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Abstract  

The effectiveness of electrochemical systems in various applications (e.g., energy storage and 

conversion, waste-water treatment, ammonia synthesis, etc.) is in essence, dependent on the 

electrode materials employed in such systems. Research emphasis on such electrochemical 

systems is given to developing electrode materials that would offer cost-effectiveness, stability, 

and reliable results that can be practical for commercial scaling. However, the operation of 

such systems also relies on other various components that include electrode fabrication, 

electrolytes, system architecture, the durability of the systems, and supporting components 

(i.e., substrate/ current collector). On the choice of the current collector, nickel foam (NF) has 

enjoyed a widespread attention as a favorable substrate in various electrochemical systems. 

This growing trend is attributed to its unique interlinked three-dimensional (3D) structure that 

offers advantages such as lightweight, high porosity, great mechanical strength, chemical 

stability, and encouraging electrical and thermal conductivity. These traits are favorable for 

maximized contact areas between the current collector, the active materials, and charged 

species resulting in the reduction of charge transport pathways, which is a vital step for 

improving the electrochemical performance. This review aims at highlighting the use of NF as 

a substrate of choice in developing effective electrodes for various electrochemical systems 

and act as a navigational tool to the literature involving the use of NF as the current collector. 

It also shows to a certain extent, the impact of NF on the electrochemical performance as 

compared to other current collectors.   
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1. Introduction  

Electrochemical systems have become an integral part of modern society as they have found 

immense application in various vital aspects of everyday human life such as in medicine and 

healthcare, energy storage and conversion, waste-water treatment, environmental monitoring 

and remediation, industry, etc. The overall practical effectiveness of electrochemical systems 

largely depends on the efficacy of their electrodes toward the intended operations. However, 

the efficiency of the electrode is in itself dependent on the components making up the electrode, 

as well as the design of the electrode. The electrodes of an electrochemical system include a 

current collector connected to an external wire, and additive conductive, binding, and active 

materials.1–4 The role of current collectors is to link the active material to the external circuit 

for the flow of electrons between terminals (i.e., cathode and anode). The ideal current 

collectors exhibit properties such as good electrical and thermal conductivity, chemical and 

thermal stability, and high surface area (per mass or volume ratio). Current collectors employed 

in various electrochemical systems include metal foams (e.g. Ni, Al, Fe, etc.), metal sheets (Pt, 

Ti, Cu, etc.), carbon cloth, non-stick tape, stainless steel, etc.1  

 Amongst various current collectors, metal foams attract attention since they also offer 

an effective shape to the electrode as a result of their interlinked three-dimensional (3D) 

structure in addition to providing a powerful link between the active material and the external 

circuit.5,6 Nickel foam (NF) in particular has found immeasurable favor for use as a current 

collector in various electrochemical applications due to it being exceptionally uniform, highly 

porous, and lightweight (Fig. 1). Additionally, NF displays favorable properties such as great 

mechanical strength, encouraging electrical and thermal conductivity, small ionic diffusion 

resistance, good corrosion resistance, and increased areal loading of active materials.6–9 The 

exploitation of some of these properties results in highly stable electrodes with maximized 

contact areas between the NF, the active materials, and charged species which is beneficial for 

improved electrochemical performance. Hence, NF has been used as a current collector in 

various electrochemical systems such as energy storage  (i.e., electrochemical capacitors and 

rechargeable batteries) and conversion (i.e., fuel cells and water splitting), chemical sensors, 

wastewater treatment, ammonia production, etc. 1,10  
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Figure 1: The structure of nickel foam (NF). Reprinted with permission  from Ref.  14. Copyright 2019, Springer 
Nature. 

 

As much as NF has enjoyed a fair amount of application in electrochemical systems, it is worth 

noting that some researchers argued the use of NF as the current collector as it is said to lead 

to exaggerated electrochemical performance due to the electrochemical activity observed from 

bare NF.11 Nevertheless, based on the volume of reported studies in the literature, NF has 

continued to be the material of choice as current collector in various electrochemical 

systems.12,13 Hence the focus of this review is to highlight the use of NF as a current collector 

of choice in various electrochemical systems, while also highlighting to a certain extent the 

impact of NF on the electrochemical performance compared to other current collectors.  The 

review also aims to serve as a directory collection of literature involving the use of NF for an 

audience interested in using it as a current collector. 
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2. Nickel foam as a current collector: Uncertainties 

As mentioned above, there is substantial growth in the literature reporting the use of NF as a 

current collector of choice in various electrochemical applications. Nonetheless, some 

researchers have expressed concerns about the role that NF is perceived to play in the overall 

performance of the electrode. For instance,  Xing et al11 questioned the validity of the results 

reported in studies that employed NF as a current collector in electrochemical capacitors (ECs), 

suggesting that NF is electrochemically active and leads to erroneous and exaggerated 

electrochemical measurements. They conducted comparative studies on mesoporous carbon 

and mesoporous nickel oxide using NF and titanium (Ti) gauze as current collectors to illustrate 

their argument on the impact NF current collector has on the electrochemical performance.  

The NF results displayed higher electrochemical performance (i.e., Csp of 190 F g-1 for 

mesoporous carbon and 494 F g-1 for NiO) as compared to those of Ti gauze (i.e., Csp of 22 F 

g-1 for mesoporous carbon and 129 F g-1 for NiO). They attributed this observation to the 

presence of electrochemically active nickel hydroxides/ oxides that remain on bare NF even 

after pre-treatment. Hence, in their observation, the NF-supported active materials displayed 

much higher electrochemical performance compared to the Ti gauze-supported materials. In 

another study, Geaney et al15 demonstrated the electrochemical contribution of high-

temperature (between 300 – 450 °C) treated NF current collector to the specific capacity in 

lithium-ion batteries. Their investigation revealed that the bare-NF heated at 300 °C and  450 

°C displayed slightly higher charge capacities of ~0.3 and ~1.3 mAh, respectively. They 

attributed this observation to the formation of an oxide layer on the surface of NF. Further 

analysis of NF pretreated at 450 °C and decorated with Co3O4 nanoflowers showed an 

improved capacity of ~2.7 mAh (with ~48% of the capacity originating from the oxide layer 

of NF, assuming similar mass loading of the oxide layer on both the bare and Co3O4 decorated 

NF). However, it is worth mentioning that the investigation also showed a negligible 

contribution of NF (i.e., pristine and pretreated at ≤ 100 °C) to the overall electrochemical 

performance.  

 Because of the above-mentioned uncertainties, some researchers have opted to use 

electrochemically inert materials to coat one side of NF-based electrodes to limit or avoid any 

potential activity that may occur on the surface of NF while making measurements on the active 

materials-coated side of the NF.16 Conversely, many literature reports involving NF as a current 

collector, use control tests as means of probing the impact of NF on the overall electrochemical 

performance and have demonstrated that the contribution of NF is often negligible compared 
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to the electrochemical activity of the active material.17–19 The next section highlights the use of 

NF as a substrate of choice in developing effective electrodes in various electrochemical 

systems such as energy storage  (i.e., electrochemical capacitors and rechargeable batteries) 

and conversion (i.e., fuel cells and water splitting), chemical sensors, wastewater treatment, 

ammonia production.  

