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FORECASTING REAL US HOUSE PRICE: PRINCIPAL COMPONENTS VERSUS 
BAYESIAN REGRESSIONS   

Rangan Gupta∗ and Alain Kabundi# 
 

Abstract 
This paper analyzes the ability of principal component regressions and Bayesian 
regression methods under Gaussian and double-exponential prior in forecasting the real 
house price of the United States (US), based on a monthly dataset of 112 
macroeconomic variables. Using an in-sample period of 1992:01 to 2000:12, Bayesian 
regressions are used to forecast real US house prices at the twelve-months-ahead forecast 
horizon over the out-of-sample period of 2001:01 to 2004:10. In terms of the Mean 
Square Forecast Errors (MSFEs), our results indicate that a principal component 
regression with only one factor is best-suited for forecasting the real US house price. 
Amongst the Bayesian models, the regression based on the double exponential prior 
outperforms the model with Gaussian assumptions. 
 
Journal of Economic Literature Classification: C11, C13, C33, C53.   
Keywords: Bayesian Regressions; Principal Components; Large-Cross Sections . 
 
1. Introduction 
 
This paper analyzes the ability of Bayesian regression methods under Gaussian and 
double-exponential prior in forecasting the real house price of the United States (US), 
based on a monthly dataset of 112 macroeconomic variables. Using an in-sample period 
of 1992:01 to 2000:12, Bayesian regressions are used to forecast real US house prices at 
the twelve-months-ahead forecast horizon over the out-of-sample period of 2001:01 to 
2004:10. The forecast performance of the Bayesian regressions are then compared in 
terms of the Mean Square Forecast Errors (MSFEs) with the forecasts generated from 
the principal component regression, based on the same dataset of 112 variables. Our 
choice of the two Bayesian priors is motivated from the recent contribution by De Mol et 
al. (2008), and corresponds to the two interesting cases of variable aggregation and 
variable selection.1 
 
 With the methodologies in place, two questions arise immediately. First, why is 
forecasting real house price important? And second, why use large-scale models for this 
purpose? As far as the answer to the first question is concerned, the importance of 
predicting house price is motivated by a set of recent studies which conclude that asset 
prices help forecast both inflation and output (Forni et al., 2003; Stock and Watson, 2003, 
Gupta and Das, 2008a,b and Das et al., 2008a,b). Since a large amount of individual 
wealth is imbedded in houses, similar to other asset prices, house price movements are 
thus important in signaling inflation. Models that forecast real house price can give policy 
makers an idea about the direction of overall price level and, hence, economy-wide 
inflation in the future, and thus, can provide a better control for designing of appropriate 
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policies. In addition, given that movements in the housing market are likely to play an 
important role in the business cycle (Iacoviello and Neri, 2008), not only because housing 
investment is a very volatile component of demand (Bernanke and Gertler, 1995), but 
also because changes in house prices tends to have important wealth effects on 
consumption (International Monetary Fund, 2000) and investment (Topel and Rosen, 
1988), and hence, the importance of forecasting house price is vital. The housing sector 
thus plays a significant role in acting as a leading indicator of the real sector of the 
economy, and predicting it correctly cannot be overemphasized, especially in the light of 
the recent credit crunch in the U.S. that started with the burst of the housing price 
bubble which, in turn, transmitted to the real sector of the economy driving it towards an 
imminent recession. 
 
The rationale for using large-scale models to forecast real house price emanates from the 
fact that a large number of economic variables help in predicting real housing price (Cho, 
1996; Abraham and Hendershott, 1996; Johnes and Hyclak, 1999; and Rapach and 
Strauss, 2007, 2008). For instance, income, interest rates, construction costs, labor market 
variables, stock prices, industrial production, consumer confidence index – which are 
amongst the 112 monthly series used by the models –  act as potential predictors.   
 
To realize the contribution of this study, it is important to place this paper in the context 
of current research that focusing on forecasting in the housing market. In this regard, few 
studies are worth mentioning: Rapach and Strauss (2007) used an autoregressive 
distributed lag (ARDL) model framework, containing 25 determinants, to forecast real 
housing price growth for the individual states of the Federal Reserve’s Eighth District. 
Given the difficulty in determining apriori particular variables that are most important for 
forecasting real housing price growth, the authors also use various methods to combine 
the individual ARDL model forecasts, which result in better forecast of real housing 
price growth. Rapach and Strauss (2008) do the same for 20 largest US states based on 
ARDL models containing large number of potential predictors, including state, regional 
and national level variables. Once again, the authors reach similar conclusions as far as 
the importance of combining forecasts are concerned. On the other hand, Gupta and 
Das (2008b), look into forecasting the recent downturn in real house price growth rates 
for the twenty largest states of the US economy. In this paper, the authors use Spatial 
BVARs, based merely on real house price growth rates, to predict their downturn over 
the period of 2007:01 to 2008:01. They find that, though the models are quite well-
equipped in predicting the recent downturn, they underestimate the decline in the real 
house price growth rates by quite a margin. They attribute this underprediction of the 
models to the lack of any information on fundamentals in the estimation process. 
 
