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ABSTRACT 

In 1978 Thomassen asked whether planar hypohamiltonian oriented graphs exist. Infinite 
families of such graphs have since been described but for infinitely many  it remained an open 
question whether planar hypohamiltonian oriented graphs of order n exist. In this paper we 
develop new methods for constructing hypohamiltonian digraphs, which, combined with 
efficient graph generation algorithms, enable us to fully characterise the orders for which planar 
hypohamiltonian oriented graphs exist. Our novel methods also led us to discover the planar 
hypohamiltonian oriented graph of smallest order and size, as well as infinitely many 
hypohamiltonian orientations of maximal planar graphs. Furthermore, we answer a question 
related to a problem of Schiermeyer on vertex degrees in hypohamiltonian oriented graphs, and 
characterise all the orders for which planar hypotraceable oriented graphs exist. 
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that definitions that we state for digraphs apply also to graphs. A digraph G is hypohamiltonian if
every vertex‐deleted subdigraph of G has a hamiltonian cycle but G does not.

In 1978, answering a question of Murty, Thomassen [15] presented an infinite family of hypo-
hamiltonian oriented graphs. Every member of that family is nonplanar and 2‐diregular (i.e., each
vertex has in‐degree 2 and out‐degree 2). In the same paper Thomassen proved that there exists a
planar hypohamiltonian digraph of order n for every n 6≥ , albeit containing many 2‐cycles (half of
the arcs are in 2‐cycles) and he asked whether planar hypohamiltonian oriented graphs exist. This
question remained open until 35 years later, when van Aardt, Burger and Frick [1] showed that for
every integer k 0≥ there exists a planar hypohamiltonian oriented graph of order k9 + 12 . In [3] the
same authors together with Kemnitz and Schiermeyer [3] extended the result to cover orders k9 + 6 ,
k 0≥ . It was also shown in [1] that the smallest possible order of a planar hypohamiltonian oriented
graph is 9, but the question of smallest size was left open.

In Section 2 we develop new methods for constructing hypohamiltonian oriented graphs,
which we then use in Section 3 in combination with results obtained by computer to answer
several questions concerning planar hypohamiltonian oriented graphs.

In Section 3.1 we prove that there exists a planar hypohamiltonian oriented graph of order n if
and only if n = 9 or n 11≥ . For undirected graphs such a characterisation is still an open problem,
despite significant recent efforts—it is known that a planar hypohamiltonian graph
of order n exists if n = 40 or n 42≥ , see [12], and that no such graph exists on fewer than
23 vertices [9]. The situation for n23 39≤ ≤ and n = 41 is unknown, and relates to a problem
raised by Holton [11].

In Section 3.2 we show that there exists a planar hypohamiltonian oriented graph of order n
whose underlying undirected graph is a maximal planar graph if and only if n = 9 or n 11≥ .
This is in stark contrast to the fact that no maximal planar graph is hypohamiltonian: by
Whitney's theorem that 4‐connected triangulations of the plane are hamiltonian, any planar
hypohamiltonian graph has a 3‐vertex‐cut. For triangulations, this cut forms a separating
triangle. A short argument involving the fact that removing any vertex of this triangle yields a
hamiltonian graph implies that the triangulation itself is hamiltonian, a contradiction.

In an undirected hypohamiltonian graph every vertex has degree at least 3, so we say that an
undirected hypohamiltonian graph is edge‐minimal if it is cubic (3‐regular). It is well‐known that
infinite families of edge‐minimal planar hypohamiltonian graphs exist. In a hypohamiltonian di-
graph, every vertex has in‐degree at least 2 and out‐degree at least 2, so we call a hypohamiltonian
digraph arc‐minimal if it is 2‐diregular. The nonplanar hypohamiltonian oriented graphs constructed
by Thomassen in [15] are all arc‐minimal, but no planar arc‐minimal hypohamiltonian oriented
graph has yet appeared in the literature. In Section 3.2 we construct a 9‐vertex arc‐minimal planar
hypohamiltonian oriented graph. We have not found any other arc‐minimal planar hypohamiltonian
oriented graph, and our computational results show that there is none of ordern for n9 < < 25 (and
none on fewer than nine vertices). However, we show that for infinitely many n there exist planar
hypohamiltonian oriented graphs of order n with only n2 + 1 arcs (we call these almost arc‐
minimal).

During a talk given at the fourth Ilmenau‐Košice DAAD Research Workshop held in Heyda,
Germany in March 2018, Schiermeyer raised the question whether every hypohamiltonian
oriented graph contains a vertex with in‐degree as well as out‐degree 2. We call such a vertex
quartic since its total degree is 4. One can see such vertices as analogous to cubic vertices
(vertices of degree 3) in undirected hypohamiltonian graphs. But while Thomassen's
well‐known question whether undirected hypohamiltonian graphs without cubic vertices exist
[15] remains open, Schiermeyer's question admits a negative answer by an infinite family of so‐
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called 2‐hypohamiltonian oriented graphs (which have in‐degree and out‐degree at least 3)
constructed in [4]. The members of that family also happen to be hypohamiltonian but they are
nonplanar. Thomassen [15] proved that every undirected planar hypohamiltonian graph has a
cubic vertex. It still remained an open question whether every planar hypohamiltonian oriented
graph has a quartic vertex. We answer that question in Section 3.3.

