lipid) or pyrethroid 
metabolite (µg/L) concentrations on birth to 5-year weight trajectory parameters, by maternal energy 
intake sufficiency during pregnancy among children participating in the VHEMBE study, Limpopo, 
South Africa. 

 
n 

Sufficient 
β (95% CI) 

Insufficient 
β (95% CI) 

p-value, 
interaction 

Size (grams)   
o,p′-DDT 751 14.2 (-11.0, 39.5) -3.2 (-17.2, 10.9) 0.25 

p,p′-DDT 751 14.3   (-7.3, 35.9) -2.3 (-13.0,  8.4) 0.19 

p,p′-DDE 751 16.2 (-10.1, 42.6) 1.9 (-11.0, 14.8) 0.35 

cis-DBCA 738 -12.7 (-41.5, 16.0) -13.9 (-34.8,  7.1) 0.95
cis-DCCA 738 -22.3 (-53.5,  9.0) 0.8 (-24.5, 26.1) 0.28
trans-DCCA 738 -13.5 (-37.9, 11.0) -3.8 (-22.6, 15.0) 0.56
3-PBA 737 -17.0 (-48.0, 14.0) 7.0 (-17.0, 31.1) 0.24

Tempo (days)  
 o,p′-DDT 751 -0.4 (-2.9, 2.1) -0.3 (-2.0, 1.3) 0.98
p,p′-DDT 751 0.0 (-1.8, 1.8) -0.6 (-1.9, 0.7) 0.59
p,p′-DDE 751 0.5 (-1.5, 2.5) -0.6 (-2.2, 1.1) 0.41
cis-DBCA 738 -3.1 (-6.3, 0.1) -1.1 (-3.5, 1.4) 0.34
cis-DCCA 738 -2.3 (-5.3, 0.8) -1.6 (-4.4, 1.2) 0.76
trans-DCCA 738 -2.1 (-5.0, 0.8) -1.0 (-3.3, 1.2) 0.55
3-PBA 737 -2.0 (-6.1, 2.1) -2.3 (-5.5, 0.9) 0.90

Abbreviations: CI, confidence interval; DDE, dichlorodiphenyldichloroethylene; DDT, dichlorodiphenyltrichloroethane; cis-DBCA, cis-
3-(2,2-dibromovinyl)-2,2-dimethyl-cyclopropane carboxylic acid; cis-DCCA, cis-3-(2,2,-dicholorvinyl)-2,2-dimethyl-cyclopropane 
carboxylic acid; trans-DCCA, trans-3-(2,2,-dicholorvinyl)-2,2-dimethyl-cyclopropane carboxylic acid; 3-PBA, 3-phenoxybenzoic acid. 
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