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Abstract: The inherent non-linear behavior of switch-mode power supplies complicates the task of
computing their linear models, which are essential for a model-oriented control design of DC–DC
converters. In a model-oriented control design approach, the accuracy of the plant model directly
influences the performance of the control system as the plant parameters tend to be linked to the
controllers’ gains. Moreover, the extractions of linear dynamic models of high-order non-linear plants
such as DC–DC converters are laborious and mathematically intractable. Therefore, in this paper,
a generalized expression that represents either the audio-susceptibility or the control-to-output
voltage transfer function for voltage-mode control is proposed. The proposed generalization reduces
the task of computing the small-signal model of a given converter to simple calculations of coefficients
of generalized transfer function/expression. It is shown that the coefficients of the generalized model
can be deduced by inspection, directly from the circuit diagram, allowing the whole model to be
computed by inspection. Additionally, the proposed modelling technique will be shown to have
secondary use of verifying accuracy even when conventional modelling techniques such as state-space
averaging or circuit averaging are used.

Keywords: DC–DC converter; small-signal modelling; converter dynamics; unified analysis;
controller design; generalized model; CCM

1. Introduction

DC–DC converters are widely used in DC voltage matching or changing of DC voltage
levels, i.e., to perform similar functions as AC transformers. These devices offer several
attractive features such as high efficiency and small footprint compared to their predecessor,
the linear regulator [1–5]. To maintain a regulated output voltage, it requires a feedback
compensation system; which is normally designed employing model-oriented controller
techniques. A plant model forms a primary ingredient in the design process of the compen-
sator [6–8]. There are numerous modelling techniques discussed in open literature, which
include: network analyzer test, simulations and analytic approach [9–11]. The acquisition
of a model for a specified converter topology based on the latter technique, is more intuitive
than the former two methods; thus, it is the most preferred method [9,12,13]. Since DC–DC
converters are nonlinear systems, semi heuristic analytic methods are employed to compute
their equivalent linear models, such that linear control techniques may be used [14,15].
Although based on simple rules (i.e., averaging and linearization), these methods are time
consuming and laborious [15,16]. To develop a model that accurately represents the physi-
cal system within a particular time-scale or frequency range, model of interest, and effects
of all the converter components that affect relevant system electromagnetic transients must
be accounted for and only neglect the irrelevant effects [13,17–19].

Presently, proliferation in the application areas of DC–DC converters has complicated
the task of regulating the converter for a specified task. This is due to areas of application
such as the automotive industry with the advent of the electric vehicle [3,20], HVDC systems
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with the advent of converters with fault blocking capabilities, and on-going research into
the creation of an optimized DC breaker [21]. Moreover, energy management requirements
in micro-grids further complicates the control task. With this in mind, the task to describe
the plant model or a component thereof, should (at least for well-known topologies) be of
the least complexity.

In [14,15,22–25], the converter modelling process based on the most popular analytic
converter modelling techniques such as state-space averaging, circuit averaging, current
injected equivalent circuit, and switching flow graphs (SFG) are well described. Two main
steps are identified as common amongst these modelling techniques, i.e., averaging and
linearization. As such, all these techniques result in the same model for a given converter
topology operating under a specified mode of conduction, i.e., continuous conduction
mode (CCM) or discontinuous conduction mode (DCM). A slight model discrepancy is
noted when using the circuit averaging approach based on how the series resistance of the
capacitor is considered, but this does not change the accuracy nor the order of the transfer
function [26]. Numerous reviews on these modelling techniques and their respective merits
and demerits are also reported [27–32]. The use of one modelling scheme over the other will
mainly be a designer’s preference and the overall objectives of the design, e.g., if the design
aims to highlight model attributes while using well known circuit components and analysis
techniques, the circuit averaging modelling scheme will be the best choice. Furthermore,
a review of all the popular modelling techniques [22–25] reveals the following limitations
or demerits:

• Time consuming: the two main steps (i.e., averaging and linearization) present in all
these schemes require increased computational effort, and thus constitute the bulk of
the time requirements of the respective scheme;

• Intractable mathematics with higher-order systems: the number of equations increase
with an increase in reactive components of a circuit, and the manipulation of such
equations can easily become intractable;

• Limited validation of accuracy: To date the only way one can validate the accuracy
of the resultant transfer function is mainly limited to model order which is linked to
the number of reactive components in a circuit, i.e., four reactive components, implies
fourth order circuit. Secondly, the presence of the right-half plane zero (RHPZ) in boost
and buck-boost topologies. These methods are not sufficient to verify model accuracy
since each coefficient of the transfer function has an influence on the performance
of the analysed component. Thus, a more rigorous accuracy verification scheme
is needed;

• Lack of unified analysis: Most converters are treated in isolation; fewer works attempt
to report a unified approach for DC–DC converter modelling. Even when a unified
approach is considered, attributes such as converter cell [26], converter order [26,33] and
functionality [22–24] are used as discriminants. Such an approach requires a repeat of the
modelling steps and corresponding dynamic analysis for any other converter variant.

To reduce the model computation time, maintain tractability with higher-order con-
verters and subsequently simplify the controller design step when using these inherently
laborious modelling techniques, researchers have looked at developing reduced order
models [34–37]. These models present a trade-off between accuracy and controller design
complexity. It should be borne in mind that models derived using averaged techniques
have limited accuracy due to the averaging step which essentially ignores the switching
nature of the converters [14,15]. As such, model order reduction techniques serve to further
narrow the upper accuracy limit of these models. To reduce computation effort while
retaining default model accuracy, unified large and small-signal models for specified basic
converter units have been proposed [26,38,39].

Tollik et al. [40] recognised the unnecessarily cumbersome process of modelling
DC–DC switching regulators, with the proposal of a new continuous modelling method
aimed at reducing the order of the matrices to be inverted. The study made the mathematics
more tractable especially for higher order converters but failed to address issues pertinent
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to time and effort in the derivation of the model. A substantial amount of tedious algebra
still appeared in the new method. The feasibility and benefits of the technique the current
study proposes is partially promoted by the work conducted by Abramovitz [41], in which
switching flow graphs were used to unify tapped-inductor-based DC–DC converters and
elementary DC–DC converters. This work employs what it termed the ‘tapped-inductor
switcher’ (TIS) whose generalized model can be used to compute dynamic models of
numerous converters. The main demerit of this work is that it considers a small group of
closely related converter topologies. Additionally, the variables of the TIS depend on the
original converter topology, which requires initial analysis of a specific converter. Even
after computing the correct variables of the TIS, substantial computational effort is still
required to compute models of interest from the generalised switching flow graph of the
TIS. Lastly, it considers converter functionality as a discriminant when employing the TIS
to compute models for basic converters. This technique is extended to include leakage
inductance [38], but still maintains the same demerits.

