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THE BLESSING OF DIMENSIONALITY IN FORECASTING REAL HOUSE 
PRICE GROWTH IN THE NINE CENSUS DIVISIONS OF THE US  

Sonali Das*, Rangan Gupta** and Alain Kabundi# 
 

Abstract 
This paper analyzes whether a wealth of information contained in 126 monthly series 
used by large-scale Bayesian Vector Autoregressive (LBVAR) models, as well as 
Factor Augmented Vector Autoregressive (FAVAR) models, either Bayesian or 
classical, can prove to be more useful in forecasting real house price growth rate of 
the nine census divisions of the US, compared to the small-scale VAR models, that 
merely use the house prices. Using the period of 1991:02 to 2000:12 as the in-sample 
period and 2001:01 to 2005:06 as the out-of-sample horizon, we compare the forecast 
performance of the alternative models for one- to twelve–months ahead forecasts. 
Based on the average Root Mean Squared Error (RMSEs) for one- to twelve–months 
ahead forecasts, we find that the alternative FAVAR models outperform the other 
models in eight of the nine census divisions.  
 
Journal of Economic Literature Classification: C11, C13, C33, C53.   
Keywords: Dynamic Factor Model, BVAR, Forecast Accuracy. 
 
1. Introduction 
 
This paper develops Factor Augmented Vector Autoregressive (FAVAR) models, 
based on both classical and Bayesian assumptions, and large-scale Bayesian Vector 
Autoregressive (LBVAR) models, using 126 monthly series, for forecasting 
annualized real house price growth rates for the nine census divisions of the United 
States (US).2 Using an in-sample period of 1991:02 to 2000:12, the FAVARs and the 
LBVARs, are used to forecast one- to twelve-months-ahead real house price growth 
rates over the out-of-sample horizon of 2001:01 to 2005:06. The forecast performance 
of the FAVARs and the LBVARs are then compared in terms of average Root Mean 
Square Errors (RMSEs) with the classical and Bayesian versions of small-scale VAR 
models that consider only the real growth rates of homes in the nine census divisions.  
 
With the methodologies in place, three questions arise immediately. First, why is 
forecasting real house price growth rates important? Second, why use large-scale 
models for this purpose? And, third, why use regional data for this purpose? As far as 
the answer to the first question is concerned, the importance of predicting house price 
inflation is motivated by recent studies that conclude that asset prices help forecast 
both inflation and output (Forni et al., 2003; Stock and Watson, 2003, Gupta and Das, 
2008a,b and Das et al., 2008a,b). Since a large amount of individual wealth is 
imbedded in houses, similar to other asset prices, house price movements are thus 
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important in signaling inflation. As such, models that forecast real house price 
inflation can give policy makers an idea about the direction of overall inflation in the 
future, and hence, can provide a better control for designing of appropriate policies. In 
addition, given that movements in the housing market are likely to play an important 
role in the business cycle (Iacoviello and Neri, 2008), not only because housing 
investment is a very volatile component of demand (Bernanke and Gertler, 1995), but 
also because changes in house prices tends to have important wealth effects on 
consumption (International Monetary Fund, 2000) and investment (Topel and Rosen, 
1988), and hence, the importance of forecasting house price inflation is vital. The 
housing sector thus plays a significant role in acting as a leading indicator of the real 
sector of the economy, and as such, predicting it correctly cannot be overemphasized, 
especially in the light of the recent credit crunch in the U.S. that started with the burst 
of the housing price bubble which, in turn, transmitted to the real sector of the 
economy driving it towards an imminent recession. 
 
The rationale for using large-scale models to forecast real house price growth rates 
emanates from the fact that a large number of economic variables help in predicting 
real housing price growth (Cho, 1996; Abraham and Hendershott, 1996; Johnes and 
Hyclak, 1999; and Rapach and Strauss, 2007, 2008). For instance, income, interest 
rates, construction costs, labor market variables, stock prices, industrial production, 
consumer confidence index – which are amongst the 126 monthly series used by the 
large-scale models, which act as potential predictors.  As to why we decide to use 
census division data, the answer comes from past studies, namely Carlino and DeFina 
(1998, 1999), Burger and van Rensburg (2008), Gupta and Das (2008a) and Vargas-
Silva (2008a,b), among others. These papers have not only documented the 
segmented nature of housing markets, but have also suggested of non-uniform 
economic conditions that might be prevailing across the regions at a specific point of 
time. 
 
To realize the contribution of this study, it is important to place this paper in the 
context of current research that has been done on forecasting in the housing market. In 
this regard, few studies that are worth mentioning: Rapach and Strauss (2007) used an 
autoregressive distributed lag (ARDL) model framework, containing 25 determinants, 
to forecast real housing price growth for the individual states of the Federal Reserve’s 
Eighth District. Given the difficulty in determining apriori the particular variables 
that are most important for forecasting real housing price growth, the authors also use 
various methods to combine the individual ARDL model forecasts, which result in 
better forecast of real housing price growth. Rapach and Strauss (2008) look at doing 
the same for 20 largest US states based on ARDL models containing large number of 
potential predictors, including state, regional and national level variables. Once again, 
the authors reach similar conclusions as far as the importance of combining forecasts 
are concerned. On the other hand, Gupta and Das (2008b), look into forecasting the 
recent downturn in real house price growth rates for the twenty largest states of the 
US economy. In this paper, the authors use Spatial BVARs, based merely on real 
house price growth rates, to predict their downturn over the period of 2007:01 to 
2008:01. They find that, though the models are quite well-equipped in predicting the 
recent downturn, they underestimate the decline in the real house price growth rates 
by quite a margin. They attribute this underprediction of the models to the lack of any 
information on fundamentals in the estimation process. 
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Given that in practice, forecasters and policymakers often extract information from 
many series than the ones included in smaller models, like the ones used by Rapach 
and Strauss (2007, 2008), who also indicate the importance of combining forecast 
from alternative models, the role of a large-scale models cannot be ignored. In 
addition, one cannot condone the fact that the main problem of small models, as seen 
from the studies by Rapach and Strauss (2007, 2008), is in the decision regarding the 
choice of the correct potential predictors to be included.  Due to this reason, Vargas-
Silva (2008a) uses a FAVAR model containing 120 monthly series to analyze the 
impact of monetary policy actions on the housing sector of four different regions of 
the United States. To the best of our knowledge, this is the first attempt to look into 
the ability of FAVARs and LBVARs in forecasting regional real house price growth 
rates. 3 
 
In such a backdrop, our paper can thus be viewed as an extension of the 
abovementioned studies, in the sense that we use large-scale models that allow for the 
role of a wide possible set of fundamentals to affect the housing sector. The remainder 
of the paper is organized as follows: Section 2 lays out the basics of the alternative 
small- and large-scale models. In Section 3 we discuss the data. In Section 4 we 
evaluate the forecasting performances of the various models, and finally Section 5 
concludes.  
 
 
2. The Models4  
 
2.1 VARs and BVARs 

The Vector Autoregressive (VAR) model, though ‘atheoretical’, is particularly 
useful for forecasting purposes. An unrestricted VAR model, as suggested by Sims 
(1980), can be written as follows: 

= + +0 ( )t t ty A A L y ε                                                                                             (1)                              
where y is a ( ×1n ) vector of variables being forecasted; A(L) is a ( ×n n ) polynomial 
matrix in the backshift operator L with lag length p, i.e., A(L) = 

+ + +2
1 2 ................ p

pA L A L A L ; 0A is a ( ×1n ) vector of constant terms, and ε  is a 
( ×1n ) vector of error terms. In our case, we assume 
thatε σ ×2~ (0, ), where is a identity matrixn nN I I n n . 

 
Note the VAR model, generally uses equal lag length for all the variables of the 
model. One drawback of VAR models is that many parameters need to be estimated, 
some of which may be insignificant. This problem of overparameterization, resulting 
in multicollinearity and a loss of degrees of freedom, leads to inefficient estimates and 
possibly large out-of-sample forecasting errors. One solution, often adapted, is simply 
to exclude the insignificant lags based on statistical tests. Another approach is to use a 
near VAR, which specifies an unequal number of lags for the different equations.   