Given that in practice, forecasters and policymakers often use information from many 
series than the ones included in smaller models, like the ones used by Rapach and Strauss 
(2007, 2008), who also indicate the importance of combining forecast from alternative 
models, the role of a large-scale models cannot be ignored. In addition, one cannot 
condone the fact that the main problem of small models, as seen from the studies by 
Rapach and Strauss (2007, 2008), is in the decision regarding the choice of the correct 
potential predictors to be included.  Due to this reason, Vargas-Silva (2008) and Gupta 
and Kabundi (2009a,b) uses Factor Augmented Vector Autoregression (FAVAR) models 
containing large number of macroeconomic variables in analyzing the impact of 
monetary policy shocks on the housing sector of the United States and South Africa. To 
the best of our knowledge, this is the first attempt to look into the ability of Bayesian and 
principal component regressions in forecasting real house price in the US.  
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In such a backdrop, our paper can thus be viewed as an extension of the 
abovementioned studies, in the sense that we use large-scale models that allow for the 
role of a wide possible set of fundamentals to affect the housing sector. The remainder 
of the paper is organized as follows: Section 2 lays out the basics of the alternative 
models. In Section 3 we discuss the data and evaluate the forecasting performances of 
the various models, and finally, Section 5 concludes.  
 
 
2. The Models2  
Consider the ( 1)nx  vector of covariance-stationary processes

1
( , ..., )

tt ntZ z z ′= . It will be 
assumed that they all have a mean of zero and a variance of unity. We are interested in 
forecasting linear transformations of some element(s) of tZ  based on all the variables as 
possible predictors. Formally, we are interested in estimating the linear projection: 
                                               { }/ /t h t t h ty proj y+ += Ω  

where { }, 0,1, 2, ...t t pspan Z p−Ω = = is a potentially large time t information set and 

, ,( )h
t h i t h h i t hy z f L z+ + += =  is a filtered version of itz , for a specific i . 

 
Traditionally, time series models approximate the projection using only a finite number, 
p , of lags of tZ . In particular, we generally consider the following regression: 

                              ' ' '
0 ...t h t t p p t h t t hy Z Z u X uβ β β+ − + += + + + = +  

where  ( )' '
0 , ..., pβ β β=  and ( )' ', ...,t t t pX Z Z −

′= . 

Given a sample of size ofT , we will denote by ( )1 , ...,p T hX X X+ −
′=     the 

( ) ( )1T h p n p− − × + matrix of observations for the predictors and by 

( )1 ,...,p h Ty y y+ +
′= the ( ) 1T h p− − ×  matrix of the observations on the dependent 

variable. The regression coefficients are generally estimated by Ordinary Least Squares 
(OLS), ( ) 1ˆ LS X X X yβ −′ ′= , and the forecast is given by /

ˆˆ LS LS
T h T Ty X β+ ′= . Naturally, 

when the size of the information set, n , is large, such projection involves the estimation 
of a large number of parameters. This leads to loss of degrees of freedom and large out-
of-sample forecast errors. Besides, OLS is not feasible when the number of regressors is 
larger than the sample size, i.e., ( 1)n p T+ > .To solve this problem of curse of 
dimensionality, the method that has been considered in the literature is to compute the 
forecast as a projection on the first few principal components (Stock and Watson, 2002a, 
b;  Forni et al., 2005; Giannone et al. 2004). 
 
 Consider the spectral decomposition of the sample covariance matrix of the regressors: 

xS V VD=                                                                                                      (1)  

where ( )1 ( 1), ..., n pD diag d d += is a diagonal matrix, with the diagonal elements constituted 

of the eigenvalues of 1
xS X X

T h p
′=

− −
 in decreasing order of magnitude and 

                                                 
2 This section relies heavily on the discussion available in De Mol et al. (2008), and, also retains their 
symbolic representations. 
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( )1 ( 1), ..., n pV v v += is the ( 1) ( 1)n p n p+ × + matrix whose columns are the corresponding 
eigenvectors3. Given this, the normalized principal components (PC) are defined as: 

1
ît i t

i

f v X
d

′=                                                                                                 (2) 

 
for 1, ...,i N= , where N  is the number of non zero eigenvalues4. 
 
If there is limited cross-correlation among the specific components of the data and, if 
most of the interactions amongst the variables in the information set emerge due to few 
common factors, the information contained in the large date set can be captured by few 
aggregates. While, the part not explained by the common factors can be predicted by 
means of traditional forecasting methods. In such instances, few principal components, 

( )1̂
ˆˆ , ...,t t rtF f f= with ( )1r n p +� , are likely to provide a good approximation of the  

underlying factors. 
 