3. Electrochemical Applications 

3.1. Energy Storage and Conversion 

3.1.1. Electrochemical Capacitors 

Over the past two decades, electrochemical capacitors (ECs), also known as 

ultracapacitors (UCs) or supercapacitors (SCs), have drawn great interest as power sources for 

applications requiring quick bursts of energy (fast discharge), such as high-power electronic 

devices, electric vehicles, uninterrupted power supply (UPS), as well as serving as a backup to 

batteries.20–22 The high energy and power performance disposition of SCs give them a key role 

in bridging the gap between batteries and electrolytic capacitors, as they can deliver more 

power with better cycling than batteries while storing more energy than traditional capacitors.23 

Generally, ECs are classified  into three categories that are based on their charge storage 

mechanism: (i) electrical double-layer capacitors (EDLCs) that involve reversible ion 

adsorption on electrically charged surfaces and (ii) pseudocapacitors (PCs) that involve fast 

surface redox reactions on the surface of the electroactive materials, and hybrid supercapacitors 

that incorporate the electrostatic mechanism of the EDLCs with the ‘sluggish” redox reactions 

of battery-type electrode materials.24,25 The performance of ECs relies on the chemical and 

morphological properties (i.e., size, shape, surface area, and architecture) of the electrode 

materials.2,26 Hence, tremendous attention has been dedicated to the design and development 

of the EC electrode materials.27–29 

The distinct electrochemical performance of NF as a current collector compared to other 

current collectors was evidenced by, amongst others, Makgopa et al10 where NF was compared 

to platinum (Pt) disc as substrates for MnO2/OLC nanohybrid electrode material for ECs 

applications. As shown in Fig. 2, the nanohybrid displayed a Csp value of 295 F g-1 when 

supported on a Pt disc and 323 F g-1  on NF. Furthermore, the NF-supported electrode displayed 

a higher power density than the Pt disc counterpart. Zhang et al30  managed to synthesize 

complex 3D graphene/cobalt sulfide on NF to produce NF/graphene/Co3S4 (NF/G/CS)  
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Figure 2: Comparative electrochemical performance in a 3-electrode test with (A) Pt-disc and (B) Nickel foam 
as the current collectors. Reprinted (adapted) from Ref. 10, with permission from the Royal Society of Chemistry 
under the terms of the Creative Commons CC BY license. 
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nanocomposite that displayed outstanding electrochemical performance (i.e., areal capacitance 

(Ca) of 525 mF cm-2 at 7.5 mA cm-2). The nanocomposite also displayed superior cycle stability 

(8 000 cycles) with a capacitance retention of 97.8%. The authors credited the results to the 

synergistic effects between the high surface area of hollow-like Co3S4 nanospheres, the 

excellent electronic and chemical properties of graphene, and the high mechanical strength of 

NF.   

Jiang et al31 synthesized Ni3Se2 nanosheets on the surface of NF via a one-step 

hydrothermal method that involved SeO2 as a source of selenide (Se), and NF as a  source of 

nickel (Ni). An asymmetric supercapacitor (ASC) set-up with activated carbon (AC) and 

Ni3Se2 showed potential stability for up to 1.6 V in a 3 M KOH electrolyte. The device 

displayed a specific energy density (Esp) of 23.3 Wh kg-1 with a corresponding power density 

(Pd) of 398.1 W kg-1, as well as great cycling stability of 91.11% capacitance retention after 5 

000. The results obtained from the Ni3Se2/NF electrode were ascribed to the pseudocapacitive 

Ni3Se2 complex and the 3D structure of NF. Table 1 summarises reported literature that 

involved the use of NF as current collector for EC applications. Table 2 compares the 

electrochemical performance of NF-based electrodes with that of other current collectors, 

taking NiCo2O4 nanoparticles as common active material. 

Table 1: Summary of 3D NF-based electrode materials and their electrochemical performances in EC 
application. 

Electrode Electrolyte 
Device 

Set-up 

Csp 

(F g-1) 

Esp 

(Wh kg-1) 

Pmax 

(kW kg-1) 
Ref. 

Co3O4 nanowires 6 M KOH Half-cell 1 160 - - 32 

NiCo2O4 3 M KOH Half-cell 2 010 - - 33 

Graphene aerogel 6 M KOH Half-cell 366 - - 34 

rGO 1 M Na2SO4 Half-cell 82.0 - - 35 

Graphene 6 M KOH Half-cell 22.0 - - 36 

N-rGO/Mn3O4 1 M Na2SO4 Symmetric 345 12.0 22.5 29 

NH4(NiCo)PO4ꞏH2O/GF 1 M KOH Asymmetric - 47.0 0.468 37 

Pd-rGO/MOF 3 M KOH Asymmetric - 26.0 1.6 38 

NF-rGO/MOF 3 M KOH Asymmetric 
(48.81 
C g-1)a  

11.0 0.640 27 
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NH4MnPO4.H2O 3 M KOH Asymmetric 65.4 29.4 133 36 

NiCo2O4@MnO2 1 M LiOH Half-cell 1 471 - - 39 

NiMoO4 NWs 2 M KOH Half-cell 2 083 - - 40 

Ni-Al LDH 1 M KOH Half-cell 795 - - 41 

NiCo2S4 nanotube 
arrays 

6 M KOH Half-cell 2 398 31.5 2.35 42 

MoSe2/Graphene 6 M KOH Half-cell 1 422 - - 43 

CuCo2O4@MnO2 1 M Na2SO4 Asymmetric 78 43.3 - 44 

NiCoO2 1 M KOH Asymmetric 82 25.7 1.5 45 

NixZn1-xS 3 M KOH Asymmetric 127.7 38.9 0.33 46 

OLC/Mn3O4 1 M Na2SO4 Asymmetric - 19 45 47 

Ni-Co-Mn oxide 
nanoflakes 

(6:0.01 M) 
KOH/K3Fe(CN)6 

Symmetric 298 41.4 5.4 48 

Co3O4 nanoflakes 2 M KOH Half-cell 
(576.8 
C g-1)a 

- - 49 

CuCo2S4 
nanograss 

KOH/PVA Symmetric 81.2 31.88 16.5 50 

Ni3S2/Ni-Graphene 
foam 

3 M KOH Symmetric 190.5 67.7 2.66 51 

Mo:ZnO 3 M KOH Asymmetric 123 39.06 7.43 52 

CoNiSe2 nanorods 3 M KOH Asymmetric - 50.66 160 53 

rGO/MnO2 1 M Na2SO4 Symmetric 189 26.82 8.61 54 

Ni3S2/NiV-LDH/rGO 2 M KOH Asymmetric 147.9 59.4 10 55 

ZnCo2O4@CoMoO4 2 M KOH Asymmetric 82.24 29.24 10.53 56 

NiMoO4-CoMoO4 3 M KOH Asymmetric 104.1 27.58 5.677 57 

Ni3(NO3)2(OH)4 3 M KOH Asymmetric 94.3 31.5 7.75 58 

Ni3S2/3D G/NF 6 M KOH Half-cell 2 565 - - 59 

MgCo2O4@CoFe PVA/KOH Asymmetric 208.3 60.82 3.625 60 

NiCo-LDH 6 MKOH Asymmetric 
(131.3 
C g-1)a 

48.34 7.999 61 

a Specific capacity (C g-1, Ah g-1) 
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Table 2: Comparative electrochemical performance of NiCo2O4 nanoparticles in EC applications using NF and 

other current collectors. 

Current Collector Electrolyte Csp (F g-1) 
Current Density  

(A g-1) 
Ref. 