 
However, an alternative approach to overcoming this overparameterization, as 
                                                 
3 Note, Dua and Smyth (1995), Dua and Miller (1996) and Dua et al. (1999) used coincident and 
leading indexes in BVAR models to forecast home sales for the Connecticut and the overall US 
economy, respectively. 
4 This section relies heavily on the discussion available in Gupta and Sichei (2006), Gupta (2006) and 
Gupta and Kabundi (2008a). 
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described in Litterman (1981), Doan et al. (1984), Todd (1984), Litterman (1986), 
and Spencer (1993), is to use a BVAR model. Instead of eliminating longer lags, the 
Bayesian method imposes restrictions on these coefficients by assuming that they are 
more likely to be near zero than the coefficients on shorter lags. However, if there are 
strong effects from less important variables, the data can override this assumption. 
The restrictions are imposed by specifying normal prior distributions with zero means 
and small standard deviations for all coefficients with the standard deviation 
decreasing as the lags increase. The exception to this is that the coefficient on the first 
own lag of a variable has a mean of unity. Litterman (1981) used a diffuse prior for 
the constant. This is popularly referred to as the ‘Minnesota prior’ due to its 
development at the University of Minnesota and the Federal Reserve Bank at 
Minneapolis.  

 
Formally, as discussed above, the means and variances of the Minnesota prior take the 
following form: 

 
β ββ σ β σ2 2~ (1, )and ~ (0, )
i ji jN N                                                                 (2)                              

where βi  denotes the coefficients associated with the lagged dependent variables in 
each equation of the VAR, while β j  represents any other coefficient. In the belief that 
lagged dependent variables are important explanatory variables, the prior means 
corresponding to them are set to unity. However, for all the other coefficients, β j ’s, in 
a particular equation of the VAR, a prior mean of zero is assigned to suggest that 
these variables are less important to the model.   

 
The prior variances 2

βσ i
and 2

βσ j
, specify uncertainty about the prior means βi  = 1, 

and β j  = 0, respectively. Because of the overparameterization of the VAR, Doan et al. 
(1984) suggested a formula to generate standard deviations as a function of small 
numbers of hyperparameters: w, d, and a weighting matrix f(i, j). This approach 
allows the forecaster to specify individual prior variances for a large number of 
coefficients based on only a few hyperparameters. The specification of the standard 
deviation of the distribution of the prior imposed on variable j in equation i at lag m, 
for all i, j and m, defined as ijmσ , can be specified as follows:   

= × ×
ˆ

[ ( ) ( , )]
ˆ
i

ijm
j

w g m f i j σσ
σ

                                                                       (3)                              

with f(i, j) = 1, if i = j and ijk  otherwise, with ( ≤ ≤0 1ijk ), g(m) = − >, 0dm d . Note 
that σ̂ i  is the estimated standard error of the univariate autoregression for variable i. 
The ratio ˆ ˆ/i jσ σ  scales the variables to account for differences in the units of 
measurement and, hence, causes specification of the prior without consideration of the 
magnitudes of the variables. The term w indicates the overall tightness and is also the 
standard deviation on the first own lag, with the prior getting tighter as we reduce the 
value. The parameter g(m) measures the tightness on lag m with respect to lag 1, and 
is assumed to have a harmonic shape with a decay factor of d, which tightens the prior 
on increasing lags. The parameter f(i, j) represents the tightness of variable j in 
equation i relative to variable i, and by increasing the interaction, i.e., the value of ijk , 
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we can loosen the prior.5 Note, in the standard Minnesota-type prior, the overall 
tightness (w) takes the values of 0.1, 0.2 and 0.3, while, the lag decay (d) is generally 
chosen to be equal to 0.5, 1.0 and 2.0. The interaction parameter ( ijk ) is traditionally 
set at = 0.5. The small-scale BVARs would be estimated with this set of 
parameterization of the priors. 
  
Given that, we have regional (real house price growth rates of the nine census 
divisions) as well as national variables in the 126 data series used for the large-scale 
models, and realizing that regional variables would have minimal, if any, effect on the 
national, while the latter set of variables is sure to have an influence on the former, 
setting ijk = 0.5 could be a quite far fetched from reality. Hence, borrowing from the 
BVAR models used for regional forecasting, involving both regional and national 
variables, and following Kinal and Ratner (1986), Shoesmith (1992), Dua and Ray 
(1995), Das et al. (2008b), and Gupta and Kabundi (2008b,c), the weight of a national 
variable in a national equation, as well as a domestic equation, is set at 0.6. The 
weight of a regional variable in other regional equation is fixed at 0.1 and that in a 
national equation at 0.01. Finally, the weight of the regional variable in its own 
equation is 1.0. These weights are in line with Litterman’s circle-star structure. Star 
(national) variables affect both star and circle (regional) variables, while circle 
variables primarily influence only other circle variables.6 The large-scale BVARs are, 
thus, estimated with asymmetric priors.  
  
Finally, once the priors have been specified, the alternative BVARs, whether based on 
nine or all of the 126 variables, are estimated using Theil's (1971) mixed estimation 
technique. Specifically, suppose we denote a single equation of the VAR model as: 

= + = 2
1 1 1, with ( ) ,y XA Var Iε ε σ  then the stochastic prior restrictions for this single 

equation can be written as: 
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

111 111 111 111

112 112 112 112

/ 0 . . . 0
0 / 0 . . 0

. . . . . . . . .

. . . . . . . . .

. 0 . . . . 0 . .
0 0 . . 0 /nnp nnp nnp nnp

M a u
M a u

M a u

σ σ
σ σ

σ σ

                              (4)                               

 
Note, σ= 2( )Var u I and the prior means ijmM and ijmσ  take the forms shown in (2) and 
(3). With (4) written as: 

= +r RA u                                    (5)                               
and the estimates for a typical equation are derived as follows: 

−= + +1
1

ˆ ( ' ' ) ( ' ' )A X X R R X y R r                                                                           (6)                               
 

Essentially then, the method involves supplementing the data with prior information 
on the distribution of the coefficients. The number of observations and degrees of 
                                                 
5 For an illustration, see Dua and Ray (1995). 
6 We also experimented by assigning higher and lower interaction values, in comparison to those 
specified above, to the star variables in both the star and circle equations, but, the rank ordering of the 
alternative forecasts remained the same.  
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freedom are increased by one in an artificial way, for each restriction imposed on the 
parameter estimates. The loss of degrees of freedom due to over- parameterization 
associated with a classical VAR model is, therefore, not a concern in the BVARs. 
 
2.2  FAVARs 
This study uses the Dynamic Factor Model (DFM) to extract common components 
between macroeconomic series, and then these common components are used to 
forecast real house price growth rates of the nine census divisions of the US, by 
adding the extracted factors to the nine variables of our concern and constructing a 
FAVAR in the process. Furthermore, we estimate idiosyncratic component with 
AR(p) processes as suggested by Boivin and Ng (2005). 
 
The DFM expresses individual times series as the sum of two unobserved 
components: a common component driven by a small number of common factors and 
an idiosyncratic component, which are specific to each variable. The relevance of the 
method is that the DFM is able to extract the few factors that explain the comovement 
of all US. Forni et al. (2005) demonstrated that when the number of factors is small 
relative to the number of variables and the panel is heterogeneous, the factors can be 
recovered from the present and past observations. 
 
Consider a 1×n  covariance stationary process )',....,( 1 nttt yyY = . Suppose that tX  is 
the standardized version of tY , i.e. tX  has a mean zero and a variance equal to one. 
Under DFM tX  is described by a factor model, it can be written as the sum of two 
orthogonal components: 
 

ittiit Fx ξλ +=                                                                                                               (7) 
 
where tF  is a 1×r  vector of static factors, iλ is an qn×  matrix of factor loadings, 
and itξ  is a 1×n  vector of idiosyncratic components. In a DFM, tF  and itξ  are 
mutually orthogonal stationary process, while, tiit Fλχ =  is the common component. 
 
Since dynamic common factors are latent, they need to be estimated. It is important to 
point out that the estimation technique used matters for factor forecasts. This paper 
uses SW method, which employs the static principal component approach (PCA) on 

tX . The factor estimates are therefore the first   principal components of tX , i.e. 

tt XF Λ′= ˆˆ , where Λ̂  is the rn×  matrix of the eigenvectors corresponding to the r  

largest eigenvalues of the sample covariance matrix Σ̂  
 
Following Boivin and Ng (2005) we represent the idiosyncratic errors as AR(p) 
processes. Therefore, the forecasting equation to predict ty  is given by: 
 

htttht yLFLy ++ +′+′+= εααα )(ˆ)( 210                                                                         (8) 
 
where h is the forecasting horizon, )(Liα  are lag polynomials, which can be 
estimated based on restrictions suggested by the Minnesota prior or without 
restrictions. We consider the following DFM specifications: 
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- UFAVAR: includes one of the variables of interest and the obtained number of 

common static factors; 
- MFAVAR: includes all the nine real house price growth rates and the common 

static factors; 
- UBFAVAR: uses one of the variables of interest and the common static factors, 

and which, in turn, are estimated based on Bayesian restrictions discussed in the 
previous subsection; 

- MBFAVAR: with a specification similar to the MFAVAR, except that the current 
model applies Bayesian restrictions on lag of the variables based on the Minnesota 
prior. 

