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Abstract

Using the simple random sampling (SRS) for collecting the income data may results poor estimators
specially when the sample size is not enough large. Since under this circumstance, it may be difficult to
obtain a representative subset from the income population based on SRS. Ranked set sampling (RSS) and its
simplified versions overcome to this shortcoming. These sampling schemes work based on judgment
ranking of the sample units. Moreover, the judgment post-stratification sampling (JPS) is also another rank-
based sampling plan that can be considered as a competitor of RSS. This paper is organized in order to find
the most appropriate sampling scheme among the SRS, RSS, JPS and some more, for estimating of some
well-known inequality indices. Comparison of the estimators is carried out through a simulation study
based on both perfect and imperfect ranking mechanisms. Results show that the suggested scheme is

different for each inequality index. Finally, a real data set is analyzed.

Keywords: Atkinson index; Gini index; Judgment post stratification sampling; Median ranked set
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1. Introduction

Ranked set sampling (RSS) was first introduced by Mclntyre (1952) as a competitor of simple random
sampling (SRS), the most common tool in the statistical methods. Since, when the sample size is not enough
large, it may be difficult to obtain a representative subset from the population based on SRS. He actually
proposed a new efficient and cost saving sampling method to estimate the unknown population mean
which was based on ranked sets. After him, Halls and Dell (1966) used RSS for estimating the forage yields.
They named this method as ranked set sampling (RSS). To choose a ranked set sample, Takahashi (1970)
applied a different approach from McIntyre's one. The median ranked set sampling (MedRSS) and the
modified ranked set sampling (MRSS) as two simplified versions of RSS were respectively defined by Muttlak
(1997) and Stokes (1980b). There are also many studies about comparing RSS with SRS. Among of them, we
refer to Takahasi and Wakimoto (1968), Dell and Clutter (1972), Stokes (1977, 1980a) and Stokes and Sager



(1988). Dey, Salehi, and Ahmadi (2017) compared the estimation of the parameter of Rayleigh distribution
based on SRS, RSS, MedRSS and MRSS. MacEachern, Stasny, and Wolfe (2004) introduced another tank-
based sampling scheme called the judgment post-stratification sampling (JPS), as an alternative to the RSS.
Dastbaravarde et al. (2016) obtained the non-parametric estimation of E(g(X)) using JPS and compared it
with SRS and RSS.

In economics, SRS is commonly used to estimate the inequality indices. However, recently, some authors
have investigated the RSS plan in economics area specially for estimating the inequality indexes. Al-Talib
and Al-Nasser (2008), compared the estimate of Gini index from continuous distribution based on RSS and
SRS. Bansal, Arora, and Mahajan (2013) compared the estimates of Gini index, Bonferroni index and
Absolute Lorenz index based on RSS with SRS and systematic sampling in Parametric case. Nakhaei Rad,
Mohtashami Borzadaran, and Yari (2016) compared the estimates of Gini index, Theil index, MLD index and

Atkinson index based on RSS and SRS in the non-parametric case.

This paper tries to find an answer to the question-that is ‘among the well-known rank-based sampling
methods RSS, MedRSS, MRSS and JPS, which one outperforms the others in estimating the inequality
indexes?. Thus, the rest of the paper is set as follows. In Sec. 2, the non-parametric estimates of inequality
indices including Gini index, Theil index, MLD index and Atkinson index based on the mentioned sampling

schemes are derived. The Gini index, MLD index and Theil index are respectively as:
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where X and Y are two independent random variables come from the income distribution f{x) and
1 = E(X). The Atkinson family, is defined as below
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where & controls the inequality aversion. For the case € = 1, the Atkinson index is defined as

A1) =1— %exp (/;w log (:r:]dF(;t:)) .

(1.5)



Sec. 3 is dedicated to obtain the value of these indices for generalized beta distribution of second kind (GB5).
The GB; is the most famous income distribution in economics which includes several other income
distributions as special or limiting cases. Sec. 4 provides a simulation study in order to make a comparison
between the estimators obtained based on the various schemes (gathered from both perfect and imperfect
ranking procedures) via the mean squared error (MSE) and the bias criteria. In Sec. 5, a real data set is
analyzed. Finally, and Sec. 6 concludes.