A digraph G is hypotraceable if all of its vertex‐deleted subgraphs are traceable (i.e., contain
a hamiltonian path), but G does not. Grötschel, Thomassen and Wakabayashi [10] observed
that if G is any hypohamiltonian digraph, then splitting an arbitrary vertex of G into a source
(a vertex with no incoming arcs) and a sink (a vertex with no outgoing arcs) yields a hypo-
traceable digraph. However, the existence of planar hypohamiltonian oriented graphs does not
immediately imply the existence of planar hypotraceable oriented graphs, since the vertex
splitting operation does not necessarily retain planarity. Nevertheless, van Aardt, Burger and
Frick [2] proved that there exists a planar hypotraceable oriented graph of order n for every
even n 10≥ , with the possible exception of 14. Whether planar hypotraceable oriented graphs
of odd order or of order 14 exists is stated as an open problem in [2]. In Section 4 we establish
that there exists a planar hypotraceable oriented graph of order n if and only if n 10≥ .

For digraph notation and terminology we follow [5]. In particular, we denote the vertex set
and arc set of a digraphG byV G( ) and A G( ), respectively, and their respective cardinalities are
called the order and size of G. The converse G−1 of a digraph G is obtained from G by reversing
all orientations, that is, each arc is replaced by an oppositely directed arc. If G is hypoha-
miltonian, then so is G−1, but note that G and G−1 may be isomorphic.

2 | NEW CONSTRUCTION METHODS

This section provides new techniques for constructing hypohamiltonian digraphs and, in
particular, planar hypohamiltonian oriented graphs.

2.1 | The θ‐replacement method

Throughout this section, k will denote an arbitrary positive integer.
A θ‐graph is a graph isomorphic to K e−4 (the complete graph of order 4 with one edge

removed). We denote by θ the orientation of a θ‐graph shown in Figure 1, that is,

θ v v v v v v v v v v v v v v= ({ , , , }, { , , , , }).1 2 3 4 1 2 2 3 3 1 4 2 3 4

Let Tk denote the oriented graph with vertex set a b c d e f{ , , , , , }i i i i i i i
k
=1 consisting of the path

a b c d e f a b c d e f… k k k k k k1 1 1 1 1 1 , together with all the arcs on the paths f d b f d b…k k k 1 1 1 and
e c a e c a…k k k 1 1 1.

Let T θ( )k be the disjoint union of θ v v− 2 3 and Tk, together with all the arcs on the paths
b v a v1 2 1 1 and v f v ek k4 3 , as shown in Figure 1 on the right.

Now let G be a digraph of order n containing the oriented graph θ as induced subdigraph
(we call this a θ‐subdigraph), and let T G( )k be the digraph of order n k+ 6 obtained from G by
replacing θ with T θ( )k .

If G is planar and v v v v1 2 3 1 and v v v v2 3 4 2 are facial triangles in the planar embedding of G,
then T G( )k is also planar, and if G is an oriented graph, then so is T G( )k .
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Our first result in this section provides conditions under which T G( )k is hypohamiltonian.

Lemma 1. LetG be a hypohamiltonian digraph of order n containing the oriented graph
θ (labelled as in Figure 1) as induced subdigraph, such that

(i) for every v V G( )∈ there exists a hamiltonian cycle in G v− that contains at least one
of the arcs on the path v v v v4 2 3 1, and

(ii) G v− 1 or G v− 4 contains a hamiltonian cycle using v v4 2 or v v3 1, respectively, but not
using v v2 3.

Then T G( )k is a hypohamiltonian digraph of order n k+ 6 .

Proof. For ease of notation we put

af a b c d e f f b f d e c a b ea e f d b c a( ) = , ( ) = and ( ) = .i i i i i i i i i i i i i i i i i i i i i

We first prove that T G( )k is non‐hamiltonian. Suppose, to the contrary, that there is a
hamiltonian cycle h in T G( )k . Seeing Tk as a subdigraph of T G( )k , we note that Tk is
attached to T G T( ) −k k only by the in‐going arcs v a2 1, v e v f,k k3 4 and the out‐going arcs
f v a v b v, ,k 3 1 1 1 2. Therefore, h contains either one of the four paths

Q v af af v Q v ea ea v Q v f b f b v= ( ) …( ) , = ( ) …( ) , = ( ) …( ) ,k k k1 2 1 3 2 3 1 1 3 4 1 2

Q v f v e c d b f a e c d b v a v= … ,k k k k k k k4 4 3 −1 1 1 1 1 2 1 1

or the disjoint union of two paths

FIGURE 1 Replacing θ with T θ( )k

Q v e c a e c a v v f d b f d b v= … .k k k k k k5 3 1 1 1 1 4 1 1 1 2∪
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In each case we obtain a corresponding hamiltonian cycle in G by performing one of
the following replacements.

Q v v Q v v Q v v Q v v v v Q v v v v, , , , .1 2 3 2 3 1 3 4 2 4 4 2 3 1 5 3 1 4 2→ → → → → ∪

But G is non‐hamiltonian, so this proves that T G( )k is also non‐hamiltonian.
For each vertex v inG, we let vh be a hamiltonian cycle inG v− that satisfies (i). We now

show thatT G v( ) −k is hamiltonian for every vertex v inT G( )k . We first consider v V T( )k∉ .
Seeing v as a vertex inG, by (i) vh uses at least one of the arcs on the path v v v v4 2 3 1. If vh uses
v v2 3, we replace v v2 3 withQ1, and if vh does not use v v2 3, we either replace v v3 1 withQ2 or we
replace v v4 2 with Q3. In either case we obtain a hamiltonian cycle of T G v( ) −k .