Assuming for the sake of simplicity, that no lags of the dependent variable are required as 
additional regressors, the principal component forecast is defined as: 
                       { } { }/ / /PC F

t h t t h t t h ty proj y proj y+ + += Ω ≈ Ω                                  (3)  
 
where { }1

ˆ ˆ, , ...,F
t t tspan F F −Ω = is a parsimonious representation of the information set. 

Given the parsimonious approximation, the projection is now feasible, since it requires 
the estimation of a limited number of parameters. Under assumptions defining an 
approximate factor structure,5 once common factors have been estimated via principal 
components, the projection is computed by OLS by treating the estimated factors as 
observable variables. 
 
On the other hand, the Bayesian approach imposes limits on the length of β  through 
priors and estimate the parameters as the posterior mode. Hence, here the parameters are 
used to compute the forecasts. As in De Mol et al. (2008), we also consider two 
alternative prior specifications, namely, Gaussian and double exponential priors. 
Under the Gaussian prior, ( )2. . . 0,t uu i i d N σ∼  and ( )0 0,Nβ β Φ∼ ,and assuming for 
simplicity, that 0 0β = , we have: 

                              ( ) 12 1
0

ˆ bay
uX X X yβ σ

−−′ ′= + Φ . 
The forecast then is computed as: 
                                   /

ˆˆ bay bay
T h T Ty X β+ ′=  

                                                 
3 The eigenvalues and eigenvectors are typically computed on = +∑

−
'

1
1 T

t p t tX X
T p

 (see Stock and Watson, 

2002a). We follow De Mol et al. (2008) in computing them on −
= +′ ′= ∑

− − − − 1
1 1 T h

t p t tX X X X
T h p T p h

 for 

comparability with other estimators considered in the paper. 
 
4 Note that { }≤ + − −min ( 1), .N n p T h p  
5 See Section 3 for further details. 
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When the parameters are independently and identically distributed, i.e., 2
0 IβσΦ = , the 

estimates are equivalent to those produced by penalized Ridge regression with parameter 
2

2
uv
β

σ
σ

= 6 . Formally7: 

                           { }2 2ˆ arg minbay y X v
β

β β β= − + . 

OLS, principal components regression and Gaussian Bayesian regression tends to weight 
all variables.8 An alternative to this is to select variables. Under Bayesian regression, one 
can use a double exponential prior to do so, which, when uses a zero mean i.i.d. prior, is 
equivalent Lasso regression (least absolute shrinkage and selection operator). In this 
particular case, the method can also be seen as a penalized regression with a penalty on 
the coefficients involving the 1L  norm instead of the 2L  norm. Specifically: 

                        { }2

1

ˆ arg min
nlasso

i
i

y X v
β

β β β
=

= − + ∑                                        (4) 

where 1v
τ

=  where τ is the scale parameter of the prior density9. 

In comparison with the Gaussian density, the double-exponential puts more mass near 
zero and in the tails, which, in turn tends to produce coefficient estimates that are either 
large or zero. As a result, one often favors the recovery of a few large coefficients instead 
of many fairly small ones. Moreover, the double-exponential prior favors sparse regression 
coefficients (sparse mode), since it favors truly zero values instead of small ones. 
 
In the case with non orthogonal regressors, the Lasso solution enforces sparsity on the 
variables rather than on the principal components, which implies a regression on few 
observables rather than on few linear combinations of the variables. Unfortunately, in the 
general case, the maximizer of the posterior distribution has no analytical form and has 
to be computed based on numerical methods. Following De Mol et al. (2008), we use the 
Least Angle Regression (LARS) algorithm developed recently by Efron et al. (2004) for 
this purpose. 
 
 
The next section will consider the empirical performance of the three methods discussed 
in an out-of-sample forecast exercise based on a large panel of time series. 
 
 
3. Data and Results: 
 
 The data set employed for the out of sample forecasting analysis is the same as the 111 
major macroeconomic variables used by Boivin et al. (2008). With this data set ending at 
2005:10, the endpoint of our sample is automatically determined. The data set contains a 
broad range of macroeconomic variables, such as industrial production, income, 

                                                 
6 Though, homogenous variance and zero mean are too simplistic of assumptions, they are justified by the 
fact that the variables in the panel are standardized and demeaned. Note, this transformation is obvious to 
allow for comparison with principal components.  
7 .  denotes the 2L matrix norm, i.e. for every matrix A, ( )′= maxA A Aλ . For vectors it 
corresponds to the Euclidean norm. 
8 See De Mol et al. (2008) for further details. 
9 Recall that the variance of the prior density is proportional to 22τ . 
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employment and unemployment, housing starts, inventories and orders, stock prices, 
exchange rates, interest rates, money aggregates, consumer prices, producer prices, 
earnings, and consumption expenditure. As far as the US house price is concerned, the 
nominal house price figures were obtained from the Office of Federal Housing 
Enterprise Oversight (OFEO), and were converted to their real counterpart by dividing 
them with the personal consumption expenditure deflator. So, in total we have a 
balanced panel of 112 monthly series for the period running from 1991:01 to 2005:10. A 
full description of the dataset has been provided in the appendix of the paper. 
 