 
3. Data 
 
While the small-scale VARs, both the classical and Bayesian variants, include data of 
only the nine variables of interest, namely, the annualized real house price growth 
rates of the nine census divisions of the US, the large-scale BVARs and the DFM are 
estimated based on  126 monthly series. The nominal house price figures for these 
nine US census divisions and for the whole of US were obtained from the Office of 
Federal Housing Enterprise Oversight (OFEO), and were converted to their real 
counterpart by dividing them with the personal consumption expenditure deflator. 
Figure 1 presents the nine census divisions of the US to provide a general idea about 
their layout. Data between 1991:02 and 2000:12 was used for the in-sample analyses, 
while the data between 2001:1 and 2005:6 was used for the out-of-sample forecast 
evaluation of the real house price growth of nine regions in the US. The out-of-sample 
forecast is done for one to twelve months ahead. The choice of 2001:01 as the onset 
of forecast horizon is motivated from Iacoviello and Neri (2008) in which they 
indicate that the experience of the U.S. housing market at the beginning of the 21st 
century has been characterized by fast growth in housing prices and residential 
investment initially, and a decline thereafter. Given this observed volatility in the 
housing market, the choice of the out-of-sample horizon emerged quite naturally. 
 
For the remaining 116 variables we use the macroeconomic indicators in the data set 
of Boivin et al. (2008). With this data set ending at 2005:06, the endpoint of our 
sample is automatically determined to be the same. The data set contains a broad 
range of macroeconomic variables, such as industrial production, income, 
employment and unemployment, housing starts, inventories and orders, stock prices, 
exchange rates, interest rates, money aggregates, consumer prices, producer prices, 
earnings, and consumption expenditure. So, in total we have a balanced panel of 126 
monthly series for the period running from 1991:02 to 2005:06. All series are in 
logarithms, except those that have already been expressed in rates and those that 
contain negative observations. All data have been transformed to induce stationarity.7  
Following Bernanke et al. (2005), five static factors are extracted from the DFM 
estimated with 13 lags. As with these authors, we find that increasing the number of 
factors further does not change the results. 
 
                                                 
7 It must however be pointed out that, non-stationarity is not an issue with the BVAR, since Sims et al. 
(1990) indicate that with the Bayesian approach entirely based on the likelihood function, the 
associated inference does not need to take special account of nonstationarity, since the likelihood 
function has the same Gaussian shape regardless of the presence of nonstationarity.  
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Figure 1: Layout of the Nine Census Divisions of the US. 
(Source: US Department of Commerce, Economics and Statistics Administration, US Census 
Bureau.)8 

 
4. Results 
 
Given the specifications of the models, we estimate the multivariate versions of the 
classical VAR, the small-scale BVARs, the large-scale BVARs and the FAVARs, 
univariate and multivariate, classical and Bayesian, over the period of 1991:02 to 
2000:12, based on monthly data. Then we compute the out-of-sample one- through 
twelve-months-ahead forecasts for the period of 2001:01 to 2005:06, and compare the 
forecast accuracy of the alternative models. The different types of the VARs are 
estimated with 3 lags9 of each variable. Since we use three lags, the initial three 
months of the sample, 1991:02 to 1991:04, are used to feed the lags. We generate 
dynamic forecasts, as would naturally be achieved in actual forecasting practice. The 
models are re-estimated each month over the out-of-sample forecast horizon in order 
to update the estimate of the coefficients, before producing the 12-months-ahead 
forecasts. This iterative estimation and 12-steps-ahead forecast procedure was carried 
out for 54 months, with the first forecast beginning in 2001:01. This experiment 
produced a total of 54 one-month-ahead forecasts, 54-two-months-ahead forecasts, 

                                                 
8 See: http://commons.wikimedia.org/wiki/File:Census_Regions_and_Divisions.PNG. 
9 The choice of 3 lags is based on the unanimity of the sequential modified LR test statistic, Akaike 
information criterion (AIC), the final prediction error (FPE) criterion and the Schwarz information 
criterion (SIC) applied to a stable VARs. Note, stability, as usual, implies that no roots were found to 
lie outside the unit circle.   
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and so on, up to 54 12-step-ahead forecasts. The RMSEs10 for the 54, month 1 
through month 4 forecasts are then calculated for the annualized real house price 
growth rates of the nine census divisions. The values of the RMSE statistic for one- to 
four-quarters-ahead forecasts for the period 2001:01 to 2005:06 are then examined. 
The model that produces the lowest average value for the RMSE is selected as the 
‘optimal’ model for a specific category of real house price growth rate.  
 
In Tables 1 through 9, we compare the RMSEs of one- to twelve-months-ahead out-
of-sample-forecasts for the period of 2000:01 to 2005:06, generated by the 
abovementioned alternative models models. At this stage, a few words need to be said 
regarding the choice of the evaluation criterion for the out-of-sample forecasts 
generated from Bayesian models. As Zellner (1986: 494) points out the ‘optimal’ 
Bayesian forecasts will differ depending upon the loss function employed and the 
form of predictive probability density function. In other words, Bayesian forecasts are 
sensitive to the choice of the measure used to evaluate the out-of-sample forecast 
errors. However, Zellner (1986) also points out that the use of the mean of the 
predictive probability density function for a series, is optimal relative to a squared 
error loss function and the Mean Squared Error (MSE), and hence, the RMSE is an 
appropriate measure to evaluate performance of forecasts, when the mean of the 
predictive probability density function is used. This is exactly what we do below in 
Tables 1 through 9, when we use the average RMSEs over the one- to twelve-months-
ahead forecasting horizon. The conclusions, regarding each of the nine divisions of 
real house price growth rate, based on the average one- to twelve-months-ahead 
RMSEs, from these tables can be summarized as follows:  

(i) Based on the minimum average RMSEs, there always exists a large-
scale model, which outperforms all other small-scale models. 
Specifically, the best performing large-scale models are: UVFAVAR 
for East South Central and West South Central, UVBFAVAR with 
w=0.1, d= 2 for East North Central and Mountain, LBVAR with 
w=0.1, d=1 for Middle Atlantic, MVBFAVAR with w=0.2, d=2 for 
New England, MVBFAVAR with w=0.1, d=2 for South Atlantic and 
West North Central, and MVFAVAR for Pacific; 

(ii) In general, with the exceptions of Middle Atlantic under w=0.3,  d=0.5, 
w= 0.2, d=1, w=0.1, d=1 and w=0.1, d=2, there always exists at least 
one small-scale model that outperforms the large-scale BVAR. The 
large-scale BVAR with w=0.3, d=0.5 and w=0.1, d=2 are found to 
better the corresponding UVBFAVARs for New England and for 
Middle Atlantic the same holds true for all the alternative values of w 
and d;  

(iii) In most cases, barring West South Central, even the second-best 
performing models are large-scale in nature. For this census division, 
the SBVAR with w=0.1, d=1 comes in second;   

(iv) Overall, the FAVARs, Bayesian or classical, univariate or multivariate, 
are the standout performers. Even in the case of Middle Atlantic where 

                                                 
10 Note that if t nA +  denotes the actual value of a specific variable in period t + n and t t nF + is the forecast 

made in period t for t + n, the RMSE statistic can be defined as: 21 ( )t n t t nA F
N + +−∑ . For n = 1, the 

summation runs from 2001:01 to 2005:06, and for n = 2, the same covers the period of 2001:02 to 
2005:06, and so on. 
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the LBVAR is the best performing model, we are able to find a 
FAVAR model, namely, MVBFAVAR with w=0.1, d=2, as the 
second-best model in a different category of models. 
 

In summary, even though there is no unique model under a specific category of 
models that performs the best, the FAVARs in their various forms are the standout 
performers, where the FAVARs are VAR models of the real house price growth rates 
of the nine census divisions augmented by the 5 static factors, the latter capturing the 
majority of the variation in the 126 monthly series. Given the relatively poor 
performance of the large-scale BVAR, it would be interesting to study these five 
factors in greater details, and in the process, open up the black-box and unveil those 
macroeconomic variables that play a dominant part in comprising these factors. This 
would be an interesting extension of the current study, since this would allow us to 
concentrate on a smaller number of macroeconomic indicators that affects the housing 
market, rather than on a set of 116 variables. This would be extremely helpful to 
policy-makers trying to design policies to appropriately affect the housing market.    
 