Rico [42] employed the tapped-inductor DC–DC converter topology to show the
same results obtained by Abramovitz. In this work, he also considered the discontinuous
conduction mode which was negated in the study conducted by Abramovitz. The work
further promoted the benefits of unifying the model for a range of DC–DC converters.
Although both modes of conduction were considered, they were treated in separate sections
as unique converter conditions. No unifying efforts were made. One of the demerits of the
study was that converter functionality was still treated as a discriminant. Moreover, a total
of six converters were unified into three pairs. Considering the large number of available
DC–DC converters, this work failed to be of significant value. The highlight of Rico’s work
was in showing that the tapped-inductor DC–DC converter was the most general converter
topology when compared with elementary converters.

Furthermore, Ref. [16] read together with its correction paper [43], offers an alternative
modelling technique based on the computation of energy factor and sub-sequential param-
eters such as PE (pumped energy), SE (stored energy), CIR (capacitor/inductor SE factor),
LE (lost energy), etc., to capture the small and large signal response of DC–DC converters.
It can be seen from the accompanying examples in the paper that the computation of
the transfer function was still mathematically involved. Moreover, the method failed to
adequately justify the second order approximation for higher order circuits.

Generalized large-signal and steady-state circuit models have been proposed for both
CCM and DCM [44–47], but small-signal analysis continues to be considered unique for
each converter topology. Current research is more focused on improving the frequency band
within which the accuracy of a given DC–DC converter is valid [48,49], and continues to
negate the requirement to reduce the computational effort seen when analytically deriving
DC–DC converter small-signal models. For well-known systems such as DC–DC converters,
a less cumbersome method is needed to increase the efficiency in current model-oriented
control problems. Software packages that can easily provide the frequency response
of a given converter exist, but they fail to provide the necessary intuition pertinent to
converter operation, especially for pedagogic reasons. Finer attributes pertinent to a given
circuit component giving rise to a pole or a zero and the corresponding exact position and
frequency of a pole or a zero in the model are hardly provided by the software packages
available. Thus, the objective of the current research to reduce the computational effort in
the derivation of DC–DC converter small-signal dynamic models, and also provide a quick
accuracy reference, while retaining intuition, proves relevant.

Contributions of the study towards addressing the demerits of the currently-available
modelling techniques:

• Time consuming: the proposed modelling scheme results in models similar to those
obtained using [22–25] but does not involve the averaging and linearisation steps in
the model derivation process. As such, it enables a more rapid model development;
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• Intractable mathematics with higher-order systems: the proposed modelling scheme
directly computes the coefficients of the numerator and denominator polynomials of
the transfer functions, which maintains tractability even for higher order converters;

• Limited validation of accuracy: the inherent coefficient-based derivation process of the
proposed modelling scheme achieves a more refined and rigorous accuracy verification
scheme as compared with current verification methods;

• Lack of unified analysis: in the proposed modelling scheme, the converter cell, converter
order or converter functionality are nullified as discriminants in the derivation process.

The study considers dynamic models of two-switch, both 2nd and 4th order, non-
isolated DC–DC converters. These are cells A and C–G in [26]. This range of converters
includes well-known and commonly used converters such as the conventional buck, boost
and buck–boost converters as well as the cuk, sepic and zeta converters. The rest of the
paper is structured as follows: The motivation, operating principles and limitations of
the proposed modelling scheme is presented in Section 2. The procedures for computing
continuous time small-signal models using the proposed modelling scheme are presented
in Sections 3 and 4. Further considerations of the modelling scheme are presented in
Section 5. Section 6 validates the advantages presented by the proposed modelling scheme.
Discussions and conclusions are presented in Sections 7 and 8, respectively.

2. Development of the Modelling Scheme

Consider the computation of a small-signal model of DC–DC converters employing
the method of switching flow graphs as presented in [25]. The following observations can
be made from the modelling scheme:

• The same number and form of ‘flow graph nodes’ are present for converters with
an equal number of components, i.e., the flow graph nodes shown in Figure 1 will be
the same for the buck and buck–boost converters;

• The establishment of flow graph branches is a function of element position and
switching action;

• Small-signal modelling of the switching action is standardized in the derivation process
as shown in Figure 2. As such, element position is the only variable which can dictate
the form of the resultant model.
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This suggests that there is definitive causality between the position of the switches in
relation to passive components and the resultant small-signal model. Thus, if the form of the
resultant model is fixed to a standard form, the causality will be between the position of the
switches and the variables of the standard model. Therefore, it seems as if the task to unify
the dynamic model only entails unifying the branches on the SFG diagram. In this study,
the aforementioned causality is investigated and modeled into generalized statements
which can be used to develop small-signal models for a range of DC–DC converters. The
intentions of this study are to first identify the circuit element with the most influence on
the final model structure, attempt to study all the possible variants of the identified element
together with the corresponding influence of each variant, and finally, develop a unified



Energies 2022, 15, 5454 5 of 23

theory or set of rules that generalize the influence of the identified element, such that the
dynamic model of a given converter may be derived by inspection of the circuit diagram.
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2.1. Identifying Influential Element and Its Variants

Taking note of the influence that the switching elements display throughout all the
major modelling techniques, (i.e., state-space, circuit averaging or SFG), it is then more
convincing to identify the two switches as the elements with the most influence on the
resultant model since they constitute the entire non-linearity of any switching converter [47].
There are two main variants of switching elements for the group of converters considered in
this study, i.e., single-pole double-throw (SPDT), commonly known as the PWM switch [47],
or single-pole single-throw (SPST), which is a model for any discrete switch. For all
converters in groups A and C–F of [26], the operation of the switching matrix, which is
comprised of the active switch and the passive switch, can be fully described by an SPDT
switch. This feature is seen in 24 converters out of a total of 30 converters considered in
the study. The switching matrix for converters in group G of [26] cannot be fully described
by an SPDT switch, since it mainly consists of two separate SPST switches. A direct
application of the rules developed for the SPDT group on converters in group G results in
incorrect models when compared with the corresponding models developed using existing
modelling techniques. This observation comes as no surprise, due to the study by M.
Veerachary [33] where a generalized large-signal flow graph model of the most popular
fourth-order converters is presented. The converters from group G showed unique traits
which were subsequently added to the proposed common SFG. As such, the set of rules
developed for converters in group G (SPST group), will be different from those developed
for converters in groups A and C–F in the proposed modelling procedure.