Graphene foam 6 M KOH 1 402 1.0 62 

Carbon cloth 2 M KOH 1 055 (2.5 mA cm-2)a 63 

Graphite Rod 1 M Na2SO4 1 196 12.0 64 

Stainless Steel 1 M KOH 1 027 1.0 65 

FTO glassd  2 M KOH 1 073 (5.0 mA cm-2)a 65 

NF 6 M KOH 1 797 1.0 66 

Ni wire 2 M KOH (315 C g-1)b 1.0 67 

NF 2 M KOH (670 C g-1)b 0.5 68 

Carbon cloth 6 M KOH (1 183 mF cm-2)c (1.0 mA cm-2)a 69 

Ni foil 6 M KOH (1 139 mF cm-2)b (1.0 mA cm-2)a 70 

NF 2 M KOH (3 510 mF cm-2)b (1.8 mA cm-2)a 71 

a Areal current density (A cm-2); b Specific capacity (C g-1, Ah g-1); c Areal capacitance (F cm-2); D FTO = Fluorine-

tin oxide 

3.1.2. Batteries 

Rechargeable or secondary batteries have been demonstrated to be efficient technologies that 

can generate clean electricity recurrently by conversion of chemical energy via reversible redox 

reactions at the anode and cathode.72 An ideal battery should possess desirable properties that 

include long life, small size, lightweight, high energy density, safety, environmental 

compatibility, low cost, and worldwide consumer distribution. Rechargeable batteries have 

found application as power sources in commercial sectors that include portable electronics, 

electric vehicles, and electricity grids. The energy storage qualities of batteries depend on both 

the performance of the active electrode materials and the integration technologies of battery 

components such as the electrolyte, electrode fabrication, build of the system, supporting 

components, and the durability of the systems.73  
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Sa and Wang compared copper (Cu) foil and NF as current collectors for high-capacity 

C–Si composite anode for lithium-ion batteries (LIB).74 It was found, through a detailed 

comparison of the two current collectors, that the network geometry of NF displayed an 

improved cycle life for the silicon-based anode. The authors noted that the NF scaffold was 

able to support a larger weight percentage of silicon, which consequently bolstered the 

electrochemical efficiency of the LIB. The NF-supported Si-based anode possessed the 

smallest impedance, which is attributed to be an important aspect of the NF current collector. 

It was concluded in the study that the adoption of the 3D current collector provides a new way 

to incorporate electrode materials experiencing large expansion in volume. 

Feng et al75 reported the synthesis of Ni3S2 nanofilms via a hydrothermal method using 

NF as the precursor reactant and substrate. The obtained material presented a porous carpet-

like morphology (see Fig. 3A) of uniform nanostructured Ni3S2 films on the NF support and 

was used as a cathode for LIBs with varying film thickness. As shown in Fig. 3B, an electrode 

with a 670 nm thick film displayed initial charge and discharge capacities (Qc and Qd) of 466 

and 596 mAh g-1, respectively, as well as a high reversible capacity of 421 mAh g-1 that was 

obtained after 60 cycles at 50 mA g-1. The thin film electrode also showed over 64% retention 

of the initial capacity at 5.0 mA cm-2. The authors credited the results to the unique morphology 

of the thin film and the essential close contact between the film and the NF current collector.  

Yang et al76 applied anodization and thermal annealing techniques to synthesise 

blooming flower-like NiO nanorods arrays on NF support for application as the binder- and 

additives-free anodic active material in LIBs. The electrode exhibited discharge and charge 

capacities of 705.5 and 548.1 mAh g-1 after 70 cycles, respectively, with a high coulombic 

efficiency at 1.0 and 2.0 A g-1. In addition, the electrode showed excellent rate capability as it 

was able to restore its initial capacity of 945 mAh g-1 at 0.5 A g-1.  

Zhao et al77 prepared sulphur nanodots of an average diameter size of 2.0 nm anchored 

on NF via an electrodeposition route for use as cathode material  for lithium-sulphur batteries 

(LSBs). The synthesis method was undertaken at room temperature with a varied sulphur mass 

in the range of 0.21 - 4.79 mg cm-2. An electrode with a S content optimized  at 0.45 mg cm-2 

on NF showed an initial Qd of 1 458 mAh g-1 at 0.1C, a high rate capability of 521 mAh g-1 at 

10C, and excellent  cycling stability that gave capacities of 895 mAh g-1 (0.5C) and 528 mAh 

g-1 (5.0C) after 300 and1 400 cycles, repectively.  
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Figure 3: (A) morphology and chemical characterization of Ni3S2 film, and (B) comparative electrochemical 
performances of the nanostructured Ni3S2 film electrodes. Reprinted (adapted) with permission from Ref.  75. 
Copyright 2013, Royal Society of Chemistry. 



14 
 

Zhang et al78 employed nickel foam foil (NFF) as an interlayer in a LSBs by placing it 

between the sulphur electrode and the separator in order to suppress the loss of active material 

and self-discharge of the Li–S system. The group made a comparison of the cell with the rolled 

NFF to a cell without the NFF, where the former was observed to display enhanced 

performance with regards to the utilisation of capacity, reversibility, and rate capability. The 

cell employing the NFF interlayer showed an initial discharge capacity 819 mAh gୗ
−1, and 

further showed a discharge capacity of 604 mAh gୗ
−1 (i.e., 74% retention of capacity) after 80 

cycles at 0.2C. The counterpart cell (without NFF) achieved an initial capacity of 827 mAh 

gୗ
−1, with only 39% capacity retention (324 mAh gୗ

−1) after 80 cycles at 0.2C. The authors 

ascribed the improvement in electrochemical performance to the 3D architecture of the NFF 

interlayer, which was believed to have offered a stable and porous good conductive network 

that enabled easy migration of the polysulfide to inhibit the charge transfer phenomena that 

occur during the charge-discharge processes. 

Wang et al79 developed an anode for lithium-oxygen (Li-O2) batteries by using Bi 

nanoflakes on NF as active material. The preparation method involved immersing NF in a 

Bi3+/ethylene glycol solution, where the Bi3+concentration and reaction time-temperature 

determined the microstructures and thickness of Bi nanoflakes. The Bi/Ni electrode delivered 

reversible capacities ranging between 377.1 and 206.4 mAh g-1, at a current density range of 

of 20.0 - 2 000 mA g-1. Furthermore, it reached a high capacity of 302.4 mAh g-1 after 100 

charge/discharge cycles at 200 mA g-1, as well as a Coulombic efficiency of about 100%, which 

corresponded to 89% capacity retention.  

Hu et al80  prepared self-supported Ni3S2 ultrathin nanosheets via an in-situ hydrothermal 

method involving the direct sulfurization of NF with thioacetamide as a sulfur source for 

application as a cathode in alkaline Ni-Zn Battery. The as-prepared Ni3S2/Ni electrode 

exhibited a high capacity of 125 mAh g-1 after 100 cycles with no apparent attenuation, an 

excellent rate capability of 68.0 mAh g-1 at 5.0 A g-1. Chen et al81 employed NF supported NiO 

nanosheets as cathode active material for Ni-Zn batteries, which showed a volumetric capacity 

of 3 200 μAh cm-3 at 8.0 mA cm-2, as well as a capacity of 979 μAh cm-3 at 20.0 mA cm-2. The 

elecrode also showed energy and power densities of 25.6 mWh cm-2 and 86.48 mW cm-2, 

respectively, as well as good cycling durability of 84.7% capacity retention after 10 000 cycles. 
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Table 3: Summary of 3D NF-based electrode materials and their electrochemical performances in battery 
applications. 

Electrode Battery 
Initial 

charge/discharge 
capacity (mAh g-1) 

Discharge 
capacity after 

cycling (mAh g-1) 
[Cycles] 

Esp 

(mWh cm-

2)b 

Pmax 

(mW cm-2)c 
Ref. 