5. Conclusion 
 
In this paper we analyze whether a wealth of information generally used by large-
scale BVARs, as well as FAVAR models, either Bayesian or classical, can prove to 
be more useful in forecasting real house price growth, compared to small-scale VAR 
models, that merely uses the house prices. As a case study, we considered house price 
growth of the nine census divisions of the US, using data on 126 monthly series for 
the period 1991:02 to 2005:06. The period 1991:02 to 2000:12 is considered as the in-
sample data, while the period 2001:01 to 2005:06 is used for the evaluation of the 
forecasts from the various models considered, based on the average RMSE values. 
We perform one- to twelve – months ahead forecast in the forecast horizon of 2001:01 
to 2005:06.  
 
Our results indicate that the various types of FAVAR models prove to be better suited 
for forecasting house price growth at the divisional scale, when compared to the 
alternative forms of the VAR models. This investigation overwhelmingly proves that 
the data rich environment of the FAVAR models that include a wide range of 
macroeconomic series of the US economy, besides the house price growth rates of the 
census divisions, is more informative when forecasting the house price growth rate of 
the nine census regions. Realizing that the FAVARs are VAR models of the real 
house price growth rates of the nine census divisions augmented by factors capturing 
the majority of the variation in the large dataset, the role of fundamentals in affecting 
the housing market cannot be underestimated. The current paper can be extended in at 
least two directions: First, as indicated earlier, one might want to take a detailed look 
at the factors to determine the dominant macroeconomic variables that comprise these 
factors; and second, one might want to incorporate the role of the house price growth 
rate of the neighbouring division(s) in the forecasting process of a particular census 
division, by developing spatial versions of the above models.  
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Table 1: One- to Twelve-Months-Ahead RMSEs for East North Central  
Models 1 2 3 4 5 6 7 8 9 10 11 12 Average 

VAR  0.3848 0.0449 0.3247 0.4676 0.1712 0.0971 0.1571 0.2072 0.1916 0.1233 0.3247 0.0599 0.2128 
UVFAVAR  0.0631 0.0534 0.2456 0.3957 0.1798 0.1276 0.1613 0.2451 0.1842 0.0919 0.3595 0.0723 0.1816 
MVFAVAR 0.3527 0.3480 0.1094 0.2044 0.2240 0.0536 0.3729 0.2014 0.1536 0.0213 0.3671 0.1094 0.2098 
SBVAR 0.3780 0.0477 0.3218 0.4626 0.1695 0.0991 0.1560 0.2066 0.1911 0.1234 0.3255 0.0585 0.2116 
LBVAR 0.7785 0.0465 0.8700 0.0405 0.9427 0.3827 0.0136 1.2500 0.5549 0.1922 1.5933 0.6823 0.6123 
UVBFAVAR  0.1447 0.0972 0.2008 0.4521 0.1364 0.0801 0.1135 0.2003 0.2306 0.1375 0.3144 0.0268 0.1779 

w=0.3, d=0.5 

MVBFAVAR 0.3427 0.3134 0.1372 0.2100 0.2080 0.0648 0.3572 0.1968 0.1494 0.0093 0.3659 0.1068 0.2051 
SBVAR 0.3570 0.0507 0.3036 0.4466 0.1647 0.1054 0.1529 0.2050 0.1910 0.1232 0.3284 0.0537 0.2069 
LBVAR 0.6093 0.0577 0.8558 0.1256 0.9344 0.4610 0.1834 1.1307 0.5718 0.0108 1.5647 0.7133 0.6015 
UVBFAVAR  0.1472 0.0989 0.1986 0.4541 0.1345 0.0781 0.1116 0.1983 0.2325 0.1395 0.3124 0.0248 0.1775 

w=0.2, d=1 

MVBFAVAR 0.3039 0.2205 0.1861 0.2219 0.1770 0.0920 0.3159 0.1921 0.1399 0.0232 0.3641 0.1027 0.1949 
SBVAR 0.3074 0.0526 0.2745 0.4223 0.1591 0.1149 0.1446 0.2075 0.1946 0.1241 0.3308 0.0461 0.1982 
LBVAR 0.6175 0.0004 0.8334 0.1998 0.8020 0.5274 0.2763 0.9848 0.5589 0.1756 1.3850 0.6955 0.5880 
UVBFAVAR  0.1462 0.0998 0.1968 0.4540 0.1335 0.0771 0.1110 0.1975 0.2333 0.1402 0.3116 0.0240 0.1771 

w=0.1, d=1 

MVBFAVAR 0.2262 0.1131 0.2340 0.2513 0.1636 0.1314 0.2542 0.2200 0.1428 0.0530 0.3709 0.0989 0.1883 
SBVAR 0.3082 0.0331 0.2481 0.4211 0.1636 0.1173 0.1384 0.2129 0.1990 0.1248 0.3324 0.0425 0.1951 
LBVAR 0.2471 0.3680 0.8433 0.0952 1.1480 0.6558 0.2907 1.1432 0.9273 0.4679 1.6355 1.0166 0.7365 
UVBFAVAR  0.1465 0.0987 0.1959 0.4526 0.1341 0.0773 0.1119 0.1980 0.2328 0.1395 0.3122 0.0246 0.1770 

w=0.2, d=2 

MVBFAVAR 0.2107 0.0860 0.2238 0.2595 0.1710 0.1376 0.2401 0.2340 0.1439 0.0579 0.3742 0.1003 0.1866 
SBVAR 0.2499 0.0165 0.2277 0.4147 0.1591 0.1122 0.1267 0.2159 0.2132 0.1298 0.3250 0.0348 0.1855 
LBVAR 0.3215 0.1779 0.7948 0.2807 0.8117 0.6113 0.4548 0.9083 0.6233 0.5933 1.2923 0.7526 0.6352 
UVBFAVAR  0.1435 0.0981 0.1889 0.4491 0.1330 0.0753 0.1124 0.1971 0.2336 0.1399 0.3115 0.0240 0.1755 

w=0.1, d=2 

MVBFAVAR 0.1441 0.0555 0.2429 0.3100 0.1831 0.1619 0.1985 0.2622 0.1541 0.0682 0.3800 0.0944 0.1879 
Notes: Model acronyms as defined in the text.  
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Table 2: One- to Twelve-Months-Ahead RMSEs for East South Central  
Models 1 2 3 4 5 6 7 8 9 10 11 12 Average 

VAR  0.0006 0.9774 0.7245 0.0096 0.3004 0.0289 0.4348 0.0485 0.1235 0.4169 0.2960 0.2041 0.2971 
UVFAVAR  0.2091 0.5272 0.4818 0.0687 0.2618 0.1500 0.4385 0.0091 0.0788 0.4098 0.3121 0.2375 0.2654 
MVFAVAR 0.3967 0.7135 0.7012 0.1222 0.5081 0.1056 0.4034 0.1483 0.2089 0.3625 0.2168 0.1398 0.3356 
SBVAR 0.0002 0.9738 0.7241 0.0129 0.2949 0.0304 0.4334 0.0457 0.1215 0.4172 0.2965 0.2057 0.2964 
LBVAR 0.8753 0.3136 0.2394 1.0097 0.4302 1.1718 1.0393 0.0895 0.7142 1.0194 0.7826 0.4349 0.6766 
UVBFAVAR  0.2717 0.4715 0.4970 0.1119 0.2318 0.1803 0.4692 0.0190 0.0517 0.3826 0.3378 0.2629 0.2740 

w=0.3, d=0.5 

MVBFAVAR 0.3486 0.7218 0.6809 0.1221 0.4630 0.0782 0.4055 0.1329 0.2001 0.3665 0.2173 0.1504 0.3240 
SBVAR 0.0107 0.9631 0.7212 0.0259 0.2751 0.0403 0.4289 0.0382 0.1122 0.4172 0.2988 0.2118 0.2953 
LBVAR 1.0086 0.3377 0.5086 0.6377 0.1001 1.1733 1.2560 0.2621 0.9241 0.7932 1.0945 0.6291 0.7271 
UVBFAVAR  0.2721 0.4708 0.4972 0.1139 0.2313 0.1811 0.4698 0.0198 0.0510 0.3819 0.3385 0.2636 0.2742 