2.2. Introducing Model’s Standard Form

To avoid unnecessary confusion, a standardized form of the resultant dynamic model
is established, i.e., all derived converters’ models are computed in established standard
form. Most transfer functions of interest for any system are often represented as a ratio of
two polynomials. As such, the standard form opted for, in this paper, is shown in (1). Its
choice was mainly influenced by the fact that some of the coefficients in the model retain
the same combination of the circuit component’s attributes, irrespective of circuit topology
or functionality, as will be shown later. In addition, the task of computing the plant’s model
is reduced to simple calculations of coefficients; and the order of the model is readily seen
from the standardized form. Moreover, the standardized model is more suited for analysis,
particularly with software tools which allow a quick log of the model’s coefficients.

Since the main task in the proposed dynamic modelling process is now concerned
with computing the coefficients of the polynomial of s, the substantial amount of time
typically spent in deriving the dynamic model using existing modelling techniques will no
longer be necessary. The thought process is that if these coefficients can be computed with
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ease, then the entire modelling process is simplified, and will require substantially reduced
effort and time for deriving models.

G(s) =
Amsm + Am−1sm−1 + ... + A0s0

Bnsn + Bn−1sn−1 + Bn−2sn−2 + ... + B0s0 (1)

NB: For converters whose non-ideal parameters are negligible (as in this paper),
m ∈ (N < n). The value of n is always equal to the number of reactive components in the
circuit. Thus, the maximum value of m for a 2nd-order system is 1, and for a 4th-order
system is 3.

Component Numbering

Component numbering facilitates easy reference of a component in a circuit. The
golden rule in carrying out this task is to note that components are numbered in the
direction of conventional power flow, i.e., from left to right, or from top to bottom, as
shown in Figure 3. This creates identifiers for a given converter component within any of
the converters in this study. It should be noted that the same circuit element-numbering
scheme applies to the two main groups of converters considered in the study, i.e., SPDT
group and SPST group (group G).
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2.3. Additional Attributes for Modelling Group G Converters

Although switching sequentially, the physical structure of the switches in group G
cannot be forged to a single unit. With that borne in mind, it will be fitting to identify
an additional trait which can be used together with the two separate switches in group
G to develop a method for determining all the coefficients of the model by inspection of
the circuit diagram. The identified trait when employed together with the separate SPST
switches should enable accurate determination of the relevant conduction times where
required. The output-port current wave-shape, although with three states, is sufficient for
use as an additional unique trait, alluded to above. The ‘output-port’ current wave-shape
shows a total of three unique wave-shapes. These are shown in Figure 4 (controlled switch
or diode feeds the output-port), Figure 5 (output-port node is fed by an inductor plus
a controlled switch or diode), and Figure 6 (inductor feeds the output-port).

Energies 2022, 15, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 4. Positive pulsed output-port current component (a) active switch current, (b) diode cur-
rent and (c) equivalent circuit diagram. 

 
Figure 5. (a) Pulsed output-port current with both positive and negative components and (b) cir-
cuit diagram. 

 
Figure 6. (a) Positive non-pulsed output-port current and (b) circuit diagram. 

2.4. Computing Steady State Votage Convertion Raito 
For the group of converters whose switching matrix can be described with an SPDT 

switch, the steady-state voltage conversion ratio for any given converter topology within 
the group is given by one of the three main functions. These functions are: bucking func-
tion (2), boosting function (3), and buck–boost function (4) with and without polarity in-
version [26]. Equations (2)–(4) are prominent steady-state voltage conversion ratios of the 
three most basic DC–DC converters. This suggests that they are easy to remember since 
they represent basic voltage conversion functionalities in DC–DC converters. The ‘D’ in 
(2)–(4) is the DC quiescent operating point. 𝐷 (2) 11 − 𝐷 (3) 𝐷1 − 𝐷 (4) 

For the SPST group, with the exception of the zeta and sepic converters whose volt-
age conversion ratio is given by (4), the remaining converters’ voltage conversion ratio 
expressions are not as common, but they are still classified as either buck, boost or buck–
boost in terms of functionality. In either case, at most only two simple average inductor 
voltage equations are sufficient to compute the voltage conversion ratio of any converter. 

Figure 4. Positive pulsed output-port current component (a) active switch current, (b) diode current
and (c) equivalent circuit diagram.



Energies 2022, 15, 5454 7 of 23

Energies 2022, 15, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 4. Positive pulsed output-port current component (a) active switch current, (b) diode cur-
rent and (c) equivalent circuit diagram. 

 
Figure 5. (a) Pulsed output-port current with both positive and negative components and (b) cir-
cuit diagram. 

 
Figure 6. (a) Positive non-pulsed output-port current and (b) circuit diagram. 

2.4. Computing Steady State Votage Convertion Raito 
For the group of converters whose switching matrix can be described with an SPDT 

switch, the steady-state voltage conversion ratio for any given converter topology within 
the group is given by one of the three main functions. These functions are: bucking func-
tion (2), boosting function (3), and buck–boost function (4) with and without polarity in-
version [26]. Equations (2)–(4) are prominent steady-state voltage conversion ratios of the 
three most basic DC–DC converters. This suggests that they are easy to remember since 
they represent basic voltage conversion functionalities in DC–DC converters. The ‘D’ in 
(2)–(4) is the DC quiescent operating point. 𝐷 (2) 11 − 𝐷 (3) 𝐷1 − 𝐷 (4) 

For the SPST group, with the exception of the zeta and sepic converters whose volt-
age conversion ratio is given by (4), the remaining converters’ voltage conversion ratio 
expressions are not as common, but they are still classified as either buck, boost or buck–
boost in terms of functionality. In either case, at most only two simple average inductor 
voltage equations are sufficient to compute the voltage conversion ratio of any converter. 

Figure 5. (a) Pulsed output-port current with both positive and negative components and
(b) circuit diagram.

Energies 2022, 15, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 4. Positive pulsed output-port current component (a) active switch current, (b) diode cur-
rent and (c) equivalent circuit diagram. 

 
Figure 5. (a) Pulsed output-port current with both positive and negative components and (b) cir-
cuit diagram. 

 
Figure 6. (a) Positive non-pulsed output-port current and (b) circuit diagram. 

2.4. Computing Steady State Votage Convertion Raito 
For the group of converters whose switching matrix can be described with an SPDT 

switch, the steady-state voltage conversion ratio for any given converter topology within 
the group is given by one of the three main functions. These functions are: bucking func-
tion (2), boosting function (3), and buck–boost function (4) with and without polarity in-
version [26]. Equations (2)–(4) are prominent steady-state voltage conversion ratios of the 
three most basic DC–DC converters. This suggests that they are easy to remember since 
they represent basic voltage conversion functionalities in DC–DC converters. The ‘D’ in 
(2)–(4) is the DC quiescent operating point. 𝐷 (2) 11 − 𝐷 (3) 𝐷1 − 𝐷 (4) 

For the SPST group, with the exception of the zeta and sepic converters whose volt-
age conversion ratio is given by (4), the remaining converters’ voltage conversion ratio 
expressions are not as common, but they are still classified as either buck, boost or buck–
boost in terms of functionality. In either case, at most only two simple average inductor 
voltage equations are sufficient to compute the voltage conversion ratio of any converter. 