Series are transformed to induce stationarity. In general, following, De Mol et al. (2008), 
all real variables, such as employment, industrial production, sales and the real US house 
price, we take monthly growth rate. While for series that are already expressed in rates, 
such as the unemployment rate, capacity utilization, interest rate and some surveys, we 
take first differences. Finally, fro nominal prices and wages, we take the first differences 
of their annual rates.   
 
Defining HP as the monthly real US house price, the relevant variable that we forecast is: 

h
HP,t h t h t HP,t h HP,t 1z (hp hp ) z .......z+ + + += − = + , where thp =100 × log( tHP ). The forecasts for 

the log(HP) is then recovered as: F h
T h|T HP,T h|T Thp z hp+ += + . The accuracy of the forecasts is 

evaluated using the mean-square forecast error (MSFE), given by: 
1

0

T h
h F 2
hp T h|T T h

T T1 0

1MSFE (hp hp )
T T h 1

−

+ +
=

= −∑
− − +

.  

 
The sample has a monthly frequency ranges from 1991:01 to 2005:10, with the starting 
point of the sample determined by the availability of monthly US house price. The out-
of-sample period is 2001:01 to 2004:10, with data between 1992:01 and 2000:12 serving 
as the in-sample for the analysis, i.e., 0T =2000:12. The last available time point 
is 1T =2005:10. We consider rolling estimates with a window of 9 years. In other words, 
parameters are estimated at each time T using the most recent 9 years of data.10. All the 
procedures have been applied to standardized data, and, hence, mean and variance have 
been re-attributed to the forecasts accordingly. Following De Mol et al. (2008), the results 
for h = 12, under the principal components regression, and the Bayesian regressions 
under the Gaussian and double-exponential priors have been reported in Tables 1 
through 3, respectively. We compare across the three models, and can draw the following 
conclusions, based on the MSFE relative to the random walk, and the variance of the 
forecasts relative to the variance of the actual data for real US house price:  
 
(i) Principal Component Regression: Let us start with the principal component 
regression, where the results have been reported for the choice of r = 1, 3, 5, 10, 25, 50 
and 75. Note when r = 0, we have the random walk model with drift on the log of HP, 
while, when r = n, we have the OLS model. As in De Mol et al. (2008), we only report 
results for p = 0, since this is the case for which the theory has been developed and is 
typically what is considered in standard macroeconomic applications. Results in Table 1 
show principal components improve a lot over the random walk model, especially for r 
=1 and 10. While, for r = 3 it is nearly as good as the random walk model. But beyond r 
= 10, i.e., the advantage is lost, due to a possible loss in parsimony. Moreover, beyond r 
                                                 
10 The choice of 9 years as the rolling-sample ensures that or out-of-sample horizon starts at 2001:01, but 
at the same time, this also allows us to use the maximum amount of data available for the in-sample 
analysis. 
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equal to 10 and beyond, the variance of the forecasts become larger than the series itself. 
As pointed out by De Mol et al. (2008), this can be explained by the large uncertainty of 
the regression coefficients when we have a large number of explanatory aggregates. 
Overall, a principal component model with one regressor is best suited in forecasting real 
US house price relative to the random walk model, not only because it produces the 
minimum MSFE relative to the random walk model , but also because it results in lower 
variance for the forecasts relative to the original series; 
 
