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Abstract. We formalize the notion of vector semi-inner products and introduce a class of

vector seminorms which are built from these maps. The classical Pythagorean theorem and

parallelogram law are then generalized to vector seminorms that have a geometric mean

closed vector lattice for codomain. In the special case that this codomain is a square root

closed, semiprime f -algebra, we provide a sharpening of the triangle inequality as well as

a condition for equality.

1. Introduction

Though not formalized previously, semi-inner products with a vector lattice codomain

have been proven to satisfy the Cauchy-Schwarz inequality in certain settings. Specifically,

it was proven in [8, Corollary 4] that the Cauchy-Schwarz inequality holds for semi-inner

products with an almost f -algebra codomain. This result inspired the paper [7], whose main

theorem illustrates that the Cauchy-Schwarz inequality also holds for semi-inner products

whose codomain is a geometric mean closed vector lattice.

These results promised the development of a vector lattice-valued semi-inner product

space theory, which is the focus of this paper. Using these generalized semi-inner products,

which we call vector semi-inner products, we construct vector seminorms, as studied in [5].

We then elucidate how a large class of these vector seminorms satisfy an inequality that

is sharper than the triangle inequality. From this result, a new equality condition for the

triangle inequality is established. Finally, we tap into the theory of square mean closedness

in vector lattices, which was developed in [2, 3, 6, 11], to prove that a wide range of vector

seminorms built from vector semi-inner products satisfy the Pythagoran theorem and the

parallelogram law. We proceed with the preliminaries.
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2. Preliminaries

We refer the reader to [1, 10, 12] for basic terminology and theory for vector lattices (also

called Riesz spaces) and f -algebras. Briefly, a vector lattice is an ordered vector space over

R which is closed under finite suprema and infima. Given a vector lattice F , we as usual

denote the positive cone by

F+ := {x ∈ F : x ≥ 0}.

All vector lattices in this paper are assumed to be Archimedean, meaning that

inf{n−1u : n ∈ N} = 0

holds for all elements u of the positive cone. An f -algebra F is a vector lattice equipped

with a ring multiplication (which we denote by juxtaposition as usual) for which

(i) xy ∈ F+ for every x, y ∈ F+, and

(ii) inf{x, y} = 0 implies inf{(xz), y} = inf{x, (yz)} = 0 for all z ∈ F+.

We add that the multiplication on any Archimedean f -algebra is commutative [12, Theo-

rem 140.10].

A vector lattice F is said to be geometric mean closed (see [3, page 486]) if

inf{θu+ θ−1v : θ ∈ (0,∞)}

exists in F for every u, v ∈ F+. Given a geometric mean closed vector lattice F and

u, v ∈ F+ we define

u� v := 2−1 inf{θu+ θ−1v : θ ∈ (0,∞)}.

It will benefit the reader to note that for u, v ∈ R+, the expression u� v coincides with

the classical geometric mean:

u� v =
√
uv (u, v ∈ R+).

Every geometric mean closed vector lattice is also square mean closed [3, Theorem 4.4].

We say a vector lattice F is square mean closed (see [3, page 482]) if

sup{(cos θ)u+ (sin θ)v : θ ∈ [0, 2π]}

exists in F for every u, v ∈ F . In this case we define

u� v = sup{(cos θ)u+ (sin θ)v : θ ∈ [0, 2π]} (u, v ∈ F ).

To again aid the reader, we note that

u� v =
√
u2 + v2
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holds for all u, v ∈ R.

In the special case that u and v are positive, we have (see [12, Theorem 91.4(ii)])

u� v = sup{(cos θ)u+ (sin θ)v : θ ∈ [0, 2−1π]} (u, v ∈ F+).

Given an f -algebra F and a ∈ F , we again as customary write a2 = aa. For a ∈ F+,

if there exists a unique b ∈ F+ for which b2 = a, we write b =
√
a. If F is a semiprime

f -algebra (meaning free of nilpotents) and a, b ∈ F+ satisfy b2 = a then we have b =
√
a

by [4, Proposition 2(ii)].

Every vector space in this document is assumed to be over R.

Definition 2.1. Let V be a vector space, and let F be an ordered vector space. We call a

map T : V × V → F a vector semi-inner product if

(i) T (x+ y, z) = T (x, z) + T (y, z) (x, y, z ∈ V ),

(ii) T (x, y + z) = T (x, y) + T (x, z) (x, y, z ∈ V ),

(iii) λT (x, y) = T (λx, y) = T (x, λy) (x, y ∈ V, λ ∈ R),

(iv) T (x, y) = T (y, x) (x, y ∈ V ), and

(v) T (x, x) ≥ 0 (x ∈ V ).