Next, we consider the following cases.
Case v a d{ , }1 1∈ : By (i), v v A ( )v4 2 3

∈ h . We replace this arc in v3h by the v v4 2‐path
Q a v− −4 1 1 and obtain a hamiltonian cycle ′a1h of T G a( ) −k 1. By replacing the path
c d b1 1 1 in ′a1h by c a b1 1 1, we also obtain a hamiltonian cycle of T G d( ) −k 1.

Case v b e{ , }1 1∈ : By (ii), we have a hamiltonian cycle in G v− 1 that uses v v4 2 but not
v v2 3, or a hamiltonian cycle inG v− 4 that uses v v3 1 but not v v2 3. But v v4 2 can be replaced
by the path

v f b f b f d e c a v v( ) …( ) ,k4 2 1 1 1 1 1 1 2

and v v3 1 can be replaced by

v v f b f b f d e c a v( ) …( ) ,k3 4 2 1 1 1 1 1 1

so in either case we obtain a hamiltonian cycle ′b1h of T G b( ) −k 1. By replacing the path
d e c1 1 1 in ′b1h by the path d b c1 1 1, we also obtain a hamiltonian cycle of T G e( ) −k 1.

Case v c f{ , }1 1∈ : By (i), v v A ( )v3 1 2
∈ h . Replacing the arc v v3 1 with the path

v ea ea e f d b v a v( ) …( ) ,k3 2 1 1 1 1 2 1 1

we obtain a hamiltonian cycle ′c1h ofG c− 1, which can be modified to a hamiltonian cycle
of T G f( ) −k 1 by replacing in ′c1h the path e f d1 1 1 by e c d1 1 1.

The generalisations to a b c d e f, , , , ,i i i i i i for i > 1 are straightforward due to the
periodicity of our construction. We exhibit the case ai and leave the remainder to the
reader. A hamiltonian cycle of T G a( ) −k i is obtained from the hamiltonian cycle ′a1h

defined earlier, by replacing the v v4 2‐subpath of ′a1h by the path

v f v e c d b f a e c d b f a e c d b f b f b v… ( ) …( ) .k k k k k k k i i i i i i i i i i i4 3 −1 +1 +1 +1 +1 +1 −1 1 2

We conclude that every vertex‐deleted subdigraph of T G( )k is hamiltonian. This
completes the proof. □

The operation from Lemma 1 increases the degrees of the vertices v v v v, , ,1 2 3 4. This can be an
obstacle if we wish to construct hypohamiltonian oriented graphs of small size. But the only
reason why Lemma 1 requires that v v v v A T G{ , } ( ( ))k4 2 3 1 ⊂ , is that a hamiltonian cycle in G v−

that contains the path v v v4 2 3 or the path v v v2 3 1 converts to a hamiltonian cycle in T G( )k that
5



necessarily contains an arc in v v v v{ , }4 2 3 1 . Thus we have the following variant of Lemma 1, which
we shall use in Section 3.2 to construct planar hypohamiltonian oriented graphs of small size.

Lemma 2. Let G be a hypohamiltonian digraph of order n satisfying the conditions of
Lemma 1 plus the following condition (which is stronger than Lemma 1(i)).

(i)+ For any v V G( )∈ there is a hamiltonian cycle inG v− that contains at least one of
the arcs on the path v v v v4 2 3 1 but contains neither the path v v v4 2 3 nor the path v v v2 3 1.

Then T G v v v v( ) − −k 4 2 3 1 is a hypohamiltonian oriented graph. Moreover, if G is
arc‐minimal, then so is T G v v v v( ) − −k 4 2 3 1.

For the construction of planar hypohamiltonian oriented graphs of larger size we shall use
the following lemma.

Lemma 3. Let G be a planar hypohamiltonian digraph that satisfies the conditions of
Lemma 1 plus the condition

(iii) v v v v1 2 3 1 and v v v v2 3 4 2 are facial triangles in the planar embedding of G and let

v b v d v f a v c v e v v f a v= { , , , , , } { , }.i i i i i i i
k

k4 4 4 1 1 1 =1 4 1 1 ⧹

Then T G A( )k ∪ is a planar hypohamiltonian oriented graph for every subset A of . If
G is an orientation of a maximal planar graph, then so is T G( )k ∪ .

Proof. Condition (iii) implies that T G( )k ∪ is planar. By Lemma 1, T G( )k is
hypohamiltonian, so it follows that for every A ⊂ , every vertex‐deleted subdigraph
of T G A( )k ∪ is hamiltonian. Thus, to complete the proof, we only need to show that
T G( )k ∪ is non‐hamiltonian.

Suppose, to the contrary, that T G( )k ∪ contains a hamiltonian cycle h. By
construction, at most two arcs in v v v v{ , }4 2 3 1 ∪ lie in h. Since T G( )k is non‐
hamiltonian, h contains at least one arc in . We treat the case where this arc is c vi 1,
i k{2, …, − 1}∈ . The proof for the other arcs in  is essentially the same. The
predecessor of ci on the cycle h is either bi or ei, so we consider two cases.