2. Estimations of inequality indices

In this section, the non-parametric estimation of the mentioned inequality indices are obtained based on
SRS, RSS, MedRSS, MRSS and JPS, respectively.

2.1. Estimation based on the SRS

Suppose that Xsps = (X1, ..., Xn), is a simple random sample of size n drawn from a continuous
population with the cumulative distribution function Fx) and the probability density function f{x). The
estimations of indices (1.1)-(1.5) based on SRS are obtained as follow
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respectively, where X spg = % Z?=1 X;. Itis to be noted that (2.1) can be also written as (Rizzo 2002)

(2.6)

where Y; denotes the ith ordered observation.
2.2. Estimation based on the RSS

To obtain a ranked set sample of size n = r ¥ m, the number of m simple random samples of size m should
be chosen and ordered by visual inspection. Then, the smallest observation from the first sample, the
second smallest observation from the second sample are selected and this procedure is continued until the
largest observation of the mth sample is selected as follows:

1: XEL XD X & X(1,1):X{:171:
2: X2 X2 . X% o Xey =X,
m: XM XM X S X = X5,

(2.7)

By repeating this procedure r times, an r-cycle ranked set sample with the size n = rm will be derived. Let us
denote the resulting units by X pgs = {X(i?i)k, i=1,....m, k=1,..., r}. Here, the subscript k stands
for the cycle number. The estimations of indices (1.1)-(1.5) based on RSS are obtained as follow
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respectively, where X pss = & Y pq Doieq X(iji)k-

2.3. Estimation based on the MRSS

To obtain a modified ranked set sample of size n = rm, the number of m simple random samples of size m
should be selected and ranked by judgment or a visual inspection. Then, the smallest observation from the
all samples is taken. By repeating this procedure, r times,

XuMrss = {X(l,i)k, i=1,...,m, k=1,.. .,r}, a modified ranked set sample of size n = r ¥ m, is
obtained. The estimations of indices (1.1)-(1.5) based on MRSS are derived by using (X(l,i)k, }TMRSS)
rather than (X(; sk, X rss) in (2.8)~(2.12), where X ppss = DD i X(1,i)k- Note that in MRSS, the
largest observation from the all simple random samples also can be chosen. Since the income distributions

are mostly skewed to the right, here, only the smallest observations are considered.

2.4. Estimation based on the MedRSS

The following algorithm may be applied in order to collect an r-cycle MedRSS with set size m: Firs m SRS's of
size m are drawn. When m is an odd number, then the sample is selected by measuring the judgment
median of each SRS's. For the even set sizes, suppose that we obtain % + % SRS's of size m. Then, the
largest judgment ranked units are measured from the first half of the SRS's, while the smallest jadgment
ranked units are measured from the second half of the SRS’s. By replicating the above method for r times,
the desired sample size n = mr will be accessible. More specifically, if X predrss stands for the mentioned
sample, then, it will be of the form

{X s ) ézl,...,m,jzl,...,r},

rkd X

when m is odd, and

{X(%,i)j’ z:]_,...,?,J:l,...,?‘}U{X(%_H’i)j, 3:E+1,...,m,321,...,f},

when m is even. Therefore, the estimators of the indices (1.1)-(1.5) based on MedRSS are obtained by
substituting X ; iy by X ¢k and X rss by X medrss in (2.8)-(2.12), where

X MedrSS = = Dot Doiet Xk



2.5. Estimation based on the JPS

To select a sample of size n under JPS, a simple random sample size n, X, ..., X, should be chosen and
measured. For each X, i = 1,...,n, an auxiliary SRS of size H- 1, namely X;o, . .., X;g, is taken from the
same population. Note that the units in the auxiliary samples are not measured. Then each sample

Xi, Xio, ..., Xsg,i=1,...,n,is ordered by judgment. Suppose that R; is the rank of X; in the jth sample
which is determined by judgment. Then, the JPS with the sample size n is obtained as