Figure 6. (a) Positive non-pulsed output-port current and (b) circuit diagram.

2.4. Computing Steady State Votage Convertion Raito

For the group of converters whose switching matrix can be described with an SPDT
switch, the steady-state voltage conversion ratio for any given converter topology within
the group is given by one of the three main functions. These functions are: bucking
function (2), boosting function (3), and buck–boost function (4) with and without polarity
inversion [26]. Equations (2)–(4) are prominent steady-state voltage conversion ratios of
the three most basic DC–DC converters. This suggests that they are easy to remember since
they represent basic voltage conversion functionalities in DC–DC converters. The ‘D’ in
(2)–(4) is the DC quiescent operating point.

D (2)

1
1− D

(3)

D
1− D

(4)

For the SPST group, with the exception of the zeta and sepic converters whose volt-
age conversion ratio is given by (4), the remaining converters’ voltage conversion ratio
expressions are not as common, but they are still classified as either buck, boost or buck–
boost in terms of functionality. In either case, at most only two simple average inductor
voltage equations are sufficient to compute the voltage conversion ratio of any converter.
This is shown in (5) and (6) as examples for second order and fourth-order converters in
Figures 7 and 8, respectively. Alternatively, these voltage conversion ratios can be obtained
from the tables in [26].
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VL1 = L1
diL1
dt = 0 = VinD + (Vin −V0)(1− D)

Vo
Vin

= 1
1−D

 (5)

VL1 = L1
diL1
dt = 0 = (Vin −Vo)D +

(
−VC1

)
(1− D)

VL2 = L2
diL2
dt = 0 =

(
VC1 −Vo

)
D + (−Vin)(1− D)

Vo
Vin

= 2D−1
D


(6)

2.5. Converter Non-Linearity Considerations

The fundamental step in the modelling process of switching converters is averaging.
This step takes two models from two sub-interval linear time invariant circuits and merges
them into one continuous model over the entire modelling period. This mathematical
convenience is achieved at a cost of model accuracy range, i.e., averaging reduces the range
of frequency within which the derived model is valid. This is considered to be similar to
an application of a low-pass filter with a cut-off frequency of around a third to half of the
switching frequency [24]. It can be seen from Figure 9 and accompanying plot in Figure 10
that both the ideal and non-ideal plots are congruent even up to 60 kHz. Figure 9 is a plot
for a converter switching at 50 kHz. As such, this averaged model should be valid only
up to around 17–25 kHz. This proves that non-ideal attributes may be neglected without
a substantial effect on the choice of a compensator. The worst-case scenario of the discrep-
ancy between the ideal and the non-ideal can be suppressed with a simple proportional
controller. It will, therefore, make sense for one to only really consider non-ideal behavior
when high frequency dynamics are of interest. Given the inherent limitation of averaged
models, accurate analysis of high frequency dynamics will require non-averaged models.
As such, the incorporation of non-linear behavior when computing averaged models for
converters may be neglected, as in the case of the proposed modelling technique.
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The dynamic model of a conventional boost converter is considered to evaluate the
effects of non-ideal behavior on the resultant frequency response. A non-ideal control-to-
output voltage transfer function of the conventional boost converter is shown in (7) as
derived in [22] using the popular state-space averaging approach. Table 1 captures all the
circuit parameters considered in the evaluation. All the circuit parameters were sized based
on the voltage and power specifications. The saturation voltage for the active switch of the
conventional boost converter was selected from the IXGH100N30C3 datasheet, assuming
a 140 ◦C maximum junction temperature for our operation. The forward voltage of the
diode was taken from the RF1501TF3S datasheet.

ṽo(s)
δ̃(s)

=
−RL ILCLrcs2 +

{[
(1− D)

(
V0 + Vf wd −Vce

)
− rl IL

]
RLCrc − RL ILL

}
s + RL

[
(1− D)

(
V0 + Vf wd −Vce

)
− rl IL

]
(RL + rc)CLs2 +

{
L + Crc(RL + rc) + RL(1− D)2Crc

}
s + rl + RL(1− D)2

(7)

Table 1. Converter parameters to evaluate effects of non-ideal behavior.

Circuit Parameter Ideal Circuit Non-Ideal Circuit

Vin 48 V 48 V
V0 100 V 100 V
P0 500 W 500 W

Fsw 50 kHz 50 kHz
∆iL,pk-pk 0.2IL,av 0.2IL,av

∆VC,pk-pk 0.02V0 0.02V0
Vce 0 V 1.53 V

Vfwd 0 V 1.5 V
rL 0 mΩ 20 mΩ
rC 0 mΩ 3 mΩ
D 0.52 0.54
L ≥239.616 µH ≥227.457 µH
C ≥26 µF ≥26.994 µF

The variables in (7) are defined as follows: RL → equivalent load resistance; IL → av-
erage inductor current; C → capacitance; L→ inductance; V0 → average output voltage;
rc → capacitor series resistance; Vf wd → diode forward voltage; Vce → saturation voltage
of the active switch; rl → series inductor resistance; D → DC quiescent operating point of
the duty cycle; ṽo(s)→ AC variations of the output voltage; and δ̃(s)→ AC variations of
the duty cycle.
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2.6. Final Modelling Considerations

To present the proposed modelling scheme with added simplicity, the standardized
transfer function in (1) was further refined by considering the numerator and the denomi-
nator polynomials independently. The computation of the numerator and the denominator
polynomials’ coefficients will be explained in separate sections. The study limits the de-
rived transfer functions to those required for voltage-mode control; therefore, for each
converter, two models of interest are control-to-output voltage transfer function, and the
audio susceptibility transfer function.

3. Proposed Modelling Scheme for the SPDT Group

This section presents rules for computing coefficients of (1), following an example-
based approach. For this group of converters, the example converter is that shown in
Figure 11. The voltage conversion ratio of this converter is given by (3).
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3.1. Control-to-Output Voltage Transfer Function

Consider (1) with G(s) = ṽo(s)
δ̃(s)

∣∣∣
ṽin(s)=0

. In the following sub-sections, the subscript k

is used to denote a positive integer introduced through the circuit component numbering
scheme alluded to above, and supported by Figure 3. Thus, only two possible values exist
for k, i.e., ‘1’ or ‘2’.