(ii) Bayesian (Ridge) Regression with Gaussian Prior: For comparability with the principal 
component regression, we focus on the case p = 0 also for the Bayesian regression, 
which implies that we do not consider any lags of the regressor. For the Bayesian 
regression under Gaussian prior, we run the regression using the first estimation period 
1991 to 2000 for a grid of priors. Following De Mol et al. (2008), we then choose the 
priors which causes the in-sample fit to explain a given fraction 1- κ of the variance of 
the real US house price. We report the results for the different values of κ and υ , the 
latter kept fixed for the whole out-of-sample horizon. Note κ=0 corresponds to a case 
where the prior is quite uninformative and would be very close to the OLS model, while, 
κ=1 implies the random walk case. Based on results reported in Table 2, the ridge 
regression performs better than the random walk model for all values of κ  beyond 0.1, 
but especially, well for values the same between 0.3 and 0.5, which, in turn, are associated 
with shrinkage parameters between thrice and ten times the cross-sectional dimension, n. 
However, the minimum MSFE of the Bayesian regression under the Gaussian prior 
relative to the MSFE of the random walk model is more than twice of the minimum 
obtained under the principal component regression with r = 1. However, the forecasts 
produced by the Ridge regressions are generally smoother than the principal component 
forecasts. Moreover, the principal component and the Ridge forecasts, as seen from the 
last line of Table 2, are highly correlated. Though, it is not the case that the correlation is 
maximal for priors giving the best forecasts, indicative of the fact that there does not 
exists a common explanation for the performance of the two methods; 
(iii) Bayesian Regression with Double Exponential Prior:  Finally, we consider the case of 
double-exponential priors. As in De Mol et al. (2008), instead of fixing the values of the 
parameter υ , a prior is selected that delivers a given number, say k, of non-zero 
coefficients at each estimation step in the out-of-sample period. We look at the cases of k 
= 1, 3, 5, 10, 25, 50, and 75 non-zero coefficients. Results reported in Table 3, show that 
good forecasts relative to the random walk model are obtained with predictors between 1 
to 5, with the best being for the case of k = 3, which though is about 1.7 times more 
than the minimum obtained under the principal component regression.  As far as 
correlation with principal component forecast is concerned for k = 3, the value is 
second-highest. Variance of the forecasts relative to the original data increases as the 
number of predictors increases, but, never exceeds the latter. Note the four variables 
selected for k≈3 at the beginning and at the end of the out-of-sample period have been 
reported in the last column of the Table A.2 describing the data in the appendix A. Three 
of the four variables selected relate to the housing market, namely housing start in the 
north-east, total new private housing authorized and mobile homes, with the former two 
being picked up both at the beginning and end of the forecast evaluation period, and the 
third one only appearing at the end of the out-of-sample horizon. The fourth variable, 
namely, the spread between the 10-year Treasury bonds yield and the Federal funds rate, 
is picked up at the beginning of the forecast evaluation period. Overall, these results tend 
to suggest the importance of the leading indicators related to the housing market, besides 
the long-term interest rate spread, as major determinants of the real US house price.  
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[INSERT TABLES 1 THROUGH 3] 
 
5. Conclusions 
 
This paper analyzes the ability of principal component regressions and Bayesian 
regression methods under Gaussian and double-exponential prior in forecasting the real 
house price of the United States (US), based on a monthly dataset of 112 
macroeconomic variables. Using an in-sample period of 1992:01 to 2000:12, the 
alternative regressions are used to forecast real US house prices at the twelve-months-
ahead forecast horizon over the out-of-sample period of 2001:01 to 2004:10. In 
summary, based on the 12-months-ahead forecast over the out-of-sample horizon of 
2001:01 to 2004:10 and the MSFE relative to the random walk model, we can conclude 
that the principal component model with only one factor is best suited in forecasting the 
real US house price relative to the Bayesian regressions based on Gaussian and double-
exponential priors. Within the two-types of Bayesian regressions, the Lasso forecasts 
with three non-zero coefficients tends to outperform the best-performing ridge-
regression forecasts obtained under a shrinkage parameter of nearly six times the size of 
the cross-section. 
 
Recent works by Banbura et al. (2008) and Gupta and Kabundi (2008a,b) have indicated 
that large-scale Bayesian Vector Autoregressions (LBVARs) tends to outperform Factor-
Augmented VARs (FAVARs) in forecasting key macroeconomic variables. In such a 
backdrop, future research would be aimed at analyzing the ability LBVARs in forecasting 
house prices. 
 
 
 

References 
 
Abraham, J.M., & Hendershott, P.H. (1996). Bubbles in Metropolitan Housing Markets. 
Journal of Housing Research, 7(2), 191–207. 
Bernanke, B., & Gertler, M. (1995). Inside the Black Box: the Credit Channel of 
Monetary Transmission. Journal of Economic Perspectives, 9(4), 27–48. 
Boivin, J., Giannoni, M., & Mihov, I. (2008). Sticky Prices and Monetary Policy: 
Evidence from Disaggregated U.S. Data. Forthcoming American Economic Review. 
Banbura, M., Giannone, D. & Reichlin, L. (2008). Large Bayesian VARs. Forthcoming 
Journal of Applied Econometrics. 
Cho, M. (1996). House Price Dynamics: A Survey of Theoretical and Empirical Issues. 
Journal of Housing Research, 7(2), 145–172. 
Das, S., Gupta, R., & Kabundi, A. (2008a). Is a DFM Well-Suited for Forecasting 
Regional House Price Inflation?” Working Paper No. 85, Economic Research Southern 
Africa. 
Das, S., Gupta, R., & Kabundi, A. (2008b). Could We Have Forecasted the Recent 
Downturn in the South African Housing Market? Working Paper No. 200831, 
Department of Economics, University of Pretoria. 
De Mol, C., Giannone, D. & Reichlin, L. (2008). Forecasting using a large number of 
predictors: Is Bayesian regression a valid alternative to principal components?, Journal of 
Econometrics, 146(2),318-328. 
Efron, B., Hastie, T., Johnstone, I.,  & Tibshirani, R.  (2004). Least angle regression. 
Annals of  Statistics, 32(2), 407–499. 