Case b c A ( )i i ∈ h . Inspecting the out‐neighbours of ai we see that either (1) a b A ( )i i ∈ h

or (2) a e A ( )i i−1 ∈ h . In case (1), since the out‐neighbours of di are bi and ei and we have
already visited bi, we have

T θ v af af a b c v v d e f af af v( ) = ( ) …( ) ( ) …( ) ,k i i i i i i i i k2 1 −1 1 4 +1 3∩ ∪h

which contradicts the planarity ofT G( )k . In case (2), as f a A ( )i i−1 ∈ h we necessarily have
v f a e c A ( )i i i i4 −1 −1 −1 ⊂ h , but then h cannot contain all the vertices in a b c d e f{ , , , , , }j j j j j j j

i
=1
−1 ,

a contradiction.
Case e c A ( )i i ∈ h . Then f a A ( )i i−1 ∈ h . Since a b A ( )i i ∈ h directly leads to a

contradiction (as the only remaining available out‐neighbour of bi is fi−1), it follows
that a e A ( )i i−1 ∈ h . Similarly, b f A ( )i i−1 ∈ h . Therefore e c A ( )i i−1 −1 ∈ h . We observe that if
c d A ( )i i−1 −1 ∉ h , then necessarily v d A ( )i4 −1 ∈ h , which leads to a contradiction, so
c d A ( )i i−1 −1 ∈ h . But then we again have a contradiction, since not all vertices from
a b c d e f{ , , , , , }j j j j j j j

i
=1
−1 can lie in h. □
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2.2 | Extending Thomassen's gluing method

Suppose G is a digraph with a vertex‐cut X x x x= { , , }0 1 2 such that G X− consists of
two components, G1 and G2. Let F G V G X= [ ( ) ]i i ∪ , i {1, 2}∈ . Then F1 and F2 are called
3‐fragments of G with attachments x x x, ,0 1 2, or simply X ‐fragments. A 3‐fragment of a
hypohamiltonian digraph is called trivial if its underlying graph is isomorphic to K1,3.

Thomassen [15] showed that 3‐fragments of undirected hypohamiltonian graphs can be
glued together, forming a hypohamiltonian graph. More precisely, he proved the following.

Theorem 4 (Thomassen [15]). If Fi is an x x x{ , , }i i i0 1 2 ‐fragment of a hypohamiltonian
graph Gi, i {1, 2}∈ , with F1 and F2 not both trivial, then identifying x j1 with x j2 for
j {0, 1, 2}∈ , we obtain a hypohamiltonian graph.

The proof of Theorem 4 follows from the following lemma.

Lemma 5 (Thomassen [15]). If F is a nontrivial x x x{ , , }0 1 2 ‐fragment of a hypohamiltonian
graph, then F satisfies the following two conditions.

(a) F does not have a hamiltonian x xj k‐path for any j k, {0, 1, 2}∈ with j k≠ .
(b) For each v V F( )∈ , there exist j k, {0, 1, 2}∈ with j k≠ such that F v− has a

hamiltonian x xj k‐path.

Conversely, if F is a graph containing an independent set x x x{ , , }0 1 2 and F satisfies (a) and
(b), then F is an x x x{ , , }0 1 2 ‐fragment of some hypohamiltonian graph.

Throughout this section, (a) and (b) will refer to conditions (a) and (b) of Lemma 5.
If Fi is a graph satisfying (a) and (b) with respect to an independent subset X x x x= { , , }i i i i0 1 2

of V F( )i , i {1, 2}∈ , then applying Thomassen's gluing procedure to F1 and F2 results in a
hypohamiltonian graph. Unfortunately, in general we cannot guarantee that a nontrivial
X ‐fragment of a hypohamiltonian digraph necessarily satisfies (a) and (b). Thus Theorem 4
does not immediately extend to digraphs. However, the second part of Lemma 5 holds for
digraphs in general, because if F is a digraph satisfying (a) and (b), then we can obtain a
hypohamiltonian digraph by applying the gluing procedure to F and K1,3

↔

.
To devise workable gluing procedures for the construction of hypohamiltonian digraphs, we

define three conditions that are stronger than (b) for a digraph F containing an independent
set X x x x= { , , }0 1 2 .

(b1) F satisfies (b) and additionally, F x− ℓ has a hamiltonian x xj k‐path for all pairwise distinct
j k, , ℓ {0, 1, 2}∈ .

(b2) For every v V F( )∈ the subdigraph F v− has a hamiltonian x xi i+1‐path for some
i {0, 1, 2}∈ . We assume here that x x x, ,0 1 2 is an ordered triple, and we take indices mod 3.

(b3) For each v V F( )∈ , there exist j k, {0, 1, 2}∈ with j k≠ such that F v− as well as F x− ℓ

has a hamiltonian x xj k‐path, where j k{ℓ} = {0, 1, 2} { , }⧹ .

Let F be a digraph containing an independent set X x x x= { , , }0 1 2 . Then we say that

F is X ‐good if F satisfies (a) and (b1),
7



F is X ‐nice if F satisfies (a) and (b2), and
F is X ‐fair if F satisfies (a) and (b3).

We note that (b1) implies (b3), and (b2) implies (b3), so X ‐good digraphs as well as X ‐nice
digraphs are X ‐fair. The converse implications do not hold. For example, the oriented graph Z6,
labelled as in Figure 3, is X ‐nice (and hence also X ‐fair) but not X ‐good, since it satisfies the
following condition:

(z) For j {0, 1, 2}∈ , each of the subdigraphs F x− j and F v− j has a hamiltonian x xj j+1 +2‐path,
but no other hamiltonian path that starts and ends in x x x{ , , }0 1 2 .

If an X ‐good digraph is not X ‐nice with respect to a given ordering of the vertices in X ,
it might still be X ‐nice with respect to a different ordering. We do not know whether every
X ‐good digraph is X ‐nice with respect to some labelling of the vertices.

Our next lemma provides three gluing results for the construction of hypohamiltonian
digraphs. Therein, an X ‐fragment is called arc‐minimal if every vertex in X has in‐degree 1 and
out‐degree 1, and all other vertices have in‐degree 2 and out‐degree 2.