3.2. Numerator Polynomial

Equation (8) is derived from (1)

AmSm + Am−1Sm−1 + · · ·+ A0S0 (8)

1. A0 is always equal to Vin regardless of the converter topology, i.e., A0 = Vin;
2. A1 is given by: A1 = ∑ ILk Lk. Only inductors whose average currents are not equal

to the load current comprise A1. Figure 12 shows the typical connections of inductors
that make A1 = 0. The sign of the individual product terms of the sum is positive if
the inductor under consideration is charged by a canonical-cell capacitor and feeds
power back to the source or to the output port; otherwise, the sign is negative. For
this group, this energy exchange is seen when the inductor under consideration
shares a node with a capacitor and a diode at one of its terminals; otherwise, the sign
is negative;

• For the circuit in Figure 11, it can be seen that none of the inductors is connected
as shown in Figure 12, therefore, the coefficient takes the form of ±IL1 L1 ± IL2 L2.
None of the inductors’ terminals share a node with a diode and a capacitor.
Hence, A1 = −IL1 L1 − IL2 L2;

3. A2 is given by: A2 = ∑ VC1 C1Lk. A2 is comprised only of inductors that are not
connected directly to the output-port as shown in Figure 12b, where neither of the
inductor’s terminals is connected to both switches (e.g., Figure 13).The sign of the
individual product terms of the sum is positive if, and only if, at any given sub-interval
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of the switching period, the inductor and capacitor in the product term are connected
in series or parallel when all independent voltage sources are shorted; otherwise, the
sign is negative;

• For the circuit in Figure 11, only L1 conforms to the requirements when VDC
is shorted, therefore, the coefficient takes this form: ±VC1 C1L1. L1 is never
connected in series or in parallel with a capacitor at any given sub-interval of
the switching period when all independent voltage sources are shorted. Hence,
A2 = −VC1 C1L1;

4. A3 is non-zero if, and only if, at any given sub-interval of the switching period, there is
a series connection of one inductor to a parallel combination of another inductor and
a capacitor; and neither of the two inductors is in series with the load. This non-zero
value is given by: A3 = ILparallel Lparallel LseriesC1. Figure 14 illustrates graphically how
the parallel/series identifiers work. The sign of the term is positive if either of the
inductors under consideration shares a node with a capacitor and a diode at one of its
terminals; otherwise, the sign is negative;

• For the circuit in Figure 11, such a series-parallel connection exists when the
diode D1 conducts, thus the term is non-zero. L2 is the inductor in parallel
with a capacitor, while L1 is the inductor in series with the parallel combination,
therefore, the coefficient takes the form of ±IL2 C1L1L2. None of the inductors’
terminals share a node with a diode and a capacitor. Hence, A3 = −IL2 C1L1L2;
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1. All coefficients corresponding to odd powers of ‘S’ are divided by the load resistance.
Moreover, the signs of all the terms in the denominator are positive;

2. In general, B0 is defined as B0 = {g(D)}2, where the DC voltage conversion ratio, i.e.,
Vo
Vin

, is represented as a ratio of two functions making its numerator and denominator,

i.e., Vo
Vin

= f (D)
g(D)

. Thus, for all the converters, irrespective of functionality and order,
the value of B0 is equal to the square of the denominator term of the DC voltage
conversion ratio; e.g., B0 = (1− D)2 for a boost and a buck–boost converter whose
DC voltage conversion ratios are given by Vo

Vin
= 1

1−D and Vo
Vin

= D
1−D , respectively,

and B0 = 1 for a step-down converter whose DC voltage conversion ratio is given
by Vo

Vin
= D;

• For the circuit in Figure 11, g(D) = 1− D, as can be deduced from (3), therefore,
B0 = (1− D)2;

3. B1 is a sum of products of the inductances in the circuit and the square of the sum of the
conduction times of the semiconductor device(s) to which the inductors are physically
connected. For example, if the circuit has an inductor with either of its terminals
connected to both switches, then B1 will have a term in the sum of products with the
value given by Lkt2

Lk
= Lk(D + 1− D)2 = Lk. Figure 15 gives a pictorial description

of the relation described above for a range of possible inductor-switch connections.
A fourth-order circuit will have two inductors; thus the resultant coefficient will be
the sum of the product of an individual inductor with the corresponding squared
conduction time, i.e., B′1 = ∑ Lkt2

Lk
, where tLk represents the conduction time of one

switch, or the sum of conduction times of two switches associated with a specified
inductor, thus the possible expressions it can assume are: D, 1 − D or 1. Since B1 is
a coefficient of an odd power of s, step “1” applies, i.e., B1 = B′1/R = ∑ Lkt2

Lk
/R;

• For the circuit in Figure 11, L1 is not connected to any switch, thus, from Figure 15,
tL1 = 1 and L2 is connected to both switches, thus, from Figure 15, tL2 = 1.
Therefore, B1 = 1

R (L1 + L2);

4. B2 is a sum of products of inductances and capacitances in the circuit. These products
are such that the output capacitor, i.e., C2, multiplies with the inductances of the
circuit’s inductors and their corresponding squared conduction times as described
in the preceding step, i.e., if the sum of the product of inductances and squared
conduction times in B′1 is given by ∑ Lkt2

Lk
, this then implies that C2 forms a product

term as follows: C2

(
∑ Lkt2

Lk

)
. C1 only multiplies with inductances whose inductors

are never connected in series with the output-port/load at any given sub-interval
of the switching period. In addition, the product of C1 with any of the inductances
of inductors, has a non-unity squared conduction time if, and only if, neither the
inductor nor the capacitor is connected (as shown in Figure 13 or Figure 16b) to both
of the circuit’s switches at one or either of its terminals. The conduction time is that of
the “absent” switch (where, the “absent” switch is that which is neither connected to
the inductor nor the capacitor under consideration). Thus, the resultant expression
for B2 is as follows: C2B′1 + ∑ C1

(
Lkt2

Lk

)
;

• For the circuit in Figure 11, both of the inductors meet the criterion, thus C1
multiplies with both L1 and L2. In addition, it can also be seen that tL2 = 1,
since L2 is connected to both switches and tL1 = D, since neither C1 nor L1 is
connected to the active switch. Therefore, B2 = C2(L1 + L2) + C1

(
L1D2 + L2

)
;

5. B3 is always given as a product of all the reactive components of the circuit excluding
the output-port capacitor. This value is non-zero only for fourth-order converters;
it is given as B′3 = L1L2C1. Since B3 is a coefficient of an odd power of ‘s’, step “1”
applies, i.e., B3 = B′3/R = L1L2C1/R;
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6. B4 is always given as a product of all the reactive components of the circuit. This
value is non-zero only for fourth-order converters; it is given as B4 = L1L2C1C2.
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3.4. Audio-Susceptibility

Consider (1) with G(s) = ṽo(s)
ṽin(s)

∣∣∣
δ̃(s)=0

.

3.5. Numerator Polynomial

The form of the polynomial in this study is given by (8).