NiO LIB 
(1.36/ 1.94 mAh cm-

2)a 
(1.38 mAh cm-2)a 

[140]
- - 83 

Co3O4/CuO LIB 1 310/ 1 633 810 [500] - - 84 

Co3O4 

nanowalls 
LIB 794/ 1126 835 [100] - - 85 

Si/rGO LIB 3 717/ 2 735 2 292 [50] - - 86 

Sn nanorods LIB 838.5/ 890 454 [50] - - 87 

Si@rGO LIB 1 762/ 2 445 792 [100] - - 88 

Si-GF LIB 225/ 326 175 [500] - - 89 

Co3O4-C-NA ZAB - - - 118 90 

MnO2 ZAB - -  95.7 91 

Ru nanosheets 
Li-CO2 
battery 

9 064/ 9 502 
Limited to 1 000 

[100] 
- - 92 

Na2Ti3O7 NIB 130/ 300 81.7 [500] - - 93 

NiSe nanorod 
Ni//Zn 
battery 

(1.35/ 1.32 mAh cm-

2)a 
(0.74 mAh cm-2) 

[1 300] 
2.26 95.93 94 

Co3O4-C ZAB - - - 54.5 95 

Fe–NiCoP@C NAB -/ (15 Ah L-1)d - - 
(621 mW g-

1)e 
96 

TiO2 
nanoparticles 

LAB 1 850/2 000 
Limited to 500 

[300] 
- - 97 

a Specific areal capacity (mAh cm−2), b Areal energy density, c Areal power density, d Specific volumetric 
capacity (Ah L-1, Ah cm-3), e Gravimetric power density (mW g-1) 

 

In an attempt to develop electrodes with high catalytic activity and stability for oxygen 

reduction reactions (ORR) in Zn-Air Batteries (ZABs), Wang et al82 fabricated a continuous 

mesoporous bimetallic platinum-palladium (PtPd) film on macroporous NF (mPtPd-NF) by 

soaking NF in a Pt2+/Pd3+/HCl/F127 precursor solution. The mPtPd-NF electrode showed high 

catalytic performance for ORR that favoured its use as a ZAB electrode. The cell performance 
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of the electrode was tested against a commercial Pt/C-based ZAB, where it showed a higher 

open-circuit voltage (OCV) of 1.52 V and a current density of 108 mA cm−2 at 1.0 V, compared 

to the OCV of 0.618 V and current density of 108 mA cm−2 of the commercial ZAB. 

Furthermore, the synthesized electrode showed a power density of 111 mW cm−2 at 121.6 mA 

cm−2 compared to 67 mW cm−2 of the commercial ZAB, as well as a greater specific capacity 

and energy density of 613 mAh g୬
−1 and 728 Wh kg୬

−1 at 10 mA cm−2, respectively, which 

were higher than those of commercial battery that reached 484 mAh g୬
−1 and 541 Wh kg୬

−1, 

repectively. Table 3 summarises reported literature that involved the use of NF as current 

collector for battery applications. Table 4 compares the electrochemical performance of NF-

based electrodes with that of other current collectors in LIB applications, taking Si 

nanoparticles as common active material. 

Table 4: Comparative electrochemical performance of Si nanoparticles in LIB applications using NF and other 
current collectors. 

Current Collector Specific Capacity (mAh g-1) 
Capacity Retention 

(%) [Cycles] 
Ref. 

Cu foil 2 021 10 [35] 98 

Cu foam 580 59 [50] 99 

Carbon nanofiber 1 957 60 [400] 100 

NF 2 500 80 [100] 101 

Cu foam 2 745 - 102 

Cu foil 2 222 - 103 

Cu foil 3 412 - 104 

Cu foil 2 143 - 105 

NF 2 486 57% [50] 106 

Cu foil 2 375 - 107 

Cu foil  2 350 - 107 

Porous Cu 2 550 - 107 
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3.1.3. Fuel Cells  

The shift from heavy global reliance on fossil fuels for energy has motivated the race explore 

and develop clean energy storage and conversion systems like metal-air batteries, fuel cells, 

and water splitting systems.108 Fuel cells (FCs) have been highlighted to play a key role in the 

future energy system, with application in sectors that include large power plants, transportation, 

and portable devices as they have shown potential to efficiently and reliably convert chemical 

energy into electric energy; and depending on the fuel type, fuel cells offer a broad and robust 

operation temperature range and performance at extraordinarily diverse conditions.109,110 

Research emphasis is given to finding alternative fuels and dedicated electrode material.  

Rajeshkhanna and Rao111 synthesized spinel Co3O4 nanomaterial with different 

morphologies directly grown on NF via a simple hydrothermal method and a subsequent 

calcination process. The NF-supported Co3O4 electrodes displayed low onset potential values 

of 0.34 V for the microflowers, and 0.32 V for both microspheres and nanograss. They also 

attained current densities of 28, 36.2, and 34.9 A g-1 at 0.6 V for the microflowers, 

microspheres, and nanograss electrodes, respectively. Chronoamperometric tests were done to 

ascertain the stability and electrocatalytic activity of the electrodes, which followed an 

increasing chronoamperometric current density trend in the line microflower-Co3O4 < 

nanograss-Co3O4 < microsphere-Co3O4. A similar order was observed for the cyclic stability 

tests, which exhibited 32, 66, and 96% retention of the current density after cycling 1 000 times 

at 10 mV s-1. The authors attributed the better results of the nanograss- and microsphere-Co3O4 

electrodes to their high surface area and porosity that resulted in the maximum exposure 

electroactive centres for methanol oxidation. 

Wen et al112 synthesized NF-supported Ni phosphide nanowire arrays (NixP) via a one-

step synthetic strategy using hypophosphite as a source of phosphorus (P) and applied the as-

synthesized material as a high-performance electrocatalyst for the electro-oxidation of 

hydrazine in a direct hydrazine fuel cell (DHFC). The group proclaimed the presence of Ni12P5 

and Ni2P phases, which were obtained from the direct phosphorization of commercial NF, with 

the “Ni2P nanoparticles entirely distributed on Ni12P5. The NixP/NF electrocatalyst displayed 

an onset potential (OP) of -0.08 V and a current density of 580 mA cm-2 at 0.30 V. It further 

displayed 80.5% activity retention after 10 000 s of constant-potential measurement and a 14% 

loss of the electrocatalytic activity after 1 000 CV cycles. The electrode material’s excellent 

electrocatalytic activity was ascribed to the high intrinsic activity, maximum exposure of active  
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Figure 4: (A) morphology and chemical characterization, and (B) comparative electrocatalytic performances 
NixP/NF (DP) catalyst. Reprinted (adapted) with permission from Ref. 112. Copyright 2019, Elsevier. 
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sites on Ni2P, and the excellent electrical conductivity of both the Ni12P5 and Ni2P phases. The 

structural and electrochemical results are demonstrated in Fig. 4. 

Ye’s group113 developed a 3D Ni(OH)2/NF electrode for application in direct urea–

hydrogen peroxide fuel cells (DUPFCs). The electrode fabricated from Ni(OH)2 nanosheets 

showed greater urea oxidation compared to the flower-like,  sheet-like, and twine-like  Ni(OH)2 

electrode materials. The nanosheets achieved an oxidation current density of 337 mA cm-2 at 

0.45 V, as well as an OP of 0.21 V in 0.6 M urea and 5.0 M KOH solutions. Furthermore, as a 

DUPFC anode, the Ni(OH)2 nanosheet/NF electrode showed an OCV of 0.86 V and maximum 

power densities of 19.7 mW cm-2 and 28.8 mW cm-2 at 20 and 50 °C, respectively. Later on, 

the same group led by Wang, G.114 synthesised a Ni2P/NF anode for direct urea fuel cell 

(DUFC) via a combination of hydrothermal growth and phosphating processes. The obtained 

Ni2P@NF electrode displayed porous flower-like nanosheets of Ni2P on the NF substrate. It 

showed a low onset oxidation potential of 0.24 V and outstanding stability in 0.6 M urea and 5 

M KOH solutions at a scan rate of 15 mV s-1, as well as a current density of 750 mA cm-2 at 

0.60 V. Table 5 summarises reported literature that involved the use of NF as current collector 

for FC applications. Table 6 compares the electrochemical performance of NF-based electrodes 

with that of other current collectors in DMFC applications, taking NiCo2O4 nanoparticles as 

common active material. 
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Table 5: Summary of 3D NF-based electrode materials and their electrochemical performances in FC 
applications. 

Electrocatalyst Fuel Cell 

Cell potential [CP) / 
Onset potential [OP] 

/ Open circuit 
voltage [OCV] (V) 

Current density 
(mA cm-2) 

Power 
density  

(mW cm-2) 

Ref. 