Xjps = {(Xi, Ri),i = 1,...,n}. This data set is called full rank if for eacht = 1,.. ., H, there exists at
least one R; which is equal to t. Note that R/s have discrete uniform distributions on the set of ranks

{1,2,..., H}. Under these kind of observations, the estimators of indices (1.1)-(1.5) are derived as follows
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otherwise, ;=0,fort =1,..., H.
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3. Inequality indices for the GB; distribution

To compute the MSE's and the biases of the estimators of inequality indices under different sampling

schemes proposed in Sec. 2, it is necessary to have the true values of these indices when the income

distribution is GB,. The random variable X is said to have GBs(a, b, p, q) distribution, if its cumulative

distribution function is

B(l+(% )“)—1 (p, 9)
B(p,q)

FGB?(I; a, b,p, q) =1-

(3.1
where a € R, b, p,q > 0 and B;(p, q) and B(p, q) stand for the incomplete and the complete beta

functions, respectively.

The Gini, Theil, MLD and Atkinson indices in (1.1)-(1.5) for GB- distribution are derived as (see, McDonald
and Ransom 2008, and Nakhaei Rad, Mohtashami Borzadaran, and Yari 2016)
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with (a); = afa+1)...(a+i—1),¢(z) = % and I''(z) = L I'(2).

4. Simulation study

In this section, the efficiency of the estimators of the inequality indices including Gini, Theil, MLD and
Atkinson based on mentioned sampling schemes are compared. The inverse cdf simulation technique is
employed in order to generate data from GB; distribution. Sample sizes n =10, 30, 45, 60, 80, 100 are
considered. In more details, the pairs (m, r) = (2, 5), (3-5, 10, 15, 20) are taken, where m is the set size and r is
the number of cycles. The m is chosen to be up to 5 for reducing the ranking error and so approaching to
the perfect ranking. In JPS scheme, H is considered to be 5. For analyzing the sensitivity of the results, the
simulation is performed for GB, with two different parameter sets: GB(2, 4, 5, 8) as well as
GB5(0.5,2,10, 20) which demonstrate a (an almost) symmetric density and a right-skewed one,
respectively. Moreover, in order to analyze the performance of the estimators obtained based on the rank-
based sampling designs under the presence of ranking error, imperfect ranking model is applied as well.
There are some approaches in order to cosider the effect of imperfect ranking (see e.g. Vock and
Balakrishnan 2011). Here, we have used fraction of random rankings in which the distribution of X(,:’,v) given
by (2.7) is a mixture of the distribution of X;.,, the true ith order statistic, and the underlying distribution,

more precisely
Fiyy=(1—-ANFm+AF, i=1,...,m,0<A<1

(4.1)

where F{; ;) and Fiy, are the cdfs of X(; ;) and Xi:m, respectively, and A is the mixing parameter. Obviously,
if A=0, then we have the perfect ranking model. Here we take the values of A in (4.1) to be 0.1 and 0.4 that
correspond to small and moderate ranking errors.

The MSE's and the biases of the estimators obtained based on both perfect and imperfect procedures are
computed using a Monte Carlo simulation with 10000 replications. Then, the relative efficiency (RE) is

calculated as follows

MSE(8)

RE(6,05ps) = ————
MSE(8 sps)

(4.2)

where @ is an estimator under each mentioned rank-based sampling schemes. The results for RE are shown
in Figures 1-4 while the biases of estimators are plotted in Figures 5-8 for all mentioned inequality indices.
In each Figure, the plots in the top panel are drawn for GB3(2, 4,5, 8) and the bottom one are drawn for

GB,(0.5,2,10,20). From Figures 1-4, the following general conclusions can be observed.
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Figure 1. The plot of RE of the estimations of G versus the sample size n.
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Figure 2. The plot of RE of the estimations of T versus the sample size n.
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Figure 3. The plot of RE of the estimations of MLD versus the sample size n.
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Figure 4. The plot of RE of the estimations of A(e) versus the sample size n.
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« A point which is clear in all circumstances is that both of prefect and imperfect mechanisms have
almost similar effects on the performances of the estimators. However, MRSS shows more sensitivity

than its counterparts with respect to the magnitude of the error occurred in the ranking process.