1. In general, A0 = f (D)× g(D), where Vo
Vin

= f (D)
g(D)

. For example, a step-down converter

with Vo
Vin

= D, A0 = D× 1. The sign for this term is always positive;

• For the circuit in Figure 11, with reference to (3), it can be seen that A0 =
1× (1− D) = 1− D;

2. Coefficients to odd powers of s are always equal to zero, i.e., A1 = A3 = 0;
3. A2 is given by: A2 = ∑ C1Lkt2

Lk
. C1 only multiplies with inductances whose inductors

are never connected in series with either the load or input-source at any given sub-
interval of the switching period. If either the inductor or the capacitor is connected
to both switches (as shown in Figure 13 or Figure 16b), tLk becomes unity, and this is
also true when neither the capacitor nor the inductor is connected to a switch. If only
one switch is connected to the inductor or the capacitor, the conduction time is that of
the “absent” switch (where, the “absent” switch is that which is neither connected to
the inductor nor the capacitor under consideration). The sign of this term is positive if,
and only if, at any given switching interval, the inductor and capacitor in the product
term are connected in series or parallel; otherwise the sign is negative;
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• For the circuit in Figure 11, only L2 meets the criterion, and tL2 = 1 since L2
shares a node with both switches at one of its terminals. Thus, the coefficient is
of the form ±C1L2. Since L2 is connected in parallel with a capacitor when the
diode conducts, A2 = C1L2.

3.6. Denominator Polynomial

The denominator for the audio-susceptibility transfer function is always the same as
that of the control-to-output voltage transfer function.

4. Proposed Modelling Scheme for the SPST Group

This section presents rules for computing coefficients of (1), following an example-
based approach. For this group of converters, the example converter is that shown in
Figure 8. The voltage conversion ratio of this converter is given by (6).

4.1. Control-to-Output Voltage Transfer Function

Consider (1) with G(s) = ṽo(s)
δ̃(s)

∣∣∣
ṽin(s)=0

. In the following sub-sections, the subscript k

denotes a positive integer introduced through the circuit component numbering scheme
alluded to above and supported by Figure 3. Thus, only two possible values exist for k, i.e.,
‘1’ or ‘2’.

4.2. Numerator Polynomial

The form of the polynomial in this study is given by (8).

1. A0 is the same as that for the SPDT group, i.e., A0 = Vin;
2. A1 is the same as that for the SPDT group, i.e., A1 = ∑ ILk Lk;

• For the circuit in Figure 8, L2 is the only inductor whose average current is not
equal to the output current, since average current through C1 is zero, there-
fore, the coefficient takes the form of ±IL2 L2. Since L2 acquires its energy from
a canonical-cell capacitor and drains it to the input port, A1 = I2L2;

3. A2 is mainly dependent on the output-port current wave-shape as defined by
Figures 4–6. If the current is as shown in Figure 4, then A2 is if of the form:
A2 = ∑ VC1 C1Lk. If the current is as shown in Figure 5, then A2 is of the form:
A2 = ∑ Vswitch blockC1Lk, where Vswitch block is the blocking voltage of the switch con-
nected to the midpoint of an LC circuit as shown in Figure 17. If the current is as

shown in Figure 6, then A2 is given as A2 =
∑ VC1

C1Lk
tLk

, where tLk is the conduction

time of the switch connected at the midpoint of a capacitor–inductor combination
under consideration as shown in Figure 17;
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Figure 17. Capacitor–inductor switch/diode tapping equivalent circuit.

NB: These products only consider the inductors, which are not connected in series
with the load. The sign of the individual product terms of the sum is always positive,
unless involving diode blocking voltages, which are inherently negative.

•
For the circuit in Figure 8 both inductors conform to the requirements, therefore, the
coefficient takes the form of A2 = VC1 C1L1 + VC1 C1L2;
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4. A3 is non-zero if, and only if, at any given sub-interval of the switching period, there is
a series connection of one inductor to a shorted series connection of the other inductor
and capacitor; and neither of the two inductors is in series with the load. This non-zero
value is equal to the product of the canonical-cell reactive components and the sum of
the average inductor currents (A3 =

[
ILseries + ILshorted

]
LseriesLshortedCshorted). Figure 18

graphically illustrates how the series/series-shorted identifiers work. The sign of
the term is positive if at least one of the terms in A1 is positive; otherwise the term
is negative;

• For the circuit in Figure 8, such an inductor–capacitor connection (as shown in
Figure 18) exists when the diode conducts, thus the term is non-zero. As seen
in Figure 8, the terminals of series connected L1 and C1 are shorted, while L2 is
the inductor in series with the shorted combination, therefore, A3 takes the form
of ±

[
IL1 + IL2

]
C1L1L2. Since L2 is charged by C1 and feeds power back to the

source, A3 =
[
IL1 + IL2

]
C1L1L2.
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4.3. Denominator Polynomial

The form of the polynomial under study is given by (9).

1. All the coefficients corresponding to odd powers of ‘s’ are divided by the load resis-
tance. Moreover, the signs of all the terms in the denominator are positive;

2. This coefficient is the same as that for the SPDT group, i.e., B0 = {g(D)}2,

where Vo
Vin

= f (D)
g(D)

;

• For the circuit in Figure 8, this denominator function is D as deduced from (6),
therefore, B0 = D2;

3. B1 is the same as that of the SPDT group; however, for the SPST group, one inductor
might appear to be connected to both switches at its terminals, but only one of the
switches is unique to the inductor, with the other switch is connected to both inductors.
Only the switch that is unique to a specific inductor is considered when determining
the relevant conduction times. For example, in Figure 16a, inductor Lk+1 appears to
have two switches connected to its terminals, but only the switch connected to node
“B” of Figure 16a is unique to Lk+1, while the switch connected to node “C” is unique
to Lk;

• For the circuit in Figure 8, it can be seen that L1 is connected to both switches
at either terminal, but only the active switch is unique to it, thus tL1 = D
and L2 is only connected to the diode, thus tL2 = 1 − D. Therefore,

B1 = 1
R

(
L1D2 + L2(1− D)2

)
;

4. B2 is a sum of products of inductances and capacitances in the circuit. These products
are such that the output capacitor, i.e., C2 in a fourth-order system, multiplies with
the inductances of the circuit’s inductors and their corresponding squared conduction
times as described in the preceding step, i.e., if the sum of the product of inductances
and squared conduction times in B′1 is given by ∑ Lkt2

Lk
, this implies that C2 forms

a product term as follows: C2

(
∑ Lkt2

Lk

)
. C1 only multiplies with inductors that

are not connected in series with the load. In addition, the product of C1 with any
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of the inductors includes the square of a switch’s conduction time depending on
the output-port current wave-shape as follows: If the current coincides with that
shown in Figure 4, then tLk is the type of switch inducing the discontinuity in the
current waveform. If the current coincides with that shown in Figure 5, then tLk is
the type of switch not directly connected to the midpoint of the inductor–capacitor
combination. If the current coincides with that shown in Figure 6, then tLk is the
sum of the two switches’ conduction times, which always sums to unity. Thus, the
resultant expression for B2 is: C2B′1 + ∑ C1

(
Lkt2

Lk

)
;

• From the circuit in Figure 8, both L1 and L2 meet the criterion, thus C1 multiplies
with both L1 and L2. In addition, tL1 = tL2 = D, since the output-port current
wave-shape is positive pulsed and the active switch is inducing the pulses (as
shown in Figure 4). Thus, B2 = C2

(
L1D2 + L2(1− D)2

)
+ C1L1D2 + C1L2D2;

5. B3 is the same as for the SPDT group, i.e., B3 is always given as: B3 = (C1L1L2)/R;
6. B4 is the same as for the SPDT group, i.e., B4 is always given as: B4 = C1C2 L1L2.