w=0.2, d=1 

MVBFAVAR 0.2124 0.7687 0.6456 0.1194 0.3611 0.0253 0.4060 0.0953 0.1693 0.3865 0.2288 0.1793 0.2998 
SBVAR 0.0280 0.9136 0.7064 0.0389 0.2455 0.0681 0.4295 0.0242 0.0941 0.4142 0.3075 0.2256 0.2913 
LBVAR 0.9429 0.2965 0.5312 0.5438 0.0873 0.8526 1.2645 0.4768 0.6344 0.4221 0.9822 0.7191 0.6461 
UVBFAVAR  0.2663 0.4711 0.4955 0.1179 0.2322 0.1815 0.4696 0.0204 0.0508 0.3817 0.3386 0.2638 0.2741 

w=0.1, d=1 

MVBFAVAR 0.0529 0.8255 0.6340 0.1040 0.2870 0.0143 0.4091 0.0640 0.1299 0.4208 0.2687 0.2024 0.2844 
SBVAR 0.0608 0.9057 0.7080 0.0540 0.2304 0.0836 0.4389 0.0245 0.0806 0.4123 0.3140 0.2325 0.2954 
LBVAR 1.5804 0.2447 0.9159 0.5142 0.4014 1.3981 1.7776 0.8322 1.3935 0.3340 1.7648 1.4305 1.0489 
UVBFAVAR  0.2710 0.4746 0.4908 0.1206 0.2324 0.1814 0.4687 0.0204 0.0511 0.3818 0.3384 0.2636 0.2746 

w=0.2, d=2 

MVBFAVAR 0.0138 0.8678 0.6566 0.1103 0.2605 0.0203 0.4279 0.0551 0.1099 0.4237 0.2895 0.2163 0.2876 
SBVAR 0.0931 0.7710 0.6445 0.0136 0.2268 0.1351 0.4499 0.0035 0.0656 0.3984 0.3256 0.2500 0.2814 
LBVAR 1.3507 0.1189 0.9098 0.3717 0.2644 0.9819 1.5416 0.8519 0.8247 0.2600 1.2492 1.1812 0.8255 
UVBFAVAR  0.2628 0.4827 0.4789 0.1347 0.2355 0.1821 0.4670 0.0214 0.0514 0.3817 0.3382 0.2636 0.2750 

w=0.1, d=2 

MVBFAVAR 0.0811 0.8147 0.6038 0.0674 0.2555 0.0718 0.4268 0.0373 0.1005 0.4237 0.3024 0.2256 0.2842 
Notes: Model acronyms as defined in the text.  
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Table 3: One- to Twelve-Months-Ahead RMSEs for Middle Atlantic  
Models 1 2 3 4 5 6 7 8 9 10 11 12 Average 

VAR  0.0240 0.0117 1.2435 0.5537 1.1070 0.5216 0.6251 1.1142 0.4837 0.3328 1.4821 0.3672 0.6556 
UVFAVAR  0.2449 0.0351 1.0379 0.2018 0.8569 0.5402 0.6643 0.9914 0.4676 0.2459 1.3650 0.4627 0.5928 
MVFAVAR 0.6265 0.6467 0.8088 1.2422 0.8200 0.1156 0.0853 0.6455 0.0811 0.1461 0.9445 0.8369 0.5833 
SBVAR 0.0236 0.0158 1.2397 0.5432 1.0999 0.5297 0.6319 1.1151 0.4898 0.3369 1.4860 0.3620 0.6561 
LBVAR 0.1084 0.0735 0.5033 1.2123 0.4776 0.9256 0.8559 0.1385 0.3434 0.3944 0.0874 0.6373 0.4798 
UVBFAVAR  0.1758 0.0328 1.1658 0.0350 1.0376 0.7603 0.8958 1.2390 0.7297 0.5135 1.6414 0.1816 0.7007 

w=0.3, d=0.5 

MVBFAVAR 0.5988 0.6398 0.8132 1.1949 0.8161 0.0634 0.1013 0.6683 0.0510 0.1229 0.9803 0.8184 0.5724 
SBVAR 0.0159 0.0344 1.2259 0.4944 1.0753 0.5568 0.6635 1.1194 0.5166 0.3540 1.5021 0.3401 0.6582 
LBVAR 0.0296 0.1683 0.5794 1.1879 0.5515 0.8009 0.7638 0.0377 0.4838 0.3900 0.3018 0.2446 0.4616 
UVBFAVAR  0.1732 0.0419 1.1717 0.0257 1.0483 0.7699 0.9075 1.2504 0.7413 0.5258 1.6535 0.1692 0.7065 

w=0.2, d=1 

MVBFAVAR 0.5156 0.6148 0.8377 1.0627 0.8006 0.0565 0.1703 0.7222 0.0399 0.0621 1.0740 0.7614 0.5598 
SBVAR 0.0164 0.0723 1.2006 0.3641 1.0408 0.6170 0.7302 1.1450 0.5791 0.4003 1.5435 0.2890 0.6665 
LBVAR 0.0290 0.1904 0.5660 1.0595 0.5672 0.3973 0.5732 0.2753 0.4142 0.3570 0.6671 0.1018 0.4332 
UVBFAVAR  0.1698 0.0689 1.1794 0.0083 1.0674 0.7810 0.9239 1.2631 0.7528 0.5379 1.6636 0.1592 0.7146 

w=0.1, d=1 

MVBFAVAR 0.4659 0.4824 0.8467 0.8532 0.7600 0.1890 0.2897 0.7697 0.1631 0.0070 1.1647 0.6813 0.5561 
SBVAR 0.0075 0.0913 1.1850 0.2802 1.0319 0.6350 0.7752 1.1571 0.6132 0.4257 1.5639 0.2614 0.6690 
LBVAR 0.7100 0.6596 0.5570 0.7005 0.8072 0.5442 1.0099 0.5176 0.8184 0.4234 0.9765 0.6972 0.7018 
UVBFAVAR  0.1677 0.0989 1.1907 0.0063 1.0874 0.7895 0.9363 1.2722 0.7588 0.5443 1.6674 0.1561 0.7230 

w=0.2, d=2 

MVBFAVAR 0.4075 0.4752 0.8681 0.7652 0.7399 0.2109 0.3463 0.7854 0.2007 0.0326 1.1884 0.6522 0.5560 
SBVAR 0.0327 0.1884 1.1644 0.0627 1.0686 0.7278 0.8867 1.2332 0.7094 0.5106 1.6352 0.1852 0.7004 
LBVAR 0.4024 0.4964 0.4665 0.6959 0.7645 0.1196 0.4837 0.7843 0.6310 0.1710 1.2502 0.3459 0.5510 
UVBFAVAR  0.1466 0.2297 1.2394 0.0799 1.1659 0.8340 0.9919 1.3136 0.7931 0.5774 1.6935 0.1319 0.7664 

w=0.1, d=2 

MVBFAVAR 0.4711 0.2227 0.8533 0.5048 0.7279 0.3232 0.4671 0.8437 0.2981 0.1079 1.2421 0.5793 0.5534 
Notes: Model acronyms as defined in the text.  
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Table 4: One- to Twelve-Months-Ahead RMSEs for Mountain  
Models 1 2 3 4 5 6 7 8 9 10 11 12 Average 

VAR  0.7237 0.3197 0.6920 0.5368 0.9308 0.3053 0.9059 0.5794 1.2154 0.4498 0.2662 0.0850 0.5842 
UVFAVAR  0.3041 0.1668 0.4541 0.2948 0.5441 0.3540 0.9075 0.5065 1.2426 0.4656 0.2490 0.0743 0.4636 
MVFAVAR 0.9396 0.0363 0.4980 0.6929 0.8773 0.3518 1.0178 0.3661 1.2129 0.2996 0.0995 0.1507 0.5452 
SBVAR 0.7191 0.3118 0.6907 0.5304 0.9176 0.3083 0.9052 0.5757 1.2190 0.4490 0.2626 0.0872 0.5814 
LBVAR 0.1683 0.6250 0.5985 1.1054 0.6518 1.7442 2.3752 0.8155 2.6273 1.0145 1.1200 1.7952 1.2201 
UVBFAVAR  0.2239 0.2684 0.3466 0.4001 0.4200 0.4674 1.0226 0.3881 1.3550 0.3524 0.1364 0.1842 0.4637 

w=0.3, d=0.5 

MVBFAVAR 0.9160 0.0472 0.5208 0.6920 0.8694 0.3400 1.0059 0.3847 1.2174 0.3170 0.1127 0.1442 0.5473 
SBVAR 0.7130 0.2757 0.6770 0.5002 0.8670 0.3270 0.9041 0.5593 1.2347 0.4440 0.2473 0.0976 0.5706 
LBVAR 0.0749 0.4867 0.4662 1.1833 0.3959 1.7464 2.3469 0.7547 2.6119 0.7880 1.2344 1.6471 1.1447 
UVBFAVAR  0.2210 0.2695 0.3436 0.4032 0.4174 0.4708 1.0258 0.3849 1.3585 0.3490 0.1330 0.1876 0.4637 