The following theorem regarding vector semi-inner products is the content of [7, Theorem

3.1] and is an essential ingredient to the results in Section 3.

Theorem 2.2. (Cauchy-Schwarz Inequality) Let V be a vector space, and suppose

that F is a geometric mean closed vector lattice. If T : V × V → F is a vector semi-inner

product, then

(1) inf
λ∈R\{0}

{|λ|−1T (λx− y, λx− y)} exists in F (x, y ∈ V ),

(2) |T (x, y)| = T (x, x) � T (y, y)− 2−1 inf
λ∈R\{0}

{|λ|−1T (λx− y, λx− y)} (x, y ∈ V ),

(3) |T (x, y)| ≤ T (x, x) � T (y, y) (x, y ∈ V ), and

(4) |T (x, y)| = T (x, x) � T (y, y) if and only if inf
λ∈R\{0}

{|λ|−1T (λx− y, λx− y)} = 0.

In Section 3 we also utilize the following proposition by Azouzi, Boulabiar, and Buskes.

Proposition 2.3. [3, Lemma 5.1] Let F be a geometric mean closed vector lattice, put

λ ∈ R+, and let a, b, c ⊆ F+. The following hold:

(1) (Biadditvity) (a+ b) � c = (a� c) � (b� c) and a� (b+ c) = (a� b) � (a� c);

(2) (Separate Positive Homogeneity) (λa) � b = λ1/2(a� b) = a� (λb).
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3. Vector Semi-Norms Via Vector Semi-Inner Products

We construct vector semi-norms from vector semi-inner products in this section and

present our results. To begin, we consider the following definitions.

Definition 3.1. Given a vector space V and an ordered vector space F , a map ‖·‖ : V → F

is called a vector seminorm (see [5, Section 2]) if

(Positivity) ‖x‖ ∈ F+ (x ∈ V ),

(Absolute Homogeneity) ‖αx‖ = |α|‖x‖ (x ∈ V, α ∈ R), and

(Triangle Inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (x, y ∈ V ).

Definition 3.2. Let V be a vector space, F be a geometric mean closed vector lattice, and

suppose that T : V × V → F is a vector semi-inner product. Put u ∈ F+. Define

‖x‖Tu := T (x, x) � u (x ∈ V ).

We prove next that the maps defined in Definition 3.2 above are in fact vector seminorms.

Theorem 3.3. If V is a vector space, F is a geometric mean closed vector lattice, u ∈ F+,

and T : V × V → F is a vector semi-inner product, then ‖ · ‖Tu is a vector seminorm.

Proof. Let V be a vector space and F be a geometric mean closed vector lattice. Suppose

that T : V × V → F is a vector semi-inner product and that u ∈ F+. The positivity of

‖ · ‖ is evident. We first prove the absolute homogeneity of ‖ · ‖Tu . To this end, put α ∈ R
and x ∈ V . The desired result ||αx||Tu = |α|||x||Tu is trivial in the case that α = 0. Suppose

α 6= 0. We want to show that

‖αx‖Tu = |α|‖x‖Tu ,

or equivalently, that

inf
θ>0
{θT (αx, αx) + θ−1u} = |α|inf

θ>0
{θT (x, x) + θ−1u}.

For this task, observe that

inf
θ>0
{θT (αx, αx) + θ−1u} = inf

θ>0
{θ|α|2T (x, x) + θ−1u}.

Then we have

inf
θ>0
{θ|α|2T (x, x) + θ−1u} = |α|inf

θ>0
{θ|α|T (x, x) + (θ|α|)−1u}.

Substituting t := θ|α|, we get

|α|inf
θ>0
{θ|α|T (x, x) + (θ|α|)−1u} = |α|inf

t>0
{tT (x, x) + t−1u},
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as desired.

We proceed by showing that ‖ · ‖Tu satisfies the triangle inequality. For this purpose, let

x, y ∈ V . We will show that 2‖x‖Tu + 2‖y‖Tu − 2‖x+ y‖Tu ≥ 0. To this end, observe that

2‖x‖Tu + 2‖y‖Tu − 2‖x+ y‖Tu
= inf

θ>0
{θT (x, x) + θ−1u}+ inf

ψ>0
{ψT (y, y) + ψ−1u} − inf

λ>0
{λT (x+ y, x+ y) + λ−1u}

= inf
θ,ψ>0

{θT (x, x) + θ−1u+ ψT (y, y) + ψ−1u}

− inf
λ>0
{λT (x, x) + 2λT (x, y) + λT (y, y) + λ−1u}

≥ inf
θ,ψ>0

{θT (x, x) + θ−1u+ ψT (y, y) + ψ−1u}

− inf
λ>0
{λT (x, x) + 2λ|T (x, y)|+ λT (y, y) + λ−1u}.