Co3O4 Nanowire 
Al–H2O2 semi-

fuel cell 
0.7 (CP) 122 85 115 

NF DGFC 0.6 (OCV) 5.03 0.62 116 

AC MFC -0.2 (CP) 0.57 1 190 ± 50 117 

Pd/graphene 
aerogel 

DMFC/DEFC - (798.8/874 A g-1)a - 118 

Pd-Pt/GA DGFC 0.2 (CP) 6.3 1.25 119 

Pd-Pt/GA DEFC 1.0 (CP) 12 3.6 120 

Pt/NiO-GO DMFC 0.91(CP) 121.46 - 121 

Co3O4/NiCo2O4 DMFC 0.6 (CP) 140 - 122 

PdxAuyGN DMFC/DEFC -0.58/-0.74 (OP) 720/1 180 - 123 

Ni-Mo-S DGFC 0.16 (CP) 193.2 - 124 

TiO2 DUFC - 0.025 - 4 

Ni/NiO nanorods DMFC/DEFC 0.37/0.34 (OP) 479/543 - 125 

Pd-C/NF DEFC 0.1 (CP) 400 56.3 126 

Ni−Co alloy DHFC -0.16 (OP)  1 213 - 127 

NF PEMFC 0.15 (CP) 6 700 1 890 128 

NiO/NF/Ag MCFC 0.87 (OCV) 640 249 129 

Pd6Pt@GP DEFC 0.81 (OP) 141.2 - 130 

NiO nanosheet DMFC 1.84 (CP) 300 - 131 

Co3O4 DMFC 1.5 (CP) 233.9 - 132 

PdAuAg/CNT DFLFC 0.98 (OCV) 64 16 133 

a Gravimetric current density (A g-1) 
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Table 6: Comparative electrochemical performance of NiO nanoparticles in DMFC applications using NF and 
other current collectors. 

Current Collector Onset potential (V) 
Current density  

(mA cm-2) 
Ref. 

NF 0.33 300 131 

GCEa  - 12.54 134 

Ni foil - 65 135 

GCE 0.39 25 136 

GCE 0.37 6 136 

NF - 89 137 

NF 0.48 222 138 

GCE 0.70 85.5 139 

GCE 1.33 24.3 140 

Au 1.7 12 141 

Au 1.7 41 141 

a GCE - Glassy Carbon Electrode 

3.1.4. Electrochemical Water Splitting 

Electrochemical water splitting (EWS) offers the promise of clean and sustainable energy 

storage and transport through mass hydrogen production.142 As an alternative fuel, molecular 

hydrogen has attracted attention in the energy research field because of its great energy density, 

great energy conversion efficiency, environmental friendliness, and sustainability.143,144 

Therefore, the development of cost-effective and efficient electrocatalysts for the 

electrochemical generation of H2 fuel is vital to meeting the world’s rising demand for energy, 

and curbing the progress of global warming.145 Electrochemical water splitting has been 

recognised as a commercial technology capable of producing clean hydrogen efficiently and 

sustainably without the emission of carbonaceous gases.146–148  

The working principle of EWS is generally characterised by two significant reactions, 

namely the hydrogen evolution reaction (HER) at the cathode and the oxygen evolution 
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reaction (OER) at the anode.149 The efficacy of hydrogen production via electrochemical water 

splitting is largely affected by the reaction kinetics of the above-mentioned reactions. Large-

scale production of high purity hydrogen is flawed by the large overpotential required in an 

electrolyser due to the sluggish OER.150 Usually, potentials reaching about 1.8 – 2.0 V, which 

surpass the theoretical potential (1.23 V) of water degredation, are required to meet the 

overpotential. 

Conversely, the overpotential is determined by the activity of the electrocatalyst during 

the reaction, i.e., the structural and electronic properties of the catalyst.151 In practice, good 

catalysts are required in water electrolysers to enable both operations. The most effective HER 

catalysts are presently Pt-group metals, while Ir/Ru-based compounds are the standard catalysts 

for OER. On the other hand, the high cost and scarcity of these precious metals limit their 

widespread use. A great amount of time and effort have been devoted to the development of 

non-precious and highly effective electrocatalysts for water electrolysis. Non-precious 

electrocatalysts include metal sulphides, phosphides, and carbides for HER, as well as metal 

oxides, phosphates, and hydroxides for OER.152–154 Most of these electrocatalysts, unlike noble 

metal-based catalysts, present inferior stability and require greater overpotentials.155 

Ren and Yuan12 developed bifunctional non-precious Ni3S4 electrocatalyst for 

electrochemical water splitting. Nanosheets of Ni3S4 were directly grown on NF (NiS/NF) by 

treatment of metallic NF using a one-pot hydrothermal-sulfurization method. The as-prepared 

NiS/NF electrocatalyst showed good electrocatalytic activity and stability for water electrolysis 

in alkaline electrolytes. The electrocatalyst only required an OP as low as -122 mV to give a 

current density of 10.0 mA cm-2, and a Tafel slope that reached a low of 69 mV dec-1 during 

HER evaluation. It also required an OP of 320 mV during OER evaluation to give a current 

density of 20 mA cm-2, whilst the value of the Tafel slope reached 71 mV dec-1. The authors 

ascribed the results to the high activity and robust stability of the electrocatalyst that were 

realised through the integration of the active catalyst onto the conductive metallic NF. The 

structural and electrochemical studies of the work are shown in Fig. 5.  
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Figure 5: (A) Structural, morphology and chemical characterization of NiS/NF, and (B) comparative 
electrocatalytic performance of Pt/C, NiS/NF, NiS-10/NF, Ni/NF, and pristine Ni foam. Reprinted (adapted) with 
permission from Ref. 12. Copyright 2017, American Chemical Society. 
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Xiao et al156 synthesised a ternary self-supported electrocatalyst of Fe/Ni phosphides 

grown on NF as a bifunctional electrode for water splitting. Their study employed a simple 

thermo-reaction between NaH2PO2 and NiFe hydroxide precursors (NiFe(OH)x) to grow 

FeNiPx on NF using a chemical precipitation reaction, followed by an oxidation-etching 

process. The as-prepared electrocatalyst displayed exceptionally high OER and HER activities, 

with low OP values of 192 and 106, and 236 and 161 mV at 10.0 and 100 mA cm-2, 

respectively. The electrodes required electrolyser voltages of only 1.53 V and 1.74 V to attain 

catalytic stability at 10.0 and 50.0 mA cm-2 current densities, respectively. The electrocatalyst 

further showed great stability for both HER and OER, with little degradation observed after 90 

h evaluations at 50 mA cm-2. The results obtained in the study were credited to the accumulated 

synergy of the bimetallic composite, metallic phosphide, and the unique porous nanosheet 

structure. 

A study by Yang et al157 studied the HER activity of needle-like CoP/rGO electrocatalyst 

grown on NF via a two-step method involving an initial hydrothermal route for the introduction 

of Co on the surface of NF and subsequent heat treatment for the introduction of P. The as-

prepared CoP/rGO/NF catalytic material displayed excellent HER activity, exhibiting OP and 

Tafel slope of 136 mV at 50 mA cm-2 and 135 mV dec-1, repesctively. The electrocatalyst was 

also able to demonstrate electrochemical performance stability of at least 25 h in a basic 

solution. The findings of the study were credited to the material’s morphology and the 3D 

network structure of NF. 

In a bid to improve the kinetics of the reaction electrochemical water splitting, Zhou et 

al149 explored a series of iron substituted cobalt-nickel phosphides grown on NF (FeCoNi-

P/NFs) as potential electrocatalysts for OER. Their study was carried out through a 

hydrothermal reaction successively followed by a phosphorisation procedure. The as-prepared 

electrocatalyst exhibited a current density of 100 mA cm-2 at an overpotential 286 mV. The 

FeCoNi-P/NF electrocatalyst needed a potential of 266 mV to drive a current density of 50 mA 

cm-2 a low Tafel slope of 61.2 mV dec-1. The electrocatalyst exhibited good stability of over 

60 h in a basic solution. The findings of the study emphasized the significance of heteroatom-

substituted TMP on self-supported electrocatalysts. Table 7 summarises reported literature that 

involved the use of NF as current collector for EWS applications. Table 8 compares the 

electrochemical performance of NF-based electrodes with that of other current collectors in 

EWS applications, taking Ni3S2 nanoparticles as common active material. 
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Table 7: A summary of 3D-NF-based electrode materials and their electrochemical performance in 
electrochemical water splitting. 