Lemma 6. For i {1, 2}∈ , let Fi be a digraph of order at least 5 containing an independent
set x x x{ , , }i i i0 1 2 .

(1) If Fi is x x x{ , , }i i i0 1 2 ‐good, i {1, 2}∈ , then the digraph H1, obtained by identifying x j1 with
x j2 for j {0, 1, 2}∈ , is hypohamiltonian.

(2) If Fi is x x x{ , , }i i i0 1 2 ‐nice, i {1, 2}∈ then the digraph H2, obtained by identifying x10 with
x20, x11 with x22, and x12 with x21, is hypohamiltonian.

(3) Let F be an x x x{ , , }0 1 2 ‐fair digraph and denote by x x x′, ′, ′0 1 2 the vertices in F−1

corresponding to x x x, ,0 1 2, respectively. Then the digraph H3, obtained by identifying xj
with x′j for j {0, 1, 2}∈ , is hypohamiltonian.

In either statement, if both fragments are oriented graphs, then so is the resulting graph;
if both fragments are plane digraphs and their attachments cofacial, the identification
can be performed such that the resulting digraph is planar; and if both fragments are
arc‐minimal, then so is the resulting digraph.

Proof.

(1) We denote by xj the vertex that results from the identification of x j1 with x j2 ,
j {0, 1, 2}∈ , and we see F1 and F2 as subdigraphs of H1. If h is a hamiltonian cycle of
H1, then we may assume without loss of generality that the intersection of hwith F1 is
a hamiltonian x x1 2‐path of F x−1 0, and the intersection with F2 is a hamiltonian
x x2 1‐path of F2. But since F2 satisfies (a), this is not possible, so H1 is non‐hamiltonian.

Now let v V H( )1∈ . Without loss of generality we may assume that v V F( )1∈ .
Then, since F1 satisfies (b1), there exist j k, {0, 1, 2}∈ with j k≠ such that F v−

has a hamiltonian x xj k‐path 1p . Now let j k{ℓ} = {0, 1, 2} { , }⧹ . Then, since F2 satisfies
(b1), the subdigraph F x−2 ℓ has a hamiltonian x xk j‐path 2p . The paths 1p and 2p

together form a hamiltonian cycle of H v−1 .
(2) As in (1), the fact that F1 and F2 both satisfy (a) implies that H2 is non‐hamiltonian.

Now suppose v V F( )1∈ . Then, since F1 satisfies (b2), we may assume without loss of
generality that F v−1 has a hamiltonian x x11 12‐path 1p . In the construction of H2, the
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vertex x12 was identified with x21, and x11 was identified with x22. Since F2 satisfies
(b2), there is a hamiltonian x x21 22‐path 2p in F x−2 20. The paths 1p and 2p together
form a hamiltonian cycle of H v−2 . Hence H2 is hypohamiltonian.

(3) Since F , and hence also F−1, satisfy (a), it follows that H3 is non‐hamiltonian.
Now suppose v V F( )∈ . Then, as F satisfies (b3), we may assume without loss of
generality that F v− has a hamiltonian x x1 2‐path 1p and F x− 0 has a hamiltonian
x x1 2‐path. Since F−1 is the converse of F , it follows that F x− ′−1

0 has a hamiltonian
x x′ ′2 1‐path 2p . The paths 1p and 2p together form a hamiltonian cycle of H v−3 . □

The vertex‐deleted Petersen graph P′ is the smallest undirected graph that satisfies (a) and
(b). It forms the basis for several constructions of hypohamiltonian and hypotraceable graphs
found in the literature. The oriented graph Z6, shown in Figure 3 may be regarded as the
directed analogue of P′, since it is the smallest digraph that satisfies (a) and (b). The smallest
hypotraceable oriented graph can be obtained from Z6 by adding a source and a sink (as shown
in [1]) and, as will be shown in Section 3.2, the smallest planar hypohamiltonian oriented graph
(depicted in Figure 3 on the right) is obtained by gluing together two copies of Z6. Our next
construction also uses Z6 to construct hypohamiltonian oriented graphs from given ones.

2.3 | Inserting Z6 into a suitable triangle

In this section we describe another transformation, which we call S, for planar hypohamilto-
nian oriented graphs. Unfortunately, applying S to a planar hypohamiltonian oriented graphG
does not guarantee that we can apply S to S G( ), as well. This was also the case for the
operations replacing a θ‐subdigraph, but these operations could add k6 vertices for any k 1≥ ,
while S only adds three vertices. Still, it will prove to be useful in Section 3, and our compu-
tational experiments seem to indicate that a sufficient proportion of planar hypohamiltonian
oriented graphs meet the requirements for applying S to warrant its inclusion (e.g., 14% for
order 13 and 52% for order 14).

If x x x xΔ = 0 1 2 0 is a 3‐cycle in a hypohamiltonian oriented graph G, then we say that Δ is a
suitable triangle of G if for every v V G( )∈ , the subdigraph G v− has a hamiltonian cycle that
contains at least one arc of Δ.

Lemma 7. Suppose G is a hypohamiltonian oriented graph of order n that contains a
suitable triangle x x x xΔ = ′ ′ ′ ′0 1 2 0. Let S G( , Δ) be the digraph obtained from the disjoint union
of G and Z6 (labelled as in Figure 3), by identifying the vertices xi and x ′i for i {0, 1, 2}∈ .
Then S G( , Δ) is a hypohamiltonian oriented graph of order n + 3. If G is planar and Δ a
facial triangle in the planar embedding of G, then S G( , Δ) is planar, as well.