w=0.2, d=1 

MVBFAVAR 0.8634 0.0588 0.5809 0.6632 0.8387 0.3230 0.9704 0.4322 1.2314 0.3587 0.1540 0.1360 0.5509 
SBVAR 0.6740 0.1848 0.6350 0.4451 0.7609 0.3649 0.9184 0.5226 1.2714 0.4274 0.2153 0.1227 0.5452 
LBVAR 0.0651 0.4834 0.3720 1.1973 0.3461 1.5945 2.2352 0.7093 2.5851 0.8615 1.1772 1.4365 1.0886 
UVBFAVAR  0.2183 0.2654 0.3419 0.4037 0.4189 0.4721 1.0260 0.3849 1.3594 0.3487 0.1325 0.1884 0.4634 

w=0.1, d=1 

MVBFAVAR 0.7596 0.0557 0.6195 0.5729 0.7720 0.3222 0.9394 0.4800 1.2536 0.4013 0.1923 0.1356 0.5420 
SBVAR 0.7034 0.1209 0.5784 0.4003 0.7052 0.4051 0.9286 0.4938 1.2958 0.4116 0.1938 0.1402 0.5314 
LBVAR 0.4309 0.7213 0.2497 1.1392 0.0315 1.6446 2.3155 0.5397 2.6710 0.8235 1.2233 1.3854 1.0980 
UVBFAVAR  0.2151 0.2586 0.3427 0.4030 0.4234 0.4711 1.0241 0.3876 1.3580 0.3505 0.1344 0.1869 0.4629 

w=0.2, d=2 

MVBFAVAR 0.7806 0.0008 0.6234 0.5118 0.7393 0.3520 0.9303 0.4805 1.2666 0.4021 0.1931 0.1421 0.5352 
SBVAR 0.6144 0.0312 0.4731 0.3715 0.5735 0.4511 0.9739 0.4381 1.3362 0.3796 0.1596 0.1684 0.4975 
LBVAR 0.3579 0.6238 0.0353 1.1205 0.0015 1.3573 1.9711 0.4627 2.3600 0.7385 0.9424 0.9900 0.9134 
UVBFAVAR  0.2022 0.2330 0.3407 0.4013 0.4354 0.4712 1.0203 0.3923 1.3567 0.3534 0.1368 0.1852 0.4607 

w=0.1, d=2 

MVBFAVAR 0.6718 0.0244 0.5782 0.3726 0.6750 0.3582 0.9111 0.5031 1.2640 0.4353 0.2151 0.1148 0.5103 
Notes: Model acronyms as defined in the text.  
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Table 5: One- to Twelve-Months-Ahead RMSEs for New England 
Models 1 2 3 4 5 6 7 8 9 10 11 12 Average 

VAR  1.2563 0.1011 0.2261 1.1054 0.1178 0.1881 0.6685 1.2306 0.0869 0.0597 0.5914 1.0115 0.5536 
UVFAVAR  0.8783 0.5972 0.2073 0.8664 0.0428 0.3802 0.5477 1.1429 0.1467 0.2260 0.3961 0.7773 0.5174 
MVFAVAR 0.4843 0.9700 0.0884 0.7011 0.7657 0.2313 0.3749 0.5139 0.5988 0.3988 0.1307 0.4345 0.4744 
SBVAR 1.2416 0.0772 0.2169 1.0862 0.1012 0.2031 0.6688 1.2408 0.0787 0.0509 0.5973 1.0204 0.5486 
LBVAR 0.5970 1.2337 0.1358 0.2923 1.1111 2.1098 0.0799 0.8807 1.5362 2.0144 0.0090 0.2173 0.8514 
UVBFAVAR  1.0000 0.9254 0.5416 1.3195 0.5375 0.8942 1.0972 1.7027 0.4229 0.3532 0.9802 1.3653 0.9283 

w=0.3, d=0.5 

MVBFAVAR 0.4848 0.9354 0.0977 0.6836 0.6988 0.1908 0.3570 0.5658 0.5838 0.3957 0.0928 0.4660 0.4627 
SBVAR 1.1974 0.0096 0.1477 1.0153 0.0403 0.2654 0.6758 1.2806 0.0421 0.0157 0.6254 1.0537 0.5308 
LBVAR 0.7140 0.9752 0.3888 0.3296 1.4249 2.1457 0.1354 0.8500 2.0528 1.9652 0.2582 0.1616 0.9501 
UVBFAVAR  1.0062 0.9345 0.5543 1.3350 0.5551 0.9137 1.1180 1.7246 0.4456 0.3765 1.0040 1.3895 0.9464 

w=0.2, d=1 

MVBFAVAR 0.4958 0.7958 0.0755 0.6001 0.5198 0.0874 0.3131 0.7034 0.5153 0.3960 0.0131 0.5495 0.4221 
SBVAR 1.1159 0.1774 0.0107 0.9423 0.0809 0.4134 0.7183 1.3697 0.0597 0.0697 0.7077 1.1310 0.5664 
LBVAR 0.6761 0.8783 0.5395 0.3977 1.3516 1.6661 0.1505 0.5378 2.0172 1.8085 0.2345 0.0963 0.8628 
UVBFAVAR  1.0188 0.9441 0.5709 1.3481 0.5681 0.9277 1.1303 1.7368 0.4576 0.3880 1.0153 1.4007 0.9589 

w=0.1, d=1 

MVBFAVAR 0.5089 0.5286 0.0538 0.5457 0.3198 0.0232 0.2931 0.8519 0.4127 0.3974 0.1489 0.6179 0.3918 
SBVAR 1.1006 0.2502 0.1406 0.9037 0.1320 0.4846 0.7610 1.4133 0.1124 0.1129 0.7561 1.1689 0.6114 
LBVAR 0.7069 0.8125 1.2278 0.2444 1.3670 2.0976 0.2377 0.9010 3.2253 1.8619 0.3843 0.5304 1.1331 
UVBFAVAR  1.0446 0.9519 0.5882 1.3588 0.5733 0.9331 1.1318 1.7364 0.4562 0.3851 1.0116 1.3964 0.9640 

w=0.2, d=2 

MVBFAVAR 0.5550 0.4071 0.0562 0.4469 0.2665 0.0669 0.3041 0.8770 0.3759 0.3942 0.1850 0.6347 0.3808 
SBVAR 1.1108 0.4238 0.3349 1.0526 0.2822 0.7096 0.9132 1.5603 0.2924 0.2521 0.8934 1.2943 0.7599 
LBVAR 0.6578 0.8143 1.2507 0.5241 1.3876 1.3158 0.2403 0.3415 2.5119 1.5753 0.2717 0.2756 0.9305 
UVBFAVAR  1.1263 0.9958 0.6646 1.4084 0.6140 0.9729 1.1603 1.7612 0.4781 0.4035 1.0284 1.4118 1.0021 

w=0.1, d=2 

MVBFAVAR 0.6262 0.1135 0.0570 0.5824 0.2015 0.1722 0.3538 0.9644 0.3088 0.3614 0.2615 0.6659 0.3891 
Notes: Model acronyms as defined in the text.  