Electrode Electrolyte Reaction 
Overpotential 

(mV) 

Tafel-slope 

(mV dec-1) 
Ref. 

Ni-Fe-P@C 1 M KOH HER/OER 79/217 92.6/40 150 

Al−Ni−P 0.5 M H2SO4 HER 142 75.3 158 

Co/CoP 1 M NaOH HER 130 71 159 

Ni3S2 0.1 M KOH OER 157 159.3 160 

Ni-B  1 M NaOH HER/OER 186/360 93/76 161 

Ni-Mo-P  1 M KOH OER 140 87.3 145 

MoS2/Ni3S2  1 M KOH HER 76 56 162 

FePO4  1 M KOH HER/OER 123/218 104.5/42.72 163 

NiCoS 1 M KOH OER 370 145 164 

Fe-β-Ni (OH)2  1 M KOH OER 219 57 165 

α-FeOOH 1 M KOH OER 207 70 166 

Ni-Se-Mo film 1 M KOH HER 101 98.9 167 

MoS2/Ni3S2 1 M KOH HER 93 85 168 

CMS 1 M KOH HER/OER 217/298 48.2/43.9 169 

NiFeMoS/NF-P 1 M KOH HER/OER 100/280 121/65 170 

ZnCo2 1 M KOH HER/OER 185/278 110.4/64.3 171 

(P, W)-MoO2 1 M KOH HER/OER 89/308 90/286 172 

V-CoP 1 M KOH HER/OER 84.6/ 265.3 79.2/66.2 173 

NiSe2@NixSy 1 M KOH HER/OER 148/206 7.48/144.94 174 

NiFeP-MoO2  1 M KOH HER/OER 152/174 80.5/29.4 175 
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Table 8: Comparative electrochemical performance of Ni3S2 nanoparticles in EWS applications using NF and 
other current collectors. 

Current Collector Electrolyte Reaction 
Overpotential 

(mV) 

Tafel-slope 

(mV dec-1) 
Ref. 

NF 0.1 M KOH OER 157 159.3 160 

Nickel foil 1 M KOH HER/OER 135/175 75.7/101.2  176 

Cu film 0.5 M H2SO4 HER 91.6 63.5 177 

Cu film 1 M KOH HER 60.8 67.5 177 

Ag 1 M KOH HER - 101 178 

NF 1 M KOH HER/OER 116/353 105/51 179 

Au  1 M KOH HER/OER 300/400 100/51 180 

NF 1 M KOH  HER 199.2 106.1 181 

NF 1 M KOH  OER 223 60.5 182 

Cu foam 1 M KOH  HER/OER 100/50 98/80 183 

 

3.2. Sensors 

In recent times, glucose detection has found significant attention due to its application in 

various fields such as biotechnology clinical diagnostics, food analysis, and fermentation 

industries.184–186 Various techniques, which include calorimetry, conductometry, 

electrochemical methods, and fluorescent-based optical methods, have been used for the 

detection of glucose in a reliable routine.187–190 The electrochemical-based glucose sensor has 

been identified as a standout due to its reliability, sensitivity, selectivity, simple instrumentation 

and operation, and the promise of easily constructible and low-cost devices.191–194 In a bid to 

overcome the challenges encountered with electrochemical enzymatic glucose sensors, 195–197 

great research efforts are given to the development of non-enzymatic sensors based on the 

electrocatalytic oxidation of glucose by nanomaterials,198,199 which offer advantages like a fast 

response, excellent sensitivity and an eco-friendly nature.200 Moreover, the shying away from 

the high cost and scarce pure precious metals and their alloys (Pt, Au, Pd, Pt–Pb, Pt–Ru, Pt–

Au),  which possess excellent catalytic activity towards electro-oxidation of glucose and found 
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wide use for non-enzymatic glucose detection,201,202 has led to efforts aimed at developing non-

precious and low-cost metal-based electrocatalysts.  

Lu et al203 communicated the first use of 3D NF as an effective electrocatalyst for glucose 

electrooxidation. The electrochemical sensitivity of the electrode was investigated using linear 

sweeping voltammetry (LSV), which showed an increase in amperometric response as the 

concentration of glucose in solution was increased. The sensor showed fast amperometric 

response behaviour by reaching a steady-state current of 94% in 5.0 s.  It also exhibited a linear 

range of 0.05 - 7.35 mM with the correlation coefficient (R) calculated at 0.995, a detection 

limit (LOD) of 2.2 μM at a S/N ratio (i.e. signal-to-noise ratio) of 3, and superb selectivity for 

the detection of glucose in the presence of various interfering compounds. A practical 

application of the sensor was evaluated through the determination of glucose in human blood 

serum samples. The LSV experiments done on blood serum samples diluted in 0.10 M NaOH 

showed an increase in the glucose oxidation peak with consecutive addition of glucose into the 

electrolyte. A linear range of 0.2 to 6 mM was attained with R = 0.997. The NF sensor’s 

repeatability and stability tests of the sensor were determined through storing it in air under 

ambient conditions and after ten days of storage, the sensor was able to achieve a 96% retention 

of its initial current response to glucose. Repeated evaluation of the sensor’s current response 

to glucose oxidation after long-term storing gave a relative standard deviation (RSD) of 3.5%, 

indicating the realible reproducibility of the NF-based sensor. The characterisation results are 

presented in Fig. 6. 
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Figure 6: (A) Morphology and chemical characterization of NF, and (B) comparative electrochemical 
performance of NF for the detection of glucose. Reprinted (adapted) with permission from Ref. 203. Copyright 
2013, The Royal Society of Chemistry. 
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Table 9: NF-based electrocatalysts for the electro-oxidation of glucose in non-enzymatic glucose sensors. 

Electrode 
Sensitivity 

(μA mM−1 cm−2) 
LOD (μM) 

Linear range 
(mM) 

Response 
time (s) 

Ref. 

NiO 6 657.5 0.46 0.005 - 5.5 < 2 205 

Ni(OH)2 NPs 1 950.3 0.16 0.6 - 6.0 - 206 

Ni3S2 6 148 1.2 0.005 - 3.0 < 2 207 

Ni(OH)2 NSs 1 130/1 097 1.0 
0.002 - 0.004/0.1 - 

2.5 
< 2 208 

NiO 395 6.15 0.018 - 1.2 - 209 

G-NiO 3 230 < 10 0.01 - 0.2 < 2 210 

Ni@C 32 794.4 0.05 1.5 × 10-4 - 1.48 - 211 

NiFe LDH/NF 3 680.2 0.59 0.002 - 0.8 < 1 212 

Ni(OH)2 2 617.4 2.5 0.0025 - 1.05 - 213 

Ni-Co-S/PPy 
core-shell 

- 0.82 
0.002 - 0.140/0.14 - 

2 
- 214 

NiCo2O4 5 916 0.94 0.001 – 3.987 - 215 

NiO 499 × 10-3 1.0 - < 5 216 

ZnCo2O4 16 606 0.15 0.001 - 0.354 - 217 

CoTe2 nanosheets  168 000 0.59 0.01 - 0.250 0.1 218 

CuFe-O/GR 0.368 0.0079 7.9 × 10-6  -0.0215  - 219 

Ni2P 6 375.1 0.14 0 - 3.0 1 220 

 

Chandrasekaran and Matheswaran developed a non-enzymatic glucose sensor using NF 

coated with a hollow Ni-Al-Mn triple-layered hydroxide (HLTH) nanocomposite.204 The 

HLTH/NF electrode reached stability within 3 s and showed an outstanding sensitivity towards 

glucose oxidation with a wide range of detection from 0.015 - 8 mM. It also exhibited great 

sensitivity of 2.25 mA mM-1 cm-2, with LOD and limit of quantification (LOQ) values 

calculated at 1.49 μM and 4.51 μM, respectively, at a S/N = 3. Stability studies showed that 

the electrode was able to retain 97.71% of the current response after 30 days; furthermore, 

reproducibility and repeatability studies showed RSD values of 3.08 and 2.44%, respectively. 
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Human blood serum was then used as a real-time sample to investigate the practical application 

of the electrode. A comparison for the detection of glucose from two different samples with a 

commercial glucose monitor showed percentage error values of 1.44 and 0.904% for samples 

1 and 2, respectively, for the HLTH/NF electrode. Table 9 lists some of the literature reported 

on NF-based electrodes for non-enzymatic glucose sensors. Table 10 compares the 

electrochemical performance of NF-based electrodes with that of other current collectors in 

glucose sensor applications, taking NiO nanoparticles as common active material. 