 9

Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2005). The Generalized Dynamic Factor 
Model, One Sided Estimation and Forecasting. Journal of the American Statistical 
Association, 100(471), 830–840. 
Forni M., Hallin, M., Lippi, M., Reichlin, L. (2003). Do financial variables help 
forecasting inflation and real activity in the euro area? Journal of Monetary Economics,  
Giannone, D., Reichlin, L., & Sala, L. (2004).  Monetary Policy in Real Time, in NBER 
Macroeconomics Annual, ed. by M. Gertler, and K. Rogoff, pp. 161–200. MIT Press. 
Gupta, R., & Das, S. (2008a). Spatial Bayesian Methods for Forecasting House Prices in 
Six Metropolitan Areas of South Africa. South African Journal of Economics, 76(2), 298-
313. 
Gupta, R., & Das, S. (2008b). Predicting Downturns in the US Housing Market. 
Forthcoming Journal of Real Estate Economics and Finance. 
Gupta, R., & Kabundi, A. (2008a). Forecasting Macroeconomic Variables using Large 
Datasets: Dynamic Factor Model vs Large-Scale BVARs. Working Paper No. 200816, 
Department of Economics, University of Pretoria. 
Gupta, R., & Kabundi, A. (2008b). Forecasting Macroeconomic Variables in a Small 
Open Economy: A Comparison between Small- and Large-Scale Models. Working Paper 
No. 200830, Department of Economics, University of Pretoria. 
Iacoviello, M., & Neri, S. (2008). Housing Market Spillovers: Evidence from an 
Estimated DSGE Model. Working Paper No. 659, Boston College Department of 
Economics. 
International Monetary Fund. World Economic Outlook: Asset Prices and the Business 
Cycle, 2000. 
Johnes, G., &  Hyclak, T. (1999). House Prices and Regional Labor Markets. Annals of 
Regional Science, 33(1), 33–49. 
Rapach, D.E., & Strauss. J. K. (2008). Differences in Housing Price Forecast ability 
Across U.S. States. Forthcoming International Journal of Forecasting. 
Rapach, D.E., & Strauss, J.K. (2007). Forecasting Real Housing Price Growth in the 
Eighth District States. Federal Reserve Bank of St. Louis. Regional Economic 
Development, 3(2), 33–42. 
Stock, J.H., & Watson, M.W.  (2003). Forecasting Output and Inflation: The Role of 
Asset Prices. Journal of Economic Literature, 41(3), 788-829. 
Stock, J. H., & Watson, M. W.  (2002a). Forecasting Using Principal Components from a 
Large Number of Predictors,” Journal of the American Statistical Association, 97, 147–
162. 
Stock, J.H., & Watson, M.W.   (2002b). Macroeconomic Forecasting Using Diffusion 
Indexes. Journalof Business and Economics Statistics, 20, 147–162. 
Topel, R. H., & Rosen, S. (1988). Housing Investment in the United States. Journal of 
Political Economy, 96(4), 718–740. 
Vargas-Silva, C. (2008).The Effect of Monetary Policy on Housing: A Factor Augmented 
Approach. Applied Economics Letters, 15(10), 749-752.  
 
 
 
 
 
 
 
 
 



 10

 
 
Table 1. Principal Component Forecasts      
        
 Real US House Price (2001:01-2004:10) 
 Number of Principal Components 
 1 3 5 10 25 50 75 
MSFE 0.382 0.9927 1.1137 0.5024 1.2403 1.0304 1.2592 
Variance* 0.5323 0.5014 0.7336 1.0685 1.0865 1.0832 1.1328 
MSFE are relative to Random Walk forecast. *The variance of the forecast relative to  
the variance of the series. 