4.4. Audio-Susceptibility

Consider (1) with G(s) = ṽo(s)
ṽin(s)

∣∣∣
δ̃(s)=0

.

4.5. Numerator Polynomial

The form of the polynomial under study is given by (8).

1. A0 is the same as for the SPDT group, i.e., A0 = f (D)× g(D), where Vo
Vin

= f (D)
g(D)

;

• With reference to (6), it can be seen that A0 = (2D− 1)× D;

2. A1 = A3 = 0, the same as the SPDT group;
3. A2 is of the form A2 = C1Lkhk(D), where hk(D) is a function of the switch’s conduc-

tion times. C1 only multiplies with inductors that are not connected in series with
either the output or input port. The conduction time for the capacitor–inductor term
whose inductor is connected to two switches on either of its terminals, is given as the
product of the conduction times of all the switches in the circuit, such that no switch
is connected to the common rail. If there is a switch connected to the common rail,
then the accompanying conduction time is only that of the switch not connected to
the common rail. The sign for this term when none of the switches is connected to the
rail, is opposite that of the output-port (i.e., if the output is non-inverted, this term
is negative, and positive if the output is inverted) while the sign for this term when
one of the switches is connected to the common rail follows that of the output-port.
The conduction time for the capacitor–inductor term whose inductor is not connected
to two switches on either of its terminals is the square of the conduction time of the
“absent” switch (where the “absent” switch is that switch which is not connected on
either terminal of the inductor under consideration). The sign for this term follows
that of the output-port;

• It can be seen from Figure 8 that both inductors meet the criterion.
h1(D) = −D(1− D) since L1 is connected to two switches at its terminals with
none of the switches connected to the common rail. In addition, the output-port
is non-inverted. h2(D) = D2, since the output port is non-inverted and L2 is not
connected to both switches at either of its terminals, with the active switch being
the “absent” switch. Therefore, A2 = C1L2D2 − A2 = C1L1D(1− D).

4.6. Denominator Polynomial

The denominator for the audio-susceptibility transfer function is always the same as
that of the control-to-output voltage transfer function.
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5. Further Considerations to Model Entirely by Inspection

Since the canonical-cell capacitor appears in the small signal model, there will be
a need to evaluate its numerical value whenever one attempts to analyze system dynamics.
The average canonical-cell capacitor voltage can easily be computed from the ‘DC-circuit’,
wherein all inductors are shorted and all semiconductor devices are open. Such a circuit
is derived directly from the original circuit diagram. In addition, one need not draw the
equivalent circuit since a visual inspection of the original diagram, which treats inductors
as shorts and semiconductor devices as open circuit, is sufficient for computing the average
voltage of the canonical cell-capacitor in terms of the input and output voltages, or one of
them. Figure 19 represents the equivalent circuits for a converter topology, E1 in [26]. It can
be seen from the figure that the need for one to draw the equivalent circuit for computing
VC1 is immaterial. From Figure 19, it can be seen that the canonical-cell capacitor forms
a loop with the input and output voltage such that the average voltage is given by (10).

VC1 = Vo −Vin (10)
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6. Validation of the Proposed Scheme
6.1. Consistency with Known Models

The initial stage of validating the modelling technique is to gauge the consistency of
the models derived using the scheme with known, independently-derived models. For
this, PSim’s AC sweep function was used to independently compute baseline models for
the circuit of interest.

6.1.1. Model of Example Converter (E1)

Equations (11) and (12) show the resultant control-to-output voltage and audio-
susceptibility models, respectively, as derived for converter E1 in Section 3.

ṽo(s)
δ̃(s)

∣∣∣∣∣
ṽin(s)=0

=
−IL2 C1L1L2s3 −VC1 C1L1s2 − IL1 L1s− IL2 L2s + Vin

C1C2L1L2s4 + C1L1L2
R s3 + (C2(L1 + L2) + C1L1D2 + C1L2)s2 + L1+L2

R s + (1− D)2 (11)

ṽo(s)
ṽin(s)

∣∣∣∣
δ̃(s)=0

=
C1L2s2 + 1− D

C1C2L1L2s4 + C1L1L2
R s3 + (C2(L1 + L2) + C1L1D2 + C1L2)s2 + L1+L2

R s + (1− D)2 (12)

6.1.2. Comparing the Derived Model with the Baseline Model

MatLab’s bode plot function was used to graphically represent (11) and (12). Moreover,
PSim was used to independently generate the bode plot for the same converter. For both
the PSim and MatLab functions, the bode plots are drawn for the following circuit parame-
ter values: L1 = 0.13 mH, L2 = 0.05 mH, C1 = 10 µF, C2 = 0.13 mF, D = 0.5, R = 2.5 Ω,
Vin = 20 V, Vo = 40 V, IL1 = 32 A, IL2 = 32 A, and VC1 = 20 V. Figures 20 and 21
show these results for the control-to-output voltage transfer functions and the audio-
susceptibility, respectively, for the converter in Figure 11. The congruency of the two plots in
Figures 20 and 21 validates the consistency of the proposed scheme with known
modelling techniques.
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6.2. Proposed Modelling Scheme’s Accuracy Verificaiton Capability, Tractibility and
Time Requirements

To validate the proposed modelling scheme’s capability to easily verify the model ac-
curacy, maintain tractability even for higher-order systems and reduce model computation
time, we considered the derivation of the control-to-output voltage small-signal transfer
characteristics of the conventional boost converter as an example. The circuit for the boost
converter is shown in Figure 7. It can be seen from the figure that it has two reactive
components, thus it will result in a model with a second-order characteristic equation.
From (1), the value of n = 2 and the value of m = 1. As such, the coefficients of interest are
shown in (13).

ṽo(s)
δ̃(s)

=
±A1S1 + A0S0

B2S2 + B1S1 + B0S0 (13)

The conventional boost converter can be fully described with an SPDT switch, thus
the rules presented in Section 3 are applicable.