In addition to investigating the capacitive performance of NF-supported porous layered 

molybdenum selenide-graphene composite (MoSe2-G), Huang, Zhang, and Cai developed a 

dopamine sensor using the electrode as an electrocatalyst for the oxidation of dopamine.43 The 

MoSe2-G/NF electrode showed good electrocatalytic activity for dopamine oxidation within a 

concentration range of 0.01-10 μM (R = 0.9963), which gave a LOD 1.0 nM (S/N = 3). 

Furthermore, RSD values of 1.6 and 3.8 % were realised from repeatability and reproducibility 

studies of the electrode, respectively, as well as long-term stability of 97.5% retention of the 

initial response after a week. Li, Lu, and Kan221, prepared a facile electrode through the 

electrodeposition of gold nanoparticles (AuNPs) and the electro- polymerization of 

poly(hydroquinone) (pHQ) on the surface NF. The pHQ/AuNPs/NF electrocatalyst was able 

to exhibit a sensitivity of 6.663 μA μM-1 in a linear range of 1.0 × 10-7 - 1.0 × 10-5 M, with a 

LOD of 4.19 × 10-8 M (S/N = 3). Repeatability studies of the electrode showed an RSD value 

of 5.7% from the analysis of five different electrodes, whilst stability studies showed a 12.8% 

attenuation of the reductive peak after storing the electrode for ten days at room temperature. 

The group further demonstrated the electrocatalyst’s excellent selectivity for the dopamine in 

the presence of hydroquinone, uric acid, glucose, and ascorbic acid, as well as its excellent 

recovery that varied from 94.0 to 101.0%.  
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Table 10: Comparative electrochemical performance of NiO nanoparticles in glucose sensor applications using 
NF and other current collectors. 

Current Collector 
Sensitivity 

(μA mM−1 cm−2) 
LOD (μM) Linear range (mM) Ref. 

NF 6 657.5 0.46 0.005 - 5.5 205 

GCEa 1 052.8 1.2 1 × 10-4  – 0.005 222 

GCE 1 323 0.32  3.2  × 10-5   - 1.1 223 

Cu foil 4 490 10 0.01 - 8.3  224 

NF 395 6.15 0.018 - 1.2 209 

ITOb 1 680 0.34 0 - 1 225 

SPEc 1 618.4 2.5  0.25 - 3.75 226 

Ni foil 4 400 7 × 10-3   0.5 × 10-3 - 9 227 

GCE 53.9 0.40 0 - 6 228 

GCE 400.29 1.0 0 – 0.5 229 

NF 499 × 10-3 1.0 - 216 

a GCE – Glassy carbon electrode; b ITO - Indium tin oxide; c SPE - Screen-printed electrode 

Ammonia has found favour as a raw material in various sectors such as agriculture, 

chemical industry, medical diagnosis, etc. However, environmental dejections like water 

eutrophication and a threat to aquatic life and the quality of drinking water arise from the 

pollution of ammonia. This beckons the necessity for the development of aqueous ammonia 

sensors so as protect water bodies from ammonia pollution. A highlight in this regard was 

reported by Zhang and company230 after they fabricated an electrode comprised of platinum 

nanoparticles-silver/polypyrrole (Pt-Ag/PPy) composite anchored on NF. The electrode 

displayed good electrocatalytic activity for the oxidation of ammonia, having showed a 

sensitivity of 0.089 mA μM-1 and a LOD estimated at 37 nM (S/N =3). It further showed 

outstanding selectivity for ammonia amongst various interferents (< 8% interference). 

Reusability and reproducibility tests conducted on the electrode showed RSD values of 4.7 and 
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5.4%, while a stability test displayed a 90.3% retention of the original oxidation current after 

60 days.  

 

3.3. Waste-Water Treatment 

As a consequence of its favourable properties that include high efficiency, versatility, positive 

impact on the environmental, and low cost, electro-Fenton (EF) has been identified as a stand-

out amongst the electrochemical advanced oxidation processes (EAOPs) that have a great 

potential “green” waste-water treatment.231–233 The EF process involves a constant in-situ 

production of H2O2 through a series of catalysed reactions as shown in Fig. 7. 234–238 Deng et 

al234  proposed an unconventional EF system with a NF cathode, and tripolyphosphate (3-PP) 

as an electrolyte that effectively proved protected the NF cathode against corrosion. Response 

surface modelling (RSM) estimated the optimum for phenol degradation conditions to be at a 

pH of 5.8, 3.0 mM of Fe2+, 349.6 mA of current. These conditions ensured a complete 

degradation in no more than 25.0 min at a rate constant (kapp) calculated at 0.2 min-1.  The rate 

constant in this study is over three times (< x3) faster than that of conventional EF/NF systems 

using a SO4
2- electrolyte of pH = 3. Also, a 81.5% mineralization yield was achived within 2 

h. A comprehensive study of the central mechanisms of the oxidation reactions in the EF/NF-

3-PP set-up revealed the multifunctional capability of the 3-PP electrolyte, which included the 

stabilisation of H2O2, on top of the Fe2+ complexing and the production of additional reactive 

oxygen. The stabilisation of H2O2 by the 3-PP electrolyte resulted in a higher accumulation of 

the compound as compared to the amount acquired using SO4
2−electrolyte in conventional EF 

systems. Toxicity studies showed an eventual complete degradation of toxic intermediates that 

were formed at the early stages of treatment after 2 h. 
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Figure 7: Graphical representation of the reactions involved in the electro-Fenton (EF) process. Reprinted 
(adapted) with permission from Ref. 234. Copyright 2020, Elsevier. 

The biodegradation resistant nature of chlorinated aromatic antibiotics and their toxicity 

because of chlorine atoms pose a threat to aquatic ecosystems and human lives.239 With 

reductive dechlorination identified as an effective and realiable waste-water treatment 

procedure for the removal of the antibiotics,240–245 numerous techniques have been developed 

around the concept such as microbial dehalogenation, zero-valent iron reduction, Fenton 

reactions, and electrocatalytic dechlorination.246–254 The latter has been receiving great 

attention due to its high efficiency and generation of less toxic by-products, as well as the 

circumvention of the need for extra reducing agents.255–257 Precious metal catalysts have 

demonstrated the ability to attain high reactivity in the catalytic dechlorination process, with 

palladium (Pd) exhibiting great retention of the strongly reductive atomic H* in large amounts. 