 
 
Table 2: Bayesian Forecasts with Gaussian Prior      
          
 Real US House Price (2001:01-2004:10) 
 In-Sample Residual Variance  
  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
           ν 35 146 336 629 1066 1735 2855 5091 11790
MSFE (12-steps)  1.0189 0.8348 0.7905 0.7893 0.8072 0.8351 0.8692 0.9082 0.9517
Variance* 0.6827 0.5823 0.5027 0.4468 0.4064 0.3755 0.3502 0.3282 0.3085
Correlation with PC 
forecasts (r=1) 0.7284 0.8127 0.8614 0.8935 0.9147 0.9285 0.9374 0.9426 0.945
MSFE are relative to Random Walk forecast. *The variance of the forecast relative to the variance of 
the series. 
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Table 3: Lasso Forecasts       
        
 Real US House Price (2001:01-2004:10)  
 Number of Non-Zero Coefficients  
 1 3 5 10 25 50 75 
MSFE(12-Steps)   0.7367 0.6557 0.8048 0.9316 1.1529 1.4734 1.748 
Variance* 0.4337 0.5981 0.6345 0.6838 0.7836 0.7894 0.6541 
Correlation with 
PC forecasts (r=1)  0.8932 0.8432 0.7842 0.7367 0.6745 0.6008 0.5552 
MSFE are relative to Random Walk forecast. *The variance of the forecast relative to  
the variance of the series. 
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APPENDIX 
 
 

TABLE A1: Data Transformation 
 DEFINITION TRANSFORMATION 
1 it itx z=  No transformation. 
2 it itx z= ∆  Monthly Difference 
4 it itx ln z=  Log 
5 it itx ln z 100= ∆ ×  Monthly Growth Rate 
6 it

it
it 12

zx ln 100
z −

= ∆ ×  
Monthly difference of yearly growth rates 
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TABLE A2: Data Description   
Code  Description Transf. HP 
a0m052 Personal income (AR, bil. chain 2000 $) 5   
A0M051 Personal income less transfer payments (AR, bil. chain 2000 $) 5   
IPS10    INDUSTRIAL PRODUCTION INDEX -  TOTAL INDEX 5   
IPS11    INDUSTRIAL PRODUCTION INDEX -  PRODUCTS, TOTAL 5   
IPS299   INDUSTRIAL PRODUCTION  INDEX -  FINAL PRODUCTS 5   
IPS12    INDUSTRIAL PRODUCTION INDEX -  CONSUMER GOODS 5   
IPS13    INDUSTRIAL PRODUCTION INDEX -  DURABLE CONSUMER GOODS 5   
IPS18    INDUSTRIAL PRODUCTION INDEX -  NONDURABLE CONSUMER GOODS 5   
IPS25    INDUSTRIAL PRODUCTION INDEX -  BUSINESS EQUIPMENT 5   
IPS32    INDUSTRIAL PRODUCTION INDEX -  MATERIALS 5   
IPS34    INDUSTRIAL PRODUCTION INDEX -  DURABLE GOODS MATERIALS 5   
IPS38    INDUSTRIAL PRODUCTION INDEX -  NONDURABLE GOODS MATERIALS 5   
IPS43    INDUSTRIAL PRODUCTION INDEX -  MANUFACTURING (SIC) 5   
IPS67e INDUSTRIAL PRODUCTION INDEX - MINING NAICS=21 5   
IPS68e INDUSTRIAL PRODUCTION INDEX - ELECTRIC AND GAS UTILITIES 5   
IPS307   INDUSTRIAL PRODUCTION  INDEX -  RESIDENTIAL UTILITIES 5   
IPS316 INDUSTRIAL PRODUCTION INDEX - BASIC METALS 5   
PMP      NAPM PRODUCTION INDEX (PERCENT) 1   
LHEL     INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA) 2   
LHELX    EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF 2   
LHEM     CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) 5   
LHNAG    CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA) 5   
LHUR     UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA) 2   
LHU680   UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA) 2   
LHU5     UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA) 5   
LHU14    UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA) 5   
LHU15    UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA) 5   
LHU26    UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA) 5   