 18

 
 

Table 6: One- to Twelve-Months-Ahead RMSEs for Pacific  
Models 1 2 3 4 5 6 7 8 9 10 11 12 Average 

VAR  0.0650 1.0012 0.5885 0.4370 0.1540 0.0444 0.4337 0.0898 1.1303 0.8043 0.1511 1.6704 0.5475 
UVFAVAR  0.6503 1.0900 0.8696 0.3697 0.1546 0.0599 0.4228 0.0090 1.0770 0.9343 0.3127 1.5105 0.6217 
MVFAVAR 0.1967 0.4755 0.5027 0.7625 0.2584 0.3494 0.1042 0.1779 0.7409 1.1675 0.4888 1.2979 0.5435 
SBVAR 0.0748 1.0052 0.6012 0.4360 0.1513 0.0528 0.4383 0.0964 1.1389 0.8000 0.1448 1.6782 0.5515 
LBVAR 1.0621 0.0185 0.7096 0.1877 1.8358 1.4237 0.0145 2.2149 1.2277 1.6524 1.0450 0.2554 0.9706 
UVBFAVAR  0.7744 1.0576 0.8905 0.3239 0.0375 0.2200 0.6219 0.2502 1.3486 0.6360 0.0106 1.8528 0.6687 

w=0.3, d=0.5 

MVBFAVAR 0.2541 0.5112 0.5150 0.7706 0.2490 0.3410 0.1140 0.1694 0.7498 1.1624 0.4820 1.3079 0.5522 
SBVAR 0.1016 1.0158 0.6611 0.4228 0.1346 0.0843 0.4632 0.1235 1.1754 0.7777 0.1186 1.7104 0.5658 
LBVAR 1.0910 0.1844 0.5144 0.0943 1.8513 1.3711 0.0699 2.1676 0.7988 1.8856 1.0565 0.2167 0.9418 
UVBFAVAR  0.7734 1.0632 0.8953 0.3172 0.0284 0.2290 0.6329 0.2622 1.3612 0.6222 0.0249 1.8678 0.6731 

w=0.2, d=1 

MVBFAVAR 0.4038 0.6163 0.5683 0.7804 0.2509 0.2985 0.1450 0.1589 0.7872 1.1372 0.4679 1.3378 0.5794 
SBVAR 0.1631 1.0458 0.7849 0.3631 0.0906 0.1625 0.5341 0.1907 1.2602 0.7128 0.0530 1.7835 0.5954 
LBVAR 1.1228 0.1949 0.4805 0.3224 1.5098 1.2044 0.1398 1.7149 0.5550 2.0703 1.1004 0.7031 0.9265 
UVBFAVAR  0.7632 1.0857 0.9116 0.2958 0.0037 0.2496 0.6560 0.2844 1.3816 0.6014 0.0443 1.8863 0.6803 

w=0.1, d=1 

MVBFAVAR 0.4951 0.7428 0.6259 0.7081 0.2739 0.2110 0.1947 0.1519 0.8697 1.0987 0.4423 1.3849 0.5999 
SBVAR 0.1522 1.0405 0.8773 0.3060 0.0554 0.2045 0.5867 0.2314 1.3077 0.6690 0.0157 1.8242 0.6059 
LBVAR 1.2389 0.3835 0.0406 0.0667 1.6356 1.9928 0.7607 2.1999 0.8746 2.0738 1.0914 0.8096 1.0974 
UVBFAVAR  0.7485 1.1144 0.9360 0.2703 0.0266 0.2738 0.6805 0.3075 1.4009 0.5831 0.0601 1.8998 0.6918 

w=0.2, d=2 

MVBFAVAR 0.5683 0.8134 0.6642 0.6816 0.2937 0.1825 0.2181 0.1510 0.8922 1.0808 0.4349 1.3974 0.6148 
SBVAR 0.1916 1.1144 1.0506 0.1445 0.0709 0.3461 0.7362 0.3530 1.4394 0.5473 0.0901 1.9266 0.6676 
LBVAR 1.2777 0.3365 0.0284 0.5189 1.1467 1.5649 0.0034 1.3949 0.3914 2.2465 1.0663 0.9750 0.9126 
UVBFAVAR  0.6849 1.2382 1.0359 0.1607 0.1472 0.3728 0.7801 0.3988 1.4806 0.5084 0.1262 1.9591 0.7411 

w=0.1, d=2 

MVBFAVAR 0.5467 0.8899 0.7222 0.5419 0.2964 0.1058 0.2738 0.1182 0.9495 1.0426 0.4070 1.4264 0.6100 
Notes: Model acronyms as defined in the text.  
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Table 7: One- to Twelve-Months-Ahead RMSEs for South Atlantic  

Models 1 2 3 4 5 6 7 8 9 10 11 12 Average 
VAR  1.2906 0.1725 0.5069 0.2603 0.0348 0.2985 0.3062 0.5061 0.2381 0.8458 0.1666 0.4233 0.4208 
UVFAVAR  0.7274 0.0744 0.6383 0.2386 0.0354 0.2166 0.3558 0.4476 0.2962 0.8202 0.0902 0.3458 0.3572 
MVFAVAR 1.3033 0.6803 0.5486 0.1370 0.1161 0.1838 0.0638 0.4478 0.3685 0.6217 0.0425 0.2895 0.4003 
SBVAR 1.2813 0.1659 0.5080 0.2589 0.0291 0.2963 0.3137 0.5055 0.2371 0.8504 0.1678 0.4259 0.4200 
LBVAR 0.1565 0.6512 0.3626 1.4114 0.4322 0.6213 1.1313 0.7045 1.8073 0.0067 1.0121 1.2521 0.7958 
UVBFAVAR  0.7820 0.1600 0.7304 0.3884 0.1854 0.3769 0.5224 0.6168 0.1251 0.9929 0.2639 0.5204 0.4720 

w=0.3, d=0.5 

MVBFAVAR 1.2642 0.6515 0.5436 0.1422 0.1048 0.1824 0.0843 0.4388 0.3650 0.6334 0.0476 0.2904 0.3957 
SBVAR 1.2557 0.1447 0.5250 0.2525 0.0067 0.2870 0.3431 0.5058 0.2328 0.8676 0.1738 0.4358 0.4192 
LBVAR 0.1717 0.7403 0.3775 1.3285 0.5280 0.5796 1.2010 0.7624 1.6986 0.1392 1.1399 1.1473 0.8178 
UVBFAVAR  0.7836 0.1636 0.7349 0.3938 0.1915 0.3833 0.5292 0.6238 0.1180 1.0001 0.2712 0.5277 0.4767 

w=0.2, d=1 

MVBFAVAR 1.1684 0.5618 0.5438 0.1390 0.0753 0.1772 0.1414 0.4197 0.3600 0.6715 0.0571 0.2921 0.3839 
SBVAR 1.1824 0.0951 0.5633 0.2536 0.0396 0.2775 0.3972 0.5174 0.2151 0.9030 0.1930 0.4569 0.4245 
LBVAR 0.1034 0.7498 0.4267 1.2385 0.5253 0.5820 1.0458 0.8286 1.7134 0.2820 1.2538 1.0065 0.8130 
UVBFAVAR  0.7814 0.1685 0.7398 0.3962 0.1958 0.3867 0.5324 0.6272 0.1148 1.0033 0.2743 0.5308 0.4793 

w=0.1, d=1 

MVBFAVAR 1.0373 0.3957 0.5518 0.1239 0.0300 0.1637 0.2231 0.4000 0.3498 0.7264 0.0575 0.3000 0.3633 
SBVAR 1.1840 0.0962 0.6124 0.2459 0.0652 0.2689 0.4241 0.5241 0.2055 0.9180 0.2028 0.4667 0.4345 
LBVAR 0.0683 0.7624 0.4855 1.3117 0.5957 0.5323 1.2227 1.1571 1.4928 0.4285 1.4717 0.9801 0.8757 
UVBFAVAR  0.7857 0.1697 0.7456 0.3961 0.1965 0.3866 0.5313 0.6260 0.1164 1.0016 0.2726 0.5290 0.4797 

w=0.2, d=2 

MVBFAVAR 1.0340 0.3644 0.5732 0.1106 0.0286 0.1530 0.2461 0.3914 0.3508 0.7366 0.0551 0.2968 0.3617 
SBVAR 1.0920 0.0622 0.6877 0.2865 0.1198 0.3013 0.4737 0.5664 0.1639 0.9608 0.2385 0.4991 0.4543 
LBVAR 0.0495 0.8838 0.5221 1.0961 0.6423 0.5079 0.9615 1.0279 1.6164 0.5120 1.4056 0.8946 0.8433 
UVBFAVAR  0.7874 0.1867 0.7686 0.4022 0.2076 0.3935 0.5363 0.6309 0.1125 1.0052 0.2760 0.5322 0.4866 

w=0.1, d=2 

MVBFAVAR 0.9351 0.2350 0.6220 0.1295 0.0096 0.1585 0.2930 0.3991 0.3381 0.7711 0.0561 0.3098 0.3547 
Notes: Model acronyms as defined in the text.  
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Table 8: One- to Twelve-Months-Ahead RMSEs for West North Central  