This is due to its low OP for HER, as well as its greater H* adsorption and storage capacity.258–

262  

Taking advantage improved reaction kinetics and mild operating conditions of this 

technology, Yang et al263  synthesized a Pd@NF electrode through galvanic substitution of  Ni 

atoms on the surface of NF with ultafine Pd nanoparticles. The as-prepared electrode was 

compared with bare NF and commercial Pd/C the electrochemical dechlorination of the 
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florfenicol (FLO) antibiotic, where it showed excellent electrocatalytic performance for the 

intended purpose. The Pd@NF cathode reached a 99.5% dechlorination efficiency of 20 mg 

L−1 FLO, with a fast dechlorination rate of 16.58 mg min−1 ( at -1.2 V vs. Ag/AgCl). These 

results surpassed those of the bare NF and commercial Pd/C, which exhibited dechlorination 

rates of 2.63 mg min−1 and 11.32 mg min-1. It also showed a reaction rate constant of 0.044 

min−1, which was 44 and 4.4 times faster than the 0.001 min−1 and 0.010 min−1 observed for 

the bare NF and commercial Pd/C electrodes, respectively. Furthermore, the electrode showed 

excellent stability with 95% of the FLO removal efficiency still attained after 20 cycles. The 

authors attributed the excellent electrocatalytic performance of the Pd@NF electrode for FLO 

dechlorination to the enhanced mass transfer due to the presence of the 3D independently 

supported NF frame and the micro-interfaces of Pd-Ni on the surface of NF that led to improved 

utilization of H*.  

Lou et al264 prepared a Pd/MnO2/NF as a hydrodechlorination (ECH) electrocatalyst via 

an electrodeposition method. The introduction of MnO2 was found to have immensely 

improved the catalytic activity of the electrocatalyst and effectively reduced the amount of dose 

Pd compared to the common Pd/NF electrode. The electrocatalyst required only one-fourth of 

Pd in compare to Pd/NF, with dechlorination of 2,4-dichlorobenzoic acid (2,4-DCBA) being 

completely achieved under 2 h. Repeatability studies showed a slight decrease in the 2,4-DCBA 

removal efficiency, with 100, 98, 98, 95, and 94% removal efficiencies observed in five 

consecutive tests. Mechanistic examinations showed that the dechlorination process was 

dominated by the atomic H∗-based indirect pathway, with roughly 13% removal of 2,4-DCBA 

achieved through direct electron transfer. The MnO2 nanoparticles were observed to have 

provided Pd with more atomic H* through the enhancement of the water dissociation and 

hydrogen evolution reactions.  

3.4. Ammonia Synthesis 

The electrochemical synthesis of ammonia is considered as an alternative green method to the 

traditional Haber−Bosch process due to the reduced energy consumption and mild operation 

conditions,265–272 as outlined in Table 4. An emphasis is given to the design and development 

of efficient electrocatalysts for facile adsorption and activation of nitrogen for the nitrogen 

reduction reaction (NRR). The direct growth of porous metallic nanostructures on conductive 

substrates like NF has been identified as a solution to the various challenges encountered with 
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the fabrication and use of porous noble metals as electrocatalysts as it offers timeously 

fabricated electrodes with more electro-active sites and heightened conductivity.273,274  

Wang et al273   used an electrochemical method involving a micelle electrodeposition 

process to coat a porous Au film onto NF to fabricate an electrocatalyst for the reduction of 

nitrogen to ammonia. The electrode, denoted as pAu/NF, demonstrated great NRR efficieny, 

with the NH3 yield rate (rୌయ
) peaking at 9.42 μg h−1 cm−2, as well as good Faradaic efficiency 

(FE) calculated at 13.36% at -0.20 V in 0.1 M Na2SO4. The electrode also showed improved 

selectivity for the reduction of nitrogen to ammonia than to the formation hydrazine (N2H2). 

Chronoamperometric tests (CA) of the pAu/NF displayed an insignificant degradation of the 

current density after 20 h electrolysis, while a slight reduction in the rୌయ
 was observed from 

stability. The NRR results of the pAu/NF electrode were ascribed to the its porous architecture 

and the optimized composition of active Au.  

Table 11: Comparison between the Haber-Bosch process and the Electrocatalytic nitrogen reduction reaction for 
the production of NH3. 

 
Haber−Bosch (H−B) 

Electrocatalytic Nitrogen Reduction 

Reaction (NRR) 

Temperature (°C) 350−550 Ambient (~25 °C) 

Pressure (MPa) 15−35 Ambient (~0.1 MPa) 

Reagents N2, O2,CH4 and H2O N2 and H2O 

By-product CO2 - 

A slightly different group led by Wang, Z.275  followed suit with the synthesis method to 

grow a Pd film with tailored pore-sizes on NF. The electrode, designated as nPd/NF, exhibited 

an excellent catalytic NRR performance for the production of ammonia, with high rୌయ
 and 

FE of 18.27 μg h-1 mgcat
-1 and 10.36% in 0.1 M Na2SO4, respectively. Furthermore, the 

electrode showed excellent selectivity for the production of ammonia, as well as excellent long-

term durability with high rୌయ
 and FE values of 17.98 μg h-1 mgcat

-1 and 10.03% were obtained 

in chronoamperometric test that lasted for 20 h. The catalytic performance of the electrode was 



36 
 

ascribed to the combination of the continuous large nano-porous structure and the self-

supported properties. 

A similar group led by Yu, H.274, used the same method to prepare a mesoporous Au3Pd 

film-coated NF electrode. The as-fabricated mAu3Pd/NF electrode showed higher NRR 

catalytic activity with rୌయ
 = 24.02 μg h-1 mgcat

.-1 and FE = 18.16%. The electrode further 

demonstrated ideal long-term stability with a slight attenuation of current, evidenced by high 

 𝑟ୌయ
 and FE constants after 20 h. The authors credited the superb NRR performance of 

mAu3Pd/NF electrode to the synergistic effect of the Au-Pd bimetallic composition and 

electronic activity of the self-supported mesoporous film structure.  

Li et al276 also adopted the micelle electrodeposition method to synthesise interweaved 

porous palladium-ruthenium nanosheets coated on NF (PdRu NS-NF) for the electrocatalytic 

production of ammonia through nitrogen production. The PdRu NS-NF electrode exhibited 

maximum rୌయ
 and FE values of 20.46 mg h-1 cm-2 (34.1 mg h-1 mgcat -1) and 2.11%, 

respectively. Five recycling tests were undertaken to determine the stability of the electrode, 

with a retention of 96% of the values rୌయ
and FE constants, as well as a slight attenuation of 

the current density after 30 h electrolysis. In addition, a negligible decrease was observed from 

the initial rୌయ
 and FE values after a long-term stability test. The unique structure of the PdRu 

NS-NF electrode was credited with excellent NRR performance as it provided a large number 

of electro-active sites and convenient pathways for charge/mass transfer, thus enhancing the 

electrocatalytic efficiency of the electrode.  

4. Conclusion and Future Perspectives  

Nickel foam has over the years become very popular with researchers as a current collector of 

choice in electrochemical systems that include energy storage and conversion, sensors, waste-

water treatment, ammonia synthesis, etc.  However, some concerns have been raised about the 

contribution of NF as a current collector to the performance of some electrochemical devices. 

This contribution was attributed to the existence of electroactive chemical species on the 

surface of NF. On the other hand, the majority of studies involving NF as a current collector 

reported negligible contribution of NF to the overall performance. In comparison to other 

current collectors, NF-supported active materials demonstrated improved electrochemical 

performance which was mostly attributed to the unique properties of NF. Also, the ability to 

use NF as a substrate to grow electroactive materials directly on its surface has proven to be an 
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effective approach to relatively reducing the cost of electrode fabrication for fundamental 

research. This strategy eliminates the need for additives such as binding and conducting 

materials, which could translate to a reduced total cost of the device manufacture and improved 

electrochemical performance due to maximum exposure of the electroactive material. Thus, a 

scaled-up commercial-level study of the strategy is necessary to validate it as a cost-effective 

route for electrode development and enhancing device performance. As evidenced in this 

review, there is a growing interest in the use of NF due to its unique properties that are favorable 

in various electrochemical systems. However, a comprehensive study of the NF’s chemistry in 

these systems is still required to ascertain its impact on the overall electrochemical 

performance. Also, a detailed analysis is necessary for the comparison of NF with other current 

collectors to establish a guideline for the future selection of compatible current collectors for 

specific electrochemical applications. A case-by-case study of using NF in various electrolytes 

is necessary to eliminate any discrepancies in the communication of the literature involving 

NF, such as that observed in some literature reports.  
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