Proof. We denote by F the copy of Z6 in S G( , Δ). We see G as a subdigraph of S G( , Δ),
but we change the label of x ′i in G to xi, i {0, 1, 2}∈ so that F retains the labelling of Z6.
We use the fact that Z6 satisfies the conditions (a) and (z) defined earlier.

Suppose S G( , Δ) has a hamiltonian cycle h. Then, since F satisfies (a) and (z), the
intersection of h with F is an x xi i+1 +2‐path ip that spans F x− i for some i {0, 1, 2}∈ . But
then replacing ip with the arc x xi i+1 +2 yields a hamiltonian cycle of G, a contradiction.
Thus S G( , Δ) is not hamiltonian.

9



Ifu V G( )∈ , then sinceΔ is a suitable triangle inG, we have thatG u− has a hamiltonian
cycle that contains the arc x xi i+1 for some j {0, 1, 2}∈ . By (z), this arc can be replaced in F
with an x xi i+1‐path that spans F x− i−1. This yields a hamiltonian cycle of S G u( , Δ) − .

Now considerG v− i, i {0, 1, 2}∈ . As Δ is a suitable triangle inG, the graphG x− i has
a hamiltonian cycle that contains the arc x xi i+1 +2. By (z), this arc can be replaced with an
x xi i+1 +2‐path that spans F v− i. This yields a hamiltonian cycle of S G v( , Δ) − i. □

3 | PLANAR HYPOHAMILTONIAN ORIENTED GRAPHS

3.1 | Covering all orders

We determined by computer the exact counts of planar hypohamiltonian oriented graphs on
at most 15 vertices, see Table 1. In particular, we confirmed the result from [1] that no
oriented graph on fewer than nine vertices is hypohamiltonian, and we established that no
planar hypohamiltonian oriented graph of order 10 exists (although a nonplanar hypoha-
miltonian oriented graph of order 10 is presented in [3]). The (undirected) underlying graphs
were generated using plantri [6]. These graphs were then oriented using directg
from Nauty [13] with some additional bounding. The oriented graphs were finally checked
for being hypohamiltonian using a straightforward branch‐and‐bound algorithm that veri-
fies the (non)existence of certain cycles. For 15 vertices around 1.4 × 1013 oriented graphs
needed to be checked for being hypohamiltonian. The programs and details on how to
reconstruct these computations are available at [16].

We now characterise all orders for which planar hypohamiltonian oriented graphs exist.

Theorem 8. There exists a planar hypohamiltonian oriented graph of order n if and only
if n = 9 or n 11≥ .

Proof. In Figure 2 we present for each n {9, 11, 12, 13, 14, 16}∈ a planar hypohamil-
tonian oriented graphG of order n that satisfies the conditions of Lemma 3. The required
θ‐subdigraphs are shown in bold. For the 9‐vertex oriented graph we explicitly show in
the appendix that each of the vertex‐deleted subdigraphs contains a hamiltonian cycle
satisfying the conditions of Lemma 1. The remaining such verifications are left to the

TABLE 1 Overview of the number of planar hypohamiltonian oriented graphs for small orders and the total
CPU time needed to generate them on a cluster of Intel Sandy Bridge (E5‐2670) running at 2.6 GHz

n Oriented graphs Underlying graphs Time

9 25 9 0.03 s

10 0 0 0.76 s

11 4 3 34.58 s

12 10 4 28.4 min

13 367 71 1.1 days

14 6464 638 59.4 days

15 1,422,362 22,767 9.3 years
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reader. By applying the operation from Lemma 3 (with A any subset of ) to each of
these six oriented graphs, we obtain a planar hypohamiltonian oriented graph of order n
for every n 9≥ , except for n = 10. From our computational results mentioned above, we
already know that there does not exist a hypohamiltonian oriented graph of order 10 or of
order less than 9. □

Our computational experiments seem to indicate that the number of planar hypohamilto-
nian oriented graphs grows at least exponentially with respect to their order. However, the best
we have proved so far is the following.

Theorem 9. For every n 9≥ except 10 there exist at least






{ }max 1, 6 − 1

n − 11

6
⋅

pairwise nonisomorphic planar hypohamiltonian oriented graphs.

Proof. We apply Lemma 3 exactly as in the proof of Theorem 8, but add the arcs of 
one‐by‐one: IfG is one of the graphs from Figure 2, then inT G( )k we can add any number
of arcs from  and thus obtain graphs of order    V T G V G k( ( )) = ( ) + 6k and sizem for
any    m A T G A T G k{ ( ( )) , …, ( ( )) + 6 − 2}k k∈ , a set of cardinality k6 − 1. From this the
advertised counts follow. □

We have not found any result on the growth rate of undirected planar hypohamiltonian
graphs in the literature, although Collier and Schmeichel [8] have shown that the growth rate
of nonplanar hypohamiltonian graphs is at least exponential. Skupień [14] has shown that this
even remains true for cubic hypohamiltonian graphs (in fact, even for hypohamiltonian
snarks).

FIGURE 2 The planar hypohamiltonian oriented graphs of order 9, 11, 12, 13, 14 and 16 used in the proof of
Theorem 8. The required θ‐subdigraphs are shown in bold
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3.2 | Maximising and minimising size

We call a planar hypohamiltonian oriented graph of order n arc‐minimal if it has exactly n2

arcs (i.e., if it is 2‐diregular) and arc‐maximal if it has n3 − 6 arcs (i.e., if it is an orientation of a
maximal planar graph).