Models 1 2 3 4 5 6 7 8 9 10 11 12 Average 
VAR  0.9929 0.3586 0.7306 0.3623 0.4283 0.2820 0.0269 0.2976 0.3556 0.0536 0.2128 0.3543 0.3713 
UVFAVAR  0.6528 0.2925 0.6948 0.4185 0.3414 0.0792 0.1403 0.3989 0.2667 0.1060 0.2419 0.2888 0.3268 
MVFAVAR 0.7154 0.6677 0.5492 0.2203 0.3403 0.0254 0.4037 0.3782 0.2588 0.3411 0.5455 0.2382 0.3903 
SBVAR 0.9938 0.3669 0.7281 0.3725 0.4240 0.2756 0.0178 0.2988 0.3539 0.0527 0.2087 0.3539 0.3705 
LBVAR 0.6619 0.3004 0.4647 1.2679 1.4178 0.3541 0.1465 0.1881 0.4687 0.3168 0.7970 0.7683 0.5960 
UVBFAVAR  0.8310 0.1001 0.7620 0.5213 0.4735 0.1916 0.2534 0.2838 0.3819 0.0107 0.1259 0.4054 0.3617 

w=0.3, d=0.5 

MVBFAVAR 0.7067 0.6529 0.5643 0.2339 0.3322 0.0213 0.3616 0.3808 0.2595 0.3254 0.5182 0.2364 0.3828 
SBVAR 1.0064 0.3931 0.7112 0.4122 0.4138 0.2479 0.0170 0.3015 0.3478 0.0497 0.1954 0.3553 0.3709 
LBVAR 0.7236 0.2001 0.3952 1.4574 1.4663 0.4044 0.5113 0.2703 0.6836 0.1360 0.5317 0.7152 0.6246 
UVBFAVAR  0.8378 0.0940 0.7660 0.5262 0.4788 0.1965 0.2583 0.2787 0.3869 0.0158 0.1209 0.4105 0.3642 

w=0.2, d=1 

MVBFAVAR 0.6944 0.6193 0.5943 0.2933 0.2941 0.0181 0.2439 0.3874 0.2445 0.2802 0.4399 0.2335 0.3619 
SBVAR 1.0054 0.4226 0.6975 0.4603 0.3974 0.2011 0.0899 0.3082 0.3422 0.0432 0.1717 0.3631 0.3752 
LBVAR 0.7053 0.1561 0.2669 1.1748 1.1235 0.4772 0.2984 0.4002 0.6813 0.2667 0.2932 0.8073 0.5542 
UVBFAVAR  0.8415 0.0924 0.7674 0.5284 0.4808 0.1983 0.2603 0.2768 0.3888 0.0177 0.1189 0.4125 0.3653 

w=0.1, d=1 

MVBFAVAR 0.6951 0.5948 0.6350 0.3370 0.2487 0.0314 0.0970 0.4278 0.2194 0.2249 0.3563 0.2234 0.3409 
SBVAR 1.0386 0.4040 0.6724 0.4818 0.3997 0.1748 0.1237 0.3108 0.3396 0.0379 0.1663 0.3694 0.3766 
LBVAR 0.8979 0.1228 0.5022 1.6017 1.6139 0.5350 1.2167 0.4947 0.9043 0.6688 0.0675 0.8475 0.7894 
UVBFAVAR  0.8406 0.0950 0.7663 0.5273 0.4791 0.1969 0.2589 0.2782 0.3874 0.0163 0.1204 0.4110 0.3648 

w=0.2, d=2 

MVBFAVAR 0.6961 0.5389 0.6095 0.3835 0.2151 0.0334 0.0395 0.4395 0.1978 0.2103 0.3338 0.2227 0.3267 
SBVAR 1.0007 0.3643 0.7060 0.4727 0.4155 0.1594 0.1979 0.3092 0.3578 0.0158 0.1429 0.3892 0.3776 
LBVAR 0.8850 0.0866 0.3363 1.0116 1.0883 0.6153 0.5401 0.5919 0.8101 0.0740 0.2057 0.8796 0.5937 
UVBFAVAR  0.8491 0.0978 0.7673 0.5304 0.4802 0.1981 0.2606 0.2767 0.3889 0.0178 0.1188 0.4126 0.3665 

w=0.1, d=2 

MVBFAVAR 0.7069 0.4608 0.6557 0.3520 0.2553 0.0456 0.0548 0.4575 0.2127 0.1683 0.2964 0.2367 0.3252 
Notes: Model acronyms as defined in the text.  
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Table 9: One- to Twelve-Months-Ahead RMSEs for West South Central  

Models 1 2 3 4 5 6 7 8 9 10 11 12 Average 
VAR  0.0483 0.2295 0.4568 0.6241 0.9026 0.0340 0.1676 0.7120 0.3865 0.5226 0.3158 0.0078 0.3673 
UVFAVAR  0.0637 0.2400 0.2866 0.3752 0.8593 0.1526 0.0849 0.7700 0.4196 0.5812 0.3600 0.0232 0.3514 
MVFAVAR 0.6987 0.2308 0.6812 0.6667 1.3093 0.1503 0.1200 1.0262 0.1703 0.7091 0.5505 0.2336 0.5456 
SBVAR 0.0442 0.2284 0.4542 0.6143 0.8979 0.0403 0.1641 0.7106 0.3882 0.5214 0.3144 0.0084 0.3655 
LBVAR 0.2664 0.2298 1.1203 0.8231 1.0109 0.4720 0.0217 0.8920 1.1818 0.0386 0.2912 1.0229 0.6142 
UVBFAVAR  0.2375 0.3645 0.1434 0.4800 0.7283 0.2742 0.1901 0.6450 0.5330 0.4693 0.2407 0.0902 0.3664 

w=0.3, d=0.5 

MVBFAVAR 0.6567 0.2096 0.6746 0.6501 1.2719 0.1357 0.1097 1.0046 0.1791 0.6967 0.5391 0.2225 0.5292 
SBVAR 0.0330 0.2301 0.4429 0.5827 0.8890 0.0695 0.1539 0.7086 0.3973 0.5171 0.3095 0.0125 0.3622 
LBVAR 0.0577 0.3978 1.0771 0.5561 1.2206 0.2628 0.1720 1.1377 0.8196 0.4359 0.0961 0.5569 0.5659 
UVBFAVAR  0.2457 0.3684 0.1412 0.4876 0.7247 0.2784 0.1961 0.6411 0.5379 0.4641 0.2362 0.0952 0.3681 

w=0.2, d=1 

MVBFAVAR 0.5442 0.1810 0.6559 0.5961 1.1752 0.0814 0.0679 0.9438 0.2169 0.6757 0.5052 0.1859 0.4858 
SBVAR 0.0021 0.2278 0.4152 0.5278 0.8693 0.1217 0.1425 0.7053 0.4243 0.5083 0.2980 0.0263 0.3557 
LBVAR 0.1095 0.3773 1.0568 0.5568 1.1579 0.2441 0.1394 0.9805 0.6846 0.4904 0.0180 0.4473 0.5219 
UVBFAVAR  0.2595 0.3677 0.1484 0.5006 0.7282 0.2782 0.2029 0.6428 0.5403 0.4609 0.2359 0.0977 0.3719 

w=0.1, d=1 

MVBFAVAR 0.3947 0.1586 0.5879 0.4940 1.0582 0.0154 0.0198 0.8702 0.2648 0.6623 0.4617 0.1400 0.4273 
SBVAR 0.0105 0.2526 0.3999 0.5129 0.8800 0.1548 0.1452 0.7116 0.4403 0.5030 0.2960 0.0365 0.3619 
LBVAR 0.1115 0.7329 0.9305 0.4221 1.8311 0.3528 0.3343 1.6584 0.6799 0.7653 0.5777 0.1479 0.7120 
UVBFAVAR  0.2594 0.3698 0.1643 0.5085 0.7323 0.2718 0.2068 0.6471 0.5384 0.4605 0.2388 0.0967 0.3745 

w=0.2, d=2 

MVBFAVAR 0.3810 0.2223 0.6066 0.4698 1.0457 0.0111 0.0043 0.8682 0.2828 0.6630 0.4588 0.1267 0.4284 
SBVAR 0.0109 0.2863 0.3704 0.4983 0.8440 0.1964 0.1719 0.7015 0.4897 0.4854 0.2752 0.0680 0.3665 
LBVAR 0.0817 0.6844 0.9298 0.5565 1.6054 0.2466 0.0800 1.2864 0.4364 0.6697 0.2462 0.0869 0.5758 
UVBFAVAR  0.2960 0.3728 0.2161 0.5552 0.7480 0.2601 0.2272 0.6572 0.5399 0.4542 0.2420 0.0995 0.3890 

w=0.1, d=2 

MVBFAVAR 0.2887 0.2586 0.5373 0.4112 0.9782 0.0485 0.0265 0.8444 0.3308 0.6395 0.4290 0.0883 0.4068 
Notes: Model acronyms as defined in the text.  
 
 
 