= As the ranking error decreases, or equivalently A tends to 0, the schemes having better performances
become even more appropriate and in contrast those having weaker performances get worse. Hence,
for a given inequality index, choosing the best scheme and increasing the precision in the ranking

process are very crucial here.
* As it is observed, RSS and JPS have a close behavior in almost all of the scenarios.
Furthermore, the following specific points can be perceived.

= For estimating the Gini index under a symmetric GB2 distribution, RSS and JPS schemes perform better
than SRS, while MRSS and MedRSS have weaker performance than it. When income distribution is right-

skewed, MRSS outperforms the other schemes.

« RSS and JPS work better than SRS in estimating the Theil, MLD and A(e) indices. MRSS and MedRSS

exhibit worse performance than SRS as n increases.

e Furthermore, as it can be seen in Figures 5-8, the (absolute value of the) biases of the estimators under

SRS, RSS and JPS schemes are less than the other sampling designs. However, SRS has the least bias.

5. Real data

To illustrate the results obtained in the previous section, a real data set consisting of 7200 GDP (million
dollars) per capita of 172 countries in 1970-2012 has been considered (the data were extracted from http://
www.unctadstat.unctad.org). GB; distribution is fitted to the mentioned data set with parameters

a = 0.0509,b = 15159400, p = 140.9051, g = 94.3788 (log-likelihood=-79243.91, AIC =158495.8, BIC =
158523). Figure 9 shows the goodness-of-fit plots of the data.

The values of the inequality indices for GB»(0.0509, 15159400, 140.9051, 94.3788) are calculated from
(3.2)-(3.6) as G = 0.9418,T = 0.5632, ML D = 0.5481, A(1) = 0.9708, A(2) = 0.9989. In order to
check the sensitivity of the chosen sample, the parametric as well as the non-parametric bootstrap
techniques are employed. The MSE's and the biases are reported in Tables 1-2. As it can be seen, RSS and
JPS have less MSE's and biases than other sampling methods, similar to the simulation results. Also box-

plots of the T and G drawn in Figures 10 and 11 confirm the adequacy of the RSS and JPS plans.
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Table 1. The MSE and bias for Gini estimator in parametric and non-parametric cases.

Gini SRS RSS MRSS MedRSS JPs
MSE 000117 0.007118 0.02023 0.02028 0.00115
{Non-parametric)

MSE 0.00050 0.00047 0.02184 0.02537 0.00046
(Parametric)

Bias —0.03374 —0.03350 —0.14144 —0.14182 —0.03333
(Non-parametric)

Bias —0.01470 —0.01443 —0.14714 —0.15846 —0.071438
(Parametric)

Table 2. The MSE and bias for Theil estimator in parametric and non-parametric

cases.
Theil SRS R55 MRS5S MedR55 IS
MSE 1.56421 1.56589 405293 438125 1.55553
{Non-parametric)
MSE 0.74756 0.72781 458689 456083 0.78968
(Paramedtric)
Bias —1.24714 —1.24631 —2.00592 —2.08707 =1.24370
{Non-parametric)
Bias —0.64426 =0.61361 —2.13528 —2.12455 —0.64466
(Paramedtric)

6. Conclusion

In this article, in order to find the most appropriate sampling schemes for estimating different inequality
indices such as Gini, Theil, MLD, Atkinson, under the GB, parent distribution, the SRS was compared with
four rank-based sampling plans including RSS, median RSS, modified RSS and JPS. The performance of the
resulting estimators were compared by carrying out a simulation study under both perfect and imperfect
ranking mechanisms based on two criteria 'bias’ and 'relative efficiency’. The simulation results and real data
analysis showed that both of prefect and imperfect mechanisms have almost similar impacts on the
performances of the estimators. However, as the ranking error decreases, the schemes having better
performances become even more appropriate and in contrast those having weaker performances get
worse. Hence, choosing the appropriate scheme for estimating a specific inequality index and also

increasing the precision of the ranking stage play important roles here.
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