From Lemma 3, we deduce the following.

Theorem 10. There exists an arc‐maximal planar hypohamiltonian oriented graph of
order n if and only if n = 9 or n 11≥ .

Proof. The underlying graphs of all the oriented graphs in Figure 2 are triangulations of
the plane, so the result follows by applying Lemma 3 to each of these six oriented graphs,
with A = . □

Our search for arc‐minimal planar hypohamiltonian oriented graphs has turned out to be
less successful. We know only the following.

Theorem 11. There exists an arc‐minimal planar hypohamiltonian oriented graph of
order 9, and no other such graph of order less than 25. If there exists a planar arc‐minimal
hypohamiltonian oriented graph satisfying the properties of Lemma 2, then there exist
infinitely many planar arc‐minimal hypohamiltonian oriented graphs.

Proof. It is easily seen that the oriented graph Z6 (labelled as in Figure 3) is x x x{ , , }0 1 2 ‐
nice as well as x x x{ , , }0 1 2 ‐fair and it is isomorphic to its converse. Thus, by applying either
(2) or (3) of Lemma 6, we obtain that the oriented graph on the right in Figure 3 is
hypohamiltonian. This proves the first part of the theorem.

The second part was obtained using a computer. The underlying graphs were
generated using plantri [6]. These graphs were then oriented using
watercluster2 [7]. The oriented graphs were finally checked for being
hypohamiltonian using a straightforward branch‐and‐bound algorithm that checks for
the (non)existence of certain cycles. To verify the case of 24 vertices in excess of
1.21 × 1012 oriented graphs needed to be checked for being hypohamiltonian and on a
cluster of Intel Sandy Bridge (E5‐2670) running at 2.6 GHz the computation took 3.9
CPU‐years. The programs and details on how to reconstruct these computations are

FIGURE 3 Left‐hand side: The digraph Z6. Right‐hand side: The smallest planar hypohamiltonian oriented
graph
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available at [16]. The final statement follows immediately from Lemma 2 since the
planarity of T G( )k also implies the planarity of T G v v v v( ) − −k 4 2 3 1. □

Unfortunately, at this point we know of only one arc‐minimal planar hypohamiltonian
oriented graph, and it does not satisfy the property (i)+ of Lemma 2 with respect to any of its
induced θ‐subdigraphs. However, we now show that for infinitely many n there exist planar
hypohamiltonian oriented graphs of order n and size n2 + 1.

Theorem 12. There exists an almost arc‐minimal planar hypohamiltonian oriented
graph of order k3 + 6 for every k 1≥ , but none of order 10, 11, 12, 13, 14 or 16.

Proof. We apply Lemma 2 to the graph shown in Figure 4 (see its caption for further
details, in particular the location of the θ‐subdigraph). This graph is constructed by
adding an arc to the arc‐minimal planar hypohamiltonian oriented graph shown in
Figure 3. The second part was obtained using a computer. □

An overview of the number of planar hypohamiltonian oriented graphs with a specific
number of arcs for small orders is given in Table 2. This table shows how, contrary to the
nonoriented case, for planar hypohamiltonian oriented graphs the case of few arcs is the
challenging part, not many arcs.

3.3 | Planar hypohamiltonian oriented graphs without quartic
vertices

As mentioned in Section 1, Thomassen [15] proved that every undirected planar hypoha-
miltonian graph has a cubic vertex, so it seems natural to ask whether every planar hypoha-
miltonian oriented graph has a quartic vertex. Our next result provides a negative answer to
this question—its veracity is proved by the oriented graph shown in Figure 5.

FIGURE 4 One of the two smallest almost arc‐minimal planar hypohamiltonian oriented graphs. Together
with the highlighted θ‐subdigraph this forms the basis for an infinite family of almost arc‐minimal planar
hypohamiltonian oriented graphs

13



TABLE 2 The number of planar hypohamiltonian oriented graphs of a specified order n (vertical) and size (horizontal)

Note: For each order the interval between the lower and upper bound on the size, that is, 2n and 3n− 6, respectively, is emphasised. A blank entry signifies that
there are no planar hypohamiltonian oriented graphs for the specified combination of order and size.
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Theorem 13. There exists a planar hypohamiltonian oriented graph whose underlying
graph has minimum degree 5.

In fact, a computer search yielded eight such graphs on 15 vertices, but none on fewer
vertices. It remains an open question whether an infinite family of such oriented graphs exists.
Note that applying the operation from Lemma 3—which is the variant of the lemmas in
Section 2.1 that gives the highest degrees—always adds a vertex of degree 4.

4 | PLANAR HYPOTRACEABLE ORIENTED GRAPHS

In this section we fully characterise the orders for which planar hypotraceable oriented graphs exist.
As mentioned in Section 1, van Aardt, Burger and Frick [2] showed that there exist planar

hypotraceable oriented graphs of order 10 and 12 and every even order greater than 14. They
also proved that there exist strong planar hypotraceable oriented graphs of order k6 and k6 + 2

for every k 3≥ . Their proofs rely on the following two lemmas. The first of these is an
adaptation of a result of Grötschel, Thomassen and Wakabayashi [10].

Lemma 14 (Grötschel et al. [10]). For i {1, 2}∈ , let Ti be a plane hypotraceable oriented
graph of order ni, with a source xi and a sink zi such that xi and zi are cofacial, and x1
and z1 are independent. In the disjoint union ofT1 andT2, identify x1 and z2 to a single vertex
and identify z1 and x2 to a single vertex. The result is a strong planar hypotraceable oriented
graph of order n n+ − 21 2 .