Numerator coefficients:
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• A0 is always equal to Vin regardless of topology;
• A1 is of the form ∑ ILk Lk and it does not involve connected inductors, as shown in

Figure 12. There is only one inductor and it is not connected as shown in Figure 12.
As such, A1 = −IL1 L1. The sign is negative since L1 does not share a node with
a capacitor and a diode.

Denominator coefficients:

• B0 = {g(D)}2 where Vo
Vin

= f (D)
g(D)

. For the circuit in Figure 7, this denominator function

is 1− D as can be deduced from (5), therefore, B0 = (1− D)2;
• B1 is of the form ∑ Lkt2

Lk
/R. It can be seen that there is only one inductor, and the

conduction time associated with the inductor will be 1 since it is connected to both
switches. Thus, B1 = L1/R;

• B2 is of the form C2B′1 + ∑ C1

(
Lkt2

Lk

)
. C1 = 0 since there is no canonical cell capacitor

in the boost converter circuit. C2 is the same as C1 in Figure 7. Thus, B2 = C1B′1 = C1L1.

The resultant model is shown in (14). This model is exactly the same as those derived
in [24,26,47] when non-ideal characteristics are ignored.

ṽo(s)
δ̃(s)

=
−IL1 L1s + Vin

C1L1s2 + L1
R s + (1− D)2 (14)

6.2.1. Accuracy Verification Capability

To verify accuracy of the derived model in (14), currently available tools will be
limited to identifying the presence of the RHP zero as indicated by the negative sign in
the numerator of (14) and the model order, which ought to coincide with the number
of reactive components as indicated in the denominator of (14) and Figure 7. These
tools do not definitively validate the accuracy of the model. The proposed modelling
scheme’s coefficient-based derivation closes this gap. This is because the form and sign of
each coefficient is completely defined in the scheme. Moreover, this accuracy verification
capability of the proposed modelling scheme may be used even if the model in (14) was
derived using a different modelling technique such as state-space, circuit averaging or
switching flow graphs.

6.2.2. Tractability and Time Requirements

To assess if tractability is maintained even for higher-order systems when using
the proposed modelling technique, consider the derivation procedure as outlined in
Sections 3 and 4. The procedure does not involve the averaging and linearization steps
which are explicitly carried out in all the currently available techniques. The effects of aver-
aging and linearization are only listed as limitations of the modelling procedure. As such,
the absence of these steps and the standardized model expression maintains tractability
for any model order. Moreover, the omission of the averaging and linearization steps in
the modelling procedure substantially reduces model computation time since these steps
constitute the two main operations in the modelling procedure. Once these steps have been
carried out, the remaining task is simple manipulation of algebraic equations.

6.3. Proposed Modelling Technique’s Unifying Capabilities

According to the converter synthesis technique presented in [26], converters in
Figures 7 and 11 are synthesized from different converter cells. This means that there
is no immediate or known kinship between them, and any analysis carried out on either
converter cell cannot be readily used for the other converter cell. As such, the converter
cell can be used as a discriminant in modelling these converters. The difference in their
order has also been used a discriminant when analyzing these converters [26]. Moreover,
converter functionality has also been used as a discriminant in computing models for these
converters [33]. The proposed modelling scheme nullifies all these discriminants. This can
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be seen in the derivation of models for a fourth-order converter (E1) and a second-order
converter (A2) as indicated in Sections 3 and 6.2.

7. Discussion

It is of great importance to note that even for the rules provided as unique for
a specified group, i.e., Sections 3 and 4, the uniqueness of the coefficients is not abso-
lute. There is a strong correlation between the individual rules. For example, consider
the denominator coefficient B2, the rule describing how the output-port capacitor forms
product terms with the inductances of the circuit’s inductors is the same for both groups.
In addition, the rule describing how the product terms of the canonical-cell capacitor and
the inductors depend on the connection of the inductors to the output-port, is also similar.
It is interesting to notice that the only distinguishing feature is the influence of the circuit’s
switches in determining corresponding conduction times. Lastly, considering A2 for the
audio-susceptibility numerator polynomial, the disregard of inductors connected in series
either with the input or output port, is also similar for both groups. It is again the switch’s
conduction times which bring uniqueness. Thus, the total number of rules to learn in order
to apply the proposed modelling scheme is substantially reduced.

It is also important to note that the transfer characteristics derived using the proposed
modelling scheme have the same limitations as those derived using existing averaged
modelling schemes such as state-space averaging or injected current, i.e., the proposed
scheme also ignores the inherent switching action of the converters resulting in limited
accuracy. Additionally, small perturbation assumption still persists. The main advantages
of this scheme are in retaining tractability even with higher order converters, nullifying
the importance of the converter cell in unifying or showing kinship among converter
families, and substantially reducing modelling time in addition to providing accuracy
verification capabilities, even for existing modelling schemes. This means that even when
existing modelling schemes are used, the proposed modelling scheme may be used solely
for verifying accuracy as long as the transfer characteristics are represented in the form of
(1). Table 2 gives a direct comparison of popular existing modelling schemes (state-space,
circuit averaging, switching flow graphs) with the proposed modelling scheme. The use of
the proposed modelling scheme is currently limited to transfer characteristics necessary
for voltage-mode control, but since the characteristic equation is the same even for current
mode transfer characteristics and output impedance, the modelling scheme may be used to
verify stability even for current mode control.

Table 2. Comparison of the proposed modelling technique with existing techniques.

Attribute Existing Techniques Proposed Technique

Time requirements

Involves numerous
labor-intensive steps which

include averaging, linearization
and equation manipulation.

At most, the scheme requires
two simple inductor voltage

equations. The standard
form does not require
further manipulations.

Accuracy
verification capability Insufficient Sufficient

Modelling tractability Not guaranteed for
higher order topologies. Guaranteed

8. Conclusions

The study focuses on addressing issues pertinent to model time requirements and
model accuracy verification when computing small-signal models for two switch, non-
isolated DC–DC converters. The study presented a small-signal modelling scheme whose
operation is based on a generalized transfer function expression and a set of predefined
rules. These rules relate the nature of each coefficient in the generalized model, to the
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converter’s circuit diagram. The simplicity of the rules not only makes possible the deriva-
tion of small-signal models by inspection, it also substantially reduces the overall required
modelling time. Moreover, the proposed modelling scheme’s in-built mechanism to defini-
tively verify model accuracy remains unmatched when compared with existing modelling
schemes, which makes it more attractive, as it always guarantees accuracy. The major
limitation in the proposed model is in neglecting component non-linearity, which is shown
to have minimal effect on the resultant model, unless the purpose of the design is solely on
the effects of non-linearity in the system.
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