 14

BLS_P-service EMP  Private Service-providing Employment - Seasonally Adjusted - CES0800000001  5   
BLS_LPNAG Total Nonfarm Employment - Seasonally Adjusted - CES0000000001  5   
CES002   EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE 5   
CES003   EMPLOYEES ON NONFARM PAYROLLS - GOODS-PRODUCING 5   
CES006   EMPLOYEES ON NONFARM PAYROLLS - MINING 5   
CES011   EMPLOYEES ON NONFARM PAYROLLS - CONSTRUCTION 5   
CES015   EMPLOYEES ON NONFARM PAYROLLS - MANUFACTURING 5   
CES017   EMPLOYEES ON NONFARM PAYROLLS - DURABLE GOODS 5   
CES033   EMPLOYEES ON NONFARM PAYROLLS - NONDURABLE GOODS 5   
CES046   EMPLOYEES ON NONFARM PAYROLLS - SERVICE-PROVIDING 5   
CES048   EMPLOYEES ON NONFARM PAYROLLS - TRADE, TRANSPORTATION, AND UTILITIES 5   
CES049   EMPLOYEES ON NONFARM PAYROLLS - WHOLESALE TRADE 5   
CES053   EMPLOYEES ON NONFARM PAYROLLS - RETAIL TRADE 5   
CES088   EMPLOYEES ON NONFARM PAYROLLS - FINANCIAL ACTIVITIES 5   
CES140   EMPLOYEES ON NONFARM PAYROLLS - GOVERNMENT 5   
CES151   AVERAGE WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE NONFAR 1   
CES155   AVERAGE WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE NONFAR 2   
BLS_LEHCC  Construction Average Hourly Earnings of Production Workers - Seasonally Adjusted - CES2000000006  5   
BLS_LEHM  Manufacturing Average Hourly Earnings of Production Workers - Seasonally Adjusted - CES3000000006  5   
PMEMP    NAPM EMPLOYMENT INDEX (PERCENT) 1   
HSFR     HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,SA 4   
HSNE     HOUSING STARTS:NORTHEAST (THOUS.U.)S.A. 4 I-II 
HSMW     HOUSING STARTS:MIDWEST(THOUS.U.)S.A. 4   
HSSOU    HOUSING STARTS:SOUTH (THOUS.U.)S.A. 4   
HSWST    HOUSING STARTS:WEST (THOUS.U.)S.A. 4   
HSBR     HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR) 4 I-II 
HMOB MOBILE HOMES: MANUFACTURERS' SHIPMENTS (THOUS.OF UNITS,SAAR) 4 II 
RHPUS Real US House Price (SA) 5   
PMI      PURCHASING MANAGERS' INDEX (SA) 1   
PMNO     NAPM NEW ORDERS INDEX (PERCENT) 1   
PMDEL    NAPM VENDOR DELIVERIES INDEX (PERCENT) 1   
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PMNV     NAPM INVENTORIES INDEX (PERCENT) 1   
A0M008 Mfrs' new orders, consumer goods and materials (bil. chain 1982 $) 5   
A0M027 Mfrs' new orders, nondefense capital goods (mil. chain 1982 $) 5   
FM1      MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK'ABLE DEP)(BIL$,SA) 6   
FM2      MONEY STOCK:M2(M1+O'NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP(BIL$, 6   
FM3      MONEY STOCK: M3(M2+LG TIME DEP,TERM RP'S&INST ONLY MMMFS)(BIL$,SA) 6   
FM2DQ    MONEY SUPPLY - M2 IN 1996 DOLLARS (BCI) 5   
FMFBA    MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA) 6   
FMRRA    DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA) 6   
FMRNBA   DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA) 6   
FCLNQ    COMMERCIAL & INDUSTRIAL LOANS OUSTANDING IN 1996 DOLLARS (BCI) 6   
FCLBMC   WKLY RP LG COM'L BANKS:NET CHANGE COM'L & INDUS LOANS(BIL$,SAAR) 1   
CCINRV   CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19) 6   
FSPCOM   S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) 5   
FSPIN    S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) 5   
FSDXP    S&P'S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) 2   
FSPXE    S&P'S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA) 5   
FSDJ COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVERAGE 5   
PSCCOM SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) 5   
FYFF     INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA) 2   
FYGM3    INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA) 2   
FYGM6    INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA) 2   
FYGT1    INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA) 2   
FYGT5    INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA) 2   
FYGT10   INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA) 2   
FYAAAC   BOND YIELD: MOODY'S AAA CORPORATE (% PER ANNUM) 2   
FYBAAC   BOND YIELD: MOODY'S BAA CORPORATE (% PER ANNUM) 2   
sfygm3 fygm3-fyff 1   
sFYGM6    fygm6-fyff 1   
sFYGT1    fygt1-fyff 1   
sFYGT5    fygt5-fyff 1   
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sFYGT10   fygt10-fyff 1 I 
sFYAAAC   fyaaac-fyff 1   
sFYBAAC   fybaac-fyff 1   
EXRSW    FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$) 5   
EXRJAN   FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) 5   
EXRUK    FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) 5   
EXRCAN   FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) 5   
PWFSA    PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) 6   
PWFCSA   PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA) 6   
PWIMSA   PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA) 6   
PWCMSA   PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 6   
PMCP     NAPM COMMODITY PRICES INDEX (PERCENT) 1   
PUNEW    CPI-U: ALL ITEMS (82-84=100,SA) 6   
PU83     CPI-U: APPAREL & UPKEEP (82-84=100,SA) 6   
PU84     CPI-U: TRANSPORTATION (82-84=100,SA) 6   
PU85     CPI-U: MEDICAL CARE (82-84=100,SA) 6   
PUC      CPI-U: COMMODITIES (82-84=100,SA) 6   
PUCD     CPI-U: DURABLES (82-84=100,SA) 6   
PUXF     CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA) 6   
PUXHS    CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA) 6   
PUXM     CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84=100,SA) 6   
HHSNTN   U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83) 2   

Note: I and II indicate the variables selected at the beginning of 2001:01 and/or at the end of 2004:10, respectively, by the Lasso regression.  
 

 