Lemma 15 (van Aardt et al. [2]). For every k 1≥ there exists a plane hypotraceable
oriented graph order k6 + 4 containing a source and a sink that are cofacial and
independent. There also exists such an oriented graph of order 12.

We now prove the following.

FIGURE 5 One of the eight smallest planar hypohamiltonian oriented graphs for which the underlying
graph has minimum degree 5. It has 15 vertices
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Theorem 16. There exists a planar hypotraceable oriented graph of order n if and only if
n 10≥ . Furthermore, up to 13 vertices all of these graphs have both a sink and a source.
There also exists a strong planar hypotraceable oriented graph of order n for every n 18≥ .

Proof. The nonexistence in the first statement and the second statement was shown by
computer (see Table 3). The underlying graphs were generated using plantri [6] with
a custom plug‐in to guarantee certain degree conditions. These graphs were then
oriented using directg from Nauty [13] with some additional bounding. The oriented
graphs were finally checked for being hypotraceable using a straightforward branch‐and‐
bound algorithm that checks for the (non)existence of certain paths. For 13 vertices
around 1.12 × 1012 oriented graphs needed to be checked for being hypotraceable. The
programs and details on how to reconstruct these computations are available at [16].

Figure 6 presents a plane hypotraceable oriented graph of orders 11, 13, 14, 15 and 17,
each having a source and a sink that are cofacial. The graphs on 11 and 13 vertices were
taken from the exhaustive lists generated for the first part of this proof. The other three
graphs were obtained from planar hypohamiltonian oriented graphs by splitting a
suitable vertex (i.e., a vertex that can be split without destroying the planarity). We note
that there is, up to its converse, only one planar hypohamiltonian oriented graph of order
13 containing a suitable vertex. By applying Lemma 7 to that oriented graph (i.e., by
inserting a Z6 into a suitable triangle), we obtain a planar hypohamiltonian oriented
graph of order 16 that contains a suitable vertex, and splitting that vertex results in the
hypotraceable oriented graph of order 17 shown in Figure 6.

Using Lemma 14 to combine the plane hypotraceable oriented graphs given in
Figure 6 with those of order k6 + 4 provided by Lemma 15, we obtain, for each k 3≥ , a
strong planar hypotraceable oriented graphs of order k k k6 + 1, 6 + 3, 6 + 4 and k6 + 5.
These, together with the strong planar hypotraceable oriented graphs of order k6 and
k6 + 2 for k 3≥ found in [2], cover all orders from 18 upwards, so we have proved the
result for the strong case. Now we add the planar hypotraceable oriented graphs shown
in Figure 6 and those of order 10 and 12 presented in [2], and we have a planar
hypohamiltonian oriented graph of order n for every n 10≥ . □

5 | DISCUSSION

1. Planar arc‐minimal hypohamiltonian digraphs. We have discussed in this article planar
hypohamiltonian oriented graphs of small size, showing that there exist infinitely many
such graphs of order n and size n2 + 1. We recall that hypohamiltonian oriented graphs

TABLE 3 Overview of the number of planar hypotraceable oriented graphs for small orders and the total
CPU time needed to generate them on a cluster of Intel Sandy Bridge (E5‐2670) running at 2.6 GHz

n Oriented graphs Underlying graphs Time

10 12 9 2.2 min

11 103 51 1.7 h

12 221 111 4.3 days

13 10,412 2800 223.3 days
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cannot have fewer than n2 arcs. Since we were only able to find one example of size n2 , see
Figure 3, we relax the problem and ask here whether an infinite family of planar arc‐
minimal hypohamiltonian digraphs with a sublinear number of 2‐cycles exists. We note that
Thomassen [15] showed that C C× k2

→ →
, k 3≥ odd, is a planar arc‐minimal hypohamiltonian

digraph containing exactly k 2‐cycles.
2. Thomassen's problem. We recall Problem 10 from Thomassen's 1978 paper [15]: Does there

exist a hypohamiltonian oriented graph whose underlying graph is also hypohamiltonian?
Certainly, such a graph would be nonplanar, since every planar hypohamiltonian graph
contains a cubic vertex [15], while the underlying graph of a hypohamiltonian oriented
graph has minimum degree at least 4. We note that no hypohamiltonian graphs of minimum
degree at least 4 are known [15, Problem 4].

3. Girth. For the undirected case, girth has been a widely studied property of hypohamiltonian
graphs. Currently the literature contains infinite families of hypohamiltonian graphs of girth
g for g3 7≤ ≤ , but no example of girth greater than 7 is known (see [9] and further
references therein). Infinite families of planar hypohamiltonian graphs of girth 3, 4 and 5
exist, and no other girths are possible. Thus, planar hypohamiltonian digraphs of girth 3, 4
or 5 are immediately obtained. Our question is: Do planar hypohamiltonian oriented graphs
of girth greater than 3 exist? Since the minimum degree of a hypohamiltonian oriented
graph is at least 4, the Euler formula for plane graphs implies that the underlying graph of a
planar hypohamiltonian oriented graph contains at least eight triangles. However those
triangles need not be oriented cycles. We note that every oriented graph constructed in this
paper has girth 3. Thomassen's constructions from [15] yield a toroidal hypohamiltonian

oriented graph of girth g for any g 3≥ , for example, C C×g g2 −1
⎯→⎯ →

is hypohamiltonian.

FIGURE 6 Planar hypotraceable oriented graphs of order 11, 13, 14, 15 and 17 as required in the proof of
Theorem 16. In each the sink and source are emphasised
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