Using Theorem 2.2(3), we obtain

inf
θ,ψ>0

{θT (x, x) + θ−1u+ ψT (y, y) + ψ−1u} − inf
λ>0
{λT (x, x) + 2λ|T (x, y)|+ λT (y, y) + λ−1u}

≥ inf
θ,ψ>0

{θT (x, x) + θ−1u+ ψT (y, y) + ψ−1u}

− inf
λ>0
{λT (x, x) + 2λ(T (x, x) � T (y, y)) + λT (y, y) + λ−1u}

= inf
θ,ψ>0

{θT (x, x) + ψT (y, y) + (θ−1 + ψ−1)u}

− inf
λ,φ>0

{λ(1 + φ)T (x, x) + λ(1 + φ−1)T (y, y) + λ−1u}.

To show that the above difference is an element of F+, it suffices to show the inclusion

{θT (x, x) + ψT (y, y) + (θ−1 + ψ−1)u : θ, ψ ∈ (0,∞)}

⊆ {λ(1 + φ)T (x, x) + λ(1 + φ−1)T (y, y) + λ−1u : λ, φ ∈ (0,∞)}.

and use the readily-checked monotonicity of infima: inf A ≥ inf B whenever A ⊆ B ⊆ F

and inf A and inf B exist. To this end, let θ, ψ > 0. Set λ := (θ−1 +ψ−1)−1 and φ := θψ−1,

and note that λ, φ > 0. Observe that λ(1 + φ) = θ and λ(1 + φ−1) = ψ. Therefore, we

obtain the inclusion above. �

In the theorem above, the triangle inequality can be sharpened in the case that F is a

semi-prime, square root closed f -algebra. A semiprime f -algebra F is called square root

closed if for every a ∈ F+ there exists a (unique) b ∈ F+ for which b =
√
a.
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Theorem 3.4 (Sharpened Triangle Inequality). Let V be a vector space, and suppose

F is a square root closed, semi-prime f -algebra. Let T : V ×V → F be a vector semi-inner

product, and put u ∈ F+. If x, y ∈ V , then

||x+ y||Tu ≤
√

(||x||Tu + ||y||Tu )2 − inf
λ∈R\{0}

{|λ|−1(||λx− y||Tu )2} ≤ ||x||Tu + ||y||Tu .

Moreover, the equality

||x+ y||Tu =
√

(||x||Tu + ||y||Tu )2 − inf
λ∈R\{0}

{|λ|−1(||λx− y||Tu )2}

holds if and only if T (x, y)u ∈ F+.

Proof. Let x, y ∈ V . By [7, Proposition 2.1], which is a slight generalization of [2, Theorem

2.21],

a� b =
√
ab (a, b ∈ F+)

holds, where the calculation a � b is taken in the geometric mean completion of F (see

[6]), where it is guaranteed to exist. But since F is square root closed, we conclude that

a�b ∈ F , i.e. F is itself geometric mean closed. It then follows from [12, Theorem 142.3(ii)]

that

(‖z‖Tu )2 = (
√
T (z, z)u)2 = T (z, z)u

holds for all z ∈ V . Using this fact, the bilinearity of T , Theorem 2.2(2), and the order

continuity and commutativity of Archimedean f -algebra multiplication, we obtain

(‖x+ y‖Tu )2 = (‖x‖Tu )2 + (‖y‖Tu )2 + 2T (x, y)u

≤ (‖x‖Tu )2 + (‖y‖Tu )2 + 2|T (x, y)|u

= (‖x‖Tu )2 + (‖y‖Tu )2 + 2

(√
T (x, x)T (y, y)− 2−1 inf

λ∈R\{0}
{|λ|−1T (λx− y, λx− y)}

)
u

= (‖x‖Tu )2 + (‖y‖Tu )2 + 2‖x‖Tu ‖y‖Tu − inf
λ∈R\{0}

{|λ|−1(‖λx− y‖Tu )2}

= (‖x‖Tu + ‖y‖Tu )2 − inf
λ∈R\{0}

{|λ|−1(‖λx− y‖Tu )2}.

Invoking [12, Theorem 142.3(ii)] once more, we obtain

‖x+ y‖Tu ≤
√

(‖x‖Tu + ‖y‖Tu )2 − inf
λ∈R\{0}

{|λ|−1(‖λx− y‖Tu )2}.

That the equality condition holds if and only if T (x, y)u ∈ F+ is evident from the string of

relations above. Furthermore, the inequality√
(‖x‖Tu + ‖y‖Tu )2 − inf

λ∈R\{0}
{|λ|−1(‖λx− y‖Tu )2} ≤ ‖x‖Tu + ‖y‖Tu
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also follows from [12, Theorem 142.3(ii)]. �

If F is instead a geometric mean closed semi-prime f -algebra (and not necessarily square

root closed), then the proof of Theorem 3.4 also verifies the following reformulation of our

sharpened triangle inequality.

Theorem 3.5 (Sharpened Triangle Inequality). Let V be a vector space, and suppose

F is a geometric mean closed, semi-prime f -algebra. Let T : V × V → F be a vector

semi-inner product, and put u ∈ F+. If x, y ∈ V , then

(||x+ y||Tu )2 ≤ (||x||Tu + ||y||Tu )2 − inf
λ∈R\{0}

{|λ|−1(||λx− y||Tu )2} ≤ (||x||Tu + ||y||Tu )2.

Moreover, the equality

(||x+ y||Tu )2 = (||x||Tu + ||y||Tu )2 − inf
λ∈R\{0}

{|λ|−1(||λx− y||Tu )2}

holds if and only if T (x, y)u ∈ F+.

As an immediate corollary, we obtain the following characterization for when the norm

‖ · ‖Tu is additive: ||x+ y||Tu = ||x||Tu + ||y||Tu .

Corollary 3.6. Let V be a vector space, and suppose F is a geometric mean closed semi-

prime f -algebra. Let T : V × V → F be a vector semi-inner product, and put u ∈ F+. If

x, y ∈ V , then

||x+ y||Tu = ||x||Tu + ||y||Tu

holds if and only if T (x, y)u ∈ F+ and inf
λ∈R\{0}

{|λ|−1(‖λx− y‖Tu )2} = 0.

Next we utilize the square mean operation to extend the classical Pythagorean theorem

for inner product spaces to a result that holds for vector seminorms that are built from

vector semi-inner products with geometric mean closed codomain. Indeed, note that the

conclusion of the classical Pythagorean theorem (see e.g. [9, Theorem 2.2])

‖x+ y‖2 = ‖x‖2 + ‖y‖2

is equivalent to

‖x+ y‖ = ‖x‖� ‖y‖.

Theorem 3.7. (The Pythagorean Theorem) Let V be a vector space, and let F be a

geometric mean closed vector lattice. Let T : V × V → F be a vector semi-inner product.

Let u ∈ F+. If x, y ∈ V are such that T (x, y) = 0, then

||x+ y||Tu = ||x||Tu � ||y||Tu .
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Proof. Let x, y ∈ V satisfy T (x, y) = 0. Then using Proposition 2.3 (1) in the fourth

equality below yields

||x+ y||Tu = T (x+ y, x+ y) � u

=
(
T (x, x) + 2T (x, y) + T (y, y)

)
� u

=
(
T (x, x) + T (y, y)

)
� u

=
(
T (x, x) � u

)
�
(
T (y, y) � u

)
= ||x||Tu � ||y||Tu .

�

In a manner similar to the Pythagorean theorem, we use the square mean operation on

vector lattices to generalize the classical parallelogram law. For this task, first observe that

the conclusion of the classical parallelogram law (see e.g. [9, Theorem 2.3])

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

is equivalent to

||x+ y||� ||x− y|| = 21/2(||x||� ||y||).

Theorem 3.8. (The Parallelogram Law) Let V be a vector space, and let F be a geomet-

ric mean closed vector lattice. Suppose T is a vector semi-inner product, and let x, y ∈ V .

Let u ∈ F+. Then the following holds:

||x+ y||Tu � ||x− y||Tu = 21/2(||x||Tu � ||y||Tu ).
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Proof. Using Proposition 2.3 (1) in the third and sixth equalities below and Proposi-

tion 2.3 (2) in the fifth equality below, we obtain

||x+ y||Tu � ||x− y||Tu =
(
T (x+ y, x+ y) � u

)
�
(
T (x− y, x− y) � u

)
=

((
T (x, x) + 2T (x, y) + T (y, y)

)
� u

)
�

((
T (x, x)− 2T (x, y) + T (y, y)

)
� u

)
=
(
T (x, x) + 2T (x, y) + T (y, y) + T (x, x)− 2T (x, y) + T (y, y)

)
� u

=
(

2T (x, x) + 2T (y, y)
)
� u

= 21/2
((

T (x, x) + T (y, y)
)
� u

)
= 21/2

((
T (x, x) � u

)
�
(
T (y, y) � u

))
= 21/2(||x||Tu � ||y||Tu ).